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Abstract 
 

This dissertation investigates the potential of mathematical modeling to enhance the 

management of cardiometabolic diseases. These conditions represent a major global health 

challenge due to their high prevalence and the complex nature of underlying metabolic risk 

factors. Utilizing nonlinear mixed-effects (NLME) modeling, the projects presented in this 

thesis demonstrate that modeling can (i) improve the accuracy of clinical biomarker data, 

(ii) incorporate biological rhythms into pharmacokinetic analyses, and (iii) support the 

development of cost-efficient treatment strategies. The methodological focus includes 

correcting biases in biomarker measurements, capturing circadian variation in drug 

exposure, and evaluating flexible dosing regimens that balance therapeutic efficacy with 

cost-effectiveness. By aligning quantitative insights with clinical practice, this work illustrates 

how data-driven modeling can personalize treatment and optimize healthcare resource 

allocation. The findings highlight mathematical modeling as a valuable tool for advancing 

precision medicine in cardiometabolic care through more adaptive, efficient, and 

individualized treatment approaches. 
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Zusammenfassung 
 

Diese Dissertation zeigt das Potenzial mathematischer Modellierung zur Verbesserung des 

Managements kardiometabolischer Erkrankungen auf. Aufgrund der hohen Prävalenz und 

der komplexen metabolischen Risikofaktoren stellen diese Erkrankungen eine bedeutende 

globale Gesundheitsherausforderung dar. Diese Arbeit vereint drei Projekte, die jeweils 

mittels mathematischer Modellierung nichtlinearer gemischter Effekte (NLME) zeigen, wie 

Modellierungsansätze (i) die Genauigkeit klinischer Messergebnisse von Biomarkern 

verbessern, (ii) biologische Schwankungen in pharmakokinetische Analysen integrieren 

und (iii) zur Entwicklung kosteneffizienter Behandlungsstrategien beitragen können. Dabei 

liegt der methodische Fokus auf der Korrektur von Biomarker-Messungen infolge 

fehlerhafter Probenlagerung, der Beschreibung und Erklärung von zirkadianen Variationen 

in der Wirkstoffexposition sowie der Entwicklung flexibler Dosierungsschemata, die 

therapeutische Wirksamkeit mit ökonomischen Aspekten in Einklang bringen. Durch die 

Verknüpfung quantitativer Modellierung mit klinischer Anwendung veranschaulicht diese 

Arbeit, wie datenbasierte Ansätze zur Personalisierung von Therapien und zur effizienteren 

Nutzung von Gesundheitsressourcen beitragen können. Die Ergebnisse unterstreichen den 

Mehrwert mathematischer Modellierung als ein Instrument für eine adaptivere, effektivere 

und individuellere Versorgung von Patienten mit kardiometabolischen Erkrankungen. 
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1 Introduction 
 

In recent years, the global healthcare landscape has been significantly challenged by the 

increasing prevalence of cardiometabolic diseases, which encompass a spectrum of 

conditions affecting the heart, blood vessels, and metabolic processes within the body (6,7). 

Metabolic syndrome, composed of at least three of the following five components, is 

becoming an increasingly pressing health problem in the modern world: central adiposity as 

measured by waist circumference (a marker for visceral adipose tissue), elevated blood 

sugar (indicative of insulin resistance), elevated triglyceride levels, low high-density 

lipoprotein (HDL) cholesterol levels, and elevated blood pressure (8). As suspected from 

the elevated blood sugar, a central comorbidity is Type 2 Diabetes Mellitus (T2DM), a 

condition characterized by disrupted glucose metabolism and insulin resistance (9,10). 

Particularly, the increasingly prevalent comorbidities over time, such as obesity, 

hypertension, or dyslipidemia, further increase the complexity of managing cardiometabolic 

diseases (11). 

Metabolic Syndrome affects up to 30% of the population in industrialized nations, with 

increasing prevalence among younger age groups (12). In addition to the immediate 

consequences for those affected, the Metabolic syndrome holds high relevance from a 

health economic perspective. For instance, in Germany alone, the direct healthcare costs 

attributed to diabetes, obesity, and hypertension reached approximately 15 billion euros in 

2020, with secondary complications further straining healthcare resources (12). 

Understanding the complex interplay of genetic, environmental, and lifestyle factors 

contributing to the development and individual progression of these diseases is therefore 

essential for long-term early patient assistance and minimizing subsequent damage and 

costs (13). Moreover, the prevalence of comorbidities, particularly between diabetes and 

cholesterol disorders, poses additional challenges for patients and healthcare providers 

(14). 

For this reason, there is an urgent need for innovative approaches to understand the 

underlying mechanisms, predict disease trajectories, and develop effective interventions 

including new treatment options (6,7).  

To address these multifaceted issues, collaborative initiatives like the IMI DIRECT 

(Innovative Medicines Initiative - Diabetes Research on Patient Stratification) Consortium 

were initiated and have significantly contributed to this effort. Funded by the European 

Innovative Medicines Initiative (IMI), this consortium united 20 academic institutions and 
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five pharmaceutical companies to investigate the progression of T2DM and its therapeutic 

responses (14). By analyzing data from a cohort of over 3,000 participants across five 

European countries, the IMI DIRECT Consortium provided critical insights into individual 

disease progression and variability in treatment responses (11). 

As part of the IMI DIRECT Consortium, this dissertation builds on these findings to deepen 

our understanding of T2DM and related cardiometabolic diseases. The research presented 

herein focuses on the use of mathematical modeling and pharmacometrics to address the 

key challenges in the prevention and treatment of these complex conditions. 

Pharmacometrics is an interdisciplinary field, that applies mathematical models and 

simulations to analyze the relationships between drugs, patients, and diseases. It includes 

approaches such as physiologically based pharmacokinetics (PBPK), quantitative systems 

pharmacology (QSP), and population-based modeling, all of which play a central role in 

developing accurate and individualized treatment strategies. 

This dissertation aims to make meaningful contributions to the field through three distinct 

projects. Each project employs mathematical modeling and simulation to generate 

hypotheses, explore research questions, and provide actionable insights for healthcare 

professionals, patients, and researchers. The overarching goal is to reduce the burden of 

cardiometabolic diseases, improve patient outcomes, and address gaps in our 

understanding of these complex conditions (15). 

Having established the global relevance of cardiometabolic diseases and the importance of 

pharmacometrics, the following sections examine in more detail the key components of 

these conditions: Metabolic Syndrome, T2DM, and lipid disorders.  
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1.1 Metabolic Syndrome 
 

The metabolic syndrome is a collection of metabolism-related symptoms that increase an 

individual's risk of developing cardiovascular diseases (CVD), including heart disease, 

atherogenic dyslipidemia, stroke, and T2DM (16). However, there are various definitions of 

metabolic syndrome, and the ranking and importance of each parameter is discussed 

controversy in the literature (17). The relevant metabolic parameters that are associated 

with the syndrome are increased blood pressure, altered lipid values such as increased 

triglycerides and decreased HDL cholesterol, overweight, especially abdominal obesity, and 

increased fasting blood sugar or pre-existing diabetes (13). Each of these symptoms alone 

poses a risk factor for vascular and cardiovascular diseases (18). When these symptoms 

co-occur, the risk further increases, leading to the metabolic syndrome often being referred 

to as the "deadly quartet" (19). 

The World Health Organization (WHO) defines metabolic syndrome as an insulin resistance 

combined with two or more of the other symptoms: abdominal obesity reflected by a high 

waist/hip ratio or BMI, hypertension, and/or hyperlipidemia (20,21). The National 

Cholesterol Education Program (NCEP), International Diabetes Federation (IDF), and 

American Association of Clinical Endocrinologists (AACE) definitions are similar but differ 

in the selection of essential criteria for diagnosis, the way of combining the criteria, or the 

cut-off values for specific criteria (22). Table 1 provides a summary of the three commonly 

used definitions of metabolic syndrome. 

In clinical practice, the severity assessment of the metabolic syndrome serves as a tool to 

predict individual risk for developing cardiovascular diseases and T2DM (23). Various 

reviews and analyses in the literature have highlighted that CVD is the primary outcome of 

metabolic syndrome (24). Additionally, the presence of metabolic syndrome can be utilized 

as a predictive marker for identifying T2DM (25). 

Cardiovascular diseases remain the leading cause of death worldwide, accounting for an 

estimated 17.9 million deaths each year and representing approximately 32 percent of all 

global mortality. In light of this, it is essential to examine the interconnections between the 

individual components of metabolic syndrome (21). Building on this foundation, the following 

chapter turns to one of its key comorbidities: T2DM, with a particular focus on the role of 

metformin in disease management (26). 
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Table 1: Definition of metabolic syndrome according to WHO, AACE, NCEP and IDF (according to 
(27,28)) 

 WHO (1998) AACE (2003) NCEP: ATP III 
(2005) 

IDF (2009) 

Definition:  

  

T2DM, IFG, IGT 
or insulin 
resistance plus 
at least 2 of the 
criteria below 

Specific clinical 
factors plus at 
least 2 criteria 
below 

At least 3 criteria 
below 

At least 3 criteria 
below  

Glucose/ 
Hyper- 
glycemia 

IFG, IGT, T2DM IFG (FPG 110–
125 mg/dL) or 
IGT (excl. 
T2DM) 

FPG ≥100 mg/dL 
(incl. T2DM) 
modified in 2006 

FPG ≥100 mg/dL 
(incl. T2DM) 

Abdominal 
obesity 

WHR >0.9 in 
men and >0.85 
in women or BMI 
>30 kg/m2 

BMI ≥25 kg/m2 WC >102 cm in 
men and >88 cm 
in women 

Population-/ Country 
specific: WC for 
Europe ≥ 94 cm in 
men and ≥80 cm in 
women 

Blood 
pressure/  
Hypertension 

≥ 140/90 mmHg ≥130/85 mmHg ≥130/85 mmHg 
or treated for 
hypertension 

≥130/85 mmHg or 
treated for 
hypertension 

Triglyceride 
 

≥ 150 mg/dL  > 150 mg/dL ≥150 mg/dL or 
treated for 
dyslipidemia 

≥ 150 mg/dL or 
treated for 
dyslipidemia 

HDL-
Cholesterol 

<35 mg/dL in 
men or <39 
mg/dL in women 

<40 mg/dL in 
men or <50 
mg/dL in 
women 

<40 mg/dL in 
men or <50 
mg/dL in women 
or treated for 
dyslipidemia 

<40 mg/dL in men or 
<50 mg/dL in 
women or treated for 
dyslipidemia 

 
AACE, American Association of Clinical Endocrinologists; BMI, body mass index; BP, blood pressure; FPG, 
fasting plasma glucose; HDL-C, high-density lipoprotein cholesterol; IDF, International Diabetes Federation; 
IFG, impaired fasting glucose; IGT, impaired glucose tolerance; NCEP-ATP III, National Cholesterol Education 
Program Adult Treatment Panel III; T2DM, Type 2 Diabetes Mellitus; TG, triglyceride; WHO, World Health 
Organization; WHR, waist-to-hip ratio; WC, waist circumference.  
(Table according to (27,28)) 
 
 

1.2 Diabetes Mellitus 
 

T2DM is a worldwide epidemic, affecting approximately 463 million adults, with an expected 

rise to 700 million by 2045, as per the IDF (29). T2DM patients are at an increased risk of 

developing severe health complications, including cardiovascular diseases, blindness, 

kidney failure, and lower limb amputation. To prevent long-term consequences like micro- 

and microangiopathies, oral anti-diabetic agents are considered the first-line therapy (30). 

Clinical studies have confirmed the efficacy of glucose-lowering medications, particularly 

metformin, in reducing morbidity and mortality (30,31). Besides normalizing blood glucose 

levels, controlling blood pressure and cholesterol levels can delay or prevent diabetes 

complications. Monitoring T2DM patients is crucial, and glycated hemoglobin (HbA1c) is a 

well-established biomarker for long-term glucose control and the efficacy of therapeutic 

agents (32). Early diagnosis and identification of high-risk patients are essential to alleviate 
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the pressure on the healthcare system caused by high patient care costs for treating long-

term consequences of T2DM.  

Effective management of T2DM involves a multifaceted approach that includes both 

pharmacological and non-pharmacological interventions. Lifestyle modifications, such as 

dietary changes and increased physical activity, are fundamental components of T2DM 

management. Metformin remains the first-line pharmacotherapy for most patients due to its 

well-documented safety and efficacy profile in improving glycemic control and reducing 

cardiovascular risk. In recent years, sodium-glucose co-transporter-2 (SGLT2) inhibitors 

have emerged as a valuable addition to the therapeutic arsenal, particularly for patients at 

high risk for cardiovascular and renal complications. These agents not only help lower blood 

glucose but have also been shown to provide additional cardioprotective and 

nephroprotective benefits (33). This evolving treatment landscape reflects the importance 

of a comprehensive, individualized approach to diabetes care. 

1.2.1 Metformin 
 

Metformin, an oral antidiabetic drug, is recommended as the first-line therapy for T2DM 

(10). Its therapeutic effect stems from its ability to inhibit hepatic gluconeogenesis and 

enhance peripheral glucose uptake (34). The precise mechanism of action of metformin is 

complex and involves multiple pathways (34,35). It has been shown that metformin 

activates the adenosinmonophosphat (AMP)-activated protein kinase (AMPK) enzyme, 

which regulates cellular energy homeostasis by modulating the balance between anabolic 

and catabolic processes (36). AMPK activation results in several downstream effects, 

including decreased hepatic glucose production, increased glucose uptake and utilization 

in skeletal muscle and adipose tissues, and improved mitochondrial function (35,36). These 

actions ultimately lead to a decrease in FPG levels and an improvement in insulin sensitivity 

(35,36). 

In addition to its glucose-lowering effects, metformin has been shown to have beneficial 

effects on multiple other pathways that contribute to the development of metabolic disorders 

(37,38). For example, metformin has anti-inflammatory properties, which may contribute to 

its protective effect against cardiovascular disease (37,38). Additionally, metformin 

improves endothelial function, reduces oxidative stress, and decreases platelet 

aggregation, all of which may improve cardiovascular health (37,38). Furthermore, recent 

studies have suggested that metformin may have anticancer effects, possibly due to its 

ability to inhibit the growth of cancer cells and reduce the risk of cancer recurrence (39,40) 
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Even if metformin is a widely used medication for the management of T2DM, it shows a 

high inter- and intraindividual variability that cannot be explained in detail. It is highly soluble, 

exhibits a low permeability, and retains a positive charge across a range of physiological 

pH levels (2,41) . Its absorption, distribution, and excretion are primarily mediated by active 

transport processes involving organic cation transporter (OCT) and multidrug and toxin 

extrusion proteins (MATEs) (41). OCT1 and OCT3 transporters are responsible for the 

hepatic uptake of metformin, which is a crucial determinant of its overall pharmacokinetic 

profile. Variability in the expression and function of these transporters, as well as in MATEs, 

can contribute to inter- and intra-individual variability in metformin pharmacokinetics. 

Incomplete transporter-mediated absorption from the upper intestine yields a moderate 

bioavailability of approximately 50-60%. Metformin is not metabolized and is primarily 

eliminated through the kidneys, with renal clearance accounting for approximately 90% of 

its total clearance. Renal excretion is facilitated by OCT2 and MATEs, which mediate the 

active secretion of metformin into urine. Other factors that can influence the 

pharmacokinetics of metformin include age, renal function, body weight, and concomitant 

use of drugs that affect OCTs and MATEs (41). 

1.3 Lipid Disorders 
 

With a clear understanding of T2DM and the role of metformin, this section highlights 

another critical aspect of the metabolic syndrome - lipid disorders, and the innovative 

treatments being developed to manage them. Along with glucose metabolism disorder, lipid 

metabolism disorder is another significant component of metabolic syndrome. Lipid 

metabolism disorders include low-density lipoprotein (LDL) hypercholesterolemia, mixed 

hyperlipoproteinemia, or high-density lipoprotein (HDL) cholesterol decreased. LDL 

hypercholesterolemia as one lipid metabolism disorder is directly linked to the high risk of 

developing atherosclerosis and to the increased cardiovascular risk (42). The connection 

between hypercholesterolemia and atherosclerosis was described in literature as early as 

1913. In the past decades, there was a lot of research ongoing to identify therapeutic 

interventions to treat hypercholesterolemia that cannot be managed by lifestyle 

modifications or the standard of care therapy with statins (43). 

Cholesterol can enter the bloodstream from the liver or absorbed through the intestine from 

the diet, and it is transported in the form of lipoproteins, with LDL and HDL playing significant 

roles. LDL transports cholesterol to body cells that need it, e.g. from the starting substance 

for hormones or as an essential component of the cell membrane, whereas HDL performs 

a purifying function by taking up cholesterol deposited on blood vessels and transporting it 
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back to the liver. However, if LDL is permanently elevated in the blood and the bound 

cholesterol cannot be released to target cells, it deposits on vessel walls, leading to 

narrowed arteries and minimized elasticity. In the coronary arteries, the narrowing causes 

the heart muscle to stop receiving enough blood and thus lack oxygen and nutrients. As a 

result, angina or complete blockage of a vessel, that is, a heart attack, occurs. Thus, LDL 

hypercholesterolemia must always be treated because of the increased cardiovascular risk 

associated with it (43) 

According to recommendations of the European Society of Cardiology and European 

Atherosclerosis Society, an individual target circulation LDL level should be defined 

depending on the overall cardiovascular risk. For example, if risk is very high, as in 

established atherosclerosis or T2DM with end-organ damage, LDL cholesterol < 70 mg/dL 

(< 1.8 mmol/L) should be sought. At lower risk, target levels are higher: < 100 mg/dL (< 2.6 

mmol/L) for moderate risk or < 115 mg/dL (< 3.0 mmol/L) for low risk (43). 

Therapeutically, lifestyle modifications are effective mainly for hypertriglyceridemia and 

mixed lipid metabolism disorders. However, elevated circulating LDL levels can usually be 

reduced by less than 10% (44), whereas the effect on triglycerides is significantly more 

significant, with up to a 50% reduction (42,45). 

If individual target levels are not reached by lifestyle modification, statin-based LDL 

cholesterol lowering is the first choice of drug therapy. Statin therapy is now standard 

medication for all forms of atherosclerosis used as a secondary prevention of cardiovascular 

risks and, if risk factors are present, it is also used in primary prevention (46,47). 

 

However, there are patients who are unable to archive target of LDL levels despite 

maximally tolerated statin doses, or who are intolerant of statin therapy. Familial 

hypercholesterolemia, characterized by premature coronary artery disease and a high LDL 

level, is an extreme form in which available therapies have long prevented the desired levels 

from being achieved. In 2015, a breakthrough was achieved in the therapy of familial 

hypercholesterolemia with the newly developed PCSK9 (proprotein convertase 

subtilisin/kexin type 9) inhibitors (48–50).  
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1.3.1 PCSK9 Inhibitors 
 

PCSK9-targeting monoclonal antibodies represent a new class of lipid-lowering therapies 

and have received regulatory approval from both the FDA and EMA for the treatment of 

heterozygous familial hypercholesterolemia as well as for reducing cardiovascular risk in 

individuals with established cardiovascular disease (48–51). PCSK9 itself is a plasma 

protein found in low concentrations, produced and secreted by liver cells. Its primary 

function is to modulate the number of LDL receptors (LDLR) present on the surface of 

hepatocytes (52). These receptors are crucial for the removal of LDL cholesterol from the 

bloodstream. When PCSK9 is present, it attaches to LDLR on hepatocytes and stabilizes 

the complex formed between LDL and LDLR. This interaction interferes with the normal 

release of the receptor from the endocytosed vesicle, directing it instead toward lysosomal 

degradation (51).  

As a result, LDLRs bound to PCSK9 are not recycled but are instead targeted for 

intracellular degradation. Consequently, fewer LDLRs remain available on the surface of 

hepatocytes, which diminishes LDL clearance from the bloodstream and leads to increased 

circulating LDL levels (52). 

Alirocumab and evolocumab are monoclonal antibodies directed against PCSK9 and are 

administered subcutaneously by patients themselves at intervals of either two or four weeks 

(48,50). Inhibiting the interaction between PCSK9 and the LDL receptor (LDLR), or the 

absence of PCSK9 altogether, prevents the degradation of LDLR. As a result, LDLRs are 

recycled and accumulate on the surface of hepatocytes, enhancing the clearance of LDL 

particles from the circulation and thereby lowering plasma LDL levels (53). Clinical trials 

demonstrated that these agents reduce LDL cholesterol concentrations by approximately 

50–60%, offering a highly effective therapeutic option for individuals with elevated LDL. 

Moreover, outcome studies have shown that this pronounced LDL-lowering effect also 

translates into a measurable reduction in cardiovascular events, all without a marked 

increase in adverse effects (53).  

However, the costs of treatment are higher than conventional statin therapy, making it 

burdensome for the healthcare system. The incremental cost is described about $350,000 

per quality adjusted life years when compared to statins in literature (51,54). Therefore, the 

selection of patients to be administered PCSK9 inhibitors must be well chosen, and the 

dosing frequency must be optimized in terms of a comprehensive cost-benefit analysis (48–

50).  
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1.4 IMI DIRECT Consortium 
 

Having discussed metabolic syndrome, and in detail T2DM and lipid disorders and their 

treatment, it's important to mention the role of collaborative initiatives in advancing our 

understanding of these diseases. One such initiative is the IMI DIRECT Consortium, which 

has contributed to parts of the research presented in this thesis. 

One of the projects included in this dissertation is part of the IMI DIRECT consortium and 

utilizes data obtained from the IMI DIRECT study. The DIRECT consortium, initially funded 

by the European Union's IMI, is a collaborative effort comprising 20 academic institutions 

across Europe and 5 pharmaceutical companies. Launched in February 2012, the project 

duration spanned seven years, with formal funding concluding in July 2019. 

The primary objective of the DIRECT consortium is to investigate the development and 

progression of T2DM, along with varying responses to treatment. Over 3,000 participants 

from five European countries were recruited and meticulously studied for up to four years. 

T2DM patients present as a highly variable condition, individuals with T2DM can experience 

diverse outcomes, with some witnessing rapidly worsening blood sugar levels over time, 

while others maintain stability. Additionally, responses to common diabetes drugs can vary, 

with some experiencing side effects and others not. 

Thus, two main aims of the consortium were to identify potential biomarkers that can 

distinguish patients with a rapid from those with a slow disease progression or to identify 

patients exhibiting a response to diabetes treatments compared to so-called non responder. 

This endeavor aims to pave the way for a personalized or stratified medicine approach to 

T2DM treatment, utilizing both existing and novel therapies. 

The DIRECT project was designed to investigate these variations, aiming to understand the 

underlying reasons for differential responses among individuals with T2DM. By exploring 

these differences, the project seeks to predict how individuals might respond to treatments, 

thereby advancing personalized diabetes care. 

The data and insights garnered from the IMI DIRECT Consortium have been instrumental 

in the mathematical modeling approach.  
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1.5 Mathematical Modelling  
 

Mathematical modeling is a valuable approach for answering a wide range of scientific 

questions. In the clinical setting, it is crucial to identify the correct drug and dosing regimen 

for individual patients (55). Similarly, in clinical development, it is important to estimate the 

appropriate dose for a drug before it is administered to humans. The importance of correct 

dosing was highlighted by Paracelsus’s well-known statement, “All things are poison and 

not without poison; only the dose makes a thing not a poison” (56). However, the potential 

of mathematical modeling extends far beyond dosing decisions. It encompasses various 

applications, from improving data quality to supporting economic evaluations of therapies. 

This dissertation combines three different applications of mathematical modeling within the 

field of metabolic disorders, all of which employ the population modelling approach as the 

underlying methodology. While the methodological framework and disease area remain 

consistent across all three projects, each addresses a different scientific question. 

• Project I explores the application of mathematical modeling to improve the reliability 

of clinical measurements that are susceptible to bias due to inadequate sample 

handling. A correction method was developed to enhance the precision and 

accuracy of these measurements. 

• Project II presents a detailed analysis of the pharmacokinetics of metformin, a well-

established and widely prescribed antidiabetic drug. This project investigates key 

factors contributing to variability in drug exposure and the implications for 

individualized therapy. 

• In project III focuses on the economic dimension of pharmacotherapy. Mathematical 

modeling was used to evaluate the cost-effectiveness of existing high-cost treatment 

regimens. Based on available data, alternative dosing scenarios were simulated to 

optimize both clinical outcomes and healthcare expenditures. Using mathematical 

modeling, new dosing scenarios were developed for recommended and approved 

therapies for high-cost drugs.  

  



11 
 

2 Objectives of the thesis 

The present cumulative dissertation was conducted within the framework of the IMI DIRECT 

project, a European research initiative funded by the Innovative Medicines Initiative in 

collaboration with academic and industrial partners. The overarching aim of IMI DIRECT 

was to identify novel biomarkers and modeling approaches to stratify individuals at risk of, 

or living with, T2DM. Being part of this large-scale collaborative project not only provided 

access to unique and comprehensive datasets but also underlined the scientific relevance 

and translational potential of the research presented herein.  

However, as illustrated in Project I of this thesis, several methodological challenges 

emerged during the analysis of the IMI DIRECT data. These included pre-analytical 

variability and measurement inaccuracies, particularly related to HbA1c quantification from 

Dried Blood Spot (DBS) cards. Addressing such issues requires the development of 

dedicated correction models to improve data quality and reliability. These limitations 

highlighted the importance of critical data evaluation. To ensure a broader and more robust 

scientific foundation, this thesis also includes independent research projects that examine 

related aspects of cardiometabolic diseases, particularly within the domains of 

pharmacokinetics and personalized treatment strategies. While each individual project 

originated from distinct research questions, ranging from correction of individual sample 

results to individual pharmacokinetic of approved drugs or health economics, they are 

unified by a shared methodological foundation: the application of quantitative and 

population-based mathematical modeling. In the context of the individual publications being 

part of this work, modeling primarily served as a means to support data interpretation, 

enable predictive simulations, and facilitate hypothesis testing. However, in the context of 

this dissertation, these projects are intentionally brought together to demonstrate the 

versatility, adaptability, and translational utility of mathematical modeling in medical 

research. 

