Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-25702
Titel: Power domain constructions
Sonstige Titel: Potenzbereich-Konstruktionen
Verfasser: Heckmann, Reinhold
Sprache: Englisch
Erscheinungsjahr: 1990
SWD-Schlagwörter: Potenzbereich-Konstruktion
DDC-Sachgruppe: 004 Informatik
Dokumentart : Dissertation
Kurzfassung: The variety of power domain constructions proposed in the literature is put into a general algebraic framework. Power constructions are considered algebras on a higher level: for every ground domain, there is a power domain whose algebraic structure is specified by means of axioms concerning the algebraic properties of the basic operations empty set, union, singleton, and extension of functions. A host of derived operations is introduced and investigated algebraically. Every power construction is shown to be equipped with a characteristic semiring such that the resulting power domains become semiring modules. Power homomorphisms are introduced as a means to relate different power constructions. They also allow to define the notion of initial and final constructions for a fixed characteristic semiring. Such initial and final constructions are shown to exist for every semiring, and their basic properties are derived. Finally, the known power constructions are put into the general framework of this paper.
Liegt nicht vor.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-1887
hdl:20.500.11880/25758
http://dx.doi.org/10.22028/D291-25702
Erstgutachter: Reinhard Wilhelm
Tag der mündlichen Prüfung: 1-Jan-1990
SciDok-Publikation: 6-Apr-2004
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
Fachrichtung: MI - Informatik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
ReinholdHeckmann_ProfDrReinhardWilhelm.pdf2,54 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.