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A powerful strategy to accelerate quantum-walk-based search algorithms leverages on resetting protocols,
where a detector monitors a target site and the evolution of the walker is restarted if no detection occurs within a
fixed time interval. The optimal resetting rate can be extracted from the time evolution of the probability S(z) that
the detector has not clicked up to time 7. We analyze S(¢) for a quantum walk on a one-dimensional lattice when
the coupling between sites decays algebraically as d~* with the distance d, for o € (0, c0). At long times, S(7)
decays with a universal power-law exponent that is independent of «. At short times, S(¢) exhibits a plethora
of phase transitions as a function of «. From this, we provide a strategy to determine the optimal resetting
rate. We identify two regimes: for « > 1, the resetting rate r is bounded from below by the velocity with which
information propagates causally across the lattice; for ¢ < 1, instead, the long-range hopping tends to localize the
walker: The optimal resetting rate depends on the size of the lattice and diverges as & — 0. Our strategy directly
connects local measurement outcomes with the global dynamics encoded in S(z). We derive simple models
explaining our numerical results, shedding light on the interplay of long-range coherent dynamics, symmetries,
and local quantum measurement processes in determining equilibrium. Our findings offer experimentally testable

predictions and provide new physical insights on optimizing quantum search through resetting.

DOI: 10.1103/rbtb-8d27

I. INTRODUCTION

Efficient search strategies lie at the heart of numerous
problems in science and engineering, where the goal is often
to locate a stationary target in minimal time. In classical
settings, a paradigmatic strategy involves a searcher execut-
ing a random walk with intermittent stochastic resetting to
its initial position. At each time step, the searcher either
undergoes a random displacement or returns to the starting
point with a prescribed probability. The performance of such
algorithms is typically characterized by the mean first-passage
time (MFPT)—the average time taken to reach the target for
the first time—whose minimization yields an optimal reset
probability enhancing search efficiency [1-4]. Such strate-
gies have found applications in diverse setups, from foraging
in biological systems [5] to randomized algorithms in com-
puter science [6], and they have inspired extensive efforts
to characterize their nonequilibrium steady states, relaxation
timescales, and thermodynamic signatures [7-17].

Quantum walks on a lattice exhibit fundamentally distinct
features such as quantum tunneling and interference, which
form the basis of several quantum algorithms [18-20]. These
dynamics promise a natural quantum advantage for search
protocols [20]. However, unlike classical random walks,
the lack of deterministic trajectories in quantum mechanics
complicates the definition of first-passage time [21]. This
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challenge can be addressed by performing repeated projective
measurements at the target site, spaced by a fixed time interval
7, thereby defining the first-detection or hitting time [21-37].
The authors of [22] demonstrate that quantum hitting times
on one-dimensional lattices can outperform classical coun-
terparts due to ballistic propagation. Yet, this advantage is
limited by dark states, namely, quantum states with zero
overlap at the target that evade detection, causing the hitting
probability to saturate well below unity. A promising solution
involves a sharp resetting protocol [22], where the walker
is restarted at the initial site if no detection occurs within a
fixed time window. This approach yields an optimal reset rate
that minimizes the average first-detection time, establishing a
quantum analog of the classical MFPT optimization.

Recent advances in quantum simulation platforms, ranging
from trapped ions to Rydberg atoms and polar molecules, have
unlocked the ability to engineer long-range interactions with
controllable power-law decay [38—41]. These interactions in-
terpolate between nearest-neighbor and all-to-all coupling
regimes, posing a profound question: How does the range of
coherent hopping impact the speed and success of a quantum
search process? Specifically, one may consider the setup il-
lustrated in Fig. 1(a), in which a particle undergoes coherent
hopping to distant sites with amplitudes that decay as a power
law in distance, |x|™* with exponent o > 0. The detection
dynamics in such systems is expected to depend sensitively on
o, interpolating between the short-range regime considered in
Ref. [22] and the long-range regime.

A fundamental constraint on the speed of quantum search
is provided by the Lieb-Robinson (LR) bound, which limits
the spread of quantum correlations and sets a lower bound on
the timescale t g over which a quantum walker can reach a
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FIG. 1. (a) Monitored quantum walk on a one-dimensional lat-
tice with periodic boundary conditions. The walker is prepared in
the site |0), and the target site |D) is monitored by a detector, which
clicks when the walker has reached the target. The walker undergoes
the dynamics governed by Hamiltonian (1), with tunneling amplitude
decaying with the distance D as J/D“. Note that in the figure, sites
N —2and N — 1 are labeled —2 and —1, respectively. (b) Schematic
representation of the resetting protocol. The time evolution runs
from left to right and alternates unitary evolution for a fixed interval
7 [described by the unitary operator U (t)] with an instantaneous
projective measurement by the detector at D. The red arrows indicate
a resetting event, which occurs in case no click has been recorded in
the interval of time g = rt, with r the resetting rate.

target site [42]. This bound depends critically on the structure
of the tunneling matrix: for nearest-neighbor hopping, the
Lieb-Robinson velocity is constant, enforcing causal, light-
cone-like propagation and yielding a linear scaling of 7 g with
the distance D between initial and target sites. The picture
changes dramatically in the presence of long-range tunneling,
where hopping amplitudes decay as a power law 1/D“. In one
dimension, for a < 2, the Lieb-Robinson timescale becomes
sublinear in D, and for o < 1 it depends solely on the system
size [43-45].

While this might suggest a potential speedup in propaga-
tion, long-range hopping can also localize the walker near
its initial site, effectively freezing the dynamics [46,47]. In
classical settings, search processes with long-range hopping
modeled by Lévy flights with jump lengths drawn from
heavy-tailed distributions have been shown to exhibit nontriv-
ial interplay with stochastic resetting. Specifically, the mean
first-passage time to a target becomes strongly dependent on
the Lévy index, with optimal resetting rates emerging only
within certain regimes of the power-law exponent [48]. These
studies reveal that the effectiveness of resetting as a search-
enhancement strategy can be significantly altered by the
underlying transport mechanism. In light of this, it is natural
to inquire whether similar behavior arises in quantum systems
featuring long-range coherent hopping. The dependence of
detection efficiency on the exponent « in the presence of
quantum resetting remains largely unexplored and constitutes
the central focus of this work.

In this work, the central question we address is whether the
inherent noncausality of long-range hopping can accelerate

or even dramatically boost the convergence time of quantum
search protocols. To investigate this, we consider a quantum
walk on a one-dimensional lattice with hopping amplitudes
scaling as 1/D“, as depicted in Fig. 1(a). The target site at
distance D is continuously monitored, and the walker is reset
to the initial position if no detection occurs within a fixed
time interval, as illustrated in Fig. 1(b). We show that the
exponent o fundamentally governs the equilibration time and
controls the onset of spectral phase transitions. Our results
provide a physical understanding of how local measurements
can influence relaxation, a global dynamical property, in sys-
tems with long-range hopping. Furthermore, they enable us to
analytically estimate the optimal resetting rate for the search
protocol. Counterintuitively, we demonstrate that long-range
hopping induces localization effects that hinder search ef-
ficiency, making it less advantageous than nearest-neighbor
hopping, which remains optimal for minimizing search times.
These findings not only advance the theoretical framework but
also open prospects for generating new ideas in controlling
quantum dynamics through measurement protocols.

This manuscript is organized as follows. In Sec. II, we
discuss the basic model of a monitored quantum walk with
long-range hopping. We then derive the probability that the
detector at the target site clicks, i.e., the walker has reached
the target site. Starting from this result, in Sec. III, we discuss
the characteristic timescales of the probability of a click as
a function of «. We discuss the optimal resetting rate in
Sec. IV. Conclusions are drawn in Sec. V. Technical details
are relegated to the Appendixes.