Thus, the primary objective of this dissertation is not limited to the isolated outcomes of the 

three projects but rather lies in showcasing the broader value and applicability of 

mathematical modeling as a scientific approach. It is emphasized that mathematical models, 

when carefully designed, applied to appropriate data, and based on valid assumptions 

within a robust methodological framework, are capable of addressing a broad range of 

research questions. The overarching aim of this dissertation is therefore to demonstrate 

how population-based mathematical modeling can be employed as a flexible and powerful 

approach to solve diverse, real-world problems in the domain of metabolic disorders, 
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especially T2DM, while the individual projects focus on: improving the precision of clinical 

measurements (Project I), characterizing the pharmacokinetics of a widely used antidiabetic 

drug (Project II), and optimizing the cost-effectiveness of therapeutic strategies (Project III). 

2.1 Objective 1: Handling of “real-life” data to investigate Disease 

Progression in Pre-diabetic Patients 

Conducted within Work Package 2 of the IMI DIRECT Consortium, this project aimed to 

investigate the development and progression of T2DM in pre-diabetic individuals. The 

disease's complexity, driven by multifactorial influences and high inter-individual variability, 

posed substantial challenges in identifying genuine progression patterns from observational 

cohort data. One central topic during the data analysis was to ensure reliable data based 

on accurate data handling. Using the modelling approach, we have identified bias and 

measurement artifacts. A key achievement of this project was the identification of pre-

analytical variables affecting HbA1c measurements from DBS cards and the development 

of correction models to enhance data precision through mathematical modeling techniques. 

The project included in this thesis demonstrates for the first time the impact of storage 

conditions of DBS cards and highlights how mathematical modeling can be used to develop 

correction methods that enhance the precision and accuracy of clinical measurements and 

therewith, to discern real disease progression patterns from other influences. 

 

2.2 Objective 2: The Impact of Circadian Rhythms on Metformin 

Pharmacokinetics 
 

The second research project focused on metformin, the first-line treatment for managing 

T2DM. Despite its extensive use spanning several years, there exists a critical gap in 

knowledge regarding Metformin’s individual pharmacokinetic (PK) and pharmacodynamic 

(PD). This study delved into the effect of circadian rhythms on the pharmacokinetics of 

metformin, aiming to comprehend how the body's internal clock influences the absorption, 

distribution, metabolism, and excretion of this vital medication. By understanding the 

circadian variations in metformin's behavior within the body, the precision of dosing 

regimens can be enhanced in the future, ensuring optimal therapeutic efficacy for patients. 
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2.3 Objective 3: Evaluating new Cost Effective Dosing Regimens for the 

Treatment of Hypercholesterolemia 
 

The third project investigated the potential for alternative dosing strategies using newly 

approved lipid-lowering agents, specifically PCSK9 inhibitors, to manage 

hypercholesterolemia. This work applied a pharmacokinetic and pharmacodynamic 

modeling approach to assess how treatment individualization could improve outcomes while 

also reducing healthcare costs. The objective was to propose evidence-based, cost-efficient 

regimens that balance clinical benefit and economic feasibility. 

 

2.4 Project included in this thesis  
 

In summary, this dissertation aimed to contribute significantly to the overarching goal of 

improving the understanding and treatment of cardiometabolic diseases by utilizing the 

power of mathematical modeling and simulation as a tool for integrating real-world data, 

identifying clinically relevant patterns, and tailoring medical treatments to patient-specific 

characteristics. 

The projects of this thesis are presented in the following. Each of the projects was published 

in a peer-reviewed scientific journal.  

I. Scherer N, Kurbasic A, Dings C, et al. The Impact and Correction of Analysis Delay 

and Variability in Storage Temperature on the Assessment of HbA1c from Dried 

Blood Spots - an IMI DIRECT Study. Int J Proteom Bioinform. (2019) ;4(1): 007-013  

 

II. Türk D, Scherer N, Selzer D, et al. Significant impact of time-of-day variation on 

metformin pharmacokinetics. Diabetologia (2023); 66(6):1024–34  

 

III. Scherer N, Dings C, Boehm M, et al., Alternative Treatment Regimens With the 

PCSK9 Inhibitors Alirocumab and Evolocumab: A Pharmacokinetic and- 

Pharmacodynamic Modeling Approach; J Clin Pharmacology (2017), 57(7): 846-854  

  

https://accp1.onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Scherer%2C+Nina
https://accp1.onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Dings%2C+Christiane
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3 Methods  

3.1  Background 
 

Pharmacometrics is an integrative scientific and quantitative discipline that uses 

mathematical models to describe and predict the relationships between drugs, diseases 

and patients, and to optimize drug therapy. The goal is to contribute to rational decision-

making to optimize drug therapies for individual patients and to promote the rational use of 

medicines in patients. Over recent years, modeling approaches have become increasingly 

integral to drug development and evaluation (57–61) and pharmacometric modeling has 

become an established approach for assessing the effectiveness of therapeutic 

interventions and is recognized by regulatory agencies such as the European Medicines 

Agency (EMA) and the U.S. Food and Drug Administration (FDA) (62,63). The Model-

Informed Drug Discovery and Development (MID3) framework utilizes pharmacometric 

models to support decisions across all phases of drug development, from dose selection 

and safety assessment to the design of clinical trials. MID3 contributes to reducing the time 

and cost required to bring new therapies to market. For instance, it can be used to predict 

in vitro outcomes or estimate the starting dose for first-in-human trials based on preclinical 

data (64).  

In parallel, Model-Informed Precision Dosing (MIPD) focuses on optimizing drug therapy for 

individual patients. MIPD integrates PK, PD, and patient-specific variables, such as disease 

characteristics or comorbidities, to individualize dosing and improve therapeutic outcomes 

(65).  

PK describes how the body absorbs, distributes, metabolizes, and eliminates a drug 

(ADME), characterizing the relationship between drug administration and its concentration 

in plasma. PD relates drug concentration to its biological effects, which may be measured 

using biomarkers such as HbA1c or LDL levels, or via receptor and transporter saturation 

(66). PD models, including linear models or the Emax model, describe the concentration-

effect relationship and allow the prediction of both therapeutic and adverse effects over time 

(67). Integrated PK/PD models are essential for understanding the dose–exposure–

response relationship and supporting evidence-based dose selection. 

Despite the availability of such tools, many therapeutic decisions in practice still rely on 

fixed, empirical dosing regimens (65). This generalized approach neglects interindividual 

differences and can result in suboptimal outcomes or adverse effects. Pharmacometrics 

addresses these gaps through various modeling strategies, including:  
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• Population Modeling:  

This approach uses nonlinear mixed-effects (NLME) models to quantify variability in 

drug response across individuals. Covariates such as body weight, renal function, or 

comorbidities are evaluated to explain interindividual variability. Population models 

support clinical trial design, dose optimization, and personalized medicine by predicting 

individual responses within a broader population framework. Therefore, PK drug 

concentration-time are typically described using compartmental models, which divide 

the body into pharmacokinetically distinct spaces reflecting different distribution phases. 

A system of ordinary differential equations (ODEs) is used to represent the dynamic 

mass balance of the drug in each compartment, capturing the key pharmacokinetic 

processes (ADME processes) (55,57). 

• Physiologically Based Pharmacokinetics (PBPK):  

PBPK models simulate drug disposition based on anatomical and physiological 

parameters. These models are valuable for extrapolating findings from preclinical data 

to humans, evaluating the effects of physiological changes (e.g., age, organ 

impairment), and predicting drug–drug interactions (68). In Project II, both PBPK and 

NLME modeling were used to investigate the pharmacokinetics of metformin under 

circadian influence. 

The following sections describe the population approach that was used in each project 

included in this thesis in more detail and provides an overview about PBPK modeling in 

general. 

 

3.2 Population Approach 
 

PK and PD properties of a drug can be analyzed on an individual level using individual 

compartmental analysis (ICA). However, this approach may fail to capture more complex 

variability and is limited in its ability to generalize findings across populations. In contrast, 

population approaches allow for the identification of typical PK/PD behavior and 

quantification of variability across individuals, enabling more robust and generalizable 

conclusions (69). Depending on the strategy for data aggregation and analysis, researchers 

typically distinguish between three different population-level approaches (70). 

 

• Naïve Pooled Analysis: 

This method combines all individual data into a single dataset and estimates model 

parameters as if they originated from one subject. While simple, it does not account for 

interindividual variability and may result in biased parameter estimates (71). 
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• Standard Two-Stage (STS) Approach: 

In the first stage, individual parameters are estimated using ICA. In the second stage, 

the mean and variability (e.g., percentiles) are calculated across individuals (72). This 

method tends to overestimate population variability, as it combines true interindividual 

variability with residual (unexplained) variability. 

• Nonlinear Mixed-Effects (NLME) Modeling: 

NLME modeling simultaneously analyzes all individual data, describing both the typical 

PK/PD profile and different sources of variability. It is able to distinguish between 

interindividual variability (IIV), inter-occasion variability (IOV), and residual error (RSE) 

(57,73). Furthermore, covariates (e.g., body weight, renal function, age) can be included 

to explain variability due to specific parameters, thereby improving model predictability. 

NLME models are suitable for unbalanced designs and data-sparse situations, including 

cases with limited sampling or pooled data from different studies. These advantages 

make NLME modeling the preferred method in modern pharmacometrics. Due to its 

flexibility, robustness, and ability to handle complex and variable datasets, NLME 

modeling was used in all three projects of this thesis and is described in further detail in 

the subsequent sections. 

 

3.3 Nonlinear Mixed-Effects Modeling 
 

NLME modeling is a specialized form of nonlinear regression used to analyze pooled data 

from multiple experimental units with repeated measurements (55,74). In standard 

population pharmacokinetic/pharmacodynamic (PK/PD) modeling, the experimental unit is 

typically the individual study participant, and the observations consist of repeated 

measurements such as biomarker values or drug concentrations.  

In this thesis, Projects I and II follow this standard framework in which the experimental 

units are individual participants, and the observations consist of either HbA1c biomarker 

values (Project I) or plasma concentrations of metformin (Project II), measured at multiple 

time points per subject. In contrast, Project III adopts a different structure due to the absence 

of individual-level data. In this case, the experimental units are entire clinical trials, and the 

observations are aggregated trial-level outputs, specifically mean concentration–time and 

mean effect–time curves. Each curve represents a single observation associated with its 

respective trial, enabling model-based evaluation despite the absence of subject-level data. 



17 
 

The term "mixed-effects" refers to the combination of (i) fixed effects, which represent typical 

population values for model parameters and the influence of measurable covariates (e.g., 

weight, age, renal function), and (ii) random effects, which account for observation variability 

that cannot be solely explained by the fixed effects and the measurement unit specific 

covariate values. These include interindividual variability (differences between experimental 

units, e.g. individual subjects), inter-occasion variability (within-subject variability across 

different measurement occasions), and residual variability (e.g., measurement errors, non-

explainable deviations due to model misspecification or unspecific random effects) (75).  

NLME modeling allows for simultaneous analysis of data from all individuals, providing 

robust estimates of both, the model parameter values and the magnitude of sources of 

variability. This makes it a powerful tool for analysing unbalanced datasets, sparse sampling 

designs, and pooled data across studies. NLME models typically consist of three 

hierarchical components (74,76):  

i Structural model: describing the typical PK and/or PD behavior in the population 

using mathematical functions,  

ii Statistical model: quantifying unexplained variability between and within individuals, 

often using random effects to capture interindividual and residual variability, and  

iii Covariate model: explaining part of the variability by incorporating individual-specific 

characteristics (covariates), such as age, weight, or renal function, and relates them 

to the structural model parameters. 

 

3.3.1 Structural Model 
 

The structural model defines the typical PK or PD profile as a function of time and model 

parameters. It represents the central tendency of the observed data across the population 

and serves as the deterministic core of the NLME model. Model development typically 

follows a sequential and iterative process, beginning with the simplest model structure. 

Additional parameters are incorporated step by step to capture essential features of the 

system and improve model fit. This process balances biological plausibility with parsimony.  

Structural models may be empirical, based on observed patterns, or mechanistic, grounded 

in physiological understanding, and are characterized by fixed-effect parameters, 

commonly denoted by θ (theta). In the context of PK modeling, this often involves evaluating 

one-, two-, or three-compartment models, with either linear elimination or more complex 

processes such as capacity-limited (saturable) elimination processes. 
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3.3.2 Statistical Model 

The statistical model accounts for variability in structural parameters across a population 

through the inclusion of random effects. It enables the estimation of individual-specific 

parameters, such as clearance (CLi), by quantifying differences not captured by fixed effects 

alone. Variability in the data can arise from three main sources: 

• Interindividual variability (IIV): Differences between individuals 

• Inter-occasion variability (IOV): Within-subject differences across different 

occasions  

• Residual unexplained variability (RUV): Unexplained deviations between model 

predictions and observations 

While variability can theoretically be estimated for any model parameter, the feasibility and 

reliability of such estimation depend on data quality, quantity, and the structure of the 

available measurements due to the underlying study design. In this work, the inclusion of 

IIV was guided by reductions in the objective function value (OFV), the precision of 

parameter estimates, and their clinical or biological plausibility. 

IIV reflects variation in fixed-effect parameters (𝜃𝑘) among individuals in the population and 

is modeled using individual-specific random effects represented by 𝜂𝑘,𝑖 values. These 

𝜂𝑘,𝑖 values are assumed to be symmetrically distributed with a mean of 0. Different 

functional forms can be used to implement IIV: 

𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦:                𝑘𝑘,𝑖 =  𝜃𝑘 + 𝜂𝑘,𝑖 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦:       𝑘𝑘,𝑖 =  𝜃𝑘 ∗ (1 + 𝜂𝑘,𝑖) 

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦:         𝑘𝑘,𝑖 =  𝜃𝑘 ∗  𝑒𝜂𝑘,𝑖 

In these expressions: 

• 𝑘𝑘,𝑖 represents the individual-specific parameter value for subject i within population 

k, such as an individual's clearance or volume of distribution. 

• 𝜃𝑘 denotes the typical value of this parameter in the population k (the fixed effect). 

• 𝜂𝑘,𝑖 captures the deviation of individual i from the population mean for parameter 𝜃𝑘 

and quantifies interindividual variability. 



19 
 

In practice, the exponential model is most commonly applied, as it ensures parameter 

estimates remain positive—an important requirement for biologically meaningful 

parameters (e.g., clearance or volume of distribution). However, additive or proportional 

models may be appropriate in specific scenarios depending on the parameter and dataset. 

IOV was not considered within the mathematical models used within the different research 

projects. Residual variability captures the remaining differences between observed values 

(𝑜𝑏𝑠𝑖,𝑗) and individual model predictions (𝑖𝑝𝑟𝑒𝑑𝑖,𝑗) that cannot be explained by fixed or 

random effects. Here, the index i refers to the experimental unit, typically an individual 

participant, while the index j denotes a specific observation within that unit, such as a 

particular sampling time point. This variability is described using residual error terms𝜀𝑖,𝑗 

which are assumed to be normally distributed with mean 0 and constant or variable 

variance, depending on the error model. Three common residual error models are: 

𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 𝑚𝑜𝑑𝑒𝑙:                  𝑜𝑏𝑠𝑖,𝑗 =  𝑖𝑝𝑟𝑒𝑑𝑖,𝑗 +  𝜀𝑎𝑑𝑑,𝑖,𝑗 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 𝑚𝑜𝑑𝑒𝑙:         𝑜𝑏𝑠𝑖,𝑗 =  𝑖𝑝𝑟𝑒𝑑𝑖,𝑗 ∗ (1 + 𝜀𝑝𝑟𝑜𝑝,𝑖,𝑗) 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 𝑚𝑜𝑑𝑒𝑙:                𝑜𝑏𝑠𝑖,𝑗 =  𝑖𝑝𝑟𝑒𝑑𝑖,𝑗 ∗ (1 + 𝜀𝑝𝑟𝑜𝑝,𝑖,𝑗) + 𝜀𝑎𝑑𝑑,𝑖,𝑗 

In these expressions: 

• 𝑖𝑛𝑑𝑒𝑥𝑖 refers to the experimental unit i, typically the individual participant, 
• 𝑖𝑛𝑑𝑒𝑥𝑗 refers observation j within that unit i, such as a specific sampling time point 

of the individual i. 
• 𝑜𝑏𝑠𝑖,𝑗 denotes the observed measurement, 

• 𝑖𝑝𝑟𝑒𝑑𝑖,𝑗 is the model-predicted individual value,and 

• 𝜀𝑎𝑑𝑑 𝑜𝑟 𝑝𝑟𝑜𝑝,𝑖,𝑗 represents the residual error, either additive or proportional. 

The combined model is commonly used as it accounts for both constant variability (e.g. 

typical for PD measurements) and variability that scales with the magnitude of the prediction 

(e.g. typical for PK data). The selection of the residual error model was based on diagnostic 

plots, plausibility, and model performance criteria.  
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3.3.3 Covariate Model 
 

The covariate model aims to explain the observed outcomes (measurements) and reduce 

IIV by accounting for individual- or study-specific characteristics that influence PK and PD 

parameters (77). Covariates typically include (i) demographic variables, such as age, sex, 

body weight, ethnicity, (ii) clinical laboratory values such as LDL concentrations, (iii) organ 

function markers such as estimated glomerular filtration rate, (iv) genetic factors, disease 

stage, comorbidities, and concomitant medications or time-varying covariates, which can 

be investigated dynamically within NLME models. Covariates may be continuous (e.g., 

weight, creatinine clearance) or categorical (e.g., sex, age group). Continuous covariates 

are typically implemented using linear, exponential, or power functions, while categorical 

variables are introduced through additive, fractional, or exponential effects on one or more 

parameters, depending on the model structure (55). 

The covariate selection is guided by biological plausibility and statistical significance 

assessed through the change in objective function value (OFV) and the precision of 

estimated effects (see Section 3.5.1). Covariate models are developed using standard 

stepwise procedures. In the forward inclusion phase, covariates are sequentially added to 

the model based on improvements in model fit and predefined significance criteria. Once 

all relevant covariates are included, the analysis proceeded with a backward elimination 

step, where each covariate is tested for exclusion using a stricter significance threshold to 

retain only those with meaningful contributions to the model (77,78). Incorporating relevant 

covariates strengthens the explanatory power of the NLME model. It improves the model’s 

ability to describe observed variability, enhances parameter interpretability, and supports 

individualization of drug therapy. 

 

3.4 Estimation Method 

In population modeling, the goal is to identify the set of model parameters that best describe 

the observed data. Several software tools are available for the determination of NLME 

models. NONMEM® (Nonlinear Mixed-Effects Modeling) is one of the most widely used 

programs for population analysis of pharmacokinetic and pharmacodynamic data and was 

applied throughout this thesis. NONMEM® estimates model parameters by maximizing the 

likelihood that the model can reproduce the observed data (79). Rather than directly 

maximizing the likelihood function, the algorithm minimizes minus twice the log-likelihood 

function (−2LL). This quantity is referred to as the OFV. The parameter set corresponding 
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to the lowest OFV is considered the best fit to the data. The optimization process is carried 

out iteratively using estimation methods such as first-order (FO) method, first-order 

conditional estimation with and without interaction (FOCE/FOCE+I) stochastic 

approximation expectation-maximization (SAEM), depending on the model complexity and 

data structure (80,81). In all projects included in this thesis, FOCE+I was used as estimation 

method, considering a correlation between residual and interindividual variability for more 

precise parameter estimates. 

3.5 Model Selection and Evaluation 
 

Model performance was assessed through various numerical and graphical tools. 

3.5.1 Objective Function Value and Akaike Information Criterion 
 

During model development, statistical model improvement was assessed using the 

likelihood ratio test (LRT). This test applies to nested models, i.e. when one model (the 

simpler one) is a special case of another (the more complex one), such that the more 

complex model can be reduced to the simpler one by eliminating one or more parameters 

(55). The LRT compares the objective function values of the two models: a statistically 

significant improvement is indicated by a drop in OFV. For example, when adding one 

additional parameter to the model, a decrease in OFV of at least 3.84 is considered 

statistically significant at the 5% level (p < 0.05), justifying the increase in model complexity 

(74).  

For non-nested models, the Akaike Information Criterion (AIC) was used to compare model 

performance. The AIC accounts for both goodness-of-fit and model complexity by applying 

a penalty for the number of estimated parameters: 𝐴𝐼𝐶 =  −2 ∗ 𝐿𝐿 + 2 ∗ 𝑃 where LL is the 

log-likelihood of the chosen model and P is the number of estimated parameters of the 

model. Lower AIC values indicate a more parsimonious and better-fitting model. 

3.5.2 Relative Standard Error 

 

The precision of parameter estimates was evaluated using the relative standard error 

(RSE). A smaller RSE indicates higher precision. The absolute standard error of 

parameters was estimated during the covariance step in NONMEM® (74). Then, the RSE 

is calculated as the ratio of the absolute standard error to the parameter estimate, 

multiplied by 100%.  
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𝑅𝑆𝐸 =  
𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒
∗ 100% 

3.5.3 Graphical Methods 
 

Graphical analysis, using R software, included routine generation of Goodness of Fit (GOF) 

plots (82). These plots encompassed measured observations versus population or 

individual predictions, weighted residuals versus population or individual predictions, and 

weighted residuals versus time or time after dose. Model parameters were estimated using 

the FOCE+I method. Based on these individual parameter estimates, weighted residuals 

were calculated, reflecting the differences between measured observations and predictions. 

Ideally, plots exhibit random and uniform scattering around the line of identity (for observed 

vs. predicted plots) or around the zero line (for residual plots), indicating no systematic 

model bias (70). 

 

3.6 PBPK Modeling Approach 
 

Physiologically based pharmacokinetic (PBPK) models are used to simulate drug 

pharmacokinetics processes such as ADME in the human body based on mechanistic and 

physiology-informed principles. The body is represented as a network of interconnected 

compartments, each reflecting the anatomical and functional properties of specific tissues 

and organs, such as the lungs, liver, kidneys, brain, muscle, bone, and skin. These 

compartments are defined by attributes such as organ volume, blood flow, membrane 

permeability, and tissue composition. Drug movement within and between compartments is 

governed by systems of ordinary differential equations, allowing time-resolved simulation of 

pharmacokinetic processes. (83,84). 

Several PBPK modeling platforms support this approach by integrating extensive 

physiological data and providing preconfigured species- and population-specific models. 

Commonly used tools include PK-Sim® and MoBi® (Open Systems Pharmacology), 

GastroPlus™, and SimCyp®. These platforms combine system-specific parameters with 

compound-specific input and study-specific demographic data, which are entered by the 

modeler during model development. This enables the construction of physiologically whole-

body PBPK models tailored to various populations and clinical scenarios (85). 

PBPK modeling typically relies on three core components: 
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i System-dependent parameters, such as tissue size, blood perfusion, and 

physiological constraints  

ii Drug-specific/ drug-dependend characteristics, including solubility, partition 

coefficients, protein binding, and enzyme/transporter affinities  

iii Process-related parameters, which describe dynamic interactions between drug and 

system.  

In contrast to empirical modeling techniques like nonlinear mixed-effects (NLME) modeling, 

PBPK modeling follows a knowledge-driven, biology-based framework. Models are often 

developed using a “bottom-up” approach—building on physicochemical properties, in vitro 

metabolism, and transporter data to predict concentration–time profiles without initially 

relying on clinical pharmacokinetic data. Once in vivo data become available, model 

predictions are validated and refined in a “top-down” manner. This includes adjusting 

uncertain parameters such as permeability or clearance to improve predictive accuracy. 

The process follows an iterative "learn-confirm-refine" cycle, where simulations are 

compared to observed data and progressively improved to capture pharmacokinetics 

across populations and conditions (83). 

This integrative framework enables simulation-based extrapolation to a variety of clinical 

scenarios, including pediatric populations, renal impairment, first-in-human dose 

predictions, and drug–drug interaction (DDI) assessments. PBPK models can also be 

extended to include pharmacodynamic components (PBPK/PD), and their utility has been 

increasingly recognized by regulatory agencies as a central tool within MIDD strategies (84). 

In Project II of this thesis, PBPK modeling was applied in parallel with NLME modeling to 

investigate the mechanistic basis of circadian variation in metformin pharmacokinetics (2). 

Model development and simulation were performed using PK-Sim® and MoBi®, leveraging 

their physiologically body models and ability to incorporate circadian-modulated 

parameters. Model performance was assessed using both qualitative and quantitative 

diagnostics. Predicted and observed plasma concentration–time profiles were compared 

visually, and standard goodness-of-fit plots were assessed. Accuracy was further quantified 

using metrics such as the mean relative deviation (MRD) and geometric mean fold error 

(GMFE). Full details on model development and evaluation are presented in the associated 

publication and its supplement (refer to section 4.2 and Appendix A1: Project II Supplement) 

(2,86) 

  



24 
 

4 Results 
 

4.1 Publication I: The Impact and Correction of Analysis Delay and 

Variability in Storage Temperature on the Assessment of HbA1c from 

Dried Blood Spots - an IMI DIRECT Study (1). 
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ABBREVIATIONS

WB: Whole Blood; DBS: Dried Blood Spot; fsOGTT: Frequently 

Sampled Oral Glucose Tolerance Test; IMI: Innovative Medicines 

Initiative; DIRECT: Diabetes Research on Patient Stratifi cation; 

HPLC: High-Performance Liquid Chromatography; SAEM: 

Stochastic Approximation Expectation Methods; IMP: Monte Carlo 

Importance Sampling; OFV: Objective Function Value; AIC: Akaike 

Information Criterion; AUC: Area under the Curve; FPG: Fasting 

Plasma Glucose

BACKGROUND AND OBJECTIVE

HbA1c is a well-established biomarker in diabetes mellitus and 

refl ects long-term (4-6 weeks) blood glucose concentrations [1]. Th e 

use of HbA1c as a diagnostic measure is part of the “Standards of Care” 

by the American Diabetes Association based on the recommendations 

of the International Expert Committee [2]. Further, HbA1c is used as 

a longitudinal marker to observe disease progression and to evaluate 

the success of therapeutic intervention [3]. Traditionally, HbA1c is 

measured using Whole Blood (WB) samples taken by venipuncture. 

