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Zusammenfassung

Low-Level-Software ist, wie der Name schon sagt, eine Art von Software, die enger
mit der Hardware zusammenarbeitet als normale Anwendungen. Sie übernimmt in der
Regel Aufgaben wie die Initialisierung der Hardware, die Einrichtung der Ausführungs-
umgebung und die direkte Interaktion mit den Hardware-Komponenten. Aufgrund der
entscheidenden Rolle, die Low-Level-Software spielt, benötigt und erlangt sie naturgemäß
höhere Hardware-Privilegien als andere Software, was sie zu einem vielversprechenden
Ziel für Systemangreifer macht. Um die Hardware bequem zu steuern, verwenden Low-
Level-Softwareentwickler häufig speicherunsichere Programmiersprachen wie C und
C++ . Einerseits erleichtert die direkte Speicherverwaltung den Entwicklungsprozess,
andererseits macht sie die Low-Level-Software jedoch anfällig für Speicherverletzungs-
Schwachstellen.

Ausgehend von den Ursachen und Folgen von Speicherverletzungs-Schwachstellen
demonstriert diese Arbeit, dass Speicherunsicherheit eine Hauptbedrohung für die
Sicherheit von Low-Level-Software darstellt. Nachfolgend werden Speicherunsicherheits-
probleme von Low-Level-Software aus offensiver und defensiver Perspektive analysiert
und diskutiert. Im offensiven Szenario geht die Arbeit auf die Probleme ein, die die
Erkennung von Speicherverletzungs-Schwachstellen noch behindern. Insbesondere wird
eine Technik namens Fuzz-Testing angewandt, bei der zufällige Eingaben in die Software
eingespeist werden. Dazu wurden maßgeschneiderte Fuzzer entworfen und implementiert,
um Speicherverletzungs-Schwachstellen in Low-Level-Software, Firmware eingebette-
ter Systeme und Bootloadern zu finden. Die Fuzzer zielen darauf ab, möglichst viele
Teile der Low-Level-Software zu erkunden und möglichst viele Abstürze auszulösen. In
den Experimenten wurden 46 zuvor unbekannte Schwachstellen gefunden, denen 11
CVEs (Schwachstellen-Identifikationsnummern) zugewiesen wurden. Aus einer defensi-
ven Perspektive ist die Bereitstellung eines einfach zu verwendenden Frameworks mit
umfangreichen Funktionen für High-Level-Anwendungen bei gleichzeitiger Gewährleis-
tung der Speicher-Sicherheitsgarantien ein wesentlicher Aspekt. Um dieses Problem zu
lösen, wurde im Rahmen dieser Arbeit ein Trusted Execution Environment-Framework
für die RISC-V-Architektur entworfen und implementiert, das die RISC-V-Hypervisor-
Erweiterung und eine bestehende Hardware-Speicherisolationstechnik nutzt. Das Frame-
work bietet vollständige Rückwärtskompatibilität und sicheres I/O, was bedeutet, dass
eine unveränderte virtuelle Maschine direkt auf dem Framework ausgeführt werden kann
und von einer transparenten sicheren I/O-Übertragung profitiert. Abschließend wird
gezeigt, dass das Framework eine ähnliche Leistung wie die AMD-SEV-Erweiterung er-
reichte und nur minimale Zusatzkosten im Vergleich zur nativen Ausführung verursachte.
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Abstract

Low-level software, as the name suggests, is the kind of software that runs more
closely with the hardware than normal applications. They usually undertake the
responsibilities of initializing the hardware, setting up the execution environment, and
directly interacting with the hardware functionalities. Due to the intrinsic features of
the key role played by low-level software, it naturally requires and gains higher hardware
privilege than other software to run, making it a promising target for system attackers.
To conveniently manipulate the hardware, low-level software developers commonly adopt
memory-unsafe programming languages such as C and C++ . On the one hand, the
direct memory access programming language makes the development process easier, on
the other hand, however, it makes the low-level software prone to be compromised by
memory corruption vulnerabilities.

In this thesis, we start with the causes and consequences of memory corruption
vulnerability and then showcase that memory safety issue is a main threat to low-level
software security. We discuss and analyze low-level software memory safety issues in
terms of both their attack and defense sides. From the perspective of the attack scenario,
we tackle the problems that still hinder the detection of memory corruption vulnerability
detection. In particular, feeding random inputs to the software—a technique called fuzz
testing—is used. Specifically, We designed and implemented tailored fuzzers to find the
memory corruption vulnerabilities in the low-level software, embedded system firmware,
and bootloader. For each, the fuzzers aim to explore as many parts of the low-level
software as well as trigger more crashes as possible. In our experiments, 46 previously
unknown vulnerabilities were found, and 11 CVEs were assigned to the findings. From
the perspective of defense, providing an easy-to-use framework with rich features for high-
level applications while maintaining the memory safety guarantees is the essential part.
To solve this problem, we designed and implemented a trusted execution environment
framework for RISC-V architecture by utilizing RISC-V hypervisor extension and an
existing hardware memory isolation technique. The framework provides full backward
compatibility and secure IO, which means an unmodified virtual machine can run
directly on top of the framework and benefit from transparent, secure IO transmission.
Our experiment showed that the framework achieved similar performance with AMD
SEV extension and trivial overhead compared with native running.
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1.1. LOW-LEVEL SOFTWARE AND ITS RISKS

1.1 Low-Level Software and Its Risks

Modern computer systems provide a wide range of methods to protect end-users from
malicious attackers. Hardware mechanisms or extended features directly or indirectly
enforce those protections. As the name suggests, low-level software is used by developers
to drive the mechanisms and features, which thus runs closely to the hardware. A
typical example is the permission control system for users and groups supported by
all Linux kernels. Although fully implemented by software, the permission control
system implementation in an x86 architecture platform is based on a processor privilege
isolation mechanism where the kernel space and user space code run on different privilege
levels. The kernel, which functions as low-level software, implements permission control
and governs the execution of user-space applications. It is unavoidable for an attacker
who resides in user space and aims to bypass the permission control to follow the
processor-enforced access control, which states that the user space code cannot directly
read or write kernel space memory. Software vulnerability, especially memory corruption
in low-level software, plays an important role in the system attack scenario to help
attackers achieve their goals.

Memory corruption vulnerabilities can lead to severe effects when exploited properly.
For example, the Heartbleed out-of-bound read vulnerability (CVE-2014-0160) in
OpenSSL reported in 2014 can leak secret data from a server. A write-to-read-only-
memory vulnerability (DirtyCOW) in the Linux kernel (CVE-2016-5195) makes use
of a race condition to escalate from user to root privileges. A report by Microsoft
demonstrated that around 70 percent of vulnerabilities in their products are memory
safety issues [150].

Unfortunately, to gain better performance and manipulate the hardware conveniently,
memory-unsafe programming languages such as C and C++are commonly adopted
by low-level software developers. On the one hand, the choice makes the development
process easier, however, on the other hand, C and C++do not automatically prohibit
memory corruption, leaving a large number of vulnerabilities in the software. Nowadays,
memory-unsafe ones are still the mainstream programming languages [53] in low-level
software such as operating system kernels, hypervisors, and bootloaders.

1.2 Memory Safety Issues in Low-Level Software

Low-level software is usually responsible for setting up the environment and communi-
cating with the hardware. Naturally, it requires a higher hardware privilege or special
access permission to execute, making it an attractive target for attackers. The reasons
are straightforward: the earlier or the higher privilege malicious code can get to execute,
the more severe consequences the attack can cause. For example, compromising a
user-space application might cause a segmentation fault or data leakage within a single
process. However, a kernel memory corruption vulnerability can lead to root privilege
escalation and affect all system processes. Even worse, if a memory safety issue occurs
in the BIOS firmware, the malicious code might remain after reinstalling the operating
system.

Attack and defense against memory safety issues in low-level software has been a
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CHAPTER 1. INTRODUCTION

cat-and-mouse game for a long time. The battlefields spread across various platforms,
hardware mechanisms, processor features, and low-level software. We briefly introduce
the current situation based on the rough loading time of the low-level software.

BIOS. Legacy BIOS firmware was replaced by modern UEFI standard firmware,
which the researchers focus on nowadays. Finding memory corruption vulnerabilities
in system management mode code is a popular topic. Prior works proposed symbolic
execution [18], static analysis [237, 188, 51, 52], fuzzing [236, 235], and a mix of them [99]
to detect memory safety issues in system management mode interrupt handlers. Memory
corruption vulnerabilities and exploitations beyond the system management mode, such
as [72, 142, 62, 230, 194] in UEFI firmware were found. Despite the severe effects,
software protections such as CFI enforcement and obfuscation against memory corruption
vulnerabilities in UEFI firmware are still missing. EDK II [210], the modern, feature-
rich, cross-platform firmware development environment provides basic address sanitizer
features for developers to uncover the issues in the early stage. However, it is far from
enough to prohibit them from happening. Surve et al. systematically analyzed UEFI
security [198]. Besides memory safety issues, they also pinpoint other attacks, such as
credential theft and UEFI firmware image tampering. UEFI memory safety is far from
well-investigated due to its complexity. Since static analysis cannot be applied to large-
scale software because of its performance bottleneck, dynamic analysis is the preferred
method. Modern dynamic analysis usually requires the execution environment to gain
run-time data. However, the UEFI firmware image is tightly coupled with the processor
and platform. The state-of-the-art simulator Qemu [20] supports hundreds of CPU
models and platforms—which seems a lot, but still does not satisfy the requirements
compared with tens of thousands of real-world CPU models and millions of peripherals.
Without a simulated environment, the loss of run-time data, such as function pointers
and port register value, hinders the deep analysis of the firmware image. It is still
unclear how to simulate the full UEFI firmware run-time environment and perform a
memory safety analysis on it.

Bootloader. With the legacy BIOS, the bootloader starts from the master boot
record (MBR). However, it functions as a UEFI application in the modern epoch. The
bootloader is supposed to be the bridge between the firmware and the operating system.
The first edition of the popular Linux bootloader GRUB [87] was released in 1995.
Originally, it only supported less than ten types of file systems. However, nowadays,
bootloaders gradually provide richer features for end-users, such as customized GUI,
various file systems, and user authentication. As the code base grows, it inevitably
exposes more memory corruption vulnerabilities than before. There are several scattered
works targeting bootloader vulnerability detection. Axtens [60] and Starke [157] have
proposed fuzzing techniques for GRUB [87] and Das U-Boot [63]. Mobile device
bootloaders are usually closed-source and hard to analyze. BootStomp [174] and
Roee [93] have only analyzed bootloaders for Android systems, with a specific focus:
BootStomp analyzed storage data controlled by the attacker that could compromise
the bootloader, while Roee focused exclusively on command line inputs. Despite the
efforts made by researchers on the bootloader memory safety analysis, a comprehensive
analysis of bootloaders is still missing, which is what we need to address in this thesis.

Hypervisor. During the last five years, hypervisor security has been a hot topic.
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1.2. MEMORY SAFETY ISSUES IN LOW-LEVEL SOFTWARE

After the first hypervisor fuzzing work VDF [94] that targets a single Qemu simulated
device was introduced, many subsequent types of research such as Truman [137], HY-
PERPILL [30], Morphuzz [28], HYPER-CUBE [182], V-shuttle [163], MundoFuzz [154],
HyperFuzzer [84] were proposed. Most of them focus on virtual devices, which comprise
the majority of the hypervisor code base. The inputs from the virtual machine to the
simulated devices consist of two main parts: the port IO and the DMA buffer. The
fuzzing works utilize the processor features that the device registers accessing traps the
execution into the hypervisor to inject the fuzz input into the hypervisor. Inferring the
address of the DMA buffer is tackled case by case. For example, V-shuttle takes advan-
tage of hooking the Qemu function pci_dma_read. Fuzzing a closed-source hypervisor
is tough due to its complex run-time environment. HYPERPILL identifies the universal
and general hypervisor-processor interaction behavior, takes a snapshot, and performs
fuzzing on the snapshot to overcome the issue. Embedded system hypervisors such
as QNX [22] have not been well studied yet. Commercial embedded systems may not
allow the user to inspect device states such as physical memory, making it impossible
to take a snapshot of the device. Besides, the embedded system peripherals are highly
customized, and no public documentation is available. Simulating such a system is
not a reasonable way to perform fuzzing. When conducting on-device fuzzing, dealing
with other problems, such as coverage feedback and crash reproduction, needs to be
considered. The majority of the memory corruption vulnerabilities exist in virtual device
implementations. As the virtual devices are implemented purely in software, protection
against hypervisor memory corruption vulnerabilities should rely on general protections
such as CFI, and ASLR instead of specific methods. The Virtio [158] specification does
not mention the security design or implementation that must be followed by developers.
Applying mature and general protections such as enforced CFI to virtual devices might
be viable in the situation.

OS Kernel. The operating system (OS) kernel has always been the main arena
of memory safety attack and defense. The kernel exposes interfaces for user space
applications, interacts with devices, and runs multiple threads, making it a complex
low-level software. Typical kernel-specific memory corruption vulnerabilities such as
double-fetch [222, 233, 223, 184] and race conditions [123, 13, 65, 71, 219, 220, 26, 110]
continue to threaten the kernel security. A large amount of kernel fuzzing works target
malicious input from user space applications [89, 116, 196, 234, 29, 162, 41, 197, 109, 82,
238, 243], devices [195, 166, 190, 231], or user-specified origins [183, 181]. In addition,
static analysis [222, 135, 139, 85], and a mix of them [202, 138, 44] were proposed as well.
They focus on different parts of the kernel, such as file systems, device drivers, error
handlers, and interrupt service routines, tackling various problems such as system call
sequence ordering, input seed generation, device simulation, and system call parameter
format reconstruction. Due to the complexity of the kernel, memory safety issues in such
an environment are hard to catch and hide in the corner. Static analysis is unsuitable
for such large-scale software, and setting up a real or simulated environment is also
difficult. The multi-dimensional inputs from user space and device drivers make the
problems even harder. Common memory protections have already been integrated into
the kernel source code base [207]. Besides, plenty of research protections have been
designed for the kernel [239]. However, we believe that there is no silver bullet to handle
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the problem, and memory corruption vulnerabilities will continue to exist, and new
methods will come up by researchers as well.

Embedded System Firmware. There are two main types of embedded system
firmware: POSIX-compatible Unix-like systems and Real-Time Operating Systems
(RTOS). A Real-Time Operating System (RTOS) is used in low-power embedded
devices because it is lightweight, allows for direct peripheral manipulation, and requires
little memory. The Unix-like system provides a fully featured kernel and user space
applications. Emulating the full or part of the system in a virtual environment poses
challenges. Researchers proposed analyzing Unix-like systems by fuzzing them in a
partially or fully simulated environment (FIRM-AFL [246], Firmadyne [34], Firmae [117],
Greenhouse [203], EQUAFL [247], FIRMWIRE [96], FirmSolo [3]), fuzzing them on-
device (IotFuzzer [38]), static analysis (Feng et al. [76], DTaint [42], Firmxray [226],
Lara [244], PASAN [118]), LLM-assisted analysis (mGPTFuzz [136]), and symbolic
execution (Firmusb [95]). Analyzing RTOS firmware often involves a technique called
rehosting as the low-power devices are not designed for high-throughput executions.
Researchers proposed specific rehosting-based fuzzing for RTOS firmware such as
P2IM [74], HALucinator [46], DICE [144], D-Box [143], SHiFT [145], CO3 [130],
Fuzzware [177], Hoedur [178], Safirefuzz [185], MultiFuzz [43] PERRY [124], Sfuzz [39].
Detecting embedded system firmware memory corruption is challenging. The complex
closed-source peripheral standard makes the situation even worse. An example is the
interrupt-triggering problem. If the peripheral interrupt is not triggered properly when
rehosting an RTOS firmware, the fuzzing process might be hindered. In this thesis, we
solve this problem by proposing an adaptive interrupt-driven firmware fuzzing technique.
Moreover, the question of how to analyze the embedded system’s high-level protocol
logic, such as Bluetooth and TCP/IP or application layer protocol stacks, has not been
well addressed yet.

TEE Application. For the Trusted Execution Environment (TEE), researchers
focus more on the design and implementation of a robust TEE system. Penglai [75] and
Keystone [121] provided their solutions to build a new TEE system based on the existing
physical memory isolation mechanism, such as RISC-V PMP. LibOS based solutions
such as Graphene [211], Occlum [189], SGX-LKL-OE [170], Fortanix [125], SCONE [6]
try to port unmodified legacy applications to Intel SGX. Chen et al. [36, 35, 107, 37]
proposed potential attestation issues and their countermeasures for TEE applications.
However, the memory safety issue is also a non-negligible aspect. Lee [122], Bulck [216],
Checkoway [33], and Biondo [21] mentioned that memory corruption vulnerabilities and
the exploitation methods do not disappear within the TEE environment. Even worse,
SmashEx [58] showed that the majority of the officially provided TEE SDKs are all
vulnerable to a kind of exception-handling-driven attack. To detect memory corruption
vulnerabilities in TEE applications, model checking [14], symbolic execution [115, 47]
and fuzzing [59, 48, 240, 224, 40] were introduced by researchers. To protect the TEE
applications from memory corruption, Poster [67] and Wang et al. [221] proposed to use
the memory-safe Rust language to rewrite the enclave code. BesFS [192] presented an
Iago-safe API specification to defend against Iago attacks. MPTEE [245] used bound
check to add flexible page permission to enclave memory. SGXPecial [152] extended
the Edger8r tool of the Intel SGX SDK to generate more restricted ECALL/OCALL
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interfaces. Intel has abandoned SGX and will not include it in new processors, which
indicates the end of application-based TEE systems. The future of mainstream TEEs
will be dominated by virtual machine-integrated design systems. Memory safety issues
will continue to exist in the TEE applications as long as they communicate with normal
applications. However, analyzing virtual machine-integrated TEE applications leaves
more challenges, such as a hard-to-setup environment, to researchers. In this thesis,
we propose a fully backward-compatible secure TEE framework based on a RISC-V
hypervisor extension. We address the TEE memory safety issues by combining an
unmodified OS kernel and a lightweight hypervisor shim that provides the necessary
interfaces for the OS.

1.3 Research Focuses

In this thesis, we focus on three typical low-level software, bootloader, embedded system
firmware, and TEE application, to analyze their memory safety issues in terms of both
attack and defense.

1. Bootloader. A bootloader is loaded into memory and gets executed at the
early stage during the system boot process. During the secure boot process, it
undertakes the responsibility of verifying the integrity of the next component,
usually the operating system kernel image. If the kernel is not signed with a valid
key, then it rejects loading. Due to the important role played by the bootloader,
it is supposed to be designed and implemented securely. However, during the
last decades, the bootloader has provided the end-users with rich features, and
thus, its code base is getting larger and larger. However, a comprehensive memory
safety analysis against the bootloader and a framework for detecting bootloader
memory corruption vulnerabilities is still missing. In this thesis, we propose a
comprehensive memory safety analysis against nine modern bootloaders. We
thoroughly analyze the attack surfaces and how an attacker could exploit the
vulnerabilities found to gain system privilege. Based on our observation, we
design and implement a universal fuzzing framework to detect memory corruption
vulnerabilities in various bootloaders. The framework is compatible with the
majority of modern bootloaders despite their implementation details. We found
39 new vulnerabilities and five CVEs were assigned to our findings.

2. Embedded System Firmware. RTOS is widely used in embedded systems.
Fuzzing has proven to be an efficient and effective method to detect RTOS memory
corruption vulnerabilities. However, low-powered and slow-speed embedded devices
are not designed for fuzzing due to their small throughput. Therefore, prior fuzzing
works targeting RTOS run it in a simulated environment—a technique called
re-hosting. The re-hosting environment simulates the processor, memory, and
necessary peripherals to support the RTOS image execution. However, prior
works rarely considered the peripheral interrupt triggering problem, which is a
fundamental part of RTOS re-hosting and fuzzing. Without a proper interrupt-
triggering mechanism, the RTOS may crash or get stuck in a very early stage. The
fuzzing effectiveness can also be hindered due to improper interrupt triggering.
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We observe that to solve the interrupt-triggering problem, identifying the RTOS
run-time state is the key point. The correct execution of RTOS demands an
interrupt only when it is in a specific run-time state. Based on this insight, we
designed and implemented a fuzzing framework, Aidfuzzer, to tackle the interrupt-
triggering problem in RTOS fuzzing. Aidfuzzer identifies the RTOS runt-time
state dynamically, and triggers interrupts when necessary. Our experiments show
that Aidfuzzer outperforms the state-of-the-art works in coverage and vulnerability
detection. Our experiments found eight new vulnerabilities, and five CVEs were
assigned.

3. TEE Design. Existing application-based TEE schemes such as SGX do not
provide full backward compatibility, which means developers are required to design
and implement the new application from scratch. Virtual machine-based TEE
schemes such as CCA contain large code bases that expose more attack surfaces.
In this thesis, we propose VirTEE, a full backward-compatible TEE that utilizes a
RISC-V hypervisor extension and prior hardware memory isolation work to address
the existing TEE shortcomings. VirTEE puts a hypervisor shim in the TEE,
which exposes necessary TEE functionalities such as attestation and transparent,
secure IO to the virtual machine so that an unmodified operating system can
run directly in it. In the meantime, we keep the hypervisor shim as small as
possible, making it less vulnerable to memory corruption vulnerabilities. In our
experiments, VirTEE achieves comparable performance with the existing virtual
machine-based TEE scheme.

The three targets all choose the memory-unsafe programming language C. Our
analysis reveals that nowadays, memory corruption vulnerability is still a main threat
to low-level software security. When designing and implementing low-level software,
developers are supposed to pay more attention to it.

1.4 Thesis Roadmap

In this thesis, we present the overall high-level technical background in Chapter 2. In
Chapter 3 4 5, we introduce our memory safety analysis details against the three targets.
Note that the detailed technical background for each specific target is included in the
specific chapter for clearance. In chapter 6, we present the related works about low-level
memory safety analysis and the security mechanism that takes advantage of hardware
features. In Chapter7, we conclude the thesis and propose our future works.
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2.1. HARDWARE FEATURES

In this chapter, we present the hardware features provided by the processors that
are closely related to the works in this thesis. In particular, the processor features
TEE, hypervisor, Intel PT, Intel VT-x, and secure boot are introduced. Embedded
system basic processor mechanisms such as interrupt and Memory-mapped I/O (MMIO)
are related to the embedded firmware fuzzing and thus also included in the chapter.
Further, the type, causes, and consequences of memory corruption vulnerability are
demonstrated. Finally, a technique used to detect software memory corruption called
fuzz testing (fuzzing) is presented.

2.1 Hardware Features

In this section, we introduce hardware features provided by the processors. Note that
we only illustrate the general concepts of the feature. The specific feature details are
presented in each target analysis chapter.

2.1.1 Trusted Execution Environment

A Trusted Execution Environment (TEE) is a secure region of a processor that ensures
sensitive data and operations remain protected from unauthorized access, even if the
rest of the system is compromised. Unlike traditional computing environments where
the entire OS and applications share the same memory and execution resources, TEEs
segregate secure operations into separate environments. This segregation protects
sensitive operations from privileged software like the OS and hypervisor. TEE operates
as an isolated execution area, providing confidentiality, integrity, and authentication
for critical code and data. The processor vendors propose such a feature to address
the threat model where the end-user application runs in an untrusted environment
such as a cloud server. TEE guarantees that the end-user data is protected against a
malicious attacker with the highest privilege who has full control over the system. The
key characters [54] of TEE are:

• Isolation. TEE ensures that operations inside the TEE are separate from the
rest of the system.

• Confidentiality. Prevents unauthorized access to data within the TEE, even
with the highest privilege.

• Integrity. TEE ensures the correctness and protection of both code and data
during execution, which means memory-write from non-TEE is automatically
discarded by the processor.

There are two types of TEE design schemes: application-based TEE and virtual
machine-based TEE.

Application-Based TEE. A typical application-based TEE example is Intel
SGX [103]. The secure region in TEE is called the enclave. Developers wrap the code
that needs to run in the trusted environment as a library. The whole SGX application
runs as a single process. As shown in Figure 2.1, the enclave library runs in enclave
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Figure 2.1: SGX design overview

memory, which is located in the user space. Compared with the conventional processor
memory access permission that privileged OS can read and write any physical memory,
the enclave memory is only accessible to the enclave code. Naturally, the processor does
not allow a direct jump from the non-enclave to the enclave and vice versa. Especially,
SGX provides a set of instructions such as EENTER and EEXIT to perform the
controlled context switch between the two regions.

Similar to system calls, to use the functionalities provided by the enclave library,
non-enclave code performs a special context switch from non-enclave to enclave (i.e.,
ECALL in Figure 2.1). The transition is confined and checked by the processor. Only
when the target address is a valid entry located in the enclave metadata the transition
permission will be granted.

The SGX design prevents access from the privileged OS to the enclave. On the other
hand, the enclave code cannot directly invoke the system calls. To have access to OS
functionalities, the enclave code has to first transit to the non-enclave (i.e., OCALL in
Figure 2.1). Some predefined functions that are regarded as stubs in the non-enclave
memory are responsible for forwarding requests to the OS. When the system calls
return, the enclave code reads the return value and buffers from the stubs to the enclave
memory.

Application-based TEE is lightweight but does not provide compatibility with the
existing libraries. Developers start from scratch with the SDK provided by Intel.
However, it has been proven that application-based TEE cannot be accepted by the
industry.

Virtual Machine-Based TEE. Putting the whole virtual machine in the TEE
eliminates the manual effort of developing the TEE applications from scratch, and it has
been a popular TEE scheme nowadays. Intel TDX [104], ARM Trust Zone [5], and AMD
SEV [134] are well-known virtual machine-based schemes. As shown in Figure 2.2, ARM
TrustZone [5, 156] split the system into two parts: a normal world and a secure world. A
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rich OS serves the normal world, while a lightweight, secure OS serves the secure world.
The two worlds communicate via a secure monitor, which acts like a context switch.
Normal world software can only use the services provided by the secure world by using
a hardware interrupt, an external abort signal, or the software instruction SMC. The
hardware interrupts and aborts are asynchronous and only support a full-world switch,
while SMC also supports message passing without a complete changeover. Secure world
software can use these methods or write directly to the CPSR. Secure monitor code
executes with interrupts disabled due to volatility concerns.

Virtual machine-based TEE provides backward compatibility. Developers only need
to focus on the TEE application logic implementation instead of worrying about the
library dependency. It has proven to be the TEE scheme accepted by most processor
vendors and communities.

2.1.2 Hypervisor

A hypervisor (also known as a Virtual Machine Monitor or VMM) is a software or
hardware layer that creates and manages virtual machines (VMs) by abstracting the un-
derlying physical hardware. It enables multiple operating systems to run concurrently on
a single physical machine, sharing resources like CPU, memory, storage, and peripherals.
Hypervisors are a critical component in virtualization technology and play a significant
role in cloud computing, development environments, and server consolidation. There
are two types of hypervisors. Type one 2.3 hypervisors such as Microsoft Hyper-V [149]
and VMware ESXi [218] run directly on the hardware and manage guest operating
systems. They directly manage the hardware resources and the communication between
virtual machines. Type two 2.4 hypervisors such as VMware Workstation [217] and
Oracle VirtualBox [159] run inside a booted operating system. They rely on the host
OS to manage the hardware resources.

Second Level Page Table. The Second Level Page Table is a hardware-assisted
memory virtualization feature used by hypervisors to manage guest virtual memory
efficiently. In a virtualized environment, a guest operating system assumes it has
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direct access to the hardware memory. However, the hypervisor must manage the
translation of the guest’s memory access to the actual physical memory of the host
machine. The second-level page table simplifies this process by adding another level
of page tables, reducing the need for software-based translation. The guest’s virtual
address is translated into the guest’s physical address via the guest page table, which
is further translated into the host’s physical address via the second-level page table.
The translation process happens automatically in the memory management unit of the
processor, making the translation overhead negligible. As reported by kAFL [183], with
Intel-VTx that enables second-level page table acceleration, virtualized applications can
achieve 45 times faster than QEMU software memory translation.

Device Simulation. Device simulation refers to the process of emulating or
virtualizing hardware devices within a virtualized environment, allowing guest operating
systems and applications to interact with virtual devices as if they were physical
hardware. The hypervisor is responsible for simulating these devices and managing their
interactions with the host system’s actual hardware. The device access via the IO port
or MMIO can be trapped into the hypervisor, which allows the hypervisor to intercept
the peripheral-OS communication. A virtual machine running in a para-virtualized
environment is aware of the hypervisor and communicates with it via low overhead
virtio devices.

2.1.3 Intel PT and VT-x

Intel PT [102] and Intel VT-x [106] technologies are two Intel processor features that
enable program trace and hypervisor.

Intel PT. Intel PT (Processor Trace) is a hardware feature for fine-grained tracing
of program execution. It enables developers and security researchers to capture detailed
information about how software executes on the CPU. Intel PT is widely used in
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debugging, performance analysis, and reverse engineering. It can be used to capture
control flow changes (e.g., branches, jumps, calls, and returns) in the program execution.
Due to its low overhead and selective tracing mode, coverage feedback-driven fuzzing
can benefit from this feature, which we will discuss later in the chapter.

Intel VT-x. Intel VT (Virtualization Technology) is a suite of hardware-assisted
virtualization features that enable the efficient execution of virtual machines. It reduces
the performance overhead of traditional software-only virtualization by offloading key
tasks to the CPU. It can virtualize CPU, memory, IO, and interrupt resources. Intel
processors provide VMEXIT and VMETER instructions to switch into and out of a
virtual environment. KVM relies on this feature in an Intel processor to create a virtual
machine environment.

2.1.4 BIOS and Secure Boot

BIOS (Basic Input/Output System) is firmware embedded in a computer’s motherboard
(usually in the SPI flash memory in an IBM-compatible computer) that initializes
hardware during the booting process and provides runtime services for operating
systems and applications. It is the first code executed when a PC is powered on and
plays a key role in the startup sequence. The legacy BIOS does the Power-On Self
Test (POST), initializes the hardware, invokes the bootloader, and then simply exits.
Modern predecessor BIOS standard UEFI provides more features than legacy BIOS.
After loading the bootloader, UEFI remains in the memory and provides runtime service
to the bootloader and the operating system.

Secure boot [105] is a security feature implemented in UEFI firmware to ensure that
only trusted software is loaded during the boot process. It protects against malicious
software, such as rootkits or bootkits, that could compromise the system at startup.
Secure boot functions as a chain of trust; the former component verifies the next one
and decides whether or not to load the next component.

2.2 Embedded System

An embedded system is a specialized computing system designed to perform dedicated
functions or tasks. Unlike general-purpose computers, embedded systems are optimized
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for specific applications, often with strict constraints on performance, power consumption,
and size. Real-Time Operating System (RTOS) is a kind of lightweight OS that usually
contains a simplified task scheduler, peripheral access wrapper, and necessary standard
library. RTOS is designed for embedded systems due to its small code base, which can
fit into a small physical memory.

2.2.1 Interrupt

An interrupt is a mechanism in computing that temporarily halts the execution of
the current program to address an event or request that requires immediate attention.
Once the interrupt is handled, the system resumes the execution of the interrupted
program. Interrupts are essential for responsive and efficient system behavior, allowing
the processor to respond promptly to asynchronous events, such as hardware signals
or software exceptions. In an embedded system, interrupts are handled in a way that
minimizes latency while maintaining deterministic behavior.

2.2.2 Memory-Mapped I/O

In a reduced instruction set processor, peripherals are accessed by uniformed memory
access called Memory-Mapped I/O (MMIO). In MMIO, hardware devices such as
peripheral controllers are mapped into the same address space as the system’s RAM.
This allows the CPU to interact with hardware devices using standard memory access
instructions. When a large amount of data needs to be transferred from peripherals
to the DRAM, Direct Memory Access (DMA) is used. When configured, DMA allows
peripherals to use the bus for data transferring without CPU interception.

2.3 Memory Corruption Vulnerability

Szekeres et al. [200] mentioned that memory corruption vulnerability has existed for over
30 years. Memory corruption vulnerability begins with a memory error. Depending on
the type of the error, de-referencing an out-of-bound pointer is called spatial error, while
de-referencing a dangling pointer is called temporal error. The naming methodology
is straightforward. An out-of-bound pointer does not point to the intended location,
while the dangling pointer once points to a valid memory however, it becomes invalid
when de-referencing. A typical spatial error is stack overflow, by overwriting the return
address of the current function hijacks the control flow execution. Use-after-free is a
common temporal memory error, which usually refers to a heap memory being used
after the memory is deallocated. Attackers exploit memory corruption vulnerabilities to
change the intended behavior of the target.

2.3.1 Exploitation

The attacker’s goal is to change the application’s normal execution behavior. The main
method to achieve their goal is to alter the application control flow but not confined to
it.
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Shellcode. Shellcode is a sequence of machine instructions that is crafted to execute
a specific payload on a target system, often as part of an exploit, giving attackers control
of a compromised system. A typical shell code can be injected by the attack to the
target application to swap a new shell process. In certain circumstances, shellcode might
be detected by intrusion detection mechanisms, some interesting works [141] generate
ASCII character shellcode, printable shellcode, or even English shellcode. However,
modern shellcodes can perform a wide range of tasks beyond launching a shell, including
downloading files, injecting processes, or escalating privileges. The crafting of shellcode
depends on the specific platform and environment.

