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SUMMARY

To improve our understanding of multi-drug therapies, cancer cell line panels screened with drug combina-
tions are frequently studied using machine learning (ML). ML models trained on such data typically focus on
predicting synergy scores that support drug development and repurposing efforts but have limitations when
deriving personalized treatment recommendations. To simulate a more realistic personalized treatment sce-
nario, we pioneer ML models that make dose-specific predictions of the relative growth inhibition (instead of
synergy scores), and that can be applied to previously unseen cell lines. Our approach is highly flexible: it
enables the reconstruction of dose-response curves and matrices, as well as various measures of drug sensi-
tivity (and synergy) from model predictions, which can finally even be used to derive cell line-specific prior-

itizations of both mono- and combination therapies.

INTRODUCTION

Tailoring drug treatments to the individual patient is a major goal
of cancer research. Due to ethical concerns and limited availabil-
ity of tumor material, relationships between molecular properties
of cancer cells and their drug responses are generally not stud-
ied on humans directly, but instead using model systems, most
prominently, cell lines. For monotherapy, large cell line panels
such as the Genomics of Drug Sensitivity in Cancer (GDSC)
database’? have been available for more than a decade,
providing both molecular characterizations and drug screening
data of cancer cell lines. However, combination therapies are
frequently preferred over monotherapies for cancer treatment
due to increased efficacy and a decreased risk of treatment
resistance.® More recently, large data resources have also
become available for drug combination screens: In 2019, the
DrugComb data portal was introduced,” which to date accumu-
lates harmonized results of drug screens for mono- and combi-
nation therapies from 37 different sources.®

Databases like the GDSC or DrugComb enable the systematic
evaluation of the effect that different drugs have on different
types of cancer cells. Thus, two main use cases that can be ad-
dressed using these data include (1) making personalized treat-
ment recommendations for a given patient (cell line) and (2)
finding promising drugs or drug combinations that should be
further explored, e.g., for drug repurposing or the development
of novel (combination) therapies. Due to the complexity and
high dimensionality of the data, machine learning (ML) is
commonly used to address these tasks.

ML models trained on monotherapy drug responses can be
used for both use cases (1) and (2) since they directly predict
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measures of drug effectiveness, such as the IC50 or AUC value.
In comparison, most methods using drug combination data pre-
dict so-called drug synergy scores.®” These scores quantify the
synergistic or antagonistic potential of two compounds for a
given cell line by comparing their combined effect on cell growth
to the expected effect obtained from a baseline model that as-
sumes no synergism or antagonism.® Synergy scores are usually
suited for the second task but less applicable for the first one, as
discussed in detail in this manuscript. Mainly, a high synergy be-
tween two compounds does not guarantee that the respective
combination treatment will be highly effective overall.” It simply
indicates that the combination treatment is more effective than
what would be anticipated from the drugs’ monotherapy re-
sponses. Moreover, Palmer and Sorger found that the benefit
of most combination therapies in clinical trials cannot be ex-
plained by synergy but rather by independent drug action.’
Another drawback of synergy scores is that they are typically
aggregated over multiple drug concentrations that do not neces-
sarily correspond well to clinically feasible concentration
ranges.'°

In this manuscript, we aim to address the task of combination
drug response prediction by focusing on treatment sensitivity
rather than synergy. To this end, we first conducted an exten-
sive literature review of 55 state-of-the-art approaches for
drug sensitivity and synergy prediction, which can be found in
Table S1. Among the reviewed approaches, 32 are designed
specifically for monotherapies and cannot directly be applied
to data from combination treatments. Of the 23 approaches
applicable to drug combination data, only 14 incorporate cell
line features, e.g., gene expression profiles, in their input. This
is crucial for making personalized treatment recommendations,
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where the drug response depends on the molecular properties
of the individual cancer (here: cell line). The remaining ap-
proaches, with only two exceptions, focus on predicting syn-
ergy scores aggregated over multiple concentrations. These
two exceptions are the models developed by Zheng et al.”
and comboFM by Julkunen et al.”' Both methods are designed
to predict the concentration- and cell line-specific sensitivity of
multi-drug treatments: Zheng et al. trained a CatBoost model
that predicts the relative inhibition of two drugs at given con-
centrations for a given cell line. Similarly, comboFM employs
higher-order factorization machines (HOFMs) to predict relative
cell growth. Thus, both approaches can predict combination
sensitivity. The strategy of predicting dose-specific drug re-
sponses enables the calculation of arbitrary sensitivity or syn-
ergy measures from the model predictions. The importance of
developing models capable of making dose-specific predic-
tions is also emphasized in Kong et al.’s systematic review on
drug combination prediction.'?

A limitation of the approaches by Zheng et al. and Julkunen
et al. is that they are not applicable to make predictions for pre-
viously unseen cell lines (i.e., cell lines that were not included in
the training data): They employ a one-hot encoding of cell lines in
the model input such that the cell lines have to be known during
training already. Consequently, these models are difficult to
apply for personalized treatment recommendations, where pre-
dictions should be made for a previously unseen patient (cell
line). According to Codice et al., this cell-blind setting is
frequently overlooked or insufficiently evaluated in ML-based
drug response prediction.'®

Based on our literature review, there is currently no model for
predicting drug combination sensitivity that can make dose-spe-
cific predictions for previously unseen cell lines. Thus, in this
manuscript, we pioneer such models to mimic a personalized
treatment scenario where the most effective treatment options
for a given patient should be identified. Our contributions can
be summarized as follows.

(1) We developed ML models to meet the demand for cell
line-specific, dose-dependent predictions of drug combi-
nation sensitivity. Instead of predicting an aggregated
measure of treatment response, our models predict the
relative inhibition at arbitrary treatment concentrations
provided in the model input.

To determine how this novel prediction task can be
modeled best, we systematically benchmarked different
ML algorithms (neural networks, random forest, elastic
net) and different drug representations in the model input
(MACGCS fingerprints, physico-chemical properties, drug
targets). Our results show that random forests outperform
the other algorithms in all investigated settings, while the
drug representations were less decisive for performance.
This evaluation can serve as a robust starting point for
future model development.

Our model architecture enables reconstructing various
drug sensitivity or synergy measures from the predictions,
including dose-response curves and matrices, as well as
IC50 values or synergy scores. This versatility makes our
models suited for a broad range of applications.
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(4) For monotherapies, we reconstruct IC50 values and our
recently proposed sensitivity measure called CMax
viability."* For combination therapies, we extend the
CMax viability to be applicable to drug combinations.
Our measure overcomes the limitations of existing sensi-
tivity measures and is comparable across drugs and drug
combinations. Furthermore, our analyses highlight a
widely spread issue of evaluating the performance of
multi-drug models.

By integrating our models with the CMax viability, we can
prioritize mono- and combination therapies. Drug prioriti-
zation, i.e., ranking drugs by their predicted effectiveness
for a given cell line (patient), is a major goal in personalized
medicine: it exceeds the mere prediction of sensitivity
measures and moves toward deriving actual treatment
recommendations.

G

RESULTS

Challenges of synergy scores for recommending
personalized treatments

The idea behind synergy scores is to measure the synergistic or
antagonistic potential of two compounds for a given cell line by
comparing their experimentally measured combined effect on
cell survival to the expected effect obtained from a baseline
model that assumes no synergism or antagonism.® The baseline
model is derived from monotherapy data of both compounds. It
estimates the combined effect of the two compounds at the con-
centrations that were tested in the actual combination screening.
The baseline and actually measured treatment responses are
then subtracted from each other and the result is averaged
over all concentration combinations to obtain a final synergy
score.'? Prominent examples of synergy scores that differ solely
in their computation of the baseline are the Loewe,'” Bliss,'®
HSA,"” and ZIP® scores. For each of these scores, values >0
indicate synergism and values <O indicate antagonism. A
detailed description of the scores can be found in the Supple-
ment (Methods S1).

