
ArticleiScience
How to predict effective drug combinations – moving
beyond synergy scores

Graphical abstract

Highlights

• Synergy scores have limitations for personalized treatment

recommendation

• We pioneer dose-specific predictions of multi-drug

sensitivity for unseen cell lines

• Benchmarking: Random forests using MACCS fingerprints

performed best

• We introduce a drug combination sensitivity measure

enabling treatment prioritization

Authors

Lea Eckhart, Kerstin Lenhof,

Lutz Herrmann, Lisa-Marie Rolli,

Hans-Peter Lenhof

Correspondence

lea.eckhart@uni-saarland.de

In brief

Machine learning; Pharmacy

Eckhart et al., 2025, iScience 28, 112622

June 20, 2025 © 2025 The Author(s). Published by Elsevier Inc.

https://doi.org/10.1016/j.isci.2025.112622 ll

http://creativecommons.org/licenses/by/4.0/
mailto:lea.eckhart@uni-saarland.de
https://doi.org/10.1016/j.isci.2025.112622
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2025.112622&domain=pdf


iScience

Article

How to predict effective drug 
combinations – moving beyond synergy scores

Lea Eckhart,1,3,* Kerstin Lenhof,1,2 Lutz Herrmann,1 Lisa-Marie Rolli,1 and Hans-Peter Lenhof1

1Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, 66123 Saarland, Germany
2Computational Biology Group, Department of Biosystems Science and Engineering, ETH Zürich, Basel, 4056 Basel-Stadt, Switzerland
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SUMMARY

To improve our understanding of multi-drug therapies, cancer cell line panels screened with drug combina

tions are frequently studied using machine learning (ML). ML models trained on such data typically focus on 

predicting synergy scores that support drug development and repurposing efforts but have limitations when 

deriving personalized treatment recommendations. To simulate a more realistic personalized treatment sce

nario, we pioneer ML models that make dose-specific predictions of the relative growth inhibition (instead of 

synergy scores), and that can be applied to previously unseen cell lines. Our approach is highly flexible: it 

enables the reconstruction of dose-response curves and matrices, as well as various measures of drug sensi

tivity (and synergy) from model predictions, which can finally even be used to derive cell line-specific prior

itizations of both mono- and combination therapies.

INTRODUCTION

Tailoring drug treatments to the individual patient is a major goal 

of cancer research. Due to ethical concerns and limited availabil

ity of tumor material, relationships between molecular properties 

of cancer cells and their drug responses are generally not stud

ied on humans directly, but instead using model systems, most 

prominently, cell lines. For monotherapy, large cell line panels 

such as the Genomics of Drug Sensitivity in Cancer (GDSC) 

database1,2 have been available for more than a decade, 

providing both molecular characterizations and drug screening 

data of cancer cell lines. However, combination therapies are 

frequently preferred over monotherapies for cancer treatment 

due to increased efficacy and a decreased risk of treatment 

resistance.3 More recently, large data resources have also 

become available for drug combination screens: In 2019, the 

DrugComb data portal was introduced,4 which to date accumu

lates harmonized results of drug screens for mono- and combi

nation therapies from 37 different sources.5

Databases like the GDSC or DrugComb enable the systematic 

evaluation of the effect that different drugs have on different 

types of cancer cells. Thus, two main use cases that can be ad

dressed using these data include (1) making personalized treat

ment recommendations for a given patient (cell line) and (2) 

finding promising drugs or drug combinations that should be 

further explored, e.g., for drug repurposing or the development 

of novel (combination) therapies. Due to the complexity and 

high dimensionality of the data, machine learning (ML) is 

commonly used to address these tasks.

ML models trained on monotherapy drug responses can be 

used for both use cases (1) and (2) since they directly predict 

measures of drug effectiveness, such as the IC50 or AUC value. 

In comparison, most methods using drug combination data pre

dict so-called drug synergy scores.6,7 These scores quantify the 

synergistic or antagonistic potential of two compounds for a 

given cell line by comparing their combined effect on cell growth 

to the expected effect obtained from a baseline model that as

sumes no synergism or antagonism.8 Synergy scores are usually 

suited for the second task but less applicable for the first one, as 

discussed in detail in this manuscript. Mainly, a high synergy be

tween two compounds does not guarantee that the respective 

combination treatment will be highly effective overall.5 It simply 

indicates that the combination treatment is more effective than 

what would be anticipated from the drugs’ monotherapy re

sponses. Moreover, Palmer and Sorger found that the benefit 

of most combination therapies in clinical trials cannot be ex

plained by synergy but rather by independent drug action.9

Another drawback of synergy scores is that they are typically 

aggregated over multiple drug concentrations that do not neces

sarily correspond well to clinically feasible concentration 

ranges.10

In this manuscript, we aim to address the task of combination 

drug response prediction by focusing on treatment sensitivity 

rather than synergy. To this end, we first conducted an exten

sive literature review of 55 state-of-the-art approaches for 

drug sensitivity and synergy prediction, which can be found in 

Table S1. Among the reviewed approaches, 32 are designed 

specifically for monotherapies and cannot directly be applied 

to data from combination treatments. Of the 23 approaches 

applicable to drug combination data, only 14 incorporate cell 

line features, e.g., gene expression profiles, in their input. This 

is crucial for making personalized treatment recommendations, 
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where the drug response depends on the molecular properties 

of the individual cancer (here: cell line). The remaining ap

proaches, with only two exceptions, focus on predicting syn

ergy scores aggregated over multiple concentrations. These 

two exceptions are the models developed by Zheng et al.5

and comboFM by Julkunen et al.11 Both methods are designed 

to predict the concentration- and cell line–specific sensitivity of 

multi-drug treatments: Zheng et al. trained a CatBoost model 

that predicts the relative inhibition of two drugs at given con

centrations for a given cell line. Similarly, comboFM employs 

higher-order factorization machines (HOFMs) to predict relative 

cell growth. Thus, both approaches can predict combination 

sensitivity. The strategy of predicting dose-specific drug re

sponses enables the calculation of arbitrary sensitivity or syn

ergy measures from the model predictions. The importance of 

developing models capable of making dose-specific predic

tions is also emphasized in Kong et al.’s systematic review on 

drug combination prediction.12

A limitation of the approaches by Zheng et al. and Julkunen 

et al. is that they are not applicable to make predictions for pre

viously unseen cell lines (i.e., cell lines that were not included in 

the training data): They employ a one-hot encoding of cell lines in 

the model input such that the cell lines have to be known during 

training already. Consequently, these models are difficult to 

apply for personalized treatment recommendations, where pre

dictions should be made for a previously unseen patient (cell 

line). According to Codice et al., this cell-blind setting is 

frequently overlooked or insufficiently evaluated in ML-based 

drug response prediction.13

Based on our literature review, there is currently no model for 

predicting drug combination sensitivity that can make dose-spe

cific predictions for previously unseen cell lines. Thus, in this 

manuscript, we pioneer such models to mimic a personalized 

treatment scenario where the most effective treatment options 

for a given patient should be identified. Our contributions can 

be summarized as follows.

(1) We developed ML models to meet the demand for cell 

line–specific, dose-dependent predictions of drug combi

nation sensitivity. Instead of predicting an aggregated 

measure of treatment response, our models predict the 

relative inhibition at arbitrary treatment concentrations 

provided in the model input.

(2) To determine how this novel prediction task can be 

modeled best, we systematically benchmarked different 

ML algorithms (neural networks, random forest, elastic 

net) and different drug representations in the model input 

(MACCS fingerprints, physico-chemical properties, drug 

targets). Our results show that random forests outperform 

the other algorithms in all investigated settings, while the 

drug representations were less decisive for performance. 

This evaluation can serve as a robust starting point for 

future model development.

(3) Our model architecture enables reconstructing various 

drug sensitivity or synergy measures from the predictions, 

including dose-response curves and matrices, as well as 

IC50 values or synergy scores. This versatility makes our 

models suited for a broad range of applications.

(4) For monotherapies, we reconstruct IC50 values and our 

recently proposed sensitivity measure called CMax 

viability.14 For combination therapies, we extend the 

CMax viability to be applicable to drug combinations. 

Our measure overcomes the limitations of existing sensi

tivity measures and is comparable across drugs and drug 

combinations. Furthermore, our analyses highlight a 

widely spread issue of evaluating the performance of 

multi-drug models.

(5) By integrating our models with the CMax viability, we can 

prioritize mono- and combination therapies. Drug prioriti

zation, i.e., ranking drugs by their predicted effectiveness 

for a given cell line (patient), is a major goal in personalized 

medicine: it exceeds the mere prediction of sensitivity 

measures and moves toward deriving actual treatment 

recommendations.

RESULTS

Challenges of synergy scores for recommending 

personalized treatments

The idea behind synergy scores is to measure the synergistic or 

antagonistic potential of two compounds for a given cell line by 

comparing their experimentally measured combined effect on 

cell survival to the expected effect obtained from a baseline 

model that assumes no synergism or antagonism.8 The baseline 

model is derived from monotherapy data of both compounds. It 

estimates the combined effect of the two compounds at the con

centrations that were tested in the actual combination screening. 