Code Reuse. Code reuse attacks exploit vulnerabilities in software to execute
malicious actions by reusing existing code (called gadget) within the target application
or system rather than injecting new code. These attacks circumvent security measures
such as Data Execution Prevention (DEP), which marks certain memory regions as
non-executable, preventing traditional code injection. Prominent examples of code reuse
attacks include Return-to-Libc (ret2libc), Return-Oriented Programming (ROP) [169],
and Jump-Oriented Programming (JOP) [24]. These techniques are widely used by
attackers to compromise systems while evading detection and mitigation. Theoretically,
the larger the code base is, the more gadgets the attacker could use to launch the attack.

Data Only Attack. When control flow hijacking is not possible, attackers can
solely modify the application data and reuse the application logic to alter the application
behavior. The attacker’s goal can be achieved without modifying data that is explicitly
related to control flow. For example, the attacker might exploit a buffer overwrite
vulnerability to change an integer, which indicates the current user’s permission to gain
higher privilege than normal execution. Hu et al. proposed Data-Oriented Programming
(DOP) [98] to construct expressive non-control data exploits for arbitrary x86 programs.
They show that the attack can construct a Turning-complete attack in two out of nine
real-world programs.

2.3.2 Mitigation

The security community has appealed to programmers to carefully consider the memory
safety problems when coding. However, memory safety issues are still threatening the
application execution. To enforce and eliminate the application memory safety. Several
mitigation methods are proposed to prevent it from happening.

Canary. Canary protection is a security mechanism designed to detect and prevent
stack-based buffer overflows. This technique is widely used in modern operating systems
and compilers (e.g., GCC’s Stack Smashing Protector) to protect programs from attacks
that exploit stack memory to overwrite critical data such as return addresses or function
pointers. A canary value is placed between the local variables and the control-sensitive
data (e.g., return address, saved frame pointer) on the stack. This ensures that any
overflow attempting to overwrite the return address must first modify the canary. Before
a function returns, the program checks whether the canary’s value has changed. If the
canary is intact, the program continues execution normally otherwise, it terminates or
takes predefined defensive actions.

ASLR. Address Space Layout Randomization (ASLR) is a security mechanism that
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enhances program resilience against memory corruption attacks by randomizing the
memory addresses of critical program components. By making the locations of the stack,
heap, libraries, and other sections unpredictable, ASLR mitigates attacks that rely on a
known address of the target code. Since the attacker needs to hijack the control flow of
the target, ASLR makes the target address unpredictable, making the application crash
immediately instead of behaving abnormally. Lu et al. proposed ASLR-Guard [133] to
further augment the protection by separating the data and code region and decoding
the pointer when they are translated to the other.

NX. NX (No-eXecute), also known as Data Execution Prevention (DEP), is a
hardware and software-based security feature designed to prevent the execution of
malicious code (intended to be data such as shell code) in non-executable memory
regions (usually by putting the data in non-executable pages). By enforcing the
separation of code and data, NX protection mitigates many types of memory corruption
attacks, including stack-based buffer overflows and heap exploitation.

CFI. Control Flow Integrity (CFI) ensures that the program’s execution adheres to
a predefined, legitimate control flow. CFI effectively prevents attackers from redirecting
execution to malicious or unintended code. There are many prior CFI works published
in the last decades [32, 232, 114]. As claimed by Becker et al. [19], CFI has not been
deployed by the majority of the binaries, making them suffer from control flow hijacking.
However, most CFI rely on static compile-time data to guide the run-time control flow
destination address check. It makes the CFI policy somewhat unsound and can be
bypassed by carefully crafted control flow hijacking.

2.4 Fuzz Testing

Fuzz testing, or fuzzing, is a technique used to discover bugs in the software. The original
methodology is straightforward: feed random inputs, execute the target software as
an oracle, and get a report from the running result. If a crash is reported, a potential
vulnerability might exist. Nowadays, fuzzing has evolved several times from black-box
fuzzing (also called dumb mode) to the current feedback-driven fuzzing. As a popular
research topic these years, various parts of fuzzing, such as input scheduling, feedback,
and seed generation, have been discussed and solved.

2.4.1 Black-Box Fuzzing

During the early ages of fuzzing, fuzzing solely interacts with the target application via
the command line, file, and APIs. The workflow is simple: generate the initial inputs,
mutate the input, feed the input to the target application and run the target, wait for
the target to exit and collect the exit result, and check if the input can cause a crash to
the target. Without additional information, the method is low-efficient however, it can
still detect vulnerabilities at that time.

2.4.2 Code Coverage Feedback

In 2013, AFL [147] was invented by Zalewski, which signifies a milestone in fuzzing
research. The key insight of AFL is that the explored code of an input can be used as a
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metric to drive the fuzzing process. When an input can trigger a path that has not been
discovered previously by other inputs, it is regarded as an interesting input and saved in
the corpus. The inputs in the corpus will be used as seeds to be mutated in the following
rounds of fuzzing. The methodology is straightforward: a vulnerability can only be
detected when the vulnerable code is executed, that said, the more code the fuzzing can
explore, the more vulnerabilities a fuzzer can detect. Saving the interesting inputs in
the corpus breaks the long-distance and hard-to-reach program execution point into
several short-distance and easy-to-reach segments. After that, based on path coverage
feedback, many works regarding seed generation [190], mutation strategies [108], input
schedules [25], value predicting [9], exploration navigation [8], and a mix of them [80]
were proposed.

2.4.3 Feedbacks Beyond Code Coverage

Researchers found that path coverage feedback does not always reflect how interesting
the input is. For example, when fuzzing a protocol that implements a finite state
machine, the state of the protocol logic is more important than how many paths an
input can cover. More feedback such as state coverage [243, 224, 167, 241, 10] and data
coverage [225, 78] are proposed to reflect the diversity of the quality of the input.

2.4.4 Fuzzing Modularization

Fioraldi et al. [81] proposed LibAFL, a modularized fuzzing framework that can be
customized by the developers, which we believe pinpoints the development future of
fuzzing. They split a fuzzer into several interconnected components: Observer, Executor,
Feedback, Input, Corpus, Mutator, Generator, Stage. An observer provides the execution
information, such as how many edges an input can trigger. An executor is responsible
for launching the target. The executor can be as simple as a function as well as a
complex enough process such as a fork server. The fuzzer treats it like an unseparated
oracle to simply run the target once. The feedback determines if an input is interesting
or not. Once the input is determined interesting, it is added to the corpus. Note that
several feedbacks can be assigned, and the results are unified to determine the result.
Feedback is usually bound with an observer, however, it is not always. For example,
edge coverage feedback needs the coverage observer to provide the edge information
during the execution, however, to determine if the input is interesting, the feedback also
needs to maintain the previously explored paths. An input is input fed to the target
application. The format of the input can be a sequence of bytes or a grammar-based
string. A corpus is a collection of inputs bound with meta-data, which can be stored
in memory, disk, or disk and also cached in memory. The mutator mutates one input
according to its format. A bytes stream input may involve mutation strategies such as
bit-flit and byte-shuffle operations. The generator generates initial inputs for fuzzing.
However, researchers commonly choose to provide their initial seeds, which gain better
performance. The stage reflects a single operation on an input selected from the corpus.
For example, a mutational stage mutates an input from a corpus, executes the target
with the mutated input several times, and checks if the input is interesting. The
modularization models the fuzzing process into several components that allow the user
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to customize. It clearly defines what each component should perform and provides a
universal interface to extend them. We believe LibAFL will be accepted and extended
by the community, and a more robust framework will come out soon.

2.4.5 Domain Specific Fuzzing

LibAFL defines a general model for fuzzing despite their detailed implementation. How-
ever, to overcome the specific problems when fuzzing the applications that are hard to
harness, tailored methods are required. For example, when fuzzing the Linux kernel,
even with powerful computing resources and carefully manually crafted system call spec-
ifications [89], it is still hard to detect the hard-to-trigger race condition vulnerabilities.
Therefore, prior work such as ExpRace [123] proposed interrupt-triggering to tackle
this problem. When fuzzing closed-source applications, it is hard to instrument the
binary to collect the path coverage. Static binary rewritings such as Retrowrite [66]
and MULTIVERSE [16] either work in limited environments or are not sound enough.
Dynamical run-time binary writing works such as Intel Pin [151] and DynamoRIO [68]
can accurately instrument the target. However, they are not coherently designed for
fuzzing and, therefore, incur high-performance overhead. Besides, they are not able to
fuzz system-level applications such as operating systems and hypervisor. Embedded
system software designed to be executed in low-powered MCUs is not fuzzable in a
native high-performance native environment. LibAFL QEMU [140] and Afl Qemu-mode
were proposed to run the target in a simulated environment to solve these problems.
Thanks to the Qemu instruction translation mechanism, the target instructions are
translated into intermediate code and further translated into native instructions. This
allows easy instrumentation during the translation process and gains a high performance
by maintaining the translation result cached in memory. In addition to instruction
translation, Qemu provides detailed introspection of the running target, allowing reading
and modifying any internal state of the target, such as interrupt, physical memory, and
peripheral register values.
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3.1. OVERVIEW

3.1 Overview

As mentioned before, low-level software is executed in the early stage of system booting
or requires high hardware privilege to run. A bootloader is a program executed during the
early stage of system booting. Its purpose is to initialize a preparatory environment for
loading the operating system (OS) from a storage device into memory. After powering
on a computer, the firmware is loaded first and performs the necessary power-on self-test
(POST). Once the firmware completes its tasks, it hands control to the next component—
the bootloader. The bootloader then continues setting up the remaining environment,
including the CPU, memory, and peripheral devices, for the next component, usually
the OS. Obviously, the bootloader is a typical low-level software that plays an important
role during the boot process, as it connects two crucial components: the firmware and
the operating system.

Modern computers commonly adopt a security mechanism called secure boot [105]
to prevent malicious or modified software from being loaded. This mechanism functions
as a chain of trust: each component checks and verifies the next component to ensure
it is signed by a valid digital signature. If a component fails this check, the next
layer is not loaded. During the booting process, the bootloader is responsible for
examining and validating the OS. A malicious or tampered OS can break this security
guarantee and make the system vulnerable, hence secure boot plays a central role when
building trustworthy systems. As a key part of the secure boot chain, the bootloader
is responsible for verifying the operating system, loading its image into memory, and
launching it. Therefore, the bootloader must be designed and implemented securely.
However, bootloaders have increasingly provided more features and functionalities for
end users. As the code base grows, bootloaders inevitably expose more attack surfaces.
For instance, the popular Linux bootloader GRUB [87] supports more than 20 types
of file systems. Additionally, it allows users to customize the background image, font,
and keyboard layout, as well as downloading files from HTTP or TFTP servers. Other
bootloaders, such as Das U-Boot [63] and barebox [15], face the same situation. The
larger the code base becomes, the more vulnerable it gets.

In recent years, vulnerabilities, particularly memory safety violations, have been
discovered in various bootloaders. Some of these vulnerabilities can lead to denial
of service or even bypass secure boot protections. Roee [93] discovered a variety of
vulnerabilities in Android device bootloaders. Due to the limited physical access to
mobile devices, communication with the device is confined to fast boot commands [2].
However, the command line parsing logic has caused more than ten vulnerabilities in
Android bootloaders. While physically accessing a Personal Computer (PC), such as
plugging in an extra USB stick, is easier than accessing mobile devices, PC bootloaders
face more attack surfaces. Researchers recently reported secure boot bypass vulnerabili-
ties in bootloaders affecting hundreds of consumer and enterprise-grade x86 and ARM
models from various vendors, including Intel, Acer, and Lenovo [62]. The vulnerabil-
ity originates from an image-parsing library, giving the attacker full control over the
system. Similarly researchers reported an HTTP implementation vulnerability [208] in
shim [173]: an attacker can exploit an out-of-bound memory write to compromise the
entire system. Other bootloader vulnerabilities, such as BootHole [69], CVE-2022-30790,
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CVE-2022-30552, and CVE-2023-20064, continue to threaten system security.
Although bootloaders for desktop and server computers play a security-sensitive

role, a comprehensive and systematic memory safety analysis of them is still missing.
Existing studies either do not address such bootloaders or only focus on a single attack
vector. For example, BootStomp [174] and Roee [93] have only analyzed bootloaders for
mobile devices, with a specific focus: BootStomp analyzed storage data controlled by
the attacker that could compromise the bootloader, while Roee focused exclusively on
command line inputs. Although bootloaders for desktop and server computers expose
more attack surfaces compared to bootloaders for mobile devices, they have been less
scrutinized so far. Axtens [60] and Starke [157] have proposed fuzzing techniques for
GRUB [87] and Das U-Boot [63]. However, their analysis was limited to command-line
parsing logic. The attack surfaces of bootloaders go far beyond command-line parsing.

In this thesis, we perform the first comprehensive and systematic memory safety
analysis of bootloaders and focus on the various attack surfaces that an attacker
can exploit to compromise them. We start with a survey of previous bootloader
vulnerabilities, which shows that attacks can primarily originate from peripheral inputs.
Without the support of a rich OS environment, bootloaders must implement their
standalone infrastructures, including drivers, task schedulers, timers, network protocol
stacks, and more. For example, the bootloader must perform storage device reads,
partition detection, file system parsing, file handler management, and file parsing to
support file parsing. Since the storage data can be controlled by attackers, each layer
represents a potential point of attack. Our analysis identified three types of peripheral
inputs with the most attack surfaces: storage, network, and console.

Storage. To allow users to boot from different storage devices and file systems and
to support other custom features, bootloaders implement a whole stack of file operations,
including block device drivers, file system operations, and different types of file parsers.
The implementation logic at each level is complex and error-prone. An attacker can
easily compromise the bootloader by inserting a malicious storage device, such as a
USB flash drive.

Network. To support booting over the network, such as PXE boot, bootloaders
implement a complete network operations stack, including network controller drivers,
the TCP/IP protocol, and application layer protocols. Some bootloaders even allow
users to test the network status by sending ICMP packets. An attacker can hijack
and manipulate network traffic or corrupt the server to send malicious packets to the
bootloader. These network packets are processed by each layer of the network protocol
stack, again increasing the attack surface.

Console. Some bootloaders provide users with an interactive interface, such as
a command line console. An attacker who has physical access to the bootloader can
exploit console parsing vulnerabilities by entering malicious command line strings into
the console.

In addition to these three main types of peripherals, bootloaders also support other
peripherals, including LED lights, power adapters, and video controllers. However,
these peripherals usually do not have complex high-level parsing logic and provide less
attacker-controllable data compared to the three main types discussed above.

To address the security challenges of bootloaders identified in our analysis, we
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developed an automated approach to test them for potential vulnerabilities. More
specifically, we develop a fuzzing framework for bootloaders, building on the proven
effectiveness of fuzzing in detecting memory corruption vulnerabilities. Unfortunately,
no existing solutions can be directly applied to bootloader fuzzing and we found that
two main challenges need to be solved:

• Bootloaders run in a bare metal environment, which means that simple fuzzing
frameworks like AFL [147] libFuzzer [132] cannot be directly deployed. Moreover,
existing sanitizers cannot be used due to compatibility issues. Previous work [157]
which compiles the bootloader into a native application indicates that crashes can-
not be reproduced in the real bootloader because of environmental inconsistencies.
Therefore, it is necessary to fuzz the bootloader in a real environment.

• In contrast to common user applications, bootloaders offer numerous attack
surfaces. Fuzzing some of these interfaces requires dual operations. For example,
when fuzzing a file system, file operations are required to trigger the parsing of the
file system, while the fuzz input must be fed by intercepting the storage device
data access.

To address these challenges, we simulate a virtual machine (VM) running in a
hypervisor to create a real environment for the bootloader. Using a consistent operating
environment helps to reduce false positives. We assume that the bootloader source code
is available. Based on this, we designed a custom heap sanitizer specifically targeting
bootloaders to detect heap overflow vulnerabilities. In addition, the observation that
the malicious input origins are limited allows us to identify the universal interfaces and
operations to intercept peripheral access and trigger device data processing. With the
help of the simulated environment, the customized heap sanitizer, and the test harnesses,
we can effectively fuzz the most important attack surfaces of bootloaders.

In an empirical investigation, we analyzed nine bootloaders, including the Linux
standard bootloader GRUB and two well-known bootloaders for embedded systems (Das
U-Boot and barebox). We spent three weeks fuzzing each bootloader and discovered 38
new vulnerabilities. Of these, 29 were confirmed or patched by the developers, and 5
CVEs were assigned.

3.2 System Boot Process and Bootloader Features

In this section, we first introduce the two main types of firmware from which the
bootloader is started. We then explain how the bootloader takes control of the system and
also discuss the typical workflow of a bootloader and the runtime environment in which
it operates, covering CPU state, memory layout, library support, and peripheral access.
Although we use the Intel x86/x64 architecture as an example, the concepts for the
workflow and runtime environment apply similarly to other architectures. Additionally,
we describe the common features provided by the bootloader, which either enable a
user-defined interface or assist in booting the OS.
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Figure 3.1: Schematic overview of bootloader workflow

3.2.1 PC Firmware

There are two main types of firmware implementations: BIOS (Basic Input/Output
System) and UEFI (Unified Extensible Firmware Interface). Both perform similar tasks
during the initial boot phase: when the system is switched on, the firmware flashed onto
the board by the manufacturer is executed by the processor. This firmware initializes and
tests the system hardware, a process known as power-on self-test (POST), which includes
components such as the CPU, DRAM, motherboard, and GPU. The firmware then loads
the bootloader, usually from a storage device, which further initializes the OS. The
firmware adheres to either the BIOS or UEFI standard to load and communicate with
the bootloader. We elaborate on the differences between these two types of firmware.

BIOS. As a legacy boot design, BIOS offers a straightforward method for loading
the bootloader. It enumerates the storage devices and checks if the first sector matches
the signature 0x55AA [228]. If the firmware recognizes the first sector as a boot sector,
it reads the sector into memory at a fixed address (0x7C00 on an IBM PC-compatible
computer) and then jumps to this address. The boot sector, also known as the Master
Boot Record (MBR), contains only the first stage of the bootloader. The size of the
MBR (512 bytes) is too small for a bootloader to perform all its functions, so the
first stage bootloader loads additional sectors from the storage device and continues
execution from there. The BIOS provides utilities for the bootloader, such as access to
the hard disk via interrupts [171]. Once the bootloader has initialized the OS, the OS
overwrites the interrupt table, and the firmware ends its life cycle.

UEFI. UEFI is the successor to BIOS and overcomes several of its limitations. For
example, it supports GPT partition tables, which enables the use of large storage devices.
While the BIOS firmware looks for the MBR, the UEFI firmware can recognize the
partitions of storage devices and understand the FAT file system. UEFI identifies the
boot partition via a specific GPT partition GUID [213] and tries to analyze the partition
as a FAT file system. When successful, it searches for the boot application file [161] and
loads it into memory. In this scenario, the bootloader appears as a UEFI application.
While the bootloader is running, the firmware uses the EFI System Table [212] (a set of
function pointers) to provide boot services [214], such as reading files and allocating
memory. After initialization of the OS, the firmware remains in memory and provides
the OS runtime services [215].

For the rest of the chapter, we will refer to bootloaders loaded and launched by
BIOS firmware as “BIOS bootloaders” and those loaded and launched by UEFI firmware
as “UEFI bootloaders”.
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3.2.2 Bootloader Workflow

The bootloader typically consists of several runtime steps to achieve its final goal—
booting the OS. Although the implementation may vary across different bootloaders,
we can generalize the workflow into the following five stages as shown in Figure 3.1:

1. The MBR sets up a simple execution environment, such as the stack and BSS
segment, and then loads the next stage data from the storage device into memory.

2. The temporary loader parses the storage device partitions to find the bootloader
image file. If the file exists, the bootloader loads the image into memory and
begins execution from there.

3. The UEFI firmware takes over the tasks of the first two stages. Therefore, the
UEFI bootloader has the same workflow as the BIOS bootloader from the third
stage onwards. In this stage, the bootloader image has been loaded into the
memory and the bootloader initializes the entire execution environment. Global
data structures, necessary peripheral devices, and configuration files are initialized
in this phase.

4. In the fourth stage, the bootloader provides the user with an interactive shell,
if available. The user can perform peripheral access tasks such as reading files,
sending network packets, and changing OS parameters. In particular, the UEFI
bootloader can dynamically load drivers at this stage based on user requests.
These drivers can introduce additional features and functions, e.g., support for
additional file systems and different types of file parsers.

5. In the final stage, the bootloader loads the OS image into memory and prepares
the configuration parameters according to the user’s modifications. Finally, the
bootloader hands over control to the OS, thus concluding its life cycle.

3.2.3 Runtime Environment

Unlike the OS, the bootloader operates in a bare metal environment after the firmware
hands over system control. Specifically, the bootloader runtime environment has the
following characteristics:

CPU & Memory. The BIOS bootloader starts in real mode [101]. It initializes a
simple flat segmentation scheme and keeps paging disabled throughout its life cycle [87,
129, 63]. Without paging support, the bootloader can access almost any memory
without crashing. In contrast, the UEFI firmware provides the bootloader with a more
complete environment. Once the UEFI application is loaded by the firmware, paging
and segmentation are properly initialized. Consequently, any invalid memory access
directly leads to a CPU exception.

Library Support. In typical applications, several helper functionalities such as
the standard library [88], the operating system, and drivers facilitate a simple Hello
World printing function. However, for a bootloader, achieving the same functionality
is more challenging: without support from libraries and the OS, the bootloader must
implement its own task scheduling, file system, file parser, and utility functions such
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as memory copying and string comparison. For instance, a file-read operation requires
the bootloader to implement the entire stack of functions, including file path parsing,
file handler management, file system, block device access, and specific storage device
drivers. Although UEFI firmware provides a richer environment, including FAT file
system access and heap memory management, making development easier, it is still
insufficient to implement the complex features described in the following section. Due
to the limited environment support, the bootloader is designed and implemented as a
self-contained standalone application.

Peripheral Access. While the bootloader has limited library support, it has high
privileges to access peripherals. The Intel x86/x64 architecture does not allow user
space applications to access IO ports. However, the bootloader runs entirely in kernel
space, granting it full access to all peripherals.

3.2.4 Bootloader Features

The main goal of the bootloader is to facilitate the booting of the OS. While a simple
bootloader may directly load the OS image into memory and transfer control to it,
modern bootloaders offer richer features and functionalities beyond basic initialization.
We summarize the end-user features provided by bootloaders into the following five
categories:

UI Component Customization. The bootloader may provide end users with an
interactive command line or a graphical user interface. In both cases, the bootloader
allows the user to customize components such as background images, fonts, icons,
language, and other UI elements. To use a customized UI component, the user usually
has to place the file in a specific location specified by the bootloader. During initialization,
the bootloader automatically detects the components specified by the user and displays
them, improving the user interface.

Device Manipulation. The bootloader provides utilities that allow the user to
access peripheral devices, providing important tools for performing early hardware and
network tests. For example, these utilities allow the user to access the network card
and send ICMP ping packets to test Internet connectivity or read files to check the
functionality of the hard disk.

Authentication. For security reasons, certain bootloaders may require identity
authentication to access certain important configuration options. When a user attempts
to access sensitive functions, the bootloader prompts the user to enter a password or
provide an access token for authentication.

Boot Environment Preparation. Before starting the OS booting process, the
bootloader prepares the booting environment. It needs to allocate suitable memory for
the OS image, prepare the kernel parameters, verify the image integrity, and perform
other necessary tasks. The behavior can be adjusted according to the user’s requests,
such as by adding additional parameters to the kernel.

Boot Selection. Modern bootloaders support several boot methods, allowing the
OS image to be obtained from different sources, such as remote servers or local storage
devices. Bootloaders that implement the multiboot protocol [160] allow booting into
different operating systems. Users have the option to select a location or an image file
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Figure 3.2: Number and root causes of collected bootloader CVEs

from which to start the boot process.

3.3 Bootloader Memory Safety Analysis

In this section, we perform a comprehensive memory safety analysis of bootloaders. We
start with a survey of previous bootloader vulnerabilities to understand the historical
context and patterns of exploitation. By analyzing these past vulnerabilities, we identify
the main attack surfaces that an attacker can leverage to compromise a bootloader.
Based on these insights, we define the threat model for bootloaders. Afterward, we
present the nine bootloader targets selected for our analysis, along with the criteria
used to choose them. Finally, we perform a concrete analysis of the attack surface of
these nine bootloaders and use our observations to assess their security situation.

3.3.1 Survey and Lessons Learned

We exhaustively searched for all available bootloader vulnerabilities from the CVE
database and manually inspected their root causes. As shown in Figure 3.2, we categorize
the 85 collected vulnerabilities based on the attacker’s capabilities into three categories:
physical access, remote access, and context-dependent. With physical access, an attacker
can modify local storage data, plug in extra devices such as LED lights and USB sticks,
input commands, etc. Remote access allows an attacker to send the bootloader network
packets, Bluetooth messages, radio signals, etc. Context-dependent vulnerabilities exist
without specific access dependencies but still pose a risk under certain conditions. Our
analysis reveals that, with physical or remote access to the bootloader, malicious inputs
primarily originate from three sources: storage, network, and console, represented in
Figure 3.2 in dark green, pink, and yellow, respectively. For example, vulnerabilities
related to the file system and file parser are linked to storage, while IP packet issues
are associated with the network. As shown in Table 3.1, of the 85 CVEs from four
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Table 3.1: Number and distribution of collected bootloader CVEs

Storage Network Console Others Total
GRUB 18 2 10 3 33
barebox 0 3 0 2 5
shim 8 3 0 2 13
Das U-Boot 15 16 2 1 34

41 (48%) 24 (28%) 12 (14%) 8 (9%) 85

bootloaders, 48% are attributed to storage issues, 28% to network issues, and 14%
to console issues. Only 9% result from other factors such as heap allocator bugs and
side-channel timing attacks.

3.3.2 Threat Model

We assume that the attacker’s goal is to compromise the system by exploiting memory
corruption vulnerabilities, such as buffer overflows or null-pointer dereference, in the
bootloader to cause it to crash or even bypass the secure boot process. Specifically,
we outline the following heuristics regarding what attackers can and cannot utilize to
achieve their goals.

Firmware. We always assume that the firmware flashed on the board cannot be
directly modified by the attacker. Depending on the firmware implementation, modifying,
replacing, or updating the firmware image typically requires it to be signed with an
authorized key. If the firmware image is not properly signed, it will be immediately
rejected. Given that an attacker cannot forge a valid key, it is reasonable to assume
that the firmware remains intact. Furthermore, since the firmware executes before the
bootloader, an attacker who could modify the firmware would be able to corrupt the
system without needing to exploit bootloader vulnerabilities. With this assumption,
the integrity of the bootloader can also be verified and guaranteed, ensuring that the
bootloader image cannot be modified by the attacker.

CPU & Memory Access. We assume that the attacker cannot directly modify
the CPU state and memory, including CPU register values, cache, and memory data. A
bootloader running inside a virtual machine that can be introspected by a hypervisor
might be susceptible to such an attack. However, Trusted Execution Environments
(TEEs) such as Intel SGX [103], Intel TDX [104], and ARM TrustZone [5] address this
vulnerability. Finding vulnerabilities in TEE software [48] [240] [224] is beyond the
scope of this chapter.

Persistent Storage Access. We assume that the attacker cannot directly read or
write to persistent storage, such as NVRAM variables and the UEFI signature database,
as these are typically writable only by the manufacturers. Although some attacks [187]
can manipulate NVRAM variables from the OS, we exclude them from our threat model.
However, if the bootloader implements an NVRAM [227] variable access function that
can be exploited through malicious control hijacking, we consider this a valid attack.

Peripheral Access. We assume that the attacker has limited peripheral access
to the system. An attacker can plug in extra devices, such as a USB stick or hard
drive, and can modify any files on existing storage devices, except for the bootloader
and OS images, as we assume that their integrity has been verified during the secure
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Table 3.2: Detailed overview of the nine bootloaders selected for assessment. The image
size refers to the compiled bootloader’s binary size, note that certain bootloaders may
contain dynamic modules, which are excluded from the size. We only list the operating
systems explicitly claimed by the bootloader, though they might be compatible with
other operating systems. CI indicates whether the bootloader offers an interactive
command line string input interface for end users. We only list the features that are
supported at the time of thesis writing, developers might add more features after that.

Version # of
Source Files Image Size Supported Targets Firmware CI Last Update

GRUB [87] v2.02-beta2 5411 297KB Linux, GNU/Hurd, macOS, BSD
Solaris/illumos (x86 port), Windows BIOS,UEFI ✓ 2024.05

Limine [129] v7.x 442 105KB Linux BIOS - 2024.05

Das U-Boot [63] v2024.04-rc3 11048 1.0MB Linux, NetBSD, VxWorks, QNX
RTEMS, INTEGRITY BIOS ✓ 2024.05

barebox [15] v2024.01 4878 681KB RTOSes UEFI ✓ 2024.05

CloverBootloader [49] v2-5158 9048 1.6MB macOS UEFI - 2024.05

Easyboot [31] v1.0.0 47 69KB Linux, Windows, OpenBSD, FreeBSD, FreeDOS
ReactOS, MenuetOS, KolibriOS, SerenityOS, Haiku UEFI - 2024.04

rEFInd [175] v0.14.3 173 306KB Linux, Windows, macOS, TrueOS UEFI - 2024.04

systemd-boot [199] v256 92 213KB Linux UEFI - 2024.04

shim [173] v15.8 546 936KB GRUB UEFI - 2024.05

boot chain. However, if a memory corruption vulnerability leads to the modification
of the verification key and subsequently allows the loading of a malicious image, we
consider this a valid attack. We assume that an attacker can provide any input via
the bootloader peripheral access, such as malicious network packets to the network
card or keyboard input string to the console. However, the attacker cannot signal an
interrupt on behalf of the device, as this is relatively difficult to manipulate. In addition,
we assume that the full disk encryption mechanism is not deployed. If it is used, the
bootloader is usually a proprietary and close-source software to prevent physical attack.
Since the decryption key is not publicly available, we consider this situation outside the
scope of this chapter.

3.3.3 Target Selection

In this paper, we analyze nine bootloaders selected from a list of available bootload-
ers [229]. Our choice of targets is based on the following criteria:

Availability. Since proprietary bootloaders can be challenging to access and deploy,
we exclusively select open-source bootloaders for our analysis. Bootloaders bundled
with operating systems, those lacking available source code, or proprietary software are
excluded from our targets.

Maintenance. We select only those bootloaders that have been actively maintained
over the past two years. Legacy bootloaders, while still used by some users, are excluded
from our target selection due to potential compatibility issues with modern machines
and peripherals, as well as their lack of updated security checks and patches. Therefore,
we focus solely on actively maintained bootloaders for our analysis.

Version. We select the latest version of each bootloader if multiple versions exist
(e.g., GRUB [87] has several versions, but we specifically choose GRUB2 as our analysis
target).

Based on these criteria, we collected nine bootloaders as shown in Table 3.2. These
include widely used bootloaders such as GRUB, Das U-Boot, and systemd-boot. They
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Table 3.3: Bootloader attack surface analysis for storage device input(1)

File
config, jpeg, png

tga, font, mo
envblock, keymap

config, png, bmp
gif, psd, pic

jpeg, pnm, hdr
tga

fdt, slre base64, srec, fdt
bmp, png, qoi

File
system

zfs, affs, bfs
btrfs, cbfs, cpiofs
fatfs, ext2fs, f2fs

hfs, hfsplus, iso9660
jfs, minixfs, nilfs
ntfs, reiserfs, sfs

squashfs, udffs, ufs
xfs

fatfs, iso9660

btrfs, cbfs, cramfs
erofs, ext4fs, fatfs
reiserfs, squashfs
ubifs, yaffs2, zfs

jffs2

cramfs, ext4fs, fatfs
jffs2, squashfs, ubifs

bpkfs, nfs

Partition

Linux/ADFS, amiga
disklabel64

macintosh, GPT
MS-DOS, SUN

SUN PC, BSDlabel

GPT, MS-DOS amiga, GPT
MS-DOS, macintosh GPT, MS-DOS

GRUB Limine Das U-Boot barebox

Table 3.4: Bootloader attack surface analysis for storage device input(2)

File base64, svg, png
icns, bmp, png config png, jpeg, bmp

icns bcd, config csv

File
system

hfs, iso9660, ext2fs
ext4fs, reiserfs, fatfs

afs, befs, exfatfs
ext234fs, minix3fs

ntfs, ufs, xfs
fatfs, fszfs

btrfs, ext2fs, ext4fs
hfs, iso9660, reiserfs

ntfs
- -

Partition - - - - -
CloverBootloader Easyboot rEFInd systemd-boot shim

support mainstream operating systems: Windows, Linux, and macOS, and cover both
BIOS and UEFI environments. All selected bootloaders have been updated regularly up
to the time of writing this paper. We are confident that our selection is representative
for analyzing the memory safety of bootloaders.

3.3.4 Attack Surface Analysis in Practice

In this section, we conduct a detailed memory safety analysis of the three attack surfaces
storage, network, and console identified earlier for our nine selected targets. Although
other peripherals can also contribute to vulnerabilities, they do not involve the complex
processing logic found in these primary three attack vectors. Thus, we summarize them
as “others” which will be further discussed in Section 3.6 and focus on the main three
attack surfaces.

3.3.4.1 Storage

As shown in Table 3.3 3.4, storage device data follows a layered design. A storage
device is divided into several partitions, each of which can be formatted with different
file systems. The file system organizes and places various types of files in directories
appropriately.

