
EXPLAINING GOAL CONFLICTS
IN OVERSUBSCRIPTION PLANNING

A dissertation submitted towards the degree
Doctor of Natural Sciences

of the Faculty of Mathematics and Computer Science
of Saarland University

by

REBECCA EIFLER

Saarbrücken, 2025

Day of Colloquium 24.07.2025
Dean of Faculty Prof. Dr. Roland Speicher

Chair of the Committee Prof. Dr. Jens Dittrich
Reviewers Prof. Dr. Jörg Hoffmann

Prof. Dr. Holger Hermanns
Prof. Sylvie Thiébaux PhD

Academic Assistant Dr. Daniel Höller

i

ABSTRACT

Many real-world planning scenarios are characterized by oversubscription problems such as
logistics with limited vehicle capacity and fuel restrictions, rover mission planning with time
and energy constraints, but also your weekly activity and housework plans with insufficient
free time. As a result, not all goals within the given task can be satisfied. Conventional
approaches assume global optimization objectives, but it is often difficult to identify such
objectives, and they are frequently in conflict with one another. An iterative planning
approach is more suitable, wherein users consider sample plans and refine their preferences
based on these plans. In such a setting, it is crucial to provide not only the plans themselves,
but also explanations elucidating the conflicts between goals, preferences and objectives.
This facilitates the user’s understanding and enable them to identify satisfactory trade-offs.

To this end, we introduce a form of contrastive explanation. We support user questions
of the form “Why is Q not achieved by the plan?”, by providing explanations through goals A
that conflict with Q, i.e. “To satisfy Q you have to forgo A”. We develop a set of algorithms
that enable this form of explanation by computing the minimal unsolvable goal subsets based
on goal space search and state space search. The evaluation of these algorithms shows
that the required analysis in terms of scalability is comparable to that of oversubscription
planning. Additionally, we conducted a large user study with crowdworkers (N=100 in each
of 3 domains) to evaluate our framework. We compared users with and without access
to explanations and found that the explanations enabled users to better identify trade-offs,
indicating a better understanding of the planning task.

Conflicts often arise due to resource or time constraints. We address the follow-up
question "Why is A in conflict with Q?" by providing explanations based on the minimum
relaxations of constraints under which the conflict resolves. We investigate two approaches
to computing such explanations: specialized algorithms and compilation. A basic algorithm
involves simply looping over all relaxations and computing the conflicts for each relaxation
separately. We improve over this with two algorithms that exploit information such as
reachable goal subsets and states across relaxations. Alternatively, we explore a compilation
using specialized soft goals that identify each relaxation.

In order to provide valuable explanations, it is essential that explanations cover aspects
of the plans in which the user is interested. However, users often find it difficult to formalize
their preferences. Therefore, we explore the potential of learning preferences from example
plans, focusing on a single preference at a time and requesting that the user rates examples
as either good or bad. Based on prior work on learning LTLf formulas, we then extract
a preference from these examples. We conduct an empirical study of this approach in a
classical planning setting, using hidden target formulas to simulate user preferences.

ii

iii

ZUSAMMENFASSUNG

Viele reale Planungsszenarien sind durch Überschreibungsprobleme gekennzeichnet, z. B.
die Logistik mit begrenzter Fahrzeugkapazität und Treibstoffbeschränkungen, die Planung
von Rover-Missionen mit Zeit- und Energiebeschränkungen, aber auch die Planung der
wöchentlichen Aktivitäten und Hausarbeiten bei unzureichender Freizeit. Infolgedessen
können nicht alle Ziele erfüllt werden. Herkömmliche Ansätze gehen von globalen Optimie-
rungszielen aus, doch ist es oft schwierig, solche Ziele zu identifizieren, und sie stehen
häufig in Konflikt zueinander. Besser geeignet ist ein iterativer Planungsansatz, bei dem
die Benutzer Musterpläne betrachten und ihre Präferenzen auf der Grundlage dieser Pläne
verfeinern. Bei einem solchen Ansatz ist es von entscheidender Bedeutung, nicht nur die
Pläne selbst, sondern auch Erklärungen zu den Konflikten zwischen Zielen, Präferenzen
bereitzustellen. Dies erleichtert das Verständnis des Nutzers und versetzt ihn in die Lage,
zufriedenstellende Kompromisse zu finden.

