Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-22541
Titel: Exploring rich evidence for maximum entropy-based question answering
Sonstige Titel: Untersuchung des ausreichnenden Beweises für das maximale Entropie-basierte Frage-Antwort-System
Verfasser: Shen, Dan
Sprache: Englisch
Erscheinungsjahr: 2008
SWD-Schlagwörter: Evidenz
Maximum-Entropie-Methode
Entropie <Informationstheorie>
Frage-Antwort-System
Freie Schlagwörter: evidence
question-answering
maximal entropy
DDC-Sachgruppe: 004 Informatik
Dokumentart : Dissertation
Kurzfassung: Open domain automated Question Answering (QA) aims to automatically answer users'; questions in spoken language. I propose a maximum entropy-based ranking model which effectively integrates various features, including orthographic, lexical, surface pattern, syntactic and semantic features for the answer extraction. To effectively capture syntactic evidence, I present two methods: dependency relation pattern methods and dependency relation path correlation method. Both methods overcome the problems arising from the divergences of lexical representations between question and answer sentences. I experimentally demonstrate that both methods greatly outperform the state-of-the-art syntactic answer extraction methods on TREC datasets. To capture semantic evidence, I propose an automatic method to incorporate FrameNet-style semantic role information. The graph-theoretic framework goes some way towards addressing coverage problems related with FrameNet and formulates the similarity measure of semantic structures as a graph matching problem. Experimental results show that the FrameNet-based semantic features may further boost the performance on the answer extraction module. Furthermore, I propose a maximum entropy-based ranking model to incorporate all captured information. As a result, the model using the optimal feature combination achieves top-ranked performance among all of the participants world-wide in the most recent TREC evaluation.
Domänen-unabhängige automatische Frage-Antwort (QA) is zur automatische Antwort auf die Fragen der Benutzer in muendliche Sprache. Ich stelle eine maximal Entropie-basisbezogen Ranking Modul auf, das tatsächlich integriert verschiedene Features, inkl. orthographisches, lexikalisches, Oberfläche Muster, syntaktisches und semantisches Features fuer die Antwort Extraktion. Um eine tatsächliche Erfassung der syntaktische Beweise zu erhalten, ich repräsentiere zwei Methoden: Abhängigkeit Beziehung Muster und Abhängigheit Beziehung Pfad Zusammenhang. Ich demonstriere versuchsweise, dass die beide Methoden die modernste syntaktische Antwort Extraktion Methoden on TREC Datensatz uebertrifft. Um die semantische Beweise zu erfassen, ich stelle eine automatische Methode auf, dadurch wird semantische Rolle Information in FrameNet-Art inkorporiert. Das experimentell Ergebnis dass die FrameNet-basisbezogene semantische Features die Leistung on Antwort Extraktion Modul. Darueber hinaus stelle ich einen maximal Entropie-basisbezogenen Ranking Modul, um alle erfasste Information zu inkorporieren. Als Ergebnis, der Modul, der die optimale Feature Kombination benutzt, erreicht top-ranked Leistung unter alle Teilnehmer weltweit in letzte TREC Bewertung.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-19771
hdl:20.500.11880/22597
http://dx.doi.org/10.22028/D291-22541
Erstgutachter: Klakow, Dietrich
Tag der mündlichen Prüfung: 5-Dez-2008
SciDok-Publikation: 16-Dez-2008
Fakultät: Fakultät 7 - Naturwissenschaftlich-Technische Fakultät II
Fachrichtung: NT - Systems Engineering
Ehemalige Fachrichtung: bis SS 2016: Fachrichtung 7.4 - Mechatronik
Fakultät / Institution:NT - Naturwissenschaftlich- Technische Fakultät

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
thesis.pdf706,5 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.