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Abstract

Motivation: The statistical problem of estimating the total number of distinct species in a population (or distinct elements in a multiset),
given only a small sample, occurs in various areas, ranging from the unseen species problem in ecology to estimating the diversity of
immune repertoires. Accurately estimating the true richness from very small samples is challenging, in particular for highly diverse
populations with many rare species. Depending on the application, different estimation strategies have been proposed that incorporate
explicit or implicit assumptions about either the species distribution or about the sampling process. These methods are scattered across
the literature, and an extensive overview of their assumptions, methodology, and performance is currently lacking.

Results: We comprehensively review and evaluate a variety of existing methods on real and simulated data with different compositions
of rare and abundant species. Our evaluation shows that, depending on species composition, different methods provide the most
accurate richness estimates. Simple methods based on the observed number of singletons yield accurate asymptotic lower bounds for
several of the tested simulated species compositions, but tend to underestimate the true richness for heterogeneous populations and
small samples containing 1% to 5% of the population. When the population size is known, upsampling (extrapolating) estimators such
as PreSeq and RichnEst yield accurate estimates of the total species richness in a sample that is up to 10 times larger than the observed
sample.

Availability: Source code for data simulation and richness estimation is available at https://gitlab.com/rahmannlab/speciesrichness.

Keywords: species richness; diversity estimation; upsampling; immune repertoire; microbiome; comparative evaluation.

Introduction

Estimating the diversity of a population from a small sample has
a wide range of applications in diverse fields, such as ecology,
immunology, biological sequence analysis, and linguistics. One of
the oldest applications is the unseen species problem in ecology,
e.g. predicting the number of butterfly species on an island after
capturing a small collection of butterflies [1]. The same statistical
problem arises in linguistics when trying to estimate how many
words a writer might have known but never used in any of his
published works. In quantitative linguistics, this is a measure to
compare the vocabulary richness of writers [2]. Recent applica-
tions include the analysis of microbial complexity in environmen-
tal niches [3], the comparison of bacterial diversity in human guts
under different disease conditions [4], or the quantification of a
suitable sequencing depth to study rare cancer types based on
the diversity of genetic variants and mutations [5].

While there are many measures of diversity, such as the propor-
tion of rare and abundant species, or the entropy of the species
distribution, we limit this review to the estimation of species
richness from individual-based abundance data. Species richness
measures the total number of distinct species in a population,
assuming that each individual belongs to a single species. We
hence exclude methods that measure presence and absence of a

species in a sampling unit (called incidence data), require spatial
information, or assume that an individual may belong to several
species at once.

In most applications, it is infeasible to observe the complete
population; so, the observed species richness of a sample usually
underestimates the true richness, especially for populations with
many rare species. However, an accurate estimate is crucial to
analyse the properties of a population. For instance, the T- or
B-cell receptor richness of immune repertoires indicates the effec-
tiveness of the immune system, and an accurate estimate is thus
vital to compare immune systems between healthy and diseased
individuals. Since the frequency distribution of T-cell receptor
repertoires is highly skewed, rare T-cell receptors are often missed
in the sampling process [6]. This necessitates robust estimation of
the actual richness.

Accurate estimation of species richness is a challenging statis-
tical problem, in particular without making additional assump-
tions about the sampling process or the species distribution (see
Fig. 1). Various estimators have been proposed over the years to
achieve accurate richness estimates for populations with differ-
ent species compositions. Early estimators, like the Chao 1 [7] or
Jackknife estimator [8], assume that most information about the
number of missing species is present in the number of species
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Figure 1. Comparison of species (color) richness in the population and in a sample. A For a homogeneous population, a small sample is sufficient
to observe a sample richness that is close to the true richness. B The sample richness of a population with many rare species underestimates the
true richness. C Rarefaction curve. Increasing the sample size leads to an increase in the observed richness, converging to the true richness. For a
heterogeneous population with many rare species, the convergence is slow. D T-cell diversity. Somatic recombination of V, D, J gene segments during
T-cell maturation gives rise to numerous distinct T-cell receptors that form an immune system that is able to recognize almost all potential pathogens.
However, analysing T-cell receptor diversity based on a small blood sample is challenging, because the sample only contains a minute portion of all

T-cells from a person.

captured only once or twice. Other estimators assume that the
species counts follow a parametric probability distribution, e.g. a
Gamma-Poisson mixture distribution [9]. Several recent methods
make no such assumptions and are based on linear programming
[10, 11] or curve fitting [6, 12].

While for ecological studies one is often interested in either
accurate asymptotic lower bounds of the population size or
species richness estimates for extrapolated sample sizes up to 2 to
3 times the observed sample size [13], other applications, such as
metagenomics or immune repertoire analysis, require accurate
estimates for populations that are more than 10 times larger
than the observed sample. Hence, new methods are still being
developed with the goal to yield reliable results for populations
that are several magnitudes larger than the observed sample [14].

In addition, data from various research areas have different
properties that may invalidate the assumption of some richness
estimators. For example, in microbiome analyses, methods rely-
ing on accurate abundances of rare species may lead to over-
or underestimation of species richness depending on the per-
formed preprocessing. When the species richness is decided on
the sequence level, singletons are likely caused by sequencing
errors and are often removed prior to further analysis steps. When
we estimate species richness at the taxonomic level, contamina-
tion or misclassification may result in some species being incor-
rectly present or absent [15]. Such application specific problems
should be considered before applying species richness estimators;
we come back to these important points in the Discussion.

Since a systematic comparison of long-established and con-
temporary species richness estimators has not yet been con-
ducted, we evaluate the performance of species richness esti-
mators on a variety of simulated and real data with different
underlying frequency distributions.

Methods
Definitions and notation

From a full population of N individuals (N may be finite or infinite,
known or unknown), a finite random sample of n individuals is

observed. We assume that the sample is small, i.e. n « N. Each
individual (sometimes called element) in the population belongs
to a species (sometimes called class or group). The number of
species in the full population is referred to as its species richness
S, which we assume to be finite (even for infinite N).

The observed sample richness is denoted by Sgps.

