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VORWORT 

Die nachfolgende Arbeit entstand unter der Anleitung von Herrn Univ.-Prof. Dr. rer. nat. 

Markus R. Meyer in der Abteilung für Experimentelle und Klinische Toxikologie der 

Fachrichtung 2.4. Experimentelle und Klinische Pharmakologie und Toxikologie der 

Universität des Saarlandes in Homburg in der Zeit von Februar 2021 bis Januar 2025. 

 

Teilergebnisse der vorliegenden Arbeit wurden vorab veröffentlicht oder sind zur 

Veröffentlichung eingereicht: 

- Simultaneous analysis of antihyperglycemic small molecule drugs and peptide 

drugs by means of dual liquid chromatography high-resolution mass 

spectrometry, Vollmer et al., Clin Chem Lab Med, 2023. (DOI: 10.1515/cclm-

2022-1316) 

- Rapid analysis of amatoxins in human urine by means of affinity column 

chromatography and liquid chromatography-high-resolution tandem mass 

spectrometry, Vollmer et al., Sci Rep, 2024. (DOI: 10.1038/s41598-024-72463-3) 

- Polyclonal antibodies towards abrin and ricin – Design and potential application 

for mass spectrometry-based analysis of human biosamples, Vollmer et al., 

ATOX-S-25-01100, submitted, 05/2025. (DOI not yet provided) 

- Advancing drug testing in oral fluid: Comparison of microflow and analytical flow 

LC-Orbitrap analysis, Vollmer et al., Microchem J, 2025. 

(DOI:10.1016/j.microc.2025.113508) 
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ZUSAMMENFASSUNG 

Analytische Methoden basierend auf hochauflösender Tandem-Massenspektrometrie 

(HRMS/MS) gekoppelt an Flüssigchromatographie (LC) ermöglichen die Detektion und 

Quantifizierung von schädlichen Verbindungen und Arzneistoffen in verschiedenen 

biologischen Proben. Diese Dissertation zielte darauf ab, die Möglichkeiten eines 

modernen Orbitrap-basierten Massenspektrometers in Verbindung mit einem dualen 

LC System zu untersuchen. Der Schwerpunkt lag auf der Entwicklung von LC-

HRMS/MS Methoden, um eine zeitsparende Probenvorbereitung, flexible und 

nachhaltige Analysestrategien sowie eine ausreichende Empfindlichkeit für den 

Nachweis von Analyten mit unterschiedlichen physikalisch-chemischen Eigenschaften 

zu ermöglichen. Vier verschiedene Methoden wurden entwickelt und validiert, welche 

die Analyse von Verbindungen mit niedrigem und hohem Molekulargewicht in Plasma, 

die Anwendung von Extraktionstechniken auf Antikörperbasis zum Nachweis toxischer 

Peptide in Plasma und Urin sowie eine vergleichende Studie zur Mikrofluss LC und 

analytischen LC zur Identifizierung ausgewählter missbräuchlich verwendeter Drogen 

in Speichel umfassten. Methodenentwicklung und Validierung zeigten bestimmte 

Limitationen auf, die resultierenden Methoden erwiesen sich aber als wirksam bei der 

Beantwortung kritischer toxikologischer Fragestellungen. Diese Arbeit verdeutlicht die 

Flexibilität und Vielseitigkeit aktueller LC-HRMS/MS-Instrumente und Analysen im 

Bereich der analytischen Toxikologie. 
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SUMMARY 

Analytical methods utilizing high-resolution tandem mass spectrometry (HRMS/MS) 

coupled to liquid chromatography (LC) allow the reliable detection and quantification 

of harmful compounds and drugs across various biological samples. This dissertation 

aimed to explore the capabilities of a state-of-the-art Orbitrap-based mass 

spectrometer paired with a dual LC system. The focus was on developing LC-

HRMS/MS methods that prioritize time-efficient sample preparation, flexible and 

sustainable analytical strategies, and sufficient sensitivity to enable detection of 

analytes with diverse physico-chemical properties. Four distinct methods were 

developed and validated, encompassing the analysis of both low and high molecular 

weight compounds in plasma, the implementation of antibody-based extraction 

techniques for detecting toxic peptides in plasma and urine, and a comparative study 

of microflow LC versus analytical flow LC for identifying selected abused drugs in oral 

fluid. While certain limitations were observed during method development and 

validation, the resulting methods proved effective in addressing critical toxicological 

questions. This work highlighted the flexibility and versatility of current LC-HRMS/MS 

instruments and analysis in the field of analytical toxicology. 
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1. GENERAL PART 
 
