Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-26031
Titel: Denoising and enhancement of digital images : variational methods, integrodifferential equations, and wavelets
Verfasser: Didas, Stephan
Sprache: Englisch
Erscheinungsjahr: 2008
SWD-Schlagwörter: Rauschen
Glättung
Integrodifferentialgleichung
DDC-Sachgruppe: 510 Mathematik
Dokumentart : Dissertation
Kurzfassung: The topics of this thesis are methods for denoising, enhancement, and simplification of digital image data. Special emphasis lies on the relations and structural similarities between several classes of methods which are motivated from different contexts. In particular, one can distinguish the methods treated in this thesis in three classes: For variational approaches and partial differential equations, the notion of the derivative is the tool of choice to model regularity of the data and the desired result. A general framework for such approaches is proposed that involve all partial derivatives of a prescribed order and experimentally are capable of leading to piecewise polynomial approximations of the given data. The second class of methods uses wavelets to represent the data which makes it possible to understand the filtering as very simple pointwise application of a nonlinear function. To view these wavelets as derivatives of smoothing kernels is the basis for relating these methods to integrodifferential equations which are investigated here. In the third case, values of the image in a neighbourhood are averaged where the weights of this averaging can be adapted respecting different criteria. By refinement of the pixel grid and transfer to scaling limits, connections to partial differential equations become visible here, too. They are described in the framework explained before. Numerical aspects of the simplification of images are presented with respect to the NDS energy function, a unifying approach that allows to model many of the aforementioned methods. The behaviour of the filtering methods is documented with numerical examples.
Gegenstand der vorliegenden Arbeit sind Verfahren zum Entrauschen, qualitativen Verbessern und Vereinfachen digitaler Bilddaten. Besonderes Augenmerk liegt dabei auf den Beziehungen und der strukturellen Ähnlichkeit zwischen unterschiedlich motivierten Verfahrensklassen. Insbesondere lassen sich die hier behandelten Methoden in drei Klassen einordnen: Bei den Variationsansätzen und partiellen Differentialgleichungen steht der Begriff der Ableitung im Mittelpunkt, um Regularität der Daten und des gewünschten Resultats zu modellieren. Hier wird ein einheitlicher Rahmen für solche Ansätze angegeben, die alle partiellen Ableitungen einer vorgegebenen Ordnung involvieren und experimentell auf stückweise polynomielle Approximationen der gegebenen Daten führen können. Die zweite Klasse von Methoden nutzt Wavelets zur Repräsentation von Daten, mit deren Hilfe sich Filterung als sehr einfache punktweise Anwendung einer nichtlinearen Funktion verstehen lässt. Diese Wavelets als Ableitungen von Glättungskernen aufzufassen bildet die Grundlage für die hier untersuchte Verbindung dieser Verfahren zu Integrodifferentialgleichungen. Im dritten Fall werden Werte des Bildes in einer Nachbarschaft gemittelt, wobei die Gewichtung bei dieser Mittelung adaptiv nach verschiedenen Kriterien angepasst werden kann. Durch Verfeinern des Pixelgitters und Übergang zu Skalierungslimites werden auch hier Verbindungen zu partiellen Differentialgleichungen sichtbar, die in den vorher dargestellten Rahmen eingeordnet werden. Numerische Aspekte beim Vereinfachen von Bildern werden anhand der NDS-Energiefunktion dargestellt, eines einheitlichen Ansatzes, mit dessen Hilfe sich viele der vorgenannten Methoden realisieren lassen. Das Verhalten der einzelnen Filtermethoden wird dabei jeweils durch numerische Beispiele dokumentiert.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-35144
hdl:20.500.11880/26087
http://dx.doi.org/10.22028/D291-26031
Erstgutachter: Weickert, Joachim
Tag der mündlichen Prüfung: 14-Feb-2008
SciDok-Publikation: 28-Apr-2011
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
Fachrichtung: MI - Mathematik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Didas_Stephan.pdf7,12 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.