Compared to alternative blood sampling methods, the collection of 

blood by venipuncture is more expensive and associated with greater 

participant burden and logistic challenges regarding sample handling 

and processing [4]. One alternative blood sampling method is to use 

a dry matrix where a very small volume of blood obtained from fi nger 

puncturing is put on a matrix paper [5]. HbA1c can be measured 

from these Dried Blood Spots (DBS). Assessments using DBS cards 

are cheaper, safer and more acceptable to study participants than 

WB sampling [6]. Because of these advantages, the DBS method 

is highly appealing in research settings. Th is is especially true in 

longitudinal or large population-based studies with repeated HbA1c 

measurements, as the DBS approach can help reduce costs and 

minimize inconvenience to participants [7].

Th e comparability of both sampling methods was recently 

evaluated in a meta-analysis of seventeen heterogeneous studies 

[8] and DBS validity has been shown under normalized sample 

collection, transportation and storage settings. Only a few studies 

focused on the infl uence of DBS storage conditions, i.e. specifi c 

temperatures or storage times, on the resulting HbA1c measure [9-

12]. It was shown that the accuracy and precision to assess HbA1c 

from DBS cards stored for more than seven days at room temperature 

is compromised. So far, there is a lack of knowledge about the stability 

of DBS card-assessed HbA1c under varying conditions that include 

long-term storage at variable temperatures. 

Within the IMI (Innovative Medicines Initiative) DIRECT 

(Diabetes Research on Patient Stratifi cation) study, more than 2,000 

people at risk of developing diabetes were recruited and in total about 

14,000 HbA1c values were collected by DBS cards every 4.5 months 

during an observation period of 48 months to monitor the individual 

disease progression [13]. As the collection of the DBS cards varied 

regarding the storage time and condition, this cohort provides a 

good opportunity to assess the impact of storage conditions on 

measurement validity. Th e aim of this analysis was to investigate the 

eff ect of long-term storage at diff erent conditions on the reliability of 

HbA1c levels obtained from DBS cards that were routinely collected 

in the IMI DIRECT study. Further, the impact of analysis delay was 

quantifi ed using a mathematical model to correct for storage time. To 

investigate the predictive performance of the correction method, a 

comparison of the corrected and the reported HbA1c levels from DBS 

cards versus HbA1c levels derived from WB analysis, as well as of the 

HbA1c levels versus other biomarkers for glyceamic control obtained 

from a Frequently Sampled Oral Glucose Tolerance Test (fsOGTT), 

was evaluated. 

RESEARCH DESIGN AND METHODS

Study Design

Th is analysis was performed on longitudinal, repeated HbA1c 

measurements in non-diabetic participants that engaged in a study 

within the IMI DIRECT consortium. A detailed study description has 

been published previously [13]. People at risk of developing diabetes 

were recruited at four diff erent data collection centers (A-D) [13,14]. 

To study disease progression, DBS cards were used to obtain HbA1c 

measurements and further, beta cell function and insulin sensitivity 

were determined using 75 g fsOGTTs at months 0, 18 and 48. For the 

fsOGTTs, study participants were called into their respective study 

 ABSTRACT

Aims: Dried Blood Spot (DBS) sampling is a frequently used method to obtain Haemoglobin A1C (HbA1c) in clinical studies of free-
living populations. Under controlled conditions, DBS sampling is a valid and robust alternative to traditional Whole Blood (WB) sampling. 
The objective of this analysis was to investigate the impact of storage conditions on the validity of HbA1c assessed from DBS collected 
in free-living and to develop a method to correct for this type of error.

Methods: Overall, 14,243 DBS cards from 2,237 IMI DIRECT participants at risk of developing diabetes were analyzed using 
non-linear regression analysis. 4,272 HbA1c levels from WB from the same 2,237 participants were used to validate the predictive 
performance of the method. 

Results: The delay between DBS sample collection and analysis, in combination with different storage temperatures, caused infl ation 
of measured HbA1c levels. An Emax model was used to correct infl ated HbA1c levels according to individual analysis delay and storage 
temperatures. Corrected HbA1c showed higher agreement to WB results, compared to the uncorrected HbA1c from DBS cards (Pearson 
correlation coeffi cients of 0.61 and 0.69 for reported and corrected vs. WB, respectively, p = 5.92*10-36). The mean HbA1c derived from 
WB was 5.6 ± 0.29% (38 ± 3.2 mmol/mol); from DBS, 5.8 ± 0.40% (40.0 ± 4.4 mmol/mol) and 5.6 ± 0.33% (38 ± 3.6 mmol/mol) (before 
and after correction, respectively). 

Conclusions: Analysis delay and storage temperature infl uence the assessment of HbA1c from DBS cards. This correction method 
provides an opportunity to account for the storage conditions and to improve the precision and accuracy of DBS card-derived HbA1c 
levels under fi eld conditions. 

Keywords: Analysis delay; Correction method; Dried blood spot cards; HbA1c; IMI DIRECT; NONMEM
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center A-D. In addition to the fsOGTT samples, fasting blood samples 

from each patient were taken and immediately stored at -80°C. At the 

time of our analysis, data from 0 up to 18 months were available and 

used for model development.

Bioanalytics

At the beginning of the study, each participant and the clinic staff  

were instructed how to handle the DBS cards according to the internal 

study protocol: two blood spots were put on the provided fi lter paper 

and kept at room temperature for drying for at least 2 hours before 

packing them in sealed plastic bags. Th e participants were asked to 

store the bags at room temperature and send them immediately to 

their local study center. From there, the cards were shipped to center 

A within three days for analysis. All shipments from center B, C and 

D to center A were performed by regular mail resulting in variable 

timing and storage conditions. Moreover, details concerning sample 

collection, processing and storage of DBS cards before shipment 

to center A diff ered between the centers; many cards were shipped 

with longer delays than recommended in the study protocol due to 

numerous logistical barriers.

Only at center A were all participants invited to have their DBS 

samples taken by a nurse at the clinical site. Th e DBS cards were 

registered, dried, immediately stored at -20°C and analyzed within 

one week. 

At center B, participants took their DBS at home and sent them 

to the study center to be collected and stored at room temperature 

before being shipped to center A for analysis. Shipment was done 

every second week but, because samples were collected continuously, 

storage time at room temperature at center B varied between one to 

fourteen days. 

At center C, some participants came to the center for DBS 

sampling; others took their samples at home and sent them to the 

center. Th e samples were stored at room temperature until shipment 

to center A for analysis. Usually the DBS cards were shipped on the 

day of receipt from the patients. When same-day shipment was not 

possible, the DBS cards were stored at 4-8°C. Shipment from center C 

to center A took approximately three to seven days. 

At center D, DBS samples were collected at home by the 

participants and hand-delivered or sent by mail to the study center 

with variable delay (range from one day to more than a week). At the 

study center, the DBS cards were stored at 4°C before being sent in 

batches to center A on a monthly basis. 

WB samples were used to measure HbA1c for the purposes of this 

DBS validation study. Th e analysis of WB samples was undertaken at 

center E (no data were collected here). Th e WB samples were assumed 

to represent the true HbA1c levels for the two available time points 

(month 0 and 18). Th e analysis of all WB samples was performed 

using High-Performance Liquid Chromatography (HPLC) (Tosoh 

G8 HPLC Analyzer) [15]. Th e Tosoh G8 HPLC Analyzer utilizes 

Standard Ion-Exchange method of HbA1c measurement. Th e 

HbA1c determination derived from DBS cards was performed at 

center A using the immunoturbidimetric assay on Konelab 20XT 

Clinical Chemistry analyzer, both from Th ermo Fisher Scientifi c. Th e 

validation of the DBS as sample material was performed at center A. 

Th e analytical total Coeffi  cients of Variation (CV %) for DBS were 

5.3-6.5%. Th e concordance between both assays has been investigated 

elsewhere [16], where WB samples were analyzed using the HPLC 

method and compared to DBS cards analyzed with HPLC, as well as 

the immunoturbidimetry method. 

Data analysis 

Th e impact of the analysis delay on HbA1c infl ation was 

investigated with a non-linear regression analysis using the soft ware 

NONMEM (V. 7.3, ICON Development Solutions, Ellicott City, MD, 

USA) with the graphical user interface Pirana (V. 2.9.5). Th roughout 

the analysis, the Stochastic Approximation Expectation Methods 

(SAEM) algorithm with the interaction option, followed by a step 

of Monte Carlo Importance Sampling (IMP) algorithm was used. 

Model selection was based on several criteria such as the changes in 

the NONMEM Objective Function Value (OFV) [17], goodness-of-

fi t plots, and the precision of parameter estimation [18].

Th e decrease of the OFV by 3.84 points for the addition of 1 

parameter (chi-square, p < 0.05 with 1 degree of freedom) was 

considered as statistically signifi cant between two nested models [19]. 

For non-nested models, the Akaike Information Criterion (AIC) was 

computed to determine if one model was superior to the other. In the 

current analysis, AIC was defi ned as OFV+2*number of parameters 

[20]. 

Th e model building process was performed in a stepwise 

procedure. First, the baseline model was developed by testing 

diff erent mathematical functions. A linear, E
max

 with and without 

Hill factor, and several exponential functions were tested to describe 

the relationship between measured HbA1c levels and analysis delay. 

Further, a log transformation of analysis delay was tested to account 

for the non-normal distribution of analysis delay. In a second step, 

the center was tested as a covariate. 

SAS (V. 9.4) was used for dataset preparation. Graphical 

visualization of NONMEM results was performed with R (V. 3.2.5) 

and the graphical user interface RStudio (V. 1.0.44). 

To validate the correction method, WB-derived HbA1c levels 

were used. Bland-Altman plots [21] and regression analysis were 

performed to compare reported and corrected HbA1c from DBS 

cards with HbA1c from WB samples. For further validation, glucose 

exposure, refl ected by the Area under the Curve (AUC) of the glucose 

concentration-time profi le obtained from the fsOGTT, as well as 

the Fasting Plasma Glucose (FPG) and 2h-glucose, were employed. 

Pearson correlation coeffi  cients between these glucose related 

biomarkers and HbA1c levels were calculated; paired signifi cance 

tests for correlation diff erences were computed and used for model 

evaluation [22].

RESULTS

Dataset

Overall, 2,237 participants fulfi lled the inclusion criteria for the 

IMI DIRECT prediabetes cohort [13], 76% of whom were male. Th e 

median age was 62 years (range from 30 to 75 years) at enrollment 

and the median weight was 84.2 kg (range from 43.0 to 152 kg). 1,275 

participants were enrolled at center A, 332 at center B, 147 at center 

C and 493 at center D. In total, 14,243 HbA1c values obtained from 

DBS cards were available and used for model development. Th e 

validation dataset consisted of 4,272 HbA1c measurements derived 

from WB samples, 2222 from the fsOGTT performed at month 0, and 

2050 at month 18, respectively. Th e mean HbA1c derived from WB is 

5.6 ± 0.29% (38 ± 3.2 mmol/mol); from DBS, 5.8 ± 0.40% (40.0 ± 4.4 

mmol/mol). A summary of the characteristics of the key variables of 

the IMI DIRECT cohort is already described elsewhere [23]. 

Analysis delay was calculated as the time (in days) between DBS 



International Journal of Proteomics & Bioinformatics

SCIRES Literature - Volume 4 Issue 1 - www.scireslit.com Page - 010

sampling and the DBS assay date. Th e overall analysis delay in the 

dataset used for model development ranged from 0 to more than 400 

days. Only 10.7% of the samples was analyzed within one day aft er 

sample collection and 50.4% within one week. Approximately 90% of 

the samples were analyzed within a timespan of four weeks. Less than 

0.2% of the DBS cards were stored for more than 12 weeks (Figure 1). 

Detailed information on temperature variation during this time was 

unavailable. Supplementary fi gure S1 shows the relationship between 

analysis delay and reported HbA1c, restricted to a delay of 100 days.

Data analysis

An E
max

 model with Hill factor best described the relationship 

between analysis delay and infl ated HbA1c levels (Equation 1), 

refl ected by the lowest AIC value compared to other tested structural 

models. Th e E
max

 value was estimated for each study center separately 

to account for diff erences in DBS card storage conditions. Th e 

inclusion of the study center as a covariate was signifi cant (p = 

7.86*10-211). Th e maximal infl ation of HbA1c refl ected by the E
max 

value in center A was small compared with the other three centers 

(0.411 [mmol/mol] compared to 10.9 [mmol/mol], 7.40 [mmol/mol] 

and 6.76 [mmol/mol] for centers B, C and D, respectively). Th e EC50 

refl ects the analysis time in days that is related to a half maximum 

infl ation. A log transformation of the analysis delay had no benefi t on 

the correct method, so it was reject in the fi nal model. Th e observed 

HbA1c levels and the center-specifi c E
max

 functions versus the analysis 

delay are shown in fi gure 2; parameter estimates are presented in 

table 1. 

Equation 1:

 *  max center  
1 1   50   

HillE analysis delayDBS card
HbA c HbA creported at sampling date Hill HillEC analysis delayDBS card

 


To correct reported HbA1c levels, the center-specifi c E
max

 function 

was shift ed in parallel along the y axis to intersect the reported HbA1c 

level. Th e new intercept of the y axis and the shift ed E
max

 function 

was noted as the corrected HbA1c level and can be calculated using 

equation 2.

Figure 1: Histogram of the relative frequencies of analysis delay for the Dried 
Blood Spot (DBS) cards. More than 50% of all DBS cards were analysed in 
the fi rst week after sampling, while 1.4% were stored for more than 8 weeks.

Figure 2: Center-specifi c Emax functions to describe the relationship between 
HbA1c obtained from Dried Blood Spots (DBS) cards and analysis delay. The 
points, triangles, squares and crosses indicate the reported HbA1c derived 
from DBS cards of center A, B, C and D, respectively. The colored lines 
indicate the model prediction for each center (center specifi c Emax function).

Table 1: Parameter estimates of the correction model.

Parameter Value 
(RSE[%])* Description

Model parameters

Intercept [mmol/mol] 38.0     (0.2) Mean HbA1c at sampling date

Emax(Center A)  [mmol/mol] 0.411    (85) Maximal HbA1c increase of Center A

Emax(Center B)  [mmol/mol] 10.9      (6) Maximal HbA1c increase of Center B

Emax(Center C)  [mmol/mol] 7.40      (7) Maximal HbA1c increase of Center C

Emax(Center D)  [mmol/mol] 6.76      (6) Maximal HbA1c increase of Center D

EC50 [days] 13.4      (11)
Analysis delay of half-maximum 

HbA1c increase

Hill 1.15      (9) Hill factor

Variability

PRV [CV%] 8.8    (0.6) proportional residual variability

* residual standard error

Figure S1: Reported HbA1c levels obtained from the Dried Blood Spot (DBS) 
cards [mmol/mol] vs. analysis delay (in days) restricted to a delay of 100 
days. The blue line indicates a trend line, the shape and color represents the 
four study centers. The red circles indicate center A, where most of the DBS 
cards were analysed within 14 days. The green triangles indicate center B, 
the blue squares and the purple crosses center C and D, respectively.
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Equation 2:

 *  max center
1 1

50  

HillE analysis delay
HbA c HbA ccorrected reported Hill HillEC analysis delay

 


To validate our correction method, the corrected HbA1c, as well 

as the reported HbA1c levels from DBS cards, were compared to 

HbA1c levels derived from WB samples. Mean HbA1c levels derived 

from DBS cards were 5.8 ± 0.40% (40.4 ± 4.39 [mmol/mol]) before 

and 5.6 ± 0.33% (38.0 ± 3.59 [mmol/mol]) aft er correction. Th e mean 

HbA1c derived from WB was 5.6 ± 0.29% (37.6 ± 3.17 [mmol/mol]). 

Figure 3 shows the reported and corrected HbA1c values from 

DBS cards vs. WB, split into two groups: analysis delay ≤ seven days 

(within the stability window according to literature), and greater than 

seven days (outside stability window) [9]. Samples with an analysis 

delay outside the stability window were corrected appropriately, the 

corrected HbA1c levels being spread more evenly around the line of 

identity. Correlation between corrected HbA1c levels from DBS and 

WB sampling were stronger compared to the reported ones (Pearson 

correlation coeffi  cient of 0.61 and 0.69 for reported and corrected vs. 

WB, respectively, p = 5.92*10-36). Furthermore, Bland-Altman plots 

were examined to check for bias in the correction method. Aft er 

correction, HbA1c levels had signifi cantly better concordance with 

WB sample results compared to uncorrected HbA1c DBS values 

(p-value < 2.2*10-16). Th e mean diff erence between HbA1c from DBS 

cards and WB for all samples was -0.2% (-2.16 [mmol/mol]) before, 

and -0.03% (-0.32 [mmol/mol]) aft er correction. Figure 4 shows the 

Bland-Altman plots for each center before and aft er correction. 

Using the HbA1c levels obtained from WB samples as a 

diagnostic marker for prediabetes (HbA1c <= 48 [mmol/mol] and 

>= 40 [mmol/mol]) or diabetes (HbA1c > 48 [mmol/mol]), 24% 

of the samples would be associated with prediabetes and 0.4% with 

diabetes. Using the reported or the corrected DBS samples, 45% or 

23% of the samples results in diagnosis of pre-diabetes and 4.6% and 

0.2% in a diagnosis of diabetes, respectively. Using the reported DBS, 

27% of the samples results in a false positive diagnose of pre-diabetes 

and 4.3% of diabetes. Aft er the correction the false positive rate for 

diagnosis prediabetes or diabetes is reduced to 0.9% (pre-diabetes) 

and 0.4% (diabetes). 

Further, all HbA1c levels were compared to biomarkers obtained 

from the fsOGTT. Supplementary fi gure S2 illustrates a signifi cantly 

stronger correlation between corrected HbA1c and the AUC of 

glucose compared to reported HbA1c (r²_uncorrected = 0.274, r²_

corrected = 0.351, p = 1.61*10-19). Th e relationship between the AUC 

of glucose compared to WB for FPG, the correlation coeffi  cient also 

increased aft er correction (r²_uncorrected = 0.248, r²_corrected = 

0.342, p = 1.42*10-28). Corrected HbA1c and WB showed a similar 

relationship to 2h-glucose (r²_WB = 0.229, r²_corrected = 0.229), 

FPG (r²_WB = 0.348, r²_corrected = 0.341) and AUC (r²WB = 0.358, 

r²_corrected = 0.351); statistically, there were no diff erences between 

correlation coeffi  cients (p > 0.30). 

DISCUSSION 

In this study, we observed a signifi cant increase in HbA1c levels 

with an increasing analysis delay of the DBS cards under real-life 

conditions, a topic that has not been investigated previously. Th e IMI 

DIRECT study was not explicitly designed to address this research 

question; however, the huge amount of data collected in IMI DIRECT 

Figure 3: HbA1c levels derived from Dried Blood Spot (DBS) cards (left: 
reported levels, right: corrected levels) vs. Whole Blood (WB) samples 
regarding the analysis delay within (top) and outside (bottom) the stability 
window of one week reported in literature. Each point, triangle, square and 
cross indicates one observation from one of the four centers. Black lines are 
lines of identity.

Figure 4: Bland-Altman plots: differences between Whole Blood (WB) HbA1c 
[mmol/mol] and Dried Blood Spot (DBS) derived HbA1c vs. the mean of 
the two measurements. The bias between the two methods is represented 
by the gap between the X axis, corresponding to zero difference in black, 
and the parallel blue line to the X axis. The middle blue line represents the 
mean difference between the two assays. The upper and lower blue lines 
represent the agreement limits (1.96*standard deviation). The columns show 
HbA1c derived from DBS cards, as reported values (reported_DBS, left) and 
corrected values (corrected_DBS, right). Data are shown separately for each 
center (A-D) in the panels.



International Journal of Proteomics & Bioinformatics

SCIRES Literature - Volume 4 Issue 1 - www.scireslit.com Page - 012

provides a unique possibility to investigate and quantify the impact of 

up to 400 days of storage. 

In accordance with the published literature, DBS cards 

immediately stored at -20°C showed a negligible infl uence of storage 

time on the resulting HbA1c levels [11]. In our study at center A, 

the DBS samples were handled in this manner and confi rmed this 

fi nding. A maximum infl ation of 0.04% (0.411[mmol/mol]) during 

storage is usually not considered as clinically relevant. However, 

some of the HbA1c values obtained from DBS cards collected at 

study centers B-D were highly infl ated, due to extended storage time 

at variable storage temperature. 

With the exception of the study by Buxton et al., which 

investigated the stability of DBS cards stored in the freezer for at least 

three months [11], most of the published stability studies investigated 

a shorter analysis delay and smaller sample size compared to our 

analyses. Nevertheless, short-term studies indicate that infl ation of 

HbA1c values is directly related with storage time [9,24].

Fokkema et al. investigated the stability of DBS cards over ten 

days at room temperature and reported an increase in HbA1c of 0.4% 

(from 7.2% (55.0 [mmol/mol], day 0) to 7.6% (60.0 [mmol/mol], day 

10) [10]. In center B, where cards were stored at room temperature for 

up to 14 days, our correction method would predict a HbA1c of 7.6% 

(59.5 [mmol/mol]) assuming an HbA1c level of 7.2% at sampling date 

and a storage of ten days. Th us, the degree of infl ation attributable 

to extended storage time and variable temperature of our correction 

method concurs with previous fi ndings. 

In addition to the comparison to WB-derived HbA1c levels, we 

compared our corrected HbA1c levels with glucose related biomarkers 

obtained from fsOGTTs. We detected a statistically stronger 

correlation between FPG and AUC of the glucose concentration-time 

profi le during the fsOGTT and the corrected HbA1c, in contrast to 

the reported value. Th e correlation coeffi  cients aft er correction are 

not statistically diff erent from those of WB and the glucose related 

biomarkers additionally supporting the validity of the presented 

correction method. 

Th e relationship between analysis delay and HbA1c infl ation is 

described by an E
max

 model that could possibly be explained by the 

mechanism of HbA1c formation. Free haemoglobin irreversibly 

reacts with glucose in a non-enzymatic reaction to form HbA1c [25]. 

Under ex-vivo conditions, the higher the temperature, the easier 

the formation of HbA1c in the stored blood sample [26]. Limited 

by decreasing concentrations of the two reactants over time, an E
max

 

model for the description of the change in HbA1c in relation to the 

analysis delay appropriately captures the reaction. To account for 

handling and storage temperatures at the four diff erent study centers, 

specifi c E
max

 values refl ected the diff erent conditions. Th e estimated 

E
max 

values were increasing with increasing storage temperatures; 

storage at -20°C (center A) is related to a small maximal eff ect of 

infl ation (0.411 mmol/mol ); storage at 4°C (center D) as well as 

4-8°C (center C) is related to a maximal increase of 6.76 mmol/mol 

and 7.40 mmol/mol, respectively; and, storage at room temperature 

for up to two weeks (center B) had the highest infl uence on HbA1c, 

with a maximum eff ect of 10.9 mmol/mol.

Th e storage conditions of our DBS samples varied across the four 

study centers. Within-center specifi c details of storage conditions 

for each DBS card were not available. Our correction method uses 

analysis delay as a predictor for HbA1c infl ation during storage. For 

evaluation of this multicenter study, we have to consider that all DBS 

samples had to be shipped to center A, where DBS cards were analyzed 

immediately or frozen at -20°C. Th e temperature during shipment was 

assumed to be close to room temperature. As the specifi c conditions 

are not known for all samples, our correction method provides an 

approximation. Precise information about temperature fl uctuations 

during storage, the glucose and haemoglobin concentrations in the 

sample, as well as humidity levels, all could in theory improve model 

performance further.

Th e IMI DIRECT study was conducted to investigate disease 

progression and not the eff ect of long-term storage on DBS. 

Nevertheless, even with this caveat, our correction method 

appropriately corrects for storage temperature and analysis delay. It 

remains to be seen whether corrected HbA1c levels can help identify 

progression subgroups and new biomarkers within the IMI DIRECT 

cohort. 

For other researchers to apply our correction method, it might 

be necessary to adjust the model parameters to their specifi c study 

conditions. For example, the E
max

 value is expected to be correlated to 

storage temperature; the higher the temperature, the higher the E
max

 

value. Furthermore, baseline HbA1c levels might also have an impact 

on the E
max 

value, when a broader range of HbA1c levels is considered. 

In our case, participants at risk of developing diabetes were studied. 

We hypothesis a negative relation between HbA1c baseline and the 

possibility of glycation of the not-yet-glycated haemoglobin. If the 

overall HbA1c baseline is low, an increase in HbA1c due to the high 

amount of not yet glycated hemoglobin in the samples could be more 

likely to be observed. However one can also argue that with high 

HbA1c baseline, plasma glucose might also be higher, increasing the 

potential for the glycation of proteins. Such dependent relationships 

should be tested and adjusted for, whenever appropriate. 

CONCLUSION

Our study shows that analysis delay and non-ideal storage 

conditions of DBS samples have a signifi cant impact on the infl ation 

of the resulting HbA1c value. Our developed correction method, 

however, seems to adequately adjust for HbA1c instability in such 

instances. Storage conditions of DBS cards should be carefully 

monitored and controlled, ideally at -20°C; however, whenever this 

Figure S2: Correlation analysis between HbA1c measurements (reported 
and corrected HbA1c derived from Dried Blood Spot (DBS) cards and HbA1c 
derived from Whole Blood (WB)) and fsOGTT related glucose measurements 
(Fasting Plasma Glucose (FPG), 2h-glucose, Area Under the Curve (AUC)). 
Each point, triangle, square and cross indicate one observation from one of 
the four centers. Black lines represent the LOESS regression analysis. 



