Please use this identifier to cite or link to this item: doi:10.22028/D291-26114
Title: Routing through a generalized switchbox
Author(s): Kaufmann, Michael
Mehlhorn, Kurt
Language: English
Year of Publication: 1984
OPUS Source: Saarbrücken, 1984
DDC notations: 004 Computer science, internet
Publikation type: Report
Abstract: We present an algorithm for the routing problem for two-terminal nets in generalized switchboxes. A generalized switchbox is any subset R of the planar rectangular grid with no non-trivial holes, i.e. every finite face has exactly four incident vertices. A net is a pair of nodes of non-maximal degree on the boundary of R. A solution is a set of edge-disjoint paths, one for each net. Our algorithm solves standard generalized switchbox routing problems in time O(n(log n)^2) where n is the number of vertices of R, i.e. it either finds a solution or indicates that there is none. A problem is standard if deg(v) + ter(v) is even for all vertices v where deg(v) is the degree of v and ter(v) is the number of nets which have v as a terminal. For nonstandard problems we can find a solution in time O(n(log n)^2 + |U|^2) where U is the set of vertices v with deg(v) + ter(v) is odd.
Link to this record: urn:nbn:de:bsz:291-scidok-41553
Series name: Bericht / A / Fachbereich Angewandte Mathematik und Informatik, Universität des Saarlandes
Series volume: 1984/11
Date of registration: 2-Sep-2011
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
fb14_1984_11.pdf8,78 MBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.