The baseline and actually measured treatment responses are 

then subtracted from each other and the result is averaged 

over all concentration combinations to obtain a final synergy 

score.10 Prominent examples of synergy scores that differ solely 

in their computation of the baseline are the Loewe,15 Bliss,16

HSA,17 and ZIP8 scores. For each of these scores, values > 0 

indicate synergism and values < 0 indicate antagonism. A 

detailed description of the scores can be found in the Supple

ment (Methods S1).

Undoubtedly, estimating the synergistic potential of com

pound combinations through synergy scores can be valuable 

for identifying promising combination treatments to undergo 

more detailed screening, the development of novel compounds, 

or drug repurposing. However, there are known limitations of 

synergy scores, which have been summarized and extensively 

discussed in a review by Vlot et al.10 They also investigated the 

agreement and across-batch reproducibility of four synergy 

scores (Loewe, HSA, ZIP, and Bliss) using a large-scale drug 

combination dataset. Their findings can be briefly summarized 

as follows: First, each synergy score is based on a set of model 

assumptions that differ between scores and may also be violated 

by real-world data.18,19 These varying model assumptions might 

explain the moderate to low correlation observed by Vlot et al. 

between the different scores calculated on the same data. 

Furthermore, while complete disagreement (synergism vs. 

antagonism) between scores was rare, Vlot et al. identified 

several scenarios where scores are likely to disagree, which 

could typically be retraced to a violation of model assumptions. 

Interestingly, although Vlot et al. report a strong correlation 

2 iScience 28, 112622, June 20, 2025 

iScience
Article

ll
OPEN ACCESS



between the measured drug responses in terms of viability, the 

derived synergy scores are comparatively difficult to reproduce 

in replicated experiments.

Based on these findings, Vlot et al. advocate against the auto

mated analysis of large-scale data using individual synergy 

scores. Instead, they recommend a careful investigation of the 

respective dose-response curves to then select an appropriate 

score.

We agree with these conclusions by Vlot et al. and would like 

to emphasize further points that make synergy scores difficult to 

use and interpret, especially for personalized treatment recom

mendations: A methodological criticism of synergy scores is 

that they are an aggregated measure over concentration ranges. 

The choice of meaningful concentration ranges is especially 

challenging for experimental drugs but crucial to draw meaning

ful conclusions for personalized medicine. For monotherapies, 

we have previously shown that the screened concentration 

ranges in the GDSC database do not correspond well to clinically 

feasible treatment concentrations.20 For combination therapies, 

similar observations can be made for the DrugComb database 

(cf. Figure S1, where we compare the screened concentrations 

to clinically feasible treatment concentrations).

Another major factor that hampers the use of synergy scores 

for treatment recommendation is that a high synergy between 

two compounds solely implies that the combination treatment 

is more effective than expected from the monotherapy re

sponses of these two compounds. However, it does not guar

antee an overall high effectiveness in terms of large relative 

inhibition of the combination treatment.5 To substantiate this 

theoretical argument, we investigated the correlation between 

the synergy scores and inhibition values provided by 

DrugComb. More precisely, we computed the Pearson correla

tion coefficient (PCC) between the synergy score and maximal 

inhibition obtained by each experiment (i.e., one cell line being 

treated with one drug combination). Correlations were low for 

all synergy scores (ZIP: 0.06, Loewe: 0.02, Bliss: 0.06) other 

than HSA (0.43), showing that a high synergy does not imply a 

high inhibition. Furthermore, we investigated the maximal inhibi

tion of the 100 most synergistic experiments of each score. The 

results are provided in Figure S2 and show that, even among the 

most synergistic experiments, small or even negative inhibitions 

frequently occur, especially for the Bliss and ZIP scores.

Likewise, in a clinical setting, combination synergy is not the 

most conclusive factor for treatment success: Palmer and 

Sorger found that the benefit of most combination therapies 

in clinical trials can be explained by independent drug action 

rather than synergy.9 This underscores that synergy scores 

lack expressiveness for deriving personalized treatment 

recommendations.

Moving beyond synergy scores

Given the limitations of synergy scores, particularly in the context 

of treatment recommendations, we focus on sensitivity predic

tion instead of synergy prediction. While there are numerous 

methods for predicting synergy,6,7 sensitivity prediction of drug 

combinations is relatively underexplored, especially when the 

goal is to make predictions for previously unseen cell lines, as 

outlined in the Introduction section (cf. related work in Table S1).

Treatment sensitivity is typically quantified using measures 

like the IC50 value and AUC for monotherapies and the CSS21

for combination therapies. However, these measures have 

limitations that impede their suitability in deriving personalized 

treatment recommendations. First, most sensitivity measures 

depend strongly on the investigated concentration ranges. For 

example, the AUC is calculated by integrating the dose- 

response curve over the investigated concentration range. Simi

larly, the CSS is based on drug-specific AUC values. Thus, 

poorly chosen concentration ranges can over- or underestimate 

sensitivity. Second, commonly used sensitivity measures are not 

comparable across compounds.14 Consequently, they cannot 

be applied to directly compare the effectiveness of different 

treatment options for a specific patient (cell line).

To overcome these challenges, we recently developed a sensi

tivity measure called the CMax viability (cf. STAR Methods for de

tails)14: For monotherapies, the CMax viability of a cell line for a 

drug is defined as the relative viability after treatment with the 

drug’s CMax concentration (i.e., the peak plasma concentration 

after administering the highest clinically recommended dose22). 

Thus, the CMax viability estimates the maximal effect a treatment 

can realistically achieve. It ranges from 0 to 1, and smaller values 

indicate a higher treatment effectiveness.

Our measure was initially designed for monotherapies. In this 

manuscript, we introduce an extension for two-drug combina

tions described in the STAR Methods. Briefly, the combination 

CMax viability estimates the effect of a combination therapy 

when both drugs are administered at concentrations that do 

not exceed their respective CMax. Unlike conventional sensi

tivity measures, the CMax viability is comparable across drugs14

and drug combinations. Consequently, it can be used to priori

tize drugs and combinations for a given cell line (i.e., rank them 

by their effectiveness, cf. Section treatment prioritization).

Certainly, the CMax viability is a valuable indicator of the 

maximum effect a treatment can achieve. However, there may 

be narrow concentration windows with beneficial or even syner

gistic effects, especially for drug combinations. Moreover, there 

may be patient-specific dosing requirements regarding, e.g., 

age, weight, or concurrent medications. Thus, we propose to 

go beyond the mere prediction of CMax viabilities. Instead, we 

advocate for and implement models predicting dose-specific 

drug sensitivity, which is also recommended in a recent review 

by Kong et al.12 Our models can make predictions for arbitrary 

concentrations specified in the input. Thus, sensitivity can be 

estimated at treatment concentrations relevant to the individual. 

Moreover, entire dose-response curves and matrices can be 

derived from the predictions. From these curves/matrices, all 

standard measures of sensitivity (or synergy) can be obtained. 

Thus, our approach is highly flexible and applicable not only 

for personalized treatment recommendations but also for identi

fying promising drug combinations to undergo in vitro screening 

or for drug repurposing. Moreover, by investigating the underly

ing curves/matrices, we can ensure that assumptions are met 

before calculating sensitivity or synergy measures.

Predicting relative inhibitions

In the following, we analyze how accurately drug responses from 

the DrugComb database can be predicted for both mono- and 
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combination therapies. More precisely, given (1) a cancer cell 

line of interest, (2) one or two treatment drugs, and (3) the corre

sponding drug concentration(s), our models predict the relative 

inhibition. The relative inhibition quantifies how much a drug 

treatment inhibits a cell line’s growth compared to an untreated 

control. In our analyses, relative inhibitions are in range [ − 200;

200]. Values > 0 indicate that the treatment inhibited growth 

and values < 0 indicate an increase in growth (see STAR 

Methods for details).

We compare different ML algorithms and model inputs and 

investigate the reconstruction of sensitivity measures from the 

model predictions. Additionally, we show how both mono- and 

combination therapies can be ranked by their effectiveness for 

a given cell line using our recently developed sensitivity measure, 

the CMax viability.14

Model design

We trained multi-drug models that predict the relative inhibition 

for a given cell line being treated with given concentrations of 

one or two drug(s). The model inputs comprise cell line features 

derived from a principal component analysis (PCA) of gene 

expression values (see STAR Methods for details), a representa

tion of the applied drugs, and the corresponding drug concentra

tions. For the representation of drugs, we investigated four 

different settings, which are depicted in Figure 1 (see STAR 

Methods for details).

Setting 1 (OneHot). In this setting, drugs in the model input are 

represented through a 265-dimensional encoding where each 

feature corresponds to one of the 265 drugs in our dataset 

(cf. STAR Methods). If a drug is part of the current sample (i.e., 

the currently considered combination of a cell line, treatment 

drug(s), and the respective drug concentration(s)), its feature is 

set to the corresponding treatment concentration, otherwise it 

is set to 0.

Setting 2 (OneHotTar). This setting uses the same concentra

tion encoding as Setting 1 but additionally includes 290 features 

representing drug target molecules. Each feature is set to the 

number of drugs in the current sample that target the corre

sponding molecule.

Setting 3 (MACCS). In this setting, each input drug is repre

sented by a 162-dimensional binary molecular access system 

(MACCS) fingerprint.23 Additionally, one input feature for each 

drug is needed to denote its treatment concentration. To encode 

monotherapies, one of the fingerprints and the corresponding 

concentration are set to 0.

