Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-24955
Titel: COSMA - multi-participant NL interaction for appointment scheduling
Verfasser: Busemann, Stephan
Oepen, Stephan
Hinkelman, Elizabeth A.
Neumann, Günter
Uszkoreit, Hans
Sprache: Englisch
Erscheinungsjahr: 1994
Quelle: Kaiserslautern ; Saarbrücken : DFKI, 1994
SWD-Schlagwörter: Künstliche Intelligenz
DDC-Sachgruppe: 004 Informatik
Dokumentart : Report (Bericht)
Kurzfassung: We discuss the use of NL systems in the domain of appointment scheduling. Appointment scheduling is a problem faced daily by many people and organizations, and typically solved using communication in natural language. In general, cooperative interaction between several participants is required whose calendar data are distributed rather than centralized. In this distributed multi-agent environment, the use of NL systems makes it possible for machines and humans to cooperate in solving scheduling problems. We describe the COSMA (Cooperative Schedule Managament Agent) system, a secretarial assistant for appointment scheduling. A central part of COSMA is the reusable NL core system DISCO, which serves, in this application, as an NL interface between an appointment planning system and the human user. COSMA is fully implemented in Common Lisp and runs on Unix Workstations. Our experience with COSMA shows that it is a plausible and useful application for NL systems. However, the appointment planner was not designed for NL communication and thus makes strong assumptions about sequencing of domain actions and about the error-freeness of the communication. We suggest that further improvements of the overall COSMA functionality, especially with regard to flexibility and robustness, be based on a modified architecture.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-37337
Schriftenreihe: Research report / Deutsches Forschungszentrum für Künstliche Intelligenz [ISSN 0946-008x]
Band: 94-34
SciDok-Publikation: 30-Jun-2011
Fakultät: Sonstige Einrichtungen
Fachrichtung: SE - DFKI Deutsches Forschungszentrum für Künstliche Intelligenz
Fakultät / Institution:SE - Sonstige Einrichtungen

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
RR_94_34.pdf359,82 kBAdobe PDFÖffnen/Anzeigen

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.