II. QUANTUM WALK ON A LATTICE
WITH LONG-RANGE HOPPING

In this section, we introduce the quantum resetting pro-
tocol and the key quantities that determine the time needed
by the walker to reach a target site. Our model is illustrated
in Fig. 1(a): A single walker is constrained to move along
a one-dimensional lattice composed of N sites. The unitary
evolution of the walker is dictated by the Hamiltonian H
given by

N |
H:—JZﬁ(Iz)(ijLH.c.), a >0, (1)
i#j i

with H.c. denoting Hermitian conjugate and |i) denoting the
state of the walker on site i (i =0, ..., N — 1). The parame-
ters entering the Hamiltonian are the constant J > 0, scaling
the energy, the dimensionless distance d;; between sites i and
Jj» and the exponent o > 0. The latter characterizes the decay
of the tunneling amplitude with distance and is central to
our analysis. For this choice, J is the largest element of the
tunneling matrix. In this work, we assume periodic boundary
conditions, and d;; = min(|i — j|, N — |[i — j|) is the mini-
mum distance between lattice sites i and j.

A. Monitored quantum walk and first-hitting time

Since quantum systems lack well-defined trajectories, the
first-hitting time is defined through repeated monitoring at
the target site D: The detector will reveal the presence of the
walker at the target site [49]. In this work, we assume that

044146-2



CAUSALITY, LOCALIZATION, AND UNIVERSALITY OF...

PHYSICAL REVIEW E 112, 044146 (2025)

the monitoring is stroboscopic: the projective measurements
are performed at times f, = 7, with £ = 1,2, ..., and sep-
arated by the finite interval T > 0. The scheme is illustrated
in Fig. 1(b): Starting from an initial state |v) localized at
one lattice site, the monitored dynamics alternates unitary
evolution and projective measurements. The unitary evolution
over the fixed time t is governed by the unitary operator

U(t) = exp(—iHt /h), )

where H is the Hamiltonian of the quantum walk given by
Eq. (1). The probabilistic nature of detection allows one to
envisage a typical run of the dynamics, which leads to a string
of binary measurement outcomes no (the walker has not been
detected), no, no, ..., ending with a yes (the walker has been
detected) at, say, time 7, = nt, namely, the nth time step or the
nth detection attempt. One then defines #, as the first-hitting
time for the dynamical run under consideration. Let F(z,)
denote the probability to first detect the walker at the nth
attempt. The detection probability up to the time ¢, is clearly
given by the sum of the detection probabilities at each instant
th=Iltwithl <I <n:

Paa(ta) = Y F(1y).

=1

The corresponding probability that the detector has not
clicked (detected) is

S(tn) =1- Pdet(tn)~

In what follows, we will refer to it as the “survival proba-
bility,” using the language used in the context of quantum
stochastic resetting. Correspondingly, the first detection prob-
ability at time 7, is the difference between the survival
probabilities at consecutive times: F(t,) = S(t,—1) — S(t,).
The resetting protocol considered here imposes a maximal
time fg = rt, such that if for a given dynamical run no click
occurs within g, the walker is instantaneously reset to the
initial site and the dynamics starts again. For nearest-neighbor
hopping, this strategy provably leads to faster convergence
than ballistic propagation [22,27]. This is also the strategy of
randomized algorithms [6].

As in randomized algorithms, our goal is to identify the
optimal resetting rate r leading to the shortest timescale for
detection. We perform the analysis by studying the dynamics
of the survival probability as a function of «, since this quan-
tity describes the joint effect of unitary propagation and local
measurement and thus contains the information about the first
hitting time. For this purpose, it is useful to first review the
timescales of the unitary dynamics.

B. Timescales of the unitary dynamics

We review the timescales of the unitary dynamics centering
the discussion on the Lieb-Robinson bound. In fact, since
this provides a bound on the timescale that correlations are
established between two distant sites, it will also influence
the probability that a detector, monitoring the target site,
clicks as a function of time. The limit « — oo in Eq. (1)

TABLE I. The lowest bound on the timescale with which infor-
mation propagates over a distance D according to the dynamics of
Eq. (1) and as a function of «. The Lieb-Robinson time 7 g refers to
the minimal time required for quantum state transfer from an initially
localized state at a single lattice site to another site at a distance
D. N is the total number of lattice sites. The “big-O” notation
f(x) = O(g(x)) indicates the existence of constants ¢; and N; such
that 0 < f(x) < ¢ g(x) for all x > N,. The column “Ref.” provides
the reference to the work where the bound has been reported.

Exponent o Lieb-Robinson time 7 g Ref.
(2, 00) o(D) [43]
(1,2) oD* ) [43]
1 O(log D) [43]
(172, 1) o) [43]
0,1/2) OWN“'/%) [45]

models tunneling that couples nearest-neighbor sites. When
the walker is initially localized at a single site, the minimal
timescale T g needed by the walker to reach the target site
depends linearly on the distance D and is estimated using the
Lieb-Robinson velocity v g as that for the ballistic motion of
a pointlike particle, Tir ~ D/vrr [42,43]. The Lieb-Robinson
velocity vigr, in turn, is proportional to J. Due to the light-
cone-like causality, at times ¢ < 7_g, the probability that the
walker has reached the target is negligible. Correspondingly,
a detector that locally monitors the target site will not click.
This consideration suggests that the resetting rate shall be
bound from below by the Lieb-Robinson velocity. We expect,
in particular, that a faster resetting rate, below this bound, will
tend to localize the walker about the initial site, hindering it
to reach the target. A question we will address in this paper
is whether the Lieb-Robinson velocity also determines the
optimal resetting rate.

We try now to follow this reasoning for finite value of «.
For this purpose, in Table I we summarize the bounds deter-
mined in the literature [43—45]. It turns out that the previous
consideration can be extended to finite values of «, as long
as o« 2 2. For o < 2, it is noteworthy that the quantity 7 g
exhibits three distinctive change in behavior at « = 2, 1, and
1/2. In fact, the bound scales sublinearly with the distance
for 1 < a < 2, it becomes independent of the distance for
a < 1, and it depends solely on the total number of lattice
sites for « < 1/2. In the latter regime, by increasing the total
number of lattice sites N, the minimal time 71 g approaches
zero, suggesting that the walker reaches the target almost
instantaneously.

We note that the scalings in Table I would change if one
scales the constant J in Eq. (1) by a size-dependent factor N =
Z?’:] dl.;“ V i. This procedure is called Kac scaling [50,51],
and it is customary while studying the thermodynamic prop-
erties of long-range Hamiltonians to make the energy of the
system extensive as N — oo. In our analysis, however, any
such scaling leads eventually to a mere rescaling of the hop-
ping factor J. We refrain from applying it, therefore, as we
are interested in determining the timescale of the quantum
resetting protocol comparing the dynamics at fixed lattice size
N by solely varying «.
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FIG. 2. Time evolution of the survival probability, Eq. (5), for
four different values of the exponent «. The parameters are N =
1000, r = 0.2/J, D = 10, and J = 1. The gray dot-dashed horizon-
tal line indicates the asymptotic value of the survival probability,
denoted by S(00).

C. Detection and survival probability

We now come to the specifics of the dynamics with unitary
evolution interspersed with projective measurements. Let the
initial state of the walker be |{) = |0) and the target state
be |D) with D # 0, i.e., the initial state of the walker could
be any site other than the detector site itself. The probability
of a detection at time #; = t is given by the expectation
value of the projector |D)(D| on the state |Y;) = U (7)|v¥0),
namely, Pyei(t;) = (¥1|D)(D|¥). In this case, the protocol
has been successful and stops. Assume now no detection.
The probability that the detector does not click (the survival
probability) is S(#;) = 1 — Py (?1) and the state immediately
after the detection is |) = |1ﬂ1+)/./S(t1 ), with

[¥7") = [y — IDYDDU (D)]1¥), 3)

and Jy is the identity operator. Iterating the procedure, the
probability for a series of “no” outcomes at times #; < #, can
be understood as the norm of the unnormalized state

1,5y = [y — IDYDDU ()] [¥o), 4
such that

S(ty) = (W7 1v,). (5)

The quantum-mechanical state immediately after the “no”
outcome at time 7, is then |y,,) = |¥,7)//S(t,).