Setting 4 (PhysChem). This setting is similar to Setting 3 but re

places the MACCS fingerprint with 182 numerical physico- 

chemical descriptors that denote different properties of the 

respective drugs, such as the molecular weight, number of 

valence electrons, or the logP value that measures lipophilicity.

Depending on the desired application, the different settings 

provide different benefits: Settings 3 and 4 allow making predic

tions for arbitrary drug molecules, given that their MACCS finger

print or physico-chemical properties are known. Consequently, 

the resulting models can be used to make predictions for previ

ously unseen compounds, e.g., newly developed ones. In 

contrast, models derived from Setting 1 and 2 are limited to 

those 265 drugs that were present in our dataset and hence en

coded in the input. However, these models can not only make 

predictions for single drugs and two-drug combinations but 

even for treatments using three or more drugs simultaneously. 

While three-drug combination therapies have already been 

approved for cancer treatment by the United States Food and 

Drug Administration (FDA),24 DrugComb does not provide 

such data.

We used three different ML algorithms for model training, 

namely neural networks, random forests, and elastic nets. 

Notably, the cell lines contained in the training and test sets 

are disjoint (cf. STAR Methods). Thereby, the test data mimic 

the scenario of making predictions for a previously unseen 

patient.

Overall performance comparison

In our first analysis, we investigated which combination of the 

three investigated ML algorithms and four investigated drug rep

resentations can predict relative inhibitions most accurately. 

Figure 2 shows the performance of all investigated models in 

terms of test mean absolute error (MAE). The first row depicts 

the results for the entire test data, while the second and third 

row focus on the data subsets representing mono- and combi

nation therapies, respectively. Across all four settings, random 

forests resulted in the lowest error, followed by neural networks, 

while elastic net had the worst performance. An exception is the 

PhysChem setting, where neural networks were outperformed 

by elastic net.

The overall smallest test error (MAE 12.14) was achieved us

ing a random forest with MACCS fingerprints as input. Addition

ally, even the worst performing random forest model (OneHot, 

MAE of 13.04) still outperforms the best neural network 

(OneHot, MAE 14.08) and elastic net (OneHotTar, MAE of 

16.46) models. Thus, the choice of ML algorithm seems to 

have a stronger impact on performance than the choice of input 

features, even though the different input representations differ 

considerably. Notably, the addition of drug targets slightly im

proves predictions for random forest and elastic net but has 

the opposite effect for neural networks. In Figures S3–S5, we 

provide a statistical evaluation of performance differences be

tween the models (cf. STAR Methods). Differences were signif

icant for almost all pairwise comparisons. Effect sizes range 

from 0 to 0.59 (mean: 0.29) and mirror the general trends 

described above.

To further contextualize the obtained errors, we compare them 

to two baseline models: A simple baseline model that always 

predicts the mean of the training data has a test MAE of 24.2. 

A more advanced baseline that always predicts the mean inhibi

tion per drug for monotherapies and the mean inhibition of the 

combination for combination therapies has a test MAE of 

19.74. Consequently, our best model (MACCS random forest) 

improves these baselines by 50% and 37%, respectively. While 

all of the random forest models outperform the baseline, some 

elastic nets and neural networks are not superior to the 

baselines.

When investigating mono- and combination therapies sepa

rately (cf. row 2 and 3 of Figure 2), the same overall trends can 

be observed, with the random forest model with MACCS fea

tures again having the smallest error. Generally, both types of 

therapies can be predicted similarly well, even though the 
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training data contains slightly more combination (60%) than 

monotherapy data (40%).

Besides the MAE, we also investigated the PCC between the 

actual and predicted inhibitions. The overall PCC for the 

MACCS random forest was 0.8 (0.77 and 0.82 for mono- and 

combination therapies, respectively). However, a problem that 

is frequently overlooked13,25 is that computing correlations 

across the entire data artificially increases the PCC: since 

some drugs/combinations generally have lower/higher inhibi

tions than others, even mean predictions for each drug/ 

combination (requiring no ML at all) would result in a correlation 

above 0.13 Thus, we computed the mean per-drug PCC for 

Figure 1. Prediction pipeline 

This figure summarizes our pipeline for the prediction of relative inhibitions. The large blue box depicts the different types of input features and representations we 

investigated. The gray box at the top right lists our data resources. The yellow box shows the different ML algorithms we used. The green box at the bottom 

depicts the model output, i.e., the relative inhibition for a given cell-drug-drug combination at defined treatment concentrations. Lastly, the purple box shows 

potential downstream analyses that can be performed based on the model predictions.
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monotherapies (0.58) and the mean per-combination PCC for 

combination therapies (0.56) (see also Figure S6 for boxplots). 

These values have a similar magnitude to what we previously 

observed for monotherapy sensitivity prediction.14 PCC and R2 

values for each model are provided in Figure S7.

Note that Zheng et al.5 and Julkunen et al.11 also provide over

all correlations and errors for the prediction of relative inhibition/ 

growth (cf. Introduction). However, their results are not compara

ble to ours since we investigate the performance for unknown 

cell lines, which cannot be evaluated using the other two 

methods. It is known that the cell-line blind scenario increases 

errors considerably compared to making predictions for known 

cell lines.26,27 To, nevertheless, assess how our random forest 

MACCS model would perform for known cell lines, we retrained 

the model using a random split of the available data into a 

training (80%) and test set (20%). This split does not guarantee 

that cell lines in the test set were unseen during model training. 

Note that we still ensured that duplicated entries denoting the 

same treatment are either exclusively contained in the training 

or the test set (cf. STAR Methods). With a PCC of 0.96 and 

RMSE (root mean squared error) of 8.41, our performance for 

known cell lines is comparable to that reported by Zheng et al. 

(PCC = 0.98, RMSE = 7.12)5 and Julkunen et al. (PCC = 0.97, 

RMSE = 9.86 in cross-validation; PCC = 0.92 on validation 

data).11 However, the dataset used in our analyses is much 

larger and more heterogeneous comprising 947 cell lines, 265 

drugs, and 9,535 drug combinations from different sources. In 

contrast, Zheng et al. employed solely the O’Neil dataset (39 

cell lines, 38 drugs, 583 drug combinations),28 which is known 

to be of high quality,4,5 whereas Julkunen et al. employed solely 

the AstraZeneca DREAM dataset (85 cell lines, 118 drugs, 910 

drug combinations).6
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Figure 2. Test set performance 

This figure shows the prediction errors (in terms of the absolute difference between actual and predicted values) for each setting (columns) and each investigated 

ML algorithm (coloring). The first row shows the results for the entire test dataset, while the second and third row show the results for the data subsets corre

sponding to mono- and combination therapies, respectively. Data are represented as boxplots where the box denotes the interquartile range between the first 

quartile (25th percentile) and third quartile (75th percentile) of the data. The black horizontal line inside each box denotes the median, and the whiskers extend to 

the largest/smallest values within 1.5 times the interquartile range. Outliers are not shown. On top of each boxplot, the mean absolute error (MAE) is shown. See 

Figures S3–S5 for statistical evaluation and Figures S6 and S7 for Pearson correlation coefficients and R2 values.
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Range performance comparison

Next, we investigated whether certain inhibition ranges can be pre

dicted more accurately than others. We were motivated to perform 

this analysis by the observation that the under-representation of 

certain response intervals in the training data can negatively affect 

their prediction quality.29 In particular, data points with high inhibi

tion are commonly underrepresented in drug screening data

sets,30–32 which can negatively affect their prediction. They are, 

however, of particular interest for personalized therapy since 

they represent cases where the drug treatment greatly reduced 

the number of viable cells, i.e., cases of effective treatment.

For this analysis, we again investigated all three ML algorithms 

and four input representations. Figure 3 shows the distribution of 

test MAEs for different inhibition intervals in range ( − 25;100]. 

This range covers 99% of the training and test data. Predictions 

are on average most accurate in the interval (0;25] followed by 

the interval ( − 25;0]. As the actual inhibition increases, the error 

increases as well (cf. Figures S8–S17 for statistical evaluations, 

PCC, and R2 values). In line with our motivation above, this 

observation could be explained by the amount of available 

training data for each interval: Most data are located in the inter

vals (0;25] (41%) and (− 25; 0] (25%), while each of the other in

tervals is only covered by around 10% of the data. Thus, highly 

effective treatments are under-represented.

To counteract this under-representation for monotherapies, 

we developed SAURON-RF, a random forest-based model 

that is designed to improve predictions of drug-sensitive sam

ples for both classification and regression.14,29 To this end, 

SAURON-RF relies (among other things) on sample-specific 

weights to increase the importance of the under-represented in

tervals. Consequently, we also tried to incorporate sample 

weights into our models presented here. Unfortunately, the sam

ple weights had only little impact on predictions, especially for 

the cases with highest inhibition (see Figure S18 for a perfor

mance comparison of the MACCS random forest model with 

and without sample weights).

Correlation of duplicated entries

For the models using one-hot encodings (settings OneHot and 

OneHotTar), each drug has a designated input node. This is 

not the case for the MACCS and PhysChem settings, where 

the same combination treatment can be described by two 

different input representations through swapping the order of 

the considered drugs in the input vector (cf. input visualization 

in Figure 1 and STAR Methods). However, the model output 

should not depend on the order of the drugs in the input, i.e., it 

should not depend on whether the drug features and concentra

tion of a drug A are located in front of or behind those of a drug B 

in the input vector. Hence, we decided to include both input rep

resentations into the training and test data of our models.