Undoubtedly, estimating the synergistic potential of com-
pound combinations through synergy scores can be valuable
for identifying promising combination treatments to undergo
more detailed screening, the development of novel compounds,
or drug repurposing. However, there are known limitations of
synergy scores, which have been summarized and extensively
discussed in a review by Vlot et al.’® They also investigated the
agreement and across-batch reproducibility of four synergy
scores (Loewe, HSA, ZIP, and Bliss) using a large-scale drug
combination dataset. Their findings can be briefly summarized
as follows: First, each synergy score is based on a set of model
assumptions that differ between scores and may also be violated
by real-world data.'® ' These varying model assumptions might
explain the moderate to low correlation observed by Vot et al.
between the different scores calculated on the same data.
Furthermore, while complete disagreement (synergism vs.
antagonism) between scores was rare, Viot et al. identified
several scenarios where scores are likely to disagree, which
could typically be retraced to a violation of model assumptions.
Interestingly, although Viot et al. report a strong correlation
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between the measured drug responses in terms of viability, the
derived synergy scores are comparatively difficult to reproduce
in replicated experiments.

Based on these findings, Vot et al. advocate against the auto-
mated analysis of large-scale data using individual synergy
scores. Instead, they recommend a careful investigation of the
respective dose-response curves to then select an appropriate
score.

We agree with these conclusions by Vot et al. and would like
to emphasize further points that make synergy scores difficult to
use and interpret, especially for personalized treatment recom-
mendations: A methodological criticism of synergy scores is
that they are an aggregated measure over concentration ranges.
The choice of meaningful concentration ranges is especially
challenging for experimental drugs but crucial to draw meaning-
ful conclusions for personalized medicine. For monotherapies,
we have previously shown that the screened concentration
ranges in the GDSC database do not correspond well to clinically
feasible treatment concentrations.?° For combination therapies,
similar observations can be made for the DrugComb database
(cf. Figure S1, where we compare the screened concentrations
to clinically feasible treatment concentrations).

Another major factor that hampers the use of synergy scores
for treatment recommendation is that a high synergy between
two compounds solely implies that the combination treatment
is more effective than expected from the monotherapy re-
sponses of these two compounds. However, it does not guar-
antee an overall high effectiveness in terms of large relative
inhibition of the combination treatment.” To substantiate this
theoretical argument, we investigated the correlation between
the synergy scores and inhibition values provided by
DrugComb. More precisely, we computed the Pearson correla-
tion coefficient (PCC) between the synergy score and maximal
inhibition obtained by each experiment (i.e., one cell line being
treated with one drug combination). Correlations were low for
all synergy scores (ZIP: 0.06, Loewe: 0.02, Bliss: 0.06) other
than HSA (0.43), showing that a high synergy does not imply a
high inhibition. Furthermore, we investigated the maximal inhibi-
tion of the 100 most synergistic experiments of each score. The
results are provided in Figure S2 and show that, even among the
most synergistic experiments, small or even negative inhibitions
frequently occur, especially for the Bliss and ZIP scores.

Likewise, in a clinical setting, combination synergy is not the
most conclusive factor for treatment success: Palmer and
Sorger found that the benefit of most combination therapies
in clinical trials can be explained by independent drug action
rather than synergy.® This underscores that synergy scores
lack expressiveness for deriving personalized treatment
recommendations.

Moving beyond synergy scores

Given the limitations of synergy scores, particularly in the context
of treatment recommendations, we focus on sensitivity predic-
tion instead of synergy prediction. While there are numerous
methods for predicting synergy,®’ sensitivity prediction of drug
combinations is relatively underexplored, especially when the
goal is to make predictions for previously unseen cell lines, as
outlined in the Introduction section (cf. related work in Table S1).
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Treatment sensitivity is typically quantified using measures
like the 1C50 value and AUC for monotherapies and the CSS?'
for combination therapies. However, these measures have
limitations that impede their suitability in deriving personalized
treatment recommendations. First, most sensitivity measures
depend strongly on the investigated concentration ranges. For
example, the AUC is calculated by integrating the dose-
response curve over the investigated concentration range. Simi-
larly, the CSS is based on drug-specific AUC values. Thus,
poorly chosen concentration ranges can over- or underestimate
sensitivity. Second, commonly used sensitivity measures are not
comparable across compounds.’* Consequently, they cannot
be applied to directly compare the effectiveness of different
treatment options for a specific patient (cell line).

To overcome these challenges, we recently developed a sensi-
tivity measure called the CMax viability (cf. STAR Methods for de-
tails)'*: For monotherapies, the CMax viability of a cell line for a
drug is defined as the relative viability after treatment with the
drug’s CMax concentration (i.e., the peak plasma concentration
after administering the highest clinically recommended dose?).
Thus, the CMax viability estimates the maximal effect a treatment
can realistically achieve. It ranges from 0 to 1, and smaller values
indicate a higher treatment effectiveness.

Our measure was initially designed for monotherapies. In this
manuscript, we introduce an extension for two-drug combina-
tions described in the STAR Methods. Briefly, the combination
CMax viability estimates the effect of a combination therapy
when both drugs are administered at concentrations that do
not exceed their respective CMax. Unlike conventional sensi-
tivity measures, the CMax viability is comparable across drugs'*
and drug combinations. Consequently, it can be used to priori-
tize drugs and combinations for a given cell line (i.e., rank them
by their effectiveness, cf. Section treatment prioritization).

Certainly, the CMax viability is a valuable indicator of the
maximum effect a treatment can achieve. However, there may
be narrow concentration windows with beneficial or even syner-
gistic effects, especially for drug combinations. Moreover, there
may be patient-specific dosing requirements regarding, e.g.,
age, weight, or concurrent medications. Thus, we propose to
go beyond the mere prediction of CMax viabilities. Instead, we
advocate for and implement models predicting dose-specific
drug sensitivity, which is also recommended in a recent review
by Kong et al.’? Our models can make predictions for arbitrary
concentrations specified in the input. Thus, sensitivity can be
estimated at treatment concentrations relevant to the individual.
Moreover, entire dose-response curves and matrices can be
derived from the predictions. From these curves/matrices, all
standard measures of sensitivity (or synergy) can be obtained.
Thus, our approach is highly flexible and applicable not only
for personalized treatment recommendations but also for identi-
fying promising drug combinations to undergo in vitro screening
or for drug repurposing. Moreover, by investigating the underly-
ing curves/matrices, we can ensure that assumptions are met
before calculating sensitivity or synergy measures.

Predicting relative inhibitions

In the following, we analyze how accurately drug responses from
the DrugComb database can be predicted for both mono- and
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combination therapies. More precisely, given (1) a cancer cell
line of interest, (2) one or two treatment drugs, and (3) the corre-
sponding drug concentration(s), our models predict the relative
inhibition. The relative inhibition quantifies how much a drug
treatment inhibits a cell line’s growth compared to an untreated
control. In our analyses, relative inhibitions are in range [ — 200,
200]. Values >0 indicate that the treatment inhibited growth
and values <O indicate an increase in growth (see STAR
Methods for details).

