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Abstract

Abstract

The bidirectional exchange of EVs between the host and its microbiome or pathogenic bacteria serves
as a fundamental mechanism for communication and regulation of various physiological processes and
immune responses, especially in microbiome-related disorders. Enterococci bloodstream infections are
a prevalent cause of healthcare-associated infections. This study investigated the interactions of
Enterococcus faecalis and host cells through EVs.

Chapter | contributed to a more comprehensive understanding of EVs secreted by Gram-positive
Enterococcus faecalis and their role in activating host immune cells. Bacterial EVs were isolated,
characterized, and assessed for their cytotoxic effect in host cells. Furthermore, their internalization and
potential to affect the inflammatory gene expression were studied.

In chapter Il, an in vitro flow culture model was utilized to culture endothelial cells under laminar flow
conditions that allowed the isolation of endothelial EVs. EVs from static and flow cultures were isolated
and examined for their characteristics and cargo content. Furthermore, the expression of bacterial genes
involved in virulence was studied after exposure to endothelial EVs.



Zusamenfassung

Zusamenfassung

Der bidirektionale Austausch von EVs zwischen dem Wirt und seinem Mikrobiom bzw. pathogenen
Bakterien stellt einen grundlegenden Mechanismus fir die Kommunikation und Regulierung
verschiedener physiologischer Prozesse und Immunreaktionen, insbesondere bei mikrobiombedingten
Erkrankungen. Enterokokken-Infektionen der Blutbahn sind eine h&ufige Ursache fir Infektionen im
Zusammenhang mit dem Gesundheitswesen. In dieser Studie wurden die Wechselwirkungen zwischen
Enterococcus faecalis und Wirtszellen durch EVs untersucht.

Kapitel 1 trug zu einem umfassenderen Verstdndnis der von Gram-positiven Enterokokken
abgesonderten EVs und ihrer Rolle bei der Virulenz bei. Die bakteriellen EVs wurden isoliert,
charakterisiert und auf ihre zytotoxische Wirkung in den Wirtszellen untersucht. Daruber hinaus wurden
ihre Internalisierung und ihr Potenzial zur Beeinflussung des entzlindlichen Genexpressionsprofils
untersucht.

In Kapitel Il wurde ein in vitro Stromungskulturmodell verwendet, um Endothelzellen unter laminarer
Strémung zu kultivieren, was die Isolierung von endothelialen EVs ermdglichte. EVs aus statischen und
FlieBkulturen wurden isoliert und auf ihre physiologischen Eigenschaften und den Gehalt an Fracht
untersucht. Dariiber hinaus wurde die Expression von Bakteriengenen, die an der Virulenz beteiligt sind,
nach der Exposition gegentiber endothelialen EVs untersucht.
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Introduction

1.1 Enterococcus faecalis

Enterococcus faecalis, a Gram-positive bacterium, typically resides as a natural component of the gut
microbiota. However, it is also recognized as an opportunistic pathogen capable of causing a range of
infections including urinary tract infections (Abat et al. 2016), endocarditis (Barnes, Frank, and Dunny
2021) and sepsis (Linden 2003). Its pathogenicity is notably elevated in individuals with compromised
immune systems or other underlying health conditions. Hence, E. faecalis is frequent in clinical settings,
especially during hospitalization and in cases of surgical wounds, making it one of the most commonly
encountered species in clinical isolates (Beganovic et al. 2018).

The primary component of the cell wall in Enterococci is peptidoglycan (PG). Alongside the
polymerization of glycan strands, Enterococci decorate their peptidoglycan layer and cell membrane
with diverse proteins. These proteins are either covalently linked to the peptidoglycan layer, including
polysaccharides, teichoic acids, and surface-anchored proteins, or covalently attached to the plasma
membrane, such as lipoteichoic acids (LTA) and lipoproteins (Hancock, Murray, and Sillanpaa 2014).

1.1.1  Virulence-related factors

The progression of bacterial infections involves a series of stages: colonization, adherence to host
tissues, tissue invasion, and resistance to host defence mechanisms. The exploration of the mechanisms
in enterococci that facilitate these stages has identified a set of genes potentially associated with
enterococcal virulence.

Extracellular matrix (ECM) binding: The primary step crucial to E. faecalis pathogenesis involves
adherence to host tissues, particularly in urinary tract infections (UTIs) (Flores-Mireles et al. 2015).
Virulence factors associated with this adherence include an aggregation substance (Agg), and the
adhesin to collagen (Ace), which facilitate adhering to and colonizing in the host tissues (Schiopu et al.
2023). Furthermore, E. faecalis has the capability to form biofilms (Oli et al. 2022), which have been
shown to impart antibiotic resistance (Khalil et al. 2023), making them more vulnerable to antibiotic
therapy.

Pili: The endocarditis and biofilm-associated pili (Ebp) play a significant role in the pathogenicity of E.
faecalis, as highlighted by various studies (Nielsen et al. 2012; Sillanpéaa et al. 2013; Kavindra V. Singh,
Nallapareddy, and Murray 2007; Nallapareddy et al. 2006). The ebp locus comprises three genes, ebpA,
ebpB, and ebpC, forming an operon responsible for encoding the pilus subunits (Sillanpéa et al. 2013;
Nallapareddy et al. 2006). Ebp are important for biofilm formation and adherence of bacteria to host
ECM proteins, including fibrinogen and collagen, a process that is considered crucial in the initial steps
of infection (Nallapareddy and Murray 2008; Nallapareddy et al. 2011).

ECM digestion: Gelatinase is a zinc-containing metalloproteinase produced by E. faecalis that is
capable of hydrolyzing gelatin, collagen, casein, hemoglobin, and other peptides (Méakinen et al. 1989),
contributing to the development of chronic intestinal inflammation by impairing epithelial barrier
integrity (Steck et al. 2011). Certain peptides, generated as a consequence of collagen fragmentation
attract monocytes (Postlethwaite and Kang 1976), macrophages (Laskin et al. 1994), and neutrophils
(Riley et al. 1988) to the site of breakdown.

Pore formation: Enterococcal cytolysin is a pore-forming exotoxin that affects a broad range of
eukaryotic and prokaryotic cell types (Coburn and Gilmore 2003). Contribution of cytolysin in virulence
has been studied in various infection models (Ike, Hashimoto, and Clewell 1984; K. V. Singh et al. 1998;
Chow et al. 1993; Jett et al. 1992; Stevens et al. 1992). Cytolysin is associated with acute mortality in
humans (Huycke, Spiegel, and Gilmore 1991) and evading host defense by inhibiting macrophage
activation (Bebien et al. 2012).
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1.1.2 Enterococcal infection and immunity

The initial line of defense in the innate immune system against pathogen invasion relies on recognition
of pathogen-associated molecular patterns (PAMPS) present in pathogens. Cells within the innate
immune system, such as macrophages, serve as primary defenses against invaders. These cells possess
robust phagocytic properties and are equipped with pattern recognition receptors (PRRs), which enable
them to identify and eliminate microorganisms by recognizing common patterns expressed by various
pathogens, referred to as pathogen-associated molecular patterns or damage-associated molecular
patterns (DAMPs) (D. Li and Wu 2021).

Toll-like receptors (TLRs), which comprise a significant subgroup of PRRs, play pivotal roles in
recognizing both commensal and pathogenic bacteria. When specific compounds are recognized, TLRs
initiate signal transduction pathways, such as the NF-kB pathway or MAP kinase pathways. In turn,
these pathways result in the recruitment of transcription factors, leading to the activation of
inflammatory gene expression and protein secretion (Fitzgerald and Kagan 2020). For instance, bacterial
surface patterns such as lipopolysaccharides (LPS) from Gram-negative bacteria or LTA from Gram-
positive bacteria can induce the secretion of inflammatory mediators through TLR4 and TLR2,
respectively (Kawasaki and Kawai 2014).

Using a mouse model, Leendertse et al. showed that enterococcal bacteria are recognized by peritoneal
macrophages through TLR2, mediating neutrophil influx to the site of infection and bacterial clearance
(Leendertse, Willems, Giebelen, Roelofs, Bonten, et al. 2009). It was also found that peritoneal
macrophages (Leendertse, Willems, Giebelen, Roelofs, van Rooijen, et al. 2009), neutrophils
(Leendertse, Willems, Giebelen, Roelofs, Bonten, et al. 2009) and the complement system (Leendertse
et al. 2010) are essential for the rapid eradication of this bacterium in the early stages of the infection.

1.1.3  Clinical manifestations

Enterococci are among the most common sources of infections acquired in hospitals, with E. faecalis
accounting for 80-90% of infection cases (Weiner et al. 2016; Suetens et al. 2018; Orsi and Ciorba
2013). Enterococci typically affect older individuals, those with compromised immune systems, those
with significant underlying illnesses, individuals undergoing broad-spectrum antibiotic treatment, and
those with concurrent bacterial infections. Enterococci are responsible for a range of infections,
including urinary tract infections (UTIs), endocarditis, meningitis, wound infections, and intra-
abdominal and pelvic infections. (Moellering 1992).

Normally, enterococcal infections follow specific routes: (1) spread of the patient's regular microbial
flora to different body sites, frequently triggered by extensive antibiotic usage or improper antibiotic
application (referred to as opportunistic infections); (2) spread of antibiotic-resistant bacterial strains
within a hospital setting; and (3) wound infections (largely attributed to surgery, decubitus ulcers, and
burn wounds).

According to the International Society for Infectious Diseases and the Center for Disease Control, UTIs
are among the most common infections in hospitalized patients (Oztiirk and Murt 2020). Enterococci
contribute to over 30% of UTIs in patients using urinary catheters and have been identified as the leading
pathogen in catheter—associated UTI (Kline and Lewis 2016). The host immune response proved
inadequate in eliminating infection, indicating an increased risk of colonization and infection in
individuals undergoing immunosuppressive therapies (Guiton et al. 2013).

Bacteremia occurs when the organism enters the bloodstream. Individuals experiencing enterococcal
bacteremia face an elevated risk of developing endocarditis, which is characterized by bacterial damage
to the cardiac valves and a decline in cardiac function (Dahl et al. 2019; Escola-Vergeé et al. 2021). The
formation and progression of bacterial biofilms have been observed during E. faecalis colonization of

3
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the murine gastrointestinal tract (Barnes et al. 2016). Biofilm formation also represents a significant
pathogenic factor in animal models of enterococcal catheter-associated urinary tract infections and
endocarditis (Barnes, Frank, and Dunny 2021).

1.2 Host microbiome interaction

The term “microbiota” refers to a community of microorganisms that encompasses commensal,
symbiotic, and pathogenic microorganisms, that literally share our body spaces (Hou et al. 2022). As
we are abruptly and continuously exposed to the environment after birth, trillions of normally non-
pathogenic bacteria rapidly colonize the gut. While the composition and metabolic functions of the gut
microbiota show greater similarities in early life, the microbiota diversity becomes more pronounced
over time. In healthy individuals, the composition of the gut microbiota remains relatively stable,
dominated mainly by a few phyla that form complex biochemical interaction networks between
themselves and their hosts (Hui Xu et al. 2020; Shkoporov and Hill 2019; Sender, Fuchs, and Milo 2016;
Huttenhower et al. 2012). Nevertheless, there is notable diversity in bacterial populations among
individuals, attributed to variances in the host genome and influenced by lifestyle factors such as diet,
drug usage, and environmental exposure (Thriene and Michels 2023; Tamburini et al. 2016).

The gut microbiota maintains a symbiotic relationship within the human host, which plays a pivotal role
in shaping overall health. Interactions between the gut microbiota and intestinal cells actively regulate
barrier functions and consistently prompt the immune system to mount defenses against potential
pathogens (Cao et al. 2022; Yoo et al. 2020; De Santis et al. 2015).

The balance between the ratios of epithelial barrier-protective, pro-inflammatory, and anti-inflammatory
cytokines determines the inflammatory or homeostatic state of the gut (Fakharian et al. 2023; Cicchese
et al. 2018; Rescigno 2011). The detection of pathogen-associated molecular patterns by antigen-
presenting cells (APCs) through pattern recognition receptors is integral to the innate immune response.
PRRs enable APCs to identify PAMPs, which, in turn, initiate a cascade of inflammatory responses. For
example structural components of the microbiota, such as LPS and peptidoglycan, directly engage with
host intestinal cells through Toll-like receptors (Zheng, Liwinski, and Elinav 2020; Larsson et al. 2012).

The gut epithelium and vascular barrier regulate the entry of the host tissue beyond the intestinal
epithelial barrier and into circulation. Functionally, the intestinal epithelial barrier separates the luminal
contents from the immune cells found in the gut and prevents systemic dissemination of pathogens to
other organs (Di Vincenzo et al. 2024; Scalise et al. 2021) (Figure 1-1).

Impaired intestinal integrity can lead to bacterial translocation, defined as the movement of gut bacteria
into sterile tissue. Contrary to the belief that live bacteria must breach the gut epithelial barrier for sepsis,
the term includes the movement of intact bacteria, toxins, and microbial products from the gut into
circulation, resulting in systemic inflammation and diverse diseases (Wheeler et al. 2023; Twardowska
et al. 2022; Nagpal and Yadav 2017).
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Microbiota
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activation

FIGURE 1-1. Interaction between gut microbiota and the host: Impaired intestinal barrier function
results in bacterial and microbiome-derived metabolites permeating the underlying tissue, leading to
inflammation. Created with BioRender.com.
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1.3  Extracellular vesicles

The interaction between bacteria and host cells extends beyond direct cell contact, with the release of
bacterial extracellular vesicles (EVs) emerging as a significant mechanism (Yang et al. 2022; Rodrigues
et al. 2018). EVs are nano-sized membrane-bound structures released by almost all cell types in their
external environment. The significance of EVs has been underestimated for a long time, with EVs being
initially referred to as cellular ‘dust’ (Cocucci, Racchetti, and Meldolesi 2009; Wolf 1967). It is now
well recognized that EVs carry bioactive molecules, such as proteins, nucleic acids, and lipids. These
vesicles play a crucial role in intercellular communication and influence various physiological and
pathological processes in the recipient cells (van Niel et al. 2022; Berumen Sanchez et al. 2021).

The impact of EV production on pathogenesis has become an increasingly active research field (EL
Andaloussi et al. 2013). It is now well established that many pathogenic bacteria use their EVs to deliver
toxic compounds to infected cells (Bitto et al. 2017), whereas eukaryotic EVs are involved in many
important human pathologies, including cancer, cardiovascular, and neurodegenerative diseases, and
have the potential to be used as biomarkers or delivery vehicles for therapeutic action (Yafiez-M0 et al.
2015; Robbins, Dorronsoro, and Booker 2016; Thompson et al. 2016; Shu Liu et al. 2017; Mateescu et
al. 2017).

1.3.1 Bacterial EVs

Bacterial EVs are heterogeneous populations of EVs with various size, density, and cargo content,
whose production and relative distribution change with the physiological state. Bacteria exhibit various
types of cell envelope that affect the nature of their EVSs. Gram-negative bacteria have an outer
membrane (OM) containing LPS and a thin layer of peptidoglycan located in the periplasmic space that
is between the outer and inner membranes. In contrast, gram positive bacteria have a single membrane
covered with a thick layer of peptidoglycan (Effah et al. 2024; Dauros Singorenko et al. 2017; Kim et
al. 2015).

EVs produced by Gram-negative bacteria are mostly derived from the OM and are referred to as outer
membrane vesicles (OMVs). The OM ‘blebs’ outwards and pinches off, forming spherical vesicles
containing periplasmic components (Furuyama and Sircili 2021; Schwechheimer and Kuehn 2015)
(Figure 1-2).

The limited attention paid to EVs in Gram-positive bacteria was attributed to the assumption that the
thick cell wall acts as a physical barrier, hindering the release of EVs into the extracellular space. The
release of EVs through the cell wall may be facilitated by the application of post-release pressure from
the plasma membrane (Figure 1-2), the presence of cell wall-modifying enzymes released alongside
EVs, and the potential transit through channels (Jeong et al. 2022; Brown et al. 2015).

Bacterial EVs play a role in delivering their contents to the recipient bacteria, contributing to cellular
communication, biofilm formation (Turnbull et al. 2016; Liao et al. 2014), antibiotic resistance (Rumbo
et al. 2011), stress response (Maredia et al. 2012), toxin delivery (Rompikuntal et al. 2012), and nucleic
acid transfer (Sjostrom et al. 2015).

In addition, bacterial EVs are known to transport their contents to eukaryotic cells and have been
associated with pathogenic processes and immune system homeostasis (Muraca et al. 2015; Rakoff-
Nahoum, Coyne, and Comstock 2014). Bacterial EVs can cross the mucosal barrier, reach gut mucosal
macrophages and initiate intestinal inflammation (Christovich and Luo 2022; Pathirana and Kaparakis-
Liaskos 2016; Hickey et al. 2015).



Introduction

1.3.2 Eukaryotic EVs

EVs produced by human cells are present in various biological fluids, facilitating the delivery of their
cargo not only to neighboring cells within the tissue microenvironment and over long distances
throughout the bodies of multicellular organisms (Kalra, Drummen, and Mathivanan 2016).

Eukaryotic EVs are usually classified into three main categories, based on their size and mode of
production (van Niel, D’Angelo, and Raposo 2018). Microvesicles are formed by outward budding of
membrane vesicles from the cell surface (Muralidharan-Chari et al. 2009). Exosomes originate from the
endocytic pathway through the 'outward' budding of the late endosomal membrane. Initially, they
accumulate in structures known as multivesicular bodies (MVBs), which later fuse with the plasma
membrane and release their contents as exosomes into the extracellular space (M. Xu et al. 2023). The
third major type of eukaryotic EVs, called apoptotic bodies, is produced by cells undergoing
programmed cell death by outward budding from the surface of apoptotic cells (Kakarla et al. 2020)
(Figure 1-2).

For cargo transfer, EVs undergo fusion with the membranes of target cells, either directly integrating
with the plasma membrane or merging with the endosomal membrane following endocytic uptake. Cells
exhibit the ability to internalize EVs through direct fusion and diverse endocytic pathways, including
clathrin-dependent endocytosis and clathrin-independent routes such as caveolin-mediated uptake,
macropinocytosis, phagocytosis, and lipid raft—-mediated internalization (Y.-J. Liu and Wang 2023,;
Mulcahy, Pink, and Carter 2014).

Owing to variations in their biogenesis processes, subtypes of EVs exhibit changes in composition even
when they originate from the same cell (Vagner et al. 2019). Under specific circumstances, specific cell
types produce several types of EVs. For example, large oncosomes are produced by cells from advanced
cancers (Minciacchi, Freeman, and Di Vizio 2015), and migrasomes are produced during cell migration
(Jiang et al. 2023; Ma et al. 2015).

EVs carry a diverse range of cellular components and originate from the packaging of cytoplasmic
contents within the membrane-bound vesicles. For instance, EVs harbor numerous proteins, and the
presence of these proteins can provide valuable insights into the biogenesis and physiological functions
of EVs (Greening et al. 2017). Moreover, encapsulated RNAs within vesicles can significantly influence
recipient cells by transferring between different cell types. This transformation may manifest as the
production of novel proteins in the case of MRNA transfer or regulation of gene expression by miRNAs
(\Valadi et al. 2007).

