Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-25123
Titel: Improving parsing by incorporating "prosodic clause boundaries" into a grammar
Verfasser: Bakenecker, G.
Block, U.
Batliner, Anton
Kompe, Ralf
Nöth, Elmar
Regel-Brietzmann, P.
Sprache: Englisch
Erscheinungsjahr: 1994
Quelle: Saarbrücken, 1994
SWD-Schlagwörter: Künstliche Intelligenz
DDC-Sachgruppe: 004 Informatik
Dokumentart : Report (Bericht)
Kurzfassung: In written language, punctuation is used to separate main and subordinate clause. In spoken language, ambiguities arise due to missing punctuation, but clause boundaries are often marked prosodically and can be used instead. We detect PCBs (Prosodically markedClauseBoundaries) by using prosodic features (duration, intonation, energy, and pause information) with a neural network, achieving a recognition rate of 82%. PCBs are integrated into our grammar using a special syntactic category "break" that can be used in the phrase-structure rules of the grammar in a similar way as punctuation is used in grammars for written language. Whereas punctuation in most cases is obligatory, PCBs are sometimes optional. Moreover, they can in principle occur everywhere in the sentence due e.g. to hesitations or misrecognition. To cope with these problems we tested two different approaches: A slightly modified parser for word chains containing PCBs and a word graph parser that takes the probabilities of PCBs into account. Tests were conducted on a subset of infinitive subordinate clauses from a large speech database containing sentences from the domain of train table inquiries. The average number of syntactic derivations could be reduced by about 70 % even when working on recognized word graphs.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-40752
hdl:20.500.11880/25179
http://dx.doi.org/10.22028/D291-25123
Schriftenreihe: Vm-Report / Verbmobil, Verbundvorhaben, [Deutsches Forschungszentrum für Künstliche Intelligenz]
Band: 37
SciDok-Publikation: 3-Aug-2011
Fakultät: Sonstige Einrichtungen
Fachrichtung: SE - DFKI Deutsches Forschungszentrum für Künstliche Intelligenz
Fakultät / Institution:SE - Sonstige Einrichtungen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
report_37_94.pdf104,75 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.