We compare different ML algorithms and model inputs and
investigate the reconstruction of sensitivity measures from the
model predictions. Additionally, we show how both mono- and
combination therapies can be ranked by their effectiveness for
agiven cell line using our recently developed sensitivity measure,
the CMax viability. "

Model design

We trained multi-drug models that predict the relative inhibition
for a given cell line being treated with given concentrations of
one or two drug(s). The model inputs comprise cell line features
derived from a principal component analysis (PCA) of gene
expression values (see STAR Methods for details), a representa-
tion of the applied drugs, and the corresponding drug concentra-
tions. For the representation of drugs, we investigated four
different settings, which are depicted in Figure 1 (see STAR
Methods for details).

Setting 1 (OneHot). In this setting, drugs in the model input are
represented through a 265-dimensional encoding where each
feature corresponds to one of the 265 drugs in our dataset
(cf. STAR Methods). If a drug is part of the current sample (i.e.,
the currently considered combination of a cell line, treatment
drug(s), and the respective drug concentration(s)), its feature is
set to the corresponding treatment concentration, otherwise it
is set to 0.

Setting 2 (OneHotTar). This setting uses the same concentra-
tion encoding as Setting 1 but additionally includes 290 features
representing drug target molecules. Each feature is set to the
number of drugs in the current sample that target the corre-
sponding molecule.

Setting 3 (MACCS). In this setting, each input drug is repre-
sented by a 162-dimensional binary molecular access system
(MACCS) fingerprint.?®> Additionally, one input feature for each
drug is needed to denote its treatment concentration. To encode
monotherapies, one of the fingerprints and the corresponding
concentration are set to 0.

Setting 4 (PhysChem). This setting is similar to Setting 3 but re-
places the MACCS fingerprint with 182 numerical physico-
chemical descriptors that denote different properties of the
respective drugs, such as the molecular weight, number of
valence electrons, or the logP value that measures lipophilicity.

Depending on the desired application, the different settings
provide different benefits: Settings 3 and 4 allow making predic-
tions for arbitrary drug molecules, given that their MACCS finger-
print or physico-chemical properties are known. Consequently,
the resulting models can be used to make predictions for previ-
ously unseen compounds, e.g., newly developed ones. In
contrast, models derived from Setting 1 and 2 are limited to
those 265 drugs that were present in our dataset and hence en-
coded in the input. However, these models can not only make
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predictions for single drugs and two-drug combinations but
even for treatments using three or more drugs simultaneously.
While three-drug combination therapies have already been
approved for cancer treatment by the United States Food and
Drug Administration (FDA),>* DrugComb does not provide
such data.

We used three different ML algorithms for model training,
namely neural networks, random forests, and elastic nets.
Notably, the cell lines contained in the training and test sets
are disjoint (cf. STAR Methods). Thereby, the test data mimic
the scenario of making predictions for a previously unseen
patient.

Overall performance comparison

In our first analysis, we investigated which combination of the
three investigated ML algorithms and four investigated drug rep-
resentations can predict relative inhibitions most accurately.
Figure 2 shows the performance of all investigated models in
terms of test mean absolute error (MAE). The first row depicts
the results for the entire test data, while the second and third
row focus on the data subsets representing mono- and combi-
nation therapies, respectively. Across all four settings, random
forests resulted in the lowest error, followed by neural networks,
while elastic net had the worst performance. An exception is the
PhysChem setting, where neural networks were outperformed
by elastic net.

The overall smallest test error (MAE 12.14) was achieved us-
ing arandom forest with MACCS fingerprints as input. Addition-
ally, even the worst performing random forest model (OneHot,
MAE of 13.04) still outperforms the best neural network
(OneHot, MAE 14.08) and elastic net (OneHotTar, MAE of
16.46) models. Thus, the choice of ML algorithm seems to
have a stronger impact on performance than the choice of input
features, even though the different input representations differ
considerably. Notably, the addition of drug targets slightly im-
proves predictions for random forest and elastic net but has
the opposite effect for neural networks. In Figures S3-S5, we
provide a statistical evaluation of performance differences be-
tween the models (cf. STAR Methods). Differences were signif-
icant for almost all pairwise comparisons. Effect sizes range
from 0 to 0.59 (mean: 0.29) and mirror the general trends
described above.

To further contextualize the obtained errors, we compare them
to two baseline models: A simple baseline model that always
predicts the mean of the training data has a test MAE of 24.2.
A more advanced baseline that always predicts the mean inhibi-
tion per drug for monotherapies and the mean inhibition of the
combination for combination therapies has a test MAE of
19.74. Consequently, our best model (MACCS random forest)
improves these baselines by 50% and 37%, respectively. While
all of the random forest models outperform the baseline, some
elastic nets and neural networks are not superior to the
baselines.

When investigating mono- and combination therapies sepa-
rately (cf. row 2 and 3 of Figure 2), the same overall trends can
be observed, with the random forest model with MACCS fea-
tures again having the smallest error. Generally, both types of
therapies can be predicted similarly well, even though the
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Figure 1. Prediction pipeline

This figure summarizes our pipeline for the prediction of relative inhibitions. The large blue box depicts the different types of input features and representations we
investigated. The gray box at the top right lists our data resources. The yellow box shows the different ML algorithms we used. The green box at the bottom
depicts the model output, i.e., the relative inhibition for a given cell-drug-drug combination at defined treatment concentrations. Lastly, the purple box shows
potential downstream analyses that can be performed based on the model predictions.

training data contains slightly more combination (60%) than is frequently overlooked'®?° is that computing correlations
monotherapy data (40%). across the entire data artificially increases the PCC: since

Besides the MAE, we also investigated the PCC between the some drugs/combinations generally have lower/higher inhibi-
actual and predicted inhibitions. The overall PCC for the tions than others, even mean predictions for each drug/
MACCS random forest was 0.8 (0.77 and 0.82 for mono- and  combination (requiring no ML at all) would result in a correlation
combination therapies, respectively). However, a problem that above 0.'® Thus, we computed the mean per-drug PCC for
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Figure 2. Test set performance

This figure shows the prediction errors (in terms of the absolute difference between actual and predicted values) for each setting (columns) and each investigated
ML algorithm (coloring). The first row shows the results for the entire test dataset, while the second and third row show the results for the data subsets corre-
sponding to mono- and combination therapies, respectively. Data are represented as boxplots where the box denotes the interquartile range between the first
quartile (25th percentile) and third quartile (75th percentile) of the data. The black horizontal line inside each box denotes the median, and the whiskers extend to
the largest/smallest values within 1.5 times the interquartile range. Outliers are not shown. On top of each boxplot, the mean absolute error (MAE) is shown. See
Figures S3-S5 for statistical evaluation and Figures S6 and S7 for Pearson correlation coefficients and R? values.

monotherapies (0.58) and the mean per-combination PCC for
combination therapies (0.56) (see also Figure S6 for boxplots).
These values have a similar magnitude to what we previously
observed for monotherapy sensitivity prediction.'* PCC and R?
values for each model are provided in Figure S7.