Partition. The bootloader processes local storage data by first identifying the
partitions. The partition table contains metadata that allows the bootloader to identify
information about each partition. MS-DOS and GPT are two widely used partition
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schemes, both supported by four different bootloaders in our targets. Some bootloaders
depend on the UEFI firmware to recognize partitions and operate directly on the
partition. As a result, some bootloaders do not support any partitions themselves but
allow file systems to be deployed. Among the nine targets, GRUB supports the largest
number of partition types. If there is a vulnerability in the partition table processing
logic, the bootloader could be compromised. For instance, CVE-2019-13103, targeting
Das U-Boot, is an attack where a crafted self-referential MS-DOS partition table can
cause infinite recursion, leading to an infinitely growing stack.

File System. After identifying the partitions, the bootloader attempts to mount
file systems on them. The file system contains metadata, such as the superblock, inode
tables, and directory tables, to organize the files. Only after successfully mounting a
file system on a partition are subsequent file operations, such as opening, reading, and
writing files, allowed. The bootloader’s primary goal is to locate and launch the OS
image file, so supporting various file systems is essential. Among the nine bootloaders,
GRUB supports more than 20 types of file systems, the highest number. File systems
are complex and involve intricate processing logic, making their implementation prone to
bugs [234]. For instance, CVE-2023-4692 targets GRUB’s NTFS driver and demonstrates
an attack where a specially crafted NTFS file system image that contains a fragmented
master file table can lead to a heap overflow.

Files. Like any other application, the bootloaders also need to handle various types
of files. These can be summarized into the following three categories:

Multimedia To provide users with tailored interfaces, bootloaders allow customization
of the user interface, including fonts, background images, and even themes. As shown
in Table 3.3 3.4, common image types supported by bootloaders include PNG, JPEG,
and BMP.

Environment Related Flies A typical environment-related file is the configuration file.
This file can specify the path of the OS image, extra command line parameters passed
to the kernel, the boot protocol, and more. Bootloaders that provide an interactive
interface may treat the configuration file as a script and automatically execute it when
the bootloader starts. For instance, GRUB allows users to define variables and execute
GRUB shell commands within the configuration file. Another environment-related
file is the flat device tree (FDT), which details the peripheral information. Users can
customize this file to change the bootloader’s behavior to suit their preferences and
requirements.

Other Files We summarize other types of files in this category. They are occasionally
used by some specific bootloaders. For instance, shim uses CSV format to parse the
executable SBAT section data.

Parsers for various file formats are frequent points of attack in bootloaders. For
instance, CVE-2022-2601 demonstrates that a crafted, malicious font file with an
attacker-controlled size value can cause a heap overflow, ultimately circumventing the
secure boot mechanism.
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Table 3.5: Bootloader attack surface analysis for network device input(1). The first
column represents the OSI model layers. Protocol wrapper means that the bootloader
does not implement the whole protocol but processes the protocol payload data
directly.

Application HTTP, DNS
TFTP TFTP wrapper HTTP, TFTP, NFS

DNS, DHCP, SNTP
DHCP, DNS, NFS

SNTP

Transport TCP, UDP - TCP, UDP UDP

Network IP, ICMP
ICMP64 - IP, ICMP

ICMP64, NDP IP, ICMP

Data link ETH, ARP - ETH, ARP
CDP, RARP ETH, ARP

GRUB Limine Das U-Boot barebox

Table 3.6: Bootloader attack surface analysis for network device input (2).

Application - - - - HTTP wrapper

Transport - - - -

Network - - - -

Data link - - - -
CloverBootloader Easyboot rEFInd systemd-boot shim

3.3.4.2 Network

To support remote booting, such as PXE network boot and other network-related
features, bootloaders might implement their own network protocol stack. As shown
in Table 3.5 3.6, among the nine targets, GRUB, Das U-Boot, and barebox support a
full-stack network protocol. Bootloaders like Limine and shim rely on the firmware to
provide basic network protocol implementation. Limine and shim utilize the firmware’s
TFTP and HTTP, respectively, to download images into local memory. Each layer of
the network stack could be a potentially vulnerable point. For instance, CVE-2023-
40547 represents a heap overflow vulnerability in shim’s HTTP protocol implementation
(application layer). A crafted HTTP response containing a small value in the length
field leads to a small memory allocation, and the buffer is further overwritten by the
HTTP response content. Similarly, CVE-2022-30552 demonstrates an attack in the
network layer where a specific range of values in the IP length field can result in a buffer
overflow.

3.3.4.3 Console

Bootloaders that provide an interactive interface accept user input. Among the nine
analyzed bootloaders, GRUB, Das U-Boot, and barebox implement this functionality.
Note that some bootloaders provide the user with a selection list to choose which OS
to boot—we do not count it as an interactive interface. User input can trigger various
functions in the bootloader, such as reading a file or sending network packets. The
bootloader typically accepts user input as a string and parses it into several options.
This process can lead to vulnerabilities depending on the parsing implementation and
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Figure 3.3: Bootloader fuzzing overview

the functionalities involved. For instance, CVE-2020-27749 demonstrates such an attack:
An attacker can invoke the i2c command with a negative length value such as 0xffffffff
(-1 when parsed as a 32-bit signed integer). This value is treated as a signed integer,
bypassing the security check. However, it is later used as an unsigned integer, leading
to a stack overflow.

3.4 Generic Bootloader Fuzzing Framework Design

Our bootloader memory safety analysis revealed a wide variety of potential vulnerabilities.
Based on these insights, we now present the design and implementation of a fuzzing
framework to help developers detect new vulnerabilities at scale. Figure 3.3 shows a
high-level overview of the design. Since the bootloader needs a real runtime environment,
we simulate a virtual machine where the bootloader runs and guides the fuzzing via
coverage feedback collected from Intel-PT. Our attack surface analysis informs the
bootloader harness implementation. By identifying the primary attack surfaces where
malicious input can be fed to the bootloader, we pinpoint the universal operations that
trigger device access and the interfaces through which input is fed to the bootloader.
We intercept peripheral access for three types of devices: storage, network, and console.
When the bootloader operates and receives data from the device, our fuzz input is
fed into it. Additionally, we trigger different operations to prompt the bootloader to
read data from these devices and process it. In the following, we elaborate on each
component.

3.4.1 Harness

Since we focus exclusively on open-source bootloaders, we implement the harness directly
within the source code, which we must have access to.

3.4.1.1 Operations

We perform various operations to trigger peripheral access. The operations occur
immediately after the bootloader initializes its execution environment, which typically

35

https://nvd.nist.gov/vuln/detail/CVE-2020-27749


CHAPTER 3. BOOTLOADER: COMPREHENSIVE ATTACK SURFACES ANALYSIS AND
GENERIC FUZZING FRAMEWORK

happens in the main() function of each bootloader. Our operations target all attack
surfaces, summarized in the following categories:

• To trigger storage data processing, we perform the following sequence of operations:

1. Discover new storage devices.
2. Mount all supported file systems on the partitions.
3. Open the root directory of the successfully mounted partition.
4. Enumerate the files and directories in the root directory.
5. Read and write a fixed length of data in the files.
6. Close the opened files.
7. Delete the files.
8. Unmount the file system.

Note that some bootloaders do not support writing operations, so we skip those
in such cases.

• Fuzzing different file parsers by feeding input from the storage device generates
large amounts of redundant data, which is inefficient and unnecessary. Therefore,
to test file parsers, we directly invoke the target function in our harness with
the fuzz input as the argument. We identify the parsing functions by searching
through the source code. Typically, these functions are located in the lib directory.
For instance, CloverBootloader uses the function egDecodeBMP to parse BMP
images. We call this function directly in our harness, place the fuzz input in
memory, and pass its pointer to the function.

• To trigger network data processing, we perform the following operations:

1. Discover network interfaces.
2. Assign static IP address, network mask, gateway address, and remote server

address to the available interface.
3. Send TFTP, HTTP, ICMP, and other supported network packets to the

remote server.
4. Receive and trigger the callback functions for network packets.

Note that for some protocols such as TCP and IP, they usually make up part of the
network packet. When an application layer packet is sent, they are automatically
assembled and sent together.

• To trigger console data processing, we locate the console processing function for
the bootloader. This function typically exists in an infinite loop within the main
function and usually accepts a string as a parameter. We directly call this function
with our fuzz input as the parameter. For instance, Das U-Boot accepts and
processes user input via function run_command_repeatable.

With these operations, we are able to trigger input data processing across all three
attack surfaces.
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3.4.1.2 Peripheral Data Access Hook

When the bootloader reads from or writes to the peripheral, our fuzz input needs to
be fed instead of directly interacting with the simulated devices. For storage data
and network packets, the fuzz input cannot be directly injected into a single function
since multiple functions are involved in the processing logic. We have observed that
bootloaders commonly follow a layered design. This layered design ensures that all data
read from or written to the devices passes through a single interface. We hook into the
block device and network interface access layers so that when the bootloader tries to
read from or write to the device, our fuzz input replaces the original data.

A flag is used to control the feeding of the fuzz input. When the flag is true, the fuzz
input is fed; otherwise, the original data is used, allowing the bootloader to initialize
its environment successfully. Once the fuzz input is exhausted, we return an error
code to the caller function to indicate the end of the input, depending on the specific
bootloader implementation. Additionally, when the bootloader writes to the device,
we redirect the data to our fuzz input buffer. This keeps the data read from the fuzz
input buffer always updated. Note that some bootloaders, such as Limine and shim, do
not support full-stack network protocols, thus the universal interface does not exist. In
these cases, we feed the fuzz input by hooking the functions that the bootloaders use to
communicate with the firmware.

3.4.2 Fuzzing Engine

We implement our fuzzing framework based on kAFL [183, 181], which supports snapshot,
fuzzing process control, and various mutation strategies. kAFL is a hypervisor-based,
coverage-guided fuzzing tool designed for Intel x86 programs. It can be used to fuzz
different OS kernels and user-space applications. Since kAFL relies on two important
Intel CPU features, Intel PT and Intel VT, it only supports programs designed for the
Intel x86 ISA. Consequently, we compiled all our targets for the Intel x86 architecture.
Note that the handling of “high-level” data, such as file system or network packets,
remains consistent across different architectures, so compiling the bootloader into a pure
x86 architecture is not a problem. However, this does not hold for the device drivers, as
the implementation of the device drivers is tightly coupled to the specific devices, which
can differ on different architectures.

3.4.3 Crash Detection

We aim to detect memory corruption vulnerabilities. Our framework reports a potential
vulnerability if an exception occurs in the virtual machine. Since the bootloader operates
in a bare metal environment without the exception handling mechanisms found in typical
applications, we have implemented and added the following features to observe crashes.

Paging. While UEFI bootloaders are executed in a paging-enabled environment,
accessing invalid memory immediately triggers an exception. However, for BIOS
bootloaders, paging is disabled by default. Therefore, we implement a simple paging
mechanism for BIOS bootloaders. From our experience, the bootloader rarely accesses
high-address memory. Thus, we map a linear 0–2GB virtual address space to the same
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Table 3.7: CVEs collected from Snyk vulnerability database for reproduction

CVE Bootloader Category Reproduce
1 CVE-2023-4692 GRUB Storage ✓

2 CVE-2023-4693 GRUB Storage ✓

3 CVE-2020-8432 Das U-Boot Console ✓

4 CVE-2022-33103 Das U-Boot Storage ✓

5 CVE-2019-15937 barebox Network ✓

6 CVE-2019-15938 barebox Network ✓

7 CVE-2023-40547 shim Network ✓

physical address space, leaving other memory unmapped. When the bootloader performs
an arbitrary read or write operation, it might access the unmapped memory and trigger
an exception.

Interrupt. With the default interrupt handling mechanism, the bootloader may
enter an infinite loop or even shut down the virtual machine when it encounters a crash.
To address this, we overwrite the first 16 interrupt gate vector entries with our hook
functions. These vectors handle exceptions such as division-by-zero, segment faults, and
invalid opcodes. When an exception occurs, such as an invalid memory access, the hook
function reports the crash to the fuzzer. Afterward, the fuzzer automatically restores
the snapshot and continues with the next fuzzing iteration.

Panic Hook. The bootloaders can detect invalid input by performing sanity checks.
When an explicit error occurs, the bootloader may invoke a panic or hang function, which
typically shuts down the virtual machine. To prevent the bootloader from terminating
and to save fuzzing time, we hook these functions to report a regular exit to the fuzzer,
as these errors do not lead to vulnerabilities.

Heap Sanitizer. Some vulnerabilities are caused by heap buffer overflows. To
detect such cases, we design and implement a straightforward yet effective heap sanitizer.
Upon heap allocation, we increase the allocation size by 8 bytes. These extra 8 bytes
are used to store a magic number, which is later checked. If the magic number does
not match, we report a heap overflow. We implement the sanitizer by hooking the
heap allocation and deallocation functions. At the allocation stage, we record the size
and allocated pointer. The magic number is stored immediately after the allocated
memory, in a region not supposed to be overwritten. During deallocation, we verify
if the pointer is recorded and if the magic number matches. If either condition is not
met, we report an invalid free or a heap buffer overflow. Otherwise, we remove the
heap memory information from the recording. Additionally, we periodically check the
magic number for all allocated heap memory to detect heap overflows that occur during
execution.

3.5 Evaluation

Next, we thoroughly evaluate our test framework and discuss the results. We aim to
answer four research questions:
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Table 3.8: Number of modified or added lines of code to bootloaders

Paging & Interrupt Heap Sanitizer Harness

GRUB 240 83 376
Limine 240 83 213

Das U-Boot 240 83 358
barebox 76 83 301

CloverBootloader 76 83 214
Easyboot 76 83 70
rEFInd 76 83 258

systemd-boot 76 83 53
shim 76 83 272

Table 3.9: Detected and reported vulnerabilities compared with static analysis. CSA:
Clang Static Analyzer. Fuzz: our fuzzing framework. TP: True Positive.

CodeQL CSA Fuzz

TP Reported TP Reported TP Reported

GRUB 1 18 1 88 14 14
Limine 0 0 0 2 4 4

Das U-Boot 2 34 0 25 3 4
barebox 0 6 3 19 5 6

CloverBootloader 0 40 0 0 3 3
Easyboot 0 0 0 1 3 5
rEFInd 0 0 0 10 7 7

systemd-boot 0 0 0 6 0 0
shim 0 7 0 0 0 0

3 105 4 151 39 43

RQ1: Can our bootloader fuzzing framework reproduce previously identified boot-
loader vulnerabilities across the three main attack surfaces?

RQ2: Can our bootloader fuzzing framework detect new bootloader vulnerabilities?
RQ3: Compared to other vulnerability detection methods, what are the advantages

and drawbacks of our approach?
RQ4: How much effort is required to implement an extension to the framework for

a bootloader?

3.5.1 Experiment Setup

We conducted the fuzzing experiments on three servers, each equipped with a 104-core
Intel Xeon Gold 5320 CPU @ 2.20GHz and 252 GB of RAM, running Ubuntu 22.04.1
LTS. For each attack surface, we assigned CPU cores with different weights. For instance,
we assigned ten cores for fuzzing the file system and only one core for a specific file parser.
This distribution was based on the input size–the file system inputs are larger and thus
require more computing resources for exploration. In total, the fuzzing experiments
lasted three weeks.

3.5.2 Reproducibility of Known Vulnerabilities (RQ1)

As shown in Table 3.7, we collected seven recently available bootloader vulnerabilities
that can be compiled for the Intel x86 architecture. These vulnerabilities span the three
main attack surfaces.

CVE-2023-4692 and CVE-2023-4693 The two vulnerabilities demonstrate that
a crafted NTFS file system could lead to heap overwrite and potentially bypass secure
boot in GRUB. The vulnerabilities exist in the NTFS attribute list parsing logic, where
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the end of the attribute buffer is not checked, allowing the buffer to be accessed out of
bounds.

CVE-2020-8432 This bug demonstrates a double-free vulnerability in the Das
U-Boot gpt rename command. Das U-Boot allows users to change the GPT partition
name via this command. Before changing the partition name, it collects the storage
device partition information and stores it in a heap buffer. However, if the rename
operation fails and returns -1, it deallocates the buffer and jumps to the cleanup code
where the buffer is deallocated again. To trigger this vulnerability, we crafted a GPT
partition table and named one of the partitions with an environment variable-like string.
Das U-Boot expands this to the environment variable value, causing a sanity check
failure in the rename function. Fuzzing the command line parsing logic made it easy to
find the crash input by defining a specific environment string in advance.

CVE-2022-33103 This bug represents a buffer overflow vulnerability in the Das
U-Boot squash file system implementation. While the regular file name for most file
systems is less than 255 bytes long, the squash file system defines a two-byte-long length
field for the path. When reading from a directory, Das U-Boot allocates a fixed-length
buffer for the returned file name. Although the mksquashfs tool prevents users from
generating a long file name, the fuzzer can mutate and generate such a file.

CVE-2019-15937 and CVE-2019-15938 These CVEs show two buffer overwrite
vulnerabilities in the network file system implementation in barebox. When barebox
tries to read a symbolic link file from a remote server, a packet that contains a length
field indicating the original file path followed by the actual file name is sent to the the
client. However, barebox did not check the length of the reply packet from the server
and directly copied the path to a fixed-length global buffer, assuming the path length is
always less than 2048 bytes. The length field is 4 bytes long in the network packet and
can theoretically be large enough to overwrite the whole bootloader’s physical memory.

CVE-2023-40547 This vulnerability presents a heap overwrite vulnerability in
shim’s HTTP content processing. Although shim does not implement a full-stack
network protocol, it receives remote bootable images via HTTP. A length field in the
HTTP header indicates the length of the following HTTP content, but shim did not
correctly check this field and allocated a buffer of the exact length specified in the
packet. While copying HTTP content from the UEFI firmware API, the actual content
could exceed the allocated buffer. In our experiments, while the heap overwrite did not
directly cause a crash, it modified the magic number of the heap sanitizer, causing our
sanitizer to report a crash.

Our fuzzing framework was able to reproduce them within several hours successfully.
One of them, CVE-2022-33103, can be triggered immediately when the initial seed is
sent during the fuzzing campaign. The exception, however, is CVE-2020-8432. We
found that a specially named partition is required to trigger the crash. After naming
the partition accordingly, the crash could be triggered by fuzzing the command line
processing function.
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3.5.3 Finding New Vulnerabilities (RQ2)

During our evaluation, we found 39 vulnerabilities, of which 38 were previously unknown.
Table 3.10 provides an overview of these vulnerabilities, which successfully cover all
three main attack surfaces. Somewhat surprisingly, we found no vulnerabilities in the
two bootloaders shim and systemd-boot. We observed that these bootloaders are rather
simple and offer fewer attack surfaces compared to the other seven bootloaders.

3.5.3.1 Vulnerability Disclosure

We followed coordinated disclosure best practices and responsibly disclosed the discovered
vulnerabilities to the developers. Out of the 39 vulnerabilities we found, 29 have been
confirmed or patched by the developers at the time of writing. Since we evaluate active
bootloader projects, the majority of the developers responded quickly to our reports.

3.5.3.2 Case Study

We present three specific patched cases in this section to illustrate different examples of
the vulnerabilities we have found. We refrain from discussing vulnerabilities that have
not yet been fixed by the developers.

#define PKTSIZE 1536
char *net_alloc_packet() {

return dma_alloc(PKTSIZE);
}
int ping_reply(...) {

...
packet = net_alloc_packet();
if (!packet) return 0;
// heap overflow here!
memcpy(packet, pkt, ETHER_HDR_SIZE + len);

}

Listing 1: A heap overflow in barebox
Listing 1 presents an out-of-bound write in the barebox ARP implementation. The

implementation copies the received packet into a fixed-length buffer, the size of which is
defined by the PKTSIZE macro. However, the Ethernet packet could be larger than
that in rare cases, such as with jumbo frames. In such cases, the pointer returned by
net_alloc_packet could be overwritten by the subsequent memcpy operation.

uint32_t inodes_per_group;
void loadinode(uint32_t inode) {

...
// divide by zero here!
uint32_t block_offs = ((inode - 1)
/ inodes_per_group) * desc_size;
uint32_t inode_offs = ((inode - 1)
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% inodes_per_group) * inode_size;
}
void _start() {

...
inodes_per_group = sb->s_inodes_per_group;

}

Listing 2: A divide by zero in Easyboot

Listing 2 shows a divide-by-zero vulnerability in Easyboot. The variable in-
odes_per_group is directly read from the EXT file system superblock. However, without
a proper sanity check, this value could be zero. In the function loadinode, the value is
used as a divisor to calculate the value of block_offs and inode_offs.

EG_IMAGE* egDecodeBMP(uint8_t *FileData,
size_t FileDataLength, bool WantAlpha) {

uint32_t RealPixelWidth;
...
RealPixelWidth = BmpHeader->PixelWidth
> 0 ? BmpHeader->PixelWidth
: -BmpHeader->PixelWidth;
...
uint32_t x = 0;
//RealPixelWidth might be smaller than 2!
for (; x <= RealPixelWidth - 2; x += 2)
{
...
PixelPtr->Blue = BmpColorMap[Index].Blue;
...
PixelPtr++;
}

}

Listing 3: A heap overflow in Cloverbootloader

Finally, Listing 3 shows an out-of-bound write caused by an integer overflow in the
BMP image decoder in Cloverbootloader. The variable RealPixelWidth is calculated
from the metadata of a BMP image file. However, in the subsequent loop, the value
is subtracted by two and compared with an unsigned integer x. If RealPixelWidth is
smaller than two, the calculated value will be huge and the loop will overwrite a large
amount of memory.

3.5.4 Comparison with Other Works (RQ3)

To the best of our knowledge, there is neither a comprehensive memory safety analysis
of bootloaders nor ready-to-use fuzzing tools that can be directly used to test different
bootloaders. To evaluate the vulnerability detection capability of our fuzzing framework,
we resort to two popular and widely used static analysis tools: CodeQL [11] and Clang
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Static Analyzer [131]. CodeQL is an industry-leading semantic code analysis engine
maintained by GitHub. It is now integrated with many GitHub open-source projects and
runs as a Continuous Integration (CI) backend component. The Clang Static Analyzer
is part of the LLVM project. It uses symbolic execution to explore bugs in C/C++/OC
and has been integrated into Xcode as a default security checker. They can both target
all the source code involved in the compilation. We compare our fuzzing framework
against the two static analysis tools. Table 3.9 shows the vulnerability detection result
of the nine bootloaders.

3.5.4.1 CodeQL

In total, CodeQL found three true positive vulnerabilities among the 105 reports it
generated. After manually analyzing the true positives, we found that one of them is a
previously known heap overflow in the file system in GRUB, while the other two are new
vulnerabilities. One of the two new vulnerabilities was caused by an out-of-bound buffer
read operation, while the other one resulted from an attacker-controlled heap allocation
size. They both existed in the file system implementation of Das U-Boot. Our fuzzing
framework was also able to detect the file system vulnerability in GRUB; however, it
failed to detect the other two vulnerabilities. This is because the out-of-bounds read
does not trigger any exception, and our fuzzing can only detect crash vulnerabilities.
The other reason is that we lack a proper seed to trigger the memory allocation size
control vulnerability. We inspected the false positives reported by CodeQL and found
that the following reasons caused them:

Incomplete Control Flow. CodeQL does not work well in inter-file and inter-
procedure analysis. A value that is checked in another file or another function would be
ignored if the value is used in the analyzing point, especially if the function is invoked
via a function pointer.

Missing Context Check. A typical false positive reported by CodeQL is a call to
the strcat function. Even though the size of the destination buffer is correctly calculated
and allocated, the tool still reported a potential buffer overflow.

Wrong Attacker Controlled Data Identification. CodeQL cannot identify
which data can be controlled by an attacker. For instance, it reported a false positive in
shim where the data is generated from a firmware-calculated string.

3.5.4.2 Clang Static Analyzer

In our experiment, the Clang Static Analyzer found four true positives among the 151
reports generated by the tool. The true positives are not found in the three main attack
surfaces and, therefore, could not be detected by our fuzzing framework. We manually
inspected their root causes and found that they are caused by hard code null-pointer
values and misuse of Unix-like APIs that do not originate from attacker-controlled
data. We investigated the false positives reported by the Clang Static Analyzer, and
summarize our main findings below:

Broken Constraint. The Clang Static Analyzer could not maintain a set of
consistent constraints during the symbolic execution. For instance, a value constraint
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to the value zero can be assumed to be non-zero by the execution engine and continues
execution. This causes some impossible paths to be reachable.

Broken Control Flow. Like CodeQL, the Clang Static Analyzer cannot perform
inter-file and function pointer analysis during the symbolic execution. When the control
flow is broken, it lacks enough knowledge to infer a value’s constraint.

Broken Value Tracking. Lastly, the Clang Static Analyzer failed to track a
field value in a struct. For instance, a pointer in a struct is deallocated and then gets
overwritten with another value. The Clang Static Analyzer reported a double free when
the new value gets deallocated again.

3.5.4.3 False Positives in Fuzzing

In our experiments, the fuzzer reported several false positives. These false positives
were primarily due to an incorrect harness implementation by us. For instance, when
fuzzing a device tree parser in Das U-Boot, the fuzzer reported an arbitrary memory
write while parsing the device tree file header. Upon manual analysis of our harness, we
found that this issue was due to the absence of a sanity check function: this sanity check
function is supposed to report an invalid header when it detects an out-of-range value.
However, in our implementation, the parser directly used the value without invoking the
sanity check function, leading to an arbitrary memory write. Another false positive in
barebox exists because the buffer was assumed to be allocated in the heap, however, we
passed the fuzz input buffer to the parsing function. The buffer was later deallocated,
thus reporting a crash.

Our framework reported in total four false positives due to the harness implementa-
tion mistakes that we subsequently fixed. We missed several necessary sanity checks or
passed the wrong type of memory to the parsing functions before calling them. Neverthe-
less, we conclude that our fuzzing framework performs better than the state-of-the-art
static analysis tools in both quantity (i.e., more new vulnerabilities) and quality (i.e.,
fewer false positives).

3.5.5 Manual Effort (RQ4)

The additional manual effort required to extend our framework to support a new
bootloader consists mainly of three parts: (i) a paging and interrupt handler hook,
(ii) a heap sanitizer, and (iii) a harness. Table 3.8 shows the number of lines of code
modified or added for each of the nine bootloaders we evaluated. All bootloaders
share the implementations of paging and interrupt handler hooking, and our heap
sanitizer. The harness for a specific bootloader depends on the complexity of the
bootloader implementation. Our goal is to help bootloader developers identify the
vulnerabilities, assuming that they can efficiently implement the harness. We recommend
first recognizing the peripheral data access interfaces (e.g., firmware calls or the hardware
abstraction layer) to feed the fuzz input to the bootloader under test. Subsequently,
the functions intended for the end applications to trigger the peripheral access should
be reused. File parsers can be identified by enumerating the supported file types and
the corresponding parsing functions.
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3.6 Discussion

In our evaluation, we have shown that our proposed approach has successfully uncovered
a variety of bugs in different bootloaders. However, there are also several shortcomings
that we discuss in this section.

Device Drivers. Despite the lack of complex processing logic in some other
peripheral inputs, their vulnerabilities cannot be ignored. Bootloaders communicate
with peripherals through device drivers, e.g., Das U-Boot can manage more than thirty
types of peripherals, with the number of device driver source code files exceeding 2,000.
However, fuzzing bootloader device drivers is a challenging task. With the design of our
fuzzing method, we compile all the bootloaders into x86 architecture targets. While
this does not pose a problem for high-level data handling, it does not apply to device
driver fuzzing. There is no universal interface, such as file operations, to manipulate
different peripherals, and there is no common layer, like a data access abstraction layer,
to intercept the device access. This requires a significant amount of manual effort
to implement the necessary harnesses. Additionally, some peripherals rely on specific
architectures incompatible with the Intel extensions, so they cannot be executed when
compiled into the bootloader. Therefore, we consider the fuzzing of the device driver as
a task for future work.

Beyond Peripherals. In addition to the peripheral input processing logic, other
components, such as data structures, encoding and decoding algorithms, and boot
management, may also contain vulnerabilities. However, these components are either
implicitly used by the peripheral input processing or cannot be directly controlled by the
attacker, according to our threat model. For instance, linked lists and heap management
are widely used by various file parsers. Therefore, we do not consider them as an attack
surface reachable via fuzzing.

Harness. In this chapter, we do not consider file operations as fuzzing input. A
fixed sequence of file operations is used to trigger the file system operation. However,
Janus [234] highlights that exploring the two-dimensional inputs (i.e., mutating file
system metadata on a large image while emitting image-directed file operations) is
efficient and effective in file system fuzzing. With our simple and fixed file operations,
we might miss some potential vulnerabilities. Nevertheless, in the bootloader scenario,
bootloaders typically only expose limited file operations. For instance, some bootloaders
only allow file read operations, while file write and symbolic link access operations
are not possible. These limited file operations confine our harness to a small range of
potential actions.

Fuzzing Seeds. We have collected or generated our fuzzing seeds from both open-
source corpora and created them from scratch using tools such as the mkfs utility. For
certain components, such as image parsers, it is sufficient to use open-source corpora
since they cover a wide range of corrupted images. The diversity of fuzzing seeds
significantly impacts the efficiency of fuzzing. Some of our generated fuzzing seeds, such
as part of the file system images and network packets, may not cover sufficient input
space, potentially resulting in false negatives. Consequently, we recognize the need to
generate a more diverse set of fuzzing seeds and consider this as a future work.

Heap Sanitizer. Existing sanitizer frameworks designed for bare-metal environ-
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ments, such as SHiFT [145], cannot be applied directly as they rely on a specific RTOS
environment, tool chain, runtime dependencies, compiler customization, or architecture-
related instructions that are not commonly supported by bootloaders. Bootloaders such
as GRUB and Das U-Boot also tried to integrate sanitizers into their products [61,
64]. Even with the technical efforts of experienced developers, they can only support
native compilation (i.e., compile the bootloader as an ELF or EXE file that can be
executed natively). This conflicts with our goal of running the bootloader in a real
environment. Due to the complexity of adapting existing frameworks to bootloader
fuzzing, we implemented a tailored heap sanitizer to detect out-of-bound heap buffer
write vulnerabilities. However, this canary-like heap sanitizer cannot detect out-of-
bound heap read vulnerabilities. To accomplish the heap sanitizer task, we made a
trade-off between comprehensiveness and usability. Our method is straightforward (i.e.,
the design is a canary-like sanitizer) but effective given that we found many memory
corruption vulnerabilities. We believe that our approach is ideally suited to sanitize
heap memory for bootloader applications running in a bare-metal environment, as there
are almost no runtime dependencies and compatibility issues.

Mitigation. To mitigate memory corruption vulnerabilities in bootloaders, some
developers have already started to deploy static analysis tools and fuzzing in their
projects [57, 172]. However, they either do not focus on the entire attack surface or
cause too many false positives. To better mitigate memory corruption vulnerabilities in
bootloaders, we propose the following methods:

Debloating As the bootloader code base grows, vulnerabilities may arise from the
numerous features it contains. To address this, we propose debloating the bootloader at
the source code or compilation level. For example, if a memory corruption vulnerability
solely happens in a specific file system parsing logic, it can only compromise the
bootloader when the file system feature is enabled. While this may affect user experience,
a trade-off between security and user experience is necessary to ensure a more secure
system.

Fuzzing Comprehensive Attack Surfaces Fuzzing has proven to be an effective
method for detecting vulnerabilities. However, without a comprehensive analysis of the
attack surface and tailored testing harnesses, easily detectable vulnerabilities may be
missed by the fuzzer. Therefore, we propose to include a comprehensive attack surface
analysis, as discussed in our thesis, in the development of fuzzing strategies to guide
and improve them.

Comparison with Existing Works The two fuzzing tools introduced by Ax-
tens [60] and Starke [157] aim to fuzz the command-line parsing logic in GRUB and Das
U-Boot. However, the reasons why we did not directly compare our work to their tools
are as follows: 1) They focused solely on console input, while we considered a broader
range of attack surfaces. 2) They compiled the bootloader into a native application,
whereas we compiled it into an x86 loader, targeting different binaries. In addition, they
used AFL as fuzzing backend, while we used kAFL, which implements more advanced
fuzzing mechanisms such as mutators and scheduling policies. 3) They did not publish
many implementation details.
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3.7 Conclusion

In this chapter, we first systematically analyze the bootloader attack surfaces in nine
selected open-source bootloaders. The analysis results show that the malicious input
mainly comes from three types of peripherals: storage devices, network devices, and
console devices. Based on the analysis result, we designed a generic fuzzing framework
that can be used to harness various bootloaders despite their implementation details. The
experimental results were promising. We found 39 previously unknown vulnerabilities.
The true positive and false positive all outperform the industry-leading tools that can
target the bootloader. As a typical low-level software that gets executed during the early
stage of system boot, bootloaders are attractive targets for attackers. Our analysis shows
that dealing with data parsing (storage data, network packets, and user input strings)
is still a main threat to memory-unsafe programming languages. In the next chapter,
we present embedded system firmware fuzzing, another type of low-level software. By
addressing an interrupt-triggering problem when re-hosting the RTOS firmware, we
pinpoint the importance of domain-specific knowledge and techniques.
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Table 3.10: Detected bootloader vulnerabilities information. For those without status
information, we reported them to the developers. These vulnerabilities are still under
their investigation.