The survival probability is closely related to the de-
lay distribution between detection events in atomic spec-
troscopy [52], which is the cornerstone of the theory of
quantum trajectories [53-55]. It contains the information
about the detection statistics, and hence its study will permit
us to determine the optimal resetting time of the protocol.

In Fig. 2 the dynamics of the survival probability is
displayed for different values of «, representative for the
different regimes of the Lieb-Robinson bound according to
Table I: « = 3 and o — oo (nearest-neighbor) for the linear
scaling with the distance from the target, « = 3/2 for the

sublinear scaling, and o = 1/2 for the regime where the
bound is independent of the distance. A first observation is
that at the asymptotics, the survival probability S(¢) saturates
at 0.5 for all values of «, namely, S(oco0) = lim;_,» S(t) =
0.5. At finite time, the time evolution exhibits different fea-
tures depending on «. While for o > 2 we can identify three
well-distinguished timescales, which we will associate with
the causal propagation of information (discussed in detail in
Sec. IIIC), for 1 <« < 2 this behavior smoothes out, and
almost disappears for o < 1.

Figure 3 displays the short-time dynamics of the survival
probability S(¢), Eq. (5), for more values of the exponent «.
For o > 2, panel (a), the survival probability is practically
unity until a timescale of the order of the Lieb-Robinson time,
after which it quickly decays. This behavior agrees with the
picture of causal propagation of the wave packet: Fort < tg,
the wave packet has not reached the target, and the detector
does not click [S(¢) = 1]. For ¢ 2 iR, instead, the detection
probability quickly grows and S(¢) quickly decreases. For «
below 2, this sharp separation into two regimes gets gradually
lost. For 0.5 < @ < 2, panels (b) and (c), the probability of a
click at short times increases, while at larger times, it decays
more slowly. For o < 0.5, panel (d), the decay of the survival
probability becomes increasingly slower as « is decreased.
Yet, differing from the short-range dynamics, there is a small
but finite detection probability at#; = t, as visible in the inset.

Figure 4 summarizes the salient features of the dynamics of
the survival probability as a density plot in the -« plane. The
color code allows for the identification of different regimes as
a function of time. The white region corresponds to S(¢) = 1,
and thus the probability that the detector clicks is zero. This
is strictly found only for « = 2. The dark red region indicates
values of the survival probability that are close to, but still
smaller than, unity. In this region, there is an infinitesimal
yet finite probability that the detector clicks. The color scale
goes through an intermediate region and finally reaches the
blue region, where S(7) decays algebraically with time with a
functional behavior that is independent of «. The equipotential
lines correspond to fixed values of S(¢), and they show that,
while the above-mentioned regimes are generally present for
all exponents «, the characteristic timescales do depend on
the exponent, even differing by orders of magnitude. The
first equipotential line and the nonmonotonic behavior of the
second equipotential line, in particular, turn out to separate
dynamics with a very different physical origin.

The analysis in the next section leads us to argue that
the short-time dynamics is separated into three regimes: (i)
The white region for @ > 2 is where the detection probabil-
ity is exactly zero and the survival probability is unity for
a finite interval of time. This picture invokes a concept of
causality, corresponding to which the walker propagates at a
finite velocity and has not yet reached the target site, and in
this sense, we denote it as the “causally prohibited” region.
(i1) The region for a < 2 is where there is an infinitesimal
yet finite probability that the detector clicks even at the first
measurement. We denote it as the “supersonic propagation”
regime, since the walker propagates faster than the linear light
cone. (iii) Within this region, the second equipotential line for
a < 1/2 grows to increasingly large times as « tends to zero,
Here, we will show that the dynamics is essentially frozen out
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FIG. 3. Dynamics of the survival probability S(¢) at short times and for different values of «. Subplot (a) shows the dynamics for three
values o > 2, where causal propagation is expected; (b) displays o = 3/2, where the Lieb-Robinson bound scales sublinearly; (c) shows
o = 1.0, where the scaling is logarithmic, while in panel (d) @ < 1. The inset in (d) zooms on the short time behavior for the first three
stroboscopic measurements. In all plots, the gray dot-dashed vertical lines indicate the timescale 7 g as given in Table 1. The parameter values

are N =1000,7 =0.2/J,J = 1, D = 10. Time is in units of 1/J.

due to the long-range diffusion. This localization phenomenon
is due to the flat dispersion spectrum of the Hamiltonian and
is analogous to what has been called “cooperative shielding”
in Refs. [46,47]. Using this terminology, we label this region
“localization.”

After the initial dynamics, the survival probability exhibits
(iv) an intermediate region. This region is characterized by
transient features that emerge from interference between wave
packets propagating along both directions of the lattice. Here,
finite-size effects become relevant, and the dynamics reaches
a stationary state. Based on these observations, we denote it
as the “equilibration” regime. (v) In the asymptotic regime,
the survival probability decays algebraically with time to the
asymptotic value S(co) = 1/2 with an exponent that is in-
dependent of «. For this reason, we denote this regime as
“universal.”

These physical insights are detailed in the next section and
are the key to identifying the optimal resetting rate speeding

S(t)
108
10° 4\ 09
101
r0.8
3
- 10
2 0.7
i
10" -
E f 0.6
0 : 0.990 — 0.999
107 - .
Localisati ) 9 Causally Prohibited 0.5
0 1 2 3 .
(6]

FIG. 4. Density plot of the survival probability S(¢), Eq. (4), in
the (o, t)-plane. Everywhere in the white region, the survival prob-
ability value equals unity [no decay from its initial value S(0) = 1].
The black lines are the equipotential lines, with the correspond-
ing value of S(¢) explicitly given. The parameter values are N =
1000, r =0.2/J,J = 1, D = 10. The time is in units of 1/J.

up the convergence to the target site, as we will argue in
Sec. IV.

III. TIMESCALES OF MONITORED QUANTUM WALK

In this section, we provide insights into the behavior of the
survival probability, identifying the characteristic timescales
and arguing about their physical origin. We focus on a specific
regime in which the unitary evolution between two detection
events weakly perturbs the state of the walker, corresponding
to JT < 1. In this regime, the dynamics of Eq. (4), alternating
coherent evolution with detection events, can be cast in the
form of a continuous dynamics,

l;F) = U () ¥0), (6)

governed by a nonunitary evolution operator
U(t) ~ et/ )

where H.g is a non-Hermitian Hamiltonian, which we derive
in the next subsection. This formulation forms the cornerstone
of our theoretical understanding and allows us to single out the
universal and characteristic features of the detection probabil-

1ty.

A. Equivalent non-Hermitian quantum walk

The Hilbert space H of the model (1) is subject to repeated
measurements projecting onto site D. It is therefore conve-
niently decomposed in terms of the detector Hilbert space Hp,
consisting of state |D), and its complementary Hilbert space
‘H7,, consisting of the rest of the lattice without the detector
site, as H = Hp ® HS,. We denote by

Py =iy — |D)(D|

the projection operator onto the subspace H{,. Using this
definition, we cast Eq. (4) into the form

W = BsOlyt ) = Oyt ), ®)

with U = P,SU an effective time-evolution operator, which is
nonunitary. With these definitions, the evolution of the unnor-
malized state |/,7) may now be written as in Eq. (6).

In the limit of small interval T between successive detec-
tion attempts, such that Jt < 1, we show in Appendix A that
the effective evolution operator, to O0(7?), leads to Eq. (7)
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with the identification of the non-Hermitian Hamiltonian H.g
defined in the Hilbert space Hj,:

A AAL_Z

Hes = PRHEY — =Py H\D)(DIAF;, 9

where from now on we set /i = 1. Interestingly, H.g is
symmetric, Hey = H:, with (-)7 denoting the transpose
operation. The spectral analysis of H.g provides valuable in-
formation about the behavior of the survival probability S(z).