Zu diesem Zweck führen wir eine Form der kontrastiven Erklärung ein. Wir unterstützen
Nutzerfragen der Form “Warum wird Q nicht durch den Plan erreicht”. Wir beantworten
diese in Form von Zielen A, die mit Q in Konflikt stehen, d.h.“Um Q zu erfüllen, muss man
auf A verzichten”. Wir entwickeln eine Reihe von Algorithmen, die diese Form der Erklärung
ermöglichen, indem sie die minimalen unlösbaren Zielteilmengen auf der Grundlage von Ziel-
raumsuche und Zustandsraumsuche berechnen. Die Evaluierung dieser Algorithmen zeigt,
dass die erforderliche Analyse in Bezug auf Skalierbarkeit sich ähnlich wie Überschreibungs-
probleme verhält. Darüber hinaus führen wir eine große Crowd-Worker-Benutzerstudie
durch (N=100 in jeder von 3 Domänen), in der wir unser Framework evaluieren. Im Vergleich
zwischen Nutzern mit und ohne Zugang zu den Erklärungen stellen wir fest, dass die
Erklärungen es den Nutzern ermöglicht, Kompromisse besser zu erkennen, was auf ein
besseres Verständnis der Planungsaufgabe hindeutet.

Konflikte entstehen oft aufgrund von Ressourcen- oder Zeitmangel. Wir adressieren
die Folgefragen “Warum ist A im Konflikt mit Q?” mit Erklärungen, die auf den minimalen
Relaxierung der Beschränkungen basieren, unter denen die Konflikte verschwinden. Wir
untersuchen zwei Ansätze zur Berechnung solcher Erklärungen: spezialisierte Algorithmen
und Kompilierung. Der Basis-Algorithmus besteht darin, über alle Relaxierungen zu iterieren
und die Konflikte für jede einzeln zu berechnen. Wir verbessern diesen Ansatz mit zwei
Algorithmen, die Informationen wie erreichbare Zielteilmengen und Zustände über die
Relaxierungen hinweg nutzen. Alternativ dazu erforschen wir eine Kompilierung unter
Verwendung spezialisierter weicher Ziele, die die Relaxierungen identifizieren.

Um nützliche Erklärungen geben zu können, ist es wichtig, dass die Erklärungen die
Aspekte der Pläne abdecken, an denen der Nutzer interessiert ist. Allerdings fällt es den
Nutzern oft schwer, ihre Präferenzen zu formalisieren. Daher untersuchen wir das Potenzial
des Lernens von Präferenzen anhand von Beispielplänen. Wir konzentrieren uns jeweils
auf eine einzelne Präferenz und fordern den Nutzer auf, Beispiele entweder als gut oder
schlecht zu bewerten. Basierend auf früheren Arbeiten zum Lernen von LTLf-Formeln
extrahieren wir dann eine Präferenz aus diesen Beispielen. Wir führen eine empirische
Studie dieses Ansatzes in einer klassischen Planungsumgebung durch, wobei wir versteckte
Zielformeln verwenden, um Benutzerpräferenzen zu simulieren.

iv

v

ACKNOWLEDGMENTS

First, I would like to express my gratitude to Jörg Hoffmann for offering me the opportunity
of pursuing my PhD studies. I appreciate his encouragement and support, and his patience
with my struggles. I am grateful that he introduced me to Explainable Planning and the
ICAPS community.

I would like to thank Holger Hermanns for agreeing to review this thesis. Spacial
thanks go to Sylvie Thiébaux, for reviewing this thesis but also for her patience and all the
opportunities and support she gave me.

I would also like to thank my colleagues from the FAI group for the great time, the
discussions and the competitions we had: Álvaro, Chaahat, Dan, Daniel, Daniel, Jan, Julia,
Marcel, Marcel, Max, Pascal, Thorsten and Timo. Thanks to Julia for our office conversations
and Dan for the great conversations during our walks and that his office door was always
open for me. Thanks to Dan and Merlin for proofreading this thesis.

I would like to take this opportunity to thank Jeremy Frank for his support, great ideas
and insightful comments, and for the opportunity to present our work at NASA.

I would like to thank my family. My parents Petra and Tankred and my sister Marie, who
have always supported me and believed in me.

Last but not least, I would like to thank Merlin. Without him, this thesis would not have
been possible. He was a software consultant, a discussion partner, a calming influence
when I had doubts, the best support you can have.