The composition of EVs is not only influenced by the source but also by the methods used for initial
isolation or enrichment. Therefore, caution is necessary before attributing specific functions to one type
of EV because these functions could potentially arise from other EVs present in the preparation (Sharma
et al. 2020; Tkach and Théry 2016; Théry et al. 2006a).

Cell culture supernatants are the most used source of EV isolation (Stam et al. 2021). Fetal calf serum
(FCS) is a commonly used supplement in cell culture media because it provides a rich source of
nutrients, growth factors, and hormones necessary for cell growth and proliferation. However, its use in
EV isolation has been a subject of controversy due to the potential for FCS-derived components to co-
isolate with EVs and interfere with downstream applications (Wei et al. 2016; Lehrich, Liang, and
Fiandaca 2021). To avoid these concerns, several alternatives to FCS-containing medium have been
proposed for EV isolation purposes, including serum-free and EV-depleted FCS medium (Théry et al.
2006b), or using supplements like insulin-transferrin-selenium (ITS) solution (Baxter et al. 2019; Schulz
et al. 2020). However, it is recommended to monitor the changes in cell’s behaviour and evaluate the
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background of the analytes of interest to ensure that the chosen method does not affect EV characteristics
(Urzi, Bagge, and Crescitelli 2022).
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FIGURE 1-2. EV secretion from bacteria and eukaryotic cells. Gram-positive bacterial EVs originate
from cytoplasmic membrane A), while EVs produced by Gram-negative bacteria derive from the outer
membrane B). The process of releasing eukaryotic exosomes contains intracellular trafficking of MVBs,
and fusion of MVBs with the plasma membrane. Microvesicles and apoptotic bodies arise from the
direct outward budding of the plasma membrane C). Created with BioRender.com.

1.4 Shear stress

Endothelial cells, which line the interior surface of blood vessels, are constantly exposed to the
mechanical force exerted by flowing blood. This force, known as shear stress, plays a crucial role in
maintaining endothelial cell function and vascular homeostasis (Tun et al. 2019), and modulating host
defense (Bastounis et al. 2022). Since most cell culture protocols are designed for static cultures, and
experiments with ECs are predominantly conducted under these non-physiological conditions, it is
important to develop a model for culturing ECs under flow conditions that more closely mimics their
physiological environment.

It is widely recognized that atheroprotective wall shear stress in arteries generally ranges from 10 to 40
dyn cm? (Ortega Quesada et al. 2024; Tanaka et al. 2021; Roux et al. 2020; Davies 1995). However,
shear stress varies across the vasculature in different patterns and influences various cellular processes,
including signaling (McQueen and Warboys 2023), gene expression (Rojas-Gonzalez et al. 2023), and
cell morphology (Sun, Zhang, and Xia 2021). Therefore, understanding the effects of shear stress on
endothelial cells using experimental models is essential to elucidate the mechanisms underlying vascular
health and disease.
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Aim of thesis

2.1 Aim of chapter one

Bacterial EV-mediated interactions between the microbiome and the host, and their role in the onset of
various pathophysiological processes including inflammation and infection have been widely
investigated (Luo et al. 2023). While a direct interaction between E. faecalis and host cells has been
documented, we hypothesized that an interaction between E. faecalis-derived EVs and host cells may
also contribute to the virulence. Therefore, in the chapter one of this work we aimed to study the
interaction of E. faecalis-derived EVs with primary human monocyte-derived macrophages (HMDMs)
and human umbilical vein endothelial cells (HUVECS) in vitro.

2.2 Aim of chapter two

Endothelial cells experience shear stress associated with blood flow. Such shear stress regulates
endothelial function by altering cell physiology. EVs produced by endothelial cells contribute to the
physiological functions of endothelium. In the second chapter of this thesis, we aim to:

o Apply different media for culturing HUVECSs under static and laminar flow to obtain the optimal
condition for EV isolation.

o |solate extracellular vesicles from HUVECs cultured in static and under laminar flow conditions
and examine their characteristics.

e Investigate the cargo content of HUVEC-derived EVs to test the hypothesis that endothelial
EVs from cells cultured under static versus shear flow conditions differ due to the simulation of
physiological conditions, thereby impacting EV-mediated communication.

In addition, since Enterococci are a clinically significant cause of bloodstream infections (Billington et
al. 2014; Ubeda et al. 2010; Freedberg et al. 2018), and previous reports suggested bacterial gene
expression is affected by mammalian cargo (Shirong Liu et al. 2016; 2019; Santos et al. 2020), we aim
to:

e Investigate the effect of endothelial cell-derived EVs on E. faecalis.
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3.1 Materials and Methods

3.1.1 Cell culture

Human umbilical vein endothelial cells (HUVEC) were isolated from fresh umbilical cords from female
individuals (Klinikum Saarbriicken, Germany, consent of the Local Ethics Committee, permission no.
131/08) under sterile condition using 0.1 g/l collagenase for digestion (Roche) at 37 °C. To stop the
digestion, veins were rinsed with Earle’s medium 199 (PAA, # P04-07500) containing 10% fetal calf
serum (FCS) (#F7524, PAA), 100 U/ml penicillin G, and 100 pg/ml streptomycin (#P4333). After
centrifugation (10 min, 200 g) cells were resuspended in 5 ml endothelial cell growth medium with
supplement mix (# C-22010, Promocell) containing 10% FCS, 100 U/ml penicillin G, 100 pg/ml
streptomycin, and 0.1% Kanamycin (#K0254, Sigma), and cultivated at 37 °C and 5% CO; in a 25 cm?
cell culture flask. After one day, cells were washed three times with PBS (phosphate buffered saline,
7.20 g/l NaCl, 0.43 g/l KH2POs4, 1.48 g/l Na;HPO4) and cultivated until confluence. Cells were
cryopreserved in passage #1 and used for further experiments.

Monocytes were isolated from buffy coats of healthy blood donors (Blood Donation Center, Klinikum
Saarbrucken, Germany) with the consent of the local ethics committee (permission no. 173/18).
Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation using
lymphocyte separation medium 1077 (#C-44010, PromoCell) and LeucoSep tubes (#227290, Greiner).
Monocytes were obtained by magnetic cell sorting using anti-CD14 microbeads (#130-050-201,
Miltenyi), seeded, and differentiated to human monocyte-derived macrophages (HMDMs) in complete
RPMI medium supplemented with 20 ng/ml human recombinant colony-stimulating factor (M-CSF,
#130-096-492, Miltenyi) for a duration of 6 days prior to their use in various treatments (Dahlem et al.
2020).

3.1.2 Bacterial culture, extracellular vesicle (EV) isolation and purification

Enterococcus faecalis (DSM 20478, German Collection of Microorganisms and Cell Cultures (DSMZ))
was grown in BHI medium (#53286, Merck) under static condition at 37 °C (Afonina et al. 2021). When
reaching confluency (Optical density = 1, at the end of exponential stage), the bacterial culture was
centrifuged at 5000 g for 15 min at 4 °C to pellet the bacterial cells, then the supernatant was pushed
through 0.45 pm bottle top PVDF filters (#6-0039, Neolab) to remove any remaining cell. The sterility
of the filtrate was checked via overnight incubation of the filtered supernatant on agar plates.

The supernatants were then loaded in 70 ml ultracentrifuge tubes (#355655, Beckman Coulter,
Germany) and ultracentrifuged (UC) at 160,000 g for 3 hours at 4 °C (rotor SW 45Ti, Optima L-90k,
Beckman Coulter, Germany) to obtain the EVs. The supernatants were removed and EV pellets were
re-suspended in 100 pl of 0.2 pum filtered (#99255, TPP, Switzerland) phosphate buffered saline (PBS
tablets, #D2049.2100, Genaxxon).

Size exclusion chromatography (SEC) was performed to separate the EVs from other proteins and
diluents. 500 pl of EV pellet was loaded on top of a 40 ml column containing Sepharose CL-2B) #17-
0140-01, GE Life Science, UK). 45 fractions were collected in 1.7 ml tubes (#MCT-175-A, Axygen,
Corning Incorporated, Mexico) by passing the 0.2 um filtered PBS through the column. Fractions were
stored at -80 °C for further use.

3.1.3 EV characterization

3.1.3.1 Bicinchoninic acid (BCA) assay

The protein concentration of the fractions was determined using the bicinchoninic assay kit (BCA)
(#QPBCA, QuantiPro™ BCA Kit, Sigma Aldrich) according to the manufacturer's instructions. The
samples were analyzed in triplicate using a standard calibration curve generated from bovine serum
albumin (BSA).
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3.1.3.2 Nanoparticle Tracking Analysis (NTA)

Particle size distribution and yield of EV preparations were analyzed by nanoparticle tracking analyzer
(NTA, LM-10, Malvern, UK). 150 pl of diluted sample in 0.2 pm filtered PBS was introduced into a
green laser-illuminated chamber to maintain vesicle concentration within the range of 20 -120
particles/frame, and a high-sensitivity video with camera level 13-15 was captured; three videos of 30
s length were recorded and processed by the NanoSight 3.4 software.

3.1.3.3 Cryo-TEM imaging

Purified EVs were subjected to cryogenic transmission electron microscopy (cryo-TEM). In this
process, a 5 ul sample was placed onto a holey carbon grid (type S147-4, Plano, Wetzlar, Germany) and
allowed to settle for 2 s before being rapidly submerged into liquid ethane at a temperature of -165 °C
using a Gatan (Pleasanton, CA, USA) CP3 cryo plunger. The sample was then transferred under liquid
nitrogen to a Gatan model 914 cryo-TEM sample holder. Low-dose TEM bright-field imaging was
conducted at a temperature of -173 °C using a JEOL (Tokyo, Japan) JEM-2100 LaB6 microscope
operating at an accelerating voltage of 200 kV. Images were acquired at a resolution of 1024x1024
pixels using a Gatan Orius SC1000 CCD camera with an imaging time of 4 s and a binning factor of 2.

3.1.4 Cytotoxicity assay

HUVECs and HMDMs were seeded in a 96-well plate at a density of 10,000 and 40,000 cells per well
respectively. Both cell types were exposed to varying concentrations of bacterial extracellular vesicles:
1000, 5000, and 10,000 EVs per cell, in 200 pl fresh medium. After 24 hours of incubation, the
supernatants were aspirated, and cells were treated with 100 pl 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide containing medium (0.5 mg/ml in medium) (#M5655, Sigma Aldrich,
USA) for 2 hours. Subsequently, the medium was removed, and cells were lysed using 100 pl of DMSO.
The absorbance at a wavelength of 560 nm was measured using a microplate reader (GloMax® Discover
Multimode Microplate Reader, Promega).

3.1.5 Macrophage morphology analysis

HMDMs were cultured and treated with bacterial EV's as described above. Cells were analyzed for their
morphology using the IncuCyte® S3 system cell-by-cell analysis software and grouped based on their
eccentricity into either round or elongated shapes (Dahlem et al. 2020).

3.1.6 Bacterial EV labeling

Fluorescent labeling of pelleted EVs obtained through UC was carried out using 2 ul of Dil (#V22885,
Vybrant Dil Cell Labeling Solution, Thermo Fisher, Germany) incubated for 30 min at 37 °C. To remove
any unincorporated dye, SEC was employed, and the fractions exhibiting the highest fluorescence
intensity / protein content were selected for subsequent analysis (Mehanny et al. 2020).

3.1.7 EV uptake study

Primary monocytes were freshly isolated and seeded at a density of 250,000 cells per well in a 24-well
plate containing 500 pl fresh medium in each well. HEK-Dual hTLR2 and HEK-Blue hTLR4 cells were
both seeded 50,000 and 100,000 cells/well in a 24 well plate with 500 pl medium per well, and HUVECs
were seeded at the same density in a 12 well plate with 1 ml medium per well and incubated overnight.
After the incubation period, cells were treated with Dil-labeled bacterial EVs (30,000 EV/cell). For
measuring EV uptake in TNF-treated HUVECS, cells were seeded 25,000 and 50,000 cells/well in a 12-
well plate. The next day, cells were treated with 100 ng/ml TNF for 24 h. Dil-labeled bacterial EVs were
added to the pre-stimulated cells (30,000 EVs/cell), either after TNF removal or in the presence of
refreshed TNF. To measure the percentage of EV uptake after 24 h and 48 h incubation at 37 °C, cells
were washed with PBS and detached using Accutase (#A6964, Sigma Aldrich, Germany). Cells were
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centrifuged at 500 g for 4 min, and pellets were then re-suspended in PBS containing 2% FCS and used
for flow cytometry analysis (LSRFortessa, BD Bioscience, USA).

3.1.8 Gene expression study

HMDMs (250,000 cell/ well in a 24 well plate) and HUVECs (100,000 cell/well in a 24 well plate) were
treated with bacterial EVs for 24 h or 48 h (1000, 5000, and 10,000 EVs/cell in 500 pl medium). Three
individual donors were used for each cell type. Total RNA was isolated using the Direct-zol™ RNA
MiniPrep Kit (#R2052, Zymo Research). Concentration of isolated RNA was quantified by NanoDrop™
(Thermo Fisher Scientific). Equal amounts of RNA were reverse transcribed using the High Capacity
cDNA Reverse Transcription Kit (#4368813, Thermo Fisher Scientific) in the presence of RNase
inhibitor (#10777-019, Invitrogen) according to the manufacturer's instructions. Amplifications were
carried out in 10 pl reaction solutions containing 0.25 pl of each primer, and 2 pl of 5x Hot FIREPol
EvaGreen qPCR Mix (#08-24-00020, Solis BioDyne). The primer sequences for each transcript are
detailed in supplementary table 1. The PCR was performed in a CFX96 touch™Real-Time PCR
detection system (BioRad). Data were normalized to the beta-actin housekeeping gene (ACTB).

TABLE 3-1. Primer sequences used for qPCR (10 UM stock)

Gene Accession Primer forward sequence Primer reverse sequence
number
ACTB NM_001101.3 TGCGTGACATTAAGGAGAAG GTCAGGCAGCTCGTAGCTCT
cCL2 NM_002982.4 TTGATGTTTTAAGTTTATCTTTCATGG CAGGGGTAGAACTGTGGTTCA
CXCLS8 NM_000584.4 GAGAAGTTTTTGAAGAGGGCTGA GCTTGAAGTTTCACTGGCATCT
ICAM NM_000201.3 TGACCGTGAATGTGCTCTCC TCCCTTTTTGGGCCTGTTGT
IL10 NM_000572 CAACAGAAGCTTCCATTCCA AGCAGTTAGGAAGCCCCAAG
IL1A NM_000575.5 GCGTTTGAGTCAGCAAAGAAGT CATGGAGTGGGCCATAGCTT
IL1B NM_000576.3 GGCTGCTCTGGGATTCTCTT AGTCATCCTCATTGCCACTGTAA
IL6 NM_000600.5 ACATCCTCGACGGCATCTCA TCACCAGGCAAGTCTCCTCATT
NOS3 ~ NM_001160109.1 AACCCCAAGACCTACGTGC CATGGTAACATCGCCGCAGA
TLR2 NM_003264.3 GGAGTTCTCCCAGTGTTTGGT GCAGTGAAAGAGCAATGGGC
TNF NM_000594.4 CTCCACCCATGTGCTCCTCA CTCTGGCAGGGGCTCTTGAT
TSC22D3  NM_004089.3 CATGTGGTTTCCGTTAAGCTGG AGGATCTCCACCTCCTCTCTC
VCAM NM_001078.4 TTTGGATAATGTTTGCAGCTTCTCA CACCTTCCCATTCAGTGGACTA
VEGFA  NM_001171623.1 CGCTTACTCTCACCTGCTTCTG GGTCAACCACTCACACACACAC

3.1.9 Reporter cells

To determine NF-kB/AP-1 activity and the involved receptor, HEK-Dual hTLR2 cells (#hkd-htlr2ni,
Invivogen) and HEK-Blue hTLR4 cells (#hkb-htlr4, Invivogen) expressing secreted embryonic alkaline
phosphatase (SEAP) were used. Cells were seeded in 96-well plates at a density of 50,000 cells in 200
pl medium per well, and simultaneously treated with 2000, 1000, or 200 EVs per cell. Ultrapure LPS
from E. coli K12 (#tlrl-peklps, Invivogen) and PamsCSK, (#tlrl-pms, Invivogen) were used at a
concentration of 10 ng/ml as positive controls for HEK-TLR4 and HEK-TLR?2 ells, respectively. After
overnight incubation, 20 ul of cell culture supernatant from each well was mixed with 180 pl of
QUANTI-Blue Solution (#REP-QB2, Invivogen) and incubated at 37 °C for 30 min. Secreted embryonic
alkaline phosphatase (SEAP) activity was measured with a microplate reader (PromegaTM GloMax
Plate Reader Madison, W1, USA) at 600 nm (Heinrich et al. 2023).

3.1.10 Flow cytometry

The levels of TLR2 were measured in resting and TNF-treated HUVEC in the same donors that were
used for the gene expression study. Cells were seeded at a density of 50,000 and 100,000 cells in 1 ml
medium per well in a 12-well plate and incubated overnight. After the incubation period, new media
was added to the cells with or without 100 ng/ml TNF (#300-01A, PeproTech). TLR2 was assessed 24
h and 48 h after the media change. Subsequently, cells were washed with PBS and detached with
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Accutase. The resulting cellular suspensions were centrifuged at 500 g for 4 min and cell pellets were
resuspended in 100 pl FACSwash (PBS containing 2% FCS). Each sample was stained with 5 pl of
fluorescently labeled antibodies directed against TLR2 (Anti-Hu/Mo CD282 PE, clone T2.5, #12-9024-
89, eBioscience) or the respective isotype control (#12-4714-82, eBioscience) on ice in the dark. After
20 min, samples were washed twice with FACSwash buffer and prepared for analysis using flow
cytometry (LSRFortessa, BD Bioscience, USA).

3.1.11 Statistics

For HMDMs and HUVECs three individual donors were used. Shapiro-Wilk test was performed to
analyze the data distribution. For normally distributed data, means of two groups were compared with
Student’s t-test. For group analysis, one-way analysis of variance (ANOVA) followed by Dunnett's post
hoc test was applied to compare every mean with the mean of control group. For data that were not
normally distributed, means of two groups were compared by Mann-Whitney test. Means of more than
two groups were compared to the control group by Kruskal-Wallis ANOVA followed by Dunn’s test.
All data are presented as mean + SD, and p<0.05 was considered significant. Data analysis was
performed using GraphPad Prism 9 software (GraphPad, USA). “p<0.05, “p<0.01, "“p<0.001,
“p<0.0001.
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3.2 Results

3.2.1 EV characterization

EVs were isolated from bacterial cultures at the end of the exponential stage (Figure S1). To purify
bacterial EVs and remove impurities, SEC was employed. Among the collected fractions, an EV-rich
fraction (number 13, Figure S2) was chosen for further analysis.

NTA revealed an average mean size of 167.7 £ 13.6 nm, mode size of 134.6 £ 6.6 nm, and concentration
of 1.067 X 10! + 0.28 X 10* particles per milliliter (Figures 3-1A). The morphology of the EVs was then
verified through cryo-TEM, which confirmed their spherical structure (Figure 3-1B).