Bootloader Category Type Status

1 GRUB Storage, file parser Logic bug, heap overflow Confirmed

2 GRUB Storage, file parser Integer overflow, heap overflow Confirmed

3 GRUB Storage, file parser Integer overflow, heap overflow Confirmed

4 GRUB Storage, file parser Integer overflow, heap overflow Confirmed

5 GRUB Storage, file parser Logic bug, use of uninitialized data Confirmed

6 GRUB Storage, file system Lack of boundary check, heap overflow Confirmed

7 GRUB Storage, file system Infinite loop, stack overflow Confirmed

8 GRUB Storage, file system Integer overflow, heap overflow Confirmed

9 GRUB Storage, file system Off-by-one access, heap overflow Confirmed

10 GRUB Storage, file system Integer overflow, heap overflow Confirmed

11 GRUB Console, command parsing Unlimited recursion, stack overflow Confirmed

12 GRUB Console, command parsing Missing sanity check, null-pointer dereference Confirmed

13 GRUB Console, command parsing Infinite loop, stack overflow Confirmed

14 GRUB Storage, file parser Off-by-one access, heap overflow Confirmed

15 Limine Storage, file parser Missing sanity check, null-pointer dereference Patched

16 Limine Storage, file parser Logic bug, heap overflow 1-day

17 Limine Storage, file system Missing sanity check, divide by zero Patched

18 Limine Storage, file system Missing sanity check, divide by zero Patched

19 barebox Network Lack of length check, heap overflow Patched

20 barebox Network Lack of length check, heap overflow Patched

21 barebox Network Lack of length check, heap overflow Patched

22 barebox Network Lack of length check, heap overflow Patched

23 barebox Network Lack of length check, heap overflow Patched

24 Easyboot Storage, file system Missing sanity check, global buffer overflow Patched

25 Easyboot Storage, file system Missing sanity check, stack overflow Patched

26 Easyboot Storage, file system Missing sanity check, divide by zero Patched

27 rEFInd Storage, file parser Lack of length check, heap overflow

28 rEFInd Storage, file system Logic bug, stack overflow

29 rEFInd Storage, file system Missing sanity check, divide by zero

30 rEFInd Storage, file system Missing sanity check, divide by zero

31 rEFInd Storage, file system Missing sanity check, divide by zero

32 rEFInd Storage, file system Missing sanity check, divide by zero

33 rEFInd Storage, file system Missing sanity check, divide by zero

34 Das U-Boot Storage, file system Implementation error, heap overflow Patched

35 Das U-Boot Storage, file system Missing sanity check, divide by zero

36 Das U-Boot Storage, file system Logic bug, heap overflow

37 Cloverbootloader Storage, file parser Lack of length check, null-pointer dereference Patched

38 Cloverbootloader Storage, file parser Lack of length check, heap overflow Patched

39 Cloverbootloader Storage, file parser Implementation error, use-after-free Patched
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4.1. OVERVIEW

4.1 Overview

Real-Time Operating Systems, commonly adopted by embedded system developers, are
relatively simple but effective low-level software. Compared with rich OS such as Linux,
their advantage is the lightweight size and efficient communication with peripherals.

Over the past decade, embedded devices such as factory robots, medical devices,
satellites, and smart fitness bands have become widespread. Despite advances in firmware
development, security threats and software faults persist. Developers often prefer
memory-unsafe languages such as C and C++ for low-level hardware manipulation, but
these languages also introduce memory corruption vulnerabilities due to their inherent
direct memory access features.

Fuzzing has proven to be an effective method for discovering vulnerabilities in
RTOS firmware images. Embedded devices with low performance and slow speed
are not inherently designed for fuzzing. Therefore, running firmware in an emulated
environment and simulating its peripherals’ behaviors—a technique known as re-hosting—
is a promising approach to improve testing. Tools like P2IM [74] and µEmu [248] attempt
to model peripheral behavior by extracting information from the MCU documentation
or using symbolic execution. Unfortunately, these techniques are unstable and imprecise.
The Fuzzware framework [177] models the MMIO (memory-mapped I/O, the way that
the firmware communicates with the peripherals) access into several categories, such as
bitextract, passthrough, and constant-value. This MMIO modeling efficiently reduces the
input overhead. For instance, the constant-value model only accepts a single specific
input (i.e., the input overhead is 1), reducing fuzzer effort on mutating that MMIO
access. Hoedur [178], another advanced firmware fuzzing framework, divides a single
fuzzing input into multiple streams based on the MMIO access context. This so-called
multi-stream fuzzing prevents the “avalanche effect”, where a value meant for one MMIO
access is mistakenly consumed by another. Recently, SafireFuzz [186] proposed binary
rewriting of ARM Cortex-M firmware to make it compatible with high-performance
ARM Cortex-A processors, aiming to accelerate fuzzing speed. While Fuzzware and
Hoedur solely focus on the MMIO input, SafireFuzz requires the presence of a hardware
abstraction layer (HAL) to inject the fuzz input into both MMIO and DMA (Direct
Memory Access).

However, several hard-to-bypass obstacles still block the way for fuzzers to achieve
higher code coverage in the firmware fuzzing process. Despite advances in firmware
fuzzing, including state-of-the-art frameworks, the challenge of accurately triggering
interrupts remains unresolved: If interrupts are triggered incorrectly, the firmware may
crash or get stuck, even at an early stage. Thus, a proper mechanism for triggering and
handling interrupts is a crucial yet under-researched aspect of firmware fuzzing. P2IM
models all peripheral behaviors, including interrupts, by analyzing the documentation,
but this approach lacks precision. Both Fuzzware and Hoedur use a round-robin
mechanism for interrupt triggering by default, which involves activating an interrupt
at regular, fixed time intervals. This process starts with the first enabled interrupt,
triggers it, and then triggers the next enabled one. Once all enabled interrupts have
been triggered, the cycle repeats with the first enabled one. Fuzzware and Hoedur
also support an advanced fuzz-mode interrupt triggering mechanism, which triggers
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interrupts depending on the fuzzing input. SafireFuzz uses indirect call-level counters
and manual clock-update hooks. The design is similar to the round-robin mechanism
for timer interrupts from a high-level perspective. While these mechanisms are effective
for firmware with straightforward interrupt-triggering conditions, they fall short in more
complex scenarios.

Unfortunately, interrupt processing in real-world firmware is often complicated in
practice. For example, certain interrupts may be enabled but not yet ready to be
triggered because the associated data, such as pointers, are not fully initialized. The
round-robin and fuzz-mode interrupt triggering mechanisms do not take the status
of the interrupt into account. Therefore, if the fuzzer triggers an interrupt before
the data is initialized, this can lead to an unexpected crash that brings the fuzzing
process to a halt. Even after all data is initialized, triggering some interrupts can
cause the firmware to reset or get stuck in an infinite loop. These interrupts should
never be triggered, as they hinder the fuzzing progress. In addition, the round-robin
and fuzz-mode mechanism triggers interrupts at regular intervals, but this approach
has disadvantages: If the interval is too small, the fuzzer will constantly interrupt the
execution of the firmware, while too large an interval will cause the firmware to wait for
the interrupt. To summarize, we need to answer three questions when dealing with the
interrupt-triggering problem:

• When should the interrupts be triggered?

• How often should the interrupts be triggered?

• Which interrupts should be triggered?

We have found that the key observation to answer the above questions is the run-time
state transition of the firmware. The firmware goes through an initialization phase at
boot time and then transitions to a processing state where it processes inputs. Once the
processing of the inputs is complete, it enters a waiting state in which it awaits certain
asynchronous events or new inputs, which are usually delivered via interrupts. The
cycle then repeats itself when it returns to the processing state. The interrupts should
only be triggered when the firmware is in the waiting state, without intervening during
the processing state. By automatically analyzing the interrupt service routine (ISR), we
can pinpoint which interrupts are able to transition the firmware from the waiting state
to the processing state. We refer to these as effective interrupts. When the firmware
is in a waiting state, we selectively trigger only the effective interrupts that can cause
a transition to the processing state. We also make sure that each interrupt we want
to trigger is ready to be triggered, e.g., by checking the initialization of the associated
data. AIM [73] proposes a similar interrupt analysis method for firmware testing. It is
based on the same idea that ISRs can influence the behavior of the firmware. However,
AIM does not model the firmware run-time state and cannot reveal the relationship
between the run-time state and the interrupt. Therefore, it cannot answer the three
questions accurately. In addition, the overall design and implementation of AIM is
based on symbolic execution, which significantly affects the analysis speed.

In this thesis, we introduce AidFuzzer, an Adaptive Interrupt-Driven Fuzzing
framework that provides a proper interrupt triggering mechanism for firmware fuzzing.
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AidFuzzer identifies effective interrupts, triggers interrupt on demand and only triggers
the interrupts that are required by the firmware. To evaluate the performance of
AidFuzzer, we compiled a collection of 10 open-source firmware projects based on
the ARM Cortex-M processor. This dataset includes open-source Github projects and
popular RTOS examples, such as RT-Thread and Apache Mynewt-OS. Our experimental
results show that AidFuzzer performs better than the state-of-the-art tools Fuzzware,
Hoedur, and SafireFuzz in handling complex interrupt scenarios. In addition, we found
eight previously unknown vulnerabilities in these open-source projects.

4.2 Arm Cortex-M NVIC Interrupt

Since we evaluate AidFuzzer on ARM Cortex-M-based firmware targets, and we focus on
the interrupt handling problem, we now provide a brief introduction to the ARM Cortex-
M nested vector interrupt control (NVIC ). It enhances the reader’s comprehension of
our interrupt-triggering algorithm. While the specific implementation details may differ
across various processors, the fundamental concepts remain consistent. Furthermore, we
illustrate the QEMU soft-NVIC implementation, as it is tightly coupled to our prototype
implementation.

4.2.1 IRQ and Interrupt Vector Table

An interrupt request (IRQ) is an asynchronous event typically initiated by peripherals.
Exception handling by the processor follows a similar path to that of an interrupt, but
exceptions are internally generated by the processor, such as encountering an illegal
instruction or a division-by-zero fault. This chapter specifically focuses on asynchronous
interrupts originating from peripherals. We will use IRQ triggering and interrupt
triggering interchangeably in the chapter, as they both refer to the same concept: A
device sends an asynchronous interrupt request to the processor.

When an interrupt occurs, it alters the control flow from the current processor
execution context (referred to as thread mode in ARM Cortex-M) to the interrupt
handling context (referred to as handler mode). Upon detecting the incoming interrupt
signal, the processor automatically preserves the current register context by saving it to
the stack. Subsequently, it retrieves the IRQ number and the corresponding Interrupt
Service Routine (ISR) address from the interrupt vector table and starts executing the
ISR.

The interrupt vector table is an array of function pointers in memory that use the
IRQ number as an index to access its elements. For instance, consider an interrupt vector
table located at address 0x20000000 and an IRQ with a number of 0x20, the processor
finds the corresponding ISR at address 0x2000000080 (calculated as 0x20000000 + 4 *
0x20, as a function pointer in the ARM Cortex-M is 4 bytes in size). The processor then
loads the memory content from 0x2000000080 into the Program Counter (PC). Upon
completing the ISR, the processor loads the EXC_RETURN [155] value, previously
saved in the link register during the context switch, into the PC, indicating an interrupt
exit. The processor automatically restores the previous context and resumes execution
from thread mode.
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Each interrupt has a corresponding priority, and when multiple interrupts occur
simultaneously, the processor gives priority to the one with the highest priority. It
is noteworthy that this chapter excludes the handling of nested interrupts and tail
interrupts, as interrupts are only triggered in thread mode, and only one interrupt is
triggered at a time in our implementation.

Note that the interrupt vector table is subject to dynamic re-basing, and its elements
can be overwritten during run-time. For instance, the firmware might alter the table
address from 0x20000000 to 0x30000000 or overwrite the memory content at address
0x2000000080. Consequently, different ISRs can be employed in such scenarios to handle
the same IRQ. This flexibility in re-configuring the table allows for dynamic adjustments
to the interrupt handling process, enabling the system to adapt to changing requirements
or respond to specific run-time conditions.

4.2.2 NVIC Configuration

NVIC is mapped as a Memory-Mapped I/O (MMIO) region and can be configured by
writing to this designated memory space. As an example, the vector table base address
can be configured by the firmware. When the firmware requires NVIC configuration, it
simply writes to the pertinent field within the NVIC data structure. In this chapter, we
focus on the following NVIC configurations:

• Enable/Disable IRQ: An array of bits indicates the enable/disable status of an
IRQ. NVIC supports up to 240 interrupts [155]. However, besides the reserved
interrupts that are enabled by default, only a number of the IRQs are used and
enabled by the firmware. The IRQ can only be used by the peripherals and
triggered if it is enabled.

• Interrupt Vector Table Base: Writing to this field changes the table base address.
The processor fetches the subsequent ISR address based on the updated value.

• IRQ Pending: An array of bits indicates pending IRQ requests. Writing to this
field pends a corresponding IRQ, waiting to be handled by the processor. Note
that setting a pending bit to this array does not mean that this IRQ will be served
immediately, it also depends on several other conditions: a) If interrupt handling
is enabled globally by the processor. b) If the specific IRQ is enabled in the NVIC
configuration.

One bit in the Current Program Status Register (CPSR) for ARM processors indi-
cates the global interrupt enable/disable status. Setting/clearing this bit allows/prevents
all the interrupts from being served.

4.2.3 Types of NVIC Interrupts

IRQ numbers 1-15 are usually reserved for core ARM Cortex-M processor functionalities
such as reset, system-call, and hard fault, which are not triggered by peripherals. One
exception is the SysTick IRQ: Firmware may rely on it to accomplish its functionalities
such as task scheduling. Peripherals customize other IRQs mainly to handle the following
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situations: a) New data is available either from DMA buffers or from device registers. b)
Output data is consumed or processed by the peripherals. c) A specific time interval has
passed. d) There is an internal status change in the peripherals. e) Other unexpected
event happens. For example, a typical 8250 UART device [1] ISR either reads a character
from the Receiver Buffer register when a new input character arrives or writes a cached
character to the Transmitter Holding Buffer register when the device is ready to consume
more characters.

4.2.4 QEMU NVIC Implementation

QEMU maps the NVIC as an MMIO region and maintains the NVIC status in its
internal data structure (i.e., this internal structure belongs to QEMU instead of the
emulated fimware). When the virtual machine accesses this memory region, a corre-
sponding QEMU function is called. For example, when a virtual machine writes to the
enable/disable IRQ bit array, the function nvic_sysreg_write serves this operation. The
IRQ status will be updated in this function, and the status is persisted in NVICState
structure. QEMU provides a function called armv7m_nvic_set_pending for the periph-
erals to trigger an interrupt. In this function, QEMU checks if the IRQ is allowed to
be triggered, calculates the priorities among all the pending IRQs, makes the highest
priority IRQ active, and notifies the execution thread about the new interrupt request.
The execution thread regularly checks if there are pending interrupt requests. If any, it
performs the context switch and starts executing the ISR.

4.3 Firmware Fuzzing Interrupt Triggering Analysis

4.3.1 Running Examples

In this section, we use concrete examples to show why triggering interrupts is crucial for
firmware fuzzing. All examples are adapted and simplified based on real firmware. In
the first example, an infinite loop dummy ISR serves an IRQ during the initial stage to
prevent the firmware from running into an unintended state. The second example shows
a watchdog ISR that halts the system when an unexpected error happens. These two
IRQs should never be triggered since they immediately stop the firmware running, thus
hindering the fuzzing process. In the third example, a UART ISR extracts characters
from a ring buffer and outputs them to the terminal; it should be triggered only when
necessary. By using these three examples, we illustrate what concrete problems should
be considered when triggering an interrupt.

Listing 4: A commonly used dummy ISR

void dummy_isr() {
while(1) { ; }

}

An infinite loop as shown in Listing 4 is commonly used by the firmware to implement
a dummy ISR during the initial stage. The firmware usually first enables the IRQ and
then initializes the actual ISR later. In practice, there is even firmware that activates
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certain IRQs and allows them to be served by dummy ISRs during the entire run-time.
Moreover, some developers use a function pointer in the ISR as a dummy function
and initialize the pointer afterwards. The firmware directly de-references the pointers
without NULL checking since the IRQ will only be triggered after the data are properly
initialized in a real environment. However, if the interrupt is triggered too early before it
is fully initialized, the firmware gets stuck or crashes, preventing the fuzzer from making
any progress in fuzzing. The firmware works well in the real environment because no
peripherals use this interrupt before they are fully initialized. The round-robin and
fuzz-mode interrupt mechanisms will eventually trigger it and hinder the fuzzing process.

Listing 5: A simplified watchdog ISR

void watchdog_isr() {
trace_watchdog_isr_event();
if(wdt_handler)

wdt_handler();
system_hal();

}
int main() {

do_something1();
watchdog_tickle();
do_something2();
watchdog_tickle();

}

Even after initializing the ISR and the data, some IRQs should never be triggered
during fuzzing. Listing 5 shows a watchdog ISR. The firmware needs to regularly tickle
the watchdog to prevent it from triggering a watchdog interrupt. In the watchdog ISR,
the watchdog interrupt event is logged, the handler provided by the firmware is called
to perform the cleaning task, and finally, the system is reset. The implementation of
system_hal depends on the specific board. It may simply go into an infinite loop or
execute a breakpoint instruction. The watchdog ISR is used to prevent the firmware
from corrupting the data when something unexpected happens. Normally, this interrupt
is not expected to be triggered during regular execution, as the watchdog is regularly
tickled. However, in a round-robin or fuzz-mode interrupt mechanism, it will be triggered
at some time, thus hindering the fuzzing process.

Listing 6: A simplified UART ISR

struct ring_buffer output_buffer;
void uart_tx_isr() {

if(uart_ready() && !empty(&output_buffer)) {
char c = dequeue(&output_buffer);
uart_write(c); // write to uart register

}
}
void uart_tx_string(char *s) {

while (*s) {
while(full(&output_buffer)) {

; // stuck here
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}
enqueue(&output_buffer,*s);
s++;

}
}
void main() {

uart_tx_string("before do something");
do_something();
uart_tx_string("hello world");

}

Unlike the watchdog interrupt, Listing 6 shows a simplified UART ISR that the firmware
relies on to accomplish its console output functionality which should be triggered when
necessary. Listing 6 defines a ring buffer output_buffer. The functions full and empty
check whether the buffer is full or empty. When the UART interrupt gets triggered, it
checks if the device is ready to consume more characters and, if so, it fetches a character
from the ring buffer and writes it to the console. The function uart_tx_string is used
to output a message string. It keeps looping until all the string characters are inserted
into the ring buffer. In the main function, the firmware outputs several messages.
However, to avoid getting stuck in the uart_tx_string function, the UART interrupt
must be triggered to consume the characters from the ring buffer. The round-robin or
fuzz-mode mechanism can work in this situation. However, a short trigger time interval
interferes with the execution of the function do_something, while a long interval makes
the firmware busy checking the ring buffer in the function uart_tx_string.

Recall the three questions we aim to answer in this chapter:
1. When should the interrupts be triggered?
2. How often should the interrupts be triggered?
3. Which interrupts should be triggered?
Learning from the above examples, we propose the following heuristics:

1. Interrupts should be triggered only after the ISR and the data are initialized. We
call this IRQ status ready. (When)

2. Interrupts should only be triggered when the firmware needs them. We call this
firmware run-time state waiting. For example, when the firmware keeps checking
the status of the ring buffer in the simplified UART ISR example, it is in a waiting
state. (How often)

3. Only the interrupts whose ISR can change the firmware run-time state from
waiting to not waiting should be triggered. We call this IRQ type effective. For
example, the ISRs in the first two examples make the firmware get stuck and
are thus not effective IRQs. However, the UART ISR in the third example lets
the firmware escape from the waiting state and continue running, thus it is an
effective IRQ. (Which)

In summary, to solve the interrupt-triggering problem, we need to identify the IRQ
status (ready or unready), IRQ types (effective or ineffective), and the firmware run-time
state (waiting or not waiting).

Solving the problem of interrupt-triggering is a challenge in practice due to the
complexity of the interrupt design. Identifying the IRQ status, IRQ types, and firmware
run-time state is a non-trivial task.
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Figure 4.1: Firmware run-time state transition cycle

4.3.2 Challenges

The complicated interrupt design in real-world firmware poses two main challenges:
• When the processor serves an IRQ, it retrieves the interrupt vector table base

address and indexes the ISR using the IRQ number. The vector table is subject
to dynamic re-basing, and its elements can be overwritten at run-time. Thus, a
single IRQ number can be served by multiple ISRs. Besides, function pointers
are widely used in ISRs. A function pointer can point to different functions at
firmware run-time. An ineffective IRQ may become an effective one after any
of these conditions get changed. Therefore, the type and the status of the IRQ
cannot be statically determined. We summarize this challenge as run-time data
dependency.

• Manually analyzing the firmware to determine the run-time state requires a non-
trivial amount of work. The firmware does not enter a waiting state at a fixed
time interval but is highly dependent on the program logic. The firmware requires
different interrupts in different waiting states. Statically analyzing the entire
firmware to determine when the firmware enters a waiting state is a tedious task,
as static analysis is not scalable. We summarize this challenge as state recognition.

4.3.3 Insights

To solve the run-time data dependency challenge, we monitor and intercept the changes
of the interrupt vector table base, vector table entries, and the function pointers used
in the ISR during the whole fuzzing campaign. If there is any change, we extract the
ISR address from the vector table, dump the firmware registers and memory, analyze it,
and save the analysis results in an IRQ model database. When an update is detected,
e.g., when a function pointer is overwritten with a new value, we first try to find the
model in our IRQ model database. If we find the corresponding model for the update,
we apply it; otherwise, we perform a re-analysis. In this way, we always keep using the
latest IRQ model.

For the state recognition problem, we observe that most firmware share a common
run-time transition cycle. As shown in Figure 4.1, the firmware boots itself and then
goes into an infinite processing-waiting loop. In the processing state, it does not require
any interrupts and is busy processing data. In the waiting state, it requires interrupts
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to change its state back to processing again. We have the following key observation:

The effective IRQs change the firmware run-time state from waiting to processing by
modifying global objects.

For instance, in the simplified UART ISR from Listing 6, the ISR uart_tx_isr makes
the firmware continue running by changing the global object output_buffer status from
full to not full. Besides, we observe that firmware widely uses specific instructions or
infinite loops to enter a waiting state as well. Hence, we conclude that the firmware
enters a waiting state if one of the following conditions is satisfied:

1. The firmware explicitly enables the global interrupt by setting the bit in CPSR in
a frequent manner.

2. The firmware executes the Wait for Interrupt (WFI) or Wait for Event (WFE)
instruction. These instructions allow the core to enter a low-power mode and stop
executing code.

3. The firmware enters an infinite loop.
4. The firmware constantly checks the global objects whose value can be modified in

an ISR.
With these assumptions in mind, we conclude that the firmware only requires

interrupts when it is in a waiting state, and the ISRs will modify global objects to
change the firmware run-time state from waiting to processing. Hence, we trigger
interrupts in the following manner: When the firmware enters a waiting state via the
first three conditions, we trigger all the effective interrupts one by one since we have no
hints indicating which interrupt it requires. When the firmware enters a waiting state
via the fourth condition, we trigger the corresponding interrupt whose ISR can change
the global objects’ value.

Our findings closely align with our investigation of firmware samples collected from
various RTOS. More specifically, we analyzed 110 firmware samples and found that 83%
of them followed our run-time state transition cycle observation. For more information
about the investigation we conducted, please refer to Section 4.5.

4.4 Interrupt-Driven Firmware Fuzzing Design

We now discuss the threat model we use in this paper and then present the design and
implementation of our approach.

4.4.1 Threat Model

In this paper, we assume that the attacker has full control over the MMIO data. The
firmware accepts peripheral inputs (e.g., network packets, temperature, and console
input characters) either from the MMIO registers or from the DMA buffer. We disregard
the DMA input and focus on the data read from MMIO. We do not assume that the
interrupts are controlled by the attacker, as they usually cannot be configured by
an attacker. We make no assumptions about the image symbols, source code, and
documentation of the firmware. However, like other re-hosting systems, we assume that
we have full knowledge of the board’s memory layout on which the firmware runs.
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4.4.2 High-Level Overview

Figure 4.2 illustrates the design overview of AidFuzzer. It mainly consists of three
components: the emulator, the IRQ modeling engine, and the fuzzing engine. The
emulator maintains an emulated environment, including CPU registers and virtual
memory, for re-hosting the firmware. It translates the ARM assembly code into native
code and executes it. The IRQ manager triggers interrupts when the firmware enters
the waiting state. The IRQ modeling engine extracts the firmware context and analyzes
the ISR at a specific point. Upon completion of the analysis, the modeling results are
saved in the IRQ model database, which is subsequently retrieved and used by the IRQ
manager. The fuzzing engine, like other firmware fuzzers, supplies fuzzing input via
MMIO and obtains coverage feedback from the emulator to guide the fuzzing process. In
the following sections, we discuss the detailed functionalities of each part, in particular
how the interrupt trigger mechanism works in the system.

4.4.3 IRQ Modeling Engine

Recall that we designate an IRQ as effective if it changes the firmware runtime state to
processing (i.e., its ISR alters global objects), and we trigger it after its status becomes
ready. The main goal of the IRQ modeling is to determine the type and status of an
IRQ. The type and status can change during the runtime, therefore, we need to update
the IRQ model when necessary. Specifically, we collect the following information during
the IRQ modeling process.

a) Does the ISR modify any global objects? If so, collect the addresses to which the
values are written.

b) Does the ISR use any function pointers? If so, collect the addresses from which
the pointers are loaded.

c) Does the ISR de-reference any null pointers without checking? If so, collect the
addresses from which the pointers are loaded.

d) Does the firmware always get stuck in the ISR, e.g., in an infinite loop?
We use the modified global objects information to identify the types of the IRQ

(effective or ineffective), the null pointer de-reference and getting stuck information to

Emulator Re-hosted Firmware 

IRQ Model 
Database

IRQ Manager

Run-time 
Irq Model

Trigger Interrupt

Fuzzing Engine

Fuzz Input

Coverage 
Feedback

IRQ Modeling 
Engine

Save Generated Model

Figure 4.2: Design overview of AidFuzzer
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identify the status of the IRQ (ready or unready), and the function pointer information
to update the type and status of an IRQ. After finishing the modeling, the results are
saved in the IRQ model database.

4.4.3.1 IRQ Modeling Workflow

The IRQ modeling engine takes firmware register values and a memory dump in
combination with the memory layout configuration file as inputs (note that we assume
that the memory layout is available in our threat model). The modeling engine
symbolically executes the ISR by using angr [193]. During execution, the engine
intercepts the memory access operations to collect the aforementioned information.
However, since all data in the context dump is concrete, the global memory needs
to be symbolized to explore as many paths as possible. An exception is the pointer,
where further information is required to fetch more data and explore indirect functions.
Specifically, we perform the following operations in the symbolic execution interception.

Interceptions. For memory read operations where the addresses from which the
data is to be loaded are in the global memory space, the engine symbolizes their value
and creates a mapping between the symbolic value and its concrete memory data. If
the addresses are symbolic, it checks whether their corresponding concrete data is 0,
and it reports a null pointer de-reference if the value is not constrained to a non-zero
value. If a function pointer is used in an indirect branch, it resolves its symbolic value
to concrete data so that the symbolic execution keeps running. If the function pointer
is 0, it reports a function pointer usage. For memory write operation, it checks if the
addresses are located in the global memory space, and if so, it reports a global object
modification. For each piece of information, the engine collects the addresses at which
the data was loaded or saved. After the symbolic execution is completed, it checks
whether one of the paths can reach the end of the ISR; if not, it reports that it is stuck.

Special control register handling. The processor automatically loads the IRQ
number into IPSR before entering the ISR. In certain firmware, a unified ISR wrapper
is implemented for all IRQs, using the IPSR register value as an index to retrieve the
actual ISR function pointer from a function pointer array. When conducting symbolic
execution and encountering reads from this register, we provide the concrete IRQ
number. For other control registers, we opt to symbolize their values to facilitate the
exploration of additional execution paths.

Path explosion handling. To mitigate path explosion, we first explore the newly
discovered basic blocks and set a timeout for the loops when modeling the ISR. We set
a two minute timeout for the AidFuzzer prototype.

4.4.3.2 IRQ Modeling Example

We take the simplified UART ISR as a modeling example. During the symbolic execution,
the entire global memory and MMIO data are symbolized. Therefore, the function
uart_ready can return both true and false, and the ring buffer could also be empty and
full. If one of the two conditions is unsatisfied, the execution ends, making it possible
to reach the end of the ISR. If the two conditions are satisfied, the execution enters the
if branch. When it tries to write the output_buffer object, the engine infers that it is
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a global object, and therefore it collects the address of the field that is being written to.
Finally, we conclude that the UART ISR has the following modeling results: It modifies
a global object output_buffer, it does not contain null pointer dereferencing, and does
not cause the firmware to get stuck. Thus, the UART IRQ is effective and ready.

4.4.4 Emulator

We implement our emulator based on QEMU [20]. The emulator functions as a dynamic
runtime environment for the firmware, with the original ARM assembly code dynamically
compiled into intermediate language code (TCG code in QEMU). This intermediate
code is further translated into native code and executed. The physical addresses of the
re-hosted firmware are translated into native addresses through the use of the softMMU,
enabling interception of every memory access. To feed the fuzz input, we implement an
ARM Cortex-M-based board that supports full customization for the memory regions.
Originally, the emulated peripherals are responsible for triggering interrupts; however,
the IRQ manager takes over the interrupt triggering and can decide when and what
interrupts are to be triggered with the help of the IRQ model database. After each
fuzzing run, the emulator restores the re-hosted firmware and IRQ manager state. The
coordination between the IRQ manager and the re-hosted firmware is explained in more
detail next.

4.4.4.1 IRQ Manager

State monitor. Recall that we established four conditions, and if any of them is
satisfied, the firmware enters the waiting state. Upon the satisfaction of any of these
conditions, our callback function is invoked. In this callback function, the IRQ manager
determines whether and what interrupts are to be triggered. We explain how AidFuzzer
checks the satisfaction of the conditions and infers the firmware runtime state:

1. The firmware frequently enables the interrupt. We monitor the global interrupt
enable/disable state by intercepting the execution of all CPSIE I instructions.
This instruction sets the CPSR bit so that the processor can serve the interrupts.
When writing to this register, our callback function is invoked.

2. The firmware executes WFI or WFE instructions. We intercept all the WFI
and WFE instructions. Once the firmware executes these two instructions, the
firmware stops execution and our callback function gets invoked.

3. The firmware enters an infinite loop. We search for all infinite loops in the firmware
before fuzzing. Beginning with each branch instruction, we conduct symbolic
execution of the subsequent instructions. If we determine that the execution can
reach the same branch instruction without encountering an opportunity to exit
the loop, we categorize it as an infinite loop. For each basic block initiating an
infinite loop, we register a callback function. Consequently, should the firmware
enter an infinite loop during runtime, the IRQ manager receives a notification.

4. The firmware constantly checks the global objects whose values can be modified
in an ISR. We set memory read breakpoints to all the global objects whose values
can be modified in the effective IRQs’ ISRs. Whenever any of the global objects
is read by the firmware, our callback functions are invoked.
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We set a counter for each condition. If any callback function gets invoked, we
increase the corresponding counter by one. Once a counter surpasses a predefined
threshold, we trigger the specific interrupts. For example, we set the counter threshold
for condition 1 to 10. If the firmware enables the interrupt 10 times, we trigger all
the effective IRQs one by one and reset the counter to 0. Note that we trigger all the
effective IRQs one by one when the first three condition counters surpass the threshold,
while we only trigger the corresponding IRQ in the fourth condition. In AidFuzzer, we
set the enable interrupt counter threshold to 32, the WFI/WFE instruction counter
threshold to 1, the infinite loop counter threshold to 7, and the global object check
counter threshold to 10 according to our empirical analysis.

To avoid recursive interrupt triggering, we do not increase the counter when the
firmware is handling an exception, which means when the firmware is executing an ISR,
even if the conditions are satisfied, no counter is increased.

IRQ triggering. Once the IRQ manager decides to trigger an interrupt, we
set a bit in the NVIC IRQ pending field. Specifically, we call the QEMU function
armv7m_nvic_set_pending with the IRQ number as an argument. The emulator checks
the pending request and does the actual interrupt handling.

IRQ model switching. Maintaining the latest IRQ model is crucial. We achieve
this by registering several event hooks to trigger model updating. Initially, we generate
a model whose status is not ready for all the IRQs. During the fuzzing process, we
analyze the ISR, save the results to the model database, and fetch the model when
the currently used model needs to be updated. Specifically, we update the IRQ model
in the following situations: a) When an IRQ is enabled. IRQ manager requests the
IRQ modeling engine to analyze the newly enabled IRQ and switch the IRQ model
to the generated one. b) When the vector table is re-based. We check all the enabled
IRQ vector table entries to see if it is a new value. If so, the IRQ manager requests
a re-analysis and switches to the new model. c) When an enabled IRQ table entry is
overwritten with a new value. We re-analyze the ISR and switch to the new model. d)
When a function pointer is overwritten with a new value. We re-analyze the ISR and
switch to the new model. We assign a unique ID to each generated model according to
its ISR address and the function pointer values. When an existing model is available in
the database, we switch to the existing one instead of requesting a re-analysis.

