Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-23499
Titel: Knowledge acquisition for coreference resolution
Sonstige Titel: Wissenserwerb für die Auflösung von Koreferenzen
Verfasser: Uryupina, Olga
Sprache: Englisch
Erscheinungsjahr: 2007
SWD-Schlagwörter: Sprachverarbeitung
Linguistische Datenverarbeitung
Maschinelles Lernen
Diskurs
Referenzidentität
Freie Schlagwörter: Koreferenz
Coreference
Coreference Resolution
Machine Learning
Discourse New Descriptions
DDC-Sachgruppe: 400 Sprache, Linguistik
Dokumentart : Dissertation
Kurzfassung: Diese Arbeit befasst sich mit dem Problem der statistischen Koreferenzauflösung. Theoretische Studien bezeichnen Koreferenz als ein vielseitiges linguistisches Phänomen, das von verschiedenen Faktoren beeinflusst wird. Moderne statistiche Algorithmen dagegen basieren sich typischerweise auf einfache wissensarme Modelle. Ziel dieser Arbeit ist das Schließen der Lücke zwischen Theorie und Praxis. Ausgehend von den Erkentnissen der theoretischen Studien erfolgt die Bestimmung der linguistischen Faktoren die fuer die Koreferenz besonders relevant erscheinen. Unterschiedliche Informationsquellen werden betrachtet: von der Oberflächenübereinstimmung bis zu den tieferen syntaktischen, semantischen und pragmatischen Merkmalen. Die Präzision der untersuchten Faktoren wird mit korpus-basierten Methoden evaluiert. Die Ergebnisse beweisen, dass die Koreferenz mit den linguistischen, in den theoretischen Studien eingebrachten Merkmalen interagiert. Die Arbeit zeigt aber auch, dass die Abdeckung der untersuchten theoretischen Aussagen verbessert werden kann. Die Merkmale stellen die Grundlage für den Aufbau eines einerseits linguistisch gesehen reichen andererseits auf dem Machinellen Lerner basierten, d.h. eines flexiblen und robusten Systems zur Koreferenzauflösung. Die aufgestellten Untersuchungen weisen darauf hin dass das wissensreiche Model erfolgversprechende Leistung zeigt und im Vergleich mit den Algorithmen, die sich auf eine einzelne Informationsquelle verlassen, sowie mit anderen existierenden Anwendungen herausragt. Das System erreicht einen F-wert von 65.4% auf dem MUC-7 Korpus. In den bereits veröffentlichen Studien ist kein besseres Ergebnis verzeichnet. Die Lernkurven zeigen keine Konvergenzzeichen. Somit kann der Ansatz eine gute Basis fuer weitere Experimente bilden: eine noch bessere Leistung kann dadurch erreicht werden, dass man entweder mehr Texte annotiert oder die bereits existierende Daten effizienter einsetzt. Diese Arbeit beweist, dass statistiche Algorithmen fuer Koreferenzauflösung stark von den theoretischen linguistischen Studien profitiern können und sollen: auch unvollständige Informationen, die automatische fehleranfällige Sprachmodule liefern, können die Leistung der Anwendung signifikant verbessern.
This thesis addresses the problem of statistical coreference resolution. Theoretical studies describe coreference as a complex linguistic phenomenon, affected by various different factors. State-of-the-art statistical approaches, on the contrary, rely on rather simple knowledge-poor modeling. This thesis aims at bridging the gap between the theory and the practice. We use insights from linguistic theory to identify relevant linguistic parameters of co-referring descriptions. We consider different types of information, from the most shallow name-matching measures to deeper syntactic, semantic, and discourse knowledge. We empirically assess the validity of the investigated theoretic predictions for the corpus data. Our data-driven evaluation experiments confirm that various linguistic parameters, suggested by theoretical studies, interact with coreference and may therefore provide valuable information for resolution systems. At the same time, our study raises several issues concerning the coverage of theoretic claims. It thus brings feedback to linguistic theory. We use the investigated knowledge sources to build a linguistically informed statistical coreference resolution engine. This framework allows us to combine the flexibility and robustness of a machine learning-based approach with wide variety of data from different levels of linguistic description. Our evaluation experiments with different machine learners show that our linguistically informed model, on the one side, outperforms algorithms, based on a single knowledge source and, on the other side, yields the best result on the MUC-7 data, reported in the literature (F-score of 65.4% with the SVM-light learning algorithm). The learning curves for our classifiers show no signs of convergence. This suggests that our approach makes a good basis for further experimentation: one can obtain even better results by annotating more material or by using the existing data more intelligently. Our study proves that statistical approaches to the coreference resolution task may and should benefit from linguistic theories: even imperfect knowledge, extracted from raw text data with off-the-shelf error-prone NLP modules, helps achieve significant improvements.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-12556
hdl:20.500.11880/23555
http://dx.doi.org/10.22028/D291-23499
Erstgutachter: Pinkal, Manfred
Tag der mündlichen Prüfung: 1-Jun-2007
SciDok-Publikation: 28-Aug-2007
Fakultät: Fakultät 4 - Philosophische Fakultät II
Fachrichtung: P - Sprachwissenschaft und Sprachtechnologie
Ehemalige Fachrichtung: bis SS 2016: Fachrichtung 4.7 - Allgemeine Linguistik
Fakultät / Institution:P - Philosophische Fakultät

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
olga_phd.pdf1,26 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.