Ideally, predictions for both input representations should 

correlate well. Figure 4A shows the correlation of predictions 

for the best-performing random forest model trained using 

MACCS fingerprints. As desired, both predictions are highly 

correlated (PCC ≈ 1) and the mean absolute difference between 

them is very small (0.8). Figure 4B shows the same analysis for a 

model where we removed the duplicated entries from the 

training data. Even though the correlation is still high (PCC = 

0.82), it decreased strongly, while prediction differences 

increased notably to 9.12 on average. The mean PCCs per 

drug (for monotherapies) and per drug combination are 0.98 

and 0.97 for the duplicated training data and decrease to 0.78 

and 0.86 for the non-duplicated training data, respectively. 

This is also represented in the test error where the model with 

duplicated training entries achieved an MAE of 12.39 compared 

to 14.6 for non-duplicated entries. Similar trends can also be 

observed for the PhysChem setting (see Figure S5). Based on 

these findings, we conclude that it is advisable to train models 

using all possible input representations of a treatment.

Reconstruction of sensitivity measures

A benefit of predicting concentration-specific inhibition values is 

that based on the model’s predictions, dose-response curves 

(and matrices) can be reconstructed. These can in turn be 

used to compute various measures of drug sensitivity or synergy.

We first investigated how accurately dose-response curves 

can be reconstructed from the predictions of the MACCS 

random forest. To this end, we used the actual and predicted in

hibition values to fit dose-response curves for each cell line and 

drug combination (cf. STAR Methods). Next, we computed the 

RMSE between the actual and predicted curves. This resulted 

in a mean RMSE of 0.13. For reference, the GDSC database con

siders curves with RMSE < 0.3 to be of satisfactory quality.33,34

In fact, 93% of the reconstructed curves have an RMSE < 0.3, 

indicating an accurate reconstruction in a majority of cases.

Since the focus of this paper is on sensitivity prediction and 

Vlot et al. discourage the computation of arbitrary synergy 

scores on large-scale data,10 we reconstructed three measures 

of drug sensitivity, namely IC50 and CMax viability values for 

monotherapies, and a modification of the CMax viability for 

drug combinations, which we call the combination CMax viability 

(cf. STAR Methods for details). Here, we focus mainly on evalu

ating the reconstruction of the CMax viability. Analogous results 

for IC50 values can be found in Figure S21.

In total, we were able to compute both the actual and pre

dicted monotherapy CMax viabilities for 7,352 out of 32,564 

cell line-drug combinations. The decreased number of combina

tions stems from the fact that CMax concentrations were only 

available for 77 of the investigated drugs. Figure 5A depicts the 

prediction errors for the reconstructed monotherapy CMax 

viability. The mean MAE averaged over all drugs is 0.12 and 

the mean MSE is 0.04. The results are comparable to the error 

we previously achieved when predicting CMax viabilities 

directly using our recently published algorithm SAURON- 

RF14,29 (MSE = 0.03) or a slightly adjusted version of DeepDR 

by Chiu et al.35 (MSE = 0.09).14

A baseline error can be obtained from a model that, for every 

treatment concentration, predicts the mean inhibition for each 

drug obtained from the training data. For such a model, the 

CMax viability would also be predicted as this mean. This results 

in a baseline MAE of 0.2, which our model improves by 40%.

The overall PCC is 0.58 for the CMax viabilities and 0.41 for 

the baseline. However, the drug-specific PCC is only 0.1 (cf. 

Figure 5B). While a drug-specific baseline PCC cannot be 

computed for constant predictions, adding random noise with 

mean 0 to these constant predictions results in a baseline PCC 
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of 0. Thus, our predictions improve this baseline but only slightly. 

When using our models to reconstruct IC50 values, we observe a 

similar phenomenon (overall PCC = 0.71, mean PCC per drug = 

0.01, cf. Figure S21).

To investigate the reasons for these low drug-specific correla

tions, we developed and evaluated different hypotheses.

Hypothesis 1: The reconstructed dose-response curves 

might not accurately model the CMax viability in cases where 

concentrations exceeding the CMax concentration of the 

respective drug have not been screened.

Evaluation 1: Concentrations exceeding the CMax concen

tration were only screened for 63 of the 77 drugs, corresponding 
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Figure 3. Test set performance for different inhibition ranges 

This figure shows the prediction errors (in terms of the absolute difference between actual and predicted values) for each setting (columns) and each investigated 

ML algorithm (coloring). Each row shows the performance for a different interval of actual relative inhibitions. Data are represented as boxplots where the box 

denotes the interquartile range between the first quartile (25th percentile) and third quartile (75th percentile) of the data. The black horizontal line inside each box 

denotes the median, and the whiskers extend to the largest/smallest values within 1.5 times the interquartile range. Outliers are not shown. On top of each 

boxplot, the mean absolute error (MAE) is shown. See also Figures S8–S17 for statistical evaluations, PCC, and R2 values.
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to 70% of the drug-cell line combinations in the test set. Thus, we 

evaluated the PCC only on those drug-cell line combinations. 

This increased the average PCC slightly from 0.1 to 0.12.

Hypothesis 2: Even if sufficiently large concentrations were 

screened, the increased prediction errors for data points with 

high inhibition (cf. Figure 3) might make the curve-fitting unre

liable in areas of high inhibition, affecting the derived 

measures.

Evaluation 2: The IC50 value is designed to measure the drug 

response at a relative inhibition of 50%. To assess the perfor

mance at smaller inhibitions (i.e., higher viabilities), we recon

structed IC75 and IC90 values from the fitted curves. The IC75 

(IC90) measures the drug concentration where a relative inhibi

tion of 100% − 75% = 25% (100% − 90% = 10%) is reached. 

The average per-drug PCCs for the IC75 and IC90 reconstruc

tion are 0.11 and 0.1, respectively, thus, there is no (strong) 

improvement compared to the IC50 predictions (cf. Figure S21).

Hypothesis 3: The two-step process of first reconstructing a 

curve and then deriving the CMax viability from the curve is infe

rior to directly predicting the CMax viability with our models.

Evaluation 3: Instead of deriving the CMax viability from the 

estimated dose-response curves, we used our model directly 

to predict the relative inhibition at the CMax concentration and 

converted this prediction into a relative viability. However, this 

did also not improve correlations (PCC 0.04, cf. Figure S22). 

Instead, the curve fitting seems to enhance predictions slightly 

(cf. also Figure S20), which is in line with the findings by Rahman 

and Pal.36

Unfortunately, none of these hypotheses provide a compre

hensive explanation for the low PCCs. Thus, we conclude that 

even though prediction errors (MAE) are relatively small and 

comparable to our previous work, the derived measures only 

indicate a general trend in sensitivity but cannot be used to 

compare the effect of a drug monotherapy on different cell lines. 

For the combination CMax viability (26,946 drug-drug-cell line 

combinations), we obtained similar results that are depicted in 

Figures 5C and 5D.

Nevertheless, we would like to highlight that such an evalua

tion of drug-specific correlations as conducted here is frequently 

not performed for drug sensitivity and synergy prediction (cf. 

related work in Table S1). Thus, similar problems may often go 

undetected. In particular, neither Zheng et al.5 nor Julkunen 

et al.11 provide drug-/combination-specific correlations. For 

cell-blind evaluations on monotherapy data, we found three 

related approaches that provide drug-specific correlations: Our 

recently published method SAURON-RF achieves a mean PCC 

of 0.56 when directly predicting CMax viabilities using drug-spe

cific models.14 In the same manuscript we also show that an 

adjusted version of the multi-drug model DeepDR by Chiu 

et al.35 achieves a PCC of 0 for the same task. In comparison, 

Chawla et al. employ multi-drug models for the prediction of 

IC50 values and achieve mean PCCs between ca. 0.18 and 0.5 

for different ML algorithms. Lastly, Rahman and Pal achieve 

mean PCCs between 0.29 and 0.44 when reconstructing AUC 

values from predicted dose-response curves. While not directly 

comparable to our approach, these works underline that at least 

weak to moderate drug-specific correlations can be achieved: 

(1) when predicting CMax viabilities using models directly trained 

for this task, (2) when using multi-drug models, or (3) when 

deriving sensitivity measures from predicted curves. Yet, it re

mains to be investigated further if and how comparable results 

can be achieved when combining all three factors and also 

considering combination therapies, thereby enabling predictions 

for arbitrary drugs/combinations and measures, which we aim to 

achieve here.

Treatment prioritization

In our final analysis, we investigate how accurately drugs and 

drug combinations can be prioritized for a given cell line based 

on the MACCS random forest predictions: For each cell line in 

the test set, we used the computed CMax viabilities for the 

monotherapy and combination data to achieve a ranking of 

drugs and drug combinations from most to least effective (i.e., 

from smallest to largest CMax viability). Drug prioritization is sup

posed to mimic a personalized treatment scenario with the goal 

to achieve a list of most effective treatment suggestions for a 

given patient. The results are shown in Figure 6, where the first 

row shows the results for monotherapies only, while the second 
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This figure shows the correlation between the 

model predictions for duplicated entries using the 

random forest MACCS model. Duplicated entries 

refer to the same drug-drug-cell combination and 

the same treatment concentrations but can be 

represented by two different model inputs through 

swapping the features of the respective drugs (cf. 