A B

20 -

Concentration (particles / ml)

Size (nm)

FIGURE 3-1. E. faecalis EV characterization. A) Representative size distribution of particles in the most
concentrated fraction by NanoSight particle tracking analysis. B) Representative cryo-TEM image of
EVs, scale bar=200 nm.

3.2.2 EVs are not cytotoxic for HMDMs and HUVECs

To investigate the effects of EVs on cell toxicity, MTT assays were performed. For the tested conditions,
there was no significant cytotoxicity observed in HMDMs and HUVECs compared to the control (Figure
3-2); therefore, these conditions were used for further investigation.
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FIGURE 3-2. Metabolic activity of HMDMs and HUVEC cells after 24 h of incubation with EVs
remains unchanged. Cells were incubated with EVs (1000, 5000, and 10,000 EVs/cell). Values for
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medium-treated cells were used as control (Co). After 24 h of incubation, cell viability was measured
by MTT assay. Results are shown as means+ SD of individual donors (indicated with colors) for
HMDMs (n=3, triplicates) and two individual donors for HUVECSs (n=2, sextuplicates).

3.2.3 HMDMs show inflammatory phenotype after incubation with EVs

Macrophages show different morphology associated with their polarization status with round cells
representing an inflammatory phenotype (Rey-Giraud, Hafner, and Ries 2012). Changes in the
morphology of HMDMs after EV treatment were analyzed using the Incucyte® system. Our data show
that EVs could promote a round shape phenotype after 24 h of incubation in a dose-dependent manner
(Figure 3-3).

Co 1000 EVs/cell

N N

5000 EVs/cell 10,000 EVs/cell

120+ — * %

110+

100_ ..... 0-0-9

% of round cells
0 0 o
oo ?

0 T T )
Co 1000 5000 10,000

EV:cell ratio

FIGURE 3-3. HMDMs show an inflammatory phenotype after incubation with EVs. A) Representative
images of macrophages treated with EVs for 24 h. B) Percentage of round cells. Data are presented as
mean =+ SD of three individual donors shown in dots and normalized to medium-treated cells as control
(Co). Means of two groups were compared with Student’s t-test. For group analysis, one-way analysis
of variance (ANOVA) followed by Dunnett's post hoc test was applied to compare every mean with the
mean of control group. # shows significant differences between groups. * indicates significant
differences compared to the control. p<0.05 is considered significant. #p<0.05, “p<0.01.

3.24 EVs are internalized by HMDMs and HUVECs

To assess whether EVs are taken up by HMDMs and HUVECs, fluorescently labelled EVs were added
to the cells. After 24 h, about 90% of primary macrophages had taken up fluorescent EVs (Figure 3-
4A), whereas HUVECs demonstrated a less efficient initial uptake. However, this efficiency increased
within 48 h, suggesting a gradual enhancement in EV uptake over time (Figure 3-4B).
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FIGURE 3-4. EVs are internalized into mammalian cells. HMDMs (A) and HUVECs (B) were
incubated with Dil-labeled EVs (30,000 EVs/cell) for 24 h and 48 h. Internalization was quantified by
measuring phycoerythrin (PE-A) channel fluorescence intensity of three individual donors for each cell
type (n=3 individual donors, each). Means of two groups were compared with Student’s t-test. # shows
significant differences between groups and p<0.05 is considered significant. #p<0.05.

3.25 EVs modulate HMDM and HUVEC gene expression

The expression of pro- and anti-inflammatory genes was investigated in HMDMSs and HUVECs in
response to bacterial EVs. The results demonstrated that the gene expression of inflammatory cytokines,
such as interleukin (IL)-1a, IL-1p, IL-6, and IL-8 (gene name CXCL8) was significantly upregulated in
the first 24 h in EV-treated HMDMs in a dose-dependent manner; whereas gene expression of anti-
inflammatory 1L-10 and glucocorticoid-induced leucine zipper (GILZ, gene name TSC22D3 (Hahn et
al. 2014)) was significantly downregulated compared to the control. The same pattern was observed
after 48 h of EV treatment, but to a lower extent (Figure 3-5A, S3). Expression of toll-like receptor 2
(TLR2) mRNA showed a significant increase after 24 h in the group with the highest number of EVs,
and this effect persisted even after 48 hours. The expression of tumor necrosis factor (TNF) remained
relatively stable, showing a slight increase in the least concentrated group after 24 hours and in the most
concentrated group after 48 hours.

In HUVECs we also observed an elevated expression of inflammatory genes and a lower abundance of
mRNAs encoding for anti-inflammatory proteins. However, the extent of expression was lower and
exhibited variations among individuals (figure 3-5B, S4). Within 24 h, the levels of TNF, IL6, and IL1A
MRNA experienced a significant increase in the groups subjected to the highest number of EVs, but
these elevations were reduced at later time point. Expression of anti-inflammatory endothelial nitric
oxide synthase (eNOS, gene name NOS3) and GILZ (TSC22D3) was reduced after 24 h, with the effects
not lasting for 48 h. Gene expression of monocyte chemoattractant protein-1 (MCP-1, gene name
CCL2), intercellular adhesion molecule-1 (ICAM1) and vascular cell adhesion molecule-1 (VCAM1)
increased after 48 h, although clear variations were observed in the response of individuals.

18



HMDMs

Gene expression, x-fold

HMDMs

Gene expression, x-fold
[4,]

200-

(3,14 ]

200+

20
20

MR
[=[=]

oI

Chapter |

24 h

L L2
*k Kk .

j ﬁ

TNF IL1A IL6 TLRZ‘ H.‘IB CXCLS8 .'LTO TSC22D3
J1Co 1000 EVs/cell mw 5000 EVs/cell m10,000 EVs/cell

48 h
t;t *:* *:;t
.. . ttt*
(204
TNF IL1A TLR2 IL1B CXCL8 IL10 TSC22D3
[J1Co 1000 EVs/cell == 5000 EVs/cell mm10,000 EVs/cell

19



HUVECs

HUVECs

Gene expression, x-fold

Gene expression, x-fold

10

NN

Chapter |

24 h

0
ICAM1 TNF VEGF NOS3 IL1A VCAM1 CCL2 IL6 TSC22D3
ICo 1000 EVs/cell m 5000 EVs/cell 10,000 EVs/cell
48 h
50-
L 4
10 IiT
10-

0
ICAM1

[1Co

TNF VEGF NOS3

1000 EVs/cell = 5000 EVs/cell

20

IL1A VCAM1 CCL2 IL6 TSC22D3

10,000 EVs/cell



Chapter |

FIGURE 3-5. EVs promote pro-inflammatory gene expression in HMDMSs and HUVECSs. For both cell
types three individual donors (n=3, triplicate) were incubated with bacterial EVs at different EV per cell
ratios (1000, 5000, and 10,000 EVs/cell) for 24 h and 48 h. Expression levels were analyzed by g°PCR
using ACTB for normalization. Data are shown as the mean + SD of three individual donors performed
in triplicates and normalized to medium-treated cells as control (indicated with a dashed line). Colors
belong to each individual donor and dots represent technical replicates. * indicates significant
differences compared to the control. p<0.05 is considered significant. p<0.05, “p<0.01, *“p<0.001,
“p<0.0001.

3.2.6 EVs activate the NF-kB /AP1 pathway through TLR2 signaling

Given the pro-inflammatory activation observed in the gene expression of macrophages upon EV
treatment, and considering the involvement of Gram-positive bacterial cell wall components as TLR2
ligands in immune system activation (de Oliviera Nascimento, Massari, and Wetzler 2012; Nguyen et
al. 2017), we explored the activation pathway by assessing the NF-xkB/AP-1 response in reporter cells
exposed to EVs. Our findings indicated a specific dose-dependent activation of HEK-Dual hTLR2 cells
(Figure 3-6A), while no response was observed in HEK-hTLR4 cells (Figure 3-6B). Although
significantly reduced, the internalization of TLR2 ligand was still recorded in TLR2KO bone marrow—
derived DCs (Shen et al. 2014). Therefore, we measured EV uptake in the reporter cells to investigate
whether TLR2 affect EV uptake (Figure 3-7). We found that EVs are significantly internalized into
HEK-hTLR2 cells after 24 h, while HEK-hTLR4 cells also exhibited EV uptake comparable to their
control, the HEK-Blue null cells.
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FIGURE 3-6. EVs activate the TLR2 pathway. Reporter cells were treated with EVs at concentrations
of 200, 1000, and 2000 EVs/cell. PamzCSK,4 (TLR2 ligand) and LPS (TLR4 ligand) were used at a
concentration of 10 ng/ml as a positive control in A) HEK-Dual hTLR2 and B) HEK-hTLR4 cells,
respectively. The activation of NF-xB/AP-1 was measured as the activity of SEAP and expressed as a
fold change of medium-treated cells (indicated by the dashed line). Data are shown as means + SD of
three individual experiments (n=3, triplicate). Means of two groups were compared with Student’s t-
test. For group analysis, one-way analysis of variance (ANOVA) followed by Dunnett's post hoc test
was applied to compare every mean with the mean of control group. # shows significant differences
between groups. * indicates significant differences compared to the control. p<0.05 is considered
significant. p<0.05, “p<0.01, ““p<0.001, **“p<0.0001.
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FIGURE 3-7. EVs are internalized into reporter cells. Histograms, mean fluorescence intensities (MFIs),
and percentage of Dil positive cells of A) HEK- hTLR2 and B) HEK- hTLR4 cells incubated with Dil-
labeled EVs (30,000 EVs/cell) for 6 h and 24 h. Internalization was quantified by measuring
phycoerythrin (PE-A) channel fluorescence intensity. Data are represented as mean = SD (n=2). Means
of two groups were compared with Student’s t-test. # shows significant differences between groups and
p<0.05 is considered significant. #p<0.05, #p<0.01.
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3.2.7 TLR2 expression and EV internalization are elevated in HUVECs upon inflammatory
activation

Since we saw a TLR2-dependent uptake and activation for bacterial EVs, we hypothesized that the low
responsiveness of HUVECs to EVs is related to their low surface TLR2 content. Furthermore, it has
been reported that TLR2 mRNA expression is increased in inflammatory-stimulated HUVECs (Diesel
et al. 2012). First, to test this, we measured the levels of TLR2 mRNA and its protein expression in
HUVEC individuals in resting conditions and upon TNF treatment. Our data indicated minimal mMRNA
and surface protein levels of TLR2 in all HUVEC individuals under baseline conditions (Figure 3-8,
S5), which increased following TNF treatment for 24 h. The amounts of surface TLR2 showed a
tendency to revert to the baseline level after 48 h when no fresh TNF was added after the first 24 h
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FIGURE 3-8. Surface TLR2 is increased in HUVECs after TNF treatment. HUVECs from three
individual donors were treated with TNF (100 ng/ml) for 24 and 48 h. Levels of surface TLR2 were
quantified by measuring phycoerythrin (PE-A) channel fluorescence intensity. A) Histograms. B) Mean
fluorescence intensities (MFIs). Medium-treated cells were used as control (Co).

Next, we measured EV internalization in stimulated HUVECs upon inflammatory activation by TNF
treatment. Our findings indicated that, while there is a donor-dependency in EV uptake, HUVECs
consistently exhibited less efficient internalization compared to HMDMs. Inflammatory pre-activation
with TNF for 24 h resulted in increased EV uptake at both 24 h and 48 h. The highest uptake was
observed in the continuous presence of TNF following the initial 24-hour pre-treatment, i.e., TNF was
refreshed daily at the same concentration for an additional 48 h. This uptake pattern correlated with the
duration of exposure, as illustrated in Figure 3-9.
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FIGURE 3-9. TNF treatment increases EV uptake in HUVECs. HUVECs from three individual donors
were pre-treated with TNF (100 ng/ml) for 24 h. Cells were treated with 30,000 EVs/cell in the presence
or absence of TNF for 24 and 48 h. Medium-treated cells were used as control (Co). EV uptake was
quantified by measuring PE-A channel fluorescence intensity. A) Histograms. B) Mean fluorescence
intensities (MFIs). C) Percentage of Dil positive cells. Data are represented as mean + SD (n=3). Means
of two groups were compared with Student’s t-test. For group analysis, one-way analysis of variance
(ANOVA) followed by Dunnett's post hoc test was applied to compare every mean with the mean of
control group. # shows significant differences between groups. * indicates significant differences
compared to the control. p<0.05 is considered significant. “p<0.05.
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3.3 Discussion

The interaction between host and microbiome via EVs is a widely observed phenomenon. However,
Gram-positive bacterial EVs have been less explored in this context, primarily due to the differences
posed by their cell wall structure compared to Gram-negative bacteria which argued the existence of
EVs from Gram-positive bacteria (Toyofuku, Nomura, and Eberl 2019; Brown et al. 2015). In this study,
we have investigated the effect of EVs derived from the opportunistic pathogen Enterococcus faecalis
in vitro on primary human monocyte-derived macrophages and human umbilical vein endothelial cells
isolated from individual donors.

While the number of reports investigating Enterococcus faecalis-derived EVs remains limited, similar
sizes have been reported for this type of bacterial EVs. In the measurements reported by Costantini et
al., non-purified EVs were found to have a mean size ranging from 180 to 210 nm (Costantini et al.
2022). Similar to our data, enterococcal vesicles were described with a particle size range of 50 to 400
nm where Optiprep density gradient fractionation was utilized for purification (Afonina et al. 2021),
while our approach involved SEC, which offers a milder process, without compromising EVs’ biological
activity and integrity (Clos-Sansalvador et al. 2022).

Macrophages constitute a heterogeneous population of host innate immune cells crucial to both health
and disease, representing one of the most functionally diverse cells within the hematopoietic system
(Shanze Chen et al. 2023). This diversity is underscored by the remarkable plasticity inherent to
macrophages, allowing for the development of distinct populations with varying physiological and
pathological roles in the face of diverse environmental cues, resulting in mixed population with two
contrasting functional extremes: the pro-inflammatory M1 phenotype and the anti-inflammatory M2
phenotype (Shanze Chen et al. 2023; Guilliams and Svedberg 2021). This polarization is reflected in the
changes observed in cell shape, with M2 macrophages adopting an elongated form compared to their
M1 counterparts (McWhorter et al. 2013). Bacterial EVs affect the inflammatory process by regulating
the proportion of M1/M2 macrophages, and the extent of this polarization depends on the bioactive
molecules originating from the parental cell and encapsulated within these particles (Dong et al. 2021;
Qu, Zhu, and Zhang 2022). While E. faecalis-infected murine bone marrow-derived macrophages
showed M1-like phenotype (Mohamed Elashiry et al. 2021), our investigation revealed a shift in the
polarization of human primary macrophages in vitro towards a pro-inflammatory phenotype after
incubation with E. faecalis EVs. Contradictory to our results, previous findings indicated that EV's from
Gram-positive bacteria promote the differentiation of human monocytic THP-1 cells towards anti-
inflammatory M2 macrophages. It should be noted that although the utilization of the THP-1 cell line
as a human macrophage source is widespread due to its ease of in vitro expansion and storage in an
undifferentiated state, it might not entirely serve as an ideal model for human primary macrophages
(Tedesco et al. 2018; Al-Fityan et al. 2023).

EVs derived from Gram-positive bacteria contain many pathogen-associated molecular patterns
(PAMPs) (Bitto et al. 2021). These bacterial ligands in the EVs may interact with specific receptors on
host cells and thereby induce inflammatory responses and affect the gene expression profile of the host
(Brown et al. 2015). The immunomodulatory effect of E. faecalis has been suggested to be due to the
activation of NF-kB signaling through lipoprotein-rich EVs in murine macrophages expressing multiple
TLRs (Afonina et al. 2021). Since Gram-positive bacterial lipoproteins are recognized by TLR2
(Schenk, Belisle, and Modlin 2009; Drage et al. 2009; Mohammad et al. 2022), we used specific reporter
cells to investigate this activation. In agreement with our results, lipoproteins from Gram-positive
bacterial EVs were shown to be integral to activate host innate immunity through TLR2 (Bitto et al.
2021; Prados-Rosales et al. 2011), while EVs from mutant bacteria lacking lipoprotein lipidation
exhibited deficiencies in TLR2 signaling (Machata et al. 2008). Unlike Gram-negative bacteria, the
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pathogenesis of E. faecalis is predominantly linked to lipoteichoic acid, a characteristic component in
the cell wall structure of Gram-positive bacteria (Park et al. 2013; Ramos, Sansone, and Morales 2021,
Guerardel et al. 2020; Hancock, Murray, and Sillanpad 2014). This could explain the lack of activation
observed in HEK-hTLR4 cells when exposed to EVS.

We verified the uptake of EVs by HEK-hTLR2 cells, and we observed a clear activation of the NF-xB
pathway in a TLR2-dependent manner. Furthermore, we observed internalization of EVs in the absence
of TLR2, although no activation of NF-kB pathway was detected. The initiation of the TLR2 pathway
activation involves formation of dimers with other co-receptors after ligand recognition (van
Bergenhenegouwen et al. 2013). Although signaling requires the presence of the TLR2 receptor, the
internalization of the ligand complex still occurred in the absence of TLR2. This was evident when LTA
was observed to bind and internalize in HEK/CD14 cells without TLR2 (Triantafilou et al. 2004). CD14-
mediated uptake of the ligands was observed when TLR27/CD14 cells showed less ligand
internalization and NF-kB activation (Brandt et al. 2013).

It is worth noting that, in addition to the presence of CD14 in HEK-hTLR4 cells that could potentially
contribute to the internalization of EVs, incubation time might also influence the non-specific
localization. Shamsul et al. studied the involvement of other receptors in the internalization of TLR2
ligands, where FSL-1 was internalized into peritoneal macrophages from TLR2-deficient mice. It was
further shown that CD36 is also responsible for the internalization of TLR2 ligand into HEK293/CD36
transfected cells (Shamsul et al. 2010).

Based on our reporter cell results and given that the interaction between receptors and ligands plays a
pivotal role in EV uptake by host cells (Zhou et al. 2020; Torre-Escudero et al. 2019; Rai and Johnson
2019), our attention was directed toward discerning the distinctions in surface molecules between
HMDMs and HUVECSs to understand the variations in EV internalization and activation of these cells.
Since our data suggested a TLR2-dependant response following EV treatment, we aimed to understand
whether TLR2 plays a role in ligand internalization and consequently influences activation. Bacterial
TLR2 ligands trigger NF-kB-dependent signaling within endosomal compartments in an NF-xB
sensitive reporter cell line, even though TLR2 is expressed on the cell surface. The diminished NF-xB
activation observed in reporter cells responding to TLR2 ligands, when employing endocytosis
inhibitors or immobilizing the ligand implies that the internalization of TLR2 is necessary for NF-xB
activation (Brandt et al. 2013).

Surface TLR2 levels vary among different cells (Flo et al. 2001), possibly influencing the extent of
receptor interaction with pathogenic molecules, such as EVs. This variability may determine the degree
of host activation following exposure to these stimuli. As demonstrated, the observed low levels of
surface TLR2 in HUVECSs (Shuang Chen et al. 2007), coupled with donor heterogeneity, may underlie
the comparatively low EV internalization and activation of these cells in contrast to HMDMs. In
addition, the phagocytic nature of the HMDMs might play a role in the rapid EV uptake (Feng et al.
2010).