For each observed species, we count its abundance in the
sample and obtain the abundance vector a = (a;)1<i<s,, -

The number of species observed exactly k times in the sample
is given by fi (e fi = |{ila; = k, 1 < 1 < Seps}l), such that the
number n of individuals in the sample satisfies

Sobs

n=Zai=Zkﬁe,

k>1

and the observed richness is given by

Sobs = Zﬁe .

k>1

The population’s species richness can be expressed by

S= ka = Sobs +f0y

k>0

i.e. the observed richness plus the number of unobserved species
that are missing in the sample. Therefore, estimating S is equiv-
alent to estimating the unobserved f, from the observed f =
(f1,fo2,...). As the observation is finite, f is of finite length.

Classification of richness estimators

Species richness estimators can be divided into two main groups:
(1) If the total population size N is known or assumed to be known,
finite, and given as an input, we have an upsampling or extrapolation
task (by a factor of N/n), i.e. we need to solve the inverse problem
of the random (down)sampling process. (2) If N is unknown or
assumed infinite, it is (often implicitly) assumed that the total
population species richness S is finite, i.e. the rarefaction curve
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reaches a finite asymptotic upper limit (Fig. 1C), which means
that there cannot be arbitrarily many rare species. The first group
is referred to as upsampling estimators and the second group as
population estimators. In ecology, the two groups are often called
extrapolating and asymptotic richness estimators, respectively. If
(an approximation of) N is available, an upsampling estimator
should be preferred, as using more information typically yields
more accurate results.

Scenarios for upsampling (extrapolating) and population
(asymptotic) estimators

A use case for an upsampling estimator is the decision on the
sequencing depth of a DNA library of unknown quality. Based on
PCR duplicate statistics after a low-depth (say, 3x coverage) pre-
experiment, it can be decided whether 30x versus 15x coverage
would yield significantly more new fragments, or whether one
would see mostly PCR duplicates. A use case for both classes s the
estimation of T-cell receptor richness from small blood samples
(e.g. in healthy versus sick individuals): The exact total number of
T-cells is unknown, but we have reasonable estimates of the total
number of T-cells in the body and in the blood (Fig. 1D). A use
case for population estimators is the estimation of microbiome
species diversity of the intestine, bacterial species diversity in soil
or global insect, plant, or animal diversity in conservation studies.

Classification of estimators by assumptions made

Estimators can be further divided according to whether they
make assumptions about the species composition, i.e. about the
behavior of (fi)s0. If they do, the species richness estimation
problem often simplifies to estimating one or a few parameters
of a parametric distribution, which leads to computationally effi-
cient estimators that show good accuracy if the assumptions
are satisfied, but that may be inaccurate if not. We call these
estimators parametric estimators, and estimators that make no
explicit distributional assumptions non-parametric estimators.

An overview of estimators that we discuss in more detail in
the following sections appears in Table 1. Each particular method
may make explicit or implicit additional assumptions, which we
shall describe below as needed. We first mention several common
principles behind these methods.

General principles

Given the abundance vector a = (a;),1 =1, ..., Sgps Of the observed
species in a sample, we assume that it is the realization of an
underlying probabilistic model. Let X denote the random variable
describing the abundance of a randomly picked species; let pr be
the probability of observing a species exactly k times; soP[X = k| =
pr fork=0,1,2,....If we draw S times an independent copy of X
(abundances, including zeros) and count how many times each
abundance k was seen, we obtain f = (f), including f,. Conversely,
fr/S is an estimate for py.

Zero-truncated distribution

The number of unobserved species fy is unknown. Thus, if P =
(pr)e=0 With py being the true probability distribution for capturing
a species exactly k times (whether it follows a parametric family
or not), then P™ = (p{ )r=1 With p; = pr/(1—po) for k > 1is the zero-
truncated distribution. It is obtained from P by setting p§ := 0 and
p; = pr/Z for k > 1, where the normalization constant Z ensures
that 3., pf = 1,50 Z =1—po = Sgps/S. From this, we derive

S = Saps/(1 = Do), )
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which by itself is not very helpful, as both S and py are unknown,
but with additional (distributional) assumptions yields useful
estimators (see below). Obtaining S from equation (1) is also
referred to as the Horvitz-Thompson point estimate for zero-
truncated distributions [27].

Coverage estimates

The denominator in equation (1), 1 —po or 1 — P[X = 0] = P[X >
1], reflects the proportion of observed species and is also called
sample coverage C. Some of the estimators directly or indirectly
estimate C as C and then § = SObS/C

Distributional assumption: poisson
follows a

Asmentioned above, one may assume thata = (a;)1<i<s,,,

certain type of probability distribution with probabilities pr ~ fi/S
for k > 0. Such an assumption cannot be justified in general,
but may hold for certain types of datasets, and it simplifies the
estimation problem. A popular distributional assumption for each
a; is the Poisson distribution, which models the random number
X of successes when many attempts (n — oo) are made, each
with a very small success probability (p — 0), such that their
product A := pn > 0, corresponding to the expected number of
successes, is a positive constant. Then, the Poisson distribution
specifies that p = P[X = k] = e~* - A%/k!. The Poisson assumption
can be exploited in different ways.

First, the Poisson distribution specifies that py = p1 = e7*, so
we can assume that fo ~ f; and simply estimate S = Sops + f1.
This estimator can also be derived in a non-parametric way as a
Jackknife estimator (see below).

Alternatively, under the Poisson assumption, P[X = 1]/P[X =
0] = A can be estimated by fi/fo, and P[X = 2]/P[X = 1] =
A/2 can be estimated by f,/f1. It follows that fi1/fo ~ 2 fo/f1, or
fo ~ f2/(2f2), which is essentially the Chao 1 estimator (see the
following section). Note that this estimator only uses f; and f, and
not the other information contained in the data.

Still under the Poisson assumption, the data can be more
comprehensively used if we compute an maximum likelihood
estimate for the parameter A from the observed zero-truncated
Poisson distribution and then use equation (1) to estimate § =
Sobs/(1 — e™). This is the Poisson (PO) estimator (details in the
following section).

Estimators in detail
Population estimators
Good-Turing estimator (GT)

The Good-Turing estimator is one of the earliest richness esti-
mators. Assuming that a random sample is drawn from an infi-
nite population with a finite number of species S, Good [2] pro-
posed estimates for the probabilities that a species is represented
exactly r times without making further assumptions about the
population frequency distribution. One of their main results is
that the proportion of species represented in the sample (cov-
erage) is approximately C = 1 — fi/n, or equivalently, the prob-
ability that the next observed individual belongs to an unseen
species is given by po = fi/n. This result led to the common
assumption that rare species, especially the number of single-
tons, contain most information about the number of missing
species.