Due to its non-Hermiticity, He has a complex spectrum of
eigenvalues, which we will denote by A,. It is diagonal in the
biorthogonal basis gomposed of left and right E:igenvectors:
{Ia), [Aa)}, With Hegr[Ag) = AalAq) and <)‘a|}_leff = Aa(Aal,
such that the orthogonality relation holds as (A,|Ap) = 84.p-
Using the completeness relation 22;1 |Aa) (k| = Iy, Eq. (6)
can be cast in the form

Wy = e "™ ) (Raltho),

leading to the following exact expression for the survival
probability:

S() = 3 T (ol L) (Tal o) (olha).  (10)

a,b

The dynamics of non-Hermitian systems can exhibit rich and
nontrivial behavior due to the properties of the biorthogonal
basis [56]. In our case, however, the left and right eigenvectors
are well approximated by the eigenvectors of the Hermitian
part of the effective Hamiltonian (9), namely, of the oper-
ator 1-70 = (ﬁeff +I-7:ff)/2. In fact, the non-Hermitian part,
(I-Lff — I—?JH) /2, scales as Jt and can be treated as a pertur-
bation in the limit of Jt <« 1 [35,36,57]. Denoting by [1{?)
the eigenvectors of the bare Hamiltonian Hy, in Appendix B
we show that

2

; (1)

Sy~ 3 e 20030y

where we define y, = Im{A,}/t. The equality holds in first-
order perturbation theory in the small parameter JT < 1, and
now ¥, denotes the first-order correction to the real eigenvalue
A" of the bare Hamiltonian Hy: A, = A”) — ity,. The imag-
inary eigenvalues y, determine the timescales of the decay of
S(t) and are therefore the main element of our analysis.
Figure 5 displays the nonzero imaginary part y,, ordered
from the largest to the smallest value, for four representative
exponents «. We observe that the interval over which they
span increases by orders of magnitude as « decreases below
unity. This is exemplified by the behavior of the largest value
of y,, which dominates the short-time behavior of the survival
probability. On the other hand, the spectrum for y, — 0 de-
termines the long-time behavior and turns out to be largely
independent of . The plot does not show the N/2 eigenmodes
with y, = 0. These eigenmodes have zero spatial overlap with
the detector site and are denoted as “‘dark eigenmodes.” As a
consequence, any wave packet consisting of a superposition of
these modes will never reach the target site, and in this sense
the eigenmodes are “dark.” As we show in Appendix C, they
are solely determined by the spatial geometric properties of
the setup and are thus independent of the hopping exponent

100 4

0 200 400 600 800 1000
a

FIG. 5. Nonvanishing imaginary part y, of the eigenvalue spec-
trum of H,g, ordered from the largest to the smallest, for four values
of the power-law exponent «. The other parameters are N = 1000,
t=02/J,J=1,D=10.

«. They are responsible for the asymptotic behavior of the
survival probability, S(co) = 1/2.

We can understand the behavior of the survival probabil-
ity, Fig. 4, from the spectral properties of the non-Hermitian
Hamiltonian. Figure 6 displays the density of states as a func-
tion of « and 1/y,. The density plot allows us to visualize the
density of eigenmodes contributing to the short-time behavior
(small 1/y,), the intermediate behavior, and the long-time
behavior (large 1/y,). The structure can be put in direct con-
nection with Fig. 4 for @ 2 1/2, and in particular follows the
same equipotential lines. This relatively simple relation does
not apply for ¢ < 1/2: The inverse of the largest eigenvalue

Ca
10° 0.22
107 0.176
10°
0.132
=
—
-0.088
10
0.044
107t
; 5 3 0.001
o

FIG. 6. Density plot of the density of modes o, = n,/N in the
(e, ¥,7") plane. Here, n, is the number of modes with inverse decay
rate in the interval [y;‘, ya*' + &1, where § is a preassigned small
number with the dimension of time. Note that for y, =0, then
n,/N = 0.5; see Appendix C. The parameters are the same as in
Fig. 4. The rates are in units of J.
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FIG. 7. Inverse of the maximal decay rate y™* as a function of
« for four lattice sizes N. The inset zooms into the point where the
three curves intersect at @ ~ 1/2. Note that y™* gives the timescale
of the fastest decay of the survival probability S(¢). The rates are in
units of J.

goes to zero as o — 0, but is separated by a gap from the
rest of the imaginary spectrum. We will show that this gap in-
creases with the size of the lattice N and is responsible for the
“localization” regime. Equipped with this model, in the rest of
this section we analyze the different regimes individually, and
we determine their scaling with the lattice size.

B. The minimal hitting time

The initial behavior of the survival probability S(#) is deter-
mined by the mode with the largest y, value. Let us denote this
value by y™¥, such that y™* = max,{y,}. Based on physical
intuition, one would expect that this quantity is directly related
to the Lieb-Robinson bound, namely, v g ~ y™*. In fact,
y ™M is expected to determine the minimal hitting time, which
in turn is related to how fast information can propagate from
the initial to the target site.

Figure 7 illustrates the dependence of the maximal decay
rate on o for different lattice sizes N. We observe that it is
constant for o > 2, while instead y™** increases as « de-
creases towards zero. We denote this regime by “supersonic
propagation,” in contrast to the regime of causal diffusion for
o > 2. Interestingly, the curves at different N intersect at @ =
o® ~ 0.5. This exponent separates the regime o € (a*, 00),
where y™** decreases with N, from the regime o € (0, ™),
where it instead exhibits the opposite behavior. We reproduce
this behavior by means of a simple model, which approxi-
mates the high-energy part of the imaginary spectrum y,; see
Appendix B. For 0 < o < 1, the fast-decaying eigenmodes
L) are well approximated by standing waves with wave
number k (eigenmodes of H) such that

1
Va=yve= cos* (kD) J¢, (12)
where
N/2
cos(kr)
= -2/ 13
T Zj . (13)
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FIG. 8. Gap between the largest and the second largest decay
rates y,, i.e., Ay = y™* — psecond a5 a function of N for different

values of «. The gap is in units of J.

is the spectrum of Hamiltonian (1). The fastest decay corre-
sponds to the mode at k = 0, with y™™* = yy ~ 2J2N!72¢,
and it reproduces the behavior of y™** in Fig. 7, with a slight
underestimation of a* (see also Fig. 14). It shows that the
behavior of y™ is this regime is determined by the modes
at wave number k ~ O of the long-range Hamiltonian, which
in turn determines the size-dependent scaling of the Lieb-
Robinson bound. Equation (12) thus establishes an explicit
connection between the minimal hitting time and 7 g for
a < 1.

The short-time behavior of the survival probability is also
determined by the density of states close to y™*; see Fig. 6.
We expect a clear difference between the dynamics for o >
1/2, where y,’s form a continuum, from the behavior for
a < 1/2, where the eigenvalue y™** is separated from the
rest of the spectrum by a finite gap. Figure 8 displays the
imaginary gap between y™® and the second largest eigen-
value y5°0nd Ay = pymax _y second aq 5 function of the lattice
size N and for some representative values of «. For ¢ < 1/2,
the gap increases with system size, with the largest gap for
the case for o = 0, while for & > 1/2, the gap closes as the
system size increases. The exponent o« = 1/2 separates these
two regimes. At this value, the gap is independent of N. This
behavior, depicting a change in the scaling of the imaginary
gap as a function of «, can be interpreted as a “spectral phase
transition.”

Further insight on the short-time behavior for @ < 1/2 can
be gained by writing the survival probability as the sum of two
contributions:

2 max
S(t) ~ —e 2T 4 2/
®) N 0

where we have approximated the initial state |0) ~
> |k)/+/N/2 and taken the continuum limit to describe the
contribution of all other modes than the mode k& = 0. This
separation is justified by the finite gap Ay separating the
contribution of the first term from the other contributions.
Expression (14) shows that, in a finite lattice, there is a fi-
nite probability to measure the walker at the target site for

T dk
T

e—2(fw)l, (14)
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very short times 1/y™®*. These times can even vanish for

N — oo, predicting events where the detector instantaneously
clicks. However, the probability of these events scales with
1/N and vanishes in the thermodynamic limit. For large lat-
tices, the detection probability at short times then becomes
dominated by the second largest eigenvalue ™ with the
associated timescale fsecong ~ 1/ ysec"“d (corresponding to the
second largest equipotential line of Fig. 4). For o < 1/2,
the rate % decreases as o — 0 and vanishes in the
thermodynamic limit N — oco. Consequently, the survival
probability remains constant, or, in other words, the walker
does not reach the detector. Equation (12) shows that this is
a consequence of the flat spectrum J;-¢ at ¢ < 1/2, which
in turn is responsible of localization of the walker’s wave
packet [46,47]. In this regime, therefore, even though the
minimal hitting time almost vanishes, the long-range hopping
tends to freeze the walker.