STAR Methods and Figure 1) (A) shows the test 

predictions when including duplicated entries into 

the training data, while (B) shows the predictions 

when training only on non-duplicated entries. In 

both figures, the black diagonal line represents the 

identity, R denotes the Pearson correlation be

tween the predictions, and p is the corresponding 

p-value of a two-sided t test for R. See Figure S5

for results of the random forest PhysChem model.
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row shows the results when combining mono- and combination 

therapies into one list.

For monotherapies, the Spearman correlation coefficient 

(SCC) between the actual and predicted rankings was 0.74 

(baseline (as defined in the previous section): 0.54). Our predic

tions clearly outperform the baseline. Still, the baseline correla

tion is relatively high, indicating that the differences in effective

ness between drugs are easier to predict than the differences 

between cell lines receiving the same treatment (as investigated 

in the previous section).

While an accurate ranking for the entire list is desirable, one 

would typically place more emphasis on the correct identifica

tion of the most effective treatments. Thus, we computed the 

mean overlap between the first k elements of the actual and pre

dicted rankings. For monotherapies, the average length of the 

predicted drug lists is 31.15. The average overlap between the 

top k = 5 and k = 10 actual and predicted most effective drugs 

is 3.16 (baseline: 2.14) and 7.68 (baseline: 6.55), respectively. 

Results for further k are shown in Figure S23. Furthermore, the 

median rank of the actually most effective drug in the predicted 

ranking is 2.5 (baseline: 8), and the median rank of the drug pre

dicted to be most effective in the actual list is 3 (baseline 6). The 

median difference between the true CMax viabilities of the actual 

most effective and predicted most effective drugs is only 0.02 

(baseline 0.31). Thus, the predicted rankings recommend treat

ments that are similar in effectiveness to the actual best 

treatment.

The second row of Figure 6 shows the analogous prioritization 

results when combining mono- and combination treatments into 

one list. The SCC of 0.76 (baseline: 0.62) is comparable to the re

sults for monotherapies. Since the average list length is much 

greater when including drug combinations (838.62), the overlaps 

at k = 5 (1.26, baseline: 0.68) and k = 10 (3.38, baseline: 2.09) 

are lower (cf. Figure S24 for further k. Furthermore, the median 

rank of the actually best treatment in the predicted list (27, base

line: 170.5) and of the predicted best treatment in the actual list 

(9.5, baseline: 12) decrease. Still, results clearly improve over 

the baseline. Furthermore, the median difference in viability be

tween the actually most effective treatment and the treatment 

predicted to be most effective remains small (0.02, baseline 0.03).

DISCUSSION

Administering not only single but multiple drugs in combination 

is common in cancer treatment. However, while drug response 

datasets for monotherapy data have been available for more 

than a decade, large-scale datasets for combination therapy 

have only become publicly available more recently, e.g., 

through the DrugComb database.4,5 While the DrugComb 

data have extensively been studied for the prediction of drug 

synergy, they are still underused for the prediction of drug 

sensitivity, especially with the focus on making personalized 

treatment recommendations. For this application case, we 

found the scores that are widely used for synergy prediction 

less suited due to various reasons discussed in this manu

script. Thus, we argue that a more suitable approach for pre

dicting drug combination sensitivity in a personalized treatment 

setting is the direct prediction of concentration-specific drug 

combination responses in the form of relative inhibitions 

(instead of synergy scores).

To show the capabilities of our approach in practice, we devel

oped and evaluated several ML algorithms when applied to 

different types of input features and representations. Most 

notably, we evaluated our models in the often-neglected cell- 

blind scenario,13 thereby mimicking personalized drug predic

tions for a new patient. Our evaluations demonstrate that our 

models substantially improve baseline models and show very lit

tle variation when predicting the same treatment using different 
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Figure 5. Reconstruction of (combination) CMax viabilities from predicted dose-response curves/matrices 

(A) and (B) (red) show the distribution of MAE and PCC per drug for the reconstruction of CMax viabilities using dose-response curves fit on the test set mon

otherapy data. (C) and (D) (blue) show the distribution of MAE and PCC per dug combination for the reconstruction of combination CMax viabilities using dose- 

response matrices derived from the test set drug combination data. Data are represented as boxplots where the box denotes the interquartile range between the 

first quartile (25th percentile) and third quartile (75th percentile) of the data. The black horizontal line inside each box denotes the median, and the whiskers extend 

to the largest/smallest values within 1.5 times the interquartile range. See also Figures S21 and S22.
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input representations. Apart from that, our models are also 

competitive with state-of-the-art approaches when making pre

dictions for known cell lines. Furthermore, we reconstructed the 

(combination) CMax viability, a sensitivity measure that we 

recently developed for monotherapies,14 and that we extended 

to be amenable to combination drug response prediction in 

this manuscript. Using this measure, we were able to perform 

prioritization of both mono- and combination therapy options 

for unseen cell lines, which is the scenario that mimics personal

ized drug treatment recommendation most closely, where a 

sorted list of the most effective treatment options is desired.

Limitations of the study

While our evaluations demonstrate the capabilities of our 

approach, this study also reveals weak points of the methodol

ogy that require attention during the development of future 

methods.

(1) We observed increased prediction errors for data sam

ples with high inhibitions, i.e., cases of high treatment 

sensitivity, which are typically of particular interest for 

treatment recommendation. In monotherapy prediction, 

this issue is relatively well-known for classification but 

has rarely been discussed or addressed for regres

sion.29,32 While we resolved this issue for monotherapy 

classification and regression in earlier work using sam

ple-specific weights,14 such weights had little impact in 

the current study.

(2) Additionally, we noted that drug/combination-specific 

correlations between the reconstructed measures (IC50 

and CMax viability) and the actual values derived from 
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Figure 6. Treatment prioritization 

This figure depicts the test set prioritization results for mono- and combination therapies. Sub-figures A to F (red) focus on the prioritization of monotherapies 

including: (A) the SCC between the actual and predicted rankings for each cell line, (B)/(C) the intersection size between the 5/10 actual and predicted most 

effective treatments, (D) the predicted rank of the actual most effective treatment, (E) the actual rank of the treatment predicted to be most effective, and (F) the 

difference between the actual CMax viabilities for the actual and predicted most effective treatment. (G)–(L) (blue) show the analogous prioritization results when 

combining mono- and combination treatments into one list. Data are represented as boxplots where the box denotes the interquartile range between the first 

quartile (25th percentile) and third quartile (75th percentile) of the data. The black horizontal line inside each box denotes the median, and the whiskers extend to 

the largest/smallest values within 1.5 times the interquartile range. See also Figures S23 and S24 for further intersection sizes.

iScience 28, 112622, June 20, 2025 11 

iScience
Article

ll
OPEN ACCESS



the dose response curves/matrices only barely surpass 

the baseline model. Interestingly, this issue is not uncom

mon: we recently observed similar tendencies for other 

multi-drug models performing monotherapy prediction.14

However, a comprehensive explanation for this observa

tion remains elusive. Moreover, we found that this issue 

may usually go undetected since drug-specific measures 

are infrequently evaluated (cf. related work in Table S1).13

Thus, we encourage others to investigate and report drug/ 

combination-specific correlations when developing novel 

prediction approaches.

Ovchinnikova et al. criticize that multi-drug models predicting 

measures like the IC50 or AUC frequently only learn to distin

guish drugs (but not cell lines) since the value ranges vary be

tween drugs.25 To overcome this issue, they propose normal

izing the response measures per drug by using z-scores. 

However, for the following reasons we recommend exploring 

alternative strategies: (1) Both IC50 and AUC values are highly 

dependent on the tested concentration range, and z-score 

normalization does not solve this issue. (2) Z-scores assume 

that the data follows a normal distribution, which is generally 

not the case for drug response data. For example, the GDSC 

IC50 drug responses are typically bimodal.30 (3) By converting 

response measures into z-scores, information on the absolute 

effectiveness can be lost, which is undesirable for treatment 

recommendation. Thus, instead of using z-scores, we advocate 

performing a per-drug evaluation (as shown in this manuscript) to 

detect the issue. To resolve it, measures with across-drug 

comparability should be used to train models, e.g., the CMax 

viability. Additionally, since we observed that single-drug models 

do not suffer from this issue,14,20 we propose that it might be 

advisable to introduce drug-specific regularization terms into 

the training of multi-drug models.

Three main factors can be adjusted to potentially address 

such challenges, namely the choice of ML algorithm, the choice 

and representation of input features, and the used data.

ML algorithm

We investigated neural networks (highly popular for sensitivity 

and synergy prediction), random forests, and elastic nets. In 

our recently published benchmarking, we found both elastic 

nets and random forests outperform neural networks when 

predicting drug sensitivity.20 For the prediction of inhibitions, 

as investigated here, random forests are superior to the other 

algorithms. In general, a plethora of further potentially more 

sophisticated approaches can be used to model the predic

tion of inhibitions. For example, we could adjust the objective 

function optimized during model training to potentially 

improve the drug-specific predictions. However, as discussed 

in our benchmarking20 and also by Li et al.,37 more complex 

approaches are not necessarily superior to simpler ML algo

rithms, and careful evaluation is required to ensure a fair per

formance comparison.