1.1 MASS SPECTROMETRY-BASED ANALYSIS 
 
Mass spectrometry (MS)-based analysis has become the technique of choice in 

analytical toxicology for comprehensive screening and quantification of drugs, foreign 

compounds, and their metabolites across different biological specimens [4]. Therefore, 

MS is widely applied for drug metabolism studies, the investigation of 

pharmacokinetics and toxicokinetics, metabolomics and proteomics studies, but also 

the development of qualitative and/or quantitative analytical procedures [5-7]. MS 

instruments basically consist of an ion source responsible for generating ions that enter 

a mass analyzer to be separated based on their mass-to-charge (m/z) ratio, followed 

by the conversion of the ions into electrical signals that are measured by a mass 

detector [8, 9]. Depending on the structure, molecular weight, polarity, and volatility of 

an analyte, different ionization techniques are used in clinical and forensic practice 

e.g., electron impact ionization (EI) or (heated) electrospray ionization ((H)ESI) [10-

14]. EI is preferred for volatile, low molecular weight, and thermally stable compounds, 

produces singly charged ions, and is commonly used in gas chromatography (GC)- 

MS analysis, which is applied in the clinical and forensic setting to perform drug 

screening in plasma and urine or for the quantification of drugs within the context of 

emergency toxicology [11, 15-17]. However, limitations associated with this technique 

are the detection of low-dosed compounds and the need to derivatize e.g., thermolabile 

and very polar compounds prior to their analysis [18, 19]. (H)ESI proved to be suitable 

for non-volatile, thermally unstable, and higher molecular weight compounds including 

proteins or peptides as multiple charged ions can be generated and analyzed [20]. To 

be considered, this ionization type is reported to be susceptible to matrix effects (ME) 

[21]. The centerpiece of MS instruments, which significantly affects sensitivity, is the 
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mass analyzer (quadrupole (Q), ion trap, time-of-flight (TOF), Fourier transform ion 

cyclotron, or Orbitrap mass analyzer) [22]. Focusing on high-resolution tandem MS 

(HRMS/MS), Orbitrap mass analyzers or even hybrid instruments equipped with two 

mass analyzers (e.g., Q-Orbitrap) are commonly used [13]. Different acquisition modes 

such as full scan (FS), targeted selected ion monitoring, product ion scan amongst 

others can be chosen for analysis. And although targeted analysis can improve 

sensitivity and selectivity, scan modes need to be thoroughly tested and evaluated for 

each procedure to maximize the potential of HRMS/MS analysis [23]. Furthermore, 

Orbitrap analyzers of state-of-the-art instruments can provide high mass resolution up 

to 480,000 at m/z 200 and accurate mass measurements (at the order of sub parts per 

million) [24, 25]. Thus, HRMS/MS analysis provides high selectivity and allows reliable 

identification of precursor ions of isobaric compounds in the MS1 spectrum and their 

fragments in the MS2 spectrum [26, 27]. In contrast, MS experiments with unit 

resolution pose a challenge for the discrimination of isobaric compounds without 

different fragmentation patterns or sufficient chromatographic separation prior to MS 

analysis [26]. Nevertheless, systems with unit resolution are still preferred for targeted 

quantitative analysis [28-30]. With the advent of more versatile mass analyzers, the 

power of Orbitrap-based HRMS/MS instruments is growing [31]. Thus, the evaluation 

of the performance of Orbitrap-based HRMS/MS analysis for qualitative but also 

quantitative purposes needs therefore to be an ongoing process to extend the current 

range of applications in analytical toxicology. 

 

1.2 CHROMATOGRAPHIC SEPARATION 

Chromatographic separation using liquid chromatography (LC) allows analytes to be 

separated due to interactions with a mobile phase and a stationary phase [32]. Hereby, 

reversed-phase LC (RPLC) and hydrophilic interaction LC (HILIC) are common 
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separation modes applied [33]. Choosing the appropriate stationary phase is crucial 

and depends on the physico-chemical properties of the analytes [34]. HILIC is 

preferred for the separation of polar and ionic compounds (e.g., sugars, amino acids, 

peptides, proteins) as they indicate better retention on polar stationary phases [35]. 

RPLC, mainly using alkyl bonded stationary phases (C18 columns) or phenyl-hexyl 

columns demonstrated to be suitable in metabolism studies, multi-analyte procedures 

for the separation of antipsychotic drugs, cardiovascular drugs, sedatives, stimulants 

amongst others but also for toxic plant and mushroom ingredients such as colchicine, 

yew constituents, or amatoxins [28, 36-42].  