Note that Zheng et al.® and Julkunen et al."" also provide over-
all correlations and errors for the prediction of relative inhibition/
growth (cf. Introduction). However, their results are not compara-
ble to ours since we investigate the performance for unknown
cell lines, which cannot be evaluated using the other two
methods. It is known that the cell-line blind scenario increases
errors considerably compared to making predictions for known
cell lines.?®?” To, nevertheless, assess how our random forest
MACCS model would perform for known cell lines, we retrained
the model using a random split of the available data into a
training (80%) and test set (20%). This split does not guarantee

6 iScience 28, 112622, June 20, 2025

that cell lines in the test set were unseen during model training.
Note that we still ensured that duplicated entries denoting the
same treatment are either exclusively contained in the training
or the test set (cf. STAR Methods). With a PCC of 0.96 and
RMSE (root mean squared error) of 8.41, our performance for
known cell lines is comparable to that reported by Zheng et al.
(PCC = 0.98, RMSE = 7.12)° and Julkunen et al. (PCC = 0.97,
RMSE = 9.86 in cross-validation; PCC = 0.92 on validation
data)."" However, the dataset used in our analyses is much
larger and more heterogeneous comprising 947 cell lines, 265
drugs, and 9,535 drug combinations from different sources. In
contrast, Zheng et al. employed solely the O’Neil dataset (39
cell lines, 38 drugs, 583 drug combinations),28 which is known
to be of high quality,*> whereas Julkunen et al. employed solely
the AstraZeneca DREAM dataset (85 cell lines, 118 drugs, 910
drug combinations).®



iScience

Range performance comparison

Next, we investigated whether certain inhibition ranges can be pre-
dicted more accurately than others. We were motivated to perform
this analysis by the observation that the under-representation of
certain response intervals in the training data can negatively affect
their prediction quality.? In particular, data points with high inhibi-
tion are commonly underrepresented in drug screening data-
sets,’* 2 which can negatively affect their prediction. They are,
however, of particular interest for personalized therapy since
they represent cases where the drug treatment greatly reduced
the number of viable cells, i.e., cases of effective treatment.

For this analysis, we again investigated all three ML algorithms
and four input representations. Figure 3 shows the distribution of
test MAEs for different inhibition intervals in range (— 25,100].
This range covers 99% of the training and test data. Predictions
are on average most accurate in the interval (0,25] followed by
the interval ( — 25,0]. As the actual inhibition increases, the error
increases as well (cf. Figures S8-S17 for statistical evaluations,
PCC, and R? values). In line with our motivation above, this
observation could be explained by the amount of available
training data for each interval: Most data are located in the inter-
vals (0, 25] (41%) and (— 25, 0] (25%), while each of the other in-
tervals is only covered by around 10% of the data. Thus, highly
effective treatments are under-represented.

To counteract this under-representation for monotherapies,
we developed SAURON-RF, a random forest-based model
that is designed to improve predictions of drug-sensitive sam-
ples for both classification and regression.’*?° To this end,
SAURON-RF relies (among other things) on sample-specific
weights to increase the importance of the under-represented in-
tervals. Consequently, we also tried to incorporate sample
weights into our models presented here. Unfortunately, the sam-
ple weights had only little impact on predictions, especially for
the cases with highest inhibition (see Figure S18 for a perfor-
mance comparison of the MACCS random forest model with
and without sample weights).

Correlation of duplicated entries
For the models using one-hot encodings (settings OneHot and
OneHotTar), each drug has a designated input node. This is
not the case for the MACCS and PhysChem settings, where
the same combination treatment can be described by two
different input representations through swapping the order of
the considered drugs in the input vector (cf. input visualization
in Figure 1 and STAR Methods). However, the model output
should not depend on the order of the drugs in the input, i.e., it
should not depend on whether the drug features and concentra-
tion of a drug A are located in front of or behind those of a drug B
in the input vector. Hence, we decided to include both input rep-
resentations into the training and test data of our models.
Ideally, predictions for both input representations should
correlate well. Figure 4A shows the correlation of predictions
for the best-performing random forest model trained using
MACCS fingerprints. As desired, both predictions are highly
correlated (PCC ~ 1) and the mean absolute difference between
them is very small (0.8). Figure 4B shows the same analysis for a
model where we removed the duplicated entries from the
training data. Even though the correlation is still high (PCC =
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0.82), it decreased strongly, while prediction differences
increased notably to 9.12 on average. The mean PCCs per
drug (for monotherapies) and per drug combination are 0.98
and 0.97 for the duplicated training data and decrease to 0.78
and 0.86 for the non-duplicated training data, respectively.
This is also represented in the test error where the model with
duplicated training entries achieved an MAE of 12.39 compared
to 14.6 for non-duplicated entries. Similar trends can also be
observed for the PhysChem setting (see Figure S5). Based on
these findings, we conclude that it is advisable to train models
using all possible input representations of a treatment.

Reconstruction of sensitivity measures

A benefit of predicting concentration-specific inhibition values is
that based on the model’s predictions, dose-response curves
(and matrices) can be reconstructed. These can in turn be
used to compute various measures of drug sensitivity or synergy.

We first investigated how accurately dose-response curves
can be reconstructed from the predictions of the MACCS
random forest. To this end, we used the actual and predicted in-
hibition values to fit dose-response curves for each cell line and
drug combination (cf. STAR Methods). Next, we computed the
RMSE between the actual and predicted curves. This resulted
in a mean RMSE of 0.13. For reference, the GDSC database con-
siders curves with RMSE < 0.3 to be of satisfactory quality.****
In fact, 93% of the reconstructed curves have an RMSE < 0.3,
indicating an accurate reconstruction in a majority of cases.

Since the focus of this paper is on sensitivity prediction and
Viot et al. discourage the computation of arbitrary synergy
scores on large-scale data,’® we reconstructed three measures
of drug sensitivity, namely 1C50 and CMax viability values for
monotherapies, and a modification of the CMax viability for
drug combinations, which we call the combination CMax viability
(cf. STAR Methods for details). Here, we focus mainly on evalu-
ating the reconstruction of the CMax viability. Analogous results
for IC50 values can be found in Figure S21.

In total, we were able to compute both the actual and pre-
dicted monotherapy CMax viabilities for 7,352 out of 32,564
cell line-drug combinations. The decreased number of combina-
tions stems from the fact that CMax concentrations were only
available for 77 of the investigated drugs. Figure 5A depicts the
prediction errors for the reconstructed monotherapy CMax
viability. The mean MAE averaged over all drugs is 0.12 and
the mean MSE is 0.04. The results are comparable to the error
we previously achieved when predicting CMax viabilities
directly using our recently published algorithm SAURON-
RF'#2° (MSE = 0.03) or a slightly adjusted version of DeepDR
by Chiu et al.>* (MSE = 0.09)."*

A baseline error can be obtained from a model that, for every
treatment concentration, predicts the mean inhibition for each
drug obtained from the training data. For such a model, the
CMax viability would also be predicted as this mean. This results
in a baseline MAE of 0.2, which our model improves by 40%.

The overall PCC is 0.58 for the CMax viabilities and 0.41 for
the baseline. However, the drug-specific PCC is only 0.1 (cf.
Figure 5B). While a drug-specific baseline PCC cannot be
computed for constant predictions, adding random noise with
mean 0 to these constant predictions results in a baseline PCC
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Figure 3. Test set performance for different inhibition ranges

This figure shows the prediction errors (in terms of the absolute difference between actual and predicted values) for each setting (columns) and each investigated
ML algorithm (coloring). Each row shows the performance for a different interval of actual relative inhibitions. Data are represented as boxplots where the box
denotes the interquartile range between the first quartile (25th percentile) and third quartile (75th percentile) of the data. The black horizontal line inside each box
denotes the median, and the whiskers extend to the largest/smallest values within 1.5 times the interquartile range. Outliers are not shown. On top of each
boxplot, the mean absolute error (MAE) is shown. See also Figures S8-S17 for statistical evaluations, PCC, and R? values.

of 0. Thus, our predictions improve this baseline but only slightly.
When using our models to reconstruct IC50 values, we observe a
similar phenomenon (overall PCC = 0.71, mean PCC per drug =
0.01, cf. Figure S21).