Good [2] did not further comment on predicting species rich-
ness given the probability to observe a new element. However,
we may use the estimate po = fi/n (or C = 1 — fi/n) together
with equation (1) or the coverage estimate to obtain the GT
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Table 1. Overview of species richness estimators. Column “up” indicates whether an estimator is an upsampling estimator (v) or not
(x; then it is a population estimator). Population (asymptotic) and upsampling (extrapolating) estimators are separated by a horizontal
line. Column “par” indicates whether an estimator is parametric (v'), i.e. whether it makes distributional assumptions about the
species composition, or not (x). *The Chao 1 estimator can be derived from a Poisson model, but was first introduced as a
nonparametric estimator. Column “Implementation” links to the estimator’s implementation that we used for computational
experiments (‘ours” means our own implementation; available at https://gitlab.com/rahmannlab/speciesrichness).

Name Up Par Reference Implementation
Good-Turing X X Good [2] ours

Jackknife X X Burnham and Overton [8] ours

ACE X X Chao and Lee Chao and Lee [16] ours

Poisson X v Sandland and Cormack [9] Breakaway R package
Chao 1 X x v* Chao [7] ours
Gamma-Poisson mixture X v Fisher et al. [1] ours

Chao and Bunge X v Chao and Bunge [17] Breakaway R package
Lanumteang and Béhning x v Lanumteang and Béhning [18] ours

Chiu X v Chiu [19] ours

Objective Bayesian x v Barger and Bunge [20] Breakaway R package
Recon X X Kaplinsky and Arnaout [14] GitHub ArnaoutLab
Valiant X X Valiant and Valiant [11] Valiant Code
Breakaway X X Willis and Bunge [12] Breakaway R package
TES X v Zou et al. [21] TES R script

INEXT v X Hsieh et al. [22] iNEXT R package
Smoothed Good-Toulmin v v Orlitsky et al. [23] ours

PreSeq v X Daley and Smith [24] PreSeq R package
Pitman sampling formula v v Pitman [25] GitHub Stefanie Tauber
DivE v X Laydon et al. [26] DivE R package
RichnEst (formerly Dupre) v X Schréder and Rahmann [10] GitLab RahmannLab

estimator

~ S a
Ser = obs = Sobs,/C .

1 —f1/1’1

Jackknife estimators (Jack 1, Jack 2)

Burnham and Overton [8] derived non-parametric estimators that
are a linear combination of the species frequencies. The derivation
is based on the following assumptions: the population is closed,
the species detection rate is constant for each species but may
vary between species and the capture events are all independent.
It follows that the observed capture frequencies are a random
variable following a multinomial distribution with unknown suc-
cess probabilities [28]. Instead of assuming a parametric distri-
bution for the success probabilities, Burnham and Overton [8]
derive a non-parametric estimator using the generalized Jackknife
method. The first and second order Jackknife estimators are
given by

éJack 1= Sobs "Ffl )

éJackz = Sobs +2f1 *fz-

ACE estimator (ACE)

The abundance-based coverage estimator (ACE) is a modifica-
tion of the GT estimator in the sense that it considers only rare
species for the coverage estimator. The species are separated into
rare and abundant groups based on a frequency cutoff T, i.e.
species are rare if they are observed at most T times [29]. The
most common cutoff is T = 10, but results are sensitive to the
choice of T.

We apply Scr, but instead of using the entire number Sy, of
observed species, we only use the number Sy, 0f rare species and

adjust n accordingly. The number of abundant species is simply

counted as-is. We obtain

where

Sabund = Z fky

k=T+1

T
Nrare = Z k)ck ’ Crare =1—
k=1

STHTE

Sabund + =,

rare

T
Srare = Zﬁe )
k=1

S

Nrare

The above estimator is not the final ACE estimator because it
assumes that all rare species are homogeneous, i.e. all species are
assumed to have the same relative abundance. Since the homo-
geneity assumption may be violated, Chao and Lee [16] proposed
an adjusted estimator that accounts for the heterogeneity of rare
elements. For a population with true relative species abundances
(@i)1<i<s, the abundance distribution may be summarized by its
mean g = 1/S and coefficient of variation (CV), where the squared
CV is defined as

1< (g —§)>
2_7 1
V—Séiqz :

Based on the results by Good and Toulmin [30], Chao and Lee [16]
estimate y? by

Srare 22:1 k (]Q - 1)fk

-1
Crare nrare (nrare - 1)

7? = max [O,
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With this estimate of 2, Chao and Lee [16] obtained

~ S . 1
SACE = Sabund + = + 7° AL .

rare Crare

We point out again that the estimate is sensitive to the rareness
abundance threshold T.

Poisson estimator (PO)

The PO estimator has already been briefly introduced above: We
assume that each (ay)1<i<s,,, is drawn from a Poisson distribution
with an unknown parameter A > 0. We estimate A from the zero-
truncated distribution as 4 and then use equation (1) to estimate

S= Sobs/(1 = e,j\) .

We now provide details on the estimation of A using the maximum
likelihood approach on the zero-truncated Poisson distribution,
where fork > 1,

For a sample of size n and observed species abundances
(a,4a,,...,0as,,), the likelihood function is given by

Sobs =M Al

L()»):Hm.

i=1

It follows that the MLE must satisfy

A n

1-— 675‘ Sobs '

which can be solved numerically for 4 [31].

Instead of considering all species to estimate i, the sample may
first be restricted to rare species with an abundance bounded
by a user-defined threshold T (default T = 10), with the same
implications as for the ACE estimator.

Chao 1 estimator (Chao 1, Chao 1-BC)

As introduced in Section 2.3, Chao [/] proposed a non-parametric
estimator that can be derived under the assumption that the
observed species counts follow a Poisson distribution with equal
detection rate A. The estimator is given by

éChao 1 = Sobs + ﬁ .
2

Chao [7] proved that the estimator yields a lower bound of the true
richness for n — oo under both multinomial and Poisson models.
The lower bound can be derived based on the monotonicity of the
ratio of consecutive probabilities [32, 33].

