Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-26039
Titel: Bewertung Amerikanischer Optionen mit Hilfe von regressionsbasierten Monte-Carlo-Verfahren
Verfasser: Todorović, Neboj a
Sprache: Deutsch
Erscheinungsjahr: 2007
SWD-Schlagwörter: Monte-Carlo-Simulation
Nichtparametrische Regression
Option
Optionspreis
Freie Schlagwörter: Amerikanische Option
Preisprozess
Monte Carlo method
American options
price process
nonparametric regression
DDC-Sachgruppe: 510 Mathematik
Dokumentart : Dissertation
Kurzfassung: In der vorliegenden Arbeit wird die Bewertung Amerikanischer Optionen in diskreter Zeit mit Hilfe von regressionsbasierten Monte-Carlo-Verfahren betrachtet. Die Optionen dürfen dabei auf mehreren Underlyings basieren (so genannte Basket-Optionen). Für die Preisprozesse der Underlyings wird angenommen, dass diese die Markov-Eigenschaft besitzen und somit Markov-Prozesse sind. Mit Monte-Carlo-Verfahren werden dann künstliche Stichprobenpfade dieser Preisprozesse erzeugt, um anschließend mit adaptiven nichtparametrischen Kleinste-Quadrate-Regressionsschätzern ausgehend von diesen Stichprobenpfaden die so genannten Kontinuierungswerte zu schätzen. Dabei beschreiben die Kontinuierungswerte die Mittelwerte der Amerikanischen Optionen für gegebene Kurse der Underlyings zur Zeit t gemäß der Bedingung, dass die Optionen nicht zur Zeit t, sondern optimal in der Zukunft ausgeübt werden. Als nichtparametrische Regressionsschätzer werden adaptive Kleinste-Quadrate-Splineschätzer sowie adaptive Neuronale-Netze-Schätzer verwendet. Diese Schätzer werden im Zusammenhang mit der Bewertung Amerikanischer Optionen theoretisch analysiert, und Resultate zur Konsistenz und zur Konvergenzgeschwindigkeit werden hergeleitet. Abschließend wird mit den Schätzern das Bewerten Amerikanischer Optionen auf simulierten Daten illustriert.
Pricing of American options in discrete time by means of regression-based Monte Carlo methods is considered in this thesis. Thereby, the options are allowed to be based on several underlyings (so-called basket options). It is assumed that the underlyings price processes satisfy the Markov property and consequently are Markov processes. In this dissertation, Monte Carlo methods are used to generate artificial sample paths of these price processes, and subsequently adaptive nonparametric least squares regression estimates are used to estimate the so-called continuation values from these data. The continuation values describe the mean values of the American options for given values of the underlyings at time t, subject to the constraint that the options are not exercised at time t, but optimally exercised in the future. Adaptive least squares neural networks as well as adaptive least squares spline estimates are used as nonparametric regression estimates. In conjunction with the pricing of American options, these estimates are theoretically analysed, and results with respect to consistency and rate of convergence are derived. Finally, the pricing of American options on simulated data by means of the estimates is illustrated.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-38330
hdl:20.500.11880/26095
http://dx.doi.org/10.22028/D291-26039
Erstgutachter: Kohler, Michael
Tag der mündlichen Prüfung: 11-Okt-2007
SciDok-Publikation: 31-Mai-2011
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
Fachrichtung: MI - Mathematik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Todorovic_Nebojsa.pdf501,65 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.