Moreover, different LC configurations can be used (nanoflow LC, capillary flow LC, 

microflow LC, analytical flow LC) which differ in terms of the inner column diameter 

(ID) and flow rate. Nanoflow LC characterized by column ID < 100 µm and flow rates 

below 1 µL/min as well as capillary flow LC defined by column ID between 150-300 µm 

and flow rates between 1-10 µL/min are preferred in proteomics and metabolomics 

workflows [43]. To be considered, the conduction of e.g., comprehensive proteome 

analysis necessitates gradient elution that is time-consuming and requires one or more 

hours [44]. Microflow LC using column ID between 0.5-1.0 mm and flow rates between 

10-200 µL/min can be applied for large and small molecule analysis and is expected 

to reduce the injection volume, solvent consumption, column back pressure, and ME, 

but also to increase analytical sensitivity [43, 45-48]. Laboratories focusing on e.g., 

emergency toxicology usually use analytical flow LC with pumps operating columns 

with ID of 2.1 mm (or higher) and flow rates > 200 µL/min [43].  

Currently, LC-based methods are usually carried out using single-channel LC systems 

[12, 41, 49-51]. However, the capabilities of LC analysis can be extended by the use 

of dual LC systems, which are expected to increase sample throughput, ensure greater 

analytical flexibility, enable better regeneration of LC columns due to an extended re-
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equilibration phase, and avoid the need to change LC columns for each application 

[52]. Dual LC systems can operate two identical columns or two different columns (e.g., 

RP and HILIC) in parallel [53, 54]. Hence, dual LC systems are a worthwhile 

investigation for smooth analytical workflows. 

 

1.3  BIOLOGICAL MATRICES 

Different biological matrices can be used to develop analytical approaches for LC-

HRMS/MS analysis such as blood (plasma, serum), urine, and oral fluid (OF) [37, 50, 

51, 55-57]. In blood, analytes may be detected qualitatively, however, drugs are 

primarily quantified, as their concentrations offer valuable insights into their 

pharmacological or toxic effects [58]. However, venous blood sampling is invasive, 

must be performed by healthcare professionals, and carries higher infection risks [59].  

Therefore, OF, which has emerged as an alternative matrix to blood and urine, provides 

simple and non-invasive sample collection, which can be performed in an open 

environment decreasing the risk of adulteration [59, 60]. Drug transfer from the blood 

into OF via passive diffusion is influenced by multiple factors including physico-

chemical properties (drug pKa, extent of protein binding, lipophilicity, molecular weight), 

its composition, the salivary flow, and the pH [60]. Basic substances (e.g., 

amphetamines) are expected to be present in higher concentrations, as they are 

ionized in the acidic environment (pH 6.2-7.4) and thus remain trapped in OF [59]. 

Altered concentrations in OF are also influenced by e.g., cigarette smoking or the 

intake of drugs with anticholinergic activity, which can lead to the ́ dry mouth syndrome´ 

and to a reduced salivary flow [59]. OF is used to monitor drug consumption in clinical 

toxicology, doping control as well as workplace and roadside drug testing [61]. For the 
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latter, the detection of abused drugs (e.g., benzodiazepines, opioids, or stimulants) is 

at the center of interest [62].  

Urine is still recognized as the preferred matrix for drug screening purposes [59]. In 

contrast to venous blood sampling, larger volumes can easily be collected without 

interfering with the patient's privacy. However, if urine collection is not supervised, drug 

screening results may be affected due to possible adulteration, dilution, drug spiking, 

or sample substitution [59, 63]. After compounds have been metabolized, they are 

eliminated mainly via the renal system into the urine, where they accumulate and can 

be detected in higher concentrations than in blood up to several weeks [63]. To be 

considered, the drug concentration can be influenced by the urinary flow, the urinary 

pH, the frequency of bladder emptying, or the intake of fluids, leading to urine dilution 

[59, 64]. 

To be considered, the selection of the appropriate sample matrix is crucial and depends 

on the availability, the pharmacokinetics of compounds, and the objective of the study 

[59].  

 

1.4  SAMPLE PREPARATION TECHNIQUES 

For the development of sensitive and selective qualitative and/or quantitative LC-

HRMS/MS-based procedures, appropriate sample preparation is required e.g., to 

achieve reproducible recovery (RE) or reduce the occurrence of ion enhancement or 

suppression effects [58, 59]. Protein precipitation (PP), liquid-liquid extraction (LLE), 

solid-phase extraction (SPE), or combinations of these methods are well-established 

and routinely used in analytical toxicology [15, 37, 65, 66]. For PP, organic solvents or 

zinc sulfate are used to remove proteins or phospholipids from plasma or urine [36, 
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65]. LLE is based on the transfer of analytes between two immiscible phases (aqueous 

phase and organic phase) due to their different solubility and is applied for the 

extraction of a variety of toxicologically relevant compound classes e.g., antidiabetics, 

antidepressants, neuroleptics, and benzodiazepines [15, 29, 67, 68]. Although PP and 