C. Equilibration and relaxation

To discuss the fate of the detection probability of a walker,
initially localized at the site |0) and under evolution due to
the monitored dynamics, we first consider the case of nearest-
neighbor hopping. Recall that the initial state spreads over
the periodic lattice in time, and reaches the detector site at
short times (set by the Lieb-Robinson bound), following the
shortest path connecting the detector site and the initial site.
In a finite lattice, either with reflecting boundaries or with
periodic boundary conditions, this occurs also at a later time,
corresponding to propagation along the other, complemen-
tary path. This second timescale is clearly visible in Fig. 2
corresponding to when the survival probability undergoes a
second discontinuous change of the derivative. At this sec-
ond timescale, a process of spreading and interference of the
walker’s wave packet has set in and continues until equili-
bration. The latter would correspond to equal probability of
finding the walker at different sites, namely, a uniform distri-
bution over the lattice. Evidently, once equilibrium is attained,
all memory of the initial state gets erased. The occurrence of
the second timescale, corresponding to propagation along the
complementary path, is evidently a finite-size effect: we have
verified that the extent of the steps increases linearly with N
for nearest-neighbor hopping.

Using this picture, on a ring lattice geometry the timescale
is of the order of the complementary distance N — D between
the initial site and the detector, while equilibration will be at-
tained after a time corresponding to several round trips around
the lattice, thus over a time that is of the order of multiples of
N.In Fig. 4, these regimes correspond to different color scales
at o > 2: the transient red-orange region, where the survival
probability remains almost constant after the first decay, cor-
responds to the time elapsed before the walker reaches the
detector site along the complementary path. Interference sets
in at the second step of the survival probability, which then
starts equilibrating towards the asymptotic value.

If we now turn to long-range hopping, this picture helps
us interpret the behavior for o > 1/2, with some salient
differences: For o € (1/2,2), the timescale of the first de-
tection increases monotonically with «, while the size of
the intermediate region becomes more blurred. At o >~ 1/2,

10° 10! 102 108 10*

FIG. 9. Evolution of the fidelity, Eq. (15), for different values of
o and N. The parameters are v = 0.2/J,J = 1, D = 10. The plot
does not show the value f(0) = 1.

in particular, equilibration sets in at a later time than that
for the causal propagation. For o € (0, 1/2) the equilibration
timescale scales as 1/« and is largest as @ — 0%, In this
regime, there is no notion of distance: The walker is either
localized or spread across the lattice.

Fidelity is an important metric that quantifies the attaine-
ment of equilibration in a quantum system [58]. It is defined
in our setting as

@) = 101y @)IP, 15)

and is thus the norm-squared of the overlap between the initial
site |0) and the time-evolved un-normalized state |1 (¢)). For
a quantum walk, as is our case, it is the return probability. In
the absence of monitoring, one expects that the fidelity will
vanish on attaining equilibration, f(t) — 0.

An approximate expression for the fidelity can be evaluated
in the limit of Jt « 1, which we have been considering so far.
In this limit, we describe the dynamics of the chain using the
spectral decomposition of the effective Hamiltonian, and we
rewrite the fidelity as interference of waves, which are damped
by the rates y,:

2

F@O) = |3 e GO AI0) . (16)

a

This expression predicts oscillations due to frequencies A%,
which are damped at rates y, 7. The dynamics of equilibration
results from the interplay between the rates of the incoher-
ent dynamics due to monitoring, and the interference of the
free waves propagating across the chain. Figure 9 displays
the evolution of the fidelity, for three representative values
of the exponent o, where we choose o = 3.0, representing
the case where the dynamics starts to approach the nearest-
neighbor limit, and @ < 0.5, where instead localization effects
are expected. In all cases, we observe three regimes: an ini-
tial decay, oscillations, and an asymptotic regime, where the
fidelity tends towards a stationary value close to zero. With
respect to the short-range regime, however, the long-range
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FIG. 10. Relaxation and equilibration timescales, respectively
t12 and fq, plotted against o.. The results are obtained from numerical
simulation of the monitored quantum walk, and they correspond to
parameter values N = 1000, t = 0.2/J,J = 1, D = 10. The equili-
bration timescale f.q is defined here as the time beyond which f(¢)
remains at a value smaller than a threshold value set equal to 0.01.
The relaxation timescale is the time at which the survival probability
reaches the value 0.75, thus 50% between unity and the asymptotic
value 1/2.

dynamics slows down the evolution by more than one order
of magnitude: even the periodicity of the oscillations is longer
at « = 0.3 and even longer for o = 0.1.

The equilibration time, with which the fidelity decays to
zero, is clearly related to the relaxation timescale, which
characterizes the decay of the survival probability. Never-
theless, there are salient differences, since the equilibration
time results from the interplay of interference and decay. In
the regime we consider, where the effect of the detector is
a perturbation to the unitary dynamics, we expect that inter-
ference is the dominant mechanism leading to equilibration,
while relaxation is slower. Figure 10 shows that the relaxation
timescale is a multiple of the equilibration one for all values
of @. Both increase as « decreases, indicating that long-range
interactions tend to inhibit the achievement of equilibrium.

D. Universal regime

We now turn to the universal regime. Figure 11 shows
that the survival probability decays algebraically with time to
the asymptotic value with an exponent independent of «. We
identify two behaviors, which are determined by the distance
D between initial site and detector. For distances D > D* 2 1,
the survival probability decays towards the stationary value
following the power law t~!/2, while for 1 < D < D* the
power law is #=3/2, This behavior was already reported for
nearest-neighbor hopping [35,36]. Here, we show that it is in-
dependent of the hopping range. In fact, as we argue below, it
is solely due to the spatial symmetries of the setup, which are
independent of the hopping range. Due to the independence
of o we denote this regime as universal.

We start by recalling the existence of dark eigenmodes,
namely eigenmodes with y, = 0. These eigenmodes are N/2

1014

10—2<

10 102 10t 10° 10 102 10t 108
t t

FIG. 11. Long-time behavior of the survival probability S(¢) for
different values of «. Here N = 1000, r = 0.2/J,J = 1, while the
distance between the initial location of the walker and the target site
is (a) D = 1 and (b) D = 50. The black star points correspond to a fit
with (a) g(t) o t=3/2 and (b) g(¢) o< t~'/2. The time is in units of 1/J.

and in our model are well approximated by standing waves
with a node at the detector site. They are described by stand-
ing waves of the form |kp) = ", |j) sin (k(j — D))/N, with
N =~ /N/2 (see Appendix C). The standing waves have a
node at D. Their wave number takes the value k = 2wn/N
with n € [0, ..., N — 1] and the dark subspace has degener-
acy N/2. Clearly, the dark eigenmodes are solely due to the
geometric properties of the setup. Of these modes, a subset
does not contribute to the dynamics: This subset is composed
of the modes with wavelength A = 27 /k = D/m (with m =
1,2, ..., D/2), which also have a node at the initial site.

We first show how these features determine the asymptotic
behavior of the fidelity. In fact, the dark eigenmodes frequen-
cies span the full spectrum 7, Eq. (13), and their interference
is responsible for the asymptotic behavior f(r) — 0 for t —
oo [58]. Thus, despite the non-Hermitian dynamics, the dy-
namics of the fidelity at the asymptotics is determined by the
unitary evolution within the dark subspace.