Thank you!

vi

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 Illustrative Example . 2
1.2 Contributions . 5
1.3 Publications . 6

2 RELATED WORK EXPLAINABLE AI 9
2.1 Explainable Artificial Intelligence . 9
2.2 Explainable AI Planning . 11

3 BACKGROUND 15
3.1 Planning and Search Techniques . 15

3.1.1 Oversubscription Planning . 15
3.1.2 Heuristic State Space Search . 20

3.2 Finite Linear Temporal Logic . 23

4 EXPLANATIONS BASED ON GOAL CONFLICTS 27
4.1 Explanations . 29

4.1.1 Conceptual Framework . 29
4.1.2 Explanations in Iterative Planning 33
4.1.3 Equivalence to MUGS . 36

4.2 AllMUGS Algorithms . 41
4.2.1 Goal-Lattice Search . 42
4.2.2 Goal-Subset Branch and Bound Search 47

4.3 Computational Evaluation . 53
4.3.1 Soft-Goal Atoms . 53
4.3.2 Temporal Goals . 71

4.4 Iterative Planning Platform . 83
4.4.1 Iterative Planning Workflow . 83
4.4.2 Adaptations and Extensions for User Studies 88

4.5 User Study Evaluation . 88
4.5.1 Case Study Design – Planning Domains and OSP Tasks 89
4.5.2 User Study Design . 91
4.5.3 User Study Results . 93

4.6 Discussion . 99

vii

viii TABLE OF CONTENTS

5 EXPLAINING GOAL CONFLICTS THEMSELVES 107
5.1 Explanations . 108

5.1.1 Task Relaxation . 108
5.1.2 Explanations Based on Task Relaxations 110
5.1.3 Integration into Iterative Planning Process 112

5.2 AllRelaxMUGS Algorithms . 114
5.2.1 MSGS Propagation . 116
5.2.2 Iterative Search Space Extension 117
5.2.3 Theoretical Comparison . 124

5.3 Compilation of AllRelaxMUGS to AllMUGS 126
5.3.1 Relaxation Soft Goals . 127
5.3.2 Non-Dominated MUGS . 130

5.4 Planning with Resource and Time Window Constraints 133
5.4.1 Resource and Time Constraint Relaxations 137

5.5 Computational Evaluation . 142
5.5.1 Experiment Setup & Benchmarks 142
5.5.2 Task Relaxation . 146
5.5.3 Relaxation Soft Goals . 151

5.6 Discussion . 152

6 LEARNING TEMPORAL GOALS 157
6.1 Related Work & Building Blocks . 159

6.1.1 Plan Generation . 159
6.1.2 Temporal Soft Goal Learning . 160
6.1.3 Temporal Soft Goal Templates . 161

6.2 Architecture . 161
6.3 Empirical Evaluation . 167

6.3.1 Experiments Setup & Benchmarks 167
6.3.2 Experimental Results . 168

6.4 Discussion . 173

7 CONCLUSION 177

A APPENDIX CHAPTER 2 181
A.1 Computational Evaluation: Data for Individual Domains 181
A.2 Temporal Goals: Proofs and Input Definition 185

A.2.1 Proofs . 185
A.2.2 Input Definition . 187

A.3 IPEXCO: Input Definition . 190
A.4 Additional Material User Study . 191

B APPENDIX CHAPTER 3 195
B.1 Task Relaxation Input Definition . 195

BIBLIOGRAPHY 199

TABLE OF CONTENTS ix

CHAPTER 1

INTRODUCTION

Wieso, weshalb, warum?
Wer nicht fragt bleibt dumm.

- Sesamstraße

Why,why,why?
Those who don’t ask remain stupid.

- Sesame Street

People are increasingly relying on artificial intelligence (AI) to solve various tasks. However,
effective and satisfying collaboration between a human and an AI system requires much
more than mere performance. It is crucial to understand and trust the AI’s decisions. In
recent years, explainable AI (XAI) [Speith, 2022, Chakraborti et al., 2020, Gunning and Aha,
2019, Horizon Europe, 2021] has gained prominence.

A promising candidate for safe, robust, and trustworthy AI is automated planning, a
subfield of AI that aims to find a plan to solve a task based on a model. Such a model
defines the possible states of the task and the actions that can be used to transition from
one state to another. Model-based approaches are well-suited for explanations due to
their explicit representation of world knowledge and the inference methods, which facilitate
access to causal information.