International Journal of Proteomics & Bioinformatics

SCIRES Literature - Volume 4 Issue 1 - www.scireslit.com Page - 013

is not possible, our correction method can be used to adjust for the 

attributable error. 
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Abstract
Aims/hypothesis The objective was to investigate if metformin pharmacokinetics is modulated by time-of-day in humans using
empirical and mechanistic pharmacokinetic modelling techniques on a large clinical dataset. This study also aimed to generate
and test hypotheses on the underlying mechanisms, including evidence for chronotype-dependent interindividual differences in
metformin plasma and efficacy-related tissue concentrations.
Methods A large clinical dataset consisting of individual metformin plasma and urine measurements was analysed using a newly
developed empirical pharmacokinetic model. Causes of daily variation of metformin pharmacokinetics and interindividual
variability were further investigated by a literature-informed mechanistic modelling analysis.
Results A significant effect of time-of-day on metformin pharmacokinetics was found. Daily rhythms of gastrointestinal, hepatic
and renal processes are described in the literature, possibly affecting drug pharmacokinetics. Observed metformin plasma levels
were best described by a combination of a rhythm in GFR, renal plasma flow (RPF) and organic cation transporter (OCT) 2
activity. Furthermore, the large interindividual differences in measured metformin concentrations were best explained by indi-
vidual chronotypes affecting metformin clearance, with impact on plasma and tissue concentrations that may have implications
for metformin efficacy.
Conclusions/interpretation Metformin’s pharmacology significantly depends on time-of-day in humans, determined with the help of
empirical and mechanistic pharmacokinetic modelling, and rhythmic GFR, RPF and OCT2 were found to govern intraday variation.
Interindividual variationwas found to be partly dependent on individual chronotype, suggesting diurnal preference as an interesting, but
so-far underappreciated, topic with regard to future personalised chronomodulated therapy in people with type 2 diabetes.

Keywords Chronopharmacology . Empirical modelling . Mechanistic modelling . Metformin . Pharmacokinetics . Renal
excretion . Transporter
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Cmax Maximum plasma concentration
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GMFE Geometric mean fold error
IR Immediate-release

Denise Türk and Nina Scherer contributed equally to this study.

* Thorsten Lehr
thorsten.lehr@mx.uni-saarland.de

1 Clinical Pharmacy, Saarland University, Saarbrücken, Germany

2 Division of Biomedical Sciences, Warwick Medical School,
University of Warwick, Coventry, UK

3 Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology,
Stuttgart, Germany

4 Departments of Clinical Pharmacology, Pharmacy and Biochemistry,
University of Tübingen, Tübingen, Germany

5 Cluster of Excellence iFIT (EXC2180) ‘Image-guided and
Functionally Instructed Tumor Therapies’, University of Tübingen,
Tübingen, Germany

6 Department of Pharmacy, University of Huddersfield,
Huddersfield, UK

7 Boehringer Ingelheim Pharma GmbH & Co. KG,
Biberach, Germany

Diabetologia
https://doi.org/10.1007/s00125-023-05898-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s00125-023-05898-4&domain=pdf
https://orcid.org/0000-0002-4047-402X
https://orcid.org/0000-0002-7490-0218
https://orcid.org/0000-0002-5840-0678
https://orcid.org/0000-0002-8372-1465
mailto:thorsten.lehr@mx.uni-saarland.de


kcat Transport rate constant
MATE Multidrug and toxin extrusion protein
MRD Mean relative deviation
NLME Non-linear mixed effects
OCT Organic cation transporter
PBPK Physiologically based pharmacokinetic
PMAT Plasma membrane monoamine transporter
RPF Renal plasma flow

Introduction

Metformin is recommended as first-line therapy for type 2
diabetes [1] and predominantly acts in the gastrointestinal
system by decreasing glucose uptake from the lumen and
increasing glucagon-like peptide-1 secretion [2]. Furthermore,
it leads to inhibition of hepatic gluconeogenesis [3] and
increased insulin-stimulated glucose uptake into other organs
e.g. skeletal muscle [4], resulting in a reduction in blood
glucose levels. Recent work suggests that metformin therapy
is associated with a preventive effect against cancer and could
even be a useful adjuvant in cancer therapy [5].

Metformin is highly soluble, exhibits a low permeability
and retains a positive charge over the whole range of physio-
logical pH. Hence, its absorption, distribution and excretion
strongly depend on active transport processes to cross biolog-
ical membranes. Incomplete transporter-mediated absorption
from the upper intestine yields a moderate bioavailability of
about 55% [6]. Pharmacokinetic metformin data indicate high

inter- and intraindividual variation [6]. Metformin is not
metabolised and is mainly excreted in urine passively via
glomerular filtration and actively by consecutive action of
organic cation transporter (OCT) 2 and multidrug and toxin
extrusion proteins (MATEs) [6].

While the pharmacokinetics of metformin is generally well
understood, the influence of time-of-day on metformin phar-
macology, in particular, has not yet been described. Analysing
plasma concentration–time profiles of a twice daily metformin
administration from a study conducted with the intention of
investigating bioequivalence of different metformin formula-
tions [7] revealed similar mean AUC values during day and
night. However, altered plasma curve shapes as well as sizeable
time-of-day variations of trough plasma concentrations
(Ctrough) and maximum plasma concentrations (Cmax) were
found. Many body functions, like the GFR and other excretion
processes as well as absorption andmetabolic processes, under-
lie intraday variations, resulting in changes of drug exposure
and, subsequently, in daily rhythms of efficacy or toxicity [8].
Thus, observed variability in metformin plasma concentrations
might be explained by time-of-day dependent pharmacokinet-
ics. To date, however, no dedicated analyses were available in
published literature to assess time-dependent alteration of
metformin pharmacology in humans.

In general, large interindividual differences in diurnal pref-
erence (also referred to as ‘chronotype’) have been observed,
for example as preferred wake-up and sleep times [9].
Chronotherapy, i.e. taking daytime into account for drug
administration, might have clinical benefits in various
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indications [10–12]. Considering the individual chronotype
within the context of personalised precision chronotherapy
may improve therapy outcomes, as proposed as a potential
treatment option for cancer patients [13].

Here, we (1) investigated whether metformin pharmaco-
kinetics in humans exhibits a significant intraindividual
difference depending on time-of-day of administration;
(2) quantified the magnitude of the effect using non-linear
mixed effects (NLME) pharmacokinetic modelling on a
large clinical dataset of individual metformin concentration
measurements; (3) generated hypotheses regarding sources
of such daily variation and tested the underlying mecha-
nisms using a literature-informed physiologically based
pharmacokinetic (PBPK) modelling approach; (4) partly
explained interindividual variability based on the model-
determined chronotype; and (5) simulated the daily
rhythms of metformin concentrations in relevant tissues,
which could support the assessment of clinical relevance
in future work.

Methods

Clinical dataset Individual metformin measurements from five
clinical studies were used. Metformin was administered as
immediate- (IR) and extended-release (ER) formulations of
500–2000 mg once to three times daily in single and multiple
day regimens. All studies have been approved by the local
ethics committees and informed consent was obtained from
all participants before study entry. Results from studies II–V
have not previously been published. Detailed information on
all studies, including number and demographics of partici-
pants, inclusion and exclusion criteria and exact dosing/
sampling schedules are provided in electronic supplementary
material (ESM) Tables 1–5 and ESM Figs 1–5.

Statistical analysis Individual plasma measurements were
analysed separately for differences between Ctrough values
measured immediately before the next dose in the morning
(‘Ctrough,morning’) and the evening (‘Ctrough,evening’) as well as
Cmax values measured after the morning dose (‘Cmax,morning’)
and the evening dose (‘Cmax,evening’). Details on statistical
analysis are provided in ESM Section 1.2.

NLME pharmacokinetic modelling An empirical pharmacoki-
netic model of metformin was implemented in NONMEM
(version 7.4.3, ICON Development Solutions, Ellicott City,
MD, USA), informed by individual data using NLME tech-
niques. The final model was built and evaluated in a three-step
procedure by: (1) developing a structural model by checking
one-, two- and three-compartment disposition models as well

as zero-order, first-order and Michaelis–Menten absorption
and elimination kinetics; (2) quantifying interindividual and
residual variabilities based on the structural model by testing
variability on each model parameter; and (3) investigating the
effects of the covariates (e.g. sex, age, body weight, serum
creatinine, administered dose, formulation, comedication and
food intake) using a forward inclusion and backward elimina-
tion procedure with significance levels of 5% and 0.1%,
respectively.

A function assuming sinusoidal oscillations with a 24 h
period (Equation 1) was tested on respective model parame-
ters to identify whether a daily rhythm of metformin absorp-
tion, distribution and/or excretion processes improves the
description of metformin plasma and urine concentrations:

f tð Þ ¼ AMP� sin
2π
24

� t þ TDEL½ �
� �

þ 1 ð1Þ

where t = time, AMP = amplitude and TDEL = shift in time.
Values for amplitude and shift were optimised by fitting
model simulations to observed metformin profiles.

Details on final model selection and evaluation are provid-
ed in ESM Section 1.3.

Literature-informed mechanistic PBPK modelling The litera-
ture was extensively searched for physiological conditions
linked to rhythmicity in absorption, distribution and excretion
of metformin, including metformin-specific transporters.

To elucidate the key variables with impact on metformin
pharmacokinetics, a mechanistic whole-body PBPK model-
ling approach was applied, where organs are represented by
compartments that are connected via blood flow. The change
of drug concentration in these compartments over time is
described by differential equations. Mechanistic implementa-
tion of transport processes at their respective sites of action
allows simulation and prediction of drug concentrations in all
relevant organs and body sites. A published whole-body
PBPK model of metformin [14] developed via the Open
Systems Pharmacology Suite (version 8.0, https://www.
open-systems-pharmacology.org/) using metformin studies
in heal thy volunteers after intravenous and oral
administration in fasted and fed state (single and multiple-
dose, dosing range 0.001–2550 mg) was used as a basis for
further investigation. The model includes active transport by
plasma membrane monoamine transporter (PMAT), OCT1 as
well as consecutive action of OCT2 and MATE1.

Time-of-day variation of pharmacokinetic-related process-
es and physiological conditions identified in the literature was
tested with the PBPK model. By modulating relevant model
parameter values over time with an oscillation function
(Equation 1), the influence of each process on metformin
pharmacokinetics was tested separately. Amplitude and
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acrophase (i.e. clock time of maximal activity) of the tested
rhythmic processes were implemented as reported previously
or optimised by fitting simulations to observed aggregated
metformin plasma concentration–time profiles from study I.
The impact of each tested process on metformin pharmacoki-
netics was evaluated visually and quantitatively by calculating
mean relative deviations (MRDs) and geometric mean fold
errors (GMFEs) (ESM Equations 1 and 2), to estimate the
model accuracy for metformin concentration–time profiles
as well as Ctrough and Cmax ratios. Details on model extension
and performance evaluation are provided in ESM Section 1.4.
Information about expression of relevant transport proteins is
presented in ESM Table 6.

Results

Clinical dataset The dataset derived from five studies included
data on 191 healthy adults (65%men, 18–50 years) with 7476
plasma and 316 urine levels of metformin. Of these, 21.4% of
plasma and 100% of urine measurements were observed after
administration of IR formulations. Pharmacokinetic profiles
covering at least one dosing interval were available for all
individuals, with additional Ctrough measurements for
multiple-dose administration studies (studies I and II:
1000 mg twice daily, and study III: 850 mg three times daily)
that allowed further investigations of intraday variation in
pharmacokinetics.

Statistical analysis Plasma concentration–time profiles from
studies I and II were used for the investigation of differences
in individual mean Ctrough,morning and Ctrough,evening values.
Statistical analyses revealed 42% higher mean Ctrough

measurements in the morning compared with the evening
(p=0.00016). Moreover, individual Ctrough measurements
exhibited a large intraindividual variability of up to 75%.
Linear mixed model analysis that included all individual
Ctrough measurements also confirmed significantly higher
Ctrough measurements in the morning (p<0.0001).

Although differences were less pronounced for Cmax, i.e.
16% higher mean Cmax values in the morning compared with
the evening, measurements were significantly different with
p=0.0053 for t test analysis of mean values. Furthermore, for
Cmax, large intraindividual variability was observed, with vari-
ability up to 52%. In the mixed model analysis, the findings
from analysing the means could be confirmed with p=0.0063.
A summary of the statistical analysis is shown in Fig. 1a and
ESM Figs 6 and 7.

NLME pharmacokinetic modelling All individual plasma and
urine measurements from studies I–V were used for model

development and were best described by a two-compartment
disposition model with first-order absorption, distribution and
clearance. IR formulations were modelled via first-order
absorption and ER formulations by a zero-order release
preceded the first-order absorption. Interindividual variability
could be identified for clearance, central volume of distribu-
tion and bioavailability. Implementation of food intake,
formulation and dose as significant covariates reduced the
interindividual variabilities for clearance, volume of distribu-
tion and bioavailability by 14%, 75% and 52%, respectively.
Administration after food intake led to a 1.9-fold higher rela-
tive bioavailability and a 0.6-fold slower absorption rate
constant, but a 5.1-fold increased release duration for the ER
formulation. The bioavailability of the ER formulation was
1.1-fold higher compared with the IR formulation. The
metformin dose was implemented as a covariate using an
exponential function (ESM Equation 3), leading to a
decreased relative bioavailability for higher administered
doses of metformin.

Daily variation was tested for absorption, distribution as
well as clearance parameters. Model performance significant-
ly improved if a daily rhythm on metformin clearance was
incorporated (p<1.0 × 10–100), applying an estimated ampli-
tude of 21% and an acrophase at 17:43 hours. Parameter esti-
mates of the model are provided in ESM Table 7, and the
model structure is presented in ESM Fig. 8. The performance
of the NLMEmodel without and with daily rhythm is present-
ed with plasma concentration–time profiles and goodness-of-
fit plots in Fig. 1b and ESMFigs 9–13, indicating good perfor-
mance of the model including daily variation, with 95% and
83% of predicted individual metformin plasma and urine
concentrations, respectively, within twofold of the observed
values.

�Fig. 1 Investigation of daytime-dependent metformin pharmacokinetics
with concentration measurements from study I [7]. (a) Statistically
significant differences between trough plasma concentrations (Ctrough)
measured in the morning compared with the evening and maximum
plasma concentrations (Cmax) measured in the morning compared with
the evening were found. Data are shown as arithmetic means ± SD.
Metformin administration (1000 mg twice daily) is indicated by arrows.
Grey areas indicate night-time. In the box plots, mean Ctrough and Cmax

values are indicated by crosses, individual values (n=15) by dots. Boxes
represent the distance between first and third quartiles (IQR). Whiskers
range from smallest to highest value (<1.5 × IQR). **p<0.01;
***p<0.001. (b) Performance of the NLME model without and with
time-of-day variation via the estimated oscillation function (insert and
Equation 1) applied on clearance. Representative individual plasma
concentration–time profiles (n=1) are plotted after twice daily
administration of 1000 mg metformin. Dots indicate observed data and
lines indicate model predictions. Goodness-of-fit plots show comparisons
of all predicted and observed individual Ctrough and Cmax ratios after twice
daily administration of 1000 mg metformin. The straight solid line marks
the line of identity, dotted lines indicate 1.25-fold and dashed lines
indicate twofold deviations
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Ctrough and Cmax predictions showed smaller errors for the
model with rhythmic renal clearance compared with the
model assuming constant renal clearance, quantified by a
decrease of mean GMFEs from 1.45 to 1.21 for Ctrough and
1.21 to 1.19 for Cmax ratios of study I (Fig. 1b and ESM Figs
14 and 15). Comparison of conditional weighted residuals vs
time and predicted concentration is presented in ESM Figs 16

and 17. Further details on modelling results are provided in
ESM Section 2.2.

Literature-informed mechanistic PBPK modelling Previous
studies reported daily rhythm in absorption- and distribution-
related physiological conditions, namely gastric pH, gastric

With time-of-day variationWithout time-of-day variation

b

*** **

a

Diabetologia



emptying time, gut motility, blood flow to the gastrointestinal
tract and hepatic blood flow, with effects on drug solubility,
bioavailability, transit time through the gastrointestinal tract
and distribution in the body. For excretion-related processes,
rhythmic GFR and renal blood flow have been described
(ESM Table 8). In addition, daily variation of active transport
processes in the liver and kidney have been observed [8]. No
rhythm was reported for PMAT (SLC29A4), mainly involved
in intestinal absorption of metformin, either in humans or in
animals. For OCT1 (SLC22A1), the transporter mainly

responsible for metformin uptake into hepatocytes, no human
time-series data were available. However, in mice, hepatic
Slc22a1 mRNA expression is not rhythmic [15]. Regarding
renal transporters, Slc47a1 (MATE1) is not rhythmic [15, 16],
while for Slc22a2 (OCT2) expression, one study reported
significant daily rhythms [17]. Again, no human expression
data were available to investigate SLC22A2 (OCT2)
rhythmicity.

These potential factors introducing time-of-day variation
were tested in the PBPK model to confirm and explain

b

a

c

Fig. 2 Implementation of a daily rhythm in the metformin PBPK model.
(a) Hypothesis testing. Rhythmic physiological processes and transporter
activities tested using the PBPK model with the respective prediction
performance metrics, i.e. MRDs and GMFEs. (b, c) Final PBPK model
processes with rhythmic excretion. (b) Time-of-day variation of GFR and
RPF as reported in the literature [18–20] (measurements from different

reports indicated by dots, triangles and squares) and OCT2 implemented
in the final PBPK model. (c) Rhythm of OCT2 was optimised with the
PBPKmodel for each individual, and individual OCT2 parametrisation is
shown as distribution of individually optimised OCT2 amplitudes and
acrophases (n=26). acro, acrophase; BF, blood flow; GET, gastric empty-
ing time
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findings from the NLME model regarding observed time-of-
day variation in metformin pharmacokinetics. Temporal vari-
ations of gastrointestinal and distribution-related processes as
well as GFR and renal plasma flow (RPF) were modelled with
literature values for amplitudes and acrophases, expressing
amplitudes from 12–56% (ESM Table 8). However, judging
by GMFEs for Ctrough and Cmax ratios, rhythmic absorption-,
distribution- and passive excretion-related processes on
metformin pharmacokinetics did not lead to an improved
description of metformin concentration–time profiles, espe-
cially not for both Ctrough and Cmax values compared with
the base PBPK model without any temporal variation. The
daily variation of transport rates was modelled with optimised
values for amplitudes and acrophases. Introducing oscillation
in PMAT and OCT1 activities resulted in insufficient descrip-
tions of both metformin Ctrough and Cmax ratios, while time-of-
day variation in activity of excretion-related transporters, i.e.
OCT2 and MATE1, improved descriptions of observed plas-
ma concentrations as well as Ctrough and Cmax ratios (Fig. 2a
and ESM Figs 18 and 19 under Section 2.3.2). In the final
model, metformin plasma concentration–time profiles were
modelled incorporating a combination of a daily rhythm in
GFR, renal blood flow and OCT2 (Fig. 2b), which is consis-
tent with published findings for human renal physiology
[17–20]. PBPK model parameters are listed in ESM
Tables 9 and 10 under Section 2.3.3.

Individual differences in the daily rhythms of metformin
pharmacokinetics Individual metformin profiles exhibited a
large interindividual variability and were insufficiently
described using the same rhythmic OCT2 parametrisation
for all participants. To account for interindividual variability
in OCT2 baseline activity (caused by e.g. genetic polymor-
phisms), transport rate constant (kcat) values were optimised for
individual profiles with mean kcat=57680 1/min (CV=69%;

n=26). Individual chronotypes were estimated by calculating
OCT2 amplitudes and acrophases separately for each individual
with a mean amplitude of 57% (CV=43%) and mean acrophase
at 16:54 hours (CV=39%). The distribution of individual ampli-
tudes and acrophases is shown in Fig. 2c, while no correlation of
OCT2 parameters has been determined (ESMFig. 20). Predicted
mean and individual plasma concentration–time profiles from
studies I and III are shown in Fig. 3, agreeing with observed
higher Ctrough values before the morning dose and higher Cmax

values after the morning dose when administered every 12 h
(Fig. 3a). Highest Cmax values were predicted during the night
for the three-times daily regimen (Fig. 3b). Predicted plasma
concentration–time profiles for all studies compared with
observed data are shown in ESM Figs 21–25. Goodness-
of-fit plots demonstrate that 93% of predicted plasma
concentration values from studies I and III lie within
twofold of observed values (ESM Fig. 26). Comparisons
of predicted and observed Ctrough and Cmax ratios are
shown in ESM Fig. 27.

Simulations in relevant tissues To investigate the impact of
daily modulation of metformin pharmacology on its exposure
in tissues, plasma, kidney, liver, fat and muscle tissue concen-
trations were simulated in steady-state, administering the
highest recommended metformin dose of 1000 mg three times
daily [21]. Simulated metformin concentration–time profiles
for plasma and tissues showed substantial interindividual and
intraday variability (Fig. 4a–e) and calculations of metformin
peak-to-trough concentration ratios for each dosing interval
within 1 day in plasma and tissues revealed intraday,
intertissue and interindividual differences (Fig. 4f). As
OCT2, the main contributor to metformin rhythm in the
model, is expressed at the basolateral membrane of tubular
epithelial cells, concentrations in the kidney showed an oppos-
ing trend due to a decreased transport of metformin into

a b

Fig. 3 Mean (black lines) and individual (grey lines) PBPK model
predictions of metformin plasma concentration–time profiles compared
with measurements from (a) study I (n=15) and (b) study III (n=11) [7,

39]. Closed black dots indicate arithmetic means ± SD, open grey dots
indicate individual measurements. Grey areas indicate night-time. bid,
twice daily; po, oral; tid, three times daily
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kidney cells at night, leading to increased concentrations in
plasma and other tissues.

Discussion

Chronotherapy might have a clinical benefit in various indi-
cations, discussed e.g. for therapy of cancer [10], rheuma-
toid arthritis [11] or metabolic diseases [12]. To date, the
implications of chronopharmacology for treatment of type
2 diabetes have not been investigated in dedicated clinical
trials. The presented work focused on statistical and in
silico analyses of metformin pharmacokinetics covering
interindividual variability with the help of NLME and
PBPK modelling, revealing intraday changes in pharmaco-
kinetics for metformin plasma and urine concentrations.
Mechanistic mathematical modelling of metformin phar-
macokinetics allowed the investigation of hypotheses for
the underlying chrono-mechanisms and the integration of
related findings in the overall context of diabetes therapy.

Statistical analyses showed significant differences between
metformin Ctrough as well as Cmax values measured in the
morning or the evening. To further investigate these differ-
ences and variations, empirical and mechanistic pharmacoki-
netic models were applied, as these methods have been proven
useful to (1) test hypotheses and (2) investigate time-of-day

dependence, e.g. for oral bioavailability and clearance of
midazolam [22], light-triggered melatonin release [23] and
heart rate [24].

The NLME pharmacokinetic modelling analysis led to an
accurate description of metformin plasma concentrations,
especially Ctrough and Cmax measurements, when a daily
rhythm for systemic clearance was incorporated. In contrast,
rhythms of other processes, e.g. the absorption, did not
improve the modelling outcomes. The time-dependent effect
on systemic clearance might be predominantly attributed to
biologic rhythmic variations of kidney function, as metformin
is exclusively eliminated renally. Rhythmic GFR and renal
blood flow have been described [18–20] while the variation
in GFR cannot be explained by the oscillation of renal blood
flow alone [20]. In mice, the circadian clock in podocytes has
been found to contribute to a rhythmic GFR [25], but the
influence of further systemic factors are not completely under-
stood [26]. However, the NLME estimated amplitude for the
oscillation of metformin clearance was more pronounced
compared with the published amplitude for GFR (21% vs
13%) [18–20], leading to the hypothesis of an additional daily
rhythm in active secretion.

The PBPK modelling approach complemented the empiri-
cal NLME model, as it allowed the mechanistic implementa-
tion of individual physiology including demographics, kidney
function as well as relevant transport proteins. Key processes

a b c

d e f

Fig. 4 PBPKmodel simulations of plasma and tissue concentration–time
profiles of an oral administration of three-times daily 1000 mg metformin
(highest recommended dose according to the German prescribing infor-
mation [21]) at 07:00, 15:00 and 23:00 hours (indicated by arrows). (a–e)
Comparison of metformin levels in (a) plasma, (b) kidney tissue, (c) liver
tissue, (d) fat tissue and (e) muscle tissue. Respective simulations with a
mean parameter set of OCT2 kcat, amplitude and acrophase are shown as
dark lines, simulations with individual parameter sets (n=26) are shown

as light lines. Grey areas indicate night-time. (f) Comparison of metfor-
min peak-to-trough ratios for simulations in plasma and tissues. The three
box plots per tissue give peak-to-trough ratios after metformin adminis-
tration at 07:00, 15:00 and 23:00 hours. Dots (peak 1), triangles (peak 2)
and squares (peak 3) show individual peak-to-trough ratios (n=26),
crosses indicate mean values. Boxes represent the distance between first
and third quartiles (IQR). Whiskers range from smallest to highest value
(<1.5 × IQR)
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from the NLME model were well in line with the indepen-
dently developed PBPK model, and the additional rhythmic
active secretion, proposed by analysing the NLME model
outcomes, could be supported with the PBPK approach.
Here, metformin plasma concentration–time profiles, espe-
cially Cmax as well as Ctrough, were best described assuming
a combination of rhythmic GFR, renal blood flow and tubular
secretion rate. In the literature, there is no unambiguous
evidence for rhythmic SLC22A2 compared with SLC47A1
(MATE1). Kidney expression data from mice presented by
Zhang et al [16] reveal that Slc47a1 is not rhythmic, similar
to Slc22a2, but a slightly more pronounced rhythm in Slc22a2
is shown. Oda et al [17] observed rhythmic Slc22a2 but not
Slc47a1 expression profiles in nocturnal mice [17]. Baboons
exhibit a rhythm in both SLC22A2 and SLC47A1 expression
in the kidney medulla, but not in the kidney cortex, where the
relevant proximate tubule cells are located [27].
Unfortunately, expression data of SLC22A2 in human kidney
cells are currently not available. However, due to the sequen-
tial action of OCT2 andMATEs in tubule cells, discrimination
between both processes is challenging and dedicated studies
are required to investigate the specific contributions of both
OCT2 and MATEs. Model implementation of daily variation
for both OCT2 and MATE1, also taking interindividual vari-
ability into account, was not feasible using the currently avail-
able data. If data from human kidneys become available, the
model could be adjusted in future projects.