Since the Chao 1 estimator is undefined for f, = 0, it has been
replaced in later work by a bias-corrected version [29], given by

a fi—D
SChao 1-BC = Sobs + le(});li‘f’l) .
Its derivation requires additional assumptions, including species
homogeneity, which often do not hold in practice [34].

A hybrid form is to use Schao1 for f, > 0 and the bias-corrected
term Sgps + f1(f1 — 1)/21if f, = 0.

Species richness estimation | 5

Gamma-Poisson mixture estimator (GPM)

Under the assumption that the detection rate varies between
species, the Poisson parameter A is itself a random variable. If
we assume that the species-specific A; are drawn from a Gamma
distribution, then the observed species counts follow a Gamma-
Poisson mixture distribution, which is a common assumption of
many richness estimators [17-19].

The marginal distribution of a Gamma-Poisson mixture model
with parameters « and B is given forx =0, 1,2,... by

o Tet+n{ B \( 1Y\
PE=% = T (ﬂ+1) (ﬂ+1) '
Under the zero-truncated Gamma-Poisson mixture model, the
probability pr to observe a species exactly k times is given by
P(X = k)/(1 — P(X = 0)).

As introduced in Section 2.3, the Horvitz-Thompson richness
estimator is given by

é _ Sobs _ Sobs
GP I—P(XZO) (ﬁ)ay

which requires the estimation of « and .

The observed frequencies fi, follow a multinomial distribution
with total sum Sgps and probabilities (pi)es1. Hence, we may solve
for « and B by maximizing the likelihood function

Sobs! . &
it /i kafk '

L, p) =

For detailed information about deriving the MLE for a Gamma-
Poisson mixture distribution, we refer the reader to the paper by
Chiu [19].

Chao and bunge estimator (CB)
Chao and Bunge [17] proposed an estimator that has a non-
parametric form, but the optimality criteria hold under a Gamma-
Poisson mixture model.

For a sample with observed richness Sy, and number of indi-
viduals for each speciesin the sample given by (a;)1<i<s,,,, the Chao
and Bunge estimator is given by

Sobs

écB:%Zﬁg with é:l—%.zaf, 2)
i=1

k>2

which is based on a consistent estimator for the expected value
of fo under a Gamma-Poisson mixture model.

Lanumteang and B6hning estimator (LB)

Lanumteang and Bohning [18] derived a species richness
estimator by computing a Taylor expansion over the log-ratios
log(j pj/pj-1), where p; has a Gamma-Poisson mixture distribution.
Solving the equations in j = 1,2 for f, allows us to derive an
estimate for f, that is non-parametric in form; given by

3f7 - f3
a7

éLB = Sops +

Chiu estimator (Chiu)

Chiu [19] proposed a moment estimator for a Gamma-Poisson
mixture model that estimates the parameters based on the
expected values for the number of unseen species, singletons,
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doubletons, and tripletons. The derived point estimate to predict
species richness is given by

N n . 2 72
Schiu = Sabs +fo - (2 —clip (Tif’)) :
3

Whereﬁ) is estimated using the Chao 1 estimator, f := max(1, f;),
and clip(A) = min(max(1/2,A), 1), i.e. A clipped to the interval
[1/2,1].

Objective Bayesian estimator (OB-PO, OB-NB, OB-G,
OB-MGQG)

Under the assumption that the species abundances follow a
certain parametric probability distribution, the parameters may
alternatively be estimated using Bayesian statistics instead of
maximum likelihood approaches, for example using Bayesian
estimators that place an objective prior on the number of species
and their frequency distributions.

Barger and Bunge [20] suggest to use reference priors, which
maximize the expected entropy. In this review, we evaluated the
Bayesian estimators for a Poisson (OB-PO), negative binomial (OB-
NB), geometric (OB-G), and mixed geometric (OB-MG) distribution.

Recon

To estimate diversity of B- and T-cell repertoires, Kaplinsky and
Arnaout [14] developed Recon, a maximum likelihood approach
that makes no parametric assumption about the frequency dis-
tribution.

The estimatoris calculated using an expectation-maximization
approach that adds in each iteration new parameters until further
parameters would lead to overfitting. The algorithm starts from
a uniform frequency distribution, i.e. all species have the same
number of individuals in the population. In each iteration, a new
species frequency is added and the respective species counts
and relative frequencies are fitted by maximum likelihood. Apart
from species richness, the predicted frequency distribution may
be used to estimate other diversity measures, such as entropy, the
Gini-Simpson index, or Hill numbers.

Valiant

Valiant and Valiant [11] developed a linear program that estimates
the shape of the unobserved portion of the frequency distribution.
They show that their approach yields accurate results for various
natural distributions if the sample size is at leastin O (S/logS) for
a population with S distinct species.

The algorithm is a combination of two linear programs. The
first linear program searches a histogram whose expectation is
closest to the observed frequency distribution. The second linear
program optimizes the objective of finding a histogram that has
minimal support size under the constraint that the new histogram
has a similar distance to the observed frequency distribution as
the one obtained by the first linear program. The coefficients to
calculate the expected frequencies are computed using Poisson
probabilities.

For the evaluation, we have increased the maximum number
of iterations to 10000.

Breakaway

Willis and Bunge [12] estimate species richness using a het-
eroscedastic, correlated nonlinear regression model to fit ratios
of consecutive frequencies. By fitting a rational to the ratios of

the form fj,1/f; as a function of j, the estimate for the number of
unseen elements fy is given by projecting the fitted function to 0.

Since a robust estimate for the number of missing species
requires an accurate number of singletons, Willis [35] enhanced
the previous approach by predicting both the number of unob-
served elements and the number of singletons, called Breakaway-
nofl.

TES

Zouetal. [21] proposed to estimate the total species richness by fit-
ting two asymptotic-parametric models to the probability-based
rarefaction curves. For the first model, the expected value for the
total species richness is computed under a hypergeometric sam-
pling model, and for the second model under a multinomial sam-
pling model. The two parametric models were previously intro-
duced by Hurlbert [36] and Smith and Grassle [37], respectively.
To estimate the total species richness, a four-parameter Weibull-
logistic regression model is fitted to the change in expected value
forincreasing sample sizes. The species richness estimate is given
by the asymptote of the fitted function. If the sample is too small
to successfully fit a Weibull-logistic model, a three-parameter
logistic regression model is fitted instead. The final richness
estimate is given by the mean value of the asymptote under a
hypergeometric and multinomial model.