It is known that septic shock caused by Gram-positive bacteria including E. faecalis results in the
production and release of pro-inflammatory cytokines (Surbatovic et al. 2015; Zou and Shankar 2016).
Earlier research demonstrated that human endothelial cells express higher levels of TLR2 when exposed
to inflammatory stimuli (Shuang Chen et al. 2007; Satta et al. 2008). Therefore, we investigated whether
this would enhance internalization of Gram-positive bacterial EVs in endothelial cells. Our findings
reveal that TNF-stimulated HUVECs exhibited an upregulation of TLR2, and maintaining the cells in a
stimulated state while introducing EVs, led to an improvement in EV uptake.
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Our study contributed to a deeper understanding of EVs secreted by Gram-positive enterococci and their
role in the virulence. We isolated and purified EVs from E. faecalis, characterizing them based on
morphology, particle size, and concentration. Our results confirmed the internalization of EVs within
primary HMDMs, primary HUVECs, and reporter cells in vitro. Furthermore, EVs were found to
modulate the gene expression of HMDMs and HUVECs towards a pro-inflammatory profile. We
observed a TLR2-dependent activation mechanism for EVs. Additionally, our study demonstrated that
TLR2 expression and EV internalization are elevated in HUVECSs upon inflammatory activation. Future
investigations should aim to provide further evidence to validate our in vitro findings.
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4,1 Materials and Methods

411 Cellculture

Human umbilical vein endothelial cells (HUVECs) were isolated from fresh umbilical cords from
female individuals (Klinikum Saarbricken, Germany, consent of the Local Ethics Committee,
permission no. 131/08) under sterile condition using 0.1 g L collagenase for digestion (Roche) at 37
°C. To stop the digestion, veins were rinsed with Earle’s medium 199 (PAA, # P04-07500) containing
10% FCS (#F7524, PAA), 100 U mi? penicillin G, and 100 pg ml™? streptomycin (#P4333). After
centrifugation (10 min, 200 g) cells were resuspended in 5 ml endothelial cell growth medium with
supplement mix (# C-22010, Promocell) containing 10% FCS, 100 U ml* penicillin G, 100 pug ml*
streptomycin, and 0.1% kanamycin (#K0254, Sigma), and cultivated at 37 °C and 5% CO; in a 25 cm?
cell culture flask. After one day, cells were washed three times with PBS (phosphate buffered saline,
7.20 g L* NaCl, 0.43 g L™* KH2PO4, 1.48 g L™ Na;HPO,) and cultivated until confluence. Cells were
cryopreserved in passage #1 and used for further experiments.

4.1.2 Laminar flow

In this work, two different systems were used to generate laminar flow. A parallel plate flow chamber,
which not only provided morphological monitoring of the cells, also was suitable for preliminary
experiments in a small scale; and a hollow fiber cartridge for cell culture in a larger scale for EV
isolation. Details are mentioned bellow:

To assess morphology, viability, immunofluorescence, and gene expression analysis of flow cultures,
the following system was utilized as described previously (Hahn et al. 2014) with minor modifications:

Sterilized glass slides (76 x 26 x 1 mm, Roth) were incubated for 30 min in 3 ml collagen
(#11179179001, Roche) (50 pg ml™ in 0.2% acetic acid) in 4-well plates. Then, slides were washed with
PBS and after drying for 30 min, cells were seeded onto the glass slides. HUVEC-seeded slides were
incorporated into the parallel plate flow chambers (Figure 4-1A). The chambers were then linked to a
peristaltic pump (403U/VM purple/white, Watson Marlow), and filled with different media (Figure 4-
1B). Laminar flow rates were regulated to fit a shear stress of 20 dynes cm and the flow was
unidirectional.
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FIGURE 4-1. A) One parallel plate flow chamber with cell-seeded glass slide. B) Schematic illustration
of seeded glass slide connected to the peristaltic pump.

The medium flow rate determines the degree of laminar shear stress. To calculate the flow rate (Q) for
reaching the shear stress (7) of 20 dynes cm, the following formula was used:
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s
bh?

T = shear stress (dynes cm?)

Q = flow rate (cm®s?)

u = viscosity (0.01 dynes s cm) (Frangos, Mclntire, and Eskin 1988)

b = channel width (1.9 cm)

h = channel height (= thickness of the middle part of the chamber (1.15 mm) — thickness of the glass
slide).

A hollow fiber cartridge (#C2025, FiberCell system) with the FiberCell Systems Duet Pump(Walsby et
al. 2014) was used to culture HUVECs for EV isolation experiments (Figure 4-2) (Ebrahim et al. 2019).
Prior to loading the HUVECs into the cartridge, the following preparations were performed according
to the manufacturer's instructions.

1. Activation: fibers were activated by injecting 70% absolute ethanol using a luer-lock syringe
(#EP97.1, B. Braun, Germany). After ethanol being in contact with the fibers for at least 1 min, excess
ethanol was drained, and fibers were rinsed with sterile water.

2. Coating: 1 mg ml? collagen was injected into the fibers (5-10 ml) and incubated for 30 min. Then
the fibers were washed by injecting PBS.

3. Calibration: complete medium was circulated through the fibers for 1 h at 37 °C with degree 10 on
the pump, while the extra capillary space was filled with complete medium as well.

4. Seeding was performed according to manufacturer’s instructions.

Laminar flow rates were set to achieve a shear stress of 20 dynes cm according to the following formula
provided by the manufacturer:

4
mR3

1 = shear stress (dynes cm?)
Q = fluid flow rate (ml s2) (per fiber)
N = viscosity (dyne s cm™)

R= internal radius (0.07 cm)
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FIGURE 4-2. A) One individual cartridge and tubing. B) Schematic illustration of the cartridge and its
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4.1.3 Morphological assessment

HUVECs were seeded at 200,000 cells per well in a 6 well plate (2 ml medium per well), and 500,000
cells per sterilized glass slide (76 x 26 x 1 mm, Roth) in a 4 well plate (4 ml medium per well). Cells
were incubated overnight to attach. The next day, old medium was removed and replaced with the test
medium (Table 4-1) after PBS wash. Cells were incubated for 72 h under static conditions or under 20
dynes cm2 shear flow. Cells under static culture were imaged with an Incucyte® S3 system every 24 h
to monitor morphological changes. Cells under flow condition were imaged with a digital camera
(Cannon EODS 400D) attached to a Zeiss AXIOVERT 40 CFL inverted microscope before and after
starting the flow.

TABLE 4-1. Media options.

10% FCS medium (Co) # C-22010, Promocell containing 10% FCS (#F7524, PAA)
Endopan medium # P04-0065K, PAN-Biotech

EGM™ BulletKit™ (Lonza) # CC-3162, Lonza

ITS solution # 41400045, Gibco™

4.1.4 Immunofluorescence staining

HUVEC-seeded slides were cut with a glass cutter after the incubation time with different media under
laminar flow and used for staining. For static culture, 50,000 HUVECSs were placed in each well of an
8 well ibidi slide that was coated with 300 pl of 50 pg ml? collagen. The cells were then incubated
overnight before being washed with PBS and exposed to different media for 72 hours. Following this,
the cells were washed with 300 pl PBS and fixed with 300 pl of 1% warm paraformaldehyde (PFA) for
15 min at room temperature. The cells were then washed again with PBS and permeabilized by
incubating for 10 min in 300 ul of 0.1% Triton X-100. The cells were subsequently washed with PBS
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and blocked with blocking buffer (#MB-070, Rockland) for 30 min. 300 pl medium containing
antibodies against actin (#P1951, Sigma) and von Willebrand Factor (VWF) (2 pl per well) (#AHPO62F,
ADbD Serotec) was used to stain the cells for 40 min. Excess antibodies were removed by washing the
cells with the same blocking buffer; after which the cells were incubated for 10 min with 300 pl of 1ug
ml* Hoechst 33342 (#62249, Thermo Fisher) to stain the nucleus. HCT116 cells were used as negative
control. Finally, the cells were observed under a fluorescence microscope (Leica SP8 Inverted Scanning
Confocal Microscope).

4.1.5 Gene expression

Total RNA was isolated using the Direct-zol™ RNA MiniPrep Kit (#R2052, Zymo Research). The
concentration of isolated RNA was quantified by NanoDrop™ (Thermo Fisher Scientific). Equal
amounts of RNA were transcribed using the High Capacity cDNA Reverse Transcription Kit (#4368813,
Thermo Fisher Scientific) in the presence of an RNase inhibitor (#10777-019, Invitrogen) according
to the manufacturer's instructions. gPCR was performed using a 5xHotFirePol EvaGreen gPCR Mix
(#08-24-00020, Solis BioDyne) and a total volume of 20 uL. The primer sequences for each transcript
are detailed in Table 4-2. For each primer pair, an annealing temperature of 60 °C was used (except
NOS3 with 62 °C annealing temperature). The PCR was performed in a CFX96 touch™Real-Time PCR
detection system (BioRad). Data were normalized to the beta-actin housekeeping gene (ACTB).

TABLE 4-2. Primer sequences used for qPCR (10 uM stock).

Gene Accession Primer forward sequence Primer reverse sequence
number

ACTB NM_001101.5 TGCGTGACATTAAGGAGAAG GTCAGGCAGCTCGTAGCTCT

ICAM NM_000201.3 TGACCGTGAATGTGCTCTCC TCCCTTTTTGGGCCTGTTGT

KLF2 NM_016270.2 AGACCACGATCCTCCTTGAC AAGGCATCACAAGCCTCGAT

NOS3 NM_001160109.1  AACCCCAAGACCTACGTGC CATGGTAACATCGCCGCAGA

TSC22D3  NM_004089.3 CATGTGGTTTCCGTTAAGCTGG AGGATCTCCACCTCCTCTCTC

416 Sex determination of HUVECs

HUVECs were lysed after mixing with 1 pl of Proteinase K (#03115836001, Roche), 5 ul of 10x Taq
Buffer (#£00007, Genscript), and 44 ul of water (#A7398, AppliChem) to a total volume of 50 pl. The
mixture was then incubated in a heating block set to 55 °C for 60 min at 1500 rpm, followed by 95 °C
for 15 min. gPCR was performed as previously described. The primer sequences are detailed in Table
4-3.

TABLE 4-3. Primer sequences used for HUVEC sex determination (10 uM stock).

Gene Accession Primer forward sequence Primer reverse sequence
number

RPS4Y1  NM_001008.4 TTTGCTCATGATTTTGGCACTGT TCCACAAAAGAATGCCGTCCT

RPS4X NM_001007.5 CAGTGATTAAGTTCTCAGGCAGG  CTTAACAGGGCAGAGGGGTC

4.1.7 EV isolation

To prepare EV-depleted FCS, 30% FCS-containing medium was ultracentrifuged at 100,000 g for 18 h
at 4 °C, followed by collecting half of the supernatant and filtering through a 0.2 pum stericup filter
(Merck Millipore, Germany). The flow-through was used to prepare 2% EV-depleted medium. For each
biological replicate, 3 individual female HUVECs were mixed when thawing the cryo tube from -80 °C
and let grow until confluency. For static culture, cells were seeded into three T75 flasks with 10° cells
per flask. The next day, old medium was removed and cells were incubated in 25 ml 2% EV-depleted
FCS medium (Promocell) for 48 hours. For flow condition, HUVECs in three T75 flasks were
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trypsinised and injected (using a luer-lock syringe) into a collagen-coated hollow fiber cartridge
according to the protocol. Cells were let to attach overnight with the 100 ml complete medium flowing
through ECS with degree 5 on the duet pump. The next day, medium in the reservoir bottle was refreshed
with complete medium and the direction of flow was connected through the fibers on the cells. The flow
was set to 5 overnight. The next day medium was replaced with fresh medium, and the flow was
increased from 5 to 25 degree gradually from morning to afternoon. The cells were incubated for 48 h
under laminar flow (20 dynes cm2). After the incubation time, conditioned media were collected and
centrifuged for 10 min at 300 g at 4 °C to remove remaining cells and debris. The supernatant was
subjected for 30 min to 10,000 g at 4 °C to remove larger particles. EVs were isolated by
ultracentrifuging for 4 h at 100,000 g at 4 °C using a 45Ti rotor (Beckman). Due to limitations in EV
purification methods, such as sample loss, sample dilution and re-concentration, the EV pellets were not
further purified in this work.

4.1.8 Nanoparticle Tracking Analysis

Particle size distribution and yield of EV preparations were analyzed by nanoparticle tracking analyzer
(NTA, LM-10, Malvern, UK). Preparations of EVs were diluted in 0.22 um filtered PBS before the
analysis. A 500 pul diluted EV sample was introduced into a green laser-illuminated chamber to maintain
vesicle concentration within the range of 20 —120 particles/frame, and a high-sensitivity video with
camera level 13-15 was captured; three videos of 30 s length were recorded and processed by the
NanoSight 3.1 software.

4.1.9 Cryo-TEM imaging

Cryogenic transmission electron microscopy (cryo-TEM) was performed on EV pellets after
ultracentrifugation. Three to four microliters of the sample were dropped onto a holey carbon grid (type
S147-4, Plano, Wetzlar, Germany) and plotted for 2 s before plunging into liquid ethane at T=—165 °C
using a Gatan (Pleasanton, CA, USA) CP3 cryo plunger. The sample was transferred under liquid
nitrogen to a Gatan model 914 cryo-TEM sample holder and analyzed at —173 °C by low-dose TEM
bright-field imaging using a JEOL (Tokyo, Japan) JEM-2100 LaB6 at 200 kV accelerating voltage.
Images with 1024 x 1024 pixels were acquired using a Gatan Orius SC1000 CCD camera at 2 s binning
and 4 s imaging time.

4.1.10 Western blot

The EV pellets were lysed with Laemmli lysis buffer (50 mM Tris-HCI, 1% SDS, 10% glycerol, and
0.004% bromophenol blue). HUVECs were also harvested in the same lysis buffer containing 1%
protease inhibitors. Samples were boiled for 9 min in 95 °C before loading to the gel. The presence of
EV markers was studied by loading equal volumes of samples subjected to 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) for 20 min at 90 V. Then the voltage was increased to
110 V for another 45 min. Proteins were transferred to polyvinylidene difluoride (PVDF) membrane
(#88518, ThermoFisher), under 250 mA for 75 min in 4 °C. Following 1 h incubation in blocking buffer
(#MB144 070, Rockland) membranes were probed with primary antibodies for CD9 (1:1000, #MA1-
80307, Thermofischer) and CD63 (1:1000, #sc-5275, Santa Cruz) overnight at 4 °C. Membranes were
washed three times with PBS-0.05% Tween 20 and incubated in the dark with IRDye 800 CW goat anti-
mouse (1:10,000, Li-COR Biosciences) for 1 h. The blots were then washed three times for 5 min. Bound
antibody was visualised by scanning the membrane with an Odyssey Infrared Imaging System (Li-COR
Biosciences) in 800 nm channel. All blots were cut in order to detect several proteins on the same blot.

4.1.11 Zeta potential

The surface charge of isolated EV's was measured in triplicates for each batch by DLS using the Zetasizer
nano-ZS (Malvern instruments, Malvern). All samples were diluted 1:500 in 0.22 um filtered PBS
before measurements.
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4.1.12 Small RNA library preparation

The library was prepared from static and flow EVs and their parental HUVECs, each in three biological
replicates, while each biological replicate was a mix of three individual female donors (EVs from this
preparation were used for proteomics and bacterial gene expression studies as well). RNAs from EVs
and cells were isolated using the miRNeasy Serum/Plasma kit (#217184, Qiagen) and Direct-zol™ RNA
MiniPrep Kit (#R2052, Zymo Research) respectively, according to the manufacturer’s protocols. RNA
concentration was quantified by Nanodrop spectrometer (ThermoFisher Scientific, USA) at 260 nm.
Small RNA libraries were prepared according to the MGIEasy small RNA library preparation kit
(#1000005269, China). The final small RNA libraries were sequenced by MGI Tech (China).

Fastq sequencing files were analyzed using miRMaster’s pipeline with default parameters as previously
described (Fehlmann et al. 2021) and using miRbase as reference (release 22.1). As an output,
miRMaster generated a list with the expression of all mapped miRNAs. Using the integrated Differential
Expression and Pathway Analysis (iDEP) web platform (Ge, Son, and Yao 2018), raw reads were
normalized to transcripts per million (TPM) of miRNA mapped reads, and differentially expressed
miRNAs were calculated based on TPM values with a threshold of false discovery rate (FDR) <0.05
and fold-change > 1.5.

4.1.13 Proteomics

EVs from three independent preparations were analyzed. Eighty-eight micrograms of EV protein were
precipitated by trichloroacetic acid (TCA) precipitation with an end concentration of 20% TCA. Samples
were washed thrice with acetone. After a final centrifugation of 15 min in a SeedVac Plus concentrator
(Savant, Thermo Fisher, Waltham, USA), samples were resuspended in 2x Laemmli buffer (4% SDS,
20% glycerol, 120 mM Tris-HCI (pH 6.8), 0.02% bromophenol blue in Millipore water) and denatured
at 95 °C for 5 min. Proteins were separated on NUPAGE® 4-12% gradient gels (ThermoFisher
Scientific, Karlsruhe, Germany) until the bromophenol dye front reached the center of the gel. Proteins
were fixed in the presence of 10% acetic acid /40% ethanol and visualized with colloidal Coomassie
stain (10% (v/v) phosphoric acid, 10% (w/v) ammonium sulfate, 20% (v/v) methanol, and 0.12% (w/v)
Coomassie G-250). Six gel pieces were cut/ cell lysate, washed, reduced, carbamidomethylated, and
trypsin digested as described before (Fecher-Trost et al. 2013). After extraction, 6 pl of tryptic peptides
were analyzed by data-dependent nano-LC-ESI-HR-MS/MS analysis using the instrument setup:
Ultimate 3000 RSLC nano system equipped with an Ultimate3000 RS autosampler and Nanospray Flex
NG ion source coupled to an Orbitrap Eclipse Tribrid mass spectrometer (Thermo Scientific, Germany).
Peptides were separated with a gradient generated with buffer A (water and 0.1% formic acid) and buffer
B (90% acetonitrile and 0.1% formic acid) at a flow rate of 300 nl/min: 0-5 min 4% B, 5-80 min to 31%
B, 80-95 min to 50 % B, 95-100 min to 90% B, 100-105 min hold 90% B, 105-106 min to 4% B and
106-120 min to 4 % B. Peptides were trapped on a C18 trap column (75 pm x 2 cm, Acclaim
PepMapl100C18, 3 um,) and separated on a reverse phase column (nano viper Acclaim PepMap capillary
column, C18; 2 um; 75 pm x 50 cm,). The effluent was sprayed into the mass spectrometer using a
coated emitter (PicoTipEmitter, 30 um, New Objective, Woburn, MA, USA, ionization energy: 2.4
keV). MS1 peptide spectra were acquired using the Orbitrap analyzer (R= 120k, RF lens=30% m/z=375-
1500, MaxIT: auto, profile data, intensity threshold of 104). Dynamic exclusion of the 10 most abundant
peptides was performed for 60 seconds. MS2 spectra were collected in the linear ion trap (isolation
mode: quadrupole, isolation window: 1.2, activation: HCD, HCD collision energy: 30%, scan rate: fast,
data type: centroid).