4.4.4.2 Snapshot

We use snapshots to speed up the fuzzing process. When the firmware executes the
first MMIO read instruction, we take a snapshot, as we rely on the assumption that the
firmware’s control flow will not change if it is not affected by the MMIO input. This
holds for almost all the firmware, and it works well for all our test cases. Besides the
memory and the registers, we snapshot and restore the internal NVIC state as well.

4.4.5 Fuzzing Engine

Multi-stream fuzzing input. We adopt Hoedur’s [178] multi-stream input and
Fuzzware’s fine-grained input model [177]. Whenever the firmware tries to read from
MMIO memory, the emulator generates a corresponding ID by calculating the instruction
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and MMIO address hash result. If it is the first time it encounters the access ID, it
invokes the Fuzzware interface to generate an input model for the ID, then the emulator
notifies the fuzzer about the newly generated input stream. For each newly generated
stream, the fuzzing engine assigns a random length of data for it. The firmware consumes
the stream data from the MMIO read when the stream is not exhausted; otherwise, it
reports an out-of-stream exit. For now, we ignore the MMIO writes and redirect them
to a dummy function.

Coverage feedback. Edge coverage is widely adopted in fuzzing [147] [127] [81];
however, the asynchronous interrupt leads to noisy coverage. An edge that starts from
the current basic block to the beginning of the ISR does not exist. To eliminate the
noise, we choose to use basic block coverage. We intercept every basic block execution.
Before the basic block gets executed, we increase the corresponding coverage byte by
one.

Crash detection. We do not have sanitizers integrated into our emulator; therefore,
we only detect invalid memory access crashes. When an invalid memory access happens,
such as a null pointer de-reference when address 0 is not mapped, our exception hook
is notified and gets called with the exception code as an argument. We check the
exception code to see if it is a real crash since, for example, a syscall is also regarded as
an exception in ARM Cortex-M. Moreover, the firmware may write to an NVIC field to
reset the system. Fuzzware regards this as a crash; however, we filter out such cases
since they do not incur a security issue.

4.5 Evaluation

In this section, we comprehensively evaluate AidFuzzer, demonstrating its effectiveness
on firmware fuzzing. We aim to answer the following research questions.

RQ1: Is AidFuzzer more effective compared to the previous works for fuzzing
firmware in terms of coverage and bug finding?

RQ2: How sound is the IRQ modeling?
RQ3: How computationally expensive is the implemented IRQ modeling?
RQ4: Does the IRQ modeling perform better than existing methods?

4.5.1 Experiment Setup

Experiment settings. We performed our experiments on a 104 core Intel Xeon Gold
5320 CPU @ 2.20GHz with a 252 GB RAM server running a Ubuntu 22.04.1 LTS OS.
We evaluated our prototype against the two state-of-the-art firmware fuzzers Fuzzware
and Hoedur. For each target, we gave each fuzzer one physical CPU core. Moreover, we
evaluated against SafireFuzz.

Target firmware selection. Our evaluation targets consist of 10 firmware projects.
We collected them from open-source GitHub projects, well-known RTOS examples, and
the targets that have been used by previous evaluation experiments [248]. The details
can be found in Table 4.1.

1Microchip Advanced Software Framework
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Table 4.1: Number of basic blocks, board, and the OS/framework information of the
firmware we collected.

Bbls Board OS/framework

Blehci [83] 5441 nrf52840 Apache Mynewt
AnnePro2-Shine [50] 1117 AnnePro2 keyboard ChibiOS
TauLabs [206] 4644 pipxtreme ChibiOS
3Dprinter [204] 8032 Marlin printers bare-metal
bcn_rfd_ncp [148] 3590 Atmel SAM ASF1

coord_ncp [148] 4247 Atmel SAM ASF
mac_no_beacon_sleep [148] 2940 Atmel SAM ASF
nobcn_ffd_ncp [148] 3510 Atmel SAM ASF
sam4l_qtouch [148] 1799 Atmel SAM ASF
nmea_parser [209] 8415 STM32F411RE RT-Thread
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Figure 4.3: Basic block coverage achieved by Fuzzware, Hoedur, AidFuzzer-fuzz-mode,
and AidFuzzer over the course of 24 hours for 10 times. We plot the median and
confidence interval.

Evaluation metrics. We evaluate the effectiveness of AidFuzzer in two aspects:
a) We count the number of unique basic blocks discovered by fuzzers. We measure if
AidFuzzer can discover more unique basic blocks or can discover basic blocks faster.
b) We count the number of discovered unique crashes and the number of confirmed
vulnerabilities. We measure if AidFuzzer can discover more vulnerabilities while having
fewer false positives.

4.5.2 Effectiveness of AidFuzzer (RQ1)

We compare AidFuzzer against the two state-of-the-art tools Fuzzware and Hoedur with
their advanced fuzz-mode interrupt triggering mechanism integrated. Each is configured
with the default 1000 basic blocks interval. To eliminate the effects originating from
the fuzzer, we implemented a fuzz-mode interrupt triggering for AidFuzzer as well for
comparison. The implemented AidFuzzer-fuzz-mode has the same interrupt triggering
settings, such as interval, as Fuzzware and Hoedur. We fuzzed each target for 24 hours
10 times as recommended by Klees et al. [119] and Schloegel et al. [180]. Figure 4.3
visualizes the median and confidence interval of discovered basic blocks, and Table 4.2
presents the number of unique reported crashes and the confirmed vulnerabilities.
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4.5.2.1 Coverage Analysis

As shown in Figure 4.3, AidFuzzer achieved higher and faster coverage than Fuzzware,
Hoedur, and AidFuzzer-fuzz-mode for the majority of the targets, while for other targets,
AnnePro2-Shine, nmea_parser, and sam4l_qtouch, AidFuzzer achieved similar coverage.

Hoedur had a bug when handling a UART interrupt priority in Blehci and could not
continue before the firmware started processing data. For TauLabs, due to ineffective
IRQs, Hoedur triggered the watchdog interrupt and got stuck in an infinite loop, and
no fuzzing progress was made. We did not plot Fuzzware and AidFuzzer-fuzz-mode for
TauLabs, as both fuzzers crashed before discovering any valid input due to triggering
unready interrupts. The same problem also happened for target nmea_parser. The
nmea_parser SysTick interrupt ISR used uninitialized pointers, which was triggered by
Fuzzware and AidFuzzer-fuzz-mode in the early stage. For sam4l_qtouch, AidFuzzer-
fuzz-mode kept triggering the SysTick interrupt whose ISR involves an infinite loop
before the second interrupt was enabled. An interesting target is mac_no_beacon_sleep.
As recommended by Hoedur, we disabled the interrupt triggering time interval because
the firmware contains WFI instructions(which means Hoedur only triggers an interrupt
when it encounters a WFI instruction). However, the firmware did not reach the
instruction during the execution. We identified four conditions that can make the
firmware enter a waiting state. However, Hoedur cannot fully identify all of these
conditions.

As shown in Figure 4.3, although the interrupts did not make the firmware get stuck
or crash in the early stage, triggering the interrupts in a proper frequency was crucial
for firmware fuzzing as well and made the fuzzer achieve faster basic block coverage.
We take the 3Dprinter as an example to illustrate the reason behind it.

The 3Dprinter firmware takes a string—called GCode instruction—as input. The
GCode instruction is read one character at a time when the UART interrupt is triggered.
This character is stored in a buffer and is only processed later on when a whole line is
read. For the fuzz-mode interrupt triggering strategy, it can be an issue to associate
the coverage of the GCode instruction execution with triggering the UART interrupt
multiple times in combination with a meaningful GCode instruction input. A fuzzer
with such an interrupt strategy may only rarely raise the UART interrupt due to the
mentioned coverage feedback disconnect and therefore greatly decreases the chance of
reaching deep into the 3Dprinter logic. AidFuzzer identifies the UART interrupt as
an effective and ready IRQ. Its ISR modifies the number of characters stored in the
buffer. The firmware keeps checking the number of elements in the buffer when it does
not receive enough characters from the UART. AidFuzzer’s state monitor recognizes
the firmware run-time state as waiting and triggers the UART interrupt accordingly.
This way, it increases the chances for the firmware to receive a whole line of GCode and
continue processing. We noticed that Hoedur achieved higher coverage than AidFuzzer
after 14 hours. We found that an interrupt was not triggered by AidFuzzer. This
interrupt is enabled after a failure occurs and the firmware enters a throb function.
The interrupt is not used by the firmware. AidFuzzer identifies the IRQ as unready
as it contains uninitialized pointers that persist throughout the throb function, thus
AidFuzzer did not trigger this interrupt, incurring lower coverage than Hoedur.

Besides Fuzzware and Hoedur, we also compared AidFuzzer to SafireFuzz using the
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Figure 4.4: Basic block coverage achieved by SafireFuzz, AidFuzzer-fuzz-mode, and
AidFuzzer over the course of 24 hours for 5 times. We plot the median and confidence
interval. AidFuzzer and SafireFuzz work on different architectures; therefore, we reused
the evaluation data from the SafireFuzz experiments.

Table 4.2: Unique crashes, confirmed vulnerabilities, and vulnerability types found by
Fuzzware, Hoedur, AidFuzzer-fuzz-mode and AidFuzzer. AidFuzzer discovered more
vulnerabilities while reporting 0 false positives.

Fuzzware Hoedur Aid-fuzz-mode AidFuzzer

Reported Confirmed Reported Confirmed Reported Confirmed Reported Confirmed

Blehci 1 0 0 0 0 0 0 0
AnnePro2-Shine 3 3 3 3 3 3 3 3

TauLabs 1 0 0 0 0 0 1 1
3Dprinter 1 0 1 0 1 0 0 0

bcn_rfd_ncp 1 1 1 1 1 1 1 1
coord_ncp 1 1 1 1 1 1 1 1

mac_no_beacon_sleep 1 1 0 0 1 1 1 1
nobcn_ffd_ncp 1 1 1 1 1 1 1 1
sam4l_qtouch 0 0 0 0 0 0 0 0
nmea_parser 1 0 1 0 1 0 0 0

total 11 7 8 6 9 7 8 8

12 samples from the SafireFuzz experiments [186]. Since SafireFuzz requires a manual
HAL function hook, we reused the data from their paper and plotted them separately.
Figure 4.4 shows the unique basic blocks discovered by AidFuzzer, AidFuzzer-fuzz-mode,
and SafireFuzz. Notably, six of the firmware samples (6LoWPAN_Receiver, 6LoW-
PAN_Transmitter, P2IM_Drone, P2IM_PLC, STM_PLC, WYCINWYC) do not use
DMA to transfer data, hence these samples are fully supported by AidFuzzer. The
other samples use DMA, which is an orthogonal challenge not addressed by AidFuzzer.
In the WYCINWYC, P2IM_Drone, 6LoWPAN_Transmitter, and P2IM_PLC sam-
ples, AidFuzzer achieves similar or better coverage compared to SafireFuzz. However,
AidFuzzer discovered fewer unique basic blocks than SafireFuzz in STM_PLC and
6LoWPAN_Receiver. We observed that the STM_PLC requires a nested interrupt to
be triggered, which AidFuzzer does not support. Additionally, AidFuzzer could not
successfully recognize the global objects in 6LoWPAN_Receiver due to a bottleneck
in symbolic execution. We emphasize that while AidFuzzer and SafireFuzz address
orthogonal firmware fuzzing challenges, our methodology could be adapted to enhance
the fuzzing efficiency of SafireFuzz.

4.5.2.2 Crash Analysis

AidFuzzer found in a total of 8 vulnerabilities in the 10 firmware targets shown in
Table 4.2, including 1 buffer over-read control flow hijacking in TauLabs, 3 buffer
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Table 4.3: IRQ Modeling Result. Effective ISRs refer to the ISRs that make the corre-
sponding IRQ effective. Global objects refer to the global objects that the ISRs modify.
We count the overall numbers for all enabled IRQs in the firmware. The methods to
enter the waiting state are: 1 constantly enable global interrupt, 2 execute WFI/WFE
instructions, 3 infinite loop, 4 constantly check global objects.

# of
enabled

IRQs

# of
unique
ISRs

# of
effective

ISRs

# of
global
objects

# of
NULL data

pointers

# of
function
pointers

enter
waiting

state

Blehci 7 10 6 84 4 4 2 1
AnnePro2-Shine 3 3 3 57 5 1 3
TauLabs 10 10 8 186 13 11 3 4
3Dprinter 7 7 6 66 3 13 4
bcn_rfd_ncp 4 5 3 11 0 16 1 4
coord_ncp 4 4 3 11 0 15 1 4
mac_no_beacon_sleep 3 3 2 16 0 45 1 4
nobcn_ffd_ncp 4 4 3 13 0 19 1 4
sam4l_qtouch 3 3 2 5 0 1 1 4
nmea_parser 2 2 2 45 4 25 1 4

over-writes control flow hijacking in AnnePro2-Shine, and 4 arbitrary memory writes in
bcn_rfd_ncp, coord_ncp, mac_no_beacon_sleep, and nobcn_ffd_ncp. It is worth
noting that AidFuzzer did not report any false positives. Hoedur, Fuzzware, and
AidFuzzer-fuzz-mode correctly reported part of the vulnerabilities; however, they re-
ported false positives as well. We reported all the vulnerabilities to the vendors.

Fuzzware misreported a reset in Blehci as a crash. Due to the implementation
bug, Hoedur did not correctly handle the interrupt priority in Blehci and therefore got
stuck. Fuzzware, Hoedur, and AidFuzzer-fuzz-mode reported null pointer de-references
in 3Dprinter. We manually checked the firmware, and we found that the crashes all
happened in an ISR that has not been fully initialized. When a failure occurs, this IRQ
is enabled by accident and should not be triggered in the real environment. AidFuzzer
successfully identified it as an unready IRQ and did not trigger it. Fuzzware, Hoedur, and
AidFuzzer-fuzz-mode all got stuck in the early stage when fuzzing the TauLabs firmware
due to ineffective and unready IRQs. AidFuzzer avoided triggering the IRQs that cause
the firmware to get stuck and successfully found the buffer over-read vulnerabilities
which were not covered by other fuzzers.

AidFuzzer successfully found all the vulnerabilities that the state-of-the-art tools
could also find. Moreover, AidFuzzer found more vulnerabilities that were not found by
others and reported fewer false positives, which saves manual effort for crash analysis.
Note that we only counted the number of unique crashes. Hoedur and Fuzzware reported
a large number of false positive crashes in these targets which is why verification requires
a non-trivial manual effort. Five CVEs have been assigned to our findings.

4.5.3 Soundness of IRQ Modeling (RQ2)

We collected the following IRQ information for each firmware presented in Table 4.3:
the number of enabled IRQs, the number of unique ISRs, the number of effective ISRs
(effective ISR means the ISR makes the corresponding IRQ effective), the number of
monitored global objects, the number of null data pointers, the number of function
pointers, and the mechanisms employed by the firmware to enter the waiting state.
The presented table reveals that firmware deploys complex interrupt services for their
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Figure 4.5: Interrupt triggering in 3Dprinter

functionalities. A portion of the ISRs renders the corresponding IRQs ineffective. The
range of monitored global objects spans from 5 to 186. The number of function pointers
and null-data pointers is consistently below 50 for all targets. Regarding the conditions
to enter the waiting state, the firmware utilizes all mentioned four conditions. However,
the preference for specific methods varies depending on the implementation of each
firmware.

4.5.3.1 Ineffective IRQ Case Study

Taking the Blehci firmware as an example, it enables 7 IRQs and employs 10 ISRs to
handle these IRQs. However, 4 of these ISRs render their corresponding IRQs ineffective.
One such IRQ is associated with the watchdog. The implementation of the watchdog ISR
involves halting the system by executing a break-point instruction and then entering an
infinite loop. If triggered, this interrupt results in the termination of the fuzzing process.
Another interrupt is tied to the SysTick, and its ISR is an infinite loop. Activation
of this interrupt also leads to the cessation of the fuzzing process. Our IRQ modeling
result correctly identifies the watchdog and SysTick IRQ as ineffective.

4.5.3.2 Effective IRQ Case Study

Manually verifying the soundness of each modeling result for effective IRQs in the
target set can be a cumbersome task. Nonetheless, it is worth illustrating the result
with the example of the 3Dprinter. We manually analyzed the firmware code logic and
understood the ISR functionalities. Then we checked if the modeling results fit our
manual analysis results. To have a clear representation of the AidFuzzer interrupt-
triggering for 3Dprinter, we executed the firmware with a discovered input and visualized
the type and frequency of interrupts triggered during the execution, as depicted in
Figure 4.5. The x-axis is the firmware execution stage, the differently colored columns
represent the number and type of the interrupts triggered. We mark the function names
where the interrupts get triggered for intuitive understanding.
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In the 3Dprinter firmware program logic, IRQ 15 serves the SysTick, and its ISR
increases a counter by one. IRQ 53 serves a UART device, and its ISR either consumes
one character from the output buffer or reads a character from the UART register into
the input buffer. IRQ 44 and 66 serve two timers.

In the setup stage, the UART interrupt is only triggered in the function usart_putstr.
This function keeps looping until all the characters are consumed. AidFuzzer triggers
the UART interrupt to consume the output buffer and lets the firmware continue
running. The SysTick interrupt is only triggered in function delay. This function is
used to set up the temperature management environment and it checks whether the
counter exceeds a limit and then continues execution. AidFuzzer triggers the SysTick
interrupt to increase the counter and therefore bypass the check quickly. In the user
input stage, besides being triggered in the usart_putstr function, the UART interrupt
is also triggered in function GCodeQueue_get_serial_commands. This function checks
if there are enough characters in the input buffer and retrieves the characters to a
command buffer. During this stage, the firmware reads the input from UART, and
thus AidFuzzer triggers the UART interrupt to fill the input buffer. In the last Gcode
process stage, two timer interrupts are triggered in the function idle. In this stage, the
firmware is busy processing the user input, therefore AidFuzzer does not trigger any
other interrupts. The firmware waits for some tasks to be completed; consequently,
AidFuzzer triggers the timer interrupt to notify the firmware about the completion of
the task. The overall IRQ modeling result fits our manual analysis result well.

4.5.3.3 Heuristic Study

To verify if our firmware run-time transition cycle applies to the majority of the firmware,
we conducted a heuristic study. Analyzing firmware binaries without access to the
source code requires considerable manual effort and is prone to errors. Given that
firmware is typically closed-source, we collected 110 firmware samples from well-known
open-source RTOS examples. We manually analyzed their implementation logic and the
corresponding models based on our observations. We found that 19 (17%) of the samples
do not perform the run-time transition cycle discussed in our paper, while 91 (83%)
adhere closely to our heuristics: The firmware performs a waiting-processing run-time
state transition cycle. For the 91 samples that follow our heuristics, we analyzed the
functions used for the waiting and processing logic, the interrupt service routines, and
the global objects involved in changing the run-time state. Regarding the methods
used to transition to the waiting state, 7 (6%), 19 (17%), 8 (7%), and 82 (74%) of
the samples use one of the four identified methods, respectively. Note that firmware
can employ multiple methods to enter the waiting state. Our results indicate that
continuous checking of global objects is a common method in the analyzed firmware
samples. However, the use of different methods to enter the waiting state is mostly
independent of each other and highly dependent on the RTOS design logic. For instance,
the ChibiOS samples exclusively use an infinite loop, a method that is not commonly
used. In contrast, the RIOT samples use both global object checks and WFI/WFE
instructions to enter the waiting state. From this heuristic study, we conclude that our
observation applies to the majority of firmware samples.

We proposed four conditions that firmware can use to enter the waiting state and
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Table 4.4: Extra overhead caused by IRQ modeling

Infinite loop
searching (s)

IRQ Modeling
times

Total time
consuming (s)

Blehci 133 11 525
AnnePro2-Shine 32 7 286
TauLabs 51 15 1433
3Dprinter 136 7 397
bcn_rfd_ncp 76 7 524
coord_ncp 83 7 508
mac_no_beacon_sleep 66 6 390
nobcn_rfd 64 7 519
sam4l_qtouch 51 3 6
nmea_parser 232 4 489

applied empirical counter values to each threshold for the four conditions. Depending
on the design logic and implementation of the firmware, the values we have chosen
may not be optimal. For example, in the case of the 3D printer firmware, which uses
two fixed-length buffers to send and receive characters over UART, both reading and
sending characters take place within a single ISR. The ISR checks the value of the
UART register to determine readiness for sending or receiving characters. When the
sending buffer is full, the firmware continuously checks the buffer status until it is no
longer full, then writes the character to the buffer. Compared to the sending request,
the reading request is less frequent. If the threshold for checking global objects is set too
low, the ISR will be triggered excessively, making it easier to consume characters from
the sending buffer, but also increasing the data read for processing, thereby expanding
the input space. Conversely, if the threshold is set too high, the ISR will be triggered
infrequently, reducing the input space but failing to meet the character-sending requests.
This can lead to the coverage feedback being interrupted if loops are executed without
new basic blocks being detected.

4.5.4 Overhead (RQ3)

The additional overhead primarily stems from three sources. The first source is the
memory read/write breakpoints. Despite our efforts to optimize the code and minimize
the impact, it still incurs a 20%-25% overhead throughout the entire fuzzing process, as
every memory access in the firmware undergoes scrutiny.

The second overhead arises from the search for infinite loops in the firmware image.
Table 4.4 details the time consumed by AidFuzzer in locating infinite loops for all targets.
The majority of these searches can be completed within 250 seconds. It is important to
note that we conducted this search only once for each target, and the results can be
reused in subsequent fuzzing.

The third contributor to overhead is the IRQ modeling. When the IRQ model needs
to be updated and the model is not found in the model database, an IRQ modeling is
conducted. Table 4.4 provides the overall times and time used for the IRQ modeling.
In our experiments, IRQ modeling occurred mostly in the initial half-hour, and the
modeling results were reused in subsequent fuzzing. Therefore, the overhead associated
with IRQ modeling is deemed acceptable when compared to the overall fuzzing time.
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Table 4.5: IRQ modeling comparison with AIM. Ident refers to the global objects identi-
fied by the tool. TP refers to the correctly identified global objects.

AIM AidFuzzer Time(s)
Ident TP Ident TP AIM AidFuzzer

cnc_r1 1 1 20 15 28 126
gateway_r2 13 13 12 12 1270 375
plc_r1 13 13 11 11 590 71
robot_r1_hardfpu 1 1 19 19 1784 117
reflow_oven_r1 13 13 1 1 699 135

4.5.5 IRQ Modeling Comparison with AIM (RQ4)

Since AidFuzzer and AIM use different underlying methods to analyze firmware—fuzzing
and symbolic execution, respectively—a direct comparison of the number of discovered
basic blocks is not meaningful. Instead, we conducted a quantitative comparison of
AidFuzzer and AIM in terms of IRQ modeling in the firmware samples analyzed in
the AIM paper experiment [73]. Both AidFuzzer and AIM share the insight that
firmware changes global objects in the ISR to change execution behavior. Therefore, we
counted the number of unique global objects identified by both methods and manually
inspected their correctness as well as the analysis time spent on IRQ modeling. As
shown in Table 4.5, AidFuzzer and AIM both identified the global objects correctly.
However, AidFuzzer reported five false positives in cnc_r1. AidFuzzer aims to find the
global objects that can be modified as many as possible. Therefore, AidFuzzer tries
to symbolize the variable values thus it can explore all possible paths. As a result,
due to the symbolic execution mechanism, some unreachable paths can be explored by
our modeling engine, and the corresponding global objects that are modified within
the paths are incorrectly identified. This comprehensive path exploration can lead to
false positive global objects that cannot change the execution behavior of the firmware.
The time required for IRQ modeling varied between a few seconds and minutes for
the two methods, depending on the firmware logic. These variations in AidFuzzer are
acceptable, as the modeling process only occurs once during fuzzing and can be reused
in subsequent fuzzing runs. We observed that AidFuzzer in general spent less time
on the IRQ modeling compared to AIM. More specifically, AidFuzzer only spent an
average of 33% of the analysis time on the five samples used in the AIM experiments.
For cnc_r1, AidFuzzer spent more time on analysis than AIM. The reason is that a
register indicates the status of the device for a TIM IRQ ISR. While AidFuzzer explores
all possible paths by symbolizing the register values, AIM only analyzes one path by
giving the register a concrete value.

4.6 Discussion

Although the majority of the firmware follows the run-time state proposed in our thesis,
according to the heuristic study result, there is still a portion of firmware that does not
align with this assumption. Even though some firmware does not rely on the interrupt
to accomplish its tasks, accurately modeling the firmware interrupt in a broad range
requires additional work that depends on a more generic assumption.
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AidFuzzer triggers interrupts only after their data are fully initialized in the ISR.
Some may consider crashes caused by uninitialized data as bugs. While AidFuzzer
may lead to false negatives in such scenarios, we assert that these bugs are less closely
tied to security vulnerabilities. Our primary focus is on fuzzing the deep logic within
the firmware, prompting us to strike a balance between deep logic exploration and the
potential for false negatives. Although certain ineffective interrupts are not triggered
by AidFuzzer, resulting in slightly lower coverage, this impact is deemed trivial when
compared to overall coverage.

For real-time monitoring of the firmware state, AidFuzzer requires interception of
every memory access, incurring extra overhead during the whole fuzzing process, which,
while noticeable, is not negligible. We have optimized the interception function to
minimize this overhead as much as possible.

Given the well-known bottleneck associated with symbolic execution, AidFuzzer
faces challenges in effectively handling loops and intricate mathematical operations.
To address issues related to control flow explosion, we chose to first explore the newly
discovered basic blocks, albeit at the expense of potential false negatives. Moreover,
when handling complicated nested structures, AidFuzzer cannot fully model the ISR,
which may generate an incorrect result. When a data pointer is updated in the ISR
that may alter the model result, we do not re-analyze it, resulting in an incorrect result
as well. However, we need to make a trade-off between the fuzzing performance and the
modeling soundness.

Compared with round-robin and fuzz-mode interrupt triggering mechanisms, Aid-
Fuzzer’s adaptive method outperforms them in fuzzing, but may not correspond to real
situations. For instance, the SysTick interrupt is only triggered at a fixed time interval
in a real device, however, it is triggered multiple times within a short time window in
fuzzing. We urge that as long as the discovered vulnerabilities can be reproduced in
real devices, we can prioritize the fuzzing effectiveness.

4.7 Conclusion

In this chapter, we observed that the interrupt-triggering problem may hinder the
fuzzing process when targeting RTOS firmware. We found that the key insight to solve
the problem is to identify the run-time transition cycle of the firmware execution. The
firmware run-time state can be categorized into two stages: the waiting state and the
processing state. The interrupt should only be triggered when it is in a waiting state while
the simulator should let it run in the processing state. We designed and implemented an
adaptive interrupt-driven firmware fuzzing framework to tackle the interrupt-triggering
problem. Our experiment results showed that when the interrupts are properly triggered,
the discovered basic block and false positives caused by fuzzing can outperform the
state-of-the-art works. We found eight previously unknown vulnerabilities and five of
them were assigned CVEs by using our fuzzing framework in well-known RTOSes. In the
next chapter, we focus on memory safety defense instead of the attack side. We chose
to design a fully backward-compatible and secure TEE framework. Learning from the
attack surfaces analysis, we found that the more interfaces the low-level software exposes,
the more vulnerable it becomes. Therefore, when designing the TEE framework, we
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consider both how the industry would accept the design (compatibility) and minimize
the attack surfaces (security).
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5.1. OVERVIEW

5.1 Overview

Trusted Execution Environment (TEE) applications require special permission for specific
resources, such as secure memory access, to run in the system. TEE applications must
preserve and restore the context before entering and leaving the secure region (called
enclave) to not leak secret data. As the software is tightly coupled with the platform,
TEE applications are obviously low-level software. To manipulate the processor-provided
isolation features, the TEE applications benefit from direct memory access languages
such as C and C++ . As we have seen before, the larger the code base is, the more
gadgets the attacker could use to exploit memory corruption vulnerabilities.

However, the seamless integration of existing TEEs into the cloud is hindered,
as they require substantial adaptation of the software executing inside an enclave as
well as the cloud management software to handle enclaved workloads. TEEs enforce
memory access control mechanisms to the protected ranges of memory using enclaves
that are inaccessible even to the high-privilege software. The major platform vendors
provide their proprietary enclave security architectures such as Intel SGX [103], Intel
TDX [104], AMD SEV [134], ARM TrustZone [5] and ARM CCA [4]. Similarly, academic
research has also proposed a variety of enclave architectures using CPU features or
customized hardware, such as Keystone [121], Penglai [75], Sanctum [55], CURE [12]
and Komodo [77]. However, these solutions have several shortcomings such as a lack of
full backward compatibility, native live migration and secure I/O.

In Intel SGX [103], system calls are not allowed to be directly used inside the enclave.
Therefore, programmers cannot develop SGX applications using normal toolchains.
Although the provided SDK can facilitate the coding process, the cost of manual
development for the specific CPU feature from scratch is still high. Recent works have
attempted to port unmodified legacy applications into SGX such as Panoply [191],
Haven [17], Scone [6] and Graphene-SGX [211]. However, these solutions suffer from
scalability and compatibility problems. Keystone [121], Penglai [75], Komodo [77], and
Sanctum [55] also provide their SDK for developers to develop enclaved applications
and, as a result, slow down the acceptance of the TEE solutions by the industry.

To provide application-level level compatibility, virtual machine-based TEEs such as
Intel TDX [104], AMD SEV [134] and ARM CCA [4] have been developed by the major
industry players. However, the hypervisor is assumed to be untrusted in their threat
model. Consequently, the hypervisor is deployed outside the enclave memory. The
virtual machine OS kernel needs to be modified to adapt to the untrusted hypervisor. For
instance, when it traps into the hypervisor, the virtual machine OS kernel is responsible
for cleaning the secret data in the general purpose registers. Since the hypervisor and
the virtual machine are not in the same enclave memory, the virtual machine is supposed
to implement its secure I/O which requires extra developing effort for the programmer.
ARM TrustZone [5] is another virtual machine-based TEE, however, it does not support
multiple enclaves, so it cannot be deployed on cloud infrastructure. Hence, currently,
virtual machine-based TEEs do not provide full backward compatibility.

To take full advantage of hardware resources, the cloud server commonly needs to
migrate virtual machines to other platforms. However, existing virtual machine-based
TEEs hardly provide simple and native migration features as the enclave memory is not
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accessible to other software even for the hypervisor in the platform. Previous works
such as [165] [90] [164] [91] aimed to provide third-party migration support to those
TEEs. However, they either require additional hardware extension or an understanding
of the enclave applications.

To tackle the problems of the existing solutions, we propose VirTEE, the first TEE
architecture that allows strongly isolated execution of unmodified virtual machines (VMs)
in enclaves, as well as secure live migration of VM enclaves between VirTEE-enabled
servers. It is a full backward-compatible TEE on RISC-V architecture enabling native
live migration and secure I/O by utilizing the RISC-V hypervisor extension and VirTEE
hardware. Combined with its secure I/O capabilities, VirTEE enables the integration
of enclaved computing in today’s complex cloud infrastructure. VirTEE hardware
allows both strong enclave memory isolation and large-size enclave while incurring
small performance overhead. Facilitated by large-size enclave support, VirTEE runs
unmodified kernel and applications on top of an enclave monitor in one enclave. The
enclave monitor is located in the same enclave as the virtual machine and consequently
can provide transparent native migration and secure I/O for the virtual machines.
We thoroughly evaluate our RISC-V-based prototype and show its effectiveness and
efficiency. The evaluation results show that VirTEE only imposes moderate overhead
on standard benchmarks such as rv8, CoreMark, as well as on real-world software such
as SQLite and OpenSSL.

5.2 RISC-V Hypervisor Extension

In this section, we give an overview of the aspects that are helpful to understand the
remainder of the chapter. Specifically, we elaborate on the RISC-V privilege levels and
the RISC-V hypervisor extension.

5.2.1 RISC-V Architecture Privilege Levels.

The RISC-V architecture defines four privilege levels. The firmware runs in machine
mode, the most privileged mode (PL0), its memory integrity is protected by a secure boot
and the Physical Memory Protection (PMP) unit. The operating system kernel runs in
PL1, and user-space applications run in PL2. The PL3 privilege level is introduced by
the RISC-V hypervisor extension which is elaborated next.

5.2.2 RISC-V Hypervisor Extension.

RISC-V introduced a hypervisor extension for virtualization. Instead of the operating
system kernel, the hypervisor runs in PL1 and the virtual machine that contains the
virtual machine kernel and virtual machine applications runs in PL2 and PL3. Any
memory access from the virtual machine is further translated by a second-level page
table to form the real physical address. The hypervisor can decide which physical
memory page is mapped to the virtual machine by manipulating the second-level page
table. Since RISC-V uses memory-mapped I/O (MMIO) to access device registers,
the hypervisor is also able to intervene in the virtual machine I/O process. Similar to
the system call, the firmware which is running in PL0, provides low-level functionality
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interfaces called environment call (ECALL) for the operating system. Any ECALL
from the virtual machine is handled by the hypervisor first. The hypervisor determines
whether to forward the ECALL requests to the firmware or returns with fake values.

5.3 Secure TEE Design Analysis

When designing a secure TEE framework, two aspects need to be considered: compati-
bility and security.

