Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-25313
Titel: An integrated model of acoustics and language using semantic classification trees
Verfasser: Nöth, Elmar
De Mori, Renato
Fischer, J.
Gebhard, A.
Harbeck, Stefan
Kompe, Ralf
Kuhn, R.
Niemann, Heinrich
Mast, Marion
Sprache: Englisch
Erscheinungsjahr: 1996
SWD-Schlagwörter: Künstliche Intelligenz
Freie Schlagwörter: artificial intelligence
DDC-Sachgruppe: 004 Informatik
Dokumentart : Report (Bericht)
Kurzfassung: We propose Multi-level Semantic Classication Trees to combine different information sources for predicting speech events (e.g. word chains, phrases, etc.) Traditionally in speech recognition systems these information sources (acoustic evidence, language model) are calculated independently and combined via Bayes rule. The proposed approach allows one to combine sources of different types - is no longer necessary for each source to yield a probability. Moreover the tree can look at several information sources simultaneously. The approach is demonstrated for the prediction of prosodically marked phrase boundaries, combining information about the spoken word chain, word category information, prosodic parameters, and the result of a neural network predicting the boundary on the basis of acoustic-prosodic features. The recognition rates of up to 90% for the two class problem boundary vs. no boundary are already comparable to results achieved with the above mentioned Bayes rule approach that combines the acoustic classifier with a 5-gram categorical language model. This is remarkable, since so far only a small set of questions combining information from different sources have been implemented.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-53210
hdl:20.500.11880/25369
http://dx.doi.org/10.22028/D291-25313
Schriftenreihe: Vm-Report / Verbmobil, Verbundvorhaben, [Deutsches Forschungszentrum für Künstliche Intelligenz]
Band: 128
SciDok-Publikation: 13-Jun-2013
Fakultät: Sonstige Einrichtungen
Fachrichtung: SE - DFKI Deutsches Forschungszentrum für Künstliche Intelligenz
Fakultät / Institution:SE - Sonstige Einrichtungen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
report_128_96.pdf169,98 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.