Planning is typically a non-collaborative process. Usually, the user defines the model
including the “goal” and the planning system, if possible, provides a plan. However, according
to Smith [2012], this approach is often not applicable in real-world scenarios. Not all goals
are always known in advance, and the user may also have preferences, e. g. based on
experience, as to how these goals should be achieved. In addition, it is often not possible
to satisfy all goals and preferences. This necessitates finding a compromise, for which an
iterative process is more suitable. This process enables the user to refine their preferences
based on sample plans and facilitates finding and agreeing on a satisfactory compromise.

In this context, it is essential to provide explanations for users’ questions concerning
the sample plans, goals, and preferences. These explanations should help users in better
understanding the dependencies between the goals and their preferences. Users might
ask questions such as: “Why does the sample plan not satisfy goal x?” Such contrastive

1

2 CHAPTER 1. INTRODUCTION

questions are a common way to ask for clarification. The user expects a goal to be satisfied
or wants it to be satisfied and therefore asks, “Why not x?”. A potential answer should
explain the implication of the alternative x specified by the user.

We propose a framework for providing contrastive explanations based on the concept of
minimal goal conflicts. The goals represent aspects of plans that the user is interested in.
These include goals such as “take an image of the crater”, but also more complex properties
like “the rover should not take two images in a row, as this can overheat the camera module”,
which reflect the user’s preferences. Conflicts can be used to provide answers such as
“If you want to take an image of the crater, you have to take two images in a row”. This
explains to the user what they must forgo in order to satisfy their alternative.

The work is divided into three parts each of which addresses a distinct objective of
the framework. In Part I, we discuss how to identify and use goal conflicts to provide
contrastive explanations. How to explain why a goal conflicts exists and how to resolve
them, is addressed in Part II. Finally, Part III examines how to find suitable properties to
provide explanations for aspects in which the user is interested.

1.1 ILLUSTRATIVE EXAMPLE

Throughout this work, we utilize the planning of a Mars rover mission by a group of re-
searchers as a running example. This Mars rover mission is modeled by a simple planning
task. Figure 1 illustrates the map of a simple instance. There are four targets: a single
crater, a rock, a group of three craters and an area covered with ice.

images

x-ray images

soil samples

Figure 1: Map and data samples of the Mars Rover Mission.

The data samples scheduled for this mission consist of normal images of the crater
group and the ice, X-ray images of the rock and the crater group and soil samples of the ice
and the rock. After collecting the data, the rover must upload the data to a relay satellite.
The rover can perform the following actions:

• drive between connected locations l1 and l2: drive(l1,l2)

• collect a soil sample at location l: soil-sample(l)

1.1. ILLUSTRATIVE EXAMPLE 3

• take an image at location l: image(l)

• take an x-ray image at location l: x-ray-image(l)

• upload data point d to relay satellite : upload(d)

• idle (do nothing): idle

A solution for a particular instance is defined as an action sequence specifying the order
in which locations are traversed by the rover, the data samples to be collected at each
location and when they are to be uploaded.

At first glance, collecting and uploading the requested data points seems straightforward.
However, the following constraints must be taken into account, as illustrated in Figure 2.
The rover only has limited energy and data storage. Furthermore, to take images, the
corresponding location must be sufficiently illuminated, and for data upload, the relay
satellite must be within signal range.

1 5 10 15

Figure 2: Constraints in the running example. Left: battery level and memory capacity of
the rover; Right: time windows in which targets are illuminated and the upload windows of
the relay satellite.

Therefore, given the infeasibility of collecting all data samples, it is necessary to identify
a trade-off. An iterative process can be used to work out those trade-offs. The interaction
between the planning system and users could be as follows:

First a sample plan π1 is presented, that includes collecting and uploading the soil
sample of the rock and the X-ray image of the crater group. This does not cover all data
samples. Therefore, a user interested in the image of the newly discovered icy area might
ask: “Why is the image of the icy area not taken?”. Taking the image and collecting the
soil sample of the rock is not possible. The answer to this question is “Because it is not
possible to take the image of the ice area if the rock sample is collected.”. We call such
dependencies of the form A→ ¬B goal conflicts. Figure 3 shows some of the conflicts
that arise in our example.

Based on the newly gained information, the researchers can now decide whether to
include the ice image in the mission and forgo the rock sample or to prioritize the rock
sample. Assuming the ice image is deemed more valuable, the next sample plan π2 includes
the remaining x-ray image of the crater group and the ice image. From there, the different
groups of researchers involved in the mission can continue to ask questions to better under-
stand the conflicts between the data samples better and to refine their preferences.