Input features and representation

For the characterization of cell lines in the model input, several 

sources found gene expression to be the most informative 

omics-type for predicting drug responses.35,38,39 However, the 

inclusion of further omics or a priori knowledge, e.g., known 

sensitivity biomarkers or protein interactions, might improve 

predictions.

Similarly, further drug properties, e.g., Morgan fingerprints40

could be investigated, or graph neural networks could be em

ployed to represent drugs as molecular graphs – both options 

might improve drug-specific predictions. However, the superior

ity of molecular graphs over conventional drug fingerprints for 

sensitivity/synergy prediction and drug discovery has been 

questioned.41,42

Dataset

With 947 cell lines, 265 drugs, and 9,535 drug combinations, 

the dataset investigated here is notably larger than those 

used by other approaches working on drug combination 

data.5,11,21,26,43–45 However, given the size of this dataset, hard

ware restrictions became a limiting factor for ML training. 

Despite training models on a compute cluster with machines of 

500 gigabytes working memory, we had to reduce our data 

regarding the number of considered drugs and features (cf. 

STAR Methods).

Generally, a large amount of training data benefits model 

training and robustness. Yet, if the dataset is heterogeneous, 

e.g., due to different data sources as in DrugComb, this may 

decrease performance compared to models built and evaluated 

on a more homogeneous dataset. Even though Zagidullin et al. 

and Liu et al. found the reproducibility between replicates from 

different datasets in DrugComb satisfactory,4,46 disagreement 

between drug response data from different sources is a well- 

known problem.39,47,48 However, Vlot et al. found that, unlike 

synergy scores, relative viabilities (inhibitions) were highly corre

lated between different batches in their analysis of drug combi

nation data.10 Similarly, we found only small variation in the inhi

bition values of replicates in our analyses (cf. STAR Methods). 

Especially for clinical applications, combining data from different 

sources (e.g., different hospitals) is essential, and models should 

be able to cope with some degree of heterogeneity. To this end, 

meta- or transfer-learning methods could also be leveraged.49

These methods might also be viable to translate the results of 

(bulk sequencing from) model systems to (single-cell) patient 

data to enable the use of prediction models in the clinic.50

Lastly, treatment efficacy is only one building block of treat

ment personalization in a clinical scenario. Treatment choices 

are also heavily impacted by potential side effects and toxicity 

that can significantly affect a patient’s well-being and may 

even be deadly. Estimating side effects is especially challenging 

when a patient is treated with multiple drugs at the same time. 

Zhao et al. recently published an extensive review on this topic, 

providing a plethora of resources for assessing side effects of 

single- and multi-drug treatments, including databases and 

ML-based prediction models.51
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Requests for further information and resources should be directed to and will 

be fulfilled by the lead contact, Lea Eckhart (lea.eckhart@uni-saarland.de).
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Data and code availability

• We provide the SMILES, MACCS fingerprints and physico-chemical 

properties derived from RDKit,52 as well as the one-hot encoded target 

molecules of the investigated compounds at GitHub (https://github. 

com/unisb-bioinf/Drug_Combination_Sensitivity_Prediction). All other 

data reported in this paper will be shared by the lead contact upon 

request.

• Our code is also available at GitHub (https://github.com/unisb-bioinf/ 

Drug_Combination_Sensitivity_Prediction).

• Any additional information required to reanalyze the data reported in this 

paper is available from the lead contact upon request.
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bert, M., Aben, N., Gonçalves, E., Barthorpe, S., Lightfoot, H., et al. 

(2016). A landscape of pharmacogenomic interactions in cancer. Cell 

166, 740–754. https://doi.org/10.1016/j.cell.2016.06.017.

3. Bayat Mokhtari, R., Homayouni, T.S., Baluch, N., Morgatskaya, E., Kumar, 

S., Das, B., and Yeger, H. (2017). Combination therapy in combating can

cer. Oncotarget 8, 38022–38043. https://doi.org/10.18632/oncotarget. 

16723.

4. Zagidullin, B., Aldahdooh, J., Zheng, S., Wang, W., Wang, Y., Saad, J., 

Malyutina, A., Jafari, M., Tanoli, Z., Pessia, A., and Tang, J. (2019). Drug

comb: an integrative cancer drug combination data portal. Nucleic Acids 

Res. 47, W43–W51. https://doi.org/10.1093/nar/gkz337.

5. Zheng, S., Aldahdooh, J., Shadbahr, T., Wang, Y., Aldahdooh, D., Bao, J., 

Wang, W., and Tang, J. (2021). Drugcomb update: a more comprehensive 

drug sensitivity data repository and analysis portal. Nucleic Acids Res. 49, 

W174–W184. https://doi.org/10.1093/nar/gkab438.

6. Menden, M.P., Wang, D., Mason, M.J., Szalai, B., Bulusu, K.C., Guan, Y., 

Yu, T., Kang, J., Jeon, M., Wolfinger, R., et al. (2019). Community assess

ment to advance computational prediction of cancer drug combinations in 

a pharmacogenomic screen. Nat. Commun. 10, 2674. https://doi.org/10. 

1038/s41467-019-09799-2.

7. Torkamannia, A., Omidi, Y., and Ferdousi, R. (2022). A review of machine 

learning approaches for drug synergy prediction in cancer. Brief. Bio

inform. 23, bbac075. https://doi.org/10.1093/bib/bbac075.

8. Yadav, B., Wennerberg, K., Aittokallio, T., and Tang, J. (2015). Searching 

for drug synergy in complex dose–response landscapes using an interac

tion potency model. Comput. Struct. Biotechnol. J. 13, 504–513. https:// 

doi.org/10.1016/j.csbj.2015.09.001.

9. Palmer, A.C., and Sorger, P.K. (2017). Combination cancer therapy can 

confer benefit via patient-to-patient variability without drug additivity or 

synergy. Cell 171, 1678–1691.e13. https://doi.org/10.1016/j.cell.2017. 

11.009.

10. Vlot, A.H.C., Aniceto, N., Menden, M.P., Ulrich-Merzenich, G., and 

Bender, A. (2019). Applying synergy metrics to combination screening 

data: agreements, disagreements and pitfalls. Drug Discov. Today 24, 

2286–2298. https://doi.org/10.1016/j.drudis.2019.09.002.

11. Julkunen, H., Cichonska, A., Gautam, P., Szedmak, S., Douat, J., Pahik

kala, T., Aittokallio, T., and Rousu, J. (2020). Leveraging multi-way interac

tions for systematic prediction of pre-clinical drug combination effects. 

Nat. Commun. 11, 6136. https://doi.org/10.1038/s41467-020-19950-z.

12. Kong, W., Midena, G., Chen, Y., Athanasiadis, P., Wang, T., Rousu, J., He, 

L., and Aittokallio, T. (2022). Systematic review of computational methods 

for drug combination prediction. Comput. Struct. Biotechnol. J. 20, 2807– 

2814. https://doi.org/10.1016/j.csbj.2022.05.055.

13. Codicè, F., Pancotti, C., Rollo, C., Moreau, Y., Fariselli, P., and Raimondi, 

D. (2025). The specification game: rethinking the evaluation of drug 

response prediction for precision oncology. J. Cheminform. 17, 33. 

https://doi.org/10.1186/s13321-025-00972-y.

14. Lenhof, K., Eckhart, L., Rolli, L.M., Volkamer, A., and Lenhof, H.P. (2024). 

Reliable anti-cancer drug sensitivity prediction and prioritization. Sci. Rep. 

14, 12303. https://doi.org/10.1038/s41598-024-62956-6.

15. Loewe, S. (1953). The problem of synergism and antagonism of combined 

drugs. Arzneimittelforschung. 3, 285–290.

16. Bliss, C.I. (1939). The toxicity of poisons applied jointly 1. Ann. Appl. Biol. 

26, 585–615.

17. Berenbaum, M.C. (1989). What is synergy? Pharmacol. Rev. 41, 93–141.

18. Lederer, S., Dijkstra, T.M.H., and Heskes, T. (2018). Additive dose 

response models: explicit formulation and the loewe additivity consistency 

condition. Front. Pharmacol. 9, 31. https://doi.org/10.3389/fphar.2018. 

00031.

19. Greco, W.R., Bravo, G., and Parsons, J.C. (1995). The search for synergy: 

a critical review from a response surface perspective. Pharmacol. Rev. 47, 

331–385. https://pharmrev.aspetjournals.org/content/47/2/331.

20. Eckhart, L., Lenhof, K., Rolli, L.M., and Lenhof, H.P. (2024). A comprehen

sive benchmarking of machine learning algorithms and dimensionality 

reduction methods for drug sensitivity prediction. Brief. Bioinform. 25, 

bbae242. https://doi.org/10.1093/bib/bbae242.

