Please use this identifier to cite or link to this item: doi:10.22028/D291-25175
Title: The RAWAM : relfun-adapted WAM emulation in C
Author(s): Perling, Markus
Language: English
Year of Publication: 1998
OPUS Source: Kaiserslautern ; Saarbrücken : DFKI, 1998
SWD key words: Künstliche Intelligenz
DDC notations: 004 Computer science, internet
Publikation type: Report
Abstract: This work describes the C implementation of the Relfun-Adapted WAM (RAWAM). The RAWAM is an abstract machine tailored to the relational-functional language Relfun, designed and implemented on the basis of the Warren Abstract Machine (WAM). Its goal is to replace an older LISP-implemented Relfun WAM by delivering comparable functionality at higher speed. The RAWAM implementation is introduced by reference to Hassan Ai:tKaci's book "Warren's Abstract Machine: A Tutorial Reconstruction'; , and the present work will emphasize the differences and extensions w.r.t. this book. These include an assembler, an optimizer, a rudimentary module system, a more flexible realization of the standard WAM memory layout, as well as Relfun-specific extensions for functional and relational builtins, sorts, generalised indexing, and a simple higher-order facility. The implementation of the RAWAM will be described in terms of pseudo code and schematic patterns for the data structures. A relational-functional benchmark revealed a speed-up factor of 20-30 of the RAWAM compared to the older WAM.
Link to this record: urn:nbn:de:bsz:291-scidok-41619
Series name: Technical memo / Deutsches Forschungszentrum für Künstliche Intelligenz [ISSN 0946-0071]
Series volume: 98-07
Date of registration: 5-Sep-2011
Faculty: SE - Sonstige Einrichtungen
Department: SE - DFKI Deutsches Forschungszentrum für Künstliche Intelligenz
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
TM_98_07.pdf15,64 MBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.