4 CHAPTER 1. INTRODUCTION

→ ¬

→ ¬

→ ¬

Figure 3: Selection of goal conflicts in the running example. A→ ¬B means if A is satisfied
by a plan then not all goals in B can be satisfied, e. g. for the second conflict, if the soil
sample of the rock and the ice surface is taken, then it is not possible to take the x-ray image
of the three craters.

If neither group is willing to give in and both data points are to be collected, the question
arises “Why is it not possible to collect the rock sample and to take the ice image?”. To
address this question, we further consider the constraints of the planning task, in this case:
the limited energy of the rover and the upload windows of the relay satellite. By relaxing
these constraints, for example by increasing the rover’s initial battery level or the upload
window, we can determine the amount of energy and the upload window size necessary
to collect both data samples. This results in the answer: “It is possible to collect both
data points, if the rover has one additional unit of energy.” Figure 4 shows how the conflict
between the ice image and the rock sample weakens as the rover’s battery level increases.
While it is not possible to upload both samples with 8 unites of energy, it becomes possible
for 9, as long as one can forgo the x-ray images, the crater image and the ice soil sample.
Using this information the researchers can determine whether to allocate additional energy
to the mission, by for example extending the recharging period or whether this is not feasible,
and they have to make a trade-off between the rock sample and the ice image.

So far, the researchers’ preferences only specified which of the data points should be
collected. However, their personal preferences could be more complex. For example, they
could specify in which order the data points should be collected e. g. “The x-ray image
of the crater group should be taken before the soil sample of the ice surface” or express
preferences for specific connections e. g. “The rovers should not use the route between the
rock and the single crater”. These properties are not reflected in the model because they are
not general restrictions of the domain or instance, but rather properties based on personal
user preferences and experience. The researchers can add individual user preferences to
further shape the sample plans to converge on a solution that not only includes the preferred
data points but also collects them according to the researchers’ preferences. Incorporating
more complex properties extends the explanations from conflicts between data points to
detailed explanations of user preferences.

This example illustrates that even with small instances, the dependencies between goals
and user preferences can be difficult to understand, but are crucial to finding a satisfactory
compromise.

1.2. CONTRIBUTIONS 5

→ ¬

→ ¬

→ ¬

→ ¬

→ ¬

Figure 4: The development of the conflict between the ice image and the rock sample
when the battery level is increased. When the battery is increased by one unit, it becomes
possible to take the ice image and collect the rock sample, if one is willing to forgo the X-ray
images the caters image and the ice sample.

1.2 CONTRIBUTIONS

Chapter 4 We present a formal framework for explanations based on goal conflicts
in oversubscription planning that are suitable for an iterative planning process. These
explanations use minimal goal conflicts of the form Q → ¬A1 · · ·Q → ¬An) to address
user questions of the form “Why is Q not satisfied by sample plan π?” with “Because then
you have to forgo at least one goal in each A1, · · ·An.” To address the problem (AllMUGS)
of computing all minimal unsolvable goal subsets (MUGS), providing the necessary conflict
information, we introduce two approaches based on either a goal space search or an
exhaustive state space search. For the former, we explore explicit as well as symbolic
search to prove individual goal subsets solvable. In the latter approach, which involves
tracking the solvable goal subsets in a branch-and-bound search, we introduce heuristics
that under-approximate the reachable goal subsets, thereby pruning states that cannot
further improve the solvable goal subsets. To handle more complex preferences, we adapt
previous work on compilation of temporal preferences specified in finite linear temporal logic
(LTLf). We evaluate the computational feasibility of AllMUGS in an empirical analysis. To
evaluate the usefulness of the proposed explanations we have developed an online iterative
planning tool (IPEXCO) and conducted an extensive user study.

Chapter 5 To answer follow-up questions in the iterative planning process of the form “Why
are the goals in Q ∪Ai in conflict?”, we introduce explanations based on relaxations of the
planning task. Utilizing minimal relaxations that resolve a conflict, we provide explanations
of the form “To resolve Q ∪Ai, it is necessary to relax the task to either x or y.” Given a set
of possible relaxations we address the problem of computing the MUGS for all relaxations
(AllRelaxMUGS). We introduce two approaches, exploiting the fact that solvable goal subsets
and reachable states, can be propagated from a less to more a relaxed task. The relaxation

6 CHAPTER 1. INTRODUCTION

explanations approach is instantiated with relaxations based on resource and time window
constraints. Using special soft goals reflecting such constraint relaxations, we provide a
compilation from AllRelaxMUGS to AllMUGS. An empirical evaluation is performed to assess
the feasibility and suitability of each approach for resource and time window constraint
relaxations.