Peptides and fragments were analyzed using the MASCOT algorithm and TF Proteome Discoverer (PD)
1.4 software (ThermoFisher, Waltham, USA). Therefore, peptides were matched to tandem mass spectra
by Mascot version 2.4.0 by searching of a SwissProt database (2021_05, number of protein sequences
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for all taxonomies: 564.638, for taxonomy human: 20.397). Peptides were analysed with the following
mass tolerances: peptide tolerance: 10 ppm, fragment tolerance: 0.7 D. The workflow included tryptic
digest and up to two missed cleavage sites. Cysteine carbamidomethylation was set as a fixed
modification and deamidation of asparagine and glutamine, acetylation of lysine and N-term and
oxidation of methionine were set as variable modifications. The PD output files were loaded in the
software Scaffold (5, Proteome Softwarelnc., Portland, OR, USA). The identification of two unique
peptides per protein was set as the minimum for protein identification.

4.1.14 Bacterial culture

Enterococcus faecalis cryo stock was provided from german collection of microorganisms and cell
cultures (DSMZ) (#20478). For long term storage the bacterial stock was stored at -80 °C. As a standard
growth medium for E. faecalis, BHI (#53286, Sigma) was used. Thirty-seven g of the powder was
dissolved in 1 L of distilled water. Another batch was also prepared with the addition of 1.5% Agar and
autoclaved before use. The BHI Agar plates were poured into petri dishes and stored at 4 °C.

The bacteria from freezing stock was streaked on the agar plates with a sterile inoculation loop and
incubated overnight. One colony from the agar plate was put into 10 ml liquid BHI in a 15 ml falcon
and incubated overnight at 37 °C. Then, a new 10 ml bacterial culture was initiated with OD=0.1 and
incubated to reach OD=L1.

4.1.15 Calculating CFU/mlI of bacteria

To obtain the number of bacterial cells when the culture is confluent (optical density (OD) at 600 nm=
1), the colony forming unit (CFU) per one ml of culture was calculated. To do so, 1:10 dilutions were
prepared from the confluent culture and 100 pl of each dilution was placed on a BHI Agar plate and
incubated overnight. The one plate with 30-300 colonies was choose to calculate the initial culture
concentration using the following formula:

number of colonies X dilution factor

CFU/ml =

volume put on Agar plate

1.0mL 1.0mL 1.0mL 1.0mL 1.0mL 1.0mL

Colony-forming units
(unknown concentration)

9.0mL medium

N
Colonies: |

S

|—|—' 311 colonies 27 colonies 3 colonies 0 colonies

Too many to count

FIGURE 4-3. Schematic illustration of CFU/mI calcuation from BioRender.com
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4.1.16 Treatment of bacteria with EVs

HUVEC-derived EVs from static and flow cultures (the EV stock used for RNAseq and proteomics
studies) were thawed overnight on ice at 4 °C (in cold room). From confluent bacterial culture, 0.5 pl
and 1 pl were incubated with 10 pl of the EV types separately to have 10,000 and 20,000 EVs/CFU.
Treatments were incubated in 1.5 ml tubes overnight prior to RNA extraction.

4.1.17 Bacterial gene expression

Bacterial cells were lysed with 3 mg/ml lysosyme (#90082, Thermo Fisher Scientific) prior to isolation
of total RNA using the Monarch Total RNA Miniprep Kit (#T2010S, NEB). The concentration of
isolated RNA was quantified by NanoDrop™ (Thermo Fisher Scientific). qPCR was performed as
described before. Primer sequences for each transcript are detailed in Table 4-4. Data were normalized
to the 16s rRNA housekeeping gene.

TABLE 4-4. Primer sequences used for qPCR (10 uM stock).

Gene Accession Primer forward sequence Primer reverse sequence
number

16s LN681572.1 CGGGGAGGGTCATTGGAAAC GTTTACGGCGTGGACTACCA
rRNA
gelE  NZ_KB944666.1 CCCTGTGTTATCCGTTCCGT CCAACTGGTGACCCCGTATC

ebpA NZ_KB944666.1 AGACGGTAGTGCACAATGGG TGGTCTCCTGTACCGCCATA
ace NZ_KB944666.1 CGGATTTCGGAACAGCAACG TCTCCAGCCAAATCGCCTAC

4.1.18 Statistical analysis

GraphPad Prism 9 software (GraphPad, USA) was used for data analysis. Shapiro-Wilk test was
performed to analyze the data distribution. For normally distributed data, means of two groups were
compared with Student’s t-test. For group analysis, one-way analysis of variance (ANOVA) followed
by Dunnett's post hoc test was applied to compare every mean with the mean of control group. All data
are presented as mean + SD, and p<0.05 was considered significant. *p<0.05, **p<0.01, ***p<0.001,
****n<0.0001. Schematic illustration were made using BioRender.com.
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4.2 Results

4.2.1 Finding the optimum medium for EV isolation

The experiments involving different media were conducted at various times (chronologically), with
some options being introduced during later phases of the study. Consequently, not all experiments in
this section included all media. The table below describes the options and the experiments in which they
were investigated:

TABLE 4-5. Media options and experiments.

Options Morphology Endothelial Gene EV RNA yield
characteristics  expression production
(VWF)

10% FCS medium (Co)

2% EV-depleted FCS

10% EV-depleted FCS
Endopan medium

EGM™ BulletKit™ (Lonza)
ITS-supplemented medium
FCS-free medium

AN NN NN
X X X KX

X X X SN
XX AKX
X X X XS X

4.2.1.1 Cell morphology

The experiment on morphology began by culturing HUVECS under static conditions with the hypothesis
that if the cells remained stable in static culture first, then they could be examined under flow. HUVECs
were subjected to various media for 72 hours, revealing normal morphology in 10% and 2% EV-depleted
FCS medium, Endopan medium, and Lonza medium (Figure 4-4). However, when grown in ITS-
containing medium and serum-free medium, some cells were found to be partly detached. Consequently,
the first four media were selected to be tested under flow conditions, revealing normal elongation of the
cells in the direction of the flow for both EV-depleted FCS media and Endopan medium, while cells
grown in Lonza medium detached under flow.
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Static Flow

Co

100 ym 100 pm

10% EV-depleted
FCS medium

FCS medium

Endopan medium 2% EV-depleted

O
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FIGURE 4-4. Morphology of HUVECs after 72 h culture in different media under static and 20 dynes
cm2 flow conditions. Scale bar=100 pm. Cells were a mix of two HUVEC donors with unknown sex,
conducted in two independent experiments, each including one technical replicate.
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4.2.1.2 Von Willebrand Factor

To make sure HUVECs keep their endothelial characteristics, we investigated the presence of von
Willebrand Factor as an endothelial marker after incubation with different media under static and flow
culture conditions (Figure 4-5). The immunofluorescent staining detected the presence of VWF in
HUVECs cultured in complete (Co), Endopan and 10% EV-depleted FCS medium in both culture
conditions.
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o 'O . .
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FIGURE 4-5. Fluorescence microscopy images of HUVECs cultured under static and under laminar
flow conditions (20 dynes cm) in 10% EV-depleted FCS medium and Endopan medium after 72 h.
HCT116 cells were used as negative control. Blue: Hoechst, red: Actin, green: von Willebrand factor.
Scale bar=50 pum. Cells were mix of two HUVEC donors with unknown sex, conducted in one
experiment, including two technical replicates.

39



Chapter Il

4.2.1.3 Gene expression
Additional investigations were conducted using qPCR to evaluate the impact of various media on
HUVECs on the expression of genes known to be altered upon laminar flow. This was supposed to
identify a medium that exhibits the least deviation in gene expression compared to the complete medium.
Because laminar flow modulates the expression of adhesion molecules and anti-inflammatory
factors,(Hahn et al. 2014; Pan 2009) the expression of relevant genes was examined in HUVECs
cultured under laminar flow relative to static cultures. The data indicate a shift in gene expression that
closely resembles the control condition when using a medium containing 2% EV-depleted FCS medium
(Figure 4-6).

=3 Co
° E=A 10% depl. medium
=8 Endopan medium
E= 2% depl. medium

70+

Gene expression, x-fold

KLF2 ICAM1 NOS3 TSC22D3

FIGURE 4-6. Gene expression of HUVECs incubated with different media under laminar flow
conditions (20 dynes cm) for 72 h. Data are normalised to static culture as control (dashed line), and
shown as mean £ SD. Cells were a mix of two HUVEC donors with unknown sex. Dots show biological
replicates, and each dot is the average of three technical replicates. Means of two groups were compared
with Student’s t-test. For group analysis, one-way analysis of variance (ANOVA) followed by Dunnett's
post hoc test was applied to compare every mean with the mean of control group. # shows significant
differences between groups. * indicates significant differences compared to the control (Co, indicated
with the dashed line). p<0.05 is considered significant. “p<0.05, “p<0.01, ""p<0.001.

4.2.1.4 HUVECs produce different populations of EVs when cultured in different media

Next, our focus was directed towards investigating the potential impact of various media on the
characteristics of the produced EVs in HUVECs. To achieve this, we first tested various media under
static conditions before proceeding with the large-scale flow EV experiments. EVs were isolated from
72 h static cultures in control (Co), Endopan, 10% EV-depleted FCS, 2% EV-depleted FCS, and Lonza
medium. A CD9+ EV population was detected by western blot analysis for EVs from HUVECs cultured
in complete medium (Co), 10% EV-depleted FCS medium, and Endopan medium, while no signal for
CD63 was recorded for neither of the conditions (Figure 4-7). Interestingly, CD63 was present in EV
samples from HUVECs cultured in 2% EV-depleted FCS medium and Lonza medium in addition to
CD9 (full blots are provided in Figure S11).
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FIGURE 4-7. Western blot analysis of HUVEC EVs isolated form static cultures in different media after
72 h. Cells were a mix of two HUVEC donors with unknown sex. Number of biological replicates is
shown in parenthesis.

4215 RNAYyield and EV markers

Given that the hollow fiber cartridge functions as a closed system, we aimed to ensure cell stability
following the incubation period before progressing to large-scale EV collection. Attempts to image cells
adhered to the fibers using scanning electron microscopy (SEM) were unsuccessful due to limitations
in accessing the fibers. Consequently, our alternative approach involved assessing the RNA
concentration of the cells. We hypothesized that if the cells remained adherent throughout the incubation
period, it should be possible to isolate RNA in a concentration within an acceptable range relative to the
initial cell seeding number. The RNA was less concentrated when incubated longer (72 h) in a low serum
content (2% EV-depleted FCS medium), while the RNA extracted after shorter (48 h) incubation in the
same medium had a higher concentration compared to when 10% EV-depleted FCS was used for 72
hours (n= 1, cells were a mix of 4 female HUVEC donors).

TABLE 4-6. RNA concentration of HUVECs

Medium Flow incubation time RNA C. ng pl?!
2% EV-depleted FCS medium 72 195
2% EV-depleted FCS medium 48 67.5
10% EV-depleted FCS medium 72 40

In previous experiments, the presence of EV markers was investigated after 72 h of static incubation
time. Since 48 h culture under laminar flow resulted in higher amounts of isolated RNA, we proceeded
with large scale EV isolation from flow cultures, and performed western blot analysis with EVs isolated
from conditioned media of cells used for RNA yield analysis to investigate whether lower incubation
time would affect EV populations as well. Western blot analysis showed that CD63 and CD9 EV
markers are detectable in samples after 48 h under static and flow cultures when 2% EV-depleted FCS
medium is used, while no CD63 was present when cells were incubated in 10% EV-depleted FCS
medium for 72 h (Figure 4-8).
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FIGURE 4-8. HUVEC EV marker analysis of static and flow cultures after 48 h. Mix of 4 female
HUVEC donors was cultured in 2% EV-depleted FCS medium (under static, and under 20 dynes cm
laminar flow for 48 h), and in 10% EV-depleted FCS (under 20 dynes/cm? laminar flow for 72 h).
Presence of EV markers (CD63, CD9) was examined using western blot. 30 pl of EVs were loaded into
each pocket equal to 30 pg, 39 ug, 30 pg proteins from left to right (n=1).

Taken together, we decided to culture the cells for 48 h in 2% EV-depleted FCS medium under static
and laminar flow conditions for further EV sample collection and analysis.
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4.2.2 HUVEC EV isolation and characterization obtained from static and laminar flow
cultures

4.2.2.1 EV characterization

Having identified the optimal medium for EV isolation suitable for both static and flow conditions, we
proceeded with the main EV sample collection of both EV types with three biological replicates (while
each biological replicate was a mix of three individual female donors), and their characterization. EVs
were isolated using ultracentrifuge from HUVECSs cultured in 2% EV-depleted FCS medium under static
and laminar flow conditions (20 dynes cm) for 48 h. The concentration of EVs was determined using
NTA, revealing an average of 2.44x10'2 + 0.71X10% particles per milliliter for static EVs and
2.29X10% + 0.54 X 10*? particles per milliliter for flow EVs. Furthermore, NTA showed 129 + 3 nm and
134 + 9 nm for the mode size of static and flow EVs respectively (Figure 4-9A, B). The morphology of
the EVs was then verified through cryo-TEM, which confirmed their spherical structure for both EV
types (Figure 4-9C, D). The zeta potential of the vesicles was negative, averaging from -10.9 £ 1.12 mV
for static EVs to -10.2 + 0.77 mV for flow EVs (Figure 4-9E). The average protein concentration was
significantly higher in static EVs (Figure 4-9F).

TABLE 4-7. HUVEC EV characterization isolated from static and flow cultures from three individual
EV isolations each measured in triplicates.

Static EVs Flow EVs
Particle c. 2.44X10% £ 0.71%x10%? 2.29X 10+ 0.54x 10"
(particles per milliliter)
Size 129+3 134+9
(nm)
Zeta potential -109+1.12 -10.2 £0.77

(mv)
Protein c. 493+1.8 3.1+£0.87
(mg/ml)
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FIGURE 4-9. HUVEC EV characterization isolated from static and flow cultures. EVs were isolated
using UC from HUVECs cultured in 2% EV-depleted FCS medium under static and laminar flow
conditions (20 dynes cm) for 48 h. A, B) Representative size distribution of particles by NanoSight
particle tracking analysis of static and flow EVs, respectively. C, D) Representative cryo-TEM images
of static and flow EVs, respectively, scale bar=200 nm. E) Zeta potential of the vesicles (n= three
biological replicates, each replicate is a mix of three HUVEC female donors). F) Protein concentration
of isolated EVs was assessed by BCA assay (n= six biological replicates, each replicate was a mix of
three HUVEC female donors). Statistical differences were analyzed by Student’s t-test. “p<0.05.
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4.2.2.2 MiRNA-seq profile of static and flow EVs

We performed miRNA-seq of both, cells and EVs. Principal component analysis (PCA) (Figure 4-10A,
B) revealed a distinct separation between the biological replicates of the two conditions in parental cells
and EVs. Figure 4-10C, D illustrates the differentially expressed miRNAs in a volcano plot for C) cells
and D) EVs. Log2 fold change was plotted against -log10 p-value. Negative log2 fold change values
represent abundancy under static condition, whereas positive values represent abundancy in flow
condition. In cell samples, 11 miRNAs exhibited abundance under static conditions, whereas 16 were
abundant in flow conditions. Regarding EVs, 3 miRNAs showed abundance in flow EVs, whereas 4
were abundant in static EVs. The differentially expressed miRNAs are shown in Figure 4-10E. Potential
eukaryotic target genes, which might be affected by these significantly enriched miRNAs in EVs were
identified using miRTarget Link 2.0. This revealed more target genes for flow EVs (Table 4-8) than
static EVs (Table 4-9). Genes that might be affected by miRNAs from flow EVs play a role in
phosphorylation, migration, cell motility, and signaling pathways according to GO biological processes
analysis (Figure 4-10F); while predicted targets of miRNAs from static EVs are involved in cell
differentiation and regulation of immune responses (Figure 4-10G).

To investigate the interaction between HUVEC EVs and E. faecalis, we first examined whether miRNAs
abundant in static and flow EVs could target specific sites on the bacterial genome. Differentially
expressed miRNA sequences abundant in EVs were retrieved from the miRBase database, while the
sequences of virulence genes (gelE, ebpA, ace) of E. faecalis were obtained from the NCBI nucleotide
database. The miRNA sequences were then subjected to in silico hybridization with the gene sequences
using the RNAhybrid software. The hybridization analysis based on Minimum free energy (mfe) for
likelyness of the hybridization revealed potential target sites within the gelE, ebpA, and ace sequences
of E. faecalis (Figure 4-11).
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FIGURE 4-10. MiRNAseq data. A, B) PCA shows distinction between HUVEC parental cells A), and
static and flow EVs B). C, D) Volcano plot representing the differential enrichment of miRNAs between
cells C), and EVs D). Log; fold change (1.5) is plotted against -log:o p-value (0.05). E) Distribution of
differentially expressed miRNAs in static and flow EVs, and their parental cells. Transcripts per million
(TPM) are shown (sorted by highest fold change) for all three independent preparations per condition
(S: static EVs, F: flow EVs). N= three biological replicates, each replicate is a mix of three HUVEC
female donors. Top 20 gene ontology (GO) biological processes for targets of miRNAs enriched in F)
flow and G) static EVs derived from ShinyGO 0.80.
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TABLE4-8. Validated targets of enriched miRNAs in flow EVs based on miRTarget Link 2.0.m

hsa-miR-4497 hsa-miR-451a hsa-miR-26b-5p

(weakly validated) (strongly validated) (strongly validated)

(No strongly validated targets detected)

NPY4R CAMK2N2 MIF PTGS2 SMAD1
ATP13A4 MIPOL1 CAB39 EPHAZ2 MIEN1
TPM3 VEGFA ABCB1 CDKG6 COL1A2
SDF4 CASTOR2 AKT1 CCNE1 CTGF
ZNF490 CD226 MMP2 ABCAl TLR4
NF2 CTTN MMP9 ARL4C HGF
CCNF FBXL18 BCL2 GATA4 ST8SIA4
CCNY IRXS5 MYC CHORDC1 PDE4A
LHFPL3 MTPAP RAB14 NR2C2 FH
PRPS1L1 NAB2 TMED7 PLOD2 JAG1
APPBP2 ATP1B4 IKBKB TAB1 IGF1
SH2B1 CBARP IL6R EZH2 LARP1
FAMS83C DSN1 DCBLD2 USP9X
RAB22A PRPS1 CPNE3 IGF1R
BPNT1 SP140L RABSA KPNAZ2
FANCA TBC1D24 ADAM10 RB1
DUSP22 TMEM33 IL6 NAMPT
RAB9A PPAN TSC1 PTEN
HIST1IH2AH P2RY11 MAPK1 COX2
LRRC27 OXTR HAS2
UGTS8 CDKN2D ULK2
RUNX1 MAP3K1 TRAFS5
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TABLE 4-9. Validated targets of enriched miRNAs in static EVs based on miRTarget Link 2.0.

hsa-miR-320a-3p hsa-miR-320b hsa-miR-320c hsa-miR-320d
(No target detected) (strongly validated) (strongly validated) (strongly validated)
- NOD?2 SMARCC1 RBFOX2

MYC GNAIL GNAI1
DLX5 PRDM1

XBP1

IRF4
EZH2
NOD?2
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FIGURE 4-11. Hybridization of the significant abundant miRNAs in static and flow EVs with E.
faecalis mRNA. Minimum free energy (mfe) is shown for each duplex.
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4.2.2.3 Proteomics analysis of static and flow EVs

A total of 3268 proteins were detected including 664 proteins unique in static EV's and 520 proteins in
flow EVs with 2084 proteins common in both types (Figure 4-12A). PCA revealed a distinct separation
between static and flow EVs, with biological replicates within each category demonstrating similarity
(Figure 4-12B). Fold changes were calculated using the unique spectrum counts of flow EVs/static EVs.
Figure 4-12C illustrates the differentially expressed proteins in a volcano plot, i.e. log, fold change was
plotted against -logio p-value. Negative log, fold change values represent proteins more abundant in
static EVs, whereas positive values represent abundant proteins in flow EVs. Cellular component
analysis showed that the significantly enriched proteins in both EV types are annotated with exosomal
and cytosolic spaces (Figure S12). Interestingly, within the significant gene ontology (GO) cellular
component terms of flow EV proteins, mitochondrial origin was also observed. Next, we analysed the
biological processes that these significant proteins are associated with. Figure 4-12D shows that the
proteins significantly enriched in flow EVs play a role in localization, transport, and respiration.
Biological processes associated with enriched proteins in static EVs are shown in Figure 4-12E,
suggesting a role in cellular metabolism, and translation. Based on the mitochondrial origin of flow EV-
enriched proteins as indicated by cellular component terms, and considering their involvement in cellular
respiration, proton transport, and energy processes, we conducted a detailed analysis of these proteins.
Specifically, we examined their abundance and presence in static EVs as well. Figure 4-12F illustrates
the unique spectrum counts of mitochondrial proteins significantly present in flow EVs, alongside their
counts in static EVs. Notably, it demonstrates either an absence or reduced presence of mitochondrial
proteins in static EVs. Gene ontology analysis also showed involvement of the mitochondrial proteins
in biological processes, such as respiration, oxidative phosphorylation, and ion transport (Figure 4-12G).