Upsampling estimators

The previous estimators attempt to estimate the species richness
S of the full population without knowing its size N, even allowing
infinite N, but assume that S is finite. In contrast, the following
estimators are given the population size N as additional input,
and therefore do an upsampling or extrapolation task (from observed
richness Seps and (fe)r=1 With n individuals to the unknown S with
Nindividuals). The difficulty of the upsampling problem increases
with the ratio N/n.

iINEXT

The INEXT R package [22] provides a combined framework to
interpolate (i.e. compute the rarefaction curve) and extrapolate
Hill numbers of several diversity orders. For abundance data, the
Hill numbers of order q are defined for a sample with relative
abundances p = (p1,...,Ds,,) as

1/(1-
Sone /(1-q)

D=2
i=1

Hence, the sample species richness corresponds to Hill numbers
of diversity order O, completely disregarding relative species abun-
dances. To extrapolate Hill numbers from an initial sample of size
n to a larger sample of size n + m, Chao et al. [38] introduced
extrapolated diversity estimators 9D + m) for any m > 0. For
diversity order 0, the size-based extrapolated species richness for
an enlarged sample of size n + m is given by

qf)(n+m>=sobs+fo(1—(1— i ))
Tlfo+f1

where fo can be any proper estimator for fo, e.g. the Chao 1
estimator for fo. However, as already noted by Colwell et al. [13],
the above estimator is only reliable for m < n (see Chao et al. [38]
for more detailed information).

G20 1990)00 /0 UO Josn sapueliees sap Joelisioaiun Aq 0880 | 1 8/85 L1BAG/Z/92/2101HE/qIq/Ww0 dNo 1S peo.)/:Sd)ly WOl papeojumod



Good-Toulmin estimator (EF-GT, PO-GT)

To estimate how many unseen species may be expected in a
next sample, Good and Toulmin [30] proposed an estimate that is
based on the assumption that the capture rates follow a Poisson
distribution. Since the probability of observing a new species is
given by the probability that a species was not seen in the first
but was seen in the second sample, the expected number E of new
species one would see in a second sample of same size is given for
a population with S species by

S

E=>P.(X=0)-(1-P,(X=0) (3)
s=1
s
=> e (l-e), (4)
s=1
where P, (X = 1) denotes the probability to observe exactly i

individuals from species s under a Poisson distribution with
parameter ;. The series expansion of the second term is
given by

e
=2

i=1

(1—e™)
which may be used to rewrite equation (4) as

E_ze«.y Dt

i=1
oS ) S
=D DT P X =0).
i=1 s=1

Good and Toulmin [30] approximate the sum 3°5_, P, (X = i) by
the observed f; and generalize the procedure to general sizes m
of the second sample. They obtain an estimate for the number
of unseen elements U in a new random sample of size m from a
sample of size n:

- (=m/n'f; (5)

i>1

with ratio t = m/n. Note that t = 1, as derived above, corresponds
to upsampling by a factor of 2, where the second sample has the
same size as the first, and t = 99 corresponds to 100x upsampling.
They showed that the above formula is a nearly unbiased non-
parametric estimator of U for all t < 1, but the convergence of the
series is not guaranteed for t > 1.

One possibility to achieve convergence for t > 11is to perform
so-called probabilistic smoothing, yielding new estimators of the
form

U=-D (-PL=Df,

i>1

where the discrete random variable L can follow an arbitrary
discrete distribution.

Efron and Thisted [39] proposed Binomial smoothing (GT-ET),
such that

k

P<in>:z()p’<l p*,

j=i

Species richness estimation | 7

with p = 1}H, and k being a tuning parameter. We use k =
|1 log, (“tz )1, which has been shown by Orlitsky et al. [23] to lead
to the best convergence rate.

As an alternative, Poisson smoothing (GT-PO) uses

— 71

PL>)=1- Z

j=0

with A = £ . (M%) 3],

The resulting estimates U are in fact estimates of fo; thus the
richness estimator is § = Syps +U. This also holds for the following
estimators, which use more complex procedures to estimate the

number of unseen species.

PreSeq

To approximate the molecular complexity of sequencing libraries,
Daley and Smith [24] introduced the idea of using rational func-
tion approximation to increase the radius of convergence of the
Good-Toulmin power series, given by equation (4). Rational func-
tion approximation increases the radius of convergence for diver-
gent series, in particular for alternating power series such as the
Good-Toulmin power series. This approach allows to predict the
species richness for samples that are several orders of magnitudes
larger than the reference sample.

In addition, PreSeq first applies the Euler transform to equation
(5), as proposed by Good [2], yielding the power series

Upr= > (=Dt =D'fi.

i>1

By transforming the variable t of the power series, PreSeq con-
siders a larger class for the rational function approximation,
but under the constraint that the first coefficients are equal to
the coefficients of the original power series, hence trusting the
original series more in the neighborhood around t = 1 [24].

Pitman/Ewens sampling formula (PSF)

The Pitman sampling distribution, a two-parametric generaliza-
tion of the Ewens sampling formula, is a common sampling model
that assumes an infinite sampling universe [25]. The urn repre-
sentation of the Pitmam sampling formula is given by the Hoppe
urn model. The formula calculates the probability of observing an
integer partition of n, where a partition is assumed to be random
and exchangeable. The set of valid integer partitions is given by
Pp = {(f)}_; | f € No, > %_; kfi = n}. The probability of a partition
f under a Pitman sampling model with parameters « €]0, 1] and
0 € [—a, 0] is defined as

(O)s41 0 H” (17a)k 11
—nl. 0bs 5 .
P D=1, o [ J fel?

i=0),

where ()i, 1= - ) )
[[Z@+jy (1=12,..),

©);i:=0)i1=00+1D---(O+i—-1)

[25]. To estimate species richness, the parameters « and 6 of the
Pitman sampling distribution can be estimated using maximum
likelihood estimation. Given « and 6, the expected number of
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additional elements Ups in a next sample of size m is given by [40]

a 0 O@+n+ao)n
UPS_(S°b5+5)( O+ Mm _1)'

DivE

Rarefaction curves show the number of distinct elements as a
function of the sample size and are a common method in diversity
estimation to analyse species richness via nested subsampling.
Traditional curve fitting approaches fit a parametric asymptotic
function, such as a negative exponential or logistic function, to
the rarefaction curve [41]. The species richness is then given by
the asymptote of the function.