The influence of other possible rhythmic processes affect-
ing drug pharmacokinetics, i.e. absorption- and distribution-
related mechanisms, was quantified with a PBPK model,
because these mechanisms might also affect metformin solu-
bility, distribution and transit time through the gastrointestinal
tract, bioavailability and tissue distribution [8]. Food intake
has been reported to reduce metformin bioavailability of an
IR formulation [28] but was not the main contributor to
observed daily variations of metformin pharmacokinetics
according to our PBPK model analysis. Only a minor contri-
bution of daily rhythms in other absorption- and distribution-
related processes has been assumed in previous work [15,
28–30]. This was confirmed, as a rhythmic absorption rate
reduced NLME model performance, and PBPK modelling
of rhythmic absorption- and distribution-related processes
showed only a very small effect on plasma concentration–
time profiles (ESM Figs 18 and 19). An altered metformin
absorption, however, might have a more pronounced impact
on its pharmacokinetics after administration of ER formula-
tions, which was not addressed in this study due to the lack of
clinical data.

Both the NLME and the PBPK models predict higher
Ctrough and Cmax values of the morning dose compared with
the evening dose after twice daily administration. The PBPK
model predicts higher Cmax values during the night when
metformin is administered in a three-times daily regimen.

This observation is expected, as maximum GFR, RPF and
OCT2 activity are modelled in the late afternoon and mini-
mum activity was assumed in the early morning. Hence, in
comparison with the morning dose, higher metformin levels
are expected after the night dose administered at 23:30 hours
with increased Ctrough values predicted in the morning due to
lower elimination of metformin. Moreover, individual differ-
ences in night Cmax compared with day Cmax can be attributed
to individual chronotypes estimated by the model. For the
three-times daily regimen, frequent measurements during the
night would be valuable to verify model hypotheses.

Since large interindividual differences in individual
chronotypes have been observed [9], ‘chronotype’ like phase
differences were hypothesised and an individual OCT2
parametrisation improved plasma concentration–time predic-
tions. Whereas all data herein are from healthy volunteers, an
extension to patients with diabetes or kidney failure might be
challenging due to relevant pathophysiological changes.
Moreover, rhythms in GFR, RPF and OCT2 could be different
in patients compared with healthy individuals [31] and, thus,
require further experimental data to adjust our model.

Both of our presented models assume active renal excretion
as the main contributor to metformin pharmacokinetics. In our
NLME model, a large interindividual variability (CV=68%)
was estimated on the clearance processes. Other modelling
work, e.g. by Stage and coworkers, identified less variability
on the clearance (CV=25%) but found large interoccasion
variability (up to CV=94%) on absorption and bioavailability
processes [32]. Duong et al presented varying degrees of inter-
individual variability without modelling daytime variations
but incorporated interoccasion variability as a random error
term [33]. The comparison of parameter estimates from empir-
ical NLME models is complex, as the models are non-
mechanistic and were built for different purposes with differ-
ent model structures and different datasets. It may be specu-
lated that the modelled interoccasion variability might repre-
sent parts of the daytime variation, as the inclusion of daytime
variation in our model reduced the interindividual variability
on the central volume of distribution and the clearance signif-
icantly, by 36% and 11%, respectively.

Disruption of the circadian clock has been associated with
the development of various diseases, such as metabolic and
cardiovascular disorders [34]. Mistimed sleep, for example in
shift workers, has been identified as a risk factor for develop-
ing type 2 diabetes [35], as this affects glucose tolerance and
insulin sensitivity [36]. Additionally, a disrupted daily rhythm
has been described in diabetes patients [37]. In diet-induced
obese rats, targeting the disrupted clock using melatonin in
combination with metformin led to an improved therapy
outcome [38]. However, using chronobiological concepts to
optimise the treatment of type 2 diabetes is not adopted in
clinical practice yet. In mice, differences in the direct
glucose-lowering effect of metformin and in blood lactic acid
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levels were observed if metformin was administered in the
active or the rest phase of the animals [15], which would
support the hypothesis of time-of-day dependent pharmaco-
dynamics. An interesting future research question regarding
clinical implication might focus on the extent to which intra-
day variation of metformin pharmacokinetics affects efficacy
and toxicity in humans, i.e. the risk of lactic acidosis, which
needs further investigation. Additionally, personalised chro-
notherapy might improve therapy outcomes for diabetes
patients.

Statistical analyses as well as empirical and mechanistic
pharmacokinetic modelling were successfully applied to
generate and test hypotheses of the underlying chrono-
mechanisms affecting metformin pharmacokinetics. Both
modelling approaches suggest that rhythmic renal elimination
had the strongest impact onmetformin pharmacokinetics. Key
variables of renal elimination were the rhythms in GFR, renal
blood flow and OCT2-dependent transport rate. More broad-
ly, our analyses demonstrated the strength of combining
empirical and mechanistic pharmacokinetic modelling as a
powerful toolchain to investigate scenarios with incomplete
and missing clinical data. Furthermore, our results suggest a
significant impact of chronotype onmetformin pharmacology.
Thus, this work might be a starting point for the translation of
study results to therapy outcomes and risk assessment by
individualised chronotherapy.
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Abstract

Alirocumab and evolocumab are 2 human monoclonal antibodies that inhibit the proprotein convertase subtilisin/kexin type 9 (PCSK9). These
antibodies can potently lower low-density lipoprotein cholesterol (LDLc) serum concentrations. The aims of this analysis were to develop a
pharmacokinetic (PK) and pharmacodynamic (PD) model for both antibodies, to simulate and investigate different dosage and application regimens, and
finally, to note the effects on LDLc levels. Alirocumab was clinically studied and approved with 2 doses, 75 and 150 mg every 2 weeks (Q2W),whereas
evolocumab was tested and approved with 2 dosing intervals, 140 mg Q2W and 420 mg Q4W.Data were digitized from published studies describing
alirocumab and evolocumab PK, as well as LDLc levels in humans for various single and multiple doses. Alirocumab dosages ranged between 75 and
300 mg and evolocumab from 7 to 420 mg. The analysis was performed using a nonlinear mixed-effects modeling technique. A 2-compartment model
with first-order absorption and saturable elimination described the PK of both antibodies best. LDLc levels were described by a turnover model with
zero-order synthesis rate decreased by the antibodies and a first-order degradation rate that was increased by the antibodies. Simulations show a
comparable effectiveness for alirocumab 75 mg Q2W and 150 mg Q3W as well as evolucmab 140 mg Q2W and 420 mg Q5W, respectively. This is
the first PK/PD model describing the link between alirocumab and evolocumab PK and LDLc concentrations. The model may serve as an important
tool to simulate different dosage regimens in order to optimize therapy.

Keywords

alirocumab, evolocumab, PCSK9, PK/PD modeling, NONMEM, simulation

Epidemiologic and genetic evidence shows that
low-density lipoprotein cholesterol (LDLc) serum
concentration is an important modifiable risk factor
for cardiovascular diseases (CVD).1 Large clinical
trials with LDLc-lowering medications, such as statins,
confirmed that LDLc reduction potently reduces
cardiovascular morbidity and mortality.2 Statins are
recommended as the first line of therapy for the preven-
tion of CVD.3 However, many high-risk patients do not
attain the recommended LDLc levels under treatment
with statins.4 Especially for patients with statin
intolerance or familial hyperlipidemia,5 there is a need
for new therapeutic strategies to lower LDLc levels.

One recently discovered target is proprotein conver-
tase subtilisin/kexin type 9 (PCSK9).6 In the absence
of PCSK9, circulating LDLc binds to the LDLc
receptor (LDLR) on the surface of hepatocytes. In
turn, the formed LDLR-LDLc complex is internalized
by endocytosis.6 LDLc is degraded in lysosomes while
the LDLR is recycled and moved back to the cell
surface. If present, PCSK9 binds to LDLRs on the
surface of hepatocytes, and subsequently the LDLR-
PCSK9-LDLc complex occurs and is internalized.

PCSK9-bound LDLRs are marked for intracellular
degradation, leading to a reduced number of
LDLRs on hepatocytes. As a consequence, LDLc
concentrations increase.7

Alirocumab and evolocumab are 2 fully humanized
monoclonal antibodies that bind selectively and with
high affinity to PCSK9, preventing it from binding to
the LDLR. Therefore, the number of available LDLRs
on hepatocytes is increased, and in turn, more LDLc
can be removed from the circulation. Since 2015,
both antibodies have been approved by the European
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che Intensivmedizin,Universitätsklinikum des Saarlandes,Homburg/Saar,
Germany

Submitted for publication 24 August 2016; accepted 5 December 2016.

Corresponding Author:
Thorsten Lehr, PhD, Junior Professor of Clinical Pharmacy, Saarland
University, Campus C2 2, 66123 Saarbrücken, Germany
Email: thorsten.lehr@mx.uni-saarland.de

There are no disclosures, conflicts of interests, or use of a professional
medical writing company.



Scherer et al 847

Medicines Agency and the US Food and Drug Ad-
ministration for the treatment of patients with elevated
cholesterol levels.8–11 The recommended dosing regi-
men for alirocumab is 75mg administered every 2weeks
(Q2W). If the LDLc response is insufficient, the dose
may be increased to themaximumdose of 150mgQ2W.
For evolocumab, the recommended dosing regimen is
140 mg Q2W or 420 mg Q4W. These new first-in-class
medications were shown to be highly effective in large
randomized clinical trials. LDLc reductions of 62%
(alirocumab) and 61% (evolocumab) were observed
after subcutaneous (sc) administration of 150 mg
Q2W alirocumab or 140 mg Q2W or 420 mg Q4W
evolocumab.12,13

These studies showed that the occurrence of cardio-
vascular safety events within 1 year was significantly
reduced with alirocumab and evolocumab treatment
compared with standard therapy.12,13

The PK of alirocumab and evolocumab is mainly
driven by their characteristics as monoclonal human
antibodies.14,15 The absolute bioavailability (F) after
sc administration is 85% for alirocumab and 72% for
evolocumab.14,15 The volume of distribution is 3.0-
3.8 L for alirocumab and 3.3 L for evolocumab,14,15

indicating a limited tissue distribution. Both antibodies
showed at least 2 different elimination pathways, ie, pro-
teolytic and target-mediated elimination. The relative
contributions of these different elimination pathways
to the overall elimination process are dependent on the
drug concentration:14,15 The proteolytic elimination is
relevant only at high antibody concentrations when the
target-mediated pathway is saturated, whereas the non-
linear target-mediated elimination is more prominent
in the low concentration range. The half-lives range
from 17 to 20 days for alirocumab and from 11 to
17 days for evolocumab and are reduced in patients
with statin coadministration (eg, about 12 days for
alirocumab).14,15 Statins induce PCSK9 expression,16–18

resulting in increased target-mediated elimination of
the antibodies.14 Thus, the area under the plasma
concentration-time curve of both antibodies is reduced
under statin comedication.15

Even though these new treatment options are highly
effective and provide an excellent opportunity for the
treatment of elevated cholesterol levels, very little is
known about their quantitative PK/PD relationship.
Some patients show an above-average response to
PCSK9 inhibitors. However, the long-term safety of
very low LDLc levels (eg, below 30 mg/dL) is not
yet fully understood. Furthermore, the treatment costs
are very high. As a consequence, alternative dosing
regimens may be valuable to individualize treatment
and to reduce the treatment cost.

The aims of this analysis were to describe and
predict the PK as well as the PD of both antibodies.

In addition, the resulting PK/PD model was used to
investigate different dosing regimens that were not clin-
ically tested and to compare these to the recommended
regimens.

Methods
Data Set
Serum concentrations of alirocumab and evolocumab
and LDLc levels, recorded as the change from baseline,
were derived from mean curves of clinical trial data.

For alirocumab, data from 6 studies were digitized
and used for model development: 4 phase 1 studies
investigated the PK after single-dose administration.
Mean serum concentrations for doses of 50 mg, 75 mg,
100 mg, 150 mg, 200 mg, and 250 mg were reported.19

The phase 2 study DFI11565 investigated the PD after
multiple dosings of 50 mg, 100 mg, and 150mgQ2W as
well as 200 mg and 300 mg Q4W.19 Stein et al reported
the PD of alirocumab after single-dose administration
of 50 mg, 100 mg, 150 mg, and 250 mg.20 Lunven et
al examined the PK and PD of alirocumab after single
sc administration at 3 different injection sites in healthy
volunteers.21

For evolocumab, data from 6 studies were used for
model development. Dias et al reported 2 phase 1
studies that investigated the PKandPDof evolocumab:
21 mg and 420 mg were administered intravenously,
and doses between 7 mg and 420 mg were administered
sc to healthy subjects (Study 20080397).22,23 Further-
more, hypercholesterolemic adults received 14 or 35 mg
weekly, 140 or 280 mg Q2W, or 420 mg Q4W.22,23 Study
20080398 investigated the PK of evolocumab following
multiple dosing of 140 mg Q2W and 420 mg Q4W sc
in subjects with hyperlipidemia on top of stable doses
of statins.22 Phase 2 dose-finding studies investigated
the PD after multiple dosing of 70 mg Q2W, 140 mg
Q2W, 280 mg Q4W, and 420 mg Q4W administered to
patients with elevated LDLc levels.14

Data Analysis
Data analysis and simulations were performed
using nonlinear mixed-effects modeling techniques
implemented in the software NONMEM (V 7.3, ICON
Development Solutions, Ellicott City, Maryland)
with the graphical user interface Pirana (V 2.9.2). To
consider the different study sizes for each mean curve,
the random and residual errors were weighted by the
inverse square root of the number of subjects.24,25

Throughout the analysis, first-order conditional esti-
mation with INTERACTIONwas used, and interstudy
variability was modeled using exponential random-
effects models. Model selection was based on several
criteria such as the changes in the NONMEMobjective
function value,26 goodness-of-fit plots, and the
precision with which model parameters were
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848 The Journal of Clinical Pharmacology / Vol 57 No 7 2017

Figure 1. Schematic of the PK/PD model. F, bioavailability; ka, absorption rate constant;Vmax,maximum elimination rate;Km, antibody concentration at
half-maximum elimination;Q, intercompartmental clearance; EC50, drug concentration at half-maximum drug effect; Emax,maximum drug effect on ksyn
and kdeg; ksyn, zero-order LDLc synthesis rate constant; kdeg, first-order LDLc degradation rate constant; LDLc, low-density lipoprotein cholesterol; sc,
subcutaneous; iv, intravenous.

estimated.27 A reduction in the objective function
value by 3.84 points was considered a criterion of
superiority comparing 2 nested models (X², P < .05,
1 degree of freedom).28 Graphical visualization of
NONMEM results was performed with R (V 3.2.0)
and the graphical user interface RStudio (V 0.98.1103).
For digitization, the software GetData Graph Digitizer
(V 2.26) was used.

Themodel-building process was performed stepwise.
First, the PKmodel was developed for both antibodies.
For each antibody, 1-, 2- and 3-compartment models
as well as target-mediated drug-disposition models
were tested. Different absorption and elimination ki-
netics (zero-order, first-order, Michaelis-Menten) were
investigated. The final PK model was parameterized
in terms of volumes of distribution and absorption
and elimination parameters. Second, the PK model
parameters were fixed to develop the PK/PD model.
Different linear, exponential, Emax, and turnover mod-
els were evaluated to describe the LDLc change over
time. Direct links to plasma concentration and effect
compartment models were explored. LDLc baseline
level as well as statin comedication were considered as
covariates.

Internal model evaluation was performed by visual
predictive checks based on 5000 simulations using
the final PK/PD model. Medians and 90% confidence
intervals of the predictions were plotted and overlaid
with the observed data.

External model evaluation was performed by com-
paring model-predicted median LDLc levels with long-
term data on both antibodies from studies reported by
Robinson et al and Sabatine et al.12,13 In both studies
patients were cotreated with statins.

Simulations
To investigate alternative treatment regimens with
equivalent effectiveness in comparison to the standard
dosing recommendations, steady-state simulations with
and without statin comedication were performed based

on the final model including interstudy and residual
variability. Each simulation consisted of 2000 individu-
als. For alirocumab the recommended dosing regimen
is 75 mg Q2W or 150 mg Q2W if a change from
baseline of more than 60% is required. Simulations
for the 2 recommended doses were performed using
dosing intervals of 2, 3, and 4 weeks. For evolocumab, 2
equivalent dosing regimens are recommended: 140 mg
Q2W and 420 mg Q4W. Simulations with administra-
tion of 140 mg evolocumab every 2, 3, and 4 weeks
as well as 420 mg every 4, 5, and 6 weeks were
performed.

Additionally, simulations starting from different
LDLc baselines between 100 mg/dL and 240 mg/dL
were performed to investigate the optimal dosing reg-
imen aiming to attain specific goals in LDLc reduction.

Results
Data Set
Data from 12 different studies were pooled for analysis
(Supplemental Table S1). Dose ranges from 50 to
300 mg and 7 to 420 mg were covered for alirocumab
and evolocumab, respectively. The final data set
comprised 103 and 100 mean plasma concentrations
and 86 and 209 mean LDLc measurements for
alirocumab and evolocumab, respectively. The mean
LDLc baseline levels were available for each study.
The median LDLc baseline levels across the studies
were 128.2 mg/dL (range 117.2-142.2 mg/dL) and
120.5 mg/dL (range 100-134 mg/dL) for alirocumab
and evolocumab, respectively.

PK/PD Model
Plasma concentration-time profiles of alirocumab and
evolocumab were best described by a 2-compartment
model with first-order absorption and a saturable
Michaelis-Menten elimination process (Figure 1).
Statin comedication increased the maximum
elimination rate (Vmax) of alirocumab and evolocumab
by 1.25- and 1.19-fold, respectively. A turnover
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Table 1. Parameter Estimates From the PK/PD Model for Alirocumab and Evolocumab

Value, RSE (%)

Parameter Alirocumab Evolocumab Description

Fixed effects
ka, day−1 0.262 (30) 0.302 (7) First-order absorption rate constant
V2, L 2.70 (37) 3.72 (4) Volume of distribution of central compartment
V3, L 2.64 (19) 3.6 (19) Volume of distribution of peripheral compartment
Q, L day−1 1.29 (6) 0.167 (18) Intercompartmental clearance
F, % 85.0 (fixed) 84.9 (4) Bioavailability
Vmax, mg day−1 25.2 (33) 14.3 (14) Maximum elimination rate
Km, mg L−1 41.6 (37) 14.3 (31) Antibody conc at half-maximum elimination
effectstatin 1.25 (4) 1.19 (4) Proportional effect of statin comedication on Vmax

kdeg, day−1 0.138 (12) 0.229 (9) First-order LDLc degradation rate constant
EC50, mg L−1 7.99 (9) 4.45 (21) Drug conc at half-maximum drug effect
Emax 0.784 (4) 0.610 (7) Maximum drug effect on ksyn and kdeg

Random effectsa

ω2 Emax, CV% 8.45 (21) 34.5 (23) Variance of interunit random effects on Emax

Residual effectsa

PRV, % 11.0 (13) 4.25 (14) Proportional residual variability (PK model)
ARV (SD) 0.00065 (62) 0.358 (47) Additive residual variability (PK model)
ARV (SD) 17.5 (26) 53.3 (20) Additive residual variability (PD model)

RSE, residual standard error.
aAll unit-level random and residual effects for arm data are weighted by n:ω2

a = ω2
a,raw/n and σ2

b = σ2
b,raw/n, where ω2

a is the unit-level variance for parameter a
and σ2

b is the residual variance for b for median unit size (n);ω2
a,raw is the unweighted unit-level variance for parameter a, and σ2

b,raw is the unweighted residual
variance for b that NONMEM reports. Random effects and proportional residual variability are reported as ωa and σb. The median n values for the alirocumab
PK and PD data set are 8 and 20, respectively; the median n for both the evolocumab data sets is 6.

model with zero-order synthesis and first-order
degradation rate best described LDLc levels over
time. Higher drug concentrations in the central
compartments of alirocumab and evolocumab were
found to decrease the synthesis rate and to increase
the elimination rate of LDLc mediated by an Emax

model.
The PK/PD model parameter estimates are

presented in Table 1. All model parameters were
precisely estimatedwith residual standard errors�50%.
A small interstudy variability on the maximum drug
effect was identified for alirocumab (%CV 8.45) and
evolocumab (%CV 34.5). Observed vs model-predicted
antibody plasma concentration and LDLc changes
(goodness-of-fit plots, Supplemental Figure S1) are
randomly distributed around the line of identity,
indicating good descriptive properties of the final
PK/PD model. The visual predictive checks (Figure 2,
Supplemental Figures S2 and S3) demonstrate good
descriptive performance with neither under- nor
overestimation.

For evolocumab an sc bioavailability of 84.9% was
estimated. For alirocumab no intravenous data were
available, and the sc bioavailability was fixed to the
literature value of 85%.15 The sum of the central and
peripheral volumes of distribution was estimated as
7.32 L for evolocumab and 5.34 L for alirocumab. The
maximum drug effect was estimated in the same range

for both compounds (evolocumab, 0.610; alirocumab,
0.784).

External model evaluation showed a good predictive
performance. The evaluation study12 for alirocumab
included 2341 patients at high risk for cardiovascular
events. The patients were randomly assigned in a 2:1
ratio to receive either alirocumab (150 mg Q2W) or
placebo. All patients received statin comedication and
were monitored for 78 weeks. The observed LDLc
change from baseline after 78 weeks of treatment
with 150 mg Q2W was –58% excluding nonadherent
patients.12 The model predicted a median change of
–67.0% after 78 weeks.

In the evolocumab evaluation study,13 4465 patients
were randomly assigned in a 2:1 ratio to receive
either evolocumab (140 mg Q2W or 420 mg Q4W)
or standard therapy to investigate long-term data on
safety, side-effect profile, and LDLc reduction. A total
of 2976 patients received evolocumab plus standard
therapy, and the median follow-up was 11.1 months.
The observed LDLc change from baseline following
administration of 140 mg evolocumab Q2W for 12
weeks was –61%. A corresponding reduction of –58.4%
was observed following administration of 420 mg
evolocumab for 48 weeks.13 Themodel-predicted LDLc
changes from baseline at steady-state+ doses of 140 mg
Q2W and 420 mg Q4W were –59.1% and –67.0%,
respectively.
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Figure 2. Selected visual predictive checks. Observed and model-predicted drug concentrations (upper) and LDLc change from baseline (lower)
following administration of alirocumab (left) and evolocumab (right).Observations (circles) and ± 1 SE (bars) are shown. Lines and bands indicate the
predicted median and 90% confidence interval of the predictions of 5000 individuals. LDLc, low-density lipoprotein cholesterol; sc, subcutaneous.

Simulation for Different Dosing Regimes
The final PK/PD model was used to simulate dif-
ferent dosing regimens under steady-state conditions
to investigate alternative treatment regimens. Median
LDLc change from baseline and median LDLc profiles
with and without statin comedication are presented
in Figure 3. The simulations revealed a comparable
LDLc change for 75 mg alirocumab Q2W and 150 mg
Q3W as well as for 140 mg evolocumab Q2W and 420
mg Q5W, respectively. Due to the decreased PCSK9
antibody exposure under statin comedication,16–18 a
smaller LDLc change from baseline is achieved for
patients with statin comedication compared to patients
without statin comedication.

To visualize the effect of different LDLc baseline
levels on the levels reached at steady-state, the
recommended dosing regimens were simulated
for LDLc baseline levels between 100 mg/dL and
240 mg/dL without statin comedication. Assuming a
baseline LDLc level of 240 mg/dL, the administration
of 75 mg alirocumab Q2W results in an LDLc level of
106 mg/dL; a baseline LDLc level of 120 mg/dL results
in an LDLc level of 52.9mg/dL. For 150mg alirocumab
Q2W, the resulted LDLc levels are 76.3 mg/dL
(baseline 240 mg/dL) or 38.1 mg/dL (baseline 120
mg/dL). After administration of 140 mg evolocumab
Q2W, the LDLc level reaches 77.1 mg/dL (baseline
240 mg/dL) or 38.5 mg/dL (baseline 120 mg/dL), and
for 420 mg Q4W, 123 mg/dL (baseline 240 mg/dL) or

61.6 mg/dL (baseline 120 mg/dL). The simulated LDLc
concentration-time profiles are visualized in Figure 4.

Discussion
This analysis presents the first PK/PD model for
the novel PCSK9-targeting antibodies alirocumab and
evolocumab. The model allows assessing the LDLc-
lowering effects of both antibodies when administered
with different dosing regimens.

A 2-compartment model adequately described the
PK of each antibody, which is in accordance with
literature models for monoclonal antibodies.29–31 The
volume of distribution in the central compartment was
estimated as 3.72 L and 2.70 L for evolocumab and
alirocumab, respectively, approximating the plasma
volume of 4 L. The saturable clearance pathway
is assumed to represent a target-mediated pathway
of elimination, which is frequently observed for
monoclonal antibodies.31 The low number of PK
samples collected during the elimination phase made
it difficult to properly estimate the parameters of
a target-mediated drug-disposition model. In turn,
Michaelis-Menten kinetics was used to capture the
nonlinearity in the antibody elimination. A published
PK/PD model of another PCSK9-targeting antibody
described the elimination with a parallel first-order and
Michaelis-Menten kinetic,32 supporting the hypothesis
that the target (ie, PCSK9) impacts the elimination of
the drug.
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Figure 3. Predicted LDLc change from baseline using the final PK/PD model for different dosing regimens for alirocumab (upper) and evolocumab
(lower). The lines indicate the predicted median of the predictions in 2000 individuals without statin comedication (solid line) and with statin
comedication (dashed line). LDLc, low-density lipoprotein cholesterol; PK/PD, pharmacokinetic/pharmacodynamic; QnW, dosing once every n weeks.