LLE are simple to perform, both extraction techniques are often not sufficient to remove 

interfering matrix components (fatty acids, lipids, phospholipids) responsible for ion 

suppression or enhancement effects and thus affecting analytical sensitivity [69]. This 

limitation can be addressed by SPE which consists of preconditioning the SPE column, 

sample application, washing steps, and finally compound elution. The target analytes 

are retained by the stationary phase while interfering components are washed away 

[32]. Different SPE-based procedures with subsequent LC-HRMS/MS or GC-MS 

analysis are already established for the detection or quantification of amatoxins, 

stimulants, designer drugs, and peptides [20, 70, 71]. Besides, for the extraction of 

proteins or peptides, antibody-based enrichment using magnetic beads can be 

performed prior to LC-HRMS/MS analysis. Proteins or peptides (antigens) are isolated 

from complex matrices using antigen-specific monoclonal or polyclonal antibodies 

(mAB or pAB) that are covalently or non-covalently attached to a solid support [72]. 

Protein A and G magnetic beads proved to be suitable as they can capture 

immunoglobulins from different mammalian species (e.g., human, rabbit, mouse), 

prevent non-specific binding and thus reduce the risk of co-elution of interferences 

during LC-HRMS/MS analysis [73, 74].  

To state, conventional sample preparation procedures form an essential part within LC-

HRMS/MS-based workflows. Hence, continuous research is required to expand the 

landscape of current sample preparation techniques. 
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1.5 LIQUID CHROMATOGRAPHY-HIGH-RESOLUTION MASS SPECTROMETRY 

FOR SMALL MOLECULE AND PEPTIDE ANALYSIS 

1.5.1 ABUSED DRUGS 

While cannabis is the most abused (illicit) drug in Europe, other substances such as 

cocaine, synthetic stimulants (amphetamine, methamphetamine, synthetic 

cathinones), 3,4-methylenedioxymethamphetamine, heroin, opioids, new 

psychoactive substances, ketamine, or lysergic acid diethylamide also contribute to 

the growing issue of drug abuse [75]. Drugs of abuse testing can be carried out by 

means of antibody-based procedures (immunoassays, IA), which are commonly used 

in clinical practice as they provide rapidity and simplicity. Drug classes typically covered 

include benzodiazepines, cannabinoids, hallucinogens, opiates, or stimulants. 

However, IA are limited by their sensitivity and are susceptible to cross-reactions, 

leading to false-positive or false-negative results [76]. A commercially available opiate-

based enzyme-linked immunosorbent assay for morphine detection is reported to show 

cross-reactivities towards 6-monoacetylmorphine, codeine, dihydrocodeine, morphine-

β-3-glucuronide, oxycodone, hydromorphone, and oxymorphone. Thus, increased 

sensitivity and specificity as well as the possibility to perform comprehensive screening 

support MS-based testing as analytical tool to confirm (illicit) drug abuse [77]. As the 

problem of drug use continues to rise, it is becoming increasingly important to develop 

LC-HRMS/MS-based methods using advanced analytical techniques to reliably and 

sensitively detect abused drugs. 

 

1.5.2 ANTIDIABETIC DRUGS 

Globally, more than 500 million people aged between 20-79 years suffer from type I or 

type II diabetes mellitus (T1DM or T2DM), and the number is expected to rise in the 

coming years [78]. T1DM is characterized by the destruction of insulin-producing beta 
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cells in the pancreatic islets, resulting in an absolute insulin deficiency requiring insulin 

therapy, while T2DM is characterized by a progressive decline in the beta cell function 

leading to insulin resistance [79]. The intake of antidiabetic drugs can be associated 

with the occurrence of life-threatening hypoglycemia, which underlines the need for 

rapid, sensitive, and reliable quantitative procedures [67]. Human insulin is an 

endogenous peptide hormone (5807 Da, amino acids 51) consisting of two chains (A- 

and B-chain) connected via two disulfide bridges and plays an essential role in the 

regulation of blood glucose levels and the energy and anabolic metabolism [20, 80]. 

Synthetic insulin analogues have been further developed by amino acid substitutions 

(short-acting, insulin lispro, insulin aspart, insulin glulisine; long-acting, insulin detemir, 

insulin glargine, insulin degludec) [81]. Insulins or insulin mimetics can be misused 

either for suicide or homicide, but also to enhance athletic performance, which is why 

they are classified as prohibited substances by the World Anti-Doping Agency [80, 82]. 