To investigate the reasons for these low drug-specific correla-
tions, we developed and evaluated different hypotheses.
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Hypothesis 1: The reconstructed dose-response curves
might not accurately model the CMax viability in cases where
concentrations exceeding the CMax concentration of the
respective drug have not been screened.

Evaluation 1: Concentrations exceeding the CMax concen-
tration were only screened for 63 of the 77 drugs, corresponding
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to 70% of the drug-cell line combinations in the test set. Thus, we
evaluated the PCC only on those drug-cell line combinations.
This increased the average PCC slightly from 0.1 to 0.12.

Hypothesis 2: Even if sufficiently large concentrations were
screened, the increased prediction errors for data points with
high inhibition (cf. Figure 3) might make the curve-fitting unre-
liable in areas of high inhibition, affecting the derived
measures.

Evaluation 2: The IC50 value is designed to measure the drug
response at a relative inhibition of 50%. To assess the perfor-
mance at smaller inhibitions (i.e., higher viabilities), we recon-
structed IC75 and 1C90 values from the fitted curves. The IC75
(IC90) measures the drug concentration where a relative inhibi-
tionof 100% — 75% = 25% (100% — 90% = 10%)isreached.
The average per-drug PCCs for the IC75 and 1C90 reconstruc-
tion are 0.11 and 0.1, respectively, thus, there is no (strong)
improvement compared to the IC50 predictions (cf. Figure S21).

Hypothesis 3: The two-step process of first reconstructing a
curve and then deriving the CMax viability from the curve is infe-
rior to directly predicting the CMax viability with our models.

Evaluation 3: Instead of deriving the CMax viability from the
estimated dose-response curves, we used our model directly
to predict the relative inhibition at the CMax concentration and
converted this prediction into a relative viability. However, this
did also not improve correlations (PCC 0.04, cf. Figure S22).
Instead, the curve fitting seems to enhance predictions slightly
(cf. also Figure S20), which is in line with the findings by Rahman
and Pal.*®

Unfortunately, none of these hypotheses provide a compre-
hensive explanation for the low PCCs. Thus, we conclude that
even though prediction errors (MAE) are relatively small and
comparable to our previous work, the derived measures only
indicate a general trend in sensitivity but cannot be used to
compare the effect of a drug monotherapy on different cell lines.
For the combination CMax viability (26,946 drug-drug-cell line
combinations), we obtained similar results that are depicted in
Figures 5C and 5D.

Nevertheless, we would like to highlight that such an evalua-
tion of drug-specific correlations as conducted here is frequently

25 0 25
Prediction 1

# Data points “

both figures, the black diagonal line represents the
identity, R denotes the Pearson correlation be-
tween the predictions, and p is the corresponding
p-value of a two-sided t test for R. See Figure S5
for results of the random forest PhysChem model.

50 75 100

2k 4k 6k 8k

not performed for drug sensitivity and synergy prediction (cf.
related work in Table S1). Thus, similar problems may often go
undetected. In particular, neither Zheng et al.” nor Julkunen
et al."' provide drug-/combination-specific correlations. For
cell-blind evaluations on monotherapy data, we found three
related approaches that provide drug-specific correlations: Our
recently published method SAURON-RF achieves a mean PCC
of 0.56 when directly predicting CMax viabilities using drug-spe-
cific models.’ In the same manuscript we also show that an
adjusted version of the multi-drug model DeepDR by Chiu
et al.>® achieves a PCC of 0 for the same task. In comparison,
Chawla et al. employ multi-drug models for the prediction of
IC50 values and achieve mean PCCs between ca. 0.18 and 0.5
for different ML algorithms. Lastly, Rahman and Pal achieve
mean PCCs between 0.29 and 0.44 when reconstructing AUC
values from predicted dose-response curves. While not directly
comparable to our approach, these works underline that at least
weak to moderate drug-specific correlations can be achieved:
(1) when predicting CMax viabilities using models directly trained
for this task, (2) when using multi-drug models, or (3) when
deriving sensitivity measures from predicted curves. Yet, it re-
mains to be investigated further if and how comparable results
can be achieved when combining all three factors and also
considering combination therapies, thereby enabling predictions
for arbitrary drugs/combinations and measures, which we aim to
achieve here.

Treatment prioritization

In our final analysis, we investigate how accurately drugs and
drug combinations can be prioritized for a given cell line based
on the MACCS random forest predictions: For each cell line in
the test set, we used the computed CMax viabilities for the
monotherapy and combination data to achieve a ranking of
drugs and drug combinations from most to least effective (i.e.,
from smallest to largest CMax viability). Drug prioritization is sup-
posed to mimic a personalized treatment scenario with the goal
to achieve a list of most effective treatment suggestions for a
given patient. The results are shown in Figure 6, where the first
row shows the results for monotherapies only, while the second
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Figure 5. Reconstruction of (combination) CMax viabilities from predicted dose-response curves/matrices

(A) and (B) (red) show the distribution of MAE and PCC per drug for the reconstruction of CMax viabilities using dose-response curves fit on the test set mon-
otherapy data. (C) and (D) (blue) show the distribution of MAE and PCC per dug combination for the reconstruction of combination CMax viabilities using dose-
response matrices derived from the test set drug combination data. Data are represented as boxplots where the box denotes the interquartile range between the
first quartile (25th percentile) and third quartile (75th percentile) of the data. The black horizontal line inside each box denotes the median, and the whiskers extend
to the largest/smallest values within 1.5 times the interquartile range. See also Figures S21 and S22.

row shows the results when combining mono- and combination
therapies into one list.

For monotherapies, the Spearman correlation coefficient
(SCC) between the actual and predicted rankings was 0.74
(baseline (as defined in the previous section): 0.54). Our predic-
tions clearly outperform the baseline. Still, the baseline correla-
tion is relatively high, indicating that the differences in effective-
ness between drugs are easier to predict than the differences
between cell lines receiving the same treatment (as investigated
in the previous section).

While an accurate ranking for the entire list is desirable, one
would typically place more emphasis on the correct identifica-
tion of the most effective treatments. Thus, we computed the
mean overlap between the first k elements of the actual and pre-
dicted rankings. For monotherapies, the average length of the
predicted drug lists is 31.15. The average overlap between the
top k = 5 and k = 10 actual and predicted most effective drugs
is 3.16 (baseline: 2.14) and 7.68 (baseline: 6.55), respectively.
Results for further k are shown in Figure S23. Furthermore, the
median rank of the actually most effective drug in the predicted
ranking is 2.5 (baseline: 8), and the median rank of the drug pre-
dicted to be most effective in the actual list is 3 (baseline 6). The
median difference between the true CMax viabilities of the actual
most effective and predicted most effective drugs is only 0.02
(baseline 0.31). Thus, the predicted rankings recommend treat-
ments that are similar in effectiveness to the actual best
treatment.

The second row of Figure 6 shows the analogous prioritization
results when combining mono- and combination treatments into
one list. The SCC of 0.76 (baseline: 0.62) is comparable to the re-
sults for monotherapies. Since the average list length is much
greater when including drug combinations (838.62), the overlaps
at k = 5 (1.26, baseline: 0.68) and k = 10 (3.38, baseline: 2.09)
are lower (cf. Figure S24 for further k. Furthermore, the median
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rank of the actually best treatment in the predicted list (27, base-
line: 170.5) and of the predicted best treatment in the actual list
(9.5, baseline: 12) decrease. Still, results clearly improve over
the baseline. Furthermore, the median difference in viability be-
tween the actually most effective treatment and the treatment
predicted to be most effective remains small (0.02, baseline 0.03).