Exclusive, unique spectrum count raw data of a series of EV marker proteins (Mashayekhi et al. 2024;
Hoppstéadter et al. 2019; van Niel, D’Angelo, and Raposo 2018) are shown in Figure S13 for the
independent preparations per condition. Overall, the EV-specific protein distribution was quite similar
in both conditions. Only milk fat globule-epidermal growth factor-factor 8 (MFG-E8) was highly
expressed in static EV's compared to the low expression in flow EVs.
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FIGURE 4-12. Proteomics data of static and flow EVs. A) Number of detected proteins. B) PCA shows
a clear distinction between static and flow EVs (n=3). C) Volcano plot representing the differential
enrichment between the two EV types. Log, fold change (1.5) is plotted against -logio p-value (0.05).
Top 20 gene ontology (GO) biological processes for proteins significantly enriched in D) flow EVs and
E) static EVs according to the STRING database. F) Abundant mitochondrial proteins in static and flow
EVs and their distribution. Exclusive unique spectrum count raw data are shown for all three
independent preparations per condition (S: static EVs, F: flow EVSs). G) Top 20 gene ontology (GO)
biological processes for mitochondrial proteins significantly enriched in flow EVs according to the
STRING database. N= three biological replicates, each replicate is a mix of three HUVEC female
donors.
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4.2.3 Modulation of bacterial gene expression by HUVEC EVs

Modulation of virulence genes in E. faecalis in response to HUVEC EVs prepared from three biological
replicates while each biological replicate was a mix of three individual female donors (the EV stock
used for RNAseq and proteomics studies) was analyzed by real-time quantitative PCR (Figure 4-13).
Both static and flow EVs upregulated gelatinase (gelE) in a dose-dependent manner, while the
upregulation observed in flow EVs was more pronounced. Furthermore, both types of EVs elevated the
expression of endocarditis and biofilm-associated pili (ebpA) in a dose-dependent manner. The
expression of collagen adhesion (ace) exhibited an increase in response to static EVs, but a reduction
when exposed to flow EVs.
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FIGURE 4-13. Expression of virulence-associated genes in E. faecalis by qRT-PCR after incubation
with HUVEC EVs. Data are normalised to medium-treated bacteria as control (dashed line). Data shown
as mean = SD. EVs from three biological replicates were used, and gPCR was performed in three
technical replicates.
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4.3  Discussion

In the first step, it was necessary to find an approach to prevent FCS-derived EV contaminants (Urzi,
Bagge, and Crescitelli 2022). Although some protocols simply proceed with serum-free medium for EV
isolation from human cell lines (Q. Zhang et al. 2023; F. Wang, Cerione, and Antonyak 2021), the
utilization of primary endothelial cells in this work, which were intended to be cultured under flow
conditions, prevented us from removing FCS from our setting. During the primary setup experiments,
these cells were observed to be detached when grown in FCS-free medium under static culture
conditions, leading us to conclude that they would not maintain adherence under the mechanical force
of shear flow in serum-free medium. Consequently, our approach involved an effort to deplete EVs from
FCS, aiming to address this critical aspect of our experimental setup.

Shelke et al. compared the centrifugation of FCS for a short (1.5 h) and a long period (18 h) to test the
efficiency of these two EV depletion protocols. They found that 18 h centrifugation reduced FCS-
derived EV RNA content by 95%; however, it does not completely eliminate EV contaminants from
FCS (Shelke et al. 2014). Later, a study on the effects of serum dilution on the depletion efficiency
suggested that the amount of RNA in the EV-depleted supernatant was reduced in diluted FCS compared
to non-diluted condition, and thus recommended to dilute the FCS to 30% prior to EV depletion
(Driedonks, Nijen Twilhaar, and Nolte-‘t Hoen 2018). Therefore, in this study, a medium containing
30% FCS was ultracentrifuged and then utilized to formulate the primary culture medium for EV
production during the incubation period.

One study on the impact of different media on EV production has previously reported that EVs produced
from N2a mouse neuroblastoma cells in Opti-MEM (reduced-serum medium) were greater in quantity
than EVs produced in DMEM-containing serum (J. Li et al. 2015). Later, the same group attempted to
identify specific media components affecting EV production. They found higher levels of EV surface
markers (CD9, CD63, and CD81) from HEK293T cells cultured in serum-free Opti-MEM compared to
serum-including conditions. Interestingly, a CD81+ EV population was not detectable by western blot
analysis when complete medium was used to harvest EVs (Bost et al. 2022). Also comparing the
enrichment levels of genes comprising a certain gene ontology term between the different media
conditions, in which cells were cultured for EV production, Bost et al. found that the sphingolipid and
ceramide pathways influencing exosome production (Verderio, Gabrielli, and Giussani 2018), were
upregulated in the Opti-MEM samples compared to the serum-containing media. CD63 functions in
ESCRT-independent vesicle formation (van Niel et al. 2011), and ESCRT-independent exosome
formation relies on ceramide generation by neutral sphingomyelinase (Elsherbini and Bieberich 2018).
This could explain the presence of CD63 marker in HUVEC-derived EVs when low serum amount was
employed.

In this work, in addition to static culture condition, we also characterized vesicles isolated from
HUVECs subjected to laminar flow trying to simulate the physiological conditions. Several fluid shear
stress models have been used in the literature. Parallel-plate flow chambers like the one we used for set
up experiments allow the cell layer to be observed with a microscope (Sun, Zhang, and Xia 2021). Cone-
and-plate systems are used to analyze the shear responses of cells to flow independent of hydrostatic
pressure (Franzoni et al. 2016). The orbital shaker method is able to generate a larger disturbed flow
(Fernandes et al. 2022). In recent years, microfluidic systems have been often, allowing the creation of
constant or active shear flow with external equipment, like pumps, which dynamically adjust fluid shear
stress by altering the inlet flow (Mohammed et al. 2019; Tovar-Lopez et al. 2019; Takahashi et al. 2023).
However, the choice of a specific model depends on the downstream analysis requirements. Here we
used a hollow fiber cartridge system (Ebrahim et al. 2019) that allowed for larger-scale cell cultivation
compared to other commercially available in vitro settings. This made it possible to isolate EVs from a
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large volume of conditioned medium required for downstream processing; therefore, reducing the
number of batches needed for multiple analysis and improving the consistency of the data generated.

Commonly used EV isolation methods including ultracentrifugation, density gradient centrifugation,
size exclusion chromatography, and polymer-based precipitation, vary in EV yield, the depletion of
protein contaminants, labour-intensity, and cost of the procedure. Utilizing a combination of two or
more methods has the potential to enhance the removal of protein contaminants; however, it comes at
the cost of reducing the overall number of EVs (Brennan et al. 2020). Therefore, the choice of EV
isolation method used should depend on the amount of starting material together with the downstream
application. Although commercial EV separation kits have been used to isolate EVs from HUVECs
(Jeon, Kang, and Lee 2020; Hosseinkhani et al. 2020), differential centrifugation has been the most
widely used method (Maiullari et al. 2021; Jeon, Kang, and Lee 2020; Mensa et al. 2020; Hosseinkhani
et al. 2018; Lamichhane et al. 2017; Jeon et al. 2017; Lin et al. 2016). In our research, we isolated
vesicles from the culture medium using ultracentrifugation, without additional purification steps. This
decision was due to the noticeable sample loss observed during trial runs of size exclusion
chromatography to purify the isolated EVs.

Definitive characterization of biogenesis-based EV subtypes is challenging, as there are no universal
molecular markers for ectosomes (also known as microvesicle or microparticle; refers to EVs originating
from the cell surface), exosomes (refers to EVs originating from internal compartments of the cell,
released via MVBS), or other EV subtypes (Welsh et al. 2024). In our work, we examined a series of
EV protein markers based on previous reports (Mashayekhi et al. 2024; Hoppstéadter et al. 2019; van
Niel, D’Angelo, and Raposo 2018) irrespective of the biogenesis routes. A genome-wide association
study for coronary artery disease involving over a million participants identified MFG-E8 as one of the
risk variants and genes associated with cardiovascular diseases (Aragam et al. 2022) positioning it as a
potential prognostic biomarker for vascular diseases (Ni, Zhan, and Liu 2020). An in vivo study on
endothelial-vascular smooth muscle cell (VSMC) interactions in mice further highlighted the role of
MFG-ES8 in driving the pro-inflammatory phenotypic shift of VSMCs (Chiang, Chu, and Lee 2019).
Dysregulated EC-VSMC communication was shown to potentially contribute to the development of
atherosclerosis (M. Li et al. 2018). Among the more abundant proteins in flow EVs, we observed a
variety of mitochondrial proteins that were either absent or less prominent in static EVs. This
observation aligns with previous reports documenting the presence of mitochondrial proteins in EVs
from mouse embryonic fibroblasts and monocyte-derived dendritic cells (Todkar et al. 2021; Kowal et
al. 2016). Vascular endothelial cells sense shear stress generated by flowing blood and transmit this
information into the cell interior (Ando and Yamamoto 2021). Previous data have shown a role of
mitochondria in the EC mechanotransduction of fluid shear stress (Scheitlin et al. 2016; Yamamoto et
al. 2023). A recent study suggests that changes in the magnitude and pattern of fluid shear stress alter
the mitochondrial content, shape, and intracellular distribution in different vessel regions of a mouse
model in vivo and in primary mouse aortic endothelial cells in vitro (Hong et al. 2022). It has been shown
that unidirectional flow induces an elevation of oxidative phosphorylation-dependent ATP generation
(Yamamoto, Imamura, and Ando 2018; Yamamoto et al. 2020; Han et al. 2021). On the other hand,
exposing HUVECSs to laminar flow (20 dynes cm) for 24 h decreases glycolysis pathway (Basehore et
al. 2021). In line with these findings, we saw an increase in ATP synthase subunits (ATP5MF,
ATP5F1A, ATP5F1B, ATPSME, ATP5PB) and other respiratory chain members (CYC1 (Cytochrome
cl. heme protein), UQCRC1 (Cytochrome b-c1 complex subunit 1), and COX4I1 (Cytochrome c
oxidase subunit 4 isoform 1)) in flow EVs. Furthermore, PDP1 (Pyruvate dehydrogenase phosphatase
1), a mediator of glycolysis pathway (X. Wang et al. 2021), was not detected in any of the flow EV
replicates.
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Intracellular miRNA expression profiles of ECs adapt to diverse flow patterns and impact endothelial
biology (Miti¢ and Caporali 2023; X. Zhang et al. 2023; X. Xu et al. 2021; Rashad et al. 2020). Cellular
culture conditions are not only reflected in exosomal proteins but also in miRNA contents. Therefore,
we hypothesized that the miRNA content of ECs is also regulated by shear stress. To test this, we
performed miRNA sequencing with EVs and cells.

MiRNA-451a was among the significantly enriched miRNAs in both flow EVs and parental cells, with
lower abundance in static samples. It is also reported to be downregulated in EVs derived from shear
stress culture of +5 dyne cm compared to when 20 dyne cm was applied on HUVECs for 24 h in a
cone and plate system (Chung et al. 2022). Patients with atherosclerosis showed significantly lower
circulating miRNA-451a than healthy controls (Hu et al. 2021), consistent with our results in static
conditions that mimic pro-atherosclerotic environments. The same group showed miRNA-451a
upregulation could stimulate HUVECSs proliferation and apoptosis by directly targeting macrophage
migration inhibitory factor (MIF), suggesting miRNA-451a contribution in regulating atherosclerosis.

MiR-21-5p was significantly abundant in the flow cells. MiRNA-21 expression in endothelial cells has
been found to be significantly upregulated by shear stress treatment (Shah et al. 2018), causing an anti-
apoptotic effect by directly targeting the PTEN tumor suppressor gene. Further analysis revealed that
PTEN, a known target of miR-21, was downregulated in HUVECs exposed to unidirectional shear stress
(15 dynes cm) or transfected with pre-miR-21. HUVECSs overexpressing miR-21 exhibited decreased
apoptosis and increased eNOS phosphorylation and nitric oxide (NO) production (Weber et al. 2010).
Another significant miRNA in flow cells was miR-1290, which has been shown to increase monocytic
THP-1 cells adhesion to HUVECs by regulating ICAM-1 and VCAM-1 (Hongxin Xu et al. 2022).

On the EV side, we saw a significant abundance of miR-320 family in static EVs. MiR-320a, a key
regulator of atherogenesis, has been shown to promote this process by enhancing multiple risk factors
associated with coronary artery disease (CAD) (C. Chen et al. 2015). Knockdown of miR-320a led to
increased proliferation and suppressed apoptosis in cultured endothelial cells. Conversely, the
overexpression of miR-320a intensified apoptosis in vitro and enhanced vessel abnormalities in the
heart, leading to subsequent cardiac dysfunction in mice (Yin et al. 2016). On the other hand, miR-26b
was among the most abundant miRs in flow EVs, and has been shown to be an essential mediator for
inhibiting endothelial apoptosis both in vivo and in vitro by directly targeting TRPC6 (Y. Zhang et al.
2015). Another study highlighted the role of miR-26b in endothelial cell growth, survival, and
angiogenesis. MiR-26b overexpression enhanced EC proliferation, migration, and tube formation, while
inhibition of miR-26b suppressed the proliferative and angiogenic capacity of ECs (Martello et al. 2018).

In chapter one, we studied the effect of bacterial-derived EVs on host cells. This chapter delves deeper
into the interaction between the host and microbiome by investigating the influence of host-derived EVs
on bacteria, focusing on endothelial derived EVs. Unlike chapter one, the use of Dil dye for labelling
EVs and studying their uptake in bacteria was not feasible. Unpurified EVs contain impurities that could
disrupt the accuracy of a lipid-incorporating dye like Dil, potentially leading to false positives in uptake
studies. We tried an alternative dye that did not require extensive removal steps due to limited material
availability. CFSE (carboxyfluorescein succinimidyl ester) is an amine-reactive dye, and fluoresces
upon cleavage by esterases (Dehghani and Gaborski 2020). However, since bacterial cells fluoresced
when incubated with the dye (data not shown), its use would still lead to false positives without prior
removal of non-incorporated dye in the EVs. Therefore, we proceeded with gene expression study. Host-
derived EVs are mainly studied with the primary focus on understanding their antiviral and antibacterial
effects on pathogens or other host cells (Brakhage et al. 2021). While Enterococci are among
contributors to infections in the bloodstream (Suppli et al. 2011), our understanding of how
environmental stimuli in the bloodstream impact Enterococcai remains relatively limited.
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Our data showed changes in gene expression of E. faecalis after incubation with HUVEC-derived EVs.
Human microRNAs have been identified as important players in the regulation of gene expression
during host-pathogen interactions. It has been discovered that human microRNAs can translocate to the
pathogen via extracellular vesicles, which in turn impact the pathogen's capacity to form biofilms
(Koeppen et al. 2021). Thus, non-coding RNAs originating from the bacterial pathogen and the human
host are thought to be involved in a phenomenon known as trans-kingdom signaling. These RNAs affect
both the pathogen's and the host's gene expression and are crucial for the development of disease as well
as the immune system's response to it. Recent reports suggest that certain miRNAs released by
mammalian cells can regulate bacterial gene expression (Shirong Liu et al. 2016; 2019; Santos et al.
2020). We also showed miRNAs abundant in either static or flow EVs could target regions of bacterial
mRNA. Our results revealed significant abundance of miR-320c in static EVs, and subsequent qPCR
data indicated a lower abundance of its potential target, gelE mRNA. This pattern was also seen for
significantly abundant miRNAs in flow EVs, miR-26b and miR-451a, which the expression of ace
MRNA as their potential target site was less abundant after incubation with flow EVs. Future
investigations need to be conducted to explore the extent to which host miRNA and culture conditions
affect virulence.