Laydon et al. [26] extended this idea by fitting a list of 58 math-
ematical function classes to the rarefaction curves and accu-
mulating the results of the five best fitting classes. Instead of
computing the asymptote, the predicted species richness is given
by extrapolating each function to the desired sample size. Since
testing all mathematical functions is very compute intensive,
we restrict our evaluation to previously suggested functions: the
logistic, negative exponential, logarithmic, hyperbolic, and Hill
function families.

RichnEst

Schroder and Rahmann [10] developed a linear program (LP)
to estimate the molecular complexity or duplication rate of
sequencing experiments from a small sample. The linear program
searches for plausible frequency vectors of the whole population
by minimizing the distance between the expected frequency
vector and the observed frequency vector of the sample.

Assuming that the sample is drawn randomly, the probability
that a species with K individuals in the complete population of
size N is observed exactly k times in a sample of size n fol-
lows a hypergeometric distribution, which allows us to compute
the expected frequency vector, assuming a population frequency
vector [10]. The LP formulation is used to invert this forward
downsampling process.

Evaluation
Data simulation
The richness estimators are evaluated on simulated data with
nine different species compositions (Fig. 2). We consider samples
containing 1%, 3%, 5%, as well as 10%, 20%, ..., 90% of the popula-
tion. For each test case, a sample is drawn 20 times, resulting in a
total of 2160 test cases.

For each species composition, the relative abundances for
a population with N = 10° individuals and S = 10* distinct
species are given by (p1,p2,...,ps) = (CA1,CAy,...,CAs), such
that 3%, p; = 1 and Y5, A; = N, where the A; are the
absolute population abundances and ¢ = 1/N [19]. Below,
we specify p; or A; of different population composition mod-
els. Data simulation and evaluation was automated using
Snakemake [42].

Random model
Fori = 1,...,S, we draw p; from the uniform distribution on
[0.02,0.98], normalized such that 33, p; = 1. We then multiply
the p; by the population size N to obtain the abundances a;, with
an average of 10.

Homogeneous model
Fori=1,...,S, wesetp; = 1/S. Thus, for N = 10° and S = 10%, each
species has exactly 10 individuals.

Uniform mixture model

For one fifth of the species,i =1,...,S/5, we setp; = 5/(2S), and for
theremaining 4/5 of the species,i = S/5+1,...,S, we set p; = 5/(8S)
(assuming that S is a multiple of 5).

Negative binomial models

We use two different models. For i = 1,...,S, we set p; = cA],
where A/ is a random sample drawn from a negative binomial
distribution either with parameters r = 2 and p = 0.02 (model
1), or with r =20 and p = 0.2 (model 2).

Two mixture model

We set p; = cA], where Al is a random sample drawn from a
negative binomial distribution with parametersr =2 and p = 0.1
for one half of the species and with parametersr =50 and p = 0.2
for the other half of the species.

Geometric model

Fori=1,...,S wesetp; = cA}, where A is a random sample drawn
from a geometric distribution with parameter p = 1/S.

Power decay model

Fori=1,...,S, we set p; = ¢/i%°, where c is the proper normaliza-
tion constant.

Zipf-Mandelbrot model
Fori = 1,...,S, we set p; = c/(i + 10), where c is the proper
normalization constant.

Real datasets

We apply the tools to publicly available immune repertoire, micro-
biome, and reef fish datasets.

The repertoire sequencing data published by Shugay et al.
[[43], VDJTools Examples] contains targeted sequencing of V(D)J
genes, which code for distinct antibodies and T-cell receptors. The
unique arrangement of V(D)] segments is called the clonotype of
a cell. The estimation of clonotype richness enables a high level
analysis of immune repertoire diversity. We apply the tools to 58
available samples, for which we create 10 subsamples for each of
6 subsampling rates of 1%, 3%, 5%, 10%, 20%, and 30%, resulting
in 3480 test cases.

To estimate microbiome diversity, we apply the tools to
20 metagenomic datasets from Durazzi et al. [[44], MG-Rast
database], which contain the abundance of bacterial strains in the
chicken gut at different taxonomic levels. In our evaluation, we
estimate bacterial richness based on the taxonomic classification
at the genus level. For each dataset, we create the same 10 x 6
subsample types as for the immune repertoires, resulting in 1200
test cases.

In addition, we evaluate the methods on an ecological dataset
of global reef fish communities [45, Fish dataset] from [45]. For
each fish species, we sum up the species abundances of different
size classes. The methods are evaluated on 10 repeated subsam-
ples containing 1%, 3%, 5%, 10%, 20%, and 30% of the complete
fish dataset.
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Figure 2. Simulated data. Each plot shows the species frequency distribution of a population with 10° individuals and 10* distinct species under different

population models, described in Section 3.1.

Results

The evaluated methods require as input either the observed
abundance vector (a;)1<i<s,, , 1.€. the number of times each species
was observed in the sample, or the frequency vector (fp)es1,1.€. the
number of species occurring exactly k times in the sample, and
output a point estimate and sometimes a confidence interval of
the population species richness. Since not all methods compute a
confidence interval, we measure the accuracy based on the point
estimates.

On simulated data, we evaluate all methods with respect to (1)
proportion of crashes, (2) proportion of outliers, (3) point estima-
tion accuracy, and (4) computational resource requirements. Next,
we evaluate the point estimation accuracy for V(D)], microbiome,
and fish subsamples.

Proportion of unsolved problems

Figure 3A shows the proportion of unsolved test problems for each
method. A test problem is unsolved if the tool either crashed
or failed to converge to a solution. Most of the tools are able
to compute a point estimate for all problems, except for the
objective Bayesian estimators, TES, and smoothed Good-Toulmin
estimators, which sometimes fail to converge. In addition, the
Good-Turing and Lanumteang-Béhning estimator fail if f; or f;
are zero, respectively. A similar problem holds for the Chao-Bunge

estimator if § = 0 in equation (2). For detailed information about
the proportion of unsolved problem per subsampling rate and
population, see Supplementary Figure S.2.

