Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-25949
Titel: Efficient main memory-based XML stream processing
Verfasser: Scherzinger, Stefanie
Sprache: Englisch
Erscheinungsjahr: 2008
SWD-Schlagwörter: XML
Hauptspeicher
Pufferspeicher
Prozessor
XQuery
Abfrageverarbeitung
Algorithmus
Freie Schlagwörter: Pufferverwaltung
FluX
XML documents
XML stream processing
main memory
buffer management
processor
query processing
DDC-Sachgruppe: 004 Informatik
Dokumentart : Dissertation
Kurzfassung: Applications that process XML documents as files or streams are naturally main-memory based. This makes main memory the bottleneck for scalability. This doctoral thesis addresses this problem and presents a toolkit for effective buffer management in main memory-based XML stream processors. XML document projection is an established technique for reducing the buffer requirements of main memory-based XML processors, where only data relevant to query evaluation is loaded into main memory buffers. We present a novel implementation of this task, where we use string matching algorithms designed for efficient keyword search in flat strings to navigate in tree-structured data. We then introduce an extension of the XQuery language, called FluX, that supports event-based query processing. Purely event-based queries of this language can be executed on streaming XML data in a very direct way. We develop an algorithm to efficiently rewrite XQueries into FluX. This algorithm is capable of exploiting order constraints derived from schemata to reduce the amount of buffering in query evaluation. During streaming query evaluation, we continuously purge buffers from data that is no longer relevant. By combining static query analysis with a dynamic analysis of the buffer contents, we effectively reduce the size of memory buffers. We have confirmed the efficacy of these techniques by extensive experiments and by publication at international venues. To compare our contributions to related work in a systematic manner, we contribute an abstract framework for XML stream processing. This framework allows us to gain a greater-picture view over the factors influencing the main memory consumption.
Anwendungen, die XML-Dokumente als Dateien oder Ströme verarbeiten, sind natürlicherweise hauptspeicherbasiert. Für die Skalierbarkeit wird der Hauptspeicher damit zu einem Engpass. Diese Doktorarbeit widmet sich diesem Problem, zu dessen Lösung sie Werkzeuge für eine effektive Pufferverwaltung in hauptspeicherbasierten Prozessoren für XML-Datenströme vorstellt. Die Projektion von XML-Dokumenten ist eine etablierte Methode, um den Pufferverbrauch von hauptspeicherbasierten XML-Prozessoren zu reduzieren. Dabei werden nur jene Daten in den Hauptspeicherpuffer geladen, die für die Anfrageauswertung auch relevant sind. Wir präsentieren eine neue Implementierung dieser Aufgabe, wobei wir Algorithmen zur effizienten Suche in flachen Zeichenketten einsetzen, um in baumartig strukturierten Daten zu navigieren. Danach stellen wir eine Erweiterung der XQuery-Sprache vor, genannt FluX, welche eine ereignisbasierte Anfragebearbeitung erlaubt. Anfragen, die nur ereignisbasierte Konstrukte benutzen, können direkt über XML-Datenströmen ausgewertet werden. Dazu entwickeln wir einen Algorithmus, mit dessen Hilfe sich XQuery-Anfragen effizient in FluX übersetzen lassen. Dieser benutzt Ordnungsinformationen aus Datenschemata, womit das Puffern in der Anfragebearbeitung reduziert werden kann. Während der Verarbeitung des Datenstroms bereinigen wir laufend den Hauptspeicherpuffer von solchen Daten, die nicht länger relevant sind. Eine nachhaltige Reduzierung der Größe von Hauptspeicherpuffern gelingt durch die Kombination der statischen Anfrageanalyse mit einer dynamischen Analyse der Pufferinhalte. Die Effektivität dieser Puffermanagement-Techniken erfährt ihre Bestätigung in umfangreichen Experimenten und internationalen Publikationen. Für einen systematischen Vergleich unserer Beiträge mit der aktuellen Literatur entwickeln wir ein abstraktes System zur Modellierung von Prozessoren zur XML-Stromverarbeitung. So können wir die spezifischen Faktoren herausgreifen, die den Hauptspeicherverbrauch beeinflussen.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-24288
hdl:20.500.11880/26005
http://dx.doi.org/10.22028/D291-25949
Erstgutachter: Koch, Christoph
Tag der mündlichen Prüfung: 10-Jan-2008
SciDok-Publikation: 21-Sep-2009
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
Fachrichtung: MI - Informatik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Dissertation_6777_Sche_Stef_2008.pdf1,42 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.