Here, we identified the optimal media for isolating EVs from primary HUVEC cells, suitable for both
static and laminar flow culture conditions. To mimic physiological conditions, we utilized a hollow fiber
cartridge to apply laminar shear stress to HUVECSs. Additionally, we characterized EVs from static and
flow cultures based on morphology, particle size, and content. Our findings revealed an abundance of
mitochondrial proteins in EVs isolated from laminar flow cultures. Furthermore, we demonstrated that
incubation with EVs derived from HUVECs modulate the gene expression of E. faecalis. Further
investigations would expand the findings of this study, particularly concerning the internalization
mechanisms and regulatory effects at the interface of host EVs and the microbiome.
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Abbreviations

ACTB
APC
BCA
BHI
CCLS8
CD
cDNA
CFU
DAMP
DMSO
EC
ECM
EDTA
eNOS
EV
FACS
FCS
FITC
GILZ
HEK
HMDM
HUVEC
ICAM-1
IL

ITS
KLF2
LPS
MCP1
M-CSF
MFI
MTT
MVB
NF-xB
NTA
oD
oM
oMV
PAMP
PBM
PBS
PFA
PG

Pl

PRR
PVDF
gPCR
RPMI
SD
SDS-PAGE
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Actin beta

Antigen-presenting cells
Bicinchoninic acid

Brain heart infusion

Chemokine C-C motif ligand 8
Cluster of differentiation
Complementary DNA

Colony forming unit
Damage-associated molecular patterns
Dimethyl sulfoxide

Endothelial cells

Extracellular matrix

Ethylenediamine tetraacetic acid
Endothelial nitric oxide synthase
Extracellular vesicle
Fluorescence-activated cell sorting
Fetal calf serum

Fluorescein isothiocyanate
Glucocorticoid-induced leucine zipper
Human embryonic kidney

Human monocyte-derived macrophage
Human umbilical vein endothelial cell
Intercellular adhesion molecule-1
Interleukin
Insulin-transferrin-selenium
Krippel-like Factor 2
Lipopolysaccharide

Monocyte chemoattractant protein-1
Macrophage colony-stimulating factor
Median fluorescence intensity
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
Multivesicular bodies

Nuclear factor kappa-light-chain-enhancer of activated B cells
Nanoparticle tracking analysis

Optical density

outer membrane

Outer membrane vesicles
pathogen-associated molecular patterns
Peripheral blood mononuclear cell
Phosphate buffer saline
Paraformaldehyde

Peptidoglycan

Propidium iodide

Pattern recognition receptors
Polyvinylidene difluoride

Quantitative polymerase chain reaction
Roswell Park Memorial Institute
Standard deviation

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
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SEAP
TEM

TL

TNF

ucC

UTI
VCAM-1
VEGFA
VWF

Appendix

Secreted embryonic alkaline phosphatase
Transmission electron microscopy
Toll-like receptor

Tumor necrosis factor
Ultracentrifugation

Urinary tract infections

Vascular cell adhesion molecule-1
Vascular endothelial growth factor

von Willebrand Factor
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6.2  List of figures

FIGURE 1-1. Interaction between gut microbiota and the host: Impaired intestinal barrier function
results in bacterial and microbiome-derived metabolites permeating the underlying tissue, leading to
inflammation. Created with BIORENEr.COM. ... 5

FIGURE 1-2. EV secretion from bacteria and eukaryotic cells. Gram-positive bacterial EVs originate
from cytoplasmic membrane A), while EVs produced by Gram-negative bacteria derive from the outer
membrane B). The process of releasing eukaryotic exosomes contains intracellular trafficking of MVBs,
and fusion of MVBs with the plasma membrane. Microvesicles and apoptotic bodies arise from the
direct outward budding of the plasma membrane C). Created with BioRender.com..........c.cccecvvvverunee. 8

FIGURE 3-1. E. faecalis EV characterization. A) Representative size distribution of particles in the most
concentrated fraction by NanoSight particle tracking analysis. B) Representative cryo-TEM image of
EVS, SCAIE DAIZ200 MM ..eeeeiiieeeeee ettt et e ettt e st eesaae et e sase et e sasa et e e sasneeeesassaeeesanneeeenanneeeenanrees 16

FIGURE 3-2. Metabolic activity of HMDMs and HUVEC cells after 24 h of incubation with EVs
remains unchanged. Cells were incubated with EVs (1000, 5000, and 10,000 EVs/cell). Values for
medium-treated cells were used as control (Co). After 24 h of incubation, cell viability was measured
by MTT assay. Results are shown as means+ SD of individual donors (indicated with colors) for
HMDMs (n=3, triplicates) and two individual donors for HUVECs (n=2, sextuplicates).................... 16

FIGURE 3-3. HMDMs show an inflammatory phenotype after incubation with EVs. A) Representative
images of macrophages treated with EVs for 24 h. B) Percentage of round cells. Data are presented as
mean =+ SD of three individual donors shown in dots and normalized to medium-treated cells as control
(Co). Means of two groups were compared with Student’s t-test. For group analysis, one-way analysis
of variance (ANOVA) followed by Dunnett's post hoc test was applied to compare every mean with the
mean of control group. # shows significant differences between groups. * indicates significant
differences compared to the control. p<0.05 is considered significant. #p<0.05, “p<0.01................... 17

FIGURE 3-4. EVs are internalized into mammalian cells. HMDMs (A) and HUVECs (B) were
incubated with Dil-labeled EVs (30,000 EVs/cell) for 24 h and 48 h. Internalization was quantified by
measuring phycoerythrin (PE-A) channel fluorescence intensity of three individual donors for each cell
type (n=3 individual donors, each). Means of two groups were compared with Student’s t-test. # shows
significant differences between groups and p<0.05 is considered significant. #p<0.05. ...........c..c..c....... 18

FIGURE 3-5. EVs promote pro-inflammatory gene expression in HMDMSs and HUVECs. For both cell
types three individual donors (n=3, triplicate) were incubated with bacterial EVs at different EV per cell
ratios (1000, 5000, and 10,000 EVs/cell) for 24 h and 48 h. Expression levels were analyzed by gPCR
using ACTB for normalization. Data are shown as the mean + SD of three individual donors performed
in triplicates and normalized to medium-treated cells as control (indicated with a dashed line). Colors
belong to each individual donor and dots represent technical replicates. * indicates significant
differences compared to the control. p<0.05 is considered significant. “p<0.05, “p<0.01, *“p<0.001,
TIDK0.000L 1. vttt e bbbttt ettt et ettt b et aea e e e st s s s n e 21

FIGURE 3-6. EVs activate the TLR2 pathway. Reporter cells were treated with EVs at concentrations
of 200, 1000, and 2000 EVs/cell. PamzCSK,4 (TLR2 ligand) and LPS (TLR4 ligand) were used at a
concentration of 10 ng/ml as a positive control in A) HEK-Dual hTLR2 and B) HEK-hTLR4 cells,
respectively. The activation of NF-kB/AP-1 was measured as the activity of SEAP and expressed as a
fold change of medium-treated cells (indicated by the dashed line). Data are shown as means + SD of
three individual experiments (n=3, triplicate). Means of two groups were compared with Student’s t-
test. For group analysis, one-way analysis of variance (ANOVA) followed by Dunnett's post hoc test
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was applied to compare every mean with the mean of control group. # shows significant differences
between groups. * indicates significant differences compared to the control. p<0.05 is considered
significant. p<0.05, “p<0.01, " p<0.001, " P<0.0001......ccocvireriiriiriririirerere e 21

FIGURE 3-7. EVs are internalized into reporter cells. Histograms, mean fluorescence intensities (MFIs),
and percentage of Dil positive cells of A) HEK- hTLR2 and B) HEK- hTLR4 cells incubated with Dil-
labeled EVs (30,000 EVs/cell) for 6 h and 24 h. Internalization was quantified by measuring
phycoerythrin (PE-A) channel fluorescence intensity. Data are represented as mean = SD (n=2). Means
of two groups were compared with Student’s t-test. # shows significant differences between groups and
p<0.05 is considered significant. #p<0.05, #P<0.01L......ccceiiririririririeirirririssieis e 22

FIGURE 3-8. Surface TLR2 is increased in HUVECs after TNF treatment. HUVECs from three
individual donors were treated with TNF (100 ng/ml) for 24 and 48 h. Levels of surface TLR2 were
guantified by measuring phycoerythrin (PE-A) channel fluorescence intensity. A) Histograms. B) Mean
fluorescence intensities (MFIs). Medium-treated cells were used as control (Co). ........cccccevveveirenne 23

FIGURE 3-9. TNF treatment increases EV uptake in HUVECs. HUVECs from three individual donors
were pre-treated with TNF (100 ng/ml) for 24 h. Cells were treated with 30,000 EVs/cell in the presence
or absence of TNF for 24 and 48 h. Medium-treated cells were used as control (Co). EV uptake was
quantified by measuring PE-A channel fluorescence intensity. A) Histograms. B) Mean fluorescence
intensities (MFIs). C) Percentage of Dil positive cells. Data are represented as mean + SD (n=3). Means
of two groups were compared with Student’s t-test. For group analysis, one-way analysis of variance
(ANOVA) followed by Dunnett's post hoc test was applied to compare every mean with the mean of
control group. # shows significant differences between groups. * indicates significant differences

compared to the control. p<0.05 is considered significant. "p<0.05. ........ccceevereeiererieieieeeseeeee e, 24
FIGURE 4-1. A) One parallel plate flow chamber with cell-seeded glass slide. B) Schematic illustration
of seeded glass slide connected to the peristaltic PUMP. ......ccooiiiiiiii i 29
FIGURE 4-2. A) One individual cartridge and tubing. B) Schematic illustration of the cartridge and its
Lo (01T 1 [ PSSP 31
FIGURE 4-3. Schematic illustration of CFU/mI calcuation from BioRender.com............ccccccoevervennene. 35

FIGURE 4-4. Morphology of HUVECs after 72 h culture in different media under static and 20 dynes
cm2 flow conditions. Scale bar=100 um. Cells were a mix of two HUVEC donors with unknown sex,
conducted in two independent experiments, each including one technical replicate. ...........cccccoeuvnee. 38

FIGURE 4-5. Fluorescence microscopy images of HUVECSs cultured under static and under laminar
flow conditions (20 dynes cm) in 10% EV-depleted FCS medium and Endopan medium after 72 h.
HCT116 cells were used as negative control. Blue: Hoechst, red: Actin, green: von Willebrand factor.
Scale bar=50 um. Cells were mix of two HUVEC donors with unknown sex, conducted in one
experiment, including two technical rePlICALES. .........ccocviiiiiiieie s 39

FIGURE 4-6. Gene expression of HUVECs incubated with different media under laminar flow
conditions (20 dynes cm™) for 72 h. Data are normalised to static culture as control (dashed line), and
shown as mean + SD. Cells were a mix of two HUVEC donors with unknown sex. Dots show biological
replicates, and each dot is the average of three technical replicates. Means of two groups were compared
with Student’s t-test. For group analysis, one-way analysis of variance (ANOVA) followed by Dunnett's
post hoc test was applied to compare every mean with the mean of control group. # shows significant
differences between groups. * indicates significant differences compared to the control (Co, indicated
with the dashed line). p<0.05 is considered significant. "p<0.05, “p<0.01, ™"p<0.001. .........c0evenv.. 40
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FIGURE 4-7. Western blot analysis of HUVEC EVs isolated form static cultures in different media after
72 h. EVs. Cells were a mix of two HUVEC donors with unknown sex. Number of biological replicates
IS SNOWN TN PAMENTNESIS. ... ettt n e 41

FIGURE 4-8. HUVEC EV marker analysis of static and flow cultures after 48 h. Mix of 4 female
HUVEC donors was cultured in 2% EV-depleted FCS medium (under static, and under 20 dynes cm
laminar flow for 48 h), and in 10% EV-depleted FCS (under 20 dynes/cm? laminar flow for 72 h).
Presence of EV markers (CD63, CD9) was examined using western blot. 30 pl of EVs were loaded into
each pocket equal to 30 pg, 39 ug, 30 pg proteins from left to right (N=1). ..ocoevviveiiie, 42

FIGURE 4-9. HUVEC EV characterization isolated from static and flow cultures. EVs were isolated
using UC from HUVECSs cultured in 2% EV-depleted FCS medium under static and laminar flow
conditions (20 dynes cm) for 48 h. A, B) Representative size distribution of particles by NanoSight
particle tracking analysis of static and flow EVs, respectively. C, D) Representative cryo-TEM images
of static and flow EVs, respectively, scale bar=200 nm. E) Zeta potential of the vesicles (n= three
biological replicates, each replicate is a mix of three HUVEC female donors). F) Protein concentration
of isolated EVs was assessed by BCA assay (n= six biological replicates, each replicate was a mix of
three HUVEC female donors). Statistical differences were analyzed by Student’s t-test. “p<0.05. ..... 44

FIGURE 4-10. MiRNAseq data. A, B) PCA shows distinction between HUVEC parental cells A), and
static and flow EVs B). C, D) Volcano plot representing the differential enrichment of miRNAs between
cells C), and EVs D). Log; fold change (1.5) is plotted against -log:o p-value (0.05). E) Distribution of
differentially expressed miRNAs in static and flow EVs, and their parental cells. Transcripts per million
(TPM) are shown (sorted by highest fold change) for all three independent preparations per condition
(S: static EVs, F: flow EVs). N= three biological replicates, each replicate is a mix of three HUVEC
female donors. Top 20 gene ontology (GO) biological processes for targets of miRNAs enriched in F)

flow and G) static EVs derived from ShinyGO 0.80. ........cccccveiiiiiiiiieceere e 49
FIGURE 4-11. Hybridization of the significant abundant miRNAs in static and flow EVs with E.
faecalis mRNA. Minimum free energy (mfe) is shown for each duplex..........c..cccccevvrvrirnnnnen. 52

FIGURE 4-12. Proteomics data of static and flow EVs. A) Number of detected proteins. B) PCA shows
a clear distinction between static and flow EVs (n=3). C) Volcano plot representing the differential
enrichment between the two EV types. Log; fold change (1.5) is plotted against -logio p-value (0.05).
Top 20 gene ontology (GO) biological processes for proteins significantly enriched in D) flow EVs and
E) static EVs according to the STRING database. F) Abundant mitochondrial proteins in static and flow
EVs and their distribution. Exclusive unique spectrum count raw data are shown for all three
independent preparations per condition (S: static EVs, F: flow EVS). G) Top 20 gene ontology (GO)
biological processes for mitochondrial proteins significantly enriched in flow EVs according to the
STRING database. N= three biological replicates, each replicate is a mix  of three HUVEC female
0 [0 a0} £SO 57

FIGURE 4-13. Expression of virulence-associated genes in E. faecalis by gqRT-PCR after incubation
with HUVEC EVs. Data are normalised to medium-treated bacteria as control (dashed line). Data shown
as mean £ SD. EVs from three biological replicates were used, and gPCR was performed in three
TECHNICAL FEPIICALES. ... ettt e r et eseesbeeneesaeereenteaneas 58
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6.4 Supplements
6.4.1 Growth curve of Enterococcus faecalis
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FIGURE S 1. Growth curve of Enterococcus faecalis. The optical density (OD) from three replicates
was measured for cultures in BHI medium under static conditions at 37 °C.

6.4.2 Protein concentration of SEC fractions analyzed by BCA assay
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FIGURE S 2. Protein concentration of SEC fractions analyzed by BCA assay, and measured absorptions
at 560 nm (n=2, two individual preparations).
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6.4.3 Gene expression of HMDM individual donors

HMDMs, 24 h
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HMDMs, 48 h
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FIGURE S 3. Gene expression of HMDM individual donors after 24 h and 48 h incubation with bacterial
EVs at different EV per cell ratios (1000, 5000, and 10,000 EVs/cell).
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6.4.4 Gene expression of HUVEC individual donors

HUVECs, 24 h
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HUVECs, 48 h
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FIGURE S 4. Gene expression of HUVEC individual donors after 24 h and 48 h incubation with
bacterial EVs at different EV per cell ratios (1000, 5000, and 10,000 EVs/cell).
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6.4.5 Levels of TLR2 mRNA in individual HUVECs
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FIGURE S 5. Levels of TLR2 mRNA in individual HUVECs at resting (Co) and TNF-stimulated (1
pg/ml) conditions (n=3, individual donors).
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Flow cytometric gating strategy for EV uptake analysis in HMDMs
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FIGURE S 6. Flow cytometric gating strategy for EV uptake analysis in HMDMs. Cells were incubated
with Dil-labeled EVs (30,000 EVs/cell) for 24 and 48 h. Internalization was quantified by measuring
phycoerythrin (PE-A) channel fluorescence intensity. A) Events in SSC-A vs. FSC-A. B) Singlets in
FSC-H vs. FSC-A. C) Control cells in FSC-H vs. PC-A. D) FSC-H vs. PC-A of each individual donor
after 24 and 48 h of incubation with EVs. Representative histogram of cells without E) and with EVs
F).
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Flow cytometric gating strategy for EV uptake analysis in HUVECs
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FIGURE S 7. Flow cytometric gating strategy for EV uptake analysis in HUVECs. Cells were incubated
with Dil-labeled EVs (30,000 EVs/cell) for 24 and 48 h. Internalization was quantified by measuring
phycoerythrin (PE-A) channel fluorescence intensity. A) Events in SSC-A vs. FSC-A. B) Singlets in
FSC-H vs. FSC-A. C) Control cells in FSC-H vs. PC-A. D) FSC-H vs. PC-A of each individual donor
after 24 and 48 h of incubation with EVs. Representative histogram of cells without E) and with EVs
F).
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6.4.8 Flow cytometric gating strategy for EV uptake analysis in reporter cells
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FIGURE S 8. Flow cytometric gating strategy for EV uptake analysis in reporter cells. Cells were
incubated with Dil-labeled EVs (30,000 EVs/cell) for 6 h and 24 h. Internalization was quantified by
measuring phycoerythrin (PE-A) channel fluorescence intensity A) Events in SSC-A vs. FSC-A. B)
Singlets in FSC-H vs. FSC-A. C) Control cells in FSC-H vs. PC-A. D) FSC-H vs. PC-A of cells after 6
h and 24 h of incubation with EVs. Representative histogram of cells without (E, HEK-Dual null) and
with EVs (F, HEK-Dual TLR2).
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6.4.9 Flow cytometric gating strategy for surface TLR2 measurement in HUVECs
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FIGURE S 9. Flow cytometric gating strategy for surface TLR2 measurement after TNF treatment (100
ng/ml) in HUVECs. HUVECs from three individual donors (n=3) were treated with TNF (100 ng/ml)
for 24 and 48 h. Levels of surface TLR2 were quantified by measuring phycoerythrin (PE-A) channel
fluorescence intensity. A) Events in SSC-A vs. FSC-A. B) Singlets in FSC-H vs. FSC-A. C) Histograms
of HEK-Dual TLR2 cells incubated with anti-TLR2 antibody or the isotype control to investigate
antibody specificity. D) FSC-H vs. PC-A of each individual HUVEC donor after 24 and 48 h of TNF
treatment.

103



Appendix

6.4.10 Flow cytometric gating strategy for EV uptake analysis after TNF-treatment in

HUVECs
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FIGURE S 10. Flow cytometric gating strategy for EV uptake analysis after TNF-treatment (100 ng/ml)
in HUVECs. HUVECs from three individual donors were pre-treated with TNF (100 ng/ml) for 24 h.
Cells were treated with 30,000 EVs/cell in the presence or absence of TNF for 24 and 48 h. EV uptake
was quantified by measuring PE-A channel fluorescence intensity. A) Events in SSC-A vs. FSC-A. B)
Singlets in FSC-H vs. FSC-A. C) Control cells in FSC-H vs. PC-A. D) FSC-H vs. PC-A of each
individual donor after 24 and 48 h of pre/co-treatment and incubation with EVs. Representative
histogram of cells without E) and with EVs F).
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6.4.11 C2025 hollow fiber cartridge instructions

Endothelial Cartridge
Instructions

FiberCell Systems Inc.
a better way to grow cells

C2025 Specifications

Fiber number 20

Fiber 1.D. 700pm
Fiber O.D. 1,300um
Wall Thickness 300pm
Pore Size dum
Lumen Surface Area 70cm?
Quter Surface Area 85cm’
Inoculation cell number 5-10 X 10¢
g of Recovered RNA (est.) 50-150

FiberCell Systems Inc.