Thomas et al. focused on the development of analytical methods to detect and quantify 

human insulin, its synthetic analogues, and the C-peptide using LC-HRMS/MS or LC-

ion mobility-MS after SPE or immunoaffinity purification [20, 83, 84]. Particularly, LC-

HRMS/MS by means of HESI is preferred as these peptide drugs are detected multiple 

charged with m/z 800-1,500 [81]. With respect to T2DM, oral antidiabetic drugs (OAD) 

such as the biguanide metformin, dipeptidyl peptidase-4 inhibitors (e.g., saxagliptin, 

sitagliptin, vildagliptin), sodium-glucose transport protein 2 inhibitors (e.g., 

dapagliflozine, empagliflozine), glinides (e.g., repaglinide), and sulfonyl urea (e.g., 

glibenclamide, glimepiride) can be used, but also the subcutaneously administered 

glucagon-like peptide-1 (GLP-1) analogues (e.g., exenatide, semaglutide)  [85, 86]. 

LC-MS-based methods for the detection and/or quantification of OAD or GLP-1 

analogues are reported in plasma or urine after LLE or SPE [87-89].  
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To date, the development of LC-MS-based methods has focused exclusively on either 

OAD or insulins, thus creating a significant gap of knowledge in the analysis of 

antidiabetic drugs which can be addressed by the development of a combined 

workflow. 

 

1.5.3 MUSHROOM AND PLANT TOXINS  

Amatoxin-containing mushrooms (e.g., amanita phalloides, death cap), which mainly 

contain the bicyclic octapeptides α-, β-, and γ-amanitin, play an important role in the 

forensic and clinical setting as they are reported to be the main cause of severe to fatal 

mushroom poisonings [90]. Amatoxins enter the hepatocytes via the organic anion 

transporting protein 1B3 and inhibit the transcription process in eukaryotic cells by 

binding to the RNA polymerase II leading to apoptosis [90, 91]. After amatoxin 

ingestion, patients are asymptomatic for the first 6-12 h followed by gastrointestinal 

disorders, which might appear within the next 12-24 h. Thereafter, the kidneys and the 

liver are damaged, accompanied by an increase in liver enzyme activities. Finally, 

multi-organ failure and death may occur a few days after consumption [92, 93]. In the 

case of amatoxin intoxication, therapy is primarily based on stabilizing the patient's 

condition, electrolyte balancing, and treatment with silibinin as antidote, which is 

recommended within 48 h following toxin ingestion [92]. LC-HRMS/MS is the most 

commonly applied analytical technique for the detection and also quantification of 

amatoxins in different biological matrices given the fact that high separation efficiency 

is combined with high sensitivity, specificity, and mass accuracy [93]. After SPE-based 

extraction, Bambauer et al. used HILIC-HRMS/MS for qualitative α- and β-amanitin 

detection in urine down to 1 ng/mL and RPLC-HRMS/MS for their quantification in 

plasma down to 0.2 ng/mL [70, 90, 94]. The study reported by Maurer et al. describes 

the enrichment of α- and β-amanitin from urine using immunoaffinity extraction [95].  



GENERAL PART 

 

10 

 

Abrin and ricin are highly toxic plant proteins contained in the seeds of Abrus 

precatorius or Ricinus communis. They can be used to commit suicide or as biological 

weapon, which is why they are mentioned on the US Select Agents and Toxins list [96-

98]. Both proteins (60-64 kDa) consist of two polypeptide chains (A- and B-chain) 

linked by a disulfide bridge [99]. On the cellular level, they are type-II ribosome 

inactivating proteins, interfering the process of eucaryotic protein synthesis causing 

cell death. After intravenous injection, both toxins exhibit similar lethal doses, 50 % 

(LD50) at 2.7 and 0.7 µg/kg body weight, respectively. Patients suffer from unspecific 

gastrointestinal symptoms and in contrast to the amatoxins, no antidote is yet available 

[96, 97]. Immunoaffinity or carbohydrate affinity enrichment including enzymatic 

digestion using trypsin in combination with MS-based analysis (LC-ESI-MS/MS, LC-

ESI-HRMS/MS, or matrix assisted laser desorption ionization TOF MS) is reported to 

detect abrin or ricin with sufficient sensitivity in environmental samples and food 

matrices with reduced matrix background [97, 99-101].  

However, clinical toxicologists typically receive plasma and urine samples to be 

analyzed for the presence of abrin or ricin [102]. Therefore, strategies to confirm the 

presence of abrin, ricin, or also amatoxins in human biosamples remains crucial in 

analytical toxicology. 
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2. AIMS AND SCOPES 
 
The detection and/or quantification of harmful compounds or drugs are important tasks 

to be performed in analytical toxicology. This thesis aimed to address these analytical 

challenges by evaluating the performance of HRMS/MS analysis provided by a state-

of-the-art instrument in combination with a dual LC system. 