Proportion of outliers

We compare the number of outliers per tool, where we consider
an estimate to be an outlier if § < S/c or § > ¢S, for a constant
¢ > 0. Figure 3B shows the proportion of outliers for ¢ = 10 and
c=2.

As expected, the observed species richness (Obs) often
strongly underestimates the true richness. For several test cases,
Breakaway(-nofl) and the maximum-likelihood based Poisson
and Gamma-Poisson estimators strongly over- and underestimate
the true richness. In addition, the Pitman sampling formula and
the smoothed Good-Toulmin estimators strongly overestimate
the true richness for small sampling rates. For the Good-Toulmin
estimators, this may be caused by divergence of the power
series. In general, simple estimators, such as Chaol, usually
underestimate the true richness, while more complex estimators
both under- and overestimate the true richness (see Figure 3B).
Moreover, all tools have most outliers for small sampling rates
(1% to 5%). For larger sampling rates, populations with a Power
Decay and Zipf-Mandelbrot distribution are most challenging
(see Supplementary Figure S.3).
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Figure 3. A For each tool, the proportion of unsolved problems is shown. Lower is better; zero is desirable. B Proportion of outliers for each tool. For
constant ¢ € {2, 10}, each point estimate that is smaller than S/c or larger than ¢S is assumed to be an outlier that heavily under- or overestimates the

true population richness, respectively. Lower is better.

Estimation accuracy

Figure 4 gives a more detailed overview of the estimation accu-
racy. Each panel corresponds to a sampling rate. Each box plot
shows the deviation of the point estimate from the true richness
across all population models for one method. Individual plots for
each population model are provided in the supplementary figures.

In general, the estimation problem is more challenging when
only a small portion of the population has been observed, result-
ing in an extreme underestimation of the true richness by many
tools, such as the Chao 1 estimator, the ACE estimator, TES,
or Valiant. When the sample contains more than 50% of the
population, asymptotic estimators overestimate the true richness
for some species compositions. For example, the Chao 1, ACE, and
Chiu estimators, which are often referred to as a lower bounds,
yield accurate lower bounds close to the true species richness for
most species compositions, but overestimate the species richness
for the two mixture model if the sample contains more than 40%
of the population (Supplementary Figure S.8).

The non-parametric and Gamma-Poisson mixture estimators
give accurate results for populations with a negative binomial
and homogeneous frequency distribution, but tend to under-
estimate the true richness for populations under a geometric,
Zipf-Mandelbrot or power decay model (Supplementary Figures
S.4-S.12), with the Chao 1, ACE, and Chiu estimators being among
the most accurate methods.

Breakaway and Breakaway-nof1 both over- and underestimate
the true richness and have large estimation intervals for repeated
samples (Supplementary Figure S.7). Recon and the Bayesian
Geometric and Mixed Geometric estimators tend to overestimate
the true richness. Even for a population with a geometric fre-
quency distribution, the objective Bayesian geometric and mixed
geometric estimators consistently overestimate the true richness
(Supplementary Figure S.9).

Upsampling methods, show increasing accuracy with increas-
ing sample size. An increased sample size means that we have
smaller upsampling (extrapolation) factors or that we observed a
larger fraction of the complete population.

The smoothed Good-Toulmin estimators provide accurate
results for many of the evaluated problems. However, they can
suffer from convergence problems, e.g. many of the problems
could not be solved by the smoothed Good-Toulmin estimators

if less than 30% of a population with a power decay frequency
distribution was observed (see Supplementary Figure S.2).
PreSeq’s approach of using rational function approximation
successfully increases the convergence ratio of the power series.
PreSeq is able to solve all problems and is among the best
performing tools for populations with a power decay or Zipf-
Mandelbrot distribution, in particular for low sampling rates
(Supplementary Figure S.12). The performance of DivE is similar
to PreSeq showing an increasing accuracy for larger samples. For
low sampling rates (< 10%), the estimates of RichnEst show high
variation and both over- and underestimate the true richness. For
sampling rates > 10%, RichnEst gives accurate richness estimates.
Because INEXT was developed to extrapolate to a new sample
2 to 3 times the reference sample size, it is less accurate and
underestimates the species richness for lower sampling rates, but
provides accurate results for sampling factors > 30%.

Although the Pitman sampling formula also requires an
upsampling factor, it is less accurate than most population
and upsampling estimators, i.e. the true richness is often
overestimated (see Fig. 4).

Computational requirements

Running times range from under one second for tools such as
the Good-Turing, Jackknife, Chao 1, and Gamma-Poisson mixture
model, to an hour for the Objective Bayes Poisson estimator and
several hours for DivE. Although we evaluated DivE with only 5
different mathematical function families, the running time was
already significantly higher compared to the other methods. In
addition, DivE’s time requirements strongly increase with increas-
ing sample size, which makes it impractical for large datasets.

The maximum memory requirements are under 1 GB for all
tools and evaluated sample sizes and largely independent of
sample size.

Evaluation on Real Data

Methods that could not solve all problems (Good-Turing, Chao—
Bunge, Objective Bayesian, smoothed Good-Toulmin, TES), had
extreme outliers (Breakaway, Breakaway-nofl, Pitman sampling
formula), performed less accurate for most problems (Jackknife 1
and 2, Poisson model) or have impractical computation times on
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Figure 5. Computational resource requirements: A Wall clock time in seconds; B Memory usage in kilobytes. The benchmarks for a sample containing
3%, 20%, 50%, and 80% of the total population were averaged over three runs for populations with a negative binomial (r = 20 and p = 0.2) and
Zipf-Mandelbrot frequency distribution on a AMD Ryzen 9 5950X 16-Core processor with a maximum CPU clock speed of 5.1 GHz.

large data (DivE, e.g. 120h for one V(D)] dataset and a subsampling
rate of 0.3) are not considered in the subsequent evaluation.

Figure 6 shows the deviation of the predicted species richness
from the observed species richness in the complete V(D)J sequenc-
ing, microbiome and reef fish datasets for different subsampling
rates. The box plot labeled “Obs” shows the number of observed
species in the subsample; it always underestimates the true rich-
ness. For the population estimators, the observed richness of the
complete dataset imposes a lower bound on the true species
richness, but the true population richness may be higher con-
sidering that real data never samples the whole population. The
rarefaction curves for the V(D)] data indicate that the total VDJ
diversity is substantially larger than the full sample richness. In
contrast, the rarefaction curves for the microbiome and reef fish
data suggest that the population richness is close to the sample
richness (see Supplementary Figure S.13). The estimates of the
upsampling estimators iNEXT, PreSeq, and RichnEst should be
close to the observed richness of the complete dataset.