21. Malyutina, A., Majumder, M.M., Wang, W., Pessia, A., Heckman, C.A., and 

Tang, J. (2019). Drug combination sensitivity scoring facilitates the 

iScience 28, 112622, June 20, 2025 13 

iScience
Article

ll
OPEN ACCESS

https://github.com/unisb-bioinf/Drug_Combination_Sensitivity_Prediction
https://github.com/unisb-bioinf/Drug_Combination_Sensitivity_Prediction
https://github.com/unisb-bioinf/Drug_Combination_Sensitivity_Prediction
https://github.com/unisb-bioinf/Drug_Combination_Sensitivity_Prediction
https://doi.org/10.1016/j.isci.2025.112622
https://doi.org/10.1016/j.isci.2025.112622
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1016/j.cell.2016.06.017
https://doi.org/10.18632/oncotarget.16723
https://doi.org/10.18632/oncotarget.16723
https://doi.org/10.1093/nar/gkz337
https://doi.org/10.1093/nar/gkab438
https://doi.org/10.1038/s41467-019-09799-2
https://doi.org/10.1038/s41467-019-09799-2
https://doi.org/10.1093/bib/bbac075
https://doi.org/10.1016/j.csbj.2015.09.001
https://doi.org/10.1016/j.csbj.2015.09.001
https://doi.org/10.1016/j.cell.2017.11.009
https://doi.org/10.1016/j.cell.2017.11.009
https://doi.org/10.1016/j.drudis.2019.09.002
https://doi.org/10.1038/s41467-020-19950-z
https://doi.org/10.1016/j.csbj.2022.05.055
https://doi.org/10.1186/s13321-025-00972-y
https://doi.org/10.1038/s41598-024-62956-6
http://refhub.elsevier.com/S2589-0042(25)00883-1/sref15
http://refhub.elsevier.com/S2589-0042(25)00883-1/sref15
http://refhub.elsevier.com/S2589-0042(25)00883-1/sref16
http://refhub.elsevier.com/S2589-0042(25)00883-1/sref16
http://refhub.elsevier.com/S2589-0042(25)00883-1/sref17
https://doi.org/10.3389/fphar.2018.00031
https://doi.org/10.3389/fphar.2018.00031
https://pharmrev.aspetjournals.org/content/47/2/331
https://doi.org/10.1093/bib/bbae242


discovery of synergistic and efficacious drug combinations in cancer. 

PLoS Comput. Biol. 15, e1006752. https://doi.org/10.1371/journal.pcbi. 

1006752.

22. Liston, D.R., and Davis, M. (2017). Clinically relevant concentrations of 

anticancer drugs: A guide for nonclinical studiesguide to clinical expo

sures of anticancer drugs. Clin. Cancer Res. 23, 3489–3498. https://doi. 

org/10.1158/1078-0432.ccr-16-3083.

23. Durant, J.L., Leland, B.A., Henry, D.R., and Nourse, J.G. (2002). Reoptim

ization of mdl keys for use in drug discovery. J. Chem. Inf. Comput. Sci. 42, 

1273–1280. https://doi.org/10.1021/ci010132r.
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STAR★METHODS

KEY RESOURCES TABLE

METHOD DETAILS

Materials and data processing

Drug response data

Drug screening data for our analyses was obtained from the DrugComb database Version 1.5. More specifically, we employed the 

DrugComb API (https://api.drugcomb.org/) to download the list of all cell lines and their corresponding COSMIC IDs, the full list of 

drugs with their SMILE encodings and their target molecules, and the full dose-response matrices.

To assign the respective cell line and drug information to each dose-response matrix, we downloaded the core database from 

https://drugcomb.org/download, which provides a unique identifier for each dose-response experiment. Consequently, each data

base entry can be written as: 

Here, cell line is the COSMIC ID of the investigated cell line, and drug row and drug col are the names of the tested drugs. The 

entries conc row and conc col are the micromolar concentrations of the tested compounds. For monotherapies, one of the drug 

names is set to NULL and the corresponding concentration is set to 0. Finally, inhibition denotes the relative inhibition measured after 

administration of the denoted drug concentration(s) (see Data S1 for further information). Relative inhibitions > 0 denote reduced cell 

growth through the drug treatment, while inhibitions < 0 indicate increased growth.

We removed the following entries from the dataset:

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Gene expression values of human cancer cell lines Genomics of Drug Sensitivity 

in Cancer database

https://www.cancerrxgene.org/ 

downloads/bulk_download

Drug response values of human cancer cell lines DrugComb database https://api.drugcomb.org/

Drug properties (SMILES drug 

representations, drug targets)

DrugComb database https://api.drugcomb.org/

Drug properties (MACCS fingerprints, 

physico-chemical properties)

This paper https://github.com/unisb-bioinf/Drug_ 

Combination_Sensitivity_Prediction

CMax concentrations Liston and Davis https://doi.org/10.1158/ 

1078-0432.ccr-16-3083

Software and algorithms

Our prediction models This paper https://github.com/unisb-bioinf/ 

Drug_Combination_Sensitivity_Prediction

Python 3.11 Python Software Foundation https://www.python.org

RDKit 2023.3.2 Landrum et al.52 https://doi.org/10.5281/zenodo.8053810

scikit-learn 1.5.0 Pedregosa et al.53 https://scikit-learn.org/stable/index.html

tensorflow 2.16.1 Abadi et al.54 https://www.tensorflow.org/

R 3.6.3 R Foundation for Statistical 

Computing

https://www.r-project.org/

drc 3.0-1 Ritz et al.55 https://doi.org/10.32614/CRAN.package.drc

stats 3.6.3 R Foundation for Statistical 

Computing

https://www.r-project.org/

rcompanion 2.3.21 Rutgers Cooperative Extension https://doi.org/10.32614/CRAN. 

package.rcompanion

pracma 2.4.2 Hans W. Borchers https://doi.org/10.32614/CRAN. 

package.pracma

(cell_line,drug_row,drug_col,conc_row,conc_col,inhibition)
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• poor quality entries as defined by the authors of DrugComb5 with inhibition < − 200 or inhibition > 200

• entries where the concentration of all tested drugs is 0 (conc row = conc col = 0)

• entries, where the corresponding cell line had no COSMIC ID or no gene expression data provided in the GDSC database

Additionally, we converted entries where drug row and drug col denote the same drug into monotherapies by summing the 

respective treatment concentrations and setting drug col to NULL: 

Cases where two different drugs are provided but only one has a concentration > 0 were modified to denote a monotherapy by 

replacing the drug with concentration 0 with NULL. Afterwards, all replicates involving the same cell line, the same drug(s), and 

same concentration(s) were averaged. Given the inhibition range of [ − 200;200], the average standard deviation between replicates 

was small (mean: 7, median 5). Lastly, we log1p-normalized (log 1 p(x) = log(x + 1)) the concentration values in conc row 

and conc col.

To keep the dataset size manageable, we only considered entries involving those 265 drugs (cf. Table S2) for which at least 10,000 

entries are provided after performing all the steps described above (cf. Discussion). Note that after this reduction still more than 

10,000 entries remained for each of the drugs. In total, the final dataset consists of 5,291,424 entries covering 947 cell lines, 265 

drugs, and 9,535 drug combinations.

Additionally, the CMax concentrations for 77 of the investigated drugs were obtained from Liston and Davis.22 The CMax value 

denotes the peak plasma concentration after administering the highest clinically recommended dose of a drug.22 In a recently pub

lished manuscript, we employed CMax to derive a novel drug sensitivity measure called the CMax viability, which will be described 

below.14 We also use this measure to perform drug prioritization in the results section.

Drug properties

For the representation of drugs in the inputs of our models, we investigated four different settings, which will be discussed below (cf. 

also our prediction pipeline in Figure 1). Using the SMILES drug representations provided by DrugComb, we used RDKit version 

2023.3.252 to calculate two types of drug features.

• binary MACCS fingerprints23 of length 166.

• 209 physico-chemical drug properties using the function CalcMolDescriptors from the rdkit.Chem.Descriptors module.56

We removed all properties that showed no variation across the investigated 265 drugs, resulting in MACCS fingerprints of length 

162 and 182 physico-chemical properties.

Additionally, 735 drug target molecules for the investigated drugs were obtained from DrugComb.

Gene expression data

Normalized gene expression data of 17,419 genes (Affymetrix Human Genome U219 Array) was obtained from the GDSC database 

Release 8.3 (https://www.cancerrxgene.org/downloads/bulk_download).

Model inputs and outputs

We train multi-drug models that predict the relative inhibition for a given cell line being treated with given concentrations of one or 

more drug(s). The model inputs comprise cell line features based on gene expression, a representation of the applied drugs, and 

the corresponding drug concentrations. For the representation of drugs, we investigated four different settings, which are depicted 

in Figure 1 and will be described below.

To characterize cell lines in the model input, we performed a principal component analysis (PCA, R-package stats Version 

3.6.357) on the gene expression values and used the first 300 principal components (PCs) as cell line features. This dimension 

reduction method and feature number performed well in our recently published benchmarking of drug sensitivity prediction 

methods.20

In addition to the cell line features, we investigated four different settings for the encoding of drugs in the model input:

Setting 1 (OneHot)

In this setting, no drug properties are included. Instead, a 265-dimensional encoding of drugs is used. Each feature corresponds to 

one of the 265 drugs in our dataset. If a drug is part of the current entry, its feature is set to the corresponding log1p-normalized treat

ment concentration, otherwise it is set to 0.

Setting 2 (OneHotTar)

This setting uses the same concentration encoding as Setting 1 but additionally includes 290 drug target features. More precisely, we 

used the drug target annotations provided by DrugComb and included all molecules as targets that were targeted by at least five of 

the drugs in our dataset, resulting in a total of 290 target features. Each feature is then set to the number of drugs in the current entry 

that target the corresponding molecule (0, 1, or 2): Since DrugComb provides only data on monotherapies and two-drug combina

tions, the maximum value a target feature can have is 2, if it is targeted by both drugs in a two-drug combination entry. Note also that 

one drug can target more than one molecule.