Chapter 6 Including additional human preferences not reflected by the task in the conflict
analysis allows to tailor the plan and the explanations to the users’ preferences. However,
as it is often difficult for human users to formalize their preferences, we instead propose an
approach that allows them to rate sample plans as good or bad in relation to their preferences.
This allows to extract the preference by exploiting previous work on LTLf formula learning
from sample traces. We empirically evaluate the approach of learning temporal preferences
from annotated sample plans. We assess different approaches to generating sample plans
that are commonly used in diverse planning and compare the accuracy of the learned
preference with the target preference as a function of the formula size and the number of
plans.

1.3 PUBLICATIONS

The thesis is mainly based on the following publications.

Conference Publications

• Rebecca Eifler, Jeremy Frank and Jörg Hoffmann
Explaining Soft-Goal Conflicts through Constraint Relaxations.
Proceedings of the 31th International Joint Conference on Artificial Intelligence (2022)

• Rebecca Eifler, Martim Brandao, Amanda Coles, Jeremy Frank and Jörg Hoff-
mann
Evaluating Plan-Property Dependencies: A Web-Based Platform and User Study.
Proceedings of the 32th International Conference on Automated Planning and Schedul-
ing (2022)

• Valentin Seimetz, Rebecca Eifler and Jörg Hoffmann
Learning Temporal Plan Preferences from Examples: An Empirical Study.
Proceedings of the 30th International Joint Conference on Artificial Intelligence (2021)

• Rebecca Eifler, Marcel Steinmetz, Alvaro Torralba and Jörg Hoffmann
Plan-Space Explanation via Plan-Property Dependencies: Faster Algorithms & More
Powerful Properties.
Proceedings of the 29th International Joint Conference on Artificial Intelligence (2020)

• Rebecca Eifler, Michael Cashmore, Jörg Hoffmann, Daniele Magazzeni and
Marcel Steinmetz
A New Approach to Plan-Space Explanation: Analyzing Plan-Property Dependencies
in Oversubscription Planning.
Proceedings of the 34th AAAI Conference on Artificial Intelligence (2020)

1.3. PUBLICATIONS 7

System Demonstration

• Rebecca Eifler and Jörg Hoffmann
A Web-Based Platform for Iterative Planning with Plan Explanations.
System Demonstration at the 30th International Conference on Automated Planning
and Scheduling (2020)

Additionally, the following papers have been published during the authors doctoral studies
but are not part of this thesis.

Conference Publications

• Rebecca Eifler, Maximilian Fickert, Jörg Hoffmann and Wheeler Ruml
Refining Abstraction Heuristics during Real-Time Planning.
Proceedings of the 33th AAAI Conference on Artificial Intelligence (2019)

• Rebecca Eifler and Maximilian Fickert
Online Refinement of Cartesian Abstraction Heuristics.
Proceedings of the 11th Annual Symposium on Combinatorial Search (2018)

Workshop Publications

• Aleena Siji, Rebecca Eifler, Daniel Fis̆er, and Jörg Hoffmann
Action Policy Explanations in Oversubscription Planning.
Proceedings of the International Workshop of Human-Aware and Explainable Planning
(2023)

CHAPTER 2

RELATED WORK EXPLAINABLE AI

Much thought has been given to explainable AI in recent years, as shown by the numerous
projects focused on this topic. The XAI program of the Defense Advanced Research Projects
Agency (DARPA) [Gunning and Aha, 2019] is among the first of many projects related to
safe, robust and trustworthy AI funded by the EU’s research and innovation funding program
[Horizon Europe, 2021]. There are many approaches to explainable AI, which differ in terms
of why an explanation is needed and how it can be provided. In the following, we first provide
a general overview of the challenges of explainable AI (XAI) and then focus on explainable
AI planning (XAIP) in particular.

2.1 EXPLAINABLE ARTIFICIAL INTELLIGENCE

AI systems are used in a wide variety of areas, sometimes replacing humans completely or
meant to supporting them in a task. This includes tasks like image classification, speech
recognition, content recommendation, satellite spacecraft operations planning [Pralet et al.,
2022, Smith et al., 1999] and flight planning [Geißer et al., 2020]. Depending on the area the
AI system is applied to, for example medicine [de Vries et al., 2023], finance [Weber et al.,
2024, Pozanco et al., 2023] or law enforcement [Matulionyte and Hanif, 2021, Khan et al.,
2023], decisions can have crucial effects on humans and thus require explanations. But
even in non-live-changing scenarios, understanding the decisions that a black-box system
makes is essential for a satisfactory and productive interaction with a human.