DISCUSSION

Administering not only single but multiple drugs in combination
is common in cancer treatment. However, while drug response
datasets for monotherapy data have been available for more
than a decade, large-scale datasets for combination therapy
have only become publicly available more recently, e.g.,
through the DrugComb database.”® While the DrugComb
data have extensively been studied for the prediction of drug
synergy, they are still underused for the prediction of drug
sensitivity, especially with the focus on making personalized
treatment recommendations. For this application case, we
found the scores that are widely used for synergy prediction
less suited due to various reasons discussed in this manu-
script. Thus, we argue that a more suitable approach for pre-
dicting drug combination sensitivity in a personalized treatment
setting is the direct prediction of concentration-specific drug
combination responses in the form of relative inhibitions
(instead of synergy scores).

To show the capabilities of our approach in practice, we devel-
oped and evaluated several ML algorithms when applied to
different types of input features and representations. Most
notably, we evaluated our models in the often-neglected cell-
blind scenario,'® thereby mimicking personalized drug predic-
tions for a new patient. Our evaluations demonstrate that our
models substantially improve baseline models and show very lit-
tle variation when predicting the same treatment using different
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This figure depicts the test set prioritization results for mono- and combination therapies. Sub-figures A to F (red) focus on the prioritization of monotherapies
including: (A) the SCC between the actual and predicted rankings for each cell line, (B)/(C) the intersection size between the 5/10 actual and predicted most
effective treatments, (D) the predicted rank of the actual most effective treatment, (E) the actual rank of the treatment predicted to be most effective, and (F) the
difference between the actual CMax viabilities for the actual and predicted most effective treatment. (G)—-(L) (blue) show the analogous prioritization results when
combining mono- and combination treatments into one list. Data are represented as boxplots where the box denotes the interquartile range between the first
quartile (25th percentile) and third quartile (75th percentile) of the data. The black horizontal line inside each box denotes the median, and the whiskers extend to
the largest/smallest values within 1.5 times the interquartile range. See also Figures S23 and S24 for further intersection sizes.

input representations. Apart from that, our models are also
competitive with state-of-the-art approaches when making pre-
dictions for known cell lines. Furthermore, we reconstructed the
(combination) CMax viability, a sensitivity measure that we
recently developed for monotherapies,'* and that we extended
to be amenable to combination drug response prediction in
this manuscript. Using this measure, we were able to perform
prioritization of both mono- and combination therapy options
for unseen cell lines, which is the scenario that mimics personal-
ized drug treatment recommendation most closely, where a
sorted list of the most effective treatment options is desired.

Limitations of the study
While our evaluations demonstrate the capabilities of our
approach, this study also reveals weak points of the methodol-

ogy that require attention during the development of future
methods.

(1) We observed increased prediction errors for data sam-
ples with high inhibitions, i.e., cases of high treatment
sensitivity, which are typically of particular interest for
treatment recommendation. In monotherapy prediction,
this issue is relatively well-known for classification but
has rarely been discussed or addressed for regres-
sion.?®*2 While we resolved this issue for monotherapy
classification and regression in earlier work using sam-
ple-specific weights,'* such weights had little impact in
the current study.

Additionally, we noted that drug/combination-specific
correlations between the reconstructed measures (IC50
and CMax viability) and the actual values derived from

-
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the dose response curves/matrices only barely surpass
the baseline model. Interestingly, this issue is not uncom-
mon: we recently observed similar tendencies for other
multi-drug models performing monotherapy prediction.'*
However, a comprehensive explanation for this observa-
tion remains elusive. Moreover, we found that this issue
may usually go undetected since drug-specific measures
are infrequently evaluated (cf. related work in Table S1).'®
Thus, we encourage others to investigate and report drug/
combination-specific correlations when developing novel
prediction approaches.

Ovchinnikova et al. criticize that multi-drug models predicting
measures like the IC50 or AUC frequently only learn to distin-
guish drugs (but not cell lines) since the value ranges vary be-
tween drugs.”® To overcome this issue, they propose normal-
izing the response measures per drug by using z-scores.
However, for the following reasons we recommend exploring
alternative strategies: (1) Both IC50 and AUC values are highly
dependent on the tested concentration range, and z-score
normalization does not solve this issue. (2) Z-scores assume
that the data follows a normal distribution, which is generally
not the case for drug response data. For example, the GDSC
IC50 drug responses are typically bimodal.*® (3) By converting
response measures into z-scores, information on the absolute
effectiveness can be lost, which is undesirable for treatment
recommendation. Thus, instead of using z-scores, we advocate
performing a per-drug evaluation (as shown in this manuscript) to
detect the issue. To resolve it, measures with across-drug
comparability should be used to train models, e.g., the CMax
viability. Additionally, since we observed that single-drug models
do not suffer from this issue,’**° we propose that it might be
advisable to introduce drug-specific regularization terms into
the training of multi-drug models.

Three main factors can be adjusted to potentially address
such challenges, namely the choice of ML algorithm, the choice
and representation of input features, and the used data.

ML algorithm

We investigated neural networks (highly popular for sensitivity
and synergy prediction), random forests, and elastic nets. In
our recently published benchmarking, we found both elastic
nets and random forests outperform neural networks when
predicting drug sensitivity.” For the prediction of inhibitions,
as investigated here, random forests are superior to the other
algorithms. In general, a plethora of further potentially more
sophisticated approaches can be used to model the predic-
tion of inhibitions. For example, we could adjust the objective
function optimized during model training to potentially
improve the drug-specific predictions. However, as discussed
in our benchmarking®® and also by Li et al.,®” more complex
approaches are not necessarily superior to simpler ML algo-
rithms, and careful evaluation is required to ensure a fair per-
formance comparison.

Input features and representation

For the characterization of cell lines in the model input, several
sources found gene expression to be the most informative
omics-type for predicting drug responses.®®*43° However, the
inclusion of further omics or a priori knowledge, e.g., known
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sensitivity biomarkers or protein interactions, might improve
predictions.

Similarly, further drug properties, e.g., Morgan fingerprints*
could be investigated, or graph neural networks could be em-
ployed to represent drugs as molecular graphs — both options
might improve drug-specific predictions. However, the superior-
ity of molecular graphs over conventional drug fingerprints for
sensitivity/synergy prediction and drug discovery has been
questioned.*"*?

Dataset

With 947 cell lines, 265 drugs, and 9,535 drug combinations,
the dataset investigated here is notably larger than those
used by other approaches working on drug combination
data.®> 1212643745 However, given the size of this dataset, hard-
ware restrictions became a limiting factor for ML training.
Despite training models on a compute cluster with machines of
500 gigabytes working memory, we had to reduce our data
regarding the number of considered drugs and features (cf.
STAR Methods).