(cell_line,drug_row,NULL,conc_row+conc_col,0,inhibition)
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Setting 3 (MACCS)

In this setting, each drug is represented by a 162-dimensional binary molecular access system (MACCS) fingerprint.23 Each po

sition of the fingerprint corresponds to a molecular substructure, e.g., a functional group that may be present in a drug molecule. 

The respective bit is set to 1 if the corresponding substructure is present in the drug molecule at least once, and 0, otherwise. Addi

tionally, one input feature for each drug is needed to denote its treatment concentration. Consequently, this setting uses a total of 

2⋅162 + 2⋅1 = 326 drug features. To encode monotherapies, one of the fingerprints and the corresponding concentration are set 

to 0.

Setting 4 (PhysChem)

This setting is similar to Setting 3 but replaces each MACCS fingerprint with 182 numerical physico-chemical descriptors that denote 

different properties of the respective drugs, such as the molecular weight, number of valence electrons, or the logP value that mea

sures lipophilicity. Consequently, this setting uses a total of 2⋅182 + 2⋅1 = 366 drug features. To denote monotherapies, one set of 

properties and the corresponding concentration are set to 0.

Machine learning algorithms

We investigate the predictive performance of three ML algorithms: neural networks random forests, and elastic net. We chose these 

models, since neural networks and tree-based methods are commonly used for synergy prediction.7 Furthermore, neural networks 

are also popular for drug sensitivity prediction,42,58,59 while random forest and elastic nets are used less frequently for this 

task.29,32,60–63 In our recently published benchmarking, we found, however, that tree-based methods and elastic nets frequently 

outperform neural networks in predicting drug responses.20 In line with our findings, several studies found that deep learning 

does not improve over conventional ML algorithms for making predictions on tabular data,64–66 or to generate feature representations 

for model inputs.20,67

All prediction models were implemented in Python 3.11. Random forests and elastic net models were implemented using scikit- 

learn Version 1.5.0,53 while neural networks were implemented using tensorflow Version 2.16.154 with GPU support. The hyperpara

meters for each algorithm are provided in Tables S3.

Model training and testing

After filtering and processing the data as described above, we randomly divided the remaining cell lines into a training set (80% of cell 

lines) and a test set (20%). Since multiple data entries exist for each cell line (screening of different drugs/drug combinations at 

different concentrations), the final training data consists of all entries involving a cell line from the training set (3,741,209 entries). 

The final test data contains all remaining entries (1,550,215), i.e., all entries involving a cell line from the test set. This splitting ensures 

that the test performance is always evaluated on cell lines that were unseen during model training, thereby mimicking the scenario of 

making predictions for a previously unseen patient. In contrast, the same drugs and drug-combinations can occur in both the training 

and test data. To further ensure that the test cell lines do not affect the training process, the PCA-based input features of our models 

were computed using only cell lines from the training data.

On the training data, we performed a 5-fold cross validation (CV) to determine the best-performing hyperparameters of each ML 

model (see Table S4). The CV folds were generated by randomly dividing the training cell lines into five disjoint folds and assigning all 

entries involving a certain cell line to the corresponding fold. Since the number of available entries per cell line differs, the size of CV 

folds varies slightly between 644,308 and 857,361 entries. For the hyperparameter combination with smallest mean absolute error 

(MAE) averaged across all five folds, one final model is trained on the complete training data and its performance is evaluated on the 

test data.

During CV, we again recomputed the PCA-based cell line features using only the cell lines in the respective training folds.

For the models using one-hot encodings (Setting 1 and Setting 2), each drug has a designated input node. This is not the case for 

the models using drug features (Setting 3 and Setting 4), where swapping the features and concentration of the first drug with those 

of the second drug represents the same treatment but results in changes in the input representation (cf. input visualization in 

Figure 1). However, the model output should not depend on the order of the drugs in the input, i.e., it should not depend on whether 

drug features of a drug A in the input vector are located in front of or behind those of a drug B. Therefore, each original sample is 

included twice in the datasets for Settings 3 and 4. These duplicate samples differ only in the order of the drug features and con

centrations: once in the order A-B, once in the order B-A. In the Results section, we investigate the impact on model performance 

when models are trained using the duplicated versus non-duplicated data. The test performance is always evaluated on the 

duplicated entries.

Dose-response curves and sensitivity measures

Using the relative inhibitions predicted by our models, it is possible to reconstruct dose-response curves for monotherapies and 

dose-response matrices for combination therapies (cf. Figure S25 for examples). Based on these curves/matrices, various measures 

of drug response can be derived. To this end, we first converted the (actual and predicted) relative inhibitions into relative viabilities by 

subtracting the relative inhibitions from 100 and dividing the result by 100. Additionally, we clamped viabilities to [0;1]. Note that we 

report relative viabilities in range [0; 1] rather than range [0; 100] to keep the results consistent and comparable to our previous 

study.14

e3 iScience 28, 112622, June 20, 2025 

iScience
Article

ll
OPEN ACCESS



To perform the curve-fitting for monotherapies, we employed a three-parametric logistic function from the drc R-package Version 

3.0-155,68:

f(x) = c +
1 − c

1+exp(b⋅(log(x) − log(e)))

Here, f(x) denotes the estimated relative viability of the considered cell line at drug concentration x, c denotes the curve asymptote 

for increasing concentrations, b denotes the curve’s slope, and e denotes the concentration at the inflection point. We only fit curves 

when at least five dose-response points were available and we discarded all curves where the root mean squared error (RMSE) be

tween the actual viabilities and those derived from the curve was greater than 0.3, a threshold that was previously employed for the 

data generation in the GDSC database.33,34

From the fitted curves, we derived two measures of monotherapy drug responses, namely IC50 values and CMax viabilities. The 

CMax viability is a novel drug sensitivity measure which we recently published.14 It is defined as the relative viability at the CMax con

centration of the respective drug. The CMax concentration denotes the peak plasma concentration of a drug after administering the 

highest clinically recommended dose.22 Thus, the CMax viability is designed to estimate the maximal effect a treatment can realis

tically achieve. It ranges from 0 to 1, and smaller values denote a greater treatment effect. For the computation of CMax viabilities, we 

evaluated the function of the fitted curve at the drug’s CMax concentration. An exemplary visualization of the CMax viability can be 

found in Figure S25. For the computation of IC50 values, we intersected the dose-response curves with a horizontal line with y-inter

cept 0.5.

For combination therapies, we developed a variation of the CMax viability we call the combination CMax viability that can be 

derived from an actual/predicted dose-response matrix (cf. Figure S25). Our initial idea was to interpolate the values in the dose- 

response matrix to derive the relative viability when administering the CMax concentration of both combination drugs simultaneously. 

However, two synergistic drugs may have certain concentration windows with particularly high synergy/effectiveness.69 Thus, it is 

possible that the smallest viability is reached at a concentration combination smaller than the CMax concentrations. (Note that 

this should not happen for the dose-response curves we employed to compute the CMax viability for monotherapies since these 

curves are monotonically decreasing). Consequently, we considered the entire concentration range below the respective CMax 

values to compute our sensitivity measure. Conceptually, we want to derive the smallest viability within the area defined by the 

two concentration windows of the drugs limited at their respective CMax concentration. To compute the combination CMax viability, 

we linearly divided the concentration interval from 0 to the CMax for each drug into 100 equally spaced concentrations, each, result

ing in 10,000 concentration combinations. For each combination, we estimated its relative viability through bilinear interpolation 

(R package pracma70 Version 2.4.2) from the full dose-response matrix. Finally, we define the minimum of all 10,000 values as the 

combination CMax viability. An exemplary visualization of this measure can be found in Figure S25.

As the CMax denotes the maximal feasible treatment concentration for a drug monotherapy, it may not be feasible to administer 

the CMax concentration of two drugs in combination. Yet, we believe that the respective CMax concentrations are a reasonable up

per bound to consider for the computation of combination CMax viabilities. Note also that administering the CMax concentration for 

monotherapies might likewise not be feasible in all cases. Furthermore, the presented approach can theoretically be applied to any 

desired concentrations other than CMax.

QUANTIFICATION AND STATISTICAL ANALYSIS

To assess the significance of performance differences between different prediction approaches (i.e., different ML algorithms and 

model inputs), we performed paired Wilcoxon signed rank tests71 using the R-package stats Version 3.6.3.57 To compare two ap

proaches, we considered the absolute difference between the actual and predicted inhibition values for each test sample from 

both approaches. P-values were adjusted using the Bonferroni correction,72 where each p-value is multiplied by the number of tests. 

Here, we performed a pairwise comparison of n = 12 approaches (3 ML algorithms, 4 input representations), resulting in (n ⋅(n − 1))=

2 = 66 tests. All adjusted p-values < 0:05 were considered significant.

Additionally, we computed effect sizes r ∈ [0; 1] for each test using the R-package rcompanion Version 2.3.21.73 The absolute 

value of r indicates the strength of the effect, and the sign indicates the direction, i.e., which of the two compared methods resulted 

in lower absolute errors.
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