Based on the mechanism of action of PCSK9
antibodies, an indirect response model was used to link
the antibody exposure to the LDLc level. The binding
of the antibodies to PCSK9 results in an increased
uptake of LDLc into liver cells. Therefore, LDLc
degradation increases due to the higher availability
of LDLRs on the cell membrane. Additionally, via
negative feedback, elevated intracellular cholesterol
levels result in a decreased LDLc synthesis.33

Our model was developed using mean curves dig-
itized from literature rather than individual patients’
profiles, which were not accessible. Due to the lack
of individual data, the influence of patient-specific
factors, ie, covariates such as age, weight, sex, and organ

function, on the PK or PD could not be determined.
Thus, our model is not able to predict individual LDLc
levels and can only reflect the variability between dif-
ferent studies. However, 2 important covariates, statin
comedication and LDLc baseline levels, were available
for each study and could be successfully integrated
into the model. Comedication with statins significantly
decreases the exposure to both PCSK9 antibodies. This
is triggered by the statin-induced increased expres-
sion of PCSK916–18 resulting in an increased target-
mediated elimination of the antibodies.14 In our model,
this effect was best described by 1.25- and 1.19-fold
increases in Vmax of the elimination of alirocumab and
evolocumab, respectively. The results are in line with
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Figure 4. Model predictions for the recommended dosing regimens for subjects with different baseline levels for alirocumab (left) and evolocumab
(right). The arrows indicate the dosing of 75 mg or 150 mg alirocumab or 140 mg or 420 mg evolocumab, respectively. Lines indicate the predicted
median of 2000 individuals. LDLc, low-density lipoprotein cholesterol; QnW, dosing once every n weeks.

literature reports in which the AUC of alirocumab was
reduced by 39% and the clearance of evolocumab was
increased by 20% under statin comedication.14,15 Simu-
lations revealed that the statin comedication also has a
marked effect on the LDLc change from baseline. Thus,
patients under statin comedication achieved a smaller
reduction of LDLc levels compared to patients without
statin comedication (Figure 3). The implemented statin
effect predicted by our model reflects a median effect
of low-, moderate-, and high-dose statin therapy and
describes the change in the PK of the antibodies
under statin steady-state conditions. The additional PD
effects of statins or other cholesterol-lowering drugs
are not incorporated in the model because the data
did not provide the necessary information and should
be integrated in a future extension of the presented
model.

LDLc baseline levels were identified as another
significant covariate to predict the absolute LDLc re-
duction in patients (Figure 4), whereas the percentage
change from baseline is independent from the base-
line levels. The recommended LDLc target levels are
dependent on different risk factors of the patients.
In a high-risk patient, the recommended LDLc levels
should be below 100 mg/dL.34 Model simulations in-
dicated that a baseline level of 240 mg/dL requires the

administration of 150mg alirocumabQ2W to reach the
desired LDLc level, whereas 75 mg Q2Wwas estimated
as sufficient for a baseline level of 200 mg/dL and
below.

Overall, the final PK/PD models showed a good
descriptive performance over a wide dose range. Even
more important, our models showed a good predictive
performance for the outcome of 2 long-term clinical
studies that were not used for model development.
All patients in these studies received treatment with
statins at the maximum tolerated dose with or without
other lipid-lowering therapy. For alirocumab, themodel
slightly overpredicted the LDLc change from baseline
(–67.0%) compared to the observed outcome (–58%).
For evolocumab, the model also slightly overpredicted
the outcome (observed –58%, predicted –59.1% for
140 mg Q2W; –67.0% for 420 mg Q4W). This slight
difference may have been caused by noncompliant
patients in the study population. As no information on
the compliance was provided for the evolocumab study
population, we assumed a compliance of 100% for the
simulations. This assumption may not reflect reality,
especially as an increase in the observed LDLc levels in
the statin-treated control group indicated the existence
of nonadherent patients. Furthermore, all patients in
the evaluation study received high-dose therapy with
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statins. As discussed previously, we did not distin-
guish among high-, moderate-, and low-dose statin
comedication during model development. Therefore, it
is reasonable that the effect of high-dose statin comedi-
cation on the PK of both antibodies is underestimated.

The PK/PD model allowed the prediction of al-
ternative dosing regimens. Simulations confirmed that
dosing regimens for alirocumab of 150 mgQ2W should
be used if a decrease of LDLc levels of more than
60% is required. The simulations allowed us to choose
individualized dosing and application strategies. For
example, the model indicates that alirocumab 150 mg
Q3W is equivalent to 75 mg Q2W, pointing out a
potential alternative treatment regimen if less-frequent
dosing is favored. For evolocumab, the simulations
show that 420 mg Q5W may be similarly effective
compared to 140 mg Q2W.

Conclusion
To conclude, the PK/PD models showed excellent
descriptive and predictive performance. Alternative
dosing regimens for alirocumab and evolocumab
may present very important opportunities to adjust
therapies according to individual responses, the
baseline LDLc, and the desired target LDLc. In
addition, alternative application strategies could
reduce treatment costs. Finally, the presented model
may offer a valuable tool for future PK/PD research
on PCSK9-targeting antibodies.
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5 Discussion and Perspective 
 

This dissertation highlights the potential of pharmacometric modeling, particularly NLME 

models, to improve the understanding and management of cardiometabolic diseases. By 

applying advanced quantitative methods to existing clinical and observational data, the 

three projects presented in this work contribute to the optimization of established therapies, 

the refinement of clinical biomarkers, and the personalization of treatment strategies. Each 

project addresses distinct aspects of T2DM and hypercholesterolemia, illustrating the 

versatility of modeling in solving disease-specific challenges. Collectively, the results 

underscore the value of pharmacometric modeling in advancing precision medicine, 

improving therapeutic outcomes, and promoting a more cost-efficient healthcare system.  

In the pharmaceutical industry, randomized controlled trials (RCT) remain the gold standard 

for assessing the efficacy, safety, and pharmacological properties of new drugs under 

controlled and standardized conditions. However, such trials often fail to capture the 

variability and complexity of real-world clinical practice (87). The final trial datasets are 

typically generated to answer predefined questions outlined in the study protocols. 

Additional exploratory analyses are seldom conducted, partly due to time constraints and 

competitive pressures associated with drug development and market access in the 

pharmaceutical industry. 

This thesis follows a complementary strategy. All three projects are based on existing 

datasets and demonstrate how NLME modeling can be used not only to analyze but also to 

generate and validate hypotheses. In doing so, it extends the scientific value of previously 

collected data and supports decisions that go beyond the original scope of the clinical trials. 

 

5.1 Modeling as a Tool for Personalization and Optimization 
 

By reanalyzing existing clinical and observational datasets, the three projects presented 

herein demonstrate how advanced quantitative methods can optimize established 

therapies, refine biomarker measurements, and personalize treatment strategies. 

In Project 1, NLME modeling was applied to correct HbA1c values measured from dried 

blood spots by adjusting for variability in storage temperature and analysis delay. While the 

initial objective was to classify patients into subgroups with different rates of disease 

progression, it became evident that measurement bias due to pre-analytical variation 

exceeded the expected biological signal. This was particularly problematic in a prediabetic 
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cohort, where glycemic changes are typically small. A correction model was therefore 

developed to adjust for these biases, enabling the accurate identification of individual 

disease trajectories. Although no new biomarkers predictive of rapid progression could be 

identified, the corrected progression rates correlated well with established clinical risk 

factors such as waist-to-hip ratio and postprandial glucose levels. This modeling approach 

significantly improved the validity of HbA1c as a biomarker in this setting and highlights the 

importance of considering sample handling effects, even for robust matrices like DBS (88). 

These insights are especially relevant for decentralized studies, resource-limited settings, 

and the use of real-world data (RWD), where sample standardization is often limited. 

In the case of metformin (Project 2), a substance that has been used for many years to treat 

T2DM, has traditionally not been studied in relation to human circadian rhythms. However, 

this dissertation demonstrates that modern mathematical modeling approaches can derive 

valuable insights even from limited and retrospective datasets. While earlier studies may 

not have accounted for these time-dependent influences, the modeling in this case has 

made a crucial contribution to filtering out new insights from the available data. These 

findings not only provide theoretical insights but also have the potential to improve patient 

care by offering dosing regimens that are better aligned with individual circadian rhythms. 

Project 3 applies PK/PD modeling to evaluate flexible dosing regimens for PCSK9 inhibitors. 

Through simulations of less frequent administration schedules, the study contributes to the 

evidence that modeling can support cost-effective, adherence-friendly treatment solutions 

without compromising efficacy. 

 

5.2 Bridging Controlled Trials and Real-World Conditions 
 

A key strength of pharmacometric modeling lies in its ability to integrate and interpret real-

world data (RWD). While RCTs provide high internal validity, they often lack generalizability 

due to strict inclusion criteria and controlled conditions. In contrast, RWD reflects clinical 

variability in patient heterogeneity inherent in patient behavior, healthcare delivery, and 

treatment adherence. However, it also presents challenges, including missing data, 

inconsistencies, and potential bias (87). Project 1 addressed these limitations directly by 

correcting variability in HbA1c measurements and highlighting the importance of systematic 

data quality assessment, even within the context of well-structured prospective studies. This 

underscores the need to critically evaluate and pre-process real-world data before drawing 

clinical conclusions. By correcting for biases and systematically modeling sources of 
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variability, this work bridges the gap between controlled trial results and practical clinical 

application as illustrated by the HbA1c correction model.  

Despite its limitations, RWD offer considerable potential. When appropriately modeled, they 

enable the investigation of treatment effects across diverse patient populations, thereby 

improving the external validity of clinical findings.  

Regulatory frameworks, particularly within the EU, are increasingly supportive of the use of 

real-world evidence (RWE) in decision-making processes. In this context, the EMA 

emphasized in its Real-World Evidence Framework to Support EU Regulatory Decision-

Making (89) that RWE can be used to support assessments both before and after the 

authorization of medicinal products. Moreover, targeted EU-level initiatives, such as the 

DARWIN EU® network, are being implemented to facilitate access to RWD and promote 

their systematic use in regulatory processes (89). 

 

5.3 Simulation and Decision Support 
 

One of the most impactful applications of pharmacometric modeling is its capacity to 

simulate clinical scenarios. Simulations allow for the exploration of “what-if” questions under 

defined assumptions, supporting clinical decision-making in areas where trial data may be 

limited. 

In Project 2, time-dependent variations in metformin pharmacokinetics were investigated, 

highlighting the potential of chronotherapy. In Project 3, alternative dosing regimens for 

PCSK9 inhibitors were simulated to assess the potential for less frequent dosing while 

maintaining LDL reduction.  

Such simulations provide a low-risk, data-driven framework for optimizing treatment 

strategies. One regulatory initiative that exemplifies the increasing institutional support for 

model-informed decision-making is the MIDD Paired Meeting Program established by the 

U.S. Food and Drug Administration (FDA). This program provides selected sponsors with 

the opportunity to engage directly with FDA staff to discuss and refine MID3 approaches 

during medical product development (90). 
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5.4 Data Limitations and Justified Simplifications 
 

Pharmacometric models inevitably require simplifications of complex biological systems to 

ensure tractability, identifiability, and interpretability. However, these simplifications must 

remain consistent with the model’s intended use. 

In Project 3, aggregate-level data from published clinical trials required assumptions 

regarding population variability and model structure. Despite these limitations, the model 

produced reliable estimates and supported the evaluation of cost-efficient treatment 

alternatives. 

Similarly, in Project 1, pre-analytical error was not ignored but explicitly modeled and 

corrected, thereby preserving the validity of clinical conclusions. These examples 

demonstrate how transparent handling of limitations, combined with data-driven 

refinements, can ensure robust and trustworthy modeling outcomes. 

 

5.5 Outlook: AI and Model Informed Precision Dosing 
 

The integration of artificial intelligence (AI) and machine learning (ML) into pharmacometric 

modeling opens new possibilities for improving individualized therapy for the future. These 

data-driven methods are particularly well-suited to handle large and complex, high-

dimensional datasets and can be used to adapt to patient-specific characteristics in real 

time. 

An early example emerged in 2017, when Fraunhofer MEVIS and Siemens Healthineers 

started their collaboration on the development of clinical decision support systems using 

deep learning algorithms. The goal was to consolidate relevant patient data from diverse 

sources into a single, user-friendly interface, thereby reducing both the cognitive workload 

and time demands placed on clinicians as one increasingly important aspect in light of 

healthcare workforce shortages. The system also incorporated disease-specific clinical 

guidelines to assist in evidence-based decision-making (91). By linking each patient case 

to a structured knowledge base, the algorithm could identify treatment strategies that had 

demonstrated success in similar clinical contexts. 

As healthcare increasingly moves forward to precision medicine, such adaptive, model-

based approaches such as MIPD are expected to play a central role in supporting 

individualized treatment decisions. MIPD combines mechanistic pharmacometric models 
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with patient-specific data and, increasingly, AI-enhanced tools to tailor dosing regimens 

more accurately than traditional one-size-fits-all approaches. A recent example of AI-

assisted precision medicine is the Clairity Breast platform, which supports clinicians in 

identifying a patient’s five-year breast cancer risk using AI-based image analysis. In June 

2025, the U.S. FDA granted De Novo authorization for this first-in-class device, which 

predicts future cancer risk based solely on imaging data (92). 

 

5.6 Interdisciplinary Collaboration and Public Health Relevance 
 

The work presented in this dissertation was made possible through the collaborative 

framework of the IMI DIRECT consortium, which provided access to extensive datasets and 

expertise from multiple scientific domains. This illustrates the importance of interdisciplinary 

collaboration in advancing complex, translational research. 

Beyond individual-level optimization, the findings of this work offer broader public health 

benefits. Improved biomarker reliability (Project 1) supports better population-level 

monitoring of diabetes. Cost-effective treatment regimens (Project 3) may reduce long-term 

healthcare expenditures. Collectively, the projects contribute to a more efficient, data-

informed healthcare system. The collaborative, multi-institutional structure of the IMI 

DIRECT consortium illustrates how shared resources and expertise can accelerate 

advances in biomarker discovery, disease stratification, and clinical innovation. These 

elements represent essential building blocks for the successful implementation of precision 

medicine. 

 

 

  



59 
 

6 Conclusion 
 

This dissertation demonstrates how advanced pharmacometric modeling techniques, 

particularly NLME models, can be leveraged to improve the management of 

cardiometabolic diseases such as T2DM and hypercholesterolemia. Across three 

independent yet thematically connected projects, this work highlights the added value of 

reanalyzing existing clinical and observational datasets through model-based approaches. 

Rather than generating new data, the emphasis was placed on making more efficient and 

meaningful use of available information, thereby extending the utility of previously collected 

data for personalized medicine, improved biomarker interpretation, and optimized treatment 

strategies.  

Collectively, the findings presented in this thesis for three different research topics support 

the notion that pharmacometric modeling is a valuable instrument in the implementation of 

precision medicine, especially in the context of chronic and multifactorial diseases. The 

integration of RWD with biases in regard to sample management and the simulation of 

individualized treatment pathways, all this contributes to narrowing the gap between 

controlled trial environments and everyday clinical practice. 

Looking ahead, the growing availability of RWD and the ongoing development of AI and ML 

technologies will open new possibilities for adaptive, data-driven modeling. These methods 

have the potential to transform static population-level recommendations into dynamic, 

patient-specific treatment strategies, which are continuously refined through additional real-

time feedback. 

Finally, the work described conducted within the collaborative framework of the IMI DIRECT 

consortium underscores the importance of interdisciplinary research in tackling complex 

health challenges. By combining expertise in clinical pharmacology, endocrinology, 

pharmacometrics, and data science, this dissertation exemplifies how integrated 

approaches can yield robust and broadly applicable solutions in modern healthcare.  
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1 ESM Methods 

1.1 Clinical dataset 

 

ESM Table 1. Information on study I (metformin bioavailability study by Timmins et al. [1]) 

Study number I 

Titlea Steady-State Pharmacokinetics of a Novel Extended-Release Metformin Formulation 
Summary The objective of this study was (1) to assess metformin steady-state pharmacokinetics when administered as extended-release 

tablet and (2) to compare it with those of metformin when administered as immediate-release tablet  
Study typea Bioavailability study 
Number of participantsa 16 (healthy volunteers) 
Females (%)a 44 
Age (years), Weight (kg), Height (cm)a,b 27 (19-40), 71 (53-103), 172 (160-193) 
Inclusion Criteriaa • Adults 

• Good health based upon recent medical history, laboratory determinations and physical examination 

• Informed consent before enrolment 
Exclusion criteriaa • Bodyweight >15% higher or lower than desirable weight-

for-height range 

• Blood donation within last 60 days 

• History of clinically significant allergies to biguanides 

• Exposure to any investigational agent within 60 days of 
enrolment or participation in any other clinical trials 
concurrent with this study 

• Smoking more than 10 cigarettes per day 

• History of gastrointestinal disease or recent use of medication 
that might affect the gastrointestinal tract 

• Pregnant or nursing women 

Study designa  Open label- randomised, multiple dose, five-regimen, two sequence clinical study (no wash-out between treatments) 
1) Metformin extended-release 500 mg once daily (n=16) 
2) Metformin extended-release 1000 mg once daily (n=16) 
3) Metformin extended-release 1500 mg once daily (n=15) 
4) Metformin extended-release 2000 mg once daily (n=8) or Metformin immediate-release 1000 mg twice daily (n=7) 
5) Metformin extended-release 2000 mg one daily (n=7) or Metformin immediate-release 1000 mg twice daily (n=7) 

Outcome measuresa Cmax (immediate-release: evening dose), tmax (immediate-release: evening dose), AUC0-infinity on day 1, AUC0-24 post-dose (for 
immediate-release: sum of AUC0-12 morning and evening), t1/2β (immediate-release: evening dose) 

Feeding statea Fed 
Metformin regimena Oral, tablet, once daily, 7 days (500, 1000, 1500, 2000 mg) 

Oral, tablet, twice daily, 7 days (1000 mg) 
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ESM Table 1. continued 

Study number I 

Maximum daily metformin dosea 2000 mg 
Metformin formulationa Extended-release (once daily administrations), immediate-release (twice daily administrations) 
Daytime of metformin administrationa Once daily administrations: 

• 19:30 hours 
Twice daily administrations 

• 19:30 hours on day 1, 07:30 hours and 19:30 hours on days 2-7 
Metformin plasma sampling schedule • Serial samples: Predose (19:30 hours), 1 h (20:30 hours), 2 h (21:30 hours), 4 h (23:30 hours), 6 h (01:30 hours), 8 h (03:30 

hours), 12 h (07:30 hours), 16 h (11:30 hours), 20 h (15:30 hours), 24 h (19:30 hours) after drug administration (evening dose) 
on days 1, 6, 7, 13, 14, 20, 21, 27, 28, 34 and 35 (for various treatments) 

• Immediate-release: Predose (07:30 hours), 1 h (08:30 hours), 2 h (09:30 hours), 4 h (11:30 hours), 6 h (13:30 hours), 8 h (15:30 
hours), 12 h (19:30 hours), 13 h (20:30 hours), 14 h (21:30 hours), 16 h (23:30 hours), 18 h (01:30 hours), 20 h (03:30 hours) 
and 24 h (07:30 hours) after each morning dose on days 27, 28, 34 and 35 

• Additional predose samples before evening dose on days 4, 5, 11, 12, 18, 19, 25, 26, 32 and 33 
a Information extracted from the publication by Timmins et al. [1], b values for age, weight and height are given as mean (range). Cmax, maximum plasma concentration; t1/2β, terminal elimination 

half-life; tmax, time to reach Cmax  

 

 
 
 
  



1-4 
 

ESM Table 2. Information on study II (metformin clinical phase I study by Boehringer Ingelheim [2]) 

Study number II 

ClinicalTrials.gov Identifiera NCT02172248 (https://clinicaltrials.gov/ct2/show/NCT02172248)  

Study IDa 1245.6 

Official titlea Relative Bioavailability of Both BI 10773 and Metformin After Coadministration Compared to Multiple Oral Doses of BI 10773 (50 mg q.d.) Alone and 

Metformin (1000 mg b.i.d.) Alone to Healthy Male Volunteers (an Open-label, Randomised, Crossover, Clinical Phase I Study) 

Study summarya The objective was to investigate a possible drug-drug interaction between BI 10773 and metformin when co-administered as multiple oral doses. 

Therefore, the relative bioavailabilities of BI 10773 and metformin were determined when both drugs were given in combination compared with BI 

10773 or metformin given alone. 

Study typea Interventional (Clinical Trial) 

Number of participantsa 16 (Healthy volunteers) 

Females (%)a 0 

Age (years), Weight (kg), Height (cm)b,c 32.2 (18-48), 81.3 (60-94), 180.1 (168-192) 

GFR (ml/min/1.73m2)b 82.7 (calculated from baseline serum creatinine according to MDRD equation) 

Inclusion Criteriaa • Healthy male volunteers according to the following criteria: Based upon a complete medical history, including the physical examination, including 
the physical examination, vital signs (BP, PR), 12-lead ECG, clinical laboratory tests 

• Age 18 to 50 years 

• BMI 18.5 to 29.9 kg/m2 

• Signed and dated written informed consent prior to admission to the study in accordance with GCP and the local legislation 
Exclusion criteriaa • Any finding of the medical examination (including BP, PR and ECG) 

deviating from normal and of clinical relevance 

• Any evidence of a clinically relevant concomitant disease 

• Gastrointestinal, hepatic, renal, respiratory, cardiovascular, 
metabolic, immunological or hormonal disorders 

• Surgery of the gastrointestinal tract (except appendectomy) 

• Diseases of the central nervous system (such as epilepsy) or 
psychiatric disorders or neurological disorders 

• History of relevant orthostatic hypotension, fainting spells or 
blackouts 

• Chronic or relevant acute infections 

• History of relevant allergy/hypersensitivity (including allergy to drug 
or its excipients) 

• Intake of drugs with a long half-life (> 24 hours) within at least one 
month or less than 10 half-lives of the respective drug prior to 
administration or during the trial 

• Participation in another trial with an investigational drug within two 
months prior to administration or during the trial 

• Smoker (> 10 cigarettes or > 3 cigars or > 3 pipes/day) 

• Inability to refrain from smoking on trial days 

• Alcohol abuse (more than 30 g/day) 

• Drug abuse 

• Blood donation (more than 100 ml within four weeks prior to 
administration or during the trial) 

• Excessive physical activities (within one week prior to administration 
or during the trial) 

• Any laboratory value outside the reference range that is of clinical 
relevance 

• Inability to comply with dietary regimen of trial site 
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ESM Table 2. continued 

Study number II 

Study armsa  Experimental: Sequence ABC 

• Treatment A: BI 10773 once daily from day 1 to 5 

• Treatment B: BI 10773 once daily from day 1 to 4 and metformin 
twice daily from day 1 to 3 and once in the morning on day 4 

• Treatment C: metformin twice daily from day 1 to 3 and once in 
the morning on day 4 

Experimental: Sequence CAB 

• Treatment C: metformin twice daily from day 1 to 3 and once in the 
morning on day 4 

• Treatment A: BI 10773 once daily from day 1 to 5 

• Treatment B: BI 10773 once daily from day 1 to 4 and metformin twice 
daily from day 1 to 3 and once in the morning on day 4 

Outcome measuresa Primary Outcome Measures 

• AUCτ,ss, Cmax,ss  
 

Secondary Outcome Measures 

• C24,N of BI 10773, C12,N of metformin, λz,ss, t½,ss, tmax,ss, MRTpo,ss, CL/Fss, 
Vz/Fss, Aet1-t2,ss, fet1-t2,ss, CLR,ss of BI 10773 and metformin, UGE 

• Number of patients with abnormal findings in physical examination, 
number of patients with clinically significant changes in vital signs (BP, PR), 
number of patients with abnormal findings in 12-lead ECG, number of 
patients with abnormal changes in clinical laboratory tests, number of 
patients with adverse events, assessment of tolerability by investigator on 
a 4-point scale 

Feeding stateb Fasted 

Metformin regimena Oral, 1000 mg, twice daily, 4 days 

Maximum daily metformin dosea 2000 mg 

Metformin formulationb Immediate-release tablet 

Daytime of metformin administrationb,d 08:00 hours, 20:00 hours (Days 1-3); 08:00 hours (Day 4) 

Metformin plasma sampling scheduleb,d Days 2-3: Ctrough  

• 24 h (08:00 hours), 36 h (20:00 hours), 48 h (08:00 hours) and 60 
h (20:00 hours) after first metformin administration 

Days 4-7: full profile 

• 72 h (08:00 hours), 72.33 h (08:20 hours), 72.67 h (08:40 hours), 73 h 
(09:00 hours), 74 h (10:00 hours), 74.5 h (10:30 hours), 75 h (11:00 hours), 
76 h (12:00 hours), 78 h (14:00 hours), 80 h (16:00 hours), 82 h (18:00 
hours), 84 h (20:00 hours), 86 h (22:00 hours), 96 h (08:00 hours), 108 h 
(20:00 hours), 120 h (08:00 hours) and 144 h (08:00 hours) after first 
metformin administration 

a Information extracted from https://clinicaltrials.gov/ct2/show/NCT02172248, b information extracted from the study report, c values for age, weight and height are given as mean (range), d planned time, actual 

administration and sampling time is known and was used for model development. Aet1-t2,ss, amount of analyte eliminated in urine at steady state over a uniform dosing interval τ; AUCτ,s, area under the concentration-time 

curve of the analyte in plasma at steady state over a uniform dosing interval τ; b.i.d., twice daily; BP, blood pressure; C12,N, concentration of analyte in plasma at 12 hours post-drug administration after administration of the 