The asymptotic decay of the survival probability can be un-
derstood in terms of the eigenmodes that have finite but small
overlap with the target site, which can thus be very long-lived.
Stretching a definition of quantum optics [59], they are gray
eigenmodes. For sufficiently large 7, one can approximate the
expression for the survival probability, Eq. (11), as

1 [ -
S(t)%S(oo)+—/ ds e~ ¥ sin2(8D),  (17)
T

—00

where J is the modified prefactor, and we have used that
only small values of the argument of the exponential con-
tribute at long times. Moreover, we have approximated the
decay rates with their functional dependence for the long-
wavelength modes (§ < 1). In Appendix D we show that the
integral leads to the scalings ¢~!/? and t=3/2 for D > D* and
D =1, respectively, where the value of D* depends on the
size of the lattice N. The form of integral (17) is independent
of «, as it is dominated by the contribution of the “gray”
standing waves. The power-law scaling is reminiscent of the
Levy-flight statistic reported for the trapping times in gray
states of laser cooling [60].

The return problem, where the initial and detection sites
coincide (D = 0), deserves a separate discussion. In this
case, the behavior cannot be understood in terms of dark
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eigenmodes; integer exponents have been observed in the
long-time tails of survival probability for nearest-neighbor
hopping [21,25,61]. The analysis for long-range hopping will
be object of future investigations.

Finally, similar universal long-time behavior is expected to
emerge in stroboscopically monitored discrete-time quantum
walks (DTQWs) with long-range hopping. In DTQWs [37],
the additional degree of freedom given by the coin rotation
influences the position probability amplitude on lattice sites.
Consequently, the position probability distribution is bipartite
in the sense that odd (even) sites are empty at even (odd)
detection steps. Because the detection probability is then
concentrated on fewer sites, the total (cumulative) detection
probability Py (n) grows faster than in the continuous time
quantum walk and also saturates at a larger value, as already
observed for a nearest-neighbor monitored DTQW [37,62].
At long times, the dynamics will still be governed by dark
(or “gray”) modes solely determined by the lattice symmetry.
Consequently, the universal algebraic decay of the survival
probability, and its independence of the hopping exponent «,
should persist in the DTQW.

IV. OPTIMAL QUANTUM RESETTING PROTOCOL

Whenever resetting offers an advantage in a classical set-
ting, it has been rigorously demonstrated that among various
resetting mechanisms, resetting at a constant pace (sharp-
resetting) represents the optimal strategy for minimizing the
mean first-passage time [63,64]. While alternative protocols
(e.g., time-dependent or random reset intervals) can exhibit
rich dynamics [2], their performance is ultimately bounded by
that of a properly chosen constant-reset protocol. Subsequent
studies in the quantum domain, particularly on monitored
quantum walks, have shown that broadening the reset dis-
tribution to Poisson or geometric forms not only raises the
mean hitting time but also suppresses the quantum-coherent
oscillations responsible for ballistic advantage. As a result,
sharp-resetting remains the benchmark for optimality even in
the quantum domain, although interference effects can create
additional, system-specific local minima around the global
optimum [22]. We now address the open question: what is the
optimal reset time for our specific quantum system?

In our model, the survival probability analysis singles out
a microscopic timescale, set by the hopping exponent «, that
helps us design the optimal protocol, thereby accelerating the
convergence to the target site. We fix the resetting time to the
value fp = rt, and we discuss the optimal resetting rate I', =
1/(r7) as a function of «.

For short-range models, we could identify a lowest bound
to the hitting time #y,;, ~ TR (@ > 2), such that any resetting
faster than #,;, will impede the walker to reach the target.
The stepwise dynamics of the survival probability, Fig. 2,
shows that shortly after #,;, the survival probability reaches
a transient, constant behavior and suggests therefore that the
optimal resetting time shall be tg = fiin.

This strategy can be extended to the long-range regime
by setting the resetting time to the fastest timescale of the
dynamics. This implies the choice

IR = TopT ~ 1/y™*. (18)
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FIG. 12. Convergence time of the quantum resetting procotol as
a function of r and of the hopping exponent «. The convergence time
is defined here as the time needed to reach to the detection probability
Pyer = 0.9. The black stars correspond to the reset time interval frg =
rt of Eq. (18), and the red diamonds represent the optimum reset rate
found from numerical simulations. In the diagonal hatched region,
Pye, 18 always zero. The parameters are N = 1000, 7 =0.2/J,J =
1,D = 10.

For o < 1/2, the rate ym. can become much larger than
the inverse of the time interval T between two consecutive
detections. In this regime, moreover, the probability of super-
sonic detections scales with 1/N. This suggests that for large
lattices the resetting rate should scale with the lattice size,
[', ~ N (thus r ~ 1/N), in order to have significant probabil-
ity of a detection.

We verify these hypotheses by means of numerical simula-
tions at fixed lattice sizes. However, when y"*1 > 1, we set
r = 1 (thus tz = 1), corresponding to setting an upper bound
to the resetting rate. We then determine the timescale of the
quantum resetting protocol by means of the time at which the
detection probability Py reaches the value of 0.9. Figure 12
shows the characteristic timescale as a function of the param-
eter r and of the exponent ««. The color bar represents different
values, progressing from blue for smaller fp,, =0.9) to red for
larger #[p,,—0.9;. The black stars show the predictions of the
protocol using the reset r of Eq. (18), while the red diamonds
correspond to the optimal reset r determined using numerical
optimization, minimizing #;p,,—0.9) at fixed «.

Figure 13 displays the minimal detection time as a function
of the hopping exponent. For our implementation, where the
minimal resetting time cannot be smaller than T and hence
r > 1, long-range hopping events do not speed up the quan-
tum resetting protocol: the fastest convergence is achieved
for hopping exponents « > 1. This perhaps counterintuitive
conclusion is a manifestation of the long-range induced lo-
calization that we have analyzed in the survival probability
dynamics.
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FIG. 13. The minimal convergence time f;p, —o.0; as a function of
«. The data correspond to the time along the black starred points and
the red diamond points in Fig. 12.

V. CONCLUSIONS

In this work, we analyzed the hitting time of a quantum
walk in a one-dimensional lattice. The dynamics alternates
coherent evolutions with detection events, modeled by a pro-
jection onto the target site. We determined the dynamics
of the detection probability for diffusion processes, where
the probability amplitude of tunneling decays as a power
law ~d~* with the Euclidean distance d between any two
sites of the lattice. Although it resembles Lévy flights, this
setup does not have a one-to-one classical counterpart, and
thus our results advance first-passage studies in quantum-
walk-based search protocols beyond classical analogs. We
established an explicit connection between the detection prob-
ability and the Lieb-Robinson time at which correlations
between distant sites are established by the coherent dynam-
ics, and we showed that the Lieb-Robinson time determines
the short-time dynamics of the detection probability, while
the dynamics at later times results from the interplay be-
tween the coherent propagation and the incoherent dynamics
induced by monitoring. This permits us to determine the op-
timal resetting rate by setting the resetting time to the fastest
timescale of the dynamics. Interestingly, our results link the
local measurement outcome to the global evolution of the
system.

The dynamics considered here can provide important infor-
mation, as well as guidance for studying many-body dynamics
in the presence of dissipation, such as in Refs. [61,65-68].
In first place, this is possible by connecting the insights on
the short-time dynamics to the speed limits of many-body
systems [69]. At longer times, the evolution of the detec-
tion probability in the absence of resetting sheds light on
the equilibration and relaxation mechanisms. In the case of
a single excitation, the two can be distinguished. Relaxation
mechanisms, in particular, set in on timescales determined by
the gap between the imaginary eigenvalues. Moreover, due to
the presence of eigenmodes that are perfectly decoupled from
the detector, the asymptotic dynamics is reduced to a coherent
evolution in the subspace spanned by the dark eigenmodes,

and it is independent of the interaction range. Similar features
can be identified in many-body systems on lattices with vari-
able interaction strength [68,70,71].