5.3.1 Backward Compatibility

Compatibility determines how the industry would accept it. As we mentioned in this
thesis, the application-based TEE design SGX [103] has been abandoned by Intel.
Even with the vendor-provided fully featured SDK [100], developers still need to start
from scratch to learn how to use it, making it hard for the developer to accept the
application-based TEE design. To overcome the application-based TEE, the virtual
machine-based TEE design is the mainstream industrial standard nowadays. By putting
the whole TEE component into a virtual machine, the developers program in a familiar
development environment, increasing the programmer’s interest in accepting it. However,
virtual machine-based TEE is not the silver bullet, as the size of the virtual machine is
relatively bigger than an application, it inevitably exposes more attack surfaces. We
mentioned in the thesis that due to the presence of code reuse attacks, the less code base
it contains, the more secure environment it gains. This led to the second consideration
of TEE design: how to minimize the code base and the exposed interfaces of the TEE
framework.

5.3.2 Less Attack Surfaces Security

Virtual machine-based TEE designs such as TDX [104], and Arm CCA [4] all adopted the
mechanism that the hypervisor should be put in the TEE. This design on the one hand
treats the hypervisor as an untrusted component, making the OS in the virtual machine
more resilient to attacks from the hypervisor, on the other hand, does not provide full
backward compatibility for the users. An unmodified OS cannot run directly inside the
virtual machine otherwise the secret data can be leaked by hypervisor introspection. A
hypervisor has full control over the virtual machine it governs. A single-step breakpoint
makes the register value leak through a VM exit. In addition, since the hypervisor is
not a trusted component, the OS needs to implement the transparent secure IO for
the device simulation, otherwise the IO data will be accessible to the hypervisor. To
provide full backward compatibility and expose fewer attack surfaces, we need to design
a TEE that makes the hypervisor a trusted component.
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Figure 5.1: Design overview of VirTEE

5.4 Backward Compatible and Secure TEE Design

5.4.1 Adversary Model

We consider the adversary model along the line of related works [5, 12, 55, 27]. The
Trusted Computing Base (TCB) consists of three components, i.e., 1) the underlying
VirTEE hardware, 2)the security monitor, a privileged component in PL0 that can
configure the VirTEE hardware, and 3) the enclave monitor running in the enclave.
We assume that the adversary controls the whole OS. The adversary can leak secret
data from the enclave using cache side-channel attacks, forge enclaves, etc. However,
VirTEE, as for other TEE architectures, does not protect enclaves against memory
corruption attacks. We also assume that the peripherals such as the hard drive are also
accessible to the adversary. DoS attacks are orthogonal to the scope of this paper, as
most TEEs do not give guarantees on availability.

5.4.2 Design Overview

VirTEE is a novel security architecture that allows the execution of unmodified virtual
machines (VMs) in strongly isolated enclaves. Further, VirTEE completes this design
with secure live migration and secure I/O. VirTEE design is shown in Figure 5.1.
The VirTEE hardware provides strong physical enclave memory isolation and cache
side-channel attack resilience. Based on the VirTEE hardware memory access control
mechanism, the security monitor provides enclave memory management (e.g., creating
new enclave memory, increasing and shirking enclave size) as well as enclave metadata
management (e.g., measurement, header address, and size), attestation primitives and
context switching for the host and the enclaves. Inside the enclave, the unmodified
VMs run on top of the enclave monitor. Since they are in the same enclave, the
enclave monitor can directly access the VM memory. The enclave monitor provides live
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migration and secure I/O support for the VM that facilitates the enclave user a lot. In
section 5.4.6, we will elaborate on the main workflow of VirTEE.

In the following, we will present the respective components in more detail.

5.4.3 VirTEE Hardware

The VirTEE hardware is the secure platform infrastructure of VirTEE. It divides the
physical memory into enclaves (different colors in Figure 5.1). Several pairs of registers
which are only accessible by the security monitor are used to record the enclave header
address and size and are further used by the filter engine to grant access permissions. If
and only if the instruction and target data are located in the same enclave, permission
will be granted. The VirTEE hardware uses registers instead of the page table to
manage enclave memory so that it can support large-size enclave memory. To provide
cache side-channel attack resilience, when a CPU core is executing one enclave, it has
its last-level cache partition which is not shared by other cores. The CPU core will
clean its cache information before exiting the enclave. In this way, cache information is
locked into the specific core, preventing cache side-channel attacks.

5.4.4 Security Monitor

The security monitor is a part of firmware and runs in PL0. It manages the enclave
memory by manipulating the registers provided by the VirTEE hardware. Since it can
change the whole enclave layout, it has full access to the physical memory. During
platform boot, the integrity of the security monitor is verified by secure boot [105] so
that we assume that the security monitor is not compromised at load time. In summary,
the security monitor provides the following functionalities.

Enclave Metadata Management. During enclave initialization, the security
monitor generates an enclave instance that contains the enclave id, header address, size,
derived local attestation key, and its measurement report (i.e., enclave fingerprint), etc.
The instance is stored in a list protected by the security monitor.

Enclave Memory Management. The security monitor can modify the registers
to change the enclave memory layout. At enclave initialization, the security monitor
allocates new enclave memory according to the request arguments. When it receives a
request from the enclave to modify the enclave size, the security monitor first checks
if the requested memory will overlap with other enclave memory. If so, the security
monitor rejects the request. If not, the security monitor changes the corresponding
registers and notifies the enclave.

Attestation Primitives. Attestation is used by the enclave application to prove
that it is the genuine entity assumed by the verifier. Based on the prover’s and the
verifier’s identity, the security monitor generates cryptographic reports and quota
for local attestation and remote attestation respectively. A device key is hardcoded
in the security monitor and is used to generate attestation keys. Since the security
monitor has full access to the physical memory, it can implement a zero-copy (in place)
report-generating mechanism which significantly reduces the overhead.

Context Switching. To enter an enclave, the security monitor first checks if the
target enclave is ready to be executed. If the check passes, the security monitor prepares
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the context for the enclave such as arguments, and sets up the control registers. Then,
it jumps to the enclave. When the enclave terminates, the security monitor updates the
enclave status and switches back to the host kernel.

5.4.5 Enclave Monitor

The enclave monitor running in the hypervisor privilege level is the core of VirTEE.
We regard the enclave monitor as part of the TCB, therefore, the VM kernel is not
required to clear sensitive data before trapping into the enclave monitor. The RISC-V
hypervisor extension guarantees that every memory access including I/O registers access
is automatically handled by the enclave monitor first. By intercepting the I/O process,
the enclave monitor provides transparent secure I/O for the VM. Since the enclave
monitor is located in the same enclave memory as the VM, it can directly read the VM
memory and migrate the VM to another platform without third-party support. By
using the enclave monitor, VirTEE achieves full backward compatibility, native live
migration and secure I/O. However, note that the enclave monitor is small so that adds
only a little attack surface to the enclave. We summarize the enclave monitor’s main
functionalities as follows.

Enclave Memory Management. In principle, without the enclave monitor, a
kernel running in PL1 can access any physical address including the non-enclave memory
even though the access will be blocked by the VirTEE hardware. However, we prevent
such unintentional memory access by using the enclave monitor memory protection
scheme. Every physical address that the VM accesses will be further translated by a
second-level page table to the real physical address. We initialize a second-level page
table at the enclave monitor initialization process. At run time, the enclave monitor
communicates with the security monitor to allocate new enclave pages and maps the
pages for the VM. The enclave monitor can prevent the VM from accessing non-enclave
memory by mapping the enclave memory pages to an out-of-enclave VM address. RISC-
V architecture uses memory-mapped I/O (MMIO) to access device registers. If the
physical address is located in the MMIO memory range, it means that the VM kernel
is accessing the device registers. We handle MMIO access by simulating the specific
devices. The device virtualization details will be discussed next.

Device Virtualization and Secure I/O. For device-registers accesses, we parse
the register values to get the I/O-request arguments such as the buffer address, size,
and hard driver sector number. After extracting the arguments, the enclave monitor
forwards the I/O requests to the real devices. During the forwarding process, the enclave
monitor can encrypt and decrypt the I/O data transparently so that it achieves I/O
data confidentiality. In VirTEE, we implemented a serial port as the console and a
block device as the hard drive for their limited registers. Note that we can virtualize
any device as long as the register accesses are properly handled.

In our threat model, the peripherals such as the hard drive can be readable for the
attacker. For example, the VM kernel commonly uses a partition in the hard drive as a
swap space and writes the memory into the partition. In this way, the secret memory
will be leaked to the attacker. Without the enclave monitor, the VM kernel needs
to be modified to encrypt the memory before writing them to the hard drive. With
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the enclave monitor, the I/O requests are first handled by the enclave monitor. After
receiving an I/O request, the enclave monitor looks up the device tree to infer which
device registers the VM accesses. If it is the hard drive, the enclave monitor parses the
arguments to get the sector number to see if it is in the swap partition, then the enclave
monitor decides whether to encrypt or decrypt the data. In this way, VirTEE achieves
transparent secure I/O.

Attestation Service. Attestation implementations are commonly deployed as sepa-
rate enclaves by other TEEs. However, we encapsulate the attestation implementation in
the enclave monitor, and the enclave monitor provides interfaces to the VM. For example,
a VM, say the verifier, starts to attest another enclave VM, the prover, on the same
platform. It then calls the local attestation interface exposed by the enclave monitor of
the corresponding enclave. Then, the enclave monitor creates an attestation report of
the enclave. The enclave monitor uses attestation primitives provided by the security
monitor to complete the attestation process with the verifier. The Diffie–Hellman key
exchange data are encapsulated in the report so that the secure channel is established
and returned to the VM.

Live Migration Service. VirTEE provides a live migration service for the source
enclave VM to migrate itself to a target trusted platform. VirTEE presents a stub enclave
as the migration target. In the stub enclave, the enclave monitor keeps listening to
remote migration requests and continues the VM execution after finishing the migration
process. Similar to [45], VirTEE takes three steps to finish the migration process. First,
the source enclave uses remote attestation to verify the target and establishes a secure
channel with the target. Secondly, the source enclave monitor keeps the VM running,
clears the dirty bit in the whole second-level page table, and transfers the VM memory to
the target. Finally, the source enclave monitor stops the VM and checks the page-table
dirty bit. Dirty pages are transferred again to the target platform as well as the virtual
devices status and pending I/O requests. In this way, we keep the VM downtime small.

5.4.6 Enclave Setup

VirTEE works mainly as the following steps:

1. The host allocates contiguous physical memory and fills the memory with the
enclave monitor and the virtual machine binary file and other necessary metadata
in a predefined memory layout.

2. The host notifies the security monitor about the creation of one enclave with its
physical address and initial size. The security monitor assigns a unique id to this
enclave and binds the id to its header address and size.

3. The host finds an available CPU core and assigns the core to one enclave, then
switches to the core, invokes the security monitor’s entering enclave function with
the specific enclave id as an argument.

4. The security monitor finds the corresponding enclave via its id and assigns the
enclave memory by manipulating the VirTEE hardware registers. Afterward, the
security monitor verifies the enclave signature by using a private key. If it fails,
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the security monitor refuses to launch the enclave, otherwise, it performs context
switching and hands over the control flow to the enclave monitor’s entry point.

5. The enclave monitor receives three arguments from the security monitor: CPU
core id, device tree which contains all device information, and the enclave memory
header address.

6. The enclave monitor initializes the necessary virtual machine environment, e.g.,
second-level page table and virtual devices. Peripherals are allocated and bound
to the virtual machine.

7. The enclave monitor hands over the control flow to the virtual machine’s entry
point,i.e., the virtual machine kernel entry point.

8. The virtual machine runs under the control of the enclave monitor. The virtual
machine can use the migration or attestation services by calling the interfaces
exposed by the enclave monitor.

5.5 Evaluation

We thoroughly evaluate our test framework and discuss the results. We aim to answer
two research questions:

RQ1: How much extra performance overhead does it cause?
RQ2: How much extra performance overhead does the security feature cause?
This section presents our thorough evaluation of VirTEE’s effectiveness and efficiency

regarding 1) Benchmark run-time performance overhead, and 2) VirTEE features’
overheads on microbenchmarks including enclave initialization, attestation, and live
migration. For the run-time performance overhead, we selected standard benchmarks
(rv8 [146] and CoreMark [70]), which have been used by CURE [12], the security
architecture we build on, and real-world software (OpenSSL 3.0.0 [205], Binutils [86]
and SQLite [97]). For VirTEE’s features, we evaluated enclave initialization, attestation,
and migration overhead by measuring the average running time.

5.5.1 Experiment Setup

We did our experiments on an Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz laptop
with 16 GB RAM. The QEMU simulator version is 6.0.50.

Implementation We implemented the security monitor on top of OpenSBI. The
hsm1 handlers are extended to support security monitor environment call interfaces.
Fourteen Maros are defined in the security monitor to perform enclave creation, enclave
memory management, and attestation primitives. We emulated a UART8250 serial
port as a console and a virtio block device as the hard drive in the enclave monitor.
In summary, enclave monitor, the security monitor, and the host kernel required
approximately 6700, 720, and 250 lines of C code respectively.

1Hart State Management SBI extension
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Figure 5.2: VirTEE’s run-time performance overhead relative to native process

5.5.2 Run-time Performance Overhead (RQ1)

The run-time performance overhead mainly comes from RISC-V second-level page-table
address translation, device virtualization (secure I/O), and VirTEE hardware. We
selected standard benchmarks and real-world software to test VirTEE’s performance
overhead. The selected benchmarks include I/O-intensive workloads (Binutils, SQLite)
and CPU-intensive workloads (rv8, CoreMark, OpenSSL). The hardware performance
overhead has already been discussed in CURE [12], therefore we treat performance
overhead induced by the CURE hardware as orthogonal. For each program, we run
it five times with and without VirTEE in the same simulator and calculate the final
average overhead.

I/O Intensive Workloads. We selected Binutils-strings and Binutils-readelf, two
popular binary analysis tools, to extract information from an unstripped binary. The
main performance overhead comes from the console virtualization. We used the SQLite
kvtest program to generate a 1 GB test database file for SQLite. Then we ran kvtest
to read blobs from the database file. The main performance overhead comes from the
hard-drive virtualization and secure I/O. The experiment results show that VirTEE
incurs 51% and 52% overhead in strings and readelf respectively. For SQLite, kvtest
can read the database file in 54.7 MB/s and 87.7 MB/s with and without VirTEE
respectively. That means VirTEE incurs 61% hard drive I/O overhead induced by
hard-drive virtualization and secure I/O.

We conducted the same experiments in an AMD SEV-enabled platform with an
AMD EPYC 7262 8-Core 3.2GHz Processor and 32GB RAM. The results show that
AMD SEV incurs 532% and 214% overhead for strings and readelf respectively. For
SQLite, AMD SEV incurs 25% hard-drive virtualization overhead. The reason for
VirTEE’s better performance for strings and readelf is that, for console virtualization,
VirTEE does not need to intercept the I/O process and directly writes the data to the
output buffer. However, for hard drive virtualization, VirTEE needs to intercept every
I/O process, parse the I/O arguments, and performance encryption or decryption while
AMD SEV does not support secure I/O. Therefore, VirTEE has a better virtual console
performance and a worse virtual hard-drive performance than AMD SEV.

CPU Intensive Workloads. We selected three asymmetric crypto algorithm tests
(dh, ecdsa and rsa) in OpenSSL’s test vectors. CoreMark and rv8 use internal test data,
therefore, we ran those binaries directly. As shown in Figure 5.2, for the majority of the
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benchmarks, VirTEE only incurs less than 15% overhead. An exception is rv8-primes.
The reason for that is that VirTEE does not support floating-point registers yet, and
rv8-primes performs a lot of division operations. VirTEE has to use a soft-floating point
to simulate the much slower calculation. This also happens in OpenSSL tests as well.
We did the same experiment in AMD SEV, the results show that the SEV incurs an
average of 15% overhead on the whole test programs as SEV supports real floating-point
registers.

5.5.3 VirTEE Feature Overhead (RQ2)

Enclave Initialization. The enclave initialization process mainly includes continuous
physical memory allocation, VM and enclave monitor binary-files loading, metadata
filling, and integrity verification. In our experiment, the initial enclave size is 500MB,
consisting of 100MB enclave monitor heap memory, 10MB enclave monitor and 490MB
VM. The enclave monitor binary file size is 59KB and the VM kernel is 17MB. We filled
the binary files to each part of the memory head and zeroed the remainder. We run
an enclave VM five times and calculate the average time. The result shows that the
enclave VM initialization approximately takes less than 150ms.

Location Attestation. We launched two enclave VMs running in parallel in
a simulator. They run the same VM and enclave monitor binary. Starting from
the verifier’s first attestation call to the final secure channel setup, we counted the
time elapsed and repeated the process five times. The result shows that the location
attestation only takes 144 ms.

Remote Attestation. We simulated a remote attestation server by directly feeding
the verification result back to the platform. We left the complete remote attestation
system as future work. Starting from receiving the verifier’s request to the final secure
channel setup, we counted the time elapsed and repeated the process five times. The
result shows that the remote attestation only takes less than 50ms.

Live Migration. We launched two QEMU simulators in parallel. The two simulators
are bridged in one network card in the laptop. Now the two simulators are running
in the same LAN. One is the target which contains a stub enclave and the other one
is the migration source which contains a normal enclave VM. We set the bandwidth
to 5MB/s. It takes 100 seconds to finish the second migration step. The third step
depends on how many dirty pages are in the VM. In our experiment, we took two
Binutils programs as examples, readelf and objdump contain a maximum of 1441 and
1652 dirty pages respectively which means they take approximately 1s and 1.2s to finish
the final migration step.

5.6 Discussion

Although VirTEE achieves full backward compatibility, it may still suffer from the
following problems during continuous development.

Large Code Base. We have implemented live migration, attestation, and transpar-
ent secure IO features in the hypervisor. They do not expose too many attack surfaces
and can be used for the virtual machine without extra effort. However, while the
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end-users require more features to be presented in the hypervisor, it inevitably becomes
larger and larger. If the code base grows, it exposes more attack surfaces and leaves
more code gadgets for attackers to perform code reuse attacks. One way to tackle this
problem is to offload the tasks to the virtual machine. However, CCA and TDX have
shown that this method considers the hypervisor as an untrusted component, making
the design not fully backward-compatible. Another method is to de-bloat the hypervisor
code base while maintaining the functionalities. However, this method requires a deep
understanding of the design and implementation of the framework. Keeping a balance
between the attack surfaces and security guarantees is still an open question when
designing the secure TEE framework.

Transparent Secure IO. We implemented a secure IO feature in the hypervisor.
For now, we adopted a lightweight TEA encryption mechanism. To provide extra data
integrity protection, we need to implement a checksum mechanism, which may further
slow down the IO performance. We see this feature as a future work.

5.7 Conclusion

In this chapter, we propose VirTEE. Based on RISC-V hypervisor extension and VirTEE
hardware, we overcome the disadvantages that most state-of-the-art TEE solutions
have. VirTEE can run unmodified kernels and applications in a virtual machine
in enclave memory, providing full backward compatibility. With its novel design
architecture, VirTEE supports native live migration and secure I/O. The evaluation
indicates that VirTEE only incurs moderate performance overhead. This chapter
proposes our memory safety defense consideration when designing a low-level software—
TEE application framework. With the three works we mentioned in the thesis, we
conduct a comprehensive and systematical memory safety analysis of low-level software.
In the next chapter, we present the related works that are closely related to low-level
software memory safety analysis as well as the security protection schemes that utilize
the hardware features.
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6.1 Secure TEE Design

Existing non-virtual machine-based TEEs all require non-trivial porting effort to support
legacy applications. Intel SGX [103] provides an SDK for programmers to develop SGX
applications from scratch. Programmers are supposed to manually define the trusted
part, the untrusted part, and their calling interfaces in a so-called EDL file. Although
the SDK facilitates the development process, complex commercial software is still hard
to adapt to SGX. LibOS based solutions such as Graphene [211], Occlum [189], SGX-
LKL-OE [170], Fortanix [125], SCONE [6] try to port unmodified legacy applications
to SGX. However, they only support limited system call interfaces and thus suffer
from compatibility problems. Shim library-based solutions such as Haven [17] and
Panoply [191] forward system call requests to the operating system kernel by shielding
the enclave applications. Previous works show that they are prone to attacks through
system call return values [33] [115]. Other TEEs such as Penglai [75] and Keystone [121]
provide their development kit like SGX. The porting effort hinders the TEEs from
being widely adopted. In contrast, VirTEE can run unmodified applications in a virtual
machine and does not lead to the extra attack surface.

Virtual machine-based TEEs run unmodified applications in an enclave. Compared
with VirTEE, Intel TDX [104], AMD SEV [134], and ARM CCA [4] isolate the virtual
machine from untrusted parts, including the hypervisor. In this design, the hypervisor
has no access to the virtual machine, which means the virtual machine kernel has to
be modified to support native live migration and secure I/O. In addition, the virtual
machine kernel is required to clear the sensitive data (e.g., general registers) before
exiting the virtual environment. As this design does not support native migration
and secure I/O, several works such as [165] [90] [164] [91] presented third-party
solutions by using new instructions or security hardware modules. VirTEE deploys a
enclave monitor inside the enclave. The enclave monitor is assumed to be a trusted
component. It encapsulates the secure I/O and live migration functionalities for the
virtual machine so that VirTEE can seamlessly support unmodified kernel. In this
thesis, we implemented VirTEE hardware based on CURE [12], which provides a strong
physical enclave memory isolation. However, since there is no enclave monitor in CURE’s
design, it does not support unmodified kernel, native live migration, and secure I/O.

6.2 Fuzzing

We split the wide range of fuzzing topics into two parts: general fuzzing and domain-
specific fuzzing. General fuzzing does not focus on a specific target or environment.
Instead, it tries to solve the problems that all fuzzing faces. Domain-specific fuzzing
relies on general fuzzing methodology and focuses on specific targets such as OS kernel
and firmware. Domain-specific fuzzing tackles more about other aspects other than the
fuzzing itself. For example, when fuzzing an embedded firmware, efficiently re-hosting
the firmware matters more than fuzzing.
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6.2.1 General Fuzzing

General fuzzing targets various aspects of fuzzing, which include: value predicting [9],
input format referring [7, 168, 23, 79, 176], input scheduling [80, 25], mutation poli-
cies [108], and manual annotation-based interesting input [8]. Various general fuzzing
techniques have been integrated into fuzzing tools [80] and fuzzing frameworks [81]. In
this thesis, we focus on domain-specific fuzzing: Bootloader and embedded firmware.
Both of them benefit from prior general fuzzing ideas and implementations.

6.2.2 Domain Specific Fuzzing

Domain-specific fuzzing handles the obstacles that are tightly related to the specific
target or environment. When applying the LibAFL [81] fuzzer model, domain-specific
fuzzing spends more effort on the executor component. The executor, treated as a black
box by LibAFL, however, is a non-negligible part of fuzzing.

Embedded Firmware Fuzzing Instead of re-hosting the firmware in an emu-
lator environment, black-box fuzzing tools, such as Iotfuzzer [38], feed the fuzzing
data from real devices (e.g., mobile phone Apps). Although black-box fuzzing mit-
igates the cumbersome effort to set up the emulator environment without having
direct access to the firmware memory, it suffers from no coverage guidance. The
same problem also happens to drone fuzzing [179] and [224]. Semi-simulation ap-
proaches [112] [112] [113] [120] [153] [201] [242] implement hardware in the loop method
to forward the hardware access to the real physical devices, while the firmware itself
runs in a simulated environment. This approach, however, requires lots of physical
devices. Besides, as the generation of the data from physical devices is slow and cannot
be easily controlled, this approach is not suitable for fuzzing. Due to the presence
of physical devices, it is difficult to deploy a parallel analysis. Running the whole
firmware in an emulator environment enables direct memory access to the firmware,
turning it into a grey-box fuzzing. Qemu [20] has been widely used in full-system
emulation. Qemu-based fuzzers [34] [56] [117] [246] heavily rely on the target-specific
information that a large corpus of general firmware cannot deploy. HALucinator [46] and
[126] propose to identify the hardware abstraction layer in the firmware for re-hosting.
Unfortunately, the hardware abstraction layer has not been widely adopted by firmware
development yet. Modeling the hardware abstract layer still requires much manual
effort, such as reverse engineering. Without making too many knowledge assumptions
about the firmware, full system emulation-based fuzzing is more scalable and requires
less manual effort. PRETENDER [92] runs the original firmware independently in a
simulated CPU. However, it still needs the hardware to model the peripheral behaviors.
The peripheral behaviors are then solved by P2IM [74] by extracting the knowledge
from the documentation or manuals and later further addressed by µEmu [248] and
Fuzzerware [177] by symbolic execution modeling. Extracting the peripheral behavior
model from the documentation is not stable and sometimes not reliable. Symbolic
execution is known to be limited by its low scalability and confined to a small control
flow scope. For example, it cannot model the MMIO data that is copied to global
variables. Hoedur [178] splits the single-stream fuzzing data into multi-stream data
that is identified by its MMIO address and its instruction address, making the fuzzing
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data field aware. It avoids the avalanche caused by asynchronous interrupts. Recently,
SafireFuzz [186] proposed to use dynamic binary re-writing to run the firmware on
high-performance hardware. However, the hardware abstraction layer (HAL) needs to be
present. Although HAL is becoming more and more popular in firmware development,
there is still a large number of firmware that does not support it. Only two of the
samples in our dataset support HAL. In addition, manually hooking HAL requires a lot
of manual effort, which is also error-prone. All the full system emulation-based fuzzing
either implements a simple round-robin or fuzz-mode interrupt triggering mechanism or
relies on the unstable model extracted from the documentation and, therefore, cannot
handle the complex interrupt situation. Concurrent to our work, AIM [73] proposed
an idea similar to AidFuzzer for modeling firmware interrupts. However, our method
has several advantages compared to AIM: First, AidFuzzer systematically investigates
the relationship between interrupts and firmware run-time state. The global variables
bridge them. In contrast, AIM does not recognize the firmware run-time state in a
general and high-level view. Second, we propose four conditions that the firmware can
use to require an interrupt. In contrast, AIM considers only one of them. Third, AIM
does not consider the interrupt status and, thus, cannot prevent the firmware from
crashing prematurely. Finally, AIM has to analyze the ISR by using dynamic symbolic
execution when an event is enabled, which means that it has to perform symbolic
execution frequently. Moreover, its firmware emulation is based on symbolic execution.
The overall design has a strong impact on the execution speed.

UEFI and Bootloader Fuzzing Yang et al. [235] proposed the first fuzzing
framework for UEFI firmware. They leverage the SIMICS virtual platform to emulate
an environment for running UEFI firmware. This framework forces the CPU counter to
point to the System Management Interrupt (SMI) handler function and directly places
the fuzz input in the simulator memory to detect SMI out-of-bound memory access
vulnerabilities. However, different SMI handlers may communicate with each other via
variables, a complexity prior fuzzing tools could not handle, limiting their ability to
test deeper logic. This issue was addressed by RSFuzzer [236]. RSFuzzer employs a
two-stage fuzzing process. It begins by fuzzing a single SMI handler with randomly
generated inputs. Before adding any new seed to the corpus, it extracts knowledge
to infer the input structure. Cross-handler variables are identified by recording their
handling behaviors. In the second stage, RSFuzzer performs cross-handler fuzzing using
the knowledge extracted in the first stage. Bazhaniuk et al. [18] targeted SMM interrupt
handler variables using symbolic execution but faced common challenges such as path
explosion. Surve et al. [198] summarized the attack surfaces that UEFI firmware faces.
The bootloader is launched after the firmware. As discussed in this paper, it faces a
wide array of attack surfaces. Previous research targeting bootloaders has primarily
focused on mobile devices, e.g., Android devices allow users to enter an interactive
fastboot interface. An attacker with physical access to the device can boot it into
fastboot mode by pressing a key combination upon boot or by connecting the device to
a PC via ADB. The interactive command line interface accepts user input and processes
requests accordingly. Roee [93] identified several command line parser vulnerabilities in
commercial Android devices. BootStomp [174] performs taint analysis on bootloader
binaries of mobile devices. Unlike Roee, BootStomp aims to find vulnerabilities caused
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by the use of attacker-controlled storage data. In addition to identifying vulnerabilities,
BootStomp designs and implements a framework for analyzing closed-source Android
bootloaders. In comparison, our work presents a comprehensive attack surface analysis
of PC bootloaders, along with a fuzzing tool. Unlike the studies by Roee and BootStomp,
which focused solely on mobile devices and a single attack surface, our research covers a
broader range of vulnerabilities in PC bootloaders.

OS Kernel Fuzzing Kernel fuzzing has always been a hot topic. They target
system call generation [89, 29, 41, 197, 243] and device malicious inputs [195, 166, 190,
231]. The kernel is complex enough for fuzzers to reach the deep state of it. Researchers
came up with ideas such as triggering an intended interrupt [123] to help the fuzzing
process. Manual system call specification [89], on the one hand, is useful, on the other
hand, it limits the fuzzing to a small range. This is why the automated system call
arguments calibration [29] was proposed.

Hypervisor Fuzzing Hypervisor fuzzing works [94, 30, 28, 182, 163, 154, 84]
were proposed to fuzz the simulated devices which also comprise the majority of the
hypervisor code base. The malicious inputs come from port I/O, MMIO, and DMA
buffer. Prior works utilize the specific processor or software features such as Intel-VTx
hypervisor control structure and pci_dma_read function in Qemu. This corresponds to
what we mentioned, that domain-specific fuzzing faces and deals with target-specific
problems instead of general fuzzing problems.

6.3 Hardware Feature Assisted Memory Safety Protection

Hardware features do not always incur memory safety issues. They can also be applied to
enhance the memory safety protection. kAFL[183] benefit from Intel PT and Intel VT-x
to fuzz closed-source system-level software. KextFuzz [238] collects code coverage by
replacing ARM Pointer authentication instructions with coverage collecting instructions.
The debug port in ARM Cortex chip [224] functions similarly to Intel-PT, which has
also been used to collect code coverage. ARM pointer authentication was used by [128]
to defend against run-time attacks. CRYPTOMPK [111] presented an Intel Memory
Protection Keys (MPK) based critical memory region protections.
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This thesis focuses on low-level software memory safety regarding both attack and
defense sides. We focus on three typical low-level software: bootloader, embedded system
firmware, and TEE applications, as our analysis targets. We proposed a comprehensive
memory corruption vulnerability analysis of the bootloader, an adaptive interrupt-driven
fuzzing for embedded firmware, and a full backward-compatible TEE with secure I/O.
For the bootloader, our experiments uncovered 39 vulnerabilities, with 29 of these
being confirmed or patched by the bootloader developers. Additionally, we have been
assigned five CVEs so far. Overall, our findings highlight critical areas of concern
in bootloader security and demonstrate the effectiveness of our fuzzing approach in
identifying vulnerabilities. For the embedded firmware, in our collected firmware targets,
we achieved higher and faster coverage when dealing with complex interrupt firmware
compared with the state-of-the-art approaches. Besides, we found eight previously
unknown security issues in real-world firmware. For the secure TEE design, we can run
unmodified kernels and applications in enclave memory on a virtual machine, providing
full backward compatibility. With its novel design architecture, we support native live
migration and secure I/O. The evaluation indicates that our design and implementation
only incur moderate performance overhead.

Memory safety issues have been and will be one of the paramount threats to system
security due to their severe impacts. In this thesis, we choose three typical low-level
software as our analysis targets and reveal that memory corruption vulnerabilities still
exist in widely deployed and well-tested applications. Memory safety is supposed to
gain more attention from low-level software developers.

For the bootloader, our fuzzing framework can be deployed to fuzz different boot-
loader designs despite their implementation. However, our fuzzing strategy is standard-
ized and not tailored for bootloader fuzzing. For example, automatically generating
harnesses for different bootloaders by using a popular large language model could be
a promising topic. Nevertheless, it requires researchers to manually correct and test
the harness, which requires extra manual effort. Another shortcoming of our work is
that the framework does not handle closed-source bootloaders and, therefore, cannot
fuzz mobile device bootloaders. Without the source code, the execution environment
is opaque, and we do not know which address to load the bootloader image and how
to boot it. These problems are potential research topics for future work. For firmware
fuzzing, besides the interrupt triggering problem, there are still many obstacles waiting
to be solved. For example, the high-level protocol implementation, such as the TCP/IP
Bluetooth protocol stack, has not been well fuzzed due to the fuzzing bottleneck caused
by inaccurate peripheral simulation and DMA data transferring. These are promising
topics that deserve more research efforts. For TEE applications, SGX has been aban-
doned by Intel, which proves that incompatible TEE applications cannot be accepted by
the developers. Therefore, virtual machine-based TEE will be the mainstream scheme.
On the one hand, unmodified applications can be directly executed in the TEE, however,
on the other hand, the large code base exposes more attack surfaces, especially memory
corruption vulnerabilities. Finding a balance between offloading the tasks from the
trusted to the untrusted execution environment and backward compatibility is still an
open question.
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Memory-unsafe programming languages such as C and C++are still the backbone
of modern low-level software. Linus once held a nondeterministic attitude towards
embracing Rust in the Linux kernel. However, he did not see a memory-safe programming
language like Rust as a silver bullet to solve the problem. Though the data lifetime
and ownership design saves Rust from the majority of memory safety issues, the unsafe
feature provided by Rust for the developers to connect their Rust applications with
native applications leaves a potential flaw. Nevertheless, we believe that it will take
a long time for the community to accept Rust as their first programming language,
not only because of the steep learning curve but also because of the immature library
management. Therefore, memory safety issues will not disappear in the low-level
software soon.