 

Therefore, the following steps had to be conducted: 

 Development of LC-HRMS/MS-based methods for the detection and/or 

quantification of selected small molecule drugs and peptides 

 Evaluation of dual LC for smooth analytical workflows 

 Investigation of different biological matrices and sample preparation techniques   

 Investigation of microflow LC and comparison with analytical flow LC  

 Validation of the established approaches in accordance with international 

guidelines and recommendations including proof-of-concept studies 
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3. PUBLICATIONS OF THE RESULTS 

The results of the studies were presented in the following publications: 

 

3.1 Simultaneous analysis of antihyperglycemic small molecule drugs and 

peptide drugs by means of dual liquid chromatography high-resolution mass 

spectrometry [1] 

(DOI: 10.1515/cclm-2022-1316) 

 

 

Author contribution 

Aline C. Vollmer (conceptualization, methodology, validation, formal analysis, writing 

original draft); Armin A. Weber (resources, writing review & editing); Lea Wagmann 

(conceptualization, methodology, writing review & editing); Markus R. Meyer 

(conceptualization, methodology, resources, writing review & editing, supervision). 
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3.2 Rapid analysis of amatoxins in human urine by means of affinity column 

chromatography and liquid chromatography-high-resolution tandem mass 

spectrometry [2] 

(DOI: 10.1038/s41598-024-72463-3) 

 

 

 

 

 

Author contribution 

Aline C. Vollmer (Data curation, formal analysis, investigation, methodology, software, 

validation, visualization, writing original draft, review & editing); Claudia Fecher-Trost 

(conceptualization, methodology, writing review & editing); Lea Wagmann (writing 

review & editing); Candace S. Bever (writing review & editing); Christina C. Tam (writing 

review & editing); Markus R. Meyer (data curation, conceptualization, funding 

acquisition, investigation, methodology, resources, supervision, writing review & 

editing). 
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3.3 Polyclonal antibodies towards abrin and ricin – Design and potential 

application for mass spectrometry-based analysis of human biosamples 

 

This is a pre-copyedited, author-produced version of a submitted article  

(manuscript number: ATOX-S-25-01100, submitted 05/2025, DOI not yet provided) 

 

 

 

Author contribution 

Aline C. Vollmer (conceptualization, data curation, methodology, validation, formal 

analysis, visualization, investigation, writing original draft); Claudia Fecher-Trost 

(investigation, writing review & editing); Martin Jung (investigation, writing review & 

editing); Marnie Cole (methodology, writing review & editing); Tilman F. Arnst 

(methodology, conceptualization, writing review & editing); Veit Flockerzi (resources, 

writing review & editing); Lea Wagmann (investigation, writing review & editing); 

Markus R. Meyer (conceptualization, methodology, resources, writing review & editing, 

supervision). 
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3.4 Advancing drug testing in oral fluid: Comparison of microflow and analytical 

flow LC-Orbitrap analysis [3] 

(DOI:10.1016/j.microc.2025.113508) 

 

 

 

 

Author contribution 

Aline C. Vollmer (methodology, investigation, software, formal analysis, data curation, 

writing original draft, review & editing); Lea Wagmann (conceptualization, writing 

review & editing); Armin A. Weber (methodology, writing review & editing); Markus R. 

Meyer (conceptualization, investigation, data curation, resources, writing review & 

editing, supervision). 
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4. DISCUSSION 

A state-of-the-art Orbitrap-based instrument coupled to a dual LC system for 

chromatographic separation, was evaluated using the four presented approaches. 

These studies clearly expanded the current spectrum of analytical methods for the 

selected compound classes through the application of advanced and sustainable 

techniques.  

The first study focused on the simultaneous analysis of ten OAD and nine 

antihyperglycemic peptides and their quantification in plasma. Methods for the 

detection and/or quantification of OAD or human insulin, its synthetic analogues, and 

GLP-1 agonists are reported [20, 67, 83, 84]. If glucose levels fluctuate e.g., due to 

uncontrolled T2DM, the patient's treatment is based on the intake of different OAD 

and/or insulin therapy [103]. This increased the necessity to develop an approach 

suitable for analyzing antihyperglycemic small molecule drugs and peptide drugs in a 

smooth workflow. First, a PP of plasma samples was carried out. Then, the supernatant 

was split into two aliquots. One aliquot was analyzed immediately for the OAD, while 

the other underwent a subsequent SPE for enrichment of the antihyperglycemic 

peptides before analysis. In LC analysis, it is important to adequately adjust the column 

to the initial gradient conditions after the elution of the last compound in the 

chromatogram [104]. This facilitates reproducible chromatographic results [105]. 