Our study sets the basis for determining the scaling of the
hitting time for arbitrary distances in the lattice of size N
and as a function of «. Our analysis assumes parameters for
which the monitoring events occur at stroboscopic timescales
that can be well approximated by a continuum. Future work
shall identify the dynamics of long-range hopping when the
stroboscopic nature of the monitoring events becomes rele-
vant. In this regime, topological features have been predicted
for nearest-neighbor hopping [72] which are expected to be
modified or even suppressed by long-range diffusion.

Quantum stochastic resetting is a realization of a quantum
randomized algorithm. This can be considered the random-
ized counterpart of a quantum walk, performing a unitary
spatial search on a graph [73]. Preliminary studies indicate a
definite advantage of searches based on monitored quantum
walks with respect to coherent dynamics for certain graph
structures [74]. Understanding whether quantum stochastic
resetting might provide an advantage requires one to deter-
mine the time complexity of the quantum stochastic resetting
algorithm, such as the scaling of the convergence time as
a function of the lattice size, that shall be performed after
identifying the optimal conditions for a given geometry and
diffusion matrix. However, while optimization in the classi-
cal counterpart has well-established paradigms in computer
science [6], in the quantum regime there is no established
framework. Our work is a first step in this direction thanks to
the systematic characterization of the timescales as a function
of the physical parameters. The development of an optimiza-
tion framework for the incoherent dynamics shall extend the
concepts of Refs. [75,76] to these settings, and it will be the
object of future work.

Finally, our predictions could be verified by existing ex-
perimental setups, for instance setups with Rydberg, dipolar,
ion arrays, or more generally to settings where the size of the
lattice can be varied and the hopping exponent can be tuned
from global to nearest-neighbor hopping [40,41]. The moni-
toring procedure can be implemented by electron shelving at
the target site, while the restarting procedure requires reini-
tialization of the quantum system and is a classical feedback
mechanism [77,78].
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APPENDIX A: DERIVATION OF THE NON-HERMITIAN
HAMILTONIAN

Here, we derive Eq. (11) of the main text. To this end, we
introduce the projector Pp = |D)(D| and split the modified

time-evolution operator U in Eq. (6) in terms of its contribu-
tion from the detector subspace and from its complementary
subspace by usmg the fact that the corresponding projection
operators satisfy Pp + PD = Iy. We have

U= B0 = Py[(Bs + Pp)U (P + Pp)]
= PSUP; + PSUPp, (A1)

where we have used (P5)? = P and PSP, = 0. In the same
manner, the initial state may be rewritten as

[Wo) = B5lvo) + Poli).

As mentioned in the main text, we always choose the initial
state to be not in the detector space (i.e., initially, the particle
could be on any site other than the target site D), which
implies that the second term on the right-hand side vanishes,
and hence the initial state is simply

[vo) = B lvo).

The unnormalized state |v,7) at the end of time nt and just
after the nth measurement then has the form

(A2)

(A3)

@Y'lwo) = [By0 By + B30 Bo)" Bl o)
= [P5UEL] W), (A4)
which leads to the result
U = Ps0ps. (A5)

Due to the fact that F’f)|D) =0, it follows from the above

equation that the effective evolution operator U has one trivial
eigenvalue equal to zero, with the corresponding eigenvector
given by |D). The remaining eigenvectors, which evidently lie
in Hj,, obviously have zero components in the detector Hilbert
space Hp.

To proceed, we invoke a perturbative-theory treatment jus-
tified on the grounds that t is small, i.e., T < 1/J [35,36].
One finds straightforwardly on retaining terms up to O(t?)

that U in Eq. (AS) reads

U=e Mt Hy=PSHP, — r(%f‘), (A6)
with the operator I* defined as
£ = (P5)'A°P5 — (P5H) Py = PLHID)DIAR.  (AT)

Note that P5H Pg is symmetric and Hermitian, and is obtained
from A by replacing in the corresponding matrix all entries in
the row and the column that refer to the detector site with zero.
Moreover, [ is also symmetric and Hermitian. Therefore, the
non-Hermitian Hamiltonian Heg, Eq. (A6), is symmetric.

APPENDIX B: SPECTRUM OF THE NON-HERMITIAN
HAMILTONIAN

Let us now obtain the eigenvalues and eigenvectors of Heg
in Eq. (A6). Considering that the small parameter J7 < 1
scales operator I", one may invoke time- independent pertur-
bation theory [57] and treat the operator Hy = PC A P‘ as the
bare Hamiltonian and the operator V = —it[" /2 as a pertur-
bation. Both operators are defined in the Hilbert space H.
consisting of all the lattice sites excluding the detector site,
such that dimH, = N — 1. Let [A{?)) be the eigenvectors of
H, satisfying the eigenvalue equation

AY) =0 ), @

with (A @) = §, .. The eigenvalues 1) form the spec-
trum of a Hermitian operator and are therefore real. The
corrections A{! are calculated in first-order perturbation the-
ory. In first order, the corrections, A\) = (AV|V 1), are
imaginary. For convenience, we write A{") = —iy,7, where y,
is real and positive:

va = 3|r (B2)

where we used the explicit form of V and recall that A is
Hamiltonian (1). Replacing the explicit form of H, the above
equation can be recast into the form

2
| (AOi
=2l
i#D iD

(B3)

with d; p the minimal distance between site i and site D
along the ring. Accordingly, the first-order correction to the
eigenvectors is given by T|A(l), with

[ [2)

(0)
Z 25 A(O) A0 (B4)
h;ﬁa

Assuming that the walker is initially localized on the site |0)
of the lattice, in the first-order perturbation theory, the survival
probability takes the form

S@t) = Z e 2(Tva

a

D) =

(20)". (BS)

1. Spectral properties in the long-wavelength limit

We now derive the explicit form of y, in some approxi-
mate limit. Consider the Hamiltonian Hj, corresponding to
the original Hamiltonian except for the site |D). In the sub-
space H., it is then the Hamiltonian of a lattice where all
sites are uniformly spaced, e.g., at distance d, except for
two neighboring sites that are at distance 2d, and which
correspond to the sites |D — 1) and |D + 1) of the original
lattice, which are at distance 2d. For a sufficiently large lat-
tice, N > 1, the long-wavelength eigenmodes of H are well
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FIG. 14. y™* is numerically evaluated using Egs. (B10)

and (B2), and they are in perfect agreement. Other parameter values
aret =0.2/J,J =1,D = 10.

approximated by sinusoidals with wave number k = 27 n/Nd.
This approximation is good for kD < 1, while the presence of
the defect significantly modifies the spectrum at kD < 1. For
the moment, however, we treat the effect of the defect as a
small correction and assume Hj to be invariant under discrete
translation. We then get |A(V) = |k) with

[1
1y O\ ~ ;5 _ :
(i[A) ~ (ilk) = NI cos(ki) (B6)

(we do not discuss the sin waves, since they have no overlap
with the initial site |0)) and the eigenvalues J;, such that
Hylk) = Jklk), with

N2l cos(kr)

T = —=2J Z ~ (B7)
r=1

for even N. Using these expressions in Eq. (B2), we find

1
Ya = Yk = ﬁj,f cos*(kD), (BS)

where we have approximated N — 1 ~ N. Numerically, it
is shown in Figs. 14 and 15, respectively, that Eqs. (B10)
and (B12) are very good approximations of Eq. (B2). Cor-
respondingly, using that 0) =~ "2 |k)/«/N72, the survival
probability takes the form

N/2

NOESY > exp(=2twit). (B9)
k=0

a. Exponents 0 < a < 1

Within this treatment, for « < 1 the largest decay rate is at
k = 0, namely y™* = y,_, and specifically,

1
ym o 212A—JcN<a)2, (B10)

with ¢y(a) = ZNL 21 /r%, such that in the thermodynamic

r=1

limit it tends to Riemann’s zeta function. This shows that
the approximation at the basis of this calculation is reliable

102.
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,}/second
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«
FIG. 15. y* s numerically evaluated using Eqgs. (B12)

and (B2), and they are in good agreement. Other parameter values
aret =0.2/J,J =1,D = 10.

for the short-time dynamics, which is dominated by the long-
wavelength eigenmodes.