We mainly focus on the problems on x86 and ARM platforms. Nowadays, RISC-V
has gained much attention. It may introduce more new features which require more
low-level software to drive. These applications can lead to more memory corruption
issues. Similar methodologies can be applied to the new processors and platforms.

98



Bibliography

Other references

[1] 8250 UART Programming Serial Programming. https://en.wikibooks.
org/wiki/SerialProgramming/8250_UARTProgramming.

[2] Android. Android Debug Bridge (adb). https://developer.android.com/
tools/adb?.

[3] Angelakopoulos, I., Stringhini, G., and Egele, M. {Firmsolo}: enabling dynamic
analysis of binary linux-based {iot} kernel modules. In: USENIX Security Sym-
posium. 2023.

[4] ARM. Arm Confidential Compute Architecture. https://documentation-
service.arm.com/static/61825631f45f0b1fbf3a7a7d?token=.

[5] ARM. Security technology: building a secure system using TrustZone technol-
ogy. https://developer.arm.com/- /media/Arm%20Developer%
20Community/PDF/TrustZone-and-FIDO-white-paper.pdf?revision=
98e6ae26-92ca-4ffd-ac4e-3329b7f8a23e.

[6] Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind, J.,
Muthukumaran, D., O’keeffe, D., Stillwell, M. L., et al. {Scone}: secure linux
containers with intel {sgx}. In: Symposium on Operating Systems Design and
Implementation (OSDI). 2016.

[7] Aschermann, C., Frassetto, T., Holz, T., Jauernig, P., Sadeghi, A.-R., and
Teuchert, D. Nautilus: fishing for deep bugs with grammars. In: 2019.

[8] Aschermann, C., Schumilo, S., Abbasi, A., and Holz, T. Ijon: Exploring deep
state spaces via fuzzing. In: IEEE Symposium on Security and Privacy (S&P).
2020.

[9] Aschermann, C., Schumilo, S., Blazytko, T., Gawlik, R., and Holz, T. Redqueen:
Fuzzing with Input-to-State Correspondence. In: Symposium on Network and
Distributed System Security (NDSS). 2019.

[10] Atlidakis, V., Godefroid, P., and Polishchuk, M. Restler: stateful rest api fuzzing.
In: International Conference on Software Engineering (ICSE). 2019.

[11] Avgustinov, P., De Moor, O., Jones, M. P., and Schäfer, M. QL: Object-oriented
queries on relational data. In: 30th European Conference on Object-Oriented
Programming (ECOOP 2016). 2016.

99

https://en.wikibooks.org/wiki/Serial Programming/8250_UART Programming
https://en.wikibooks.org/wiki/Serial Programming/8250_UART Programming
https://developer.android.com/tools/adb?
https://developer.android.com/tools/adb?
https://documentation-service.arm.com/static/61825631f45f0b1fbf3a7a7d?token=
https://documentation-service.arm.com/static/61825631f45f0b1fbf3a7a7d?token=
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/TrustZone-and-FIDO-white-paper.pdf?revision=98e6ae26-92ca-4ffd-ac4e-3329b7f8a23e
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/TrustZone-and-FIDO-white-paper.pdf?revision=98e6ae26-92ca-4ffd-ac4e-3329b7f8a23e
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/TrustZone-and-FIDO-white-paper.pdf?revision=98e6ae26-92ca-4ffd-ac4e-3329b7f8a23e


BIBLIOGRAPHY

[12] Bahmani, R., Brasser, F., Dessouky, G., Jauernig, P., Klimmek, M., Sadeghi,
A.-R., and Stapf, E. {Cure}: a security architecture with customizable and
resilient enclaves. In: USENIX Security Symposium. 2021.

[13] Bai, J.-J., Lawall, J., Chen, Q.-L., and Hu, S.-M. Effective static analysis of
concurrency {use-after-free} bugs in linux device drivers. In: USENIX Annual
Technical Conference (ATC). 2019.

[14] Baidu. SGXRay: Automated Vulnerability Finding in SGX Enclave Application.
https://github.com/baidu/sgxray.

[15] barebox developers. Barebox. https://www.barebox.org/.
[16] Bauman, E., Lin, Z., Hamlen, K. W., et al. Superset disassembly: statically

rewriting x86 binaries without heuristics. In: 2018.
[17] Baumann, A., Peinado, M., and Hunt, G. Shielding applications from an untrusted

cloud with haven. In: 2015.
[18] Bazhaniuk, O., Loucaides, J., Rosenbaum, L., Tuttle, M. R., and Zimmer, V.

Symbolic Execution for BIOS Security. In: USENIX Workshop on Offensive
Technologies (WOOT). 2015.

[19] Becker, L., Hollick, M., and Classen, J. {Sok}: on the effectiveness of {control-
flow} integrity in practice. In: USENIX Workshop on Offensive Technologies
(WOOT). 2024.

[20] Bellard, F. QEMU, a fast and portable dynamic translator. In: USENIX Annual
Technical Conference (ATC). 2005.

[21] Biondo, A., Conti, M., Davi, L., Frassetto, T., and Sadeghi, A.-R. The Guard’s
Dilemma: Efficient Code-Reuse Attacks Against Intel SGX. In: USENIX Security
Symposium. 2018.

[22] blackberry. QNX Hypervisor. https://blackberry.qnx.com/en/products/
foundation-software/qnx-hypervisor.

[23] Blazytko, T., Bishop, M., Aschermann, C., Cappos, J., Schlögel, M., Korshun,
N., Abbasi, A., Schweighauser, M., Schinzel, S., Schumilo, S., et al. {Grimoire}:
synthesizing structure while fuzzing. In: USENIX Security Symposium. 2019.

[24] Bletsch, T., Jiang, X., Freeh, V. W., and Liang, Z. Jump-oriented programming:
a new class of code-reuse attack. In: ACM Symposium on Information, Computer
and Communications Security (ASIACCS). 2011.

[25] Böhme, M., Pham, V.-T., and Roychoudhury, A. Coverage-based greybox fuzzing
as markov chain. In: ACM Conference on Computer and Communications Security
(CCS). 2016.

[26] Bond, M. D., Coons, K. E., and McKinley, K. S. Pacer: proportional detection
of data races. In: ACM Sigplan Notices. 2010.

[27] Brasser, F., Gens, D., Jauernig, P., Sadeghi, A.-R., and Stapf, E. Sanctuary:
arming trustzone with user-space enclaves. In: Symposium on Network and
Distributed System Security (NDSS). 2019.

100

https://github.com/baidu/sgxray
https://www.barebox.org/
https://blackberry.qnx.com/en/products/foundation-software/qnx-hypervisor
https://blackberry.qnx.com/en/products/foundation-software/qnx-hypervisor


OTHER REFERENCES

[28] Bulekov, A., Das, B., Hajnoczi, S., and Egele, M. Morphuzz: Bending (input)
space to fuzz virtual devices. In: USENIX Security Symposium. 2022.

[29] Bulekov, A., Das, B., Hajnoczi, S., and Egele, M. No grammar, no problem:
towards fuzzing the linux kernel without system-call descriptions. In: 2023.

[30] Bulekov, A., Liu, Q., Egele, M., and Payer, M. {Hyperpill}: fuzzing for hypervisor-
bugs by leveraging the hardware virtualization interface. In: USENIX Security
Symposium. 2024.

[31] bzt. easyboot. https://gitlab.com/bztsrc/easyboot/.
[32] Carlini, N., Barresi, A., Payer, M., Wagner, D., and Gross, T. R. {Control-flow}

bending: on the effectiveness of {control-flow} integrity. In: USENIX Security
Symposium. 2015.

[33] Checkoway, S. and Shacham, H. Iago attacks: why the system call api is a bad
untrusted rpc interface. In: ACM SIGARCH Computer Architecture News. 2013.

[34] Chen, D. D., Woo, M., Brumley, D., and Egele, M. Towards automated dynamic
analysis for linux-based embedded firmware. In: Symposium on Network and
Distributed System Security (NDSS). 2016.

[35] Chen, G. and Zhang, Y. {Mage}: mutual attestation for a group of enclaves
without trusted third parties. In: USENIX Security Symposium. 2022.

[36] Chen, G. and Zhang, Y. Securing tees with verifiable execution contracts. In:
IEEE Transactions on Dependable and Secure Computing. 2022.

[37] Chen, G., Zhang, Y., and Lai, T.-H. Opera: open remote attestation for intel’s
secure enclaves. In: ACM Conference on Computer and Communications Security
(CCS). 2019.

[38] Chen, J., Diao, W., Zhao, Q., Zuo, C., Lin, Z., Wang, X., Lau, W. C., Sun, M.,
Yang, R., and Zhang, K. IoTFuzzer: Discovering Memory Corruptions in IoT
Through App-based Fuzzing. In: Symposium on Network and Distributed System
Security (NDSS). 2018.

[39] Chen, L., Cai, Q., Ma, Z., Wang, Y., Hu, H., Shen, M., Liu, Y., Guo, S., Duan,
H., Jiang, K., et al. Sfuzz: slice-based fuzzing for real-time operating systems. In:
ACM Conference on Computer and Communications Security (CCS). 2022.

[40] Chen, L., Li, Z., Ma, Z., Li, Y., Chen, B., and Zhang, C. Enclavefuzz: finding
vulnerabilities in sgx applications. In: 2024.

[41] Chen, W., Wang, Y., Zhang, Z., and Qian, Z. Syzgen: automated generation
of syscall specification of closed-source macos drivers. In: ACM Conference on
Computer and Communications Security (CCS). 2021.

[42] Cheng, K., Li, Q., Wang, L., Chen, Q., Zheng, Y., Sun, L., and Liang, Z.
Dtaint: detecting the taint-style vulnerability in embedded device firmware. In:
Conference on Dependable Systems and Networks (DSN). 2018.

[43] Chesser, M., Nepal, S., and Ranasinghe, D. C. {Multifuzz}: a {multi-stream}
fuzzer for testing monolithic firmware. In: USENIX Security Symposium. 2024.

101

https://gitlab.com/bztsrc/easyboot/


BIBLIOGRAPHY

[44] Choi, J., Kim, K., Lee, D., and Cha, S. K. NTFuzz: Enabling type-aware kernel
fuzzing on windows with static binary analysis. In: IEEE Symposium on Security
and Privacy (S&P). 2021.

[45] Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., Pratt, I.,
and Warfield, A. Live migration of virtual machines. In: USENIX Symposium on
Networked Systems Design and Implementation (NSDI). 2005.

[46] Clements, A. A., Gustafson, E., Scharnowski, T., Grosen, P., Fritz, D., Kruegel,
C., Vigna, G., Bagchi, S., and Payer, M. HALucinator: Firmware re-hosting
through abstraction layer emulation. In: USENIX Security Symposium. 2020.

[47] Cloosters, T., Rodler, M., and Davi, L. TeeRex: Discovery and Exploitation
of Memory Corruption Vulnerabilities in SGX Enclaves. In: USENIX Security
Symposium. 2020.

[48] Cloosters, T., Willbold, J., Holz, T., and Davi, L. SGXFuzz: Efficiently synthesiz-
ing nested structures for SGX enclave fuzzing. In: USENIX Security Symposium.
2022.

[49] CloverBootloader developers. CloverBootloader. https://github.com/
CloverHackyColor/CloverBootloader/.

[50] Codetector1374. Anne Pro 2 Shine! https://github.com/OpenAnnePro/
AnnePro2-Shine/tree/master.

[51] Company, B. efiXplorer. https://i.blackhat.com/eu-20/Wednesday/
eu-20-Labunets-efiXplorer-Hunting-For-UEFI-Firmware-Vulnerabilities-
At-Scale-With-Automated-Static-Analysis.pdf.

[52] Company, B. Static analysis-based recovery of service function calls and type
information in UEFI firmware. https://raw.githubusercontent.com/
binarlyio/Research_Publications/main/EKO_2020/EKO_2020_
efiXplorer.pdf.

[53] Company, T. TIOBE Software Ranking. https://www.tiobe.com/tiobe-
index/.

[54] Costan, V. Intel sgx explained. In: IACR Cryptol, EPrint Arch. 2016.
[55] Costan, V., Lebedev, I., and Devadas, S. Sanctum: minimal hardware extensions

for strong software isolation. In: USENIX Security Symposium. 2016.
[56] Costin, A., Zarras, A., and Francillon, A. Automated dynamic firmware analysis

at scale: a case study on embedded web interfaces. In: ACM Symposium on
Information, Computer and Communications Security (ASIACCS). 2016.

[57] Coverity. Coverity Scan: barebox. https://scan.coverity.com/projects/
barebox.

[58] Cui, J., Yu, J. Z., Shinde, S., Saxena, P., and Cai, Z. SmashEx: Smashing SGX En-
claves Using Exceptions. In: ACM Conference on Computer and Communications
Security (CCS). 2021.

[59] Cui, R., Zhao, L., and Lie, D. Emilia: Catching Iago in Legacy Code. In: Sympo-
sium on Network and Distributed System Security (NDSS). 2021.

102

https://github.com/CloverHackyColor/CloverBootloader/
https://github.com/CloverHackyColor/CloverBootloader/
https://github.com/OpenAnnePro/AnnePro2-Shine/tree/master
https://github.com/OpenAnnePro/AnnePro2-Shine/tree/master
https://i.blackhat.com/eu-20/Wednesday/eu-20-Labunets-efiXplorer-Hunting-For-UEFI-Firmware-Vulnerabilities-At-Scale-With-Automated-Static-Analysis.pdf
https://i.blackhat.com/eu-20/Wednesday/eu-20-Labunets-efiXplorer-Hunting-For-UEFI-Firmware-Vulnerabilities-At-Scale-With-Automated-Static-Analysis.pdf
https://i.blackhat.com/eu-20/Wednesday/eu-20-Labunets-efiXplorer-Hunting-For-UEFI-Firmware-Vulnerabilities-At-Scale-With-Automated-Static-Analysis.pdf
https://raw.githubusercontent.com/binarlyio/Research_Publications/main/EKO_2020/EKO_2020_efiXplorer.pdf
https://raw.githubusercontent.com/binarlyio/Research_Publications/main/EKO_2020/EKO_2020_efiXplorer.pdf
https://raw.githubusercontent.com/binarlyio/Research_Publications/main/EKO_2020/EKO_2020_efiXplorer.pdf
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://scan.coverity.com/projects/barebox
https://scan.coverity.com/projects/barebox


OTHER REFERENCES

[60] Daniel Axtens. Fuzzing grub. https://sthbrx.github.io/blog/2021/
03/04/fuzzing-grub-part-1/.

[61] Daniel Axtens. Fuzzing grub, part 2: going faster. https://sthbrx.github.
io/blog/2021/06/14/fuzzing\protect\discretionary{\char\
hyphenchar\font}{}{}grub\protect\discretionary{\char\hyphenchar\
font}{}{}part\protect\discretionary{\char\hyphenchar\font}
{}{}2\protect\discretionary{\char\hyphenchar\font}{}{}going-
faster/.

[62] Darkreading. Critical ’LogoFAIL’ Bugs Offer Secure Boot Bypass for Millions of
PCs. https://www.darkreading.com/endpoint-security/critical-
logofail-bugs-secure-boot-bypass-millions-pcs.

[63] Das U-Boot developer. The U-Boot Documentation. https://docs.u-boot.
org/en/latest/.

[64] Das U-Boot Developers. Das U-Boot Sanitizer Compilation Kconfig. https://
github.com/u\protect\discretionary{\char\hyphenchar\font}
{}{}boot/u-boot/blob/master/Kconfig#L157.

[65] Deligiannis, P., Donaldson, A. F., and Rakamaric, Z. Fast and precise symbolic
analysis of concurrency bugs in device drivers (t). In: ACM/IEEE International
Conference on Automated Software Engineering (ASE). 2015.

[66] Dinesh, S., Burow, N., Xu, D., and Payer, M. Retrowrite: statically instrumenting
cots binaries for fuzzing and sanitization. In: IEEE Symposium on Security and
Privacy (S&P). 2020.

[67] Ding, Y., Duan, R., Li, L., Cheng, Y., Zhang, Y., Chen, T., Wei, T., and Wang,
H. Poster: Rust SGX SDK: Towards memory safety in Intel SGX enclave. In:
ACM Conference on Computer and Communications Security (CCS). 2017.

[68] DynamoRIO Team. Dynamic Instrumentation Tool Platform. https://dynamorio.
org/.

[69] Eclypsium. There’s A Hole In The Boot. https://eclypsium.com/blog/
theres-a-hole-in-the-boot/.

[70] EEMBC. EMBC. Coremark. https://www.eembc.org/coremark/.
[71] Engler, D. and Ashcraft, K. Racerx: effective, static detection of race conditions

and deadlocks. In: ACM SIGOPS operating systems review. 2003.
[72] Enrique Nissim, K. O. AMD Sinkclose Universal SMM Privilege Escalation.

https://media.defcon.org/DEF%20CON%2032/DEF%20CON%2032%
20presentations/DEF%20CON%2032%20- %20Enrique%20Nissim%
20Krzysztof%20Okupski%20-%20AMD%20Sinkclose%20Universal%
20Ring-2%20Privilege%20Escalation%20Redacted.pdf.

[73] Feng, B., Luo, M., Liu, C., Lu, L., and Kirda, E. AIM: Automatic Interrupt
Modeling for Dynamic Firmware Analysis. In: Conference on Dependable Systems
and Networks (DSN). 2023.

103

https://sthbrx.github.io/blog/2021/03/04/fuzzing-grub-part-1/
https://sthbrx.github.io/blog/2021/03/04/fuzzing-grub-part-1/
https://sthbrx.github.io/blog/2021/06/14/fuzzing\protect \discretionary {\char \hyphenchar \font }{}{}grub\protect \discretionary {\char \hyphenchar \font }{}{}part\protect \discretionary {\char \hyphenchar \font }{}{}2\protect \discretionary {\char \hyphenchar \font }{}{}going-faster/
https://sthbrx.github.io/blog/2021/06/14/fuzzing\protect \discretionary {\char \hyphenchar \font }{}{}grub\protect \discretionary {\char \hyphenchar \font }{}{}part\protect \discretionary {\char \hyphenchar \font }{}{}2\protect \discretionary {\char \hyphenchar \font }{}{}going-faster/
https://sthbrx.github.io/blog/2021/06/14/fuzzing\protect \discretionary {\char \hyphenchar \font }{}{}grub\protect \discretionary {\char \hyphenchar \font }{}{}part\protect \discretionary {\char \hyphenchar \font }{}{}2\protect \discretionary {\char \hyphenchar \font }{}{}going-faster/
https://sthbrx.github.io/blog/2021/06/14/fuzzing\protect \discretionary {\char \hyphenchar \font }{}{}grub\protect \discretionary {\char \hyphenchar \font }{}{}part\protect \discretionary {\char \hyphenchar \font }{}{}2\protect \discretionary {\char \hyphenchar \font }{}{}going-faster/
https://sthbrx.github.io/blog/2021/06/14/fuzzing\protect \discretionary {\char \hyphenchar \font }{}{}grub\protect \discretionary {\char \hyphenchar \font }{}{}part\protect \discretionary {\char \hyphenchar \font }{}{}2\protect \discretionary {\char \hyphenchar \font }{}{}going-faster/
https://sthbrx.github.io/blog/2021/06/14/fuzzing\protect \discretionary {\char \hyphenchar \font }{}{}grub\protect \discretionary {\char \hyphenchar \font }{}{}part\protect \discretionary {\char \hyphenchar \font }{}{}2\protect \discretionary {\char \hyphenchar \font }{}{}going-faster/
https://www.darkreading.com/endpoint-security/critical-logofail-bugs-secure-boot-bypass-millions-pcs
https://www.darkreading.com/endpoint-security/critical-logofail-bugs-secure-boot-bypass-millions-pcs
https://docs.u-boot.org/en/latest/
https://docs.u-boot.org/en/latest/
https://github.com/u\protect \discretionary {\char \hyphenchar \font }{}{}boot/u-boot/blob/master/Kconfig#L157
https://github.com/u\protect \discretionary {\char \hyphenchar \font }{}{}boot/u-boot/blob/master/Kconfig#L157
https://github.com/u\protect \discretionary {\char \hyphenchar \font }{}{}boot/u-boot/blob/master/Kconfig#L157
https://dynamorio.org/
https://dynamorio.org/
https://eclypsium.com/blog/theres-a-hole-in-the-boot/
https://eclypsium.com/blog/theres-a-hole-in-the-boot/
https://www.eembc.org/coremark/
https://media.defcon.org/DEF%20CON%2032/DEF%20CON%2032%20presentations/DEF%20CON%2032%20-%20Enrique%20Nissim%20Krzysztof%20Okupski%20-%20AMD%20Sinkclose%20Universal%20Ring-2%20Privilege%20Escalation%20Redacted.pdf
https://media.defcon.org/DEF%20CON%2032/DEF%20CON%2032%20presentations/DEF%20CON%2032%20-%20Enrique%20Nissim%20Krzysztof%20Okupski%20-%20AMD%20Sinkclose%20Universal%20Ring-2%20Privilege%20Escalation%20Redacted.pdf
https://media.defcon.org/DEF%20CON%2032/DEF%20CON%2032%20presentations/DEF%20CON%2032%20-%20Enrique%20Nissim%20Krzysztof%20Okupski%20-%20AMD%20Sinkclose%20Universal%20Ring-2%20Privilege%20Escalation%20Redacted.pdf
https://media.defcon.org/DEF%20CON%2032/DEF%20CON%2032%20presentations/DEF%20CON%2032%20-%20Enrique%20Nissim%20Krzysztof%20Okupski%20-%20AMD%20Sinkclose%20Universal%20Ring-2%20Privilege%20Escalation%20Redacted.pdf


BIBLIOGRAPHY

[74] Feng, B., Mera, A., and Lu, L. P2IM: Scalable and hardware-independent firmware
testing via automatic peripheral interface modeling. In: USENIX Security Sym-
posium. 2020.

[75] Feng, E., Lu, X., Du, D., Yang, B., Jiang, X., Xia, Y., Zang, B., and Chen,
H. Scalable Memory Protection in the PENGLAI Enclave. In: Symposium on
Operating Systems Design and Implementation (OSDI). 2021.

[76] Feng, Q., Zhou, R., Xu, C., Cheng, Y., Testa, B., and Yin, H. Scalable graph-
based bug search for firmware images. In: ACM Conference on Computer and
Communications Security (CCS). 2016.

[77] Ferraiuolo, A., Baumann, A., Hawblitzel, C., and Parno, B. Komodo: using
verification to disentangle secure-enclave hardware from software. In: Symposium
on Operating Systems Principles (SOSP). 2017.

[78] Fioraldi, A. Program state abstraction for feedback-driven fuzz testing using
likely invariants. In: arXiv preprint arXiv:2012.11182. 2020.

[79] Fioraldi, A., D’Elia, D. C., and Coppa, E. Weizz: automatic grey-box fuzzing for
structured binary formats. In: International Symposium on Software Testing and
Analysis (ISSTA). 2020.

[80] Fioraldi, A., Maier, D., Eißfeldt, H., and Heuse, M. AFL++: Combining incremen-
tal steps of fuzzing research. In: USENIX Workshop on Offensive Technologies
(WOOT). 2020.

[81] Fioraldi, A., Maier, D., Zhang, D., and Balzarotti, D. LibAFL: A Framework to
Build Modular and Reusable Fuzzers. In: ACM Conference on Computer and
Communications Security (CCS). 2022.

[82] Fleischer, M., Das, D., Bose, P., Bai, W., Lu, K., Payer, M., Kruegel, C., and Vi-
gna, G. {Actor}:{action-guided} kernel fuzzing. In: USENIX Security Symposium.
2023.

[83] Foundation, T. A. S. Apache Blehci example. https://mynewt.apache.
org/v1_5_0/tutorials/ble/blehci_project.html.

[84] Ge, X., Niu, B., Brotzman, R., Chen, Y., Han, H., Godefroid, P., and Cui, W.
HYPERFUZZER: An efficient hybrid fuzzer for virtual cpus. In: ACM Conference
on Computer and Communications Security (CCS). 2021.

[85] Gens, D., Schmitt, S., Davi, L., and Sadeghi, A.-R. K-miner: Uncovering Memory
Corruption in Linux. In: 2018.

[86] GNU. GNU Binutils. https://www.gnu.org/software/binutils/.
[87] GNU community. GNU GRUB. https://www.gnu.org/software/grub/

index.html.
[88] GNU community. The GNU C Library. https://www.gnu.org/software/

libc/.
[89] Google. syzkaller. Linuxsyscallfuzzer.https://github.com/google/

syzkaller.

104

https://mynewt.apache.org/v1_5_0/tutorials/ble/blehci_project.html
https://mynewt.apache.org/v1_5_0/tutorials/ble/blehci_project.html
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/grub/index.html
https://www.gnu.org/software/grub/index.html
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
Linux syscall fuzzer. https://github.com/google/syzkaller
Linux syscall fuzzer. https://github.com/google/syzkaller


OTHER REFERENCES

[90] Gu, J., Hua, Z., Xia, Y., Chen, H., Zang, B., Guan, H., and Li, J. Secure live
migration of sgx enclaves on untrusted cloud. In: Conference on Dependable
Systems and Networks (DSN). 2017.

[91] Guerreiro, J., Moura, R., and Silva, J. N. Teender: sgx enclave migration using
hsms. In: Computers & Security. 2020.

[92] Gustafson, E., Muench, M., Spensky, C., Redini, N., Machiry, A., Fratantonio,
Y., Balzarotti, D., Francillon, A., Choe, Y. R., Kruegel, C., et al. Toward the
analysis of embedded firmware through automated re-hosting. In: Symposium on
Recent Advances in Intrusion Detection (RAID). 2019.

[93] Hay, R. fastboot oem vuln: Android bootloader vulnerabilities in vendor cus-
tomizations. In: USENIX Workshop on Offensive Technologies (WOOT). 2017.

[94] Henderson, A., Yin, H., Jin, G., Han, H., and Deng, H. Vdf: targeted evolutionary
fuzz testing of virtual devices. In: Symposium on Recent Advances in Intrusion
Detection (RAID). 2017.

[95] Hernandez, G., Fowze, F., Tian, D., Yavuz, T., and Butler, K. R. Firmusb:
vetting usb device firmware using domain informed symbolic execution. In: ACM
Conference on Computer and Communications Security (CCS). 2017.

[96] Hernandez, G., Muench, M., Maier, D., Milburn, A., Park, S., Scharnowski, T.,
Tucker, T., Traynor, P., and Butler, K. Firmwire: transparent dynamic analysis
for cellular baseband firmware. In: 2022.

[97] Hipp, R. D. SQLite. https://www.sqlite.org/index.html.
[98] Hu, H., Shinde, S., Adrian, S., Chua, Z. L., Saxena, P., and Liang, Z. Data-

oriented programming: on the expressiveness of non-control data attacks. In:
IEEE Symposium on Security and Privacy (S&P). 2016.

[99] Intel. Finding BIOS Vulnerabilities with Symbolic Execution and Virtual Plat-
forms. https://www.intel.com/content/www/us/en/developer/
inproceedingss/technical/finding-bios-vulnerabilities-with-
symbolic-execution-and-virtual-platforms.html.

[100] Intel. Intel-SGX SDK. https://github.com/intel/linux-sgx.
[101] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume

1-Real mode. https://cdrdv2.intel.com/v1/dl/getContent/671436.
[102] Intel. Intel® Processor Trace. https://edc.intel.com/content/www/

de/de/design/ipla/software-development-platforms/client/
platforms/alder-lake-desktop/12th-generation-intel-core-
processors-datasheet-volume-1-of-2/004/intel-processor-
trace/.

[103] Intel. Intel® Software Guard Extensions. https://software.intel.com/
sites/default/files/managed/48/88/329298-002.pdf.

[104] Intel. Intel® Trust Domain Extensions. https://www.intel.com/content/
dam/develop/external/us/en/documents/intel- tdx- module-
1.5-base-spec-348549001.pdf.

105

https://www.sqlite.org/index.html
https://www.intel.com/content/www/us/en/developer/inproceedingss/technical/finding-bios-vulnerabilities-with-symbolic-execution-and-virtual-platforms.html
https://www.intel.com/content/www/us/en/developer/inproceedingss/technical/finding-bios-vulnerabilities-with-symbolic-execution-and-virtual-platforms.html
https://www.intel.com/content/www/us/en/developer/inproceedingss/technical/finding-bios-vulnerabilities-with-symbolic-execution-and-virtual-platforms.html
https://github.com/intel/linux-sgx
https://cdrdv2.intel.com/v1/dl/getContent/671436
https://edc.intel.com/content/www/de/de/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/004/intel-processor-trace/
https://edc.intel.com/content/www/de/de/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/004/intel-processor-trace/
https://edc.intel.com/content/www/de/de/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/004/intel-processor-trace/
https://edc.intel.com/content/www/de/de/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/004/intel-processor-trace/
https://edc.intel.com/content/www/de/de/design/ipla/software-development-platforms/client/platforms/alder-lake-desktop/12th-generation-intel-core-processors-datasheet-volume-1-of-2/004/intel-processor-trace/
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1.5-base-spec-348549001.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1.5-base-spec-348549001.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-module-1.5-base-spec-348549001.pdf


BIBLIOGRAPHY

[105] Intel. UEFI Secure Boot. https://www.intel.com/content/dam/doc/
product-specification/efi-v1-10-specification.pdf.

[106] Intel. What Is Virtualization Security? https://www.intel.com/content/
www/us/en/business/enterprise-computers/resources/virtualization-
security.html.

[107] Jangid, M. K., Chen, G., Zhang, Y., and Lin, Z. Towards formal verification of
state continuity for enclave programs. In: USENIX Security Symposium. 2021.

[108] Jauernig, P., Jakobovic, D., Picek, S., Stapf, E., and Sadeghi, A.-R. Darwin:
survival of the fittest fuzzing mutators. In: arXiv preprint arXiv:2210.11783.
2022.

[109] Jeong, D. R., Lee, B., Shin, I., and Kwon, Y. Segfuzz: segmentizing thread
interleaving to discover kernel concurrency bugs through fuzzing. In: IEEE
Symposium on Security and Privacy (S&P). 2023.

[110] Jiang, Y., Yang, Y., Xiao, T., Sheng, T., and Chen, W. Drddr: a lightweight
method to detect data races in linux kernel. In: The Journal of Supercomputing.
2016.

[111] Jin, X., Xiao, X., Jia, S., Gao, W., Gu, D., Zhang, H., Ma, S., Qian, Z., and Li, J.
Annotating, tracking, and protecting cryptographic secrets with cryptompk. In:
IEEE Symposium on Security and Privacy (S&P). 2022.

[112] Kammerstetter, M., Burian, D., and Kastner, W. Embedded security testing
with peripheral device caching and runtime program state approximation. In:
10th International Conference on Emerging Security Information, Systems and
Technologies (SECUWARE). 2016.

[113] Kammerstetter, M., Platzer, C., and Kastner, W. Prospect: peripheral prox-
ying supported embedded code testing. In: ACM Symposium on Information,
Computer and Communications Security (ASIACCS). 2014.

[114] Kasten, F., Zieris, P., and Horsch, J. Integrating static analyses for high-precision
control-flow integrity. In: Symposium on Recent Advances in Intrusion Detection
(RAID). 2024.

[115] Khandaker, M. R., Cheng, Y., Wang, Z., and Wei, T. Coin attacks: on insecurity
of enclave untrusted interfaces in sgx. In: Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 2020.

[116] Kim, K., Jeong, D. R., Kim, C. H., Jang, Y., Shin, I., and Lee, B. Hfl: hybrid
fuzzing on the linux kernel. In: 2020.

[117] Kim, M., Kim, D., Kim, E., Kim, S., Jang, Y., and Kim, Y. Firmae: Towards
large-scale emulation of iot firmware for dynamic analysis. In: Annual Computer
Security Applications Conference (ACSAC). 2020.

[118] Kim, T., Kumar, V., Rhee, J., Chen, J., Kim, K., Kim, C. H., Xu, D., and Tian,
D. J. {Pasan}: detecting peripheral access concurrency bugs within {bare-metal}
embedded applications. In: USENIX Security Symposium. 2021.

106

https://www.intel.com/content/dam/doc/product-specification/efi-v1-10-specification.pdf
https://www.intel.com/content/dam/doc/product-specification/efi-v1-10-specification.pdf
https://www.intel.com/content/www/us/en/business/enterprise-computers/resources/virtualization-security.html
https://www.intel.com/content/www/us/en/business/enterprise-computers/resources/virtualization-security.html
https://www.intel.com/content/www/us/en/business/enterprise-computers/resources/virtualization-security.html


OTHER REFERENCES

[119] Klees, G., Ruef, A., Cooper, B., Wei, S., and Hicks, M. Evaluating fuzz testing.
In: ACM Conference on Computer and Communications Security (CCS). 2018.

[120] Koscher, K., Kohno, T., and Molnar, D. SURROGATES: Enabling Near-Real-
Time dynamic analyses of embedded systems. In: USENIX Workshop on Offensive
Technologies (WOOT). 2015.

[121] Lee, D., Kohlbrenner, D., Shinde, S., Asanović, K., and Song, D. Keystone: An
open framework for architecting trusted execution environments. In: European
Conference on Computer Systems (EuroSys). 2020.