Additionally, carry-over can occur, as compounds remain in the LC system and can 

therefore be detected in the subsequent analysis. Although matrix blanks indicated to 

be more efficient in reducing column carry-over, flushing the column with mobile phase 

is a supportive option [106, 107]. Based on a dual LC system, two similar RPLC 

columns were operated in parallel. Total runtime was set to 22 min while 

chromatographic separation of the OAD or the peptide drugs was already completed 
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after 12 min. This allowed the sample analysis on column 2 to be performed at the 

same time as the equilibration of column 1. The main limitation of this approach lies in 

accurately quantifying the peptide drugs at lower concentration levels. The peptide 

drugs were analyzed in the product ion scan mode to achieve sufficient sensitivity but 

also reproducible peak areas, which are required for quantitative analysis. However, 

due to missing scan points at low concentrations, the lower limit of quantification of 

human insulin and its synthetic analogues had to be set to 5 ng/mL, although 

physiological insulin plasma levels may vary between 0.2-3.0 ng/mL [81, 108]. Insulin 

glargine, exenatide, and semaglutide were only considered further for qualitative 

detection as reproducible quantification could not be guaranteed.  

However, the analysis of patient samples submitted for toxicological analysis 

demonstrated the application of the established method in case of insulin overdoses, 

which particularly contribute to severe hypoglycemia. Furthermore, from an analytical 

perspective, this approach offers significant advantages. Small molecule drugs and 

peptide drugs can be extracted from plasma by means of one sample preparation 

procedure. The use of dual LC has been demonstrated to enhance time efficiency, as 

it enables the analysis of compounds and column equilibration in parallel. 

The second study focused on the detection of α-, β-, and γ-amanitin in human urine 

after antibody-based enrichment using magnetic beads followed by LC-HRMS/MS 

analysis. Methods established for amatoxin detection and/or quantification rely mainly 

on SPE [70, 90, 94, 109]. However, SPE require organic solvents and, if performed 

manually, the process is time-consuming. To avoid time-demanding sample clean-up 

while achieving sufficient sensitivity for the determination of suspected amatoxin 

poisoning, the mAB AMA9G3, which was affinity purified from mouse ascites fluid and 

non-covalently attached to the surface of protein A and G magnetic beads, allowed the 



DISCUSSION 

21 

 

detection of α-, β-, and γ-amanitin to as low as 1 ng/mL in human urine, which was in 

line with previous reported SPE-based procedures [40, 70, 94, 109]. After antibody 

binding, amatoxins were extracted using affinity column chromatography. As shown 

during method development and validation, the prepared antibody-bead columns can 

be stored in buffer solution (pH 7.4) at 4 °C for at least two months.  

Thus, with this method, suspected amatoxin ingestion can be determined in less than 

90 min, as it only requires affinity column chromatography to extract the target 

compounds, followed by LC-HRMS/MS analysis. The proof-of-concept study, 

conducted on suspected cases of amatoxin intoxication, compared this method to 

previously developed SPE-based procedures and showed agreement in amatoxin 

detection results [40, 94].  

The strategy of antibody-based enrichment was pursued further in the third study, 

which aimed to design pAB (pABAbrin and pABRicin) towards an abrin-A-peptide and 

ricin-peptide by repeated immunization of rabbits and to investigate their potential 

application in MS-based analysis. Since antibody specificity was demonstrated by 

antibody epitope mapping, two approaches (A and B) were investigated for the 

detection of abrin, ricin, or related peptides in human biosamples. In approach A, blood 

and urine samples from two suspected ricin intoxications were analyzed after affinity 

column chromatography, followed by overnight trypsin digestion and preparation for 

nanoLC-MS analysis using a 48 min LC gradient. While ricin intake was confirmed in 

one of the two cases, the time-consuming nature of this workflow limited its utility in 

situations requiring rapid diagnosis. In contrast, approach B only involved affinity 

column chromatography, followed by LC-Orbitrap analysis based on a 6 min gradient, 

allowing the detection of an abrin-A-peptide and ricin-peptide in plasma to as low as 5 

ng/mL. Due to the greater importance of feces for excretion, this approach was only 
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based on plasma [110]. Within the validation of approach B, peptide degradation 

occurred under different storage conditions (short-term, 4 °C; benchtop, 22 °C; 

freeze/thaw, -20 °C; storage period 7 h and 24 h in blank plasma), although the 

peptides were handled in Protein Lo Bind tubes to avoid adsorption and therefore a 

loss of analyte. Stability issues were addressed by the use of tubes spray coated with 

different proteases inhibitors, which are reported to be present in blood plasma and 

responsible for proteolytic degradation [111]. Even though the stability of the abrin-A-

peptide and ricin-peptide was improved, the availability of these coated tubes in 

hospitals need to be considered. One important limitation for future consideration is 

the use of enzymatic digestion prior to MS analysis of the peptides.  