The function ¢y(a)? is monotonically decreasing with o,
thus y™* decreases as « increases, as we also verify numeri-
cally in Fig. 7. The scaling with N is determined by the ratio
§N((x)2/N. For « < 1, the function scales as {y (o) ~ N7,
and yYmax ~ N'72%. This approximate treatment thus repro-
duces the behavior observed for @ < 1 in Fig. 7.

For 0 < @ < 1/2, the rate y™** is separated by a finite
gap from all other rates y; with k > 0, which in turn form
a continuum. Therefore,

—2(T Yimax )t T
e 4 / dk —aenr
0

S(t) ~ N -

(B11)
We estimate the scaling of the gap by determining the scaling
of the next largest imaginary eigenvalue y:°°®™. This eigen-
value is at k = 2w /N,

N/2—1 2

1 COS ( 2zr )
second 2 N
~ 2] — E — N7
ya N r()t

r=1

(B12)

b. Exponent o > 1

For o > 1, the description in terms of sinusoidal starts to
fail: the maximum of y™® is for a wavelength of the order
of D, where the influence of the defect on the dynamics
of the unperturbed states becomes important. The defect in
Hamiltonian A, couples several sites and leads to a mixing of
wave numbers k over a range that decreases with «.

APPENDIX C: DARK STATES AND BEHAVIOR
OF THE ASYMPTOTIC SURVIVAL PROBABILITY S(o0)

The dark states |§) are defined as states that are unaffected
by our dynamical scheme of unitary evolution interspersed
with measurements. Two types of dark states are known to
exist: the first type includes so-called Floquet dark states that
arise on performing measurements periodically at regular time
intervals of duration 7, while the second type involves generic
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dark states that are a result of nonperiodic measurements [26].
One can systematically get rid of the Floquet dark states by
appropriately choosing the measurement interval t. We dis-
cuss here the generic dark states that arise due to degeneracy
in the eigenspectrum of the Hamiltonian (1). To this end, let
us first obtain the eigenspectrum. The Hamiltonian in matrix
form reads

Vo UN-1 %) 1
V] Vo UN-1 %)
H = %] Vo . (Cl)
UN-2 I ) VA
UN—-1 UN-2 ce V] Vo

with vg = 0 and

) _{l/do‘ if 1<d<N/2-1
d:

1/(N —d)* otherwise. (€2)

Clearly, H is a circulant matrix, which may be expressed as
ﬁ=vofN+v113+v2132+~-~+vN_113N’1, (C3)

where P is an N x N cyclic permutation matrix, given by

o o -~ 0 1
I 0 -~ 0 O
P=1|: . -0t (C4)
o . 0 o0
0 O 1 0

Now, since PV = Iy, the eigenvalues of P are given by
w, =N q=0,1,...,N — 1, where w, is the Nth root
of unity. This implies that the eigenvalues of H are given
by [80,81]

Aa —Zvda)

/Z os(Znad/N)

a=0,1,...,N—1. (C5)

d=1

We will discuss below the nature of the spectrum for dif-
ferent values of .

Case 1. a # 0. Except for the ground state (@ = 0), which
corresponds to the eigenvector 1/ VN [1,1,...,1]7, each of
the remaining N — 1 eigenvalues is twofold-degenerate, with
the corresponding two eigenvectors given by |e“), [f¢); the
components of the respective eigenvectors are given by

/2 2raj 2 2raj
e?: ]VCOS<7;\7J); f;:&ﬁn(%) (C6)

with j =0,1,...,N — 1. Because of the above-mentioned
degeneracy in the spectrum, one can construct dark states
through a superposition of the degenerate eigenvectors with
proper weights foreverya = 1,2, ..., N — 1, as follows:

69) = (D) f“) — (DIf“)|e))

_ 2 2mwaD 2maD C7
= ﬁ[cos< )If — sin <T)|€>],( )

such that U [6¢) = |6%). The asymptotic survival probability
S(00) will be due to states that are not affected by measure-
ments, and it is thus given by the overlap between the initial
state and all the dark states, as

2 ay 2
S(00) = = I4118°)]
a#0
2 2raD | 2wal | 2maD  2wall?
= — Z cos sin — sin cos
N
a#0
2ra(D —1
- = Z <L) (C8)
a;ﬁ()
In the thermodynamic limit (i.e., N — 00), one gets
[0 ifD—1=N)2
§(00) = {1/2 otherwise. ©9)

From Eq. (C7), it follows that for each pair of degenerate
eigenvectors, one can thus identify a corresponding dark state,
leading to a ratio of the number of dark states to the total
number of states of 0.5. In the perturbation-theory approach
discussed in Appendix A, dark states correspond to those
modes that do not decay (y, = 0), and the density n,/N of
these modes equals 0.5.

Case 2. « = 0. This is a special case; here, the spectrum
consists of the ground state and an excited state that is (N —
1)-fold degenerate. In this case, it is easier to write the bright
states [26], i.e., the states that are complementary to the dark
states and therefore will always get detected with probability
unity. The bright states are obtained as

an . 2maD
=Z|e}sm

a#0

—+ |f9) cos (C10)

The asymptotic total detection probability Pge(00), which is
the complement of the survival probability, can then be de-
scribed by the overlap of the initial state with the bright states,
as

Pie(00) = [(11B)*

2
2 2raD 2aD
S Xa:(ue“)sin ’T; + (I1f) cos ’;\j’ ‘

2
N

N

. 2mal . 2maD
E sin sin
- N

2
2mal 2mwaD

4+ cos cos
N

2
_ =z Zcosw (C11)
N

—>N—>oo 0.

Thus, in the thermodynamic limit, one gets S(oo) =1 —
Pye(00) — 1.
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APPENDIX D: UNIVERSAL REGIME
OF SURVIVAL PROBABILITY

Using Egs. (B5) and (B8), one can write the survival prob-
ability as

S() = Y FRED )P, (DI
k

where J; is given by Eq. (B7).

We first review the nearest-neighbor case (@ — 00). In
Ref. [35], the authors set the detection site at N and the initial
site at [. This setup is equivalent to our model for « — oo and
with D = min{l, N — [}. In this setup, the survival probability
takes the form

2 T
YOS Zk: =080 o2 (kT 4 S(00),

(D2)
where S(o0) = %Zk sin?(kl). In the thermodynamic limit
(N — 00), S(00) matches Eq. (C8), yielding either 1/2 or 0
depending on the initial site position. The first term of the
above equation can be converted in the integral form as

S(t) — S(o0) & ;f dke= ¥ " ®) o2 (k7). (D3)

0
For sufficiently large ¢ (f 3> Nt), the function e~$°s"®)
is sharply peaked at k = m /2. These are the points where
cos(k) = 0, meaning away from these points, the function

quickly decays. To approximate the integral, we first expand
cos?(k) around 77 /2. Let us consider k = /2 + 8, where 8
is small. Then cos? k & 82, and cos?(kl) = cos® ((r /2 + 8)I).
The integral will now be approximated as

1 it
— / ds e %7 cos? ((z + 8)[)
T J_ o 2

N
om0 BTN

This expression exhibits two distinct power-law decay be-
haviors, depending on the distance between the initial and
detection sites:

(i) For distance less than D*: In this regime, one may
Taylor-expand the second term of Eq. (D4), and the survival
probability decays as ¢~%?2, and then for sufficiently large
times, it decays exponentially. D is determined by the valida-
tion of the Taylor expansion such that for distances D < D*,
it satisfies % < 1.

(i1) For distance greater than D*: One can now neglect the
second term of Eq. (D4) and the decay follows ¢~'/? decay
and then for large enough times decays exponentially.

These scaling behaviors are consistent with the results
in [35,36]. For the long-range case, only the eigenvalues are
modified, but the structure of the integral remains unchanged,
as shown in Eq. (17). Consequently, the same two scaling
regimes arise as in the nearest-neighbor case (see Fig. 11).

S(t) — S(00) &

———(1+(-D'e

(8/211/N))

(D4)
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