[122] Lee, J., Jang, J., Jang, Y., Kwak, N., Choi, Y., Choi, C., Kim, T., Peinado, M.,
and Kang, B. B. Hacking in darkness: Return-oriented programming against
secure enclaves. In: USENIX Security Symposium. 2017.

[123] Lee, Y., Min, C., and Lee, B. {Exprace}: exploiting kernel races through raising
interrupts. In: USENIX Security Symposium. 2021.

[124] Lei, C., Ling, Z., Zhang, Y., Yang, Y., Luo, J., and Fu, X. A friend’s eye is a
good mirror: synthesizing {mcu} peripheral models from peripheral drivers. In:
USENIX Security Symposium. 2024.

[125] Leiserson, A. Side Channels and Runtime Encryption Solutions with Intel® SGX.
https://www.fortanix.com/assets/Fortanix_Side_Channel_
Whitepaper.pdf.

[126] Li, W., Guan, L., Lin, J., Shi, J., and Li, F. From library portability to para-
rehosting: Natively executing microcontroller software on commodity hardware.
In: Symposium on Network and Distributed System Security (NDSS). 2021.

[127] libFuzzer – a library for coverage-guided fuzz testing. https://llvm.org/
docs/LibFuzzer.html.

[128] Liljestrand, H., Nyman, T., Wang, K., Perez, C. C., Ekberg, J.-E., and Asokan,
N. {Pac} it up: towards pointer integrity using {arm} pointer authentication. In:
USENIX Security Symposium. 2019.

[129] Limine developers. Limine. https://limine-bootloader.org/.
[130] Liu, C., Mera, A., Kirda, E., Xu, M., and Lu, L. {Co3}: concolic co-execution

for firmware. In: USENIX Security Symposium. 2024.
[131] LLVM developers. Clang Static Analyzer. https://clang-analyzer.llvm.

org/.
[132] LLVM developers. libFuzzer – a library for coverage-guided fuzz testing. https:

//llvm.org/docs/LibFuzzer.html.
[133] Lu, K., Song, C., Lee, B., Chung, S. P., Kim, T., and Lee, W. Aslr-guard: stopping

address space leakage for code reuse attacks. In: ACM Conference on Computer
and Communications Security (CCS). 2015.

[134] Lütkebohle, I. AMD Secure Encrypted Virtualization. https://developer.
amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_
Whitepaper_v7-Public.pdf.

107

https://www.fortanix.com/assets/Fortanix_Side_Channel_Whitepaper.pdf
https://www.fortanix.com/assets/Fortanix_Side_Channel_Whitepaper.pdf
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://limine-bootloader.org/
https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf


BIBLIOGRAPHY

[135] Lyu, Y., Fang, Y., Zhang, Y., Sun, Q., Ma, S., Bertino, E., Lu, K., and Li, J.
Goshawk: hunting memory corruptions via structure-aware and object-centric
memory operation synopsis. In: IEEE Symposium on Security and Privacy (S&P).
2022.

[136] Ma, X., Luo, L., and Zeng, Q. From one thousand pages of specification to
unveiling hidden bugs: large language model assisted fuzzing of matter {iot}
devices. In: USENIX Security Symposium. 2024.

[137] Ma, Z., Liu, Q., Li, Z., Yin, T., Tan, W., Zhang, C., and Payer, M. Truman:
constructing device behavior models from os drivers to fuzz virtual devices. In:
Symposium on Network and Distributed System Security (NDSS). 2025.

[138] Ma, Z., Zhao, B., Ren, L., Li, Z., Ma, S., Luo, X., and Zhang, C. Printfuzz:
fuzzing linux drivers via automated virtual device simulation. In: International
Symposium on Software Testing and Analysis (ISSTA). 2022.

[139] Machiry, A., Spensky, C., Corina, J., Stephens, N., Kruegel, C., and Vigna,
G. DR.CHECKER: A Soundy Analysis for Linux Kernel Drivers. In: USENIX
Security Symposium. 2017.

[140] Malmain, R., Fioraldi, A., and Aurélien, F. Libafl qemu: a library for fuzzing-
oriented emulation. In: 2024.

[141] Mason, J., Small, S., Monrose, F., and MacManus, G. English shellcode. In: ACM
Conference on Computer and Communications Security (CCS). 2009.

[142] Matsuo, K. You‘ve Already Been Hacked What if There Is a Backdoor in Your
UEFI OROM? https://i.blackhat.com/BH-US-24/Presentations/
US24-Matsuo-Youve-Already-Been-Hacked-What-if-There-Is-a-
Backdoor-in-Your-UEFI-OROM-Thursday.pdf.

[143] Mera, A., Chen, Y. H., Sun, R., Kirda, E., and Lu, L. D-box: dma-enabled
compartmentalization for embedded applications. In: 2022.

[144] Mera, A., Feng, B., Lu, L., and Kirda, E. Dice: automatic emulation of dma
input channels for dynamic firmware analysis. In: IEEE Symposium on Security
and Privacy (S&P). 2021.

[145] Mera, A., Liu, C., Sun, R., Kirda, E., and Lu, L. SHiFT: Semi-hosted Fuzz
Testing for Embedded Applications. In: USENIX Security Symposium. 2024.

[146] michaeljclark. rv8-bench. https://github.com/michaeljclark/rv8-
bench.

[147] Michał Zalewski. american fuzzy lop. https://lcamtuf.coredump.cx/
afl/.

[148] Microchip®. Advanced Software Framework. https://asf.microchip.
com/.

[149] Microsoft. Hyper-V Technology Overview. https://learn.microsoft.
com/en- us/windows- server/virtualization/hyper- v/hyper-
v-overview?pivots=windows-server.

108

https://i.blackhat.com/BH-US-24/Presentations/US24-Matsuo-Youve-Already-Been-Hacked-What-if-There-Is-a-Backdoor-in-Your-UEFI-OROM-Thursday.pdf
https://i.blackhat.com/BH-US-24/Presentations/US24-Matsuo-Youve-Already-Been-Hacked-What-if-There-Is-a-Backdoor-in-Your-UEFI-OROM-Thursday.pdf
https://i.blackhat.com/BH-US-24/Presentations/US24-Matsuo-Youve-Already-Been-Hacked-What-if-There-Is-a-Backdoor-in-Your-UEFI-OROM-Thursday.pdf
https://github.com/michaeljclark/rv8-bench
https://github.com/michaeljclark/rv8-bench
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://asf.microchip.com/
https://asf.microchip.com/
https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-overview?pivots=windows-server
https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-overview?pivots=windows-server
https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/hyper-v-overview?pivots=windows-server


OTHER REFERENCES

[150] Microsoft. Microsoft: 70 percent of all security bugs are memory safety issues.
https://www.zdnet.com/inproceedings/microsoft-70-percent-
of-all-security-bugs-are-memory-safety-issues/.

[151] Microsoft. Pin - A Dynamic Binary Instrumentation Tool. https://www.
intel.com/content/www/us/en/developer/articles/tool/pin-a-
dynamic-binary-instrumentation-tool.html.

[152] Mishra, S. and Polychronakis, M. SGXPecial: Specializing SGX Interfaces against
Code Reuse Attacks. In: European Workshop on Systems Security. 2021.

[153] Muench, M., Nisi, D., Francillon, A., and Balzarotti, D. Avatar 2: A multi-
target orchestration platform. In: Symposium on Network and Distributed System
Security (NDSS), Workshop on Binary Analysis Research. 2018.

[154] Myung, C., Lee, G., and Lee, B. MundoFuzz: Hypervisor fuzzing with statistical
coverage testing and grammar inference. In: USENIX Security Symposium. 2022.

[155] Nested Vectored Interrupt Controller. https://developer.arm.com/
documentation/ddi0439/b/Nested-Vectored-Interrupt-Controller.

[156] Ngabonziza, B., Martin, D., Bailey, A., Cho, H., and Martin, S. Trustzone
explained: architectural features and use cases. In: International Conference on
Collaboration and Internet Computing (CIC). 2016.

[157] Nicholas Starke. U-Boot Fuzzing. https://starkeblog.com/qemu/u-
boot/bootloader/fuzzing/negative- result/2021/03/12/u-
boot-fuzzing.html.

[158] OASIS OPEN. Virtual I/O Device (VIRTIO) Version 1.2. https://docs.
oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.
html.

[159] Oracle. Powerful open source virtualization For personal and enterprise use.
https://www.virtualbox.org/.

[160] OSDev Wiki. Multiboot. https://wiki.osdev.org/Multiboot.
[161] OSDev Wiki. UEFI. https://wiki.osdev.org/UEFI.
[162] Pailoor, S., Aday, A., and Jana, S. {Moonshine}: optimizing {os} fuzzer seed

selection with trace distillation. In: USENIX Security Symposium. 2018.
[163] Pan, G., Lin, X., Zhang, X., Jia, Y., Ji, S., Wu, C., Ying, X., Wang, J., and

Wu, Y. V-shuttle: Scalable and semantics-aware hypervisor virtual device fuzzing.
In: ACM Conference on Computer and Communications Security (CCS). 2021.

[164] Park, J., Park, S., Kang, B. B., and Kim, K. Emotion: an sgx extension for
migrating enclaves. In: Computers & Security. 2019.

[165] Park, J., Park, S., Oh, J., and Won, J.-J. Toward live migration of sgx-enabled
virtual machines. In: IEEE World Congress on Services (SERVICES). 2016.

[166] Peng, H. and Payer, M. {Usbfuzz}: a framework for fuzzing {usb} drivers by
device emulation. In: USENIX Security Symposium. 2020.

109

https://www.zdnet.com/inproceedings/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/inproceedings/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://developer.arm.com/documentation/ddi0439/b/Nested-Vectored-Interrupt-Controller
https://developer.arm.com/documentation/ddi0439/b/Nested-Vectored-Interrupt-Controller
https://starkeblog.com/qemu/u-boot/bootloader/fuzzing/negative-result/2021/03/12/u-boot-fuzzing.html
https://starkeblog.com/qemu/u-boot/bootloader/fuzzing/negative-result/2021/03/12/u-boot-fuzzing.html
https://starkeblog.com/qemu/u-boot/bootloader/fuzzing/negative-result/2021/03/12/u-boot-fuzzing.html
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.html
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.html
https://docs.oasis-open.org/virtio/virtio/v1.2/csd01/virtio-v1.2-csd01.html
https://www.virtualbox.org/
https://wiki.osdev.org/Multiboot
https://wiki.osdev.org/UEFI


BIBLIOGRAPHY

[167] Pham, V.-T., Böhme, M., and Roychoudhury, A. Aflnet: a greybox fuzzer for
network protocols. In: International Conference on Software Testing, Validation
and Verification (ICST). 2020.

[168] Pham, V.-T., Böhme, M., Santosa, A. E., Căciulescu, A. R., and Roychoudhury,
A. Smart greybox fuzzing. In: IEEE Transactions on Software Engineering. 2019.

[169] Prandini, M. and Ramilli, M. Return-oriented programming. In: IEEE Symposium
on Security and Privacy (S&P). 2012.

[170] Priebe, C., Muthukumaran, D., Lind, J., Zhu, H., Cui, S., Sartakov, V. A., and
Pietzuch, P. Sgx-lkl: securing the host os interface for trusted execution. In:
arXiv preprint arXiv:1908.11143. 2019.

[171] Ralf Brown. BIOS interrupt call. https://www.cs.cmu.edu/~ralf/
files.html.

[172] Red Hat Bootloader Team. shim CSV file fuzzer. https://github.com/
rhboot/shim/blob/main/fuzz-csv.c.

[173] Red Hat Bootloader Team. shim, a first-stage UEFI bootloader. https://
github.com/rhboot/shim/tree/main.

[174] Redini, N., Machiry, A., Das, D., Fratantonio, Y., Bianchi, A., Gustafson, E.,
Shoshitaishvili, Y., Kruegel, C., and Vigna, G. BootStomp: On the security of
bootloaders in mobile devices. In: USENIX Security Symposium. 2017.

[175] Roderick W. Smith. The rEFInd Boot Manager. https://www.rodsbooks.
com/refind/.

[176] Salls, C., Jindal, C., Corina, J., Kruegel, C., and Vigna, G. {Token-level} fuzzing.
In: USENIX Security Symposium. 2021.

[177] Scharnowski, T., Bars, N., Schloegel, M., Gustafson, E., Muench, M., Vigna, G.,
Kruegel, C., Holz, T., and Abbasi, A. Fuzzware: Using Precise MMIO Modeling
for Effective Firmware Fuzzing. In: USENIX Security Symposium. 2022.

[178] Scharnowski, T., Woerner, S., Buchmann, F., Bars, N., Schloegel, M., and Holz, T.
Hoedur: Embedded Firmware Fuzzing using Multi-Stream Inputs. In: USENIX
Security Symposium. 2023.

[179] Schiller, N., Chlosta, M., Schloegel, M., Bars, N., Eisenhofer, T., Scharnowski, T.,
Domke, F., Schonherr, L., and Holz, T. Drone Security and the Mysterious Case
of DJI’s DroneID. In: Symposium on Network and Distributed System Security
(NDSS). 2023.

[180] Schloegel, M., Bars, N., Schiller, N., Bernhard, L., Scharnowski, T., Crump,
A., Ale-Ebrahim, A., Bissantz, N., Muench, M., and Holz, T. SoK: Prudent
Evaluation Practices for Fuzzing. In: IEEE Symposium on Security and Privacy
(S&P). 2024.

[181] Schumilo, S., Aschermann, C., Abbasi, A., Wör-ner, S., and Holz, T. Nyx: Greybox
Hypervisor Fuzzing using Fast Snapshots and Affine Types. In: USENIX Security
Symposium. 2021.

110

https://www.cs.cmu.edu/~ralf/files.html
https://www.cs.cmu.edu/~ralf/files.html
https://github.com/rhboot/shim/blob/main/fuzz-csv.c
https://github.com/rhboot/shim/blob/main/fuzz-csv.c
https://github.com/rhboot/shim/tree/main
https://github.com/rhboot/shim/tree/main
https://www.rodsbooks.com/refind/
https://www.rodsbooks.com/refind/


OTHER REFERENCES

[182] Schumilo, S., Aschermann, C., Abbasi, A., Wörner, S., and Holz, T. HYPER-
CUBE: High-Dimensional Hypervisor Fuzzing. In: Symposium on Network and
Distributed System Security (NDSS). 2020.

[183] Schumilo, S., Aschermann, C., Gawlik, R., Schinzel, S., and Holz, T. kAFL:Hardware-
Assisted feedback fuzzing for OS kernels. In: USENIX Security Symposium. 2017.

[184] Schwarz, M., Gruss, D., Lipp, M., Maurice, C., Schuster, T., Fogh, A., and
Mangard, S. Automated detection, exploitation, and elimination of double-fetch
bugs using modern cpu features. In: ACM Symposium on Information, Computer
and Communications Security (ASIACCS). 2018.

[185] Seidel, L., Maier, D., and Muench, M. Forming Faster Firmware Fuzzers. In:
USENIX Security Symposium. 2023.

[186] Seidel, L., Maier, D., and Muench, M. Forming faster firmware fuzzers. In:
USENIX Security Symposium. 2023.

[187] Sentinel-One. efi_fuzz. https://github.com/Sentinel-One/efi_fuzz.
[188] Shafiuzzaman, M., Desai, A., Sarker, L., and Bultan, T. Stase: static anal-

ysis guided symbolic execution for uefi vulnerability signature generation. In:
ACM/IEEE International Conference on Automated Software Engineering (ASE).
2024.

[189] Shen, Y., Tian, H., Chen, Y., Chen, K., Wang, R., Xu, Y., Xia, Y., and Yan, S.
Occlum: secure and efficient multitasking inside a single enclave of intel sgx. In:
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 2020.

[190] Shen, Z., Roongta, R., and Dolan-Gavitt, B. Drifuzz: harvesting bugs in device
drivers from golden seeds. In: USENIX Security Symposium. 2022.

[191] Shinde, S., Le Tien, D., Tople, S., and Saxena, P. Panoply: low-tcb linux appli-
cations with sgx enclaves. In: Symposium on Network and Distributed System
Security (NDSS). 2017.

[192] Shinde, S., Wang, S., Yuan, P., Hobor, A., Roychoudhury, A., and Saxena, P.
Besfs: Mechanized proof of an iago-safe filesystem for enclaves. In: 2018.

[193] Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Kruegel, C., and Vigna, G. SoK: State of The
Art of War: Offensive Techniques in Binary Analysis. In: IEEE Symposium on
Security and Privacy (S&P). 2016.

[194] Smolár, M. BlackLotus UEFI bootkit: Myth confirmed. https://www.welivesecurity.
com/2023/03/01/blacklotus-uefi-bootkit-myth-confirmed/.

[195] Song, D., Hetzelt, F., Das, D., Spensky, C., Na, Y., Volckaert, S., Vigna, G.,
Kruegel, C., Seifert, J.-P., and Franz, M. Periscope: an effective probing and
fuzzing framework for the hardware-os boundary. In: 2019.

[196] Song, D., Hetzelt, F., Kim, J., Kang, B. B., Seifert, J.-P., and Franz, M. Agamotto:
accelerating kernel driver fuzzing with lightweight virtual machine checkpoints.
In: USENIX Security Symposium. 2020.

111

https://github.com/Sentinel-One/efi_fuzz
https://www.welivesecurity.com/2023/03/01/blacklotus-uefi-bootkit-myth-confirmed/
https://www.welivesecurity.com/2023/03/01/blacklotus-uefi-bootkit-myth-confirmed/


BIBLIOGRAPHY

[197] Sun, H., Shen, Y., Liu, J., Xu, Y., and Jiang, Y. {Ksg}: augmenting kernel
fuzzing with system call specification generation. In: USENIX Annual Technical
Conference (ATC). 2022.

[198] Surve, P. P., Brodt, O., Yampolskiy, M., Elovici, Y., and Shabtai, A. SoK:
Security Below the OS–A Security Analysis of UEFI. In: 2023.

[199] systemd developers. System and Service Manager. https://systemd.io/.
[200] Szekeres, L., Payer, M., Wei, T., and Song, D. Sok: eternal war in memory. In:

IEEE Symposium on Security and Privacy (S&P). 2013.
[201] Talebi, S. M. S., Tavakoli, H., Zhang, H., Zhang, Z., Sani, A. A., and Qian, Z.

Charm: Facilitating dynamic analysis of device drivers of mobile systems. In:
USENIX Security Symposium. 2018.

[202] Tan, X., Zhang, Y., Lu, J., Xiong, X., Liu, Z., and Yang, M. Syzdirect: di-
rected greybox fuzzing for linux kernel. In: ACM Conference on Computer and
Communications Security (CCS). 2023.

[203] Tay, H. J., Zeng, K., Vadayath, J. M., Raj, A. S., Dutcher, A., Reddy, T., Gibbs,
W., Basque, Z. L., Dong, F., Smith, Z., et al. Greenhouse:{single-service} rehost-
ing of {linux-based} firmware binaries in {user-space} emulation. In: USENIX
Security Symposium. 2023.

[204] Team, M. F. Marlin Firmware. https://marlinfw.org/.
[205] Team, O. OpenSSL. https://www.openssl.org/.
[206] Team, taulab. high quality open source code for autopilots. https://github.

com/TauLabs/TauLabs.
[207] The kernel development community. Kernel Self-Protection. https://www.

kernel.org/doc/html/v4.18/security/self-protection.html.
[208] TheHackNews. Critical Boot Loader Vulnerability in Shim Impacts Nearly All

Linux Distros. https://thehackernews.com/2024/02/critical-
bootloader-vulnerability-in.html.

[209] RT-Thread. A Tiny and Elegant IoT Operating System. https://www.rt-
thread.io//.

[210] tianocore. EDK II. https://github.com/tianocore/edk2.
[211] Tsai, C.-C., Porter, D. E., and Vij, M. Graphene-sgx: a practical library {os}

for unmodified applications on {sgx}. In: USENIX Annual Technical Conference
(ATC). 2017.

[212] UEFI community. EFI System Table. https://uefi.org/specs/UEFI/2.
10/04_EFI_System_Table.html.

[213] UEFI community. GUID Partition Table (GPT) Disk Layout. https://uefi.
org/specs/UEFI/2.10/05_GUID_Partition_Table_Format.html.

[214] UEFI community. Services — Boot Services. https://uefi.org/specs/
UEFI/2.9_A/07_Services_Boot_Services.html.

112

https://systemd.io/
https://marlinfw.org/
https://www.openssl.org/
https://github.com/TauLabs/TauLabs
https://github.com/TauLabs/TauLabs
https://www.kernel.org/doc/html/v4.18/security/self-protection.html
https://www.kernel.org/doc/html/v4.18/security/self-protection.html
https://thehackernews.com/2024/02/critical-bootloader-vulnerability-in.html
https://thehackernews.com/2024/02/critical-bootloader-vulnerability-in.html
https://www.rt-thread.io//
https://www.rt-thread.io//
https://github.com/tianocore/edk2
https://uefi.org/specs/UEFI/2.10/04_EFI_System_Table.html
https://uefi.org/specs/UEFI/2.10/04_EFI_System_Table.html
https://uefi.org/specs/UEFI/2.10/05_GUID_Partition_Table_Format.html
https://uefi.org/specs/UEFI/2.10/05_GUID_Partition_Table_Format.html
https://uefi.org/specs/UEFI/2.9_A/07_Services_Boot_Services.html
https://uefi.org/specs/UEFI/2.9_A/07_Services_Boot_Services.html


OTHER REFERENCES

[215] UEFI community. Services — Runtime Services. https://uefi.org/specs/
UEFI/2.9_A/08_Services_Runtime_Services.html.

[216] Van Bulck, J., Oswald, D., Marin, E., Aldoseri, A., Garcia, F. D., and Piessens, F.
A tale of two worlds: Assessing the vulnerability of enclave shielding runtimes.
In: ACM Conference on Computer and Communications Security (CCS). 2019.

[217] Vmware. Desktop Hypervisor. https://www.vmware.com/products/
desktop-hypervisor/workstation-and-fusion.

[218] Vmware. vSphere. https://www.vmware.com/products/cloud-infrastructure/
vsphere.

[219] Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V., and Vogler, R. Static race
detection for device drivers: the goblint approach. In: ACM/IEEE International
Conference on Automated Software Engineering (ASE). 2016.

[220] Voung, J. W., Jhala, R., and Lerner, S. Relay: static race detection on millions of
lines of code. In: Joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering.
2007.

[221] Wang, H., Wang, P., Ding, Y., Sun, M., Jing, Y., Duan, R., Li, L., Zhang, Y.,
Wei, T., and Lin, Z. Towards memory safe enclave programming with rust-sgx.
In: ACM Conference on Computer and Communications Security (CCS). 2019.

[222] Wang, P., Krinke, J., Lu, K., Li, G., and Dodier-Lazaro, S. How {double-fetch}
situations turn into {double-fetch} vulnerabilities: a study of double fetches in
the linux kernel. In: USENIX Security Symposium. 2017.

[223] Wang, P., Lu, K., Li, G., and Zhou, X. Dftracker: detecting double-fetch bugs by
multi-taint parallel tracking. In: Frontiers of Computer Science. 2019.

[224] Wang, Q., Chang, B., Ji, S., Tian, Y., Zhang, X., Zhao, B., Pan, G., Lyu, C.,
Payer, M., Wang, W., et al. SyzTrust: State-aware Fuzzing on Trusted OS
Designed for IoT Devices. In: IEEE Symposium on Security and Privacy (S&P).
2023.

[225] Wen, C., Wang, H., Li, Y., Qin, S., Liu, Y., Xu, Z., Chen, H., Xie, X., Pu, G., and
Liu, T. Memlock: memory usage guided fuzzing. In: International Conference on
Software Engineering (ICSE). 2020.

[226] Wen, H., Lin, Z., and Zhang, Y. Firmxray: detecting bluetooth link layer vul-
nerabilities from bare-metal firmware. In: ACM Conference on Computer and
Communications Security (CCS). 2020.

[227] WikiLeaks. EFI Basics: NVRAM Variables. https://wikileaks.org/
ciav7p1/cms/page_26968084.html.

[228] Wikipedia. Boot sector. https : / / en . wikipedia . org / wiki / Boot _
sector.

[229] Wikipedia. Comparison of bootloaders. https://en.wikipedia.org/wiki/
Comparison_of_bootloaders.

113

https://uefi.org/specs/UEFI/2.9_A/08_Services_Runtime_Services.html
https://uefi.org/specs/UEFI/2.9_A/08_Services_Runtime_Services.html
https://www.vmware.com/products/desktop-hypervisor/workstation-and-fusion
https://www.vmware.com/products/desktop-hypervisor/workstation-and-fusion
https://www.vmware.com/products/cloud-infrastructure/vsphere
https://www.vmware.com/products/cloud-infrastructure/vsphere
https://wikileaks.org/ciav7p1/cms/page_26968084.html
https://wikileaks.org/ciav7p1/cms/page_26968084.html
https://en.wikipedia.org/wiki/Boot_sector
https://en.wikipedia.org/wiki/Boot_sector
https://en.wikipedia.org/wiki/Comparison_of_bootloaders
https://en.wikipedia.org/wiki/Comparison_of_bootloaders


BIBLIOGRAPHY

[230] Wook Shin Junghwan Kang, H. K. I Don’t Want to Sleep Tonight: Subverting Intel
TXT with S3 Sleep. https://i.blackhat.com/briefings/asia/2018/
asia-18-Seunghun-I_Dont_Want_to_Sleep_Tonight_Subverting_
Intel_TXT_with_S3_Sleep.pdf.

[231] Wu, Y., Zhang, T., Jung, C., and Lee, D. Devfuzz: automatic device model-guided
device driver fuzzing. In: IEEE Symposium on Security and Privacy (S&P). 2023.

[232] Xiang, H., Cheng, Z., Li, J., Ma, J., and Lu, K. Boosting practical control-flow
integrity with complete field sensitivity and origin awareness. In: ACM Conference
on Computer and Communications Security (CCS). 2024.

[233] Xu, M., Qian, C., Lu, K., Backes, M., and Kim, T. Precise and scalable detection
of double-fetch bugs in os kernels. In: IEEE Symposium on Security and Privacy
(S&P). 2018.

[234] Xu, W., Moon, H., Kashyap, S., Tseng, P.-N., and Kim, T. Fuzzing file systems
via two-dimensional input space exploration. In: IEEE Symposium on Security
and Privacy (S&P). 2019.

[235] Yang, Z., Viktorov, Y., Yang, J., Yao, J., and Zimmer, V. Uefi firmware fuzzing
with simics virtual platform. In: Design Automation Conference (DAC). 2020.

[236] Yin, J., Li, M., Li, Y., Yu, Y., Lin, B., Zou, Y., Liu, Y., Huo, W., and Xue, J.
RSFuzzer: Discovering Deep SMI Handler Vulnerabilities in UEFI Firmware with
Hybrid Fuzzing. In: IEEE Symposium on Security and Privacy (S&P). 2023.

[237] Yin, J., Li, M., Wu, W., Sun, D., Zhou, J., Huo, W., and Xue, J. Finding smm
privilege-escalation vulnerabilities in uefi firmware with protocol-centric static
analysis. In: IEEE Symposium on Security and Privacy (S&P). 2022.

[238] Yin, T., Gao, Z., Xiao, Z., Ma, Z., Zheng, M., and Zhang, C. {Kextfuzz}: fuzzing
{macos} kernel {extensions} on apple silicon via exploiting mitigations. In:
USENIX Security Symposium. 2023.

[239] Yoo, S., Park, J., Kim, S., Kim, Y., and Kim, T. {In-kernel}{control-flow}
integrity on commodity {oses} using {arm} pointer authentication. In: USENIX
Security Symposium. 2022.

[240] Yu, D., Wang, J., Fang, H., Fang, Y., and Zhang, Y. SEnFuzzer: Detecting SGX
Memory Corruption via Information Feedback and Tailored Interface Analysis.
In: Symposium on Recent Advances in Intrusion Detection (RAID). 2023.

[241] Yu, Y., Chen, Z., Gan, S., and Wang, X. Sgpfuzzer: a state-driven smart graybox
protocol fuzzer for network protocol implementations. In: IEEE Access. 2020.

[242] Zaddach, J., Bruno, L., Francillon, A., Balzarotti, D., et al. AVATAR: A Frame-
work to Support Dynamic Security Analysis of Embedded Systems’ Firmwares.
In: Symposium on Network and Distributed System Security (NDSS). 2014.

[243] Zhao, B., Li, Z., Qin, S., Ma, Z., Yuan, M., Zhu, W., Tian, Z., and Zhang, C.
{Statefuzz}: system {call-based}{state-aware} linux driver fuzzing. In: USENIX
Security Symposium. 2022.

114

https://i.blackhat.com/briefings/asia/2018/asia-18-Seunghun-I_Dont_Want_to_Sleep_Tonight_Subverting_Intel_TXT_with_S3_Sleep.pdf
https://i.blackhat.com/briefings/asia/2018/asia-18-Seunghun-I_Dont_Want_to_Sleep_Tonight_Subverting_Intel_TXT_with_S3_Sleep.pdf
https://i.blackhat.com/briefings/asia/2018/asia-18-Seunghun-I_Dont_Want_to_Sleep_Tonight_Subverting_Intel_TXT_with_S3_Sleep.pdf


OTHER REFERENCES

[244] Zhao, J., Li, Y., Zou, Y., Liang, Z., Xiao, Y., Li, Y., Peng, B., Zhong, N., Wang,
X., Wang, W., et al. Leveraging semantic relations in code and data to enhance
taint analysis of embedded systems. In: USENIX Security Symposium. 2024.

[245] Zhao, W., Lu, K., Qi, Y., and Qi, S. Mptee: Bringing flexible and efficient memory
protection to intel sgx. In: European Conference on Computer Systems (EuroSys).
2020.

[246] Zheng, Y., Davanian, A., Yin, H., Song, C., Zhu, H., and Sun, L. FIRM-AFL:High-
Throughput greybox fuzzing of IoT firmware via augmented process emulation.
In: USENIX Security Symposium. 2019.

[247] Zheng, Y., Li, Y., Zhang, C., Zhu, H., Liu, Y., and Sun, L. Efficient greybox fuzzing
of applications in linux-based iot devices via enhanced user-mode emulation. In:
International Symposium on Software Testing and Analysis (ISSTA). 2022.

[248] Zhou, W., Guan, L., Liu, P., and Zhang, Y. Automatic firmware emulation
through invalidity-guided knowledge inference. In: USENIX Security Symposium.
2021.

115


	Introduction
	Low-Level Software and Its Risks
	Memory Safety Issues in Low-Level Software
	Research Focuses
	Thesis Roadmap

	Technical Background
	Hardware Features
	Trusted Execution Environment
	Hypervisor
	Intel PT and VT-x
	BIOS and Secure Boot

	Embedded System
	Interrupt
	Memory-Mapped I/O

	Memory Corruption Vulnerability
	Exploitation
	Mitigation

	Fuzz Testing
	Black-Box Fuzzing
	Code Coverage Feedback
	Feedbacks Beyond Code Coverage
	Fuzzing Modularization
	Domain Specific Fuzzing


	Bootloader: Comprehensive Attack Surfaces Analysis and Generic Fuzzing Framework
	Overview
	System Boot Process and Bootloader Features
	PC Firmware
	Bootloader Workflow
	Runtime Environment
	Bootloader Features

	Bootloader Memory Safety Analysis
	Survey and Lessons Learned
	Threat Model
	Target Selection
	Attack Surface Analysis in Practice

	Generic Bootloader Fuzzing Framework Design
	Harness
	Fuzzing Engine
	Crash Detection

	Evaluation
	Experiment Setup
	Reproducibility of Known Vulnerabilities (RQ1)
	Finding New Vulnerabilities (RQ2)
	Comparison with Other Works (RQ3)
	Manual Effort (RQ4)

	Discussion
	Conclusion

	Embedded System Firmware: Adaptive Interrupt Driven Fuzzing
	Overview
	Arm Cortex-M NVIC Interrupt
	IRQ and Interrupt Vector Table
	NVIC Configuration
	Types of NVIC Interrupts
	QEMU NVIC Implementation

	Firmware Fuzzing Interrupt Triggering Analysis
	Running Examples
	Challenges
	Insights

	Interrupt-Driven Firmware Fuzzing Design
	Threat Model
	High-Level Overview
	IRQ Modeling Engine
	Emulator
	Fuzzing Engine

	Evaluation
	Experiment Setup
	Effectiveness of AidFuzzer (RQ1)
	Soundness of IRQ Modeling (RQ2)
	Overhead (RQ3)
	IRQ Modeling Comparison with AIM (RQ4)

	Discussion
	Conclusion

	TEE Application: Backward Compatible and Secure TEE Design
	Overview
	RISC-V Hypervisor Extension
	RISC-V Architecture Privilege Levels.
	RISC-V Hypervisor Extension.

	Secure TEE Design Analysis
	Backward Compatibility
	Less Attack Surfaces Security

	Backward Compatible and Secure TEE Design
	Adversary Model
	Design Overview
	VirTEE Hardware
	Security Monitor
	Enclave Monitor
	Enclave Setup

	Evaluation
	Experiment Setup
	Run-time Performance Overhead (RQ1)
	VirTEE Feature Overhead (RQ2)

	Discussion
	Conclusion

	Related Work
	Secure TEE Design
	Fuzzing
	General Fuzzing
	Domain Specific Fuzzing

	Hardware Feature Assisted Memory Safety Protection

	Conclusion and Future Work