Nth dose; C24,N, concentration of analyte in plasma at 24 hours post-drug administration after administration of the Nth dose; CL/Fss, apparent clearance of the analyte in the plasma after extravascular administration at 

steady state; CLR,ss, renal clearance of the analyte at steady state; Cmax,ss, maximum measured concentration of the analyte in plasma at steady state over a uniform dosing interval τ; Ctrough, trough plasma concentration; ECG, 

electrocardiogram; fet1-t2,ss, fraction of analyte excreted unchanged in urine at steady state over a uniform dosing interval τ; GCP, good clinical practice; MRTpo,ss, mean residence time of the analyte in the body at steady 

state after oral administration; PR, pulse rate; q.d., once daily; t½,ss, terminal half-life of the analyte in plasma at steady state; tmax,ss, time from last dosing to maximum concentration of the analyte in plasma at steady state 

over a uniform dosing interval τ; UGE, urinary glucose excretion; Vz/Fss, apparent volume of distribution during the terminal phase λz at steady state following extravascular administration; λz,ss, terminal half-life of the analyte 

in plasma  
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ESM Table 3. Information on study III (metformin clinical phase I study by Boehringer Ingelheim [3]) 

Study number III 

ClinicalTrials.gov Identifiera NCT02183506 (https://clinicaltrials.gov/ct2/show/NCT02183506) 

Study IDa 1218.4 

Official titlea Bioavailability of Both BI 1356 BS and Metformin After Co-administration Compared to the Bioavailability of Multiple Oral Doses of BI 1356 BS 10 mg 

Daily Alone and Metformin 850 mg Three Times a Day Alone in Healthy Male Volunteers (an Open-label, Randomized, Crossover Study) 

Study summarya Investigate the bioavailability of BI 1356 BS and of metformin after concomitant multiple oral administration of 10 mg BI 1356 BS tablets and 3 x 850 mg 

metformin in comparison to BI 1356 BS and metformin given alone 

Study typea Interventional (Clinical Trial) 

Number of participantsa 16 (Healthy volunteers) 

Females (%)a 0 

Age (years), Weight (kg), Height (cm)b,c 32.2 (22-44), 81.8 (62-106), 176.6 (163-190) 

GFR (ml/min/1.73m2)b 86.2 (calculated from baseline serum creatinine according to MDRD equation) 

Inclusion Criteriaa • Healthy males according to the following criteria, based upon a complete medical history, including the physical examination, vital signs (BP, PR), 
12-lead ECG, clinical laboratory tests, no finding deviating from normal and of clinical relevance, no evidence of a clinically relevant concomitant 
disease 

• Age ≥ 21 and Age ≤ 50 years 

• BMI (Body Mass Index) ≥ 18.5 and ≤ 29.9 kg/m2 

• Ability to give signed and dated written informed consent prior to admission to the study in accordance with GCP and the local legislation 
Exclusion criteriaa • Gastrointestinal, hepatic, renal, respiratory, cardiovascular, 

metabolic, immunological or hormonal disorders 

• Surgery of the gastrointestinal tract (except appendectomy) 

• Diseases of the central nervous system (such as epilepsy) or 
psychiatric disorders or neurological disorders 

• History of relevant orthostatic hypotension, fainting spells or 
blackouts 

• Chronic or relevant acute infections 

• History of allergy/hypersensitivity (including drug allergy) which is 
deemed relevant to the trial by the investigator 

• Intake of drugs with a long half-life (>24 hours) within one month or 
less than 10 half-lives of the respective drug prior to administration 
or during the conduct of this trial (review with clinical monitor if there 
is a question) 

• Use of drugs which might reasonably influence the results of the trial 
(based on knowledge at the time of protocol preparation) within 10 
days prior to administration or during the conduct of this trial 

• Participation in another trial with an investigational drug within two 
months prior to administration or during the conduct of this trial 

• Smoker (more than 10 cigarettes or 3 cigars or 3 pipes per day) 

• Inability to refrain from smoking during the conduct of this trial 

• Alcohol abuse (more than 60 g/day) 

• Drug abuse 

• Blood donation (more than 100 ml within four weeks prior to 
administration or during the conduct of this trial) 

• Excessive physical activities (within one week prior to administration 
or during the conduct of this trial) 

• Any laboratory value outside the normal reference range that is of 
clinical relevance 

• Inability to comply with the dietary regimen of the study center 

• No adequate contraception (condom use plus another form of 
contraception e.g. spermicide, oral contraceptive taken by female 
partner, sterilisation) during the whole study period from the time of 
the first intake of study drug until one month after the last intake of 
drug 
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ESM Table 3. continued 

Study number III 

Study armsa  Daily administration of BI 1356 BS alone (day 1 to day 6) followed by the combined treatment of BI 1356 BS with metformin (day 7 to day 9) 

Outcome measuresa Primary Outcome Measures 

• AUC of the analytes in plasma at different time points, Cmax of the 
analytes in plasma at different time points 

 

Secondary Outcome Measures 

• tmax,ss, Cmin,ss, λz,ss, t1/2,ss, MRTpo,ss, CL/Fss, Vz/Fss, DPP-IV activity, feτ,ss, 
CLR,ss 

• Number of patients with adverse events, number of patients with 
clinically abnormal changes in laboratory values, number of patients 
with clinically relevant changes in vital signs 

Feeding stateb Fed 

Metformin regimena Oral, 850 mg, three times daily, 3 days 

Maximum daily metformin dosea 2550 mg 

Metformin formulationb Immediate-release tablet 

Daytime of metformin administrationb,d 07:30 hours, 15:30 hours, 23:30 hours (Days 1-2); 07:30 hours (Day 3) 

Metformin plasma sampling scheduleb,d Day 2: Ctrough 

• 31.83 h (15:20 hours) and 39.83 h (23:20 hours) after first metformin 
administration 

Days 3-5: full profile 

• 47.83 h (07:20 hours), 48.25 h (07:45 hours), 48.5 h (08:00 hours), 
48.75 h (08:15 hours), 49 h (08:30 hours), 49.5 h (09:00 hours), 50 h 
(09:30 hours), 50.5 h (10:00 hours), 51 h (10:30 hours), 52 h (11:30 
hours), 54 h (13:30 hours), 56 h (15:30 hours), 60 h (19:30 hours), 72 
h (07:30 hours) and 96 h (07:30 hours) after first metformin 
administration 

a Information extracted from https://clinicaltrials.gov/ct2/show/NCT02183506, b information extracted from the study report, c values for age, weight and height are given as mean (range), d planned time, actual 

administration and sampling time is known and was used for model development. BP, blood pressure; CL/Fss, apparent clearance of the analyte in the plasma after extravascular administration at steady state; CLR,ss, renal 

clearance of the analyte at steady state; Cmin,ss, minimum concentration of the analytes in plasma at steady state; Cmax, maximum concentration; Ctrough, trough plasma concentration; DPP-IV, dipeptidylpeptidase 4; ECG, 

electrocardiogram; feτ,ss, fraction of the dose excreted unchanged in urine at steady state; fet1-t2,ss, fraction of analyte excreted unchanged in urine at steady state over a uniform dosing interval τ; GCP, good clinical practice; 

MRTpo,ss, mean residence time of the analyte in the body at steady state after oral administration; PR, pulse rate; t½,ss, terminal half-life of the analyte in plasma at steady state; tmax,ss, time from last dosing to maximum 

concentration of the analyte in plasma at steady state over a uniform dosing interval τ; UGE, urinary glucose excretion; Vz/Fss, apparent volume of distribution during the terminal phase λz at steady state following extravascular 

administration; λz,ss, terminal half-life of the analyte in plasma 
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ESM Table 4. Information on study IV (metformin clinical phase I study by Boehringer Ingelheim [4]) 

Study number IV 

ClinicalTrials.gov Identifiera NCT01845077 (https://clinicaltrials.gov/ct2/show/NCT01845077) 

Study IDa 1288.8 

Official titlea Relative Bioavailability of Two Newly Developed Extended Release FDC Tablet Strengths (5mg/1000mg and 2.5 mg/750 mg) of Linagliptin/Metformin 

Extended Release Compared With the Free Combination of Linagliptin and Metformin Extended Release in Healthy Subjects (an Open-label, Randomised, 

Single Dose, Two-way Crossover Study) 

Study summarya The purpose of the trial is to demonstrate the relative bioavailability of 2 newly developed fixed dose combination (FDC) tablets containing linagliptin & 

metformin and the single tablets of linagliptin and metformin when administered singularly 

Study typea Interventional (Clinical Trial) 

Number of participantsa 72 (Healthy volunteers) 

Females (%)a 42 

Age (years), Weight (kg), Height (cm)b,c 31.3 (18-49), 72.8 (47-100), 169.5 (147-198) 

Inclusion Criteriaa • Healthy males or females 

• Age 18 -50 years  

• BMI 18.5 to 29.9 kg/m2 

• Subjects must be able to understand and comply with study 
requirements 

Exclusion criteriaa Any deviation from healthy condition 

Study armsa  FDC1000 Fasted vs. L+M1000 Fasted 

• 1 FDC tablet (5 mg linagliptin/1000mg 
metformin FDC) vs. 3 single tablets (1 x 5 mg 
linagliptin + 2 x 500 mg metformin) (and vice 
versa) 

FDC1000 Fed vs. L+M1000 Fed 

• 1 FDC tablet (5 mg linagliptin/1000mg 
metformin FDC) vs. 3 single tablets (1 x 5 mg 
linagliptin + 2 x 500 mg metformin) (and 
vice versa) 

FDC1500 Fasted vs. L+M1500 Fasted 

• 2 FDC tablets (2 x 2.5 mg linagliptin/750mg 
metformin FDC) vs. 4 single tablets (1 x 5 mg 
linagliptin + 3 x 500 mg metformin) (and 
vice versa) 

Outcome measuresa Primary Outcome Measures 

• AUC0-72 and Cmax of linagliptin , AUC0-tz and Cmax of metformin 

Secondary Outcome Measures 

• AUC0-infinity of linagliptin, AUC0-infinity of metformin 
Feeding state (Metformin dose)a Fasted (1000mg), Fed (1000mg), Fasted (1500mg) 

Metformin dosing regimena Oral, single dose 

Maximum daily metformin dosea 1000/1500 mg 

Metformin formulationa Extended-release tablet 

Daytime of metformin administrationb,d 08:00 hours 

Metformin plasma sampling schedulea,b,d 20 min (08:20 hours), 40 min (08:40 hours), 1 h (09:00 hours), 1.5 h (09:30 hours), 2 h (10:00 hours), 3 h (11:00 hours), 4 h (12:00 hours), 5 h (13:00 

hours), 6 h (14:00 hours), 8 h (16:00 hours), 10 h (18:00 hours), 12 h (20:00 hours), 16 h (00:00 hours), 24 h (08:00 hours), 36 h (20:00 hours), 48 h (08:00 

hours) and 72 h (08:00 hours) after metformin administration 
a Information extracted from https://clinicaltrials.gov/ct2/show/NCT01845077, b information extracted from the study report, c values for age, weight and height are given as mean (range), d planned time, actual 

administration and sampling time is known and was used for model development. AUC0-72, area under the concentration-time curve in plasma over the time interval 0 to 72 hours; AUC0-infinity, area under the concentration-

time curve in plasma over the time interval from 0 extrapolated to infinity based on predicted last concentration values; AUC0-tz, area under the concentration-time curve in plasma over the time interval from 0 to the last 

quantifiable data point; Cmax, maximum concentration; FDC, fixed dose combination 
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ESM Table 5. Information on study V (metformin clinical phase I study by Boehringer Ingelheim [5]) 
Study number V 

ClinicalTrials.gov Identifiera NCT01975220 (https://clinicaltrials.gov/ct2/show/NCT01975220) 

Study IDa 1276.13 

Official titlea Relative Bioavailability of Two Newly Developed FDC Tablet Strengths (25mg/1000mg and 12.5mg/750mg) of Empagliflozin/Metformin Extended 

Release Compared With the Free Combination of Empagliflozin and Metformin Extended Release in Healthy Subjects (an Open-label, Randomised, Single 

Dose, Two-way Crossover Study) 

Study summarya The purpose of this trial is to demonstrate the relative bioavailability of 2 newly developed (FDC) tablets containing empagliflozin & metformin and the 

single tablets of empagliflozin and metformin when administered singularly 

Study typea Interventional (Clinical Trial) 

Number of participantsa 72 (Healthy volunteers) 

Females (%)a 42 

Age (years), Weight (kg), Height (cm)b,c 32.5 (19-50), 74.3 (50-115), 169.5 (149-198) 

Inclusion Criteriaa • Healthy males or females 

• Age 18-50 years 

• BMI 18.5 to 29.9 kg/m2 

• Subjects must be able to understand and comply with study 
requirements 

Exclusion criteriaa Any deviation from healthy condition 

Study armsa  High Dose, Fasted 

• 1 FDC tablet (25 mg empagliflozin/1000 mg 
metformin FDC) vs. 3 single tablets (25 mg 
empagliflozin + 2 x 500 mg metformin) (and 
vice versa) 

High Dose, Fed 

• 1 FDC tablet (25 mg empagliflozin/1000 mg 
metformin) vs. 3 single tablets (1 x 25 mg 
empagliflozin + 2 x 500 mg metformin) (and 
vice versa) 

Low Dose, Fasted 

• 2 FDC tablets (2 x 12.5 mg 
empagliflozin/750 mg metformin) vs. 4 
single tablets (1 x 25 mg empagliflozin + 3 x 
500 mg metformin) (and vice versa) 

Outcome measuresa Primary Outcome Measures 

• AUC0-tz and Cmax of empagliflozin, AUC0-tz and Cmax of metformin 

Secondary Outcome Measures 

• AUC0-infinity of empagliflozin, AUC0-infinity of metformin 
Feeding state (Metformin dose)a Fasted (1000mg), Fed (1000mg), Fasted (1500mg) 

Metformin dosing regimena Oral, single dose 

Maximum daily metformin dosea 1000/1500 mg 

Metformin formulationa Extended-release tablet 

Daytime of metformin administrationb,d 08:00 hours 

Metformin plasma sampling schedulea,b,d 20 min (08:20 hours), 40 min (08:40 hours), 1 h (09:00 hours), 1.33 h (09:20 hours), 1.67 h (09:40 hours), 2 h (10:00 hours), 2.5 h (10:30 hours), 3 h 

(11:00 hours), 4 h (12:00 hours), 5 h (13:00 hours), 6 h (14:00 hours), 7 h (15:00 hours), 8 h (16:00 hours), 9 h (17:00 hours), 10 h (18:00 hours), 12 h 

(20:00 hours), 16 h (00:00 hours), 24 h (08:00 hours), 36 h (20:00 hours), 48 h (08:00 hours) and 72 h (08:00 hours) after metformin administration 
a Information extracted from https://clinicaltrials.gov/ct2/show/NCT01975220, b Information extracted from the study report, c values for age, weight and height are given as mean (range), d planned time, actual 

administration and sampling time is known and was used for model development. AUC0-72, area under the concentration-time curve in plasma over the time interval 0 to 72 hours; AUC0-infinity, area under the concentration-

time curve in plasma over the time interval from 0 extrapolated to infinity based on predicted last concentration values; AUC0-tz, area under the concentration-time curve in plasma over the time interval from 0 to the last 

quantifiable data point; Cmax, maximum concentration; FDC, fixed dose combination 
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ESM Fig 1. Mean observed plasma concentration-time profiles for all administered regimen of study I [1]. Upper panel: semilogarithmic plots (concentration presented on decadic 

logarithm scale), lower panel: linear plots. Metformin was administered as (a—d) and (f—i) extended-release or (e, j) immediate-release tablet. Data are shown as arithmetic means 

± SD. Black arrows indicate drug administration. Grey areas indicate night-time. bid, twice daily; po, oral; qd, once daily 

 

 



 
ESM Fig 2. Mean observed (a, c) plasma and (b, d) urine concentration-time profiles of study II [2]. Upper panel: 

semilogarithmic plots (concentration presented on decadic logarithm scale), lower panel: linear plots. Metformin 

was administered as immediate-release tablet. Data are shown as arithmetic means ± SD. Black arrows indicate 

drug administration. Grey areas indicate night-time. Aeurine, amount excreted unchanged in urine; bid, twice daily; 

po, oral 
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ESM Fig 3. Mean observed (a, c) plasma and (b, d) urine concentration-time profiles of study III [3]. Upper panel: 

semilogarithmic plots (concentration presented on decadic logarithm scale), lower panel: linear plots. Metformin 

was administered as immediate-release tablet. Data are shown as arithmetic means ± SD. Black arrows indicate 

drug administration. Grey areas indicate night-time. Aeurine, amount excreted unchanged in urine; po, oral; tid, 

three times daily 
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ESM Fig 4. Mean observed plasma concentration-time profiles of study IV [4]. Upper panel: semilogarithmic plots 
(concentration presented on decadic logarithm scale), lower panel: linear plots. Metformin was administered as 
extended-release tablet. Data are shown as arithmetic means ± SD. Black arrows indicate drug administration. 
Grey areas indicate night-time. fast, fasted state; fed, fed state; po, oral; sd, single dose 
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ESM Fig 5. Mean observed plasma concentration-time profiles of study V [5]. Upper panel: semilogarithmic plots 
(concentration presented on decadic logarithm scale), lower panel: linear plots. Metformin was administered as 
extended-release tablet. Data are shown as arithmetic means ± SD. Black arrows indicate drug administration. 
Grey areas indicate night-time. fast, fasted state; fed, fed state; po, oral; sd, single dose 
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1.2 Statistical analysis 

Individual plasma measurements were analysed separately for differences between trough plasma 

concentration (Ctrough) values measured immediately before the next dose in the morning 

(‘Ctrough,morning’) and the evening (‘Ctrough,evening’). Ctrough,morning and Ctrough,evening were calculated average for 

each individual, and differences were compared using a paired t test. Additionally, a linear mixed 

model with random effect on study participant was applied to account for intra- and interindividual 

variability, including unequal numbers of measurements in the morning and the evening for each 

individual. The same procedure was applied to compare maximum plasma concentration (Cmax) values 

measured after the morning dose (‘Cmax,morning’) and the evening dose (‘Cmax,evening’). For all statistical 

analyses, the significance level α was set to 0.05 (5%). 

 

1.3 Non-linear mixed effects (NLME) pharmacokinetic modelling 

NLME pharmacokinetic modelling was performed using NONMEM (NONMEM version 7.4.3, ICON 

Development Solutions, Ellicott City, MD, USA), allowing estimation of population medians for 

pharmacokinetic model parameters with simultaneous quantification of interindividual variability and 

residual (unexplained) variability. Calculation of pharmacokinetic parameters, quantitative model 

performance analysis, and generation of plots were accomplished using R 4.0.2 (R Core Team. R: A 

language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 

Austria) and RStudio 1.2.5033 (RStudio, Inc., Boston, MA, USA). 

Model selection and hypothesis rating (model with time-of-day variation) was based on the precision 

of parameter estimates, the objective function value (OFV) provided by NONMEM [6] and visual 

inspection of goodness-of-fit plots (plotting predicted plasma and urine concentrations vs. observed 

values as well as conditional weighted residuals (CWRES) vs. time or predicted concentrations). One 

nested model was considered superior to another when the OFV was reduced by 3.84 units (Chi2, p < 

0.05, 1 degree of freedom) [7]. The First-Order Conditional Estimation with Interaction (FOCE-I) 

method was applied. To additionally evaluate the model performance of the model without versus 

with time-of-day variation, predicted and observed Ctrough and Cmax ratios (morning vs. evening) were 

compared including calculation of geometric mean fold errors (GMFEs) of Ctrough and Cmax ratio 

predictions as quantitative measure according to ESM Equation 1.  

 

GMFE = 10x;          x = 
1

m
∑  |log10 (

predicted PK parameteri
observed PK parameteri

)|   
m

i=1
  (1) 

 

where predicted PK parameteri = predicted Ctrough or Cmax ratio, observed PK parameteri = 

corresponding observed Ctrough or Cmax ratio and m = number of studies. Overall GMFEs of ≤ 2 were 

considered reasonable predictions.  

 

1.4 Literature-informed mechanistic physiologically based pharmacokinetic (PBPK) 

modelling 

The previously published PBPK model [8] was developed in PK-Sim® and during this analysis extended 

in MoBi® (Open systems pharmacology suite 8.0, http://www.open-systems-pharmacology.org/). 

Calculation of pharmacokinetic parameters, quantitative model performance analysis, and generation 

of plots were accomplished using R 4.0.2 (R Core Team. R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria) and RStudio 1.2.5033 (RStudio, 

Inc., Boston, MA, USA). 
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Virtual twins of study individuals were generated according to the demographic information, with 

corresponding ethnicity, sex, age, body weight, height and GFR, if reported. Metformin transporters 

were implemented in agreement with current literature, utilising the PK-Sim® expression database [9] 

to define their relative expression in the different organs of the body. Details on the expression of drug 

transporters implemented to model the pharmacokinetics of metformin are summarised in ESM Table 

6. In all virtual individuals, enterohepatic circulation (EHC) was enabled (EHC continuous fraction set 

to 1) by assuming a continuous flow of the bile to the duodenum. 

Model performance was evaluated by (1) comparison of predicted and observed plasma concentration 

time-profiles, (2) comparison of predicted and observed plasma concentration values in goodness-of-

fit plots, (3) calculation of mean relative deviations (MRDs) of plasma concentration predictions 

according to ESM Equation 2, (4) comparison of predicted and observed Ctrough and Cmax ratios (morning 

vs. evening) and (5) calculation of GMFEs of Ctrough and Cmax ratio predictions. 

 

MRD = 10x;          x =√
1

k
∑ (log10 cpredicted,i- log10 cobserved,i)

2k

i=1
  (2) 

where cpredicted,i = predicted plasma concentration, cobserved,i = corresponding observed plasma 

concentration and k = number of observed values. Overall MRD values ≤ 2 were considered reasonable 

predictions.  

 

ESM Table 6. System-dependent parameters 

Transporter Ref. Conc. (µmol/l)a  Expression profileb Localisation Direction Half life [h] 

MATE1 0.13c [10, 11]   Kidney only [12, 13] Apical Efflux 36 (liver) 

OCT1 0.16d [14, 15]   Array [16]e  Basolateralf Influx 36 (liver), 23 (intestine) 

OCT2 0.19c [10, 11]   EST [17] Basolateral Influx 36 (liver) 

PMAT 1.00g [18]  RT-PCR [19]e Basolateralf Influx 36 (liver), 23 (intestine) 

Array, ArrayExpress measured expression profile; EST, expressed sequence tag measured expression profile; MATE, multidrug and toxin 
extrusion protein; OCT, organic cation transporter; PMAT, plasma membrane monoamine transporter; ref. conc., reference concentration; 
RT-PCR, reverse transcription-polymerase chain reaction measured expression profile 
a mean reference concentration µmol/l in the tissue of highest expression 
b relative expression in the different organs (PK-Sim expression database profile) 
c calculated from transporter per mg membrane protein x 26.2 mg human kidney microsomal protein per g kidney [10] 
d calculated from transporter per mg membrane protein x 37.0 mg membrane protein per g liver [14] 
e large intestinal mucosa → 0 
f apical in enterocytes 
g transport rate constant (kcat) was optimised according to [18] 
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2 ESM Results 

2.1 Statistical analysis 

 

 

 
Fig 6. Intra- and interindividual variability of trough plasma concentration (Ctrough) measurements from studies I 

and II [1, 2], including paired t test results. Boxes represent the distance between first and third quartiles (IQR). 

Whiskers range from smallest to highest value (< 1.5 × IQR). 
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Fig 7. Intra- and interindividual variability of maximum plasma concentration (Cmax) measurements from study I 

[1], including paired t test results. Boxes represent the distance between first and third quartiles (IQR). Whiskers 

range from smallest to highest value (< 1.5 × IQR). 
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2.2 NLME pharmacokinetic modelling 

 

The volumes of distribution were 41.1 l for central (V2) and 129 l for peripheral (V3) compartments, 

respectively. The physiologically described rhythm of the GFR was implemented by multiplication of a 

sine function with clearance. The amplitude and a time shift of the sine function were estimated as 

21% and 12.3 h (acrophase at 17:43 hours), respectively. Interindividual variability was found on the 

clearance, the volume of distribution and the bioavailability. Implementation of food, formulation and 

dose as significant covariates partly explained the interindividual variability and the related parameters 

were reduced about 14.2%, 75.0% and 51.5% for clearance, volume of distribution and bioavailability, 

respectively. Administration after food intake leads to a 1.91-fold higher bioavailability and a 0.63-fold 

lower absorption rate constant but 5.10-fold increased release duration for the extended-release 

formulation. The bioavailability of the extended-release formulation was 1.09-fold higher compared 

to the immediate-release formulation. The dose was implemented as a covariate using an exponential 

function according to ESM Equation 3, leading to a decreased bioavailability by administration of 

higher doses metformin. All estimated parameter values are summarised in ESM Table 7. All model 

parameters were precisely estimated with residual standard errors < 25%. Observed versus model 

predicted metformin concentrations are randomly distributed around the line of identity, indicating 

good descriptive properties of the final pharmacokinetic model.  

