Please use this identifier to cite or link to this item: doi:10.22028/D291-23753
Title: Constrained shortest paths and related problems
Authors: Ziegelmann, Mark
Language: English
Issue Date: 2001
SWD key words: Kürzester-Weg-Problem ; Nebenbedingung ; Relaxationsmethode ; Mehrschrittverfahren
DDC groups: 004 Computer science, internet
Publikation type: Doctoral Thesis
Abstract: The classical shortest path problem, to find a path of minimal cost between two nodes in a graph, is efficiently solvable in polynomial time. However, in many applications we also have additional budget or resource constraints on a path. This problem is known as constrained shortest path problem and unfortunately belongs to the class of "hard" problems for which no polynomial time algorithm is known. In this thesis, we propose a 2-step method for the constrained shortest path problem. We first solve a relaxation to get upper and lower bounds and then close the gap with clever path ranking to obtain the exact solution. We compare different old and new methods both theoretically and experimentally. The 2-step method also works for a more general class of constrained network optimization problems. We illustrate the generic a approach using several examples. We have also developed a software package CNOP that provides this generic 2-step approach as well as all state of the art algorithms for constrained shortest paths.
Das klassische Kürzeste-Wege-Problem, bei dem man einen Pfad minimaler Kosten zwischen zwei Knoten eines Graphen sucht, ist effizient in polynomieller Zeit lösbar. In vielen praktischen Anwendungen wollen wir jedoch, dass ein Pfad bestimmte Budget- oder Ressourcenbedingungen erfüllt. Dies ist das Kürzeste-Wege-Problem mit Nebenbedingungen, das zur Klasse der "schweren" Probleme gehört, für die wir keinen polynomiellen Algorithmus kennen. In dieser Arbeit stellen wir eine 2-Schritt-Methode für das Kürzeste-Wege-Problem mit Nebenbedingungen vor. Wir lösen zuerest eine Relaxierung des Problems und erhalten eine obere und untere Schranke, um dann durch Schließen der Lücke durch geschicktes Auflisten von Pfaden das Optimum zu bestimmen. Wir vergleichen bekannte und neue Verfahren sowohl theoretisch als auch experimentell. Die 2-Schritt-Methode ist auch auf eine allgemeinere Klasse von Netzwerkoptimierungsproblmen mit Nebenbedinungen anwendbar. Wir illustrieren die generische Methode anhand einiger Beispiele. Danach stellen wir unser Softwarepaket CNOP vor, das dieses generische Verfahren implementiert, sowie alle bekannten Verfahren für das Kürzeste-Wege-Problem mit Nebenbedingungen zur Verfügung stellt.
URI: urn:nbn:de:bsz:291-scidok-2515
hdl:20.500.11880/23809
http://dx.doi.org/10.22028/D291-23753
Advisor: Kurt Mehlhorn
Date of oral examination: 30-Jul-2001
Date issued: 19-May-2004
Faculty: SE - Sonstige Einrichtungen
Institute: SE - Sonstige Einrichtungen
Appears in Collections:SciDok - Elektronische Dokumente der UdS

Files in This Item:
File Description SizeFormat 
MarkZiegelmann_ProfDrKurtMehlhorn.pdf2,04 MBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.