Estimating V(D)] richness

On the V(D)] data (see Fig. 6A), the lower bounds of Chao 1, ACE,
and the richness estimator of the Gamma-Poisson mixture model
strongly underestimate the true richness for low subsampling
rates, which is consistent with the previous results that these
estimators tend to strongly underestimate the true richness for
compositions with many rare elements. The predictions by Chiu,
Recon, and Valiant are close to the true richness of the full
sample if 3% of the population has been observed, but they predict
a higher estimate for higher subsampling rates. Since the true
richness of the immune repertoire is unknown (our 100% is in fact
also only a sample of unknown proportion), the accuracy cannot
be validated, but the almost linear rarefaction curves indicate that
the total VDJ diversity is substantially larger than the full sample
richness (see Supplementary Figure S.13). This equally holds for
the Lanumteang-Béhning estimator, which is the only method
that predicts an extremely higher richness for all subsampling
rates. In general, for too small subsampling factors, population

(asymptotic) estimators are not able to provide accurate estimates
that are independent of the sample size.

Among the upsampling estimators, the point estimates of
RichnEst vary more compared to iNEXT and PreSeq. For a
subsampling rate of 3% and 5% the predictions of RichnEst
are on average closer to the true richness. In particular, iINEXT
underestimates the true richness due to the limited reliability
when the sample size is more than doubled. All upsampling
estimators show an increasing accuracy for larger subsamples.

Estimating microbiome richness

For the microbiome data, the true population richness can be
assumed to be close to the sample richness (see rarefaction curves
in Supplementary Figure S.13). Figure 6B shows that all methods
underestimate the species richness for subsampling rates below
10%, except for RichnEst, which shows a high variation for small
subsampling rates. For a subsampling rate of 10% and 20% only
the Lanumteang-Bohning estimator and Valiant predict a higher
population richness. Recon strongly underestimates the species
richness. All other methods have a similar performance, with
PreSeq yielding the most accurate results.

Estimating global reef fish richness

The results for the reef fish data are very similar to the
microbiome data (see Fig.6C): For low subsampling rates,
the species richness is underestimated and with increasing
subsampling rates the estimation of all methods converges to
the total sample richness.

Discussion and conclusions

The increasing applications of richness estimation, for instance
estimating the diversity of immune repertoires, make the accurate
estimation of species richness from a small sample an impor-
tant research topic. Although a variety of richness estimators
already exist, new approaches that are either specific or generally
applicable to many different scenarios, are still being developed.
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Figure 6. Estimation of species richness for A V(D)] immune repertoire data (sequence level) B microbiome data (Lactobacillus strains in broiler after
taxonomic classification at the genus level) C global reef fish communities. The box plots display the distribution of log, ratios between the predicted
species richness and the species richness observed in the complete dataset. Numbers at the cut whiskers show the maximum deviation of the method.
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In particular, recent methods try to tackle the challenges of
undersampled and heterogeneous species compositions. We pre-
sented a methodologically focused overview of existing richness
estimators and evaluated them on a wide range of populations
with different species compositions.

Richness estimators are classified into population and upsam-
pling estimators, depending on whether they require the size N of
a future sample as an additional parameter. In ecology, they are
referred to as asymptotic and extrapolating richness estimators,
respectively.

Asymptotic (population) estimators often provide lower
bounds and may have a limited reliability as point estimates
for strongly undersampled populations. Among the population
estimators, the estimators that are non-parametric in form, like
the Chao 1, ACE, and Chiu estimator, provided the most accurate
point estimates for a variety of simulated species composition,
but strongly underestimated the true species richness if the
population was either very heterogeneous are only a small portion
of the sample had been observed. The estimates of more complex
methods, like Breakaway or the Objective Bayesian estimators,
often had a high variation for repeated subsamples from the
same population and both strongly over- and underestimated the
true richness.

Upsampling (extrapolating) estimators generally give accurate
estimates of the total species richness, except for the Pitman sam-
pling formula, which gave inaccurate results for many problems.
RichnEst and iNEXT provided accurate results for large subsam-
pling rates, but suffered from inaccuracies when the sample was
too small (< 10% for RichnEst and < 30% for iINEXT). For small
subsamples, PreSeq often outperformed the other approaches.

We observed that the accuracy on downsampled real data
was comparable to the accuracy on simulated data. However,
downsampling a complete population results in a clean dataset,
and its properties may be very different from actual real data,
such as for amplicon-based microbiome sequencing data. Data
cleaning and preprocessing are common steps in microbiome
analysis, but may introduce conditions that invalidate the direct
use of some estimators. For example, it is common to remove
singleton species from the sample, because they may be explained
by misclassifications caused by sequencing errors; although some
may be correct. In this case, non-parametric estimators, such as
the Chao 1 and Chiu estimator, that are based on the number
of singletons are not directly applicable. To solve this problem,
Chiu and Chao [46] propose to use an estimate for the number
of singletons instead of the sample singletons. However, recent
work on gut microbiome analysis suggests to filter out all low
abundance taxa to remove contamination, in particular for 16S
amplicon-based sequencing data [47]. In this case, the results of
most richness estimators should be treated with caution, because
many estimators, such as Chao 1, Chiu, ACE, Jacknife, or iNEXT,
assume that most of the information about missing species is
contained in the number of low abundance species. Our study
does not evaluate the performance of the considered estimators
under unclean data or processed data with such biases. This
remains an important topic for future work.

Key Points
e comprehensive review of published methods for species
richness estimation on simulated artificial data and
downsampled real data (immune repertoire, micro-
biome, and global reef fish data)

e mathematical foundations and statistical assumptions
of richness estimation methods

¢ Heterogeneous species compositions are more challeng-
ing than homogeneous species compositions.

e Population (asymptotic) estimators, such as Chao 1 or
Chiu, yield accurate lower bounds if the number of
singletons in the sample is correct.

e Upsampling (extrapolating) estimators, such as PreSeq
or RichnEst, allow accurate richness estimation for sam-
ples up to 10x larger than the reference sample.
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