 

F1 = estimated rel. F1 × (
dose

1000
)
-0.117

  (3) 

 

where F1 = absolute bioavailability, estimated rel. F1 = estimated relative bioavailability and dose = 

metformin dose.  
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ESM Table 7. NLME pharmacokinetic model parameters 

Parameter Unit 

Value (RSE) 

Description Without time-of-day 
variation 

With time-of-day 
variation 

ΔOBV   -660.39 Drop in objective function value 
     
Fixed effects   

  

CL  l/h 27.7 (14%) 28.9 (10%) Clearance 
V2  l 19.1 (15%) 41.1 (9%) Central volume of distribution 
ka 1/h 0.261 (3%) 0.280 (4%) Absorption rate constant 
V3 l 133 (15%) 129 (12%) Peripheral volume of distribution 
Q l/h 6.18 (16%) 6.01 (11%) Intercompartimental clearance  
F1 % 0.181 (19%) 0.191 (19%) Absolute bioavailability  
TDEL h - 12.3 (1%) Timeshift of the sine function 
AMP - - 0.21 (7%) Amplitude of the sine function 
D1_bioequivalence h 2.49 (9%) 5.12 (3%) Duration of the release of the 

extended-release formulation 
(study I) 

D1_phase_I h 2.38 (7%) 1.18 (6%) Duration of the release of the 
extended-release formulation 
(studies IV and V) 

     
Factor_D1_fed - 2.54 (8.3%) 5.12 (3%) 

 

Factor_F1_ER - 1 (3%) 1.09 (3%) 
 

Factor_ka_fed - 0.681 (4%) 0.631 (5%) 
 

Exponent_F1_dose - -0.134 (16%) -0.117 (17%) 
 

     
Random effects   

  

IIV CL %CV 68.5 (7%) 62.5 (8%) Interindividual variability on 
clearance 

IIV V2  %CV 137.3 (7%) 91 (11%) Interindividual variability on 
volume of distribution 

IIV F1 %CV 61 (9%) 63.3 (15%) Interindividual variability on 
bioavailabitiy 

     
Residual effects   

  

PRV  % 32 (4%) 30.1 (9%) Proportional residual variability 
of bioequivalence study (plasma 
concentration) (study I) 

PRV  % 32.9 (2%) 31.6 (2 %) Proportional residual variability 
of phase I trials (plasma 
concentration) (studies II–V) 

PRV  % 56.8 (12%) 55 (11%) Proportional residual variability 
of phase I trials (urine 
concentration) (studies II and III) 

RSE, relative standard error 
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Fig 8. Structure of the final metformin NLME pharmacokinetic model. AMP, amplitude; CL, clearance; D, duration 

of release of the formulation; ER, extended-release; F1, absolute bioavailability; IR, immediate-release; ka, 

absorption rate constant; Q, intercompartimental clearance; t, time; TDEL, shift in time; V, volume of distribution 
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2.2.1 NLME pharmacokinetic model plots 

2.2.1.1 Metformin plasma concentration-time profiles 

 

 
ESM Fig 9. Exemplary individual plasma concentration-time profiles for each administered regimen 

(semilogarithmic plots, i.e. concentration presented on decadic logarithm scale). Metformin was administered 

as (a, c, d, e, g, h, i) extended-release or (b, f) immediate-release tablet. Observed data from studies I-V [1–5] are 

shown as dots, predictions are shown as lines (black: without time-of-day variation, red: with time-of-day 

variation). Grey areas indicate night-time. bid, twice daily; fast, fasted state; fed, fed state; po, oral; sd, single 

dose; tid, three times daily; qd, once daily 
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ESM Fig 10. Exemplary individual plasma concentration-time profiles for each administered regimen (linear 

plots). Metformin was administered as (a, c, d, e, g, h, i) extended-release or (b, f) immediate-release tablet. 

Observed data from studies I-V [1–5] are shown as dots, predictions are shown as lines (black: without time-of-

day variation, red: with time-of-day variation). Grey areas indicate night-time. bid, twice daily; fast, fasted state; 

fed, fed state; po, oral; sd, single dose; tid, three times daily; qd, once daily 
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2.2.1.2 Metformin urine concentration-time profiles 

 

 
ESM Fig 11. Exemplary individual urine concentration-time profiles (semilogarithmic plots, i.e. concentration 

presented on decadic logarithm scale). Observed data from studies II and III [2, 3] are shown as dots, predictions 

are shown as lines (black: without time-of-day variation, red: with time-of-day variation). Grey areas indicate 

night-time. bid, twice daily; po, oral; tid, three times daily 

 

 

 

 
ESM Fig 12. Exemplary individual urine concentration-time profiles (linear plots). Observed data from studies II 
and III [2, 3] are shown as dots, predictions are shown as lines (black: without time-of-day variation, red: with 
time-of-day variation). Grey areas indicate night-time. bid, twice daily; po, oral; tid, three times daily 
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2.2.1.3 Metformin goodness-of-fit plots 

 

 
ESM Fig 13. Goodness-of-fit plots, showing NLME pharmacokinetic model predictions compared to observed 
metformin (a—b) plasma and (c—d) urine concentrations of individuals from studies I-V [1–5], receiving either 
metformin extended- or immediate-release formulations. Predictions are shown for the model (a, c) without and 
(b, d) with time-of-day variation. The straight black line marks the line of identity. Dotted lines indicate 0.8- to 
1.25-fold and dashed lines indicate 0.5- to 2-fold acceptance limits. bid, twice daily; fast, fasted state; fed, fed 
state; po, oral; sd, single dose; tid, three times daily; qd, once daily 
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ESM Fig 14. Goodness-of-fit plots, showing NLME pharmacokinetic model predictions compared to observed 

metformin Ctrough ratios (morning/evening) from studies I and II [1, 2], receiving twice daily 1000 mg of metformin 

immediate-release formulation ((a–b) study I and (c–d) study II), comparing the model (a–c) without and (b–d) 

with time-of-day variation. The straight black line marks the line of identity. Dotted lines indicate 0.8- to 1.25-

fold and dashed lines indicate 0.5- to 2-fold acceptance limits. bid, twice daily; GMFE, geometric mean fold error; 

po, oral 
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ESM Fig 15. Goodness-of-fit plots, showing NLME pharmacokinetic model predictions compared to observed 

metformin Cmax ratios (morning/evening) from studies I and II [1, 2], receiving twice daily 1000 mg of metformin 

immediate-release formulation (study I), comparing the model (a) without and (b) with time-of-day variation. 

The straight black line marks the line of identity. Dotted lines indicate 0.8- to 1.25-fold and dashed lines indicate 

0.5- to 2-fold acceptance limits. bid, twice daily; GMFE, geometric mean fold error; po, oral 
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2.2.1.4 Conditional weighted residuals vs. time 

 

 
ESM Fig 16. NLME pharmacokinetic model conditional weighted residuals (CWRES) vs. time for the model (a, c) 
without and (b, d) with time-of-day variation taking (a—b) metformin plasma concentrations and (c—d) 
metformin urine concentrations from studies I-V [1–5] into account. bid, twice daily; fast, fasted state; fed, fed 
state; po, oral; sd, single dose; tid, three times daily; qd, once daily 
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2.2.1.5 Conditional weighted residuals vs. prediction 

 

 
ESM Fig 17. NLME pharmacokinetic model conditional weighted residuals (CWRES) vs. prediction for the model 
(a, c) without and (b, d) with time-of-day variation taking (a—b) metformin plasma concentrations and (c—d) 
metformin urine concentrations from studies I-V [1–5] into account. bid, twice daily; fast, fasted state; fed, fed 
state; po, oral; sd, single dose; tid, three times daily; qd, once daily 
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2.3 Literature-informed mechanistic PBPK modelling 

2.3.1 Literature search 

 

ESM Table 8. Time-of-day variation of pharmacokinetic-related processes and physiological 
conditions according to Dallmann et al. [20] 

ADME process  Amplitude (%) 
Acrophase  
(Clock time, hours) 

Reference 

Absorption     

 Gastric pH  35 09:00 [21] 

 Gastric emptying time  20 (solid), 7 (liquid)a 20:00b [22] 

 Gut motility  56 14:00 [23] 

 Blood flow to GIT  15 04:00 [24] 

      

Distribution     

 Hepatic blood flow  15 04:00 [24] 

      

Excretion    

 Glomerular filtration rate  13 15:01 [25–27] 

 Renal plasma flow  12 17:22 [25–27] 
a Amplitudes calculated for emptying half-times, b meals were given at 08:00 and 20:00 hours. GIT, gastrointestinal tract 
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2.3.2 Hypothesis testing 

Daily variation of processes and physiological conditions identified during literature search were rated 

quantitatively (ESM Fig 18) and graphically regarding prediction accuracy (ESM Fig 19).  

 

 
ESM Fig 18. Hypothesis testing with the PBPK model, assuming rhythmic physiological processes. BF, blood flow; 

Cmax, maximum plasma concentration; Ctrough, trough plasma concentration; GET, gastric emptying time; GMFE, 

geometric mean fold error; lit, literature; MATE, multidrug and toxin extrusion protein; MRD, mean relative 

deviation; OCT, organic cation transporter; opt, optimised; PMAT, plasma membrane monoamine transporter; 

RPF, renal plasma flow 

 

                                            

No  me-of-day varia on 1.27 1. 1 1.10

         

Gastric pH (lit.) 1.27 1. 1 1.10

Gastric emptying  me (lit.) 1. 7 1.  2.12

Gastric blood  ow (lit.) 1. 9 1. 1 2.19

Gut mo lity (lit.) 1.8 1. 2 2.19

Intes nal blood  ow (lit.) 1. 9 1. 2 2.19

           

Hepa c blood  ow (lit.) 1. 9 1. 1 2.19

        

Glomerular  ltra on rate (lit.) 1.27 1. 0 1.10

Renal plasma  ow (lit.) 1.25 1.2 1.05

           

PMA  (opt.) 1.29 1.52 1.1 

O  1 (opt.) 1.28 1.15 1.22

O  2 (opt.) 1.18 1.01 1.0 

MA E1 (opt.) 1.17 1.11 1.0 
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ESM Fig 19. PBPK model predictions alongside observed data of study I [1] (1000 mg twice daily immediate-release administration in the fed state), assuming a daily oscillation of 

different processes and physiological conditions. Observed data are shown as dots ± SD, predictions are shown as lines. Grey areas indicate night-time. lit, literature; MATE, multidrug 

and toxin extrusion protein; OCT, organic cation transporter; opt, optimised; PMAT, plasma membrane monoamine transporter 
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2.3.3 Final PBPK model parameters (with daily oscillation) 

Individual plasma concentration-time profiles show high interindividual variability. Therefore, organic cation transporter (OCT) 2 transport rate constant (kcat) values 

were optimised for every individual. Additionally, OCT2 amplitude and time shift were optimised (after inclusion of rhythmic GFR and RPF) with the help of individual 

profiles (n=26) (ESM Table 10). A correlation plot of OCT2 kcat values, amplitude and time shift (sine function describing daily oscillation) is shown in ESM Fig 20, 

where no correlation has been detected.  

ESM Table 9. Drug-dependent parameters of the metformin PBPK model adopted from Hanke et al.[8] 

Parameter Value   Unit Source Literature  Reference Description 

MW 129.16   g/mol Literature 129.16  [28] Molecular weight 

pKa1 (base) 2.80    Literature 2.80  [29] Acid dissociation constant 

pKa2 (base) 11.50    Literature 11.50  [29] Acid dissociation constant 

Solubility (pH 6.8) 350.90   g/l Literature 350.90  [29] Solubility 

logP -1.43    Literature -1.43  [30] Lipophilicity 

fu 100   % Literature 100  [31–33] Fraction unbound plasma 

B/P ratio -    Optimised Time-dependent  [31] Blood/plasma concentration ratio 

MATE1 KM 283.00   µmol/l Literature 283.00  [34] Michaelis-Menten constant 

MATE1 kcat 165.69   1/min Optimised -  - Transport rate constant 

OCT1 KM 1180.00   µmol/l Literature 1180.00  [35] Michaelis-Menten constant 

OCT1 kcat 641.19   1/min Optimised -  - Transport rate constant 

OCT2 KM 810.00   µmol/l Literature 810.00  [35] Michaelis-Menten constant 

OCT2 kcat 5.17 × 104   1/min Optimised -  - Transport rate constant 

PMAT KM 367.57   µmol/l Optimised 1320.00  [36] Michaelis-Menten constant 

PMAT kcat 76.47   1/min Optimised -  - Transport rate constant 

PMAT Hill 3.00    Literature 2.64  [36] Hill coefficient 

GFR fraction 1    Assumed -  - Fraction of filtered drug in the urine 

EHC continuous fraction 1    Assumed -  - Fraction of bile continually released 

Partition coefficients Diverse    Calculated PK-Sim  [37] Cell to plasma partition coefficients 

Cellular permeability 2.30 × 10-4   cm/min Calculated CDS norm.  [38] Plasma permeability into the cellular space 

Intestinal permeability 8.49 × 10-7   cm/min Optimised 1.87 × 10-7  Calculated Transcellular intestinal permeability 

Basolat. small intest. permeability 1.16 × 10-5   cm/min Optimised 1.11 × 10-6  Calculated Basolateral permeability out of the mucosa 

Basolat. large intest. permeability 0   cm/min Assumed 1.11 × 10-6  Calculated Basolateral permeability out of the mucosa 

Formulation IR fast/IR feda     Optimised -  [8, 39, 40] Formulation used in predictions 
a IR fast: Weibull function with a dissolution time of 7.90 minutes and a dissolution shape of 1.36 (extracted from [39]), IR fed: Weibull function with a dissolution time of 7.90 minutes and a dissolution 
shape of 0.11 (both optimised) [8, 40], ER fed: Weibull function with a dissolution time of 402.80 minuted and a dissolution shape of 1.35 (both optimised) [1, 41, 42]. basolat., basolateral; CDS, norm. 
charge-dependent Schmitt normalised to PK-Sim calculation method; EHC, enterohepatic circulation; ER, extended-release formulation; intest., intestinal; IR, immediate-release formulation; MATE, 
multidrug and toxin extrusion protein; OCT, organic cation transporter; PK-Sim, PK-Sim standard calculation method; PMAT, plasma membrane monoamine transporter 
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ESM Table 10. System- and drug-dependent PBPK model parameters to cover time-of-day dependent and interindividual variability 

Parameter 
Value  

Unit Source Literature 
 

Reference Description 
mean  range 

GFR amplitude 13  -  % Literature 13  [25–27] Amplitude sine function 

GFR acrophase  15:01   -  Clock time, hours Literature 15:01   [25–27] Acrophase sine function  

RPF amplitude 12  -  % Literature 12  [25–27] Amplitude sine function 

RPF acrophase  17:22   -  Clock time, hours Literature 17:22   [25–27] Acrophase sine function  

OCT2 kcat 5.77 × 104   1.29 × 104–1.68 × 105  1/min Optimised -  - Individual transport rate constant 

OCT2 amplitude 57  11–98  % Optimised -  - Individual amplitude sine function 

OCT2 acrophase  16:54   12:16 –20:41 hours  Clock time, hours Optimised -  - Individual acrophase sine function 
A 24-hour phase was assumed for the sine function. OCT, organic cation transporter; RPF, renal plasma flow  

 

 

 

 

ESM Fig 20. Correlation plots of individual PBPK modelled OCT2 kcat, amplitude and time shift values to cover daily oscillation (n=26). kcat, transport rate constant; OCT, organic cation 

transporter 
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2.3.4 PBPK model plots 

2.3.4.1 Metformin plasma concentration-time profiles 

 

 

ESM Fig 21. continued 
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ESM Fig 21. continued 

 

 

 

 

  

   d      o             d



2-37 
 

 

ESM Fig 21. PBPK model predictions compared to observed (a) mean and (b–p) individual plasma concentration-time 

profiles of metformin after twice daily administration of 1000 mg metformin immediate-release formulation in the fed 

state (semilogarithmic plots, i.e. concentration presented on decadic logarithm scale, training dataset). Predictions are 

shown as lines. Observed data from study I are shown as dots ± SD [1]. Grey areas indicate night-time. Inserts depict 

optimised mean and individual relative OCT2 expression, respectively. bid, twice daily; OCT, organic cation transporter; 

po, oral  
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ESM Fig 22. continued 
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ESM Fig 22. continued 
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ESM Fig 22. PBPK model predictions compared to observed (a) mean and (b–p) individual plasma concentration-time 

profiles of metformin after twice daily administration of 1000 mg metformin immediate-release formulation in the fed 

state (linear plots, training dataset). Predictions are shown as lines. Observed data from study I are shown as dots ± SD 

[1]. Grey areas indicate night-time. Inserts depict optimised mean and individual relative OCT2 expression, respectively. 

bid, twice daily; OCT, organic cation transporter; po, oral  

 

 

 

   d      o             d



2-41 
 

 
ESM Fig 23. continued 
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ESM Fig 23. PBPK model predictions compared to observed (a) mean and (b–l) individual plasma concentration-time 

profiles of metformin after three times daily administration of 850 mg immediate-release formulation (first six doses in 

fed state, last dose in fasted state) (semilogarithmic plots, i.e. concentration presented on decadic logarithm scale, 

training dataset). Predictions are shown as lines. Observed data from study III are shown as dots ± SD [3]. Grey areas 

indicate night-time. Inserts depict optimised mean and individual relative OCT2 expression, respectively. OCT, organic 

cation transporter; po, oral; tid, three times daily  
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ESM Fig 24. continued 
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ESM Fig 24. PBPK model predictions compared to observed (a) mean and (b-l) individual plasma concentration-time 

profiles of metformin after three times daily administration of 850 mg immediate-release formulation (first six doses in 

fed state, last dose in fasted state) (linear plots, training dataset). Predictions are shown as lines. Observed data from 

study III are shown as dots ± SD [3]. Grey areas indicate night-time. Inserts depict optimised mean and individual relative 

OCT2 expression, respectively. OCT, organic cation transporter; po, oral; tid, three times daily 
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ESM Fig 25. PBPK model predictions compared to observed mean concentration-time profiles of metformin after twice 

daily administration of 1000 mg metformin immediate-release formulation in the fed state ((a) semilogarithmic plot, 

i.e. concentration presented on decadic logarithm scale, (b) linear plot, test dataset). Predictions are shown as lines. 

Observed data from study II are shown as dots ± SD [2]. Grey areas indicate night-time. Insert depicts optimised mean 

relative OCT2 expression. bid, twice daily; OCT, organic cation transporter; po, oral 

 

2.3.4.2 Metformin goodness-of-fit plots 

 

 
ESM Fig 26. Goodness-of-fit plots, showing PBPK model predictions of (a) the training (n=26) and (b) the test dataset 

(mean profile) compared to observed metformin plasma concentrations following either twice daily 1000 mg or three 

times daily 850 mg of metformin immediate-release formulation (study I-III [1–3]). The straight black line marks the line 

of identity. Dotted lines indicate 0.8- to 1.25-fold and dashed lines indicate 0.5- to 2-fold acceptance limits. bid, twice 

daily; MRD, mean relative deviation; po, oral; tid, three times daily  
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ESM Fig 27. Goodness-of-fit plots, showing PBPK model predictions of (a, c) the training (n=15) and (b) the test dataset 

(mean profile) compared to observed metformin (a—b) Ctrough or (c) Cmax ratios (morning/evening), following twice daily 

1000 mg of metformin immediate-release formulation (studies I and II [1, 2]). The straight black line marks the line of 

identity. Dotted lines indicate 0.8- to 1.25-fold and dashed lines indicate 0.5- to 2-fold acceptance limits. bid, twice daily; 

GMFE, geometric mean fold error; po, oral 
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Evolocumab: A Pharmacokinetic and Pharmacodynamic Modeling Approach 
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Supplemental Figure S1:  

Goodness of fit plots for alirocumab (left) and evolocumab (right) for the 

pharmacokinetic (upper) and pharmacodynamic (lower) population predicted vs. 

observed. The black lines indicate the lines of identity. LDLc, low density 

lipoprotein cholesterol. 

 

Supplemental Figure S2:  

VPCs: Observed and model predicted PK and PD data after single dose 

administration (upper and middle) and multiple dose administration (lower) of 

alirocumab. Circle indicates the observations, line and bands indicate the 

predicted median and 90% confidence interval of the predictions of 5000 

individuals. LDLc, low density lipoprotein cholesterol; QnWxm, dosing once every 

n weeks for m times; s.c., subcutaneous. 

 

Supplemental Figure S3:  

VPCs: Observed and model predicted PK and PD data after single dose 

administration (upper) and multiple dose administration (lower) of evolocumab. 

Circle indicates the observations, line and bands indicate the predicted median 

and 90% confidence interval of the predictions of 5000 individuals. LDLc, low 

density lipoprotein cholesterol; QnWxm, dosing once every n weeks for m times; 

s.c., subcutaneous; i.v., intravenous. 

 

Supplemental Table S1:  

Overview over the available data for model development. Administration was 

subcutaneous unless specified otherwise. i.v., intravenous. 
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Supplemental Figure S 1: Goodness of fit plots for alirocumab (left) and evolocumab 

(right) for the pharmacokinetic (upper) and pharmacodynamic (lower) population predicted 

vs. observed. The black lines indicate the lines of identity. LDLc, low density lipoprotein 

cholesterol. 
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Supplemental Figure S 2 VPCs: Observed and model predicted PK and PD data after 

single dose administration (upper and middle) and multiple dose administration (lower) of 

alirocumab. Circle indicates the observations, line and bands indicate the predicted 

median and 90% confidence interval of the predictions of 5000 individuals. LDLc, low 

density lipoprotein cholesterol; QnWxm, dosing once every n weeks for m times; s.c., 

subcutaneous. 
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Supplemental Figure S 3: VPCs: Observed and model predicted PK and PD data after 

single dose administration (upper) and multiple dose administration (lower) of 

evolocumab. Circle indicates the observations, line and bands indicate the predicted 

median and 90% confidence interval of the predictions of 5000 individuals. LDLc, low 

density lipoprotein cholesterol; QnWxm, dosing once every n weeks for m times; s.c., 

subcutaneous; i.v., intravenous. 
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Supplemental Table S 1: Overview over the available data for model development.  

Administration was subcutaneous unless specified otherwise. i.v., intravenous. 

 

alirocumab 

 

evolocumab:  

 

*SD, single dose; MD, multiple dose; PK, pharmacokinetic; PD, pharmacodynamic; i.v., 
intravenious; n, number of subjects from which mean curves are calculated 

**in case of several study numbers, mean curves were derived from data of several studies  

study number** references SD/MD PK PD doses [mg] (n) statin co-
medication  

NCT01074372  (93–95) SD X 
 

X 
 

50 (6), 100 (6),  
150 (5), 250 (6) 

no 
 

NCT01785329 (96) SD X X 75 (20) no 

NCT01670734 (95) SD X  75 (8) no  

NCT01448239  (95) SD X  200 (12) no 

NCT01161082 (95) SD X  150 (8) no  

X  200 (10) yes (dose not 
stratified) 

NCT01288443  (93) MD 
 

 X 
 

50 Q2W (30),  
100 Q2W (31),  
150 Q2W (29),  
200 Q4W (28),  
300 Q4W (30) 

yes (dose not 
stratified) 

study number** references SD/MD PK PD doses [mg] (n) statin co-
medication 

20080397 (97,98) SD X 
 

X 7 (6), 21 (6),  
70 (6), 210 (6),  
420 (6), 21 i.v. (6), 
420 i.v. (6) 

no 

20080398 (97,98) MD 
 

 X 14 QW (6) yes (low dose 
statin)  X 35 QW (6) 

X X 140 Q2W (6) 

 X 280 Q2W (6) 

X X 420 Q4W (6) 

X X 140 Q2W (9) yes (high dose 
statin) 

X X 140 Q2W (4) yes (dose not 
stratified) 

20101154, 
20101155, 
20090158, 
20090159 

(99) MD 
 

 
 

X 
 

70 Q2W (124),  
140 Q2W (121),  
280 Q4W (155),  
420 Q4W (211) 

yes (dose not 
stratified) 
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B1: Conference Abstracts  
 

Pharmacokinetic and Pharmacodynamic Modeling of Alirocumab and Evolocumab, 

two fully human monoclonal antibodies targeting PCSK9.  

Nina Scherer, Christiane Dings, Michael Böhm, Ulrich Laufs and Thorsten Lehr.  

25th Population Approach Group Europe (PAGE) meeting, 2016, Lisbon, Portugal.  

Mathematical modeling of glucose, insulin and c-peptide during the OGTT in pre-

diabetic subjects: a DIRECT study.  

Christiane Dings, Nina Scherer, Jan Freijer, Valerie Nock, Thorsten Lehr.  

26th Population Approach Group Europe (PAGE) meeting, 2017, Budapest, Hungary.  

A population pharmacokinetic (PK) model of metformin regarding immediate and 

extended release formulations under fasted and fed conditions.  

Nina Scherer, Christiane Dings, Jan Freijer, Valerie Nock, Thorsten Lehr.  

26th Population Approach Group Europe (PAGE) meeting, 2017, Budapest, Hungary.  

Mathematical modelling of glucose tolerance tests describing glucose, insulin and 

C-peptide levels in different cohorts: an IMI DIRECT study.  

Christiane Dings, Nina Scherer, Valerie Nock, Anita Hennige, Ewan Pearson, Paul W. 

Franks, Thorsten Lehr, for the IMI-DIRECT consortium.  

54th European Association for the Study of Diabetes (EASD) meeting, 2018, Berlin, 

Germany. 

Mathematical modeling of the oral glucose tolerance test in pre-diabetic patients: 

An IMI DIRECT study  

Christiane Dings, Nina Scherer, Iryna Sihinevich, Valerie Nock, Anita M. Hennige, Ewan 

R. Pearson, Paul W. Franks and Thorsten Lehr for the IMI DIRECT consortium.  

28th Population Approach Group Europe (PAGE) meeting, 2019, Stockholm, Sweden 

Mathematical Modeling of Glucose Homeostasis in Morbidly Obese Diabetic 

Patients Undergoing Roux-en-Y Gastric Bypass Surgery: An IMI DIRECT  

Study Iryna Sihinevich, Christiane Dings, Nina Scherer, Valerie Nock, Anita M. Hennige, 

Violeta Raverdy, Francois Pattou and Thorsten Lehr for the IMI DIRECT consortium.  

28th Population Approach Group Europe (PAGE) meeting, 2019, Stockholm, Sweden. 

 

B2: Book Chapters  
 

Daniel Moj, Melanie I. Titze, Nina Scherer, Torsten Lehr. „Onkologie“ in 

Pharmakogenetik und Therapeutisches Drug Monitoring: Diagnostische Bausteine 

für die individualisierte Therapie  

Hanns-Georg Klein and Ekkehard Haen.  

Berlin, Boston: De Gruyter, 2018. https://doi.org/10.1515/9783110352900  
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