Significantly, the presence of abrin or ricin in human matrix can be verified using both 

approaches while avoiding direct exposure to the toxic proteins in the laboratory. 

Approaches A and B have also demonstrated that pABAbrin and pABRicin can be 

flexibly integrated in different MS-based workflows, signifying their potential value in 

analytical toxicology. 

The fourth study focused on the development and validation of a microflow LC-

Orbitrap-based method for the detection of 29 abused drugs in OF and its comparison 

with analytical flow LC-Orbitrap analysis. Reducing the flow rate (analytical flow LC, 

250 to 500 µL/min; microflow LC,100 µL) and the column ID (analytical flow LC, ID, 2.1 

mm; microflow LC, ID 1 mm) allowed in particular for more narrow peaks, reduced 

injection volume (analytical flow LC, 5 µL; microflow LC, 1 µL) and solvent 

consumption. Since the injection volumes were different for both LC setups, the 

absolute amount of analyte applied on the microflow column was five times lower than 

on the analytical column, which resulted in increased sensitivity for most compounds 

with limits of detection (LOD) between 0.2-25 ng/mL. It has been demonstrated that 
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lower flow rates result in smaller droplets following ionization with (H)ESI. These 

droplets have a larger surface area, leading to a higher ionization efficiency [112]. 

Increased sensitivity was finally demonstrated by comparing microflow LC-HRMS/MS 

with analytical flow LC-HRMS/MS using pooled OF samples, as microflow LC-

HRMS/MS achieved to detect a higher number of analytes. Specific challenges relate 

to Δ9-tetrahydrocannabinol (THC) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol. 

Despite the enrichment of the cannabinoids with SPE, THC was detectable only as low 

as 25 ng/mL, which did not correspond to the reported cut-off concentration of 2.0 

ng/mL by the Substance Abuse and Mental Health Services Administration and the 

European Workplace Drug Testing Society, that establish guidelines to allow countries 

to conduct legally compliant OF drug testing [113, 114]. The lack of sensitivity was 

attributed to the low RE and the presence of ME. Moreover, methods targeting 

cannabinoids are typically based on LC-triple quadrupole MS as its offers both 

selectivity and sensitivity with LOD as low as 1 ng/mL [115].  

Nonetheless, this study expanded the applicability of microflow LC for small molecule 

analysis while contributing to enhanced sustainability. 

The conducted studies are well suited to address analytical challenges within the field 

of analytical toxicology and merit application particularly in clinical practice. As each 

approach covered different compound classes, the need to employ distinct acquisition 

modes in HRMS/MS workflows to achieve sufficient sensitivity became important. Dual 

LC was evaluated and demonstrated to be valuable for LC-HRMS/MS-based 

procedures. The analysis of study samples successfully determined the presence or 

absence of suspected intoxications. Limitations encountered in each study were 

identified and discussed, with considerations for future research. 
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5. CONCLUSION  

The discussed projects demonstrated that LC-HRMS/MS analysis is an essential 

technique in analytical toxicology that offers both selectivity and sensitivity. This makes 

it crucial for applications involving the qualitative and quantitative determination of a 

diverse range of compounds. Using advanced LC separation techniques and sample 

preparation methods has led to the development of time-efficient, reliable, sensitive, 

and more sustainable approaches. The four established and validated methods 

demonstrated the suitability, flexibility, and versatility of LC-HRMS/MS analysis for 

detecting and quantifying selected small molecule drugs and peptide-based 

compounds across various biological matrices. 
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7. ABBREVIATIONS 

MS   Mass spectrometry 

m/z   Mass-to-charge  

EI   Electron impact ionization 

(H)ESI  (Heated) electrospray ionization 

GC-MS  Gas chromatography-mass spectrometry 

ME   Matrix effect 

Q   Quadrupole 

TOF   Time-of-flight 

HRMS/MS  High-resolution tandem mass spectrometry 

FS   Full scan 

LC   Liquid chromatography 

RP   Reversed-phase 

HILIC   Hydrophilic interaction chromatography 

ID   Inner column diameter 

OF   Oral fluid 

RE   Recovery 

PP   Protein precipitation 

LLE   Liquid-liquid extraction 

SPE   Solid-phase extraction 

mAB   Monoclonal antibody 

pAB   Polyclonal antibody 

IA   Immunoassay 

T1DM   Type I diabetes mellitus 

T2DM   Type II diabetes mellitus 

OAD   Oral antidiabetic drug 

GLP-1   Glucagon like peptide-1 

LD   Lethal dose 

LOD   Limit of detection 

Δ9-THC  Δ9-Tetrahydrocannabinol 

 