Explanations can address different objectives [Hoffman et al., 2018, Langer et al.,
2021, Chakraborti et al., 2019a] such as fairness, trust and performance, which go beyond
understanding the result of an AI system. The European Parliament decided, a user has
the “Right to Explanations” [Goodman and Flaxman, 2017], when affected by algorithmic
decisions making. Their major concern is discrimination. While, they do not specify what
they exactly mean by “Explanation”, their objective for explanations is to ensure fairness
[Mehrabi et al., 2021]. To trust someone or a system, without the possibility to confirm
the correctness of their decisions is not satisfactory. Explanations can help the user to
explore the boundaries of the capabilities of the AI to decide for which tasks they can rely
on the AI [Hoffman et al., 2018, 2021]. Last but not least, explanations can also affect the
collaborative performance of the human and the AI system [Hoffman et al., 2018]. This does

9

10 CHAPTER 2. RELATED WORK EXPLAINABLE AI

not only include performance with respect to the primary goal of the task, but also the user’s
performance of predicting the AI’s decision.

The main objective of our explanations is understanding, more precisely the understand-
ing of the dependencies/conflicts between different goals/preferences. Especially, expert
users have specific expectations or preferences on how things should be done and if these
are not satisfied, explanations are necessary to understand why [Smith, 2012, Krarup et al.,
2021]. In addition, the aim is to improve performance, i. e. to reach an agreement more
quickly on a plan that satisfies all involved parties.

To address any of these objectives there are many approaches which can be classified
with respect to different properties. For a more exhaustive overview we refer to Speith
[2022] for general XAI and for XAI in planning to Chakraborti et al. [2020].

There are two main conceptual ideas on how to allow a user to follow a decision made
by an AI system. One can either use a transparent model or provide post-hoc explanations
[Speith, 2022, Arrieta et al., 2020]. A model is transparent, if it does not require any
additional information for a user to understand the decision-making process, but itself is
understandable. Models considered transparent are for example, decision trees or rule
based learners [Arrieta et al., 2020]. However, transparency is only given up to a certain
model size. Even for the simple model semantics, at some point the size and as a result
increasing complexity, makes additional explanations necessary [Langer et al., 2021]. Post-
hoc explanations, provide additional information to either explain the whole model (global
explanation) or to address specific user questions (local explanations) [Speith, 2022].

Planning itself, could be considered transparent, however the size of the models we
address are too large to be understandable by a human. Thus, additional explanations are
necessary. Our approach can theoretically provide global explanations, to the granularity
chosen by the user. However, within the iterative planning framework we focus on, local
explanations addressing specific user questions of the form “Why does the sample plan not
satisfy Q?”.

This type of question is called contrastive. The user presents a fact, here Q, they want
to or expect to be satisfied and asks why this is not the case. Users either explicitly state a
contrasting fact, i. e. “Why does the sample plan satisfy P rather than Q?” or assume that
its clear from context, e. g. “Why do you turn right? (rather than left)”. Findings from social
sciences [Miller, 2019, 2021] and a user study [Krarup et al., 2021] show that contrastive
questions and contrastive explanations are one of the most common ways in which humans
ask for and give explanations. Thus, we build on initial ideas by Hoffmann and Magazzeni
[2019] to provide contrastive explanations in AI Planning.

In the context of post-hoc explanations the question arises when to provide explanations.
Most reactive explanation systems, responding to a user request, focus on providing expla-
nations during or after the generation of a solution. Proactive explanation systems on the
other hand often focus on providing explanations during the execution of a solution. The
decision to provide explanations is influenced by two factors: the collaborative settings, i. e.
the extent to which the human is only an observer or whether the agent and the human
collaborate on a task, and the shared knowledge of the environment, capabilities and goals.
Goal and plan recognition [Meneguzzi and Pereira, 2021] is therefore crucial for deciding

2.2. EXPLAINABLE AI PLANNING 11

when and whether to give explanations. Caglar and Sreedharan [2024] address a setting
where a human is supported by an agent. If the human performs an action that is likely to
result in a failure state, the agent intervenes by providing the necessary information to help
the human understand the consequences of their action. In robot systems, studies have
shown that proactive explanations of failure leads to greater trust in the system [LeMasurier
et al., 2024]. Jain et al. [2023] point out that the initial decision-making process of the agent
should be explained to allow the human to form a correct mental model of the agent. Later
on, explanations should be reserved to decisions that deviate from the human’s expectation
based on the acquired model.