905 West 7™ Street #334
Frederick, Md. 21701

Tel: (301) 471-1269

Email: info@fibercellsystems.com

Revision 6.0 1/8/14
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Introduction

Thank you for your purchase of a hollow fiber bioreactor system from FiberCell
Systems. A hollow fiber bioreactor cartridge will allow you to culture more cells,
produce more protein and antibody at a higher concentration and in a smaller space
than is possible with any other culture method. Because the cells are growing at 100X
density than other techniques there will be some methods that are counter-intuitive
to the ways that you may currently be growing cells.

These products are for laboratory use only. Not for diagnostic or therapeutic use in
humans or animals.

Read the entire FiberCell Systems User’'s Manual prior to use. This provides important
information on system set-up, maintenance, and daily monitoring of hollow fiber
cultures. This manual is available from our web site at www.fibercellsystems.com.

Photo: FiberCell Systems cartridge with ports identified.
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Culture Guidelines

Technique:

* (Correct sterile technique will ensure a long and productive life for your hollow
fiber module. Shortcuts, suspect medium and poaor sterile technique may
result in contamination.

* Use a needle to draw liquids into syringes. Droplets of medium at the
syringe/side port junction invites contamination.

e Perform all operations in the laminar flow hood. Keep the hood clean. Avoid
rapid movements and working directly over the samples. If it necessary to
open the hood front be sure to allow time for the air inside the hood to
completely exchange.

Overview

The FiberCell Systems Polysulfone Plus cartridge (cat# C2025) contains a unique
hollow fiber manufactured from a material that allows the hydrophobic binding of
proteins to the fiber matrix. Itis only necessary to wet out the fiber using 70%
ethanol/water to activate the fiber and allow proteins to attach. This protein
attachment is of the order of 10pg to 100ug per cm” of fiber area (70cm’ for C2025).
The fiber pore size of this material is .1um so the protein coating will be uniformly
applied to both the inner and outer surfaces of the fiber. Applications for this fiber
include the study of the effects of extra-cellular matrix (ECM} compaosition on the
growth of cells such as hepatocytes, pancreatic islets and other cell types where ECM
composition may affect cell growth and differentiation. The FiberCell Systems
Polysulfone Plus cartridge allows for the long term study (weeks to months) of ECM
matrix on cell growth and development.

Another application for the Polysulfone Plus fiber is for the culture of endothelial cells
under conditions of chronic shear stress. They are designed to be coated with
appropriate matrix proteins such as fibronectin, collagen, gelatin or other proteins
that facilitate the attachment of endothelial cells when inoculated onto the inside wall
{lumenal wall) of the fiber. A solution of 10% FBS in standard cell culture medium can
also be used. Endothelial cells attached in this manner can be subjected to various
levels of reproducible shear stress for long term culture, up to 28 days or more. When
grown under these conditions of chronic shear stress endothelial cells behave very
differently than when grown in static culture. Endothelial cells will lay flat, form a
monolayer and arient to the direction of medium flow forming tight junctions.
Physiologic expression of Palade bodies can be observed and some genes can be
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expressed that are not expressed in static culture. Culture of endothelial cells under
chronic shear stress is considered to be a more physiologic environment and closer to
the in vivo ideal. It is also possible to set up the FiberCell Systems Polysulfone Plus
cartridge as a co-cultivation system in which endothelial cells are loaded into the
lumen of the fiber and other cells types such as vascular smooth muscle or astro-glial
cells are placed outside of the fiber. Examples of this can be found in the references
included in the FiberCell Systems User's Manual.

Proper sterile technique is essential to maintain the long term health of this culture
system. The FiberCell Systems materials used in the construction of this hollow fiber
permits the easy application of various protein matrices such as collagen, fibronectin
or gelatin. Also, itis possible to bind cytokines in conjunction with the proteins such
as VEGF (vascular endothelial growth factor). Recovery of intact endothelial cells can
be variable depending upon cell line and culture conditions. However, recovery of
RNA and proteins can be achieved easily. Various microscopic techniques such as
SEM, TEM, and immunohistochemical staining can be applied. Growth of endothelial
cells under chronic shear stress using the FiberCell Systems’ Polysulfone Plus cartridge
is the most physiologic way to culture and study endothelial cell growth and function.

Set up of this system requires three steps. The first is to activate and coat the cartridge
with the proteins of choice. The second is to load to endathelial cells into the
cartridge. The third is to adapt the endothelial cells to the desired shear stress levels.

Activating the Endothelial Cartridge
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1 Prepare the following items in the laminar flow hood
e 6each5or 10ml syringes

® 10-20 mls 70% ethanol/water sterile filtered
® 10-20 mls sterile PBS

e 10 mls sterile water

® 5-10 mls of coating solution, Tmg/ml in sterile PBS. This solution can be
fibronectin, collagen, gelatin, serum or other appropriate matrix proteins.

2. Fill a syringe with alcohol solution and attach it to 3-way stopcock #1. Position
stopcock so that the “off” is facing away from the cartridge. Flow should go
from the syringe into the cartridge.

3. Attach an empty syringe to 3-way stopcock #2. Position the “off” so that it is
facing away from the cartridge. Flow should travel from the cartridge to the
syringe.

4, Side port slide clamps associated with syringes B and C should be closed.
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Flush alcohol from syringe A to syringe D. The ethanol should be in contact
with the fiber for at least one minute. You will be able to see the fiber "wet
out”,

Drain any excess ethanol from the cartridge using syringe D.

Fill a fresh 10ml syringe with sterile distilled water. Attach to stopcock #1
Empty syringe D of ethanol and re-attach.

Rinse cartridge with sterile water. The water should be in contact with the fiber
for at least 60 seconds. Flush back and forth between syringes A and D to
remove alcohol. Remove excess sterile water using syringe D.

Fill a new syringe with protein matrix solution and attach to 3-way stopcock #1.
Attach a new, empty syringe to 3-way stopcock #2.

Attach new empty syringes to side ports B and C. Open side port slide clamp C
Position 3-way stopcock #2 so that the "off” is facing the cartridge.

Flush protein solution from syringe A to syringe C through the fiber. Flush
solution back into syringe A.

Close side port slide clamp C. Position 3-way stopcock #2 so that the “off” is
facing away from the cartridge. Flush protein solution from syringe A to
syringe D.

Open side port slide clamp B. Position 3-way stopcock #1 so that the “off is
facing away from the cartridge.

Flush protein solution from syringe D to syringe B and back to syringe D.
Ensure that the cartridge is filled with protein solution. Close both side port
slide clamps and position the two 3-way stopcocks so that the “off” is facing
towards the cartridge.

Let protein solution coat the cartridge for a minimum of one hour.

Position 3-way stopcocks so that the "off” is facing the syringes. Remove the
syringes and replace with sterile luer caps. Initiate pre-culture for 24 hours.

Loading Endothelial Cells

3-way
stopcock

B
A C
—— -E-
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Prepare the following items in the laminar flow hood

& 4 each 5 or10ml syringes

* Freshly harvested endothelial cells from 2 T75 flasks in a velume of 10mls
complete medium.

* 18 gauge or larger needle

& 4 sterile male luer caps

Attach a syringe to 3-way stopcock A and side ports Band C.

Using the large gauge needle draw 10 mls of the endothelial cell suspension

into the 4" syringe. Remove the needle and attach the syringe to 3-way

stopcock D

Side port slide clamps B and C should be closed. 3-way stopcocks A and D

should have the "off" position facing away from the cartridge

Gently flush the cell suspension between syringe A and D through the inside of

the cartridge 3 to 4 times. Leave half of the cell suspension in each of the

syringes when finished

Open side port slide clamp C. Turn 3-way stopcock D so that the "off" position

is turned towards the cartridge.

Slowly transfer medium and cells from syringe A to syringe C. Excess medium

will flow through the walls of the fibers and the endothelial cells will be

trapped in the lumen of the fibers.

Close side port slide clamp C and turn 3-way stopcock A so that the “off”

position is turned towards the cartridge.

Open side port slide clamp B and turn 3-way stopcock D so the “off” position is

turned away from the cartridge.

Slowly transfer medium and cells from syringe D to syringe B. Excess medium

will flow through the walls of the fibers and the endothelial cells will be

trapped in the lumen of the fibers.

Close side port slide clamp B and turn both 3-way stopcock A and D so that the

"off” position is facing towards the cartridge.

Place the endothelial cell culture cartridge into the incubator for one hour

WITHOUT flow to allow the endothelial cells to attach to the fiber. Rotate the

cartridge 180 degrees after 30 minutes.

After the one-hour attachment period in the incubator return the cartridge to

the hood. Remove the syringes and replace with sterile luer caps. Turn the 3-

way stopcocks so that the "off” position is facing towards the position where

the syringes were attached and will allow medium to flow through the

cartridge.
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Place the cartridge into the FiberCell Systems pump system and initiate flow at the
lowest rate (30 pulses per minute) and shortest stroke length for approximately 12-24
hours. Check that the pump tubing is being compressed by the pump platen as the
pre-culture period can occasionally distort the tubing slightly. Restore the original
shape by GENTLY squeezing the tubing back into shape. This level of medium flow is
sufficient to provide oxygen and nutrients to the endothelial cells without generating
a level of shear that will remove the cells from the fiber. After 12 hours change the
medium in the reservoir bottle. Retain the initial medium and count the cells that did
not attach to the fiber. This will provide a direct indicator of the number of cells that
attached to the fiber. Typically 20-40% of the cells loaded will not adhere. If desired
the endothelial cell inoculation can be divided into two equal portions and the
loading steps repeated.

Daily Maintenance Schedule

Day 0: Start the newly inoculated cartridge with 50mls of medium in the reservoir
bottle. The will allow the accumulation of cytokines during the first few days of
culture. The flow rate should be set to low, position 1 on the FiberCell Systems pump.
The cartridge should remain at this flow rate for the first day of culture. Check to
insure that the pump tubing has become distorted during the pre-culture period. If it
is not being compressed restore the circular shape of the tubing by squeezing it

gently.

Day 1-7 Adapt the cells to shear stress by increasing flow rate no more than one
position increment at a time. Once the cells have been adapted to position 5, low rate
itis possible to increase the rate to high and gradually select higher shear stress levels
based upon the flow rate and shear stress levels in the chart below.

Check the reservoir bottle for endothelial cells that have washed from the cartridge.
This will give an indication of the cells remaining in the cartridge.

Change the cell culture medium when the glucose has been 50% depleted.
Flow rate and Shear Stress

T=(4nQ/ 2R*)
n =viscosity (dyne sec/cm?)
Q = fluid flow rate (ml/sec) (per fiber)
R = internal radius
Viscosity of cell culture medium with 10% FBS is approximately 0.008 dyne sec/cm?

Fluid flow rate must be converted from mls/min to mls/sec. Also, there are 20 fibers in
the cartridge so this flow rate must be divided by 20
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Internal radius of the fiber is 350pm (0.07 cm)

R*=0.000043
1 ml/min flow rate per fiber = 0.0167

Shear stress at 20mls/minute = 3.95 dynes/cm?

Itis strongly recornmended that you calibrate your pump system in your own
laboratory for flow rate.

Flow Shear

5 mis/min 1.2 dynes/cm2
12 mls/min 3.0 dynes/cm2
15 mis/min 3.75 dynes/cm2
24 mls/min 6.0 dynes/cm2
30mls/min 7.5 dynes/cm?2
40 mlsmin 9.8 dynes/cm?2
55 mils/min 14 dynes/cm?2
70 mls/min 17.5 dynes/cm2
85 mls/min 21 dynes/cm2

RNA Isolation from Endothelial Cells

Overview: Endothelial cells are cultured on the inside wall of the hollow fiber module

under conditions of defined shear stress and time. The cells are then lysed in situ
using a guanidinium isothiocyanate solution. RNA is purified and quantitated using
conventional molecular biology techniques.

Utilize all precautions to prevent contamination of the samples with RNase from the
researcher and laboratory. All reagents should be RNase free. Volumes indicated are
for one FiberCell Systems catalog number C2025 hollow fiber module.

Materials

Reagents
« TRIZOL Reagent, Invitrogen Inc. cat # 15596-026
Similar RNA isolation reagents based upon the acid guanidinium
thiocyanate/phenol method of Chomczynski and Sacchi are available
from other vendors
« Chloroform, (molecular biology grade, without additives)
+ 75% ethanol (v/v) (molecular biology grade] in DEPC-treated (RNase-
free) water
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« RNase-free water or 0.5% SDS solution in RNase-free water

Supplies
= sterile pipette tips
- sterile plastic pipettes, individually wrapped
« sterile 1.5 ml microfuge tubes
« 50 and 15 ml polypropylene centrifuge tubes (12,000 X g)
« disposable latex gloves (talc-free)
« sterile 10cc luer-lock syringes

Equipment
* micro-pipettes
- refrigerated centrifuge capable of 12,000 X g
« table top microfuge (refrigeration optional)
+ Speed-Vac, water bath or other method of drying RNA pellets
« -20°C freezer
« UV Spectrophotometer

Cartridge Preparation

34,

35.

36.

37.

38.

39.

40.

41.

42.

43,

Remove module from the FiberCell Systems pump and place into the laminar
flow hood.

Attach an empty 5-10 ml syringe to one of the 3-way stop cock valves. Remove
the luer cap from the other 3-way stop cock. Set both 3-way stop cocks such
that the “off" position is facing away from the cartridge and so that flow will
proceed from the cartridge to the syringe.

Drain the cell culture medium from the lumen of the fibers by gently
withdrawing the medium into the syringe. Discard.

Using the same syringe (or a fresh one) remove the luer cap from one of the
side ports and attach. Remove the luer cap from the other side port and
remove any cell culture medium from the ECS. Discard.

Close the side port slide clamps.

Detach the cartridge from the 3-way stop cock valves. Attach an empty 5or 10
ml syringe to one end of the cartridge.

Draw 3-4 mls of cold (4°C) TRIZOL reagent into a 5 or 10 ml syringe and
immediately attach it to the other end of the cartridge.

Flush the lysis solution both and forth between the two syringes 7-10 times
and collect into one syringe. Place lysate into a 50ml conical centrifuge tube.
Repeat the RNA extraction 2 more times by repeating steps 7 and 8 above
twice. Collect lysate into the same 50ml conical centrifuge tube.

Allow the pooled samples to incubate at room temperature for 5 minutes to
allow for complete dissociation of the nucleoprotein complex.

Follow the manufacturer’s recommendations for precipitation, washing and
quantitation of RNA,
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6.4.12 Full western blot of HUVEC EVs
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FIGURE S 11. Uncut western blot of HUVEC EVs from static and flow cultures (20 dynes/cm?).
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6.4.13 Cellular component terms for significantly enriched proteins in static and flow EVs

Static EVs

10.4

12.3 254

12.9
23.8
13.8 “_
20.2 22.5
21.0 223
m Extracellular exosome
= Vesicle

m Extracellular region
Extracellular space

= Cytosol

m Cytoplasm

® Protein-containing complex

m Ribonucleoprotein complex

m Secretory granule lumen

m Intracellular anatomical structure

Flow EVs
12.8 27.2
12.8
13.0
17.4
13.1
16.9
15.0
16.2 16.7
= Vesicle

= Organelle membrane

= Extracellular vesicle
Extracellular exosome

m Cytoplasmic vesicle

m Cytoplasm

® Endomembrane system

m Extracellular space

= Mitochondrion

® Membrane protein complex

FIGURE S 12. Top 10 gene ontology (GO) cellular component terms for significantly enriched proteins
in static and flow EVs according to the STRING database. —Logio (p-value) is shown for each term.
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6.4.14 EV marker distribution in static and flow EVs

F1 F2 F3 S1 S2 S3
| 1 | 1 1 |
A2M 5 26 27 28 33 28
ADAM10 6 15 9 22 14 16
AHCY
ANXA1
ANXA11
ANXA2
ANXA4
ANXA5
ANXAB
ARF6
ATP1A1
BSG-| 19 18 15 17 14 15
CAVI- 13 8 7 11 12 9
CAV2-| 5 2 2 3 4 2
cDe3- 3 2 2 8 10 11
cD81H 12 15 12 17 11 17
cDg2- 0 0 0 0 4 5
cDo- 11 14 10 16 15 17
CHMP4B- 0 0 3 5 5 3
EHD2- 19 32 11 2 [ 40 2
FLOT1- 33 31 31 30 30 31
FLOT2- 23 24 21 22 20 22
GAPDH
GNARR- 22 23 19 16 15 16
GNAS-H 8 5 4 6 5 3
GNB1- 28 31 27 26 27 29
HLA-A
HSPY0AA1

HSP9Y0AB1

HSPAS8
ICAM1
ICAM2- 6 5 2 6
ITGB 1 -SSRSO
MFGE8- 3 4 5
PDCD6IP —
PECAM1
PKM
RAB11B
RAB14 -
RAB1A 22
RAB27A-{ 0 2 0 0 0 0
RAB27B-{ 7 6 8 7 4 6
RAB35- 13 11 14 15 12 13
RABSC— 15 13 17 20 23 24
RABTA-| 24 22 19 26 30 24
RAC1— 16 14 17 15 14 14
RAPIA- 4 10 3 6 5 6
RAP1B 34 27 % 3% 29 37
RHOG- 6 7 4 6 7 6
ROCK1- 3 4 2 6 6 3
SDC4- 0 0 0 0 0 2
SDCBP -~ 28 31 25 40 48 44
sLC3A2+ 27 16 11 12 9 8
SNAP23- 18 13 10 12 7 6
STXT-__ 6 7 7 4 6 6
TLNTS 112 144 129 147 150 136 |
TSG101- 4 5 6 8 8 9
VAMP3- 5 3 4 0 4 4
VAMPT- 3 3 3 2 3 2
VPS4A- 0 2 3 2 2 3

FIGURE S 13. EV marker distribution in static and flow EVs. Exclusive unique spectrum count raw
data are shown for all three independent preparations per condition (S: static EVs, F: flow EVs). N=
three biological replicates, each replicate is a mix of three HUVEC female donors.
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7 Outcome

e Optimization of EV Isolation from Human Umbilical Vein Endothelial Cells (HUVECS)
Under Static and Laminar Flow Conditions

Arefeh Kardani, Vida Mashayekhi, Marcus Koch, Gregor Fuhrmann, Alexandra K. Kiemer
Small New World 2022: Joint Meeting of ASEV & GSEV, Salzburg, Austria- Poster presentation

o Cell-Derived Vesicles for Antibiotic Delivery—Understanding the Challenges of a Biogenic
Carrier System

Eilien Heinrich, Olga Hartwig, Christine Walt, Arefeh Kardani, Marcus Koch, Leila Pourtalebi Jahromi,
Jessica Hoppstédter, Alexandra K Kiemer, Brigitta Loretz, Claus-Michael Lehr, Gregor Fuhrmann

Small 19, no. 25 (2023): 2207479, https://doi.org/10.1002/smll.202207479

o The Internalization of Enterococcus faecalis-Derived Extracellular Vesicles and Their
Modulatory Impact on Monocyte-Derived Macrophages and Endothelial cells

Manuscript under preparation

e Laminar Flow Alters EV Composition in HUVECs: A Study of Culture Medium
Optimization and Molecular Profiling of Vesicle Cargo

Arefeh Kardani, Vida Mashayekhi, Marcus Koch, Claudia Fecher-Trost, Markus R Meyer, Nicole
Ludwig, Gregor Fuhrmann, Alexandra K. Kiemer

Manuscript under submission
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