Generally, a large amount of training data benefits model
training and robustness. Yet, if the dataset is heterogeneous,
e.g., due to different data sources as in DrugComb, this may
decrease performance compared to models built and evaluated
on a more homogeneous dataset. Even though Zagidullin et al.
and Liu et al. found the reproducibility between replicates from
different datasets in DrugComb satisfactory,**® disagreement
between drug response data from different sources is a well-
known problem.**"*® However, Vlot et al. found that, unlike
synergy scores, relative viabilities (inhibitions) were highly corre-
lated between different batches in their analysis of drug combi-
nation data.'® Similarly, we found only small variation in the inhi-
bition values of replicates in our analyses (cf. STAR Methods).
Especially for clinical applications, combining data from different
sources (e.g., different hospitals) is essential, and models should
be able to cope with some degree of heterogeneity. To this end,
meta- or transfer-learning methods could also be leveraged.*®
These methods might also be viable to translate the results of
(bulk sequencing from) model systems to (single-cell) patient
data to enable the use of prediction models in the clinic.*°

Lastly, treatment efficacy is only one building block of treat-
ment personalization in a clinical scenario. Treatment choices
are also heavily impacted by potential side effects and toxicity
that can significantly affect a patient’s well-being and may
even be deadly. Estimating side effects is especially challenging
when a patient is treated with multiple drugs at the same time.
Zhao et al. recently published an extensive review on this topic,
providing a plethora of resources for assessing side effects of
single- and multi-drug treatments, including databases and
ML-based prediction models.”’
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METHOD DETAILS

Materials and data processing
Drug response data

Drug screening data for our analyses was obtained from the DrugComb database Version 1.5. More specifically, we employed the
DrugComb API (https://api.drugcomb.org/) to download the list of all cell lines and their corresponding COSMIC IDs, the full list of
drugs with their SMILE encodings and their target molecules, and the full dose-response matrices.

To assign the respective cell line and drug information to each dose-response matrix, we downloaded the core database from
https://drugcomb.org/download, which provides a unique identifier for each dose-response experiment. Consequently, each data-
base entry can be written as:

(cell_line,drug_row,drug_col,conc_row,conc_col,inhibition)

Here, cell_line is the COSMIC ID of the investigated cell line, and drug_row and drug_col are the names of the tested drugs. The
entries conc_row and conc_col are the micromolar concentrations of the tested compounds. For monotherapies, one of the drug
names is set to NULL and the corresponding concentration is set to 0. Finally, inhibition denotes the relative inhibition measured after
administration of the denoted drug concentration(s) (see Data S1 for further information). Relative inhibitions > 0 denote reduced cell
growth through the drug treatment, while inhibitions <0 indicate increased growth.

We removed the following entries from the dataset:
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® poor quality entries as defined by the authors of DrugComb?® with inhibition < — 200 or inhibition > 200
® entries where the concentration of all tested drugs is 0 (conc_row = conc_col = 0)
® entries, where the corresponding cell line had no COSMIC ID or no gene expression data provided in the GDSC database

Additionally, we converted entries where drug_row and drug_col denote the same drug into monotherapies by summing the
respective treatment concentrations and setting drug_col to NULL:

(cell_line,drug_row, NULL, conc_row+conc_col,0,inhibition) |

Cases where two different drugs are provided but only one has a concentration >0 were modified to denote a monotherapy by
replacing the drug with concentration 0 with NULL. Afterwards, all replicates involving the same cell line, the same drug(s), and
same concentration(s) were averaged. Given the inhibition range of [ — 200,200], the average standard deviation between replicates
was small (mean: 7, median 5). Lastly, we log1p-normalized (log 1 p(x) = log(x +1)) the concentration values in conc_row
and conc_col.

To keep the dataset size manageable, we only considered entries involving those 265 drugs (cf. Table S2) for which at least 10,000
entries are provided after performing all the steps described above (cf. Discussion). Note that after this reduction still more than
10,000 entries remained for each of the drugs. In total, the final dataset consists of 5,291,424 entries covering 947 cell lines, 265
drugs, and 9,535 drug combinations.

Additionally, the CMax concentrations for 77 of the investigated drugs were obtained from Liston and Davis.?” The CMax value
denotes the peak plasma concentration after administering the highest clinically recommended dose of a drug.*” In a recently pub-
lished manuscript, we employed CMax to derive a novel drug sensitivity measure called the CMax viability, which will be described
below.'* We also use this measure to perform drug prioritization in the results section.

Drug properties

For the representation of drugs in the inputs of our models, we investigated four different settings, which will be discussed below (cf.
also our prediction pipeline in Figure 1). Using the SMILES drug representations provided by DrugComb, we used RDKit version
2023.3.2°° to calculate two types of drug features.

® binary MACCS fingerprints®® of length 166.
® 209 physico-chemical drug properties using the function CalcMolDescriptors from the rdkit.Chem.Descriptors module.*®

We removed all properties that showed no variation across the investigated 265 drugs, resulting in MACCS fingerprints of length
162 and 182 physico-chemical properties.

Additionally, 735 drug target molecules for the investigated drugs were obtained from DrugComb.
Gene expression data
Normalized gene expression data of 17,419 genes (Affymetrix Human Genome U219 Array) was obtained from the GDSC database
Release 8.3 (https://www.cancerrxgene.org/downloads/bulk_download).

Model inputs and outputs

We train multi-drug models that predict the relative inhibition for a given cell line being treated with given concentrations of one or
more drug(s). The model inputs comprise cell line features based on gene expression, a representation of the applied drugs, and
the corresponding drug concentrations. For the representation of drugs, we investigated four different settings, which are depicted
in Figure 1 and will be described below.

To characterize cell lines in the model input, we performed a principal component analysis (PCA, R-package stats Version
3.6.3°") on the gene expression values and used the first 300 principal components (PCs) as cell line features. This dimension
reduction method and feature number performed well in our recently published benchmarking of drug sensitivity prediction
methods.?’

In addition to the cell line features, we investigated four different settings for the encoding of drugs in the model input:

Setting 1 (OneHot)

In this setting, no drug properties are included. Instead, a 265-dimensional encoding of drugs is used. Each feature corresponds to
one of the 265 drugs in our dataset. If a drug is part of the current entry, its feature is set to the corresponding log1p-normalized treat-
ment concentration, otherwise it is set to 0.

Setting 2 (OneHotTar)

This setting uses the same concentration encoding as Setting 1 but additionally includes 290 drug target features. More precisely, we
used the drug target annotations provided by DrugComb and included all molecules as targets that were targeted by at least five of
the drugs in our dataset, resulting in a total of 290 target features. Each feature is then set to the number of drugs in the current entry
that target the corresponding molecule (0, 1, or 2): Since DrugComb provides only data on monotherapies and two-drug combina-
tions, the maximum value a target feature can have is 2, if it is targeted by both drugs in a two-drug combination entry. Note also that
one drug can target more than one molecule.
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Setting 3 (MACCS)

In this setting, each drug is represented by a 162-dimensional binary molecular access system (MACCS) fingerprint.>®> Each po-
sition of the fingerprint corresponds to a molecular substructure, e.g., a functional group that may be present in a drug molecule.
The respective bit is set to 1 if the corresponding substructure is present in the drug molecule at least once, and 0, otherwise. Addi-
tionally, one input feature for each drug is needed to denote its treatment concentration. Consequently, this setting uses a total of
2162 +2-1 = 326 drug features. To encode monotherapies, one of the fingerprints and the corresponding concentration are set
to 0.

Setting 4 (PhysChem)

This setting is similar to Setting 3 but replaces each MACCS fingerprint with 182 numerical physico-chemical descriptors that denote
different properties of the respective drugs, such as the molecular weight, number of valence electrons, or the logP value that mea-
sures lipophilicity. Consequently, this setting uses a total of 2:182 + 2.1 = 366 drug features. To denote monotherapies, one set of
properties and the corresponding concentration are set to 0.

Machine learning algorithms
We investigate the predictive performance of three ML algorithms: neural networks random forests, and elastic net. We chose these
models, since neural networks and tree-based methods are commonly used for synergy prediction.” Furthermore, neural networks
are also popular for drug sensitivity prediction,*>°®*° while random forest and elastic nets are used less frequently for this
task.?®32€0-%3 |n our recently published benchmarking, we found, however, that tree-based methods and elastic nets frequently
outperform neural networks in predicting drug responses.® In line with our findings, several studies found that deep learning
does not improve over conventional ML algorithms for making predictions on tabular data,®*~°° or to generate feature representations
for model inputs.?®¢”

All prediction models were implemented in Python 3.11. Random forests and elastic net models were implemented using scikit-
learn Version 1.5.0,°° while neural networks were implemented using tensorflow Version 2.16.1°* with GPU support. The hyperpara-
meters for each algorithm are provided in Tables S3.

Model training and testing

After filtering and processing the data as described above, we randomly divided the remaining cell lines into a training set (80% of cell
lines) and a test set (20%). Since multiple data entries exist for each cell line (screening of different drugs/drug combinations at
different concentrations), the final training data consists of all entries involving a cell line from the training set (3,741,209 entries).
The final test data contains all remaining entries (1,550,215), i.e., all entries involving a cell line from the test set. This splitting ensures
that the test performance is always evaluated on cell lines that were unseen during model training, thereby mimicking the scenario of
making predictions for a previously unseen patient. In contrast, the same drugs and drug-combinations can occur in both the training
and test data. To further ensure that the test cell lines do not affect the training process, the PCA-based input features of our models
were computed using only cell lines from the training data.

On the training data, we performed a 5-fold cross validation (CV) to determine the best-performing hyperparameters of each ML
model (see Table S4). The CV folds were generated by randomly dividing the training cell lines into five disjoint folds and assigning all
entries involving a certain cell line to the corresponding fold. Since the number of available entries per cell line differs, the size of CV
folds varies slightly between 644,308 and 857,361 entries. For the hyperparameter combination with smallest mean absolute error
(MAE) averaged across all five folds, one final model is trained on the complete training data and its performance is evaluated on the
test data.

During CV, we again recomputed the PCA-based cell line features using only the cell lines in the respective training folds.

For the models using one-hot encodings (Setting 1 and Setting 2), each drug has a designated input node. This is not the case for
the models using drug features (Setting 3 and Setting 4), where swapping the features and concentration of the first drug with those
of the second drug represents the same treatment but results in changes in the input representation (cf. input visualization in
Figure 1). However, the model output should not depend on the order of the drugs in the input, i.e., it should not depend on whether
drug features of a drug A in the input vector are located in front of or behind those of a drug B. Therefore, each original sample is
included twice in the datasets for Settings 3 and 4. These duplicate samples differ only in the order of the drug features and con-
centrations: once in the order A-B, once in the order B-A. In the Results section, we investigate the impact on model performance
when models are trained using the duplicated versus non-duplicated data. The test performance is always evaluated on the
duplicated entries.

Dose-response curves and sensitivity measures

Using the relative inhibitions predicted by our models, it is possible to reconstruct dose-response curves for monotherapies and
dose-response matrices for combination therapies (cf. Figure S25 for examples). Based on these curves/matrices, various measures
of drug response can be derived. To this end, we first converted the (actual and predicted) relative inhibitions into relative viabilities by
subtracting the relative inhibitions from 100 and dividing the result by 100. Additionally, we clamped viabilities to [0,1]. Note that we
report relative viabilities in range [0, 1] rather than range [0, 100] to keep the results consistent and comparable to our previous
study.'
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To perform the curve-fitting for monotherapies, we employed a three-parametric logistic function from the drc R-package Version
3.0-1°5:58;

1-c¢c

fx) = c+1+exp(b-(/0§1(x) — log(e)))

Here, f(x) denotes the estimated relative viability of the considered cell line at drug concentration x, ¢ denotes the curve asymptote
for increasing concentrations, b denotes the curve’s slope, and e denotes the concentration at the inflection point. We only fit curves
when at least five dose-response points were available and we discarded all curves where the root mean squared error (RMSE) be-
tween the actual viabilities and those derived from the curve was greater than 0.3, a threshold that was previously employed for the
data generation in the GDSC database.**"**

From the fitted curves, we derived two measures of monotherapy drug responses, namely IC50 values and CMax viabilities. The
CMax viability is a novel drug sensitivity measure which we recently published.'” It is defined as the relative viability at the CMax con-
centration of the respective drug. The CMax concentration denotes the peak plasma concentration of a drug after administering the
highest clinically recommended dose.?” Thus, the CMax viability is designed to estimate the maximal effect a treatment can realis-
tically achieve. It ranges from 0 to 1, and smaller values denote a greater treatment effect. For the computation of CMax viabilities, we
evaluated the function of the fitted curve at the drug’s CMax concentration. An exemplary visualization of the CMax viability can be
found in Figure S25. For the computation of IC50 values, we intersected the dose-response curves with a horizontal line with y-inter-
cept 0.5.

For combination therapies, we developed a variation of the CMax viability we call the combination CMax viability that can be
derived from an actual/predicted dose-response matrix (cf. Figure S25). Our initial idea was to interpolate the values in the dose-
response matrix to derive the relative viability when administering the CMax concentration of both combination drugs simultaneously.
However, two synergistic drugs may have certain concentration windows with particularly high synergy/effectiveness.®® Thus, it is
possible that the smallest viability is reached at a concentration combination smaller than the CMax concentrations. (Note that
this should not happen for the dose-response curves we employed to compute the CMax viability for monotherapies since these
curves are monotonically decreasing). Consequently, we considered the entire concentration range below the respective CMax
values to compute our sensitivity measure. Conceptually, we want to derive the smallest viability within the area defined by the
two concentration windows of the drugs limited at their respective CMax concentration. To compute the combination CMax viability,
we linearly divided the concentration interval from 0 to the CMax for each drug into 100 equally spaced concentrations, each, result-
ing in 10,000 concentration combinations. For each combination, we estimated its relative viability through bilinear interpolation
(R package pracma’® Version 2.4.2) from the full dose-response matrix. Finally, we define the minimum of all 10,000 values as the
combination CMax viability. An exemplary visualization of this measure can be found in Figure S25.

As the CMax denotes the maximal feasible treatment concentration for a drug monotherapy, it may not be feasible to administer
the CMax concentration of two drugs in combination. Yet, we believe that the respective CMax concentrations are a reasonable up-
per bound to consider for the computation of combination CMax viabilities. Note also that administering the CMax concentration for
monotherapies might likewise not be feasible in all cases. Furthermore, the presented approach can theoretically be applied to any
desired concentrations other than CMax.

QUANTIFICATION AND STATISTICAL ANALYSIS

To assess the significance of performance differences between different prediction approaches (i.e., different ML algorithms and
model inputs), we performed paired Wilcoxon signed rank tests”' using the R-package stats Version 3.6.3.°” To compare two ap-
proaches, we considered the absolute difference between the actual and predicted inhibition values for each test sample from
both approaches. P-values were adjusted using the Bonferroni correction,’? where each p-value is multiplied by the number of tests.
Here, we performed a pairwise comparison of n = 12 approaches (3 ML algorithms, 4 input representations), resultingin (n-(n — 1))/
2 = 66 tests. All adjusted p-values <0.05 were considered significant.

Additionally, we computed effect sizes r € [0, 1] for each test using the R-package rcompanion Version 2.3.2 The absolute
value of r indicates the strength of the effect, and the sign indicates the direction, i.e., which of the two compared methods resulted
in lower absolute errors.

1.7°
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