Once decided when, providing explanations to a human user is a two-step process [Miller,
2019].

1) The causal information for the explanations needs to be determined.

2) The part relevant to the user is communicated appropriately.

In the work presented here, we focus mainly on the first step and leave the selection of the
“best” explanation for a particular user and the process of communicating this explanation to
future work. References to work that focuses on the human interaction part is given at the
end of the next section.

2.2 EXPLAINABLE AI PLANNING

In contrast to Machine Learning, model based techniques are better suited for explanations.
The explicit representation of world knowledge and the reasoning approaches facilitate
access to causal information. The recent interest in explainable AI Planning (XAIP) lead to
many approaches covering different planning formalism, explanation approaches and use
cases. The workshop for Human aware Explainable Planning (HAXP1) at the international
conference on Automated Planning and Scheduling (ICAPS) reflects the large interest in
explanations in the planning community.

In the following, we do not consider explanations of the reasoning approaches them-
selves, i. e. how a specific planning algorithm works (overview Baier and Kaisers [2020],
MCTS [An et al., 2024]), but rather on explanations of the resulting plan or possible plan
space based on the given model. Explanations are necessary if the plan does not align
with the users expectations or does not satisfy the user because it does not fulfill certain
properties desired by the user, or the user simply does not understand the internal process
of the plan. These issues arise due to the user’s limited reasoning abilities and/or because
the mental model of the human does not align with the planning agent’s model.

Misaligned Human and Planning Agent’s Models To resolve the misalignment of the
human and agent’s model, explanations based on model reconciliation [Chakraborti et al.,

1www.haxp.org

www.haxp.org

12 CHAPTER 2. RELATED WORK EXPLAINABLE AI

2017, Sreedharan et al., 2021] have been introduced. Assuming that the agent knows the
human model, the goal is to identify the model differences and update the human model to
match the proposed plan. This approach has been extended in many directions. To weaken
the assumption about the knowledge of the human model the approach has been extended
to handle uncertainty in the human model [Sreedharan et al., 2018a] and introduced the
possibility to learn suitable explanations based on the applicability of sample plans in the
humans model [Sreedharan et al., 2019a]. Instead of providing the model update in post-hoc
explanations, the model updates can also be provided within the plan [Sreedharan et al.,
2017, 2020a]. This results in self-explaining plans that incorporate communication actions to
update the human’s model directly or task actions with epistemic effects indirectly updating
the model. In this context also the trade-off between an explicable plan, following the users’
expectation, and explanations is addressed [Sreedharan et al., 2017, 2024]. In addition,
safety should not be sacrificed for explicability [Hanni et al., 2024]. In case of large model
discrepancies one global model update is not suitable. Local updates that are based on a
dialogue between system and human allow to share beliefs as well as to request information
[Vasileiou et al., 2023]. These approaches have been applied to different use cases in
different tools, for example in RADAR-X [Grover et al., 2020, Karthik et al., 2021] a decision
support system for rescue missions. While the original definition [Sreedharan et al., 2021] is
defined as the reconciliation of a model represented by a planning task, this approach is
also implemented in a logic based framework [Vasileiou et al., 2019].

Limited Reasoning Capabilities If the models of the human and the system align,
explanations may still be required due to the human’s limited reasoning capabilities.

Before we get to post-hoc explanations, we first consider approaches that provide
transparent plans such that the plan is self-explanatory. Lindsay [2021] argues that the
representation of the planning strategies as rule based policies results in a transparent
planning approach. Based on learned features of explainable and predictable plans, Zhang
et al. [2017] generate and select plans with these features. MacNally et al. [2018] state
that transparent plans should be designed such that the goal objective is clear as soon
as possible. Transparency often comes with an overhead, whether due to unnecessary
explanations or suboptimal plans, which can be a crucial factor depending on the application.
The trade-off between explanations embedded into the plan and post-hoc explanations is
investigated by Lindsay et al. [2020].

Next we consider post-hoc explanations. We distinguish the following categories of user
questions:

• “Why is A in plan π?”

• “Why is A in plan π rather than B?”

• “Why is there no plan?”

To address the question “Why is A in plan π?”, causal chain explanations [Seegebarth
et al., 2012] argue via the causal links between an action with fact p as a precondition

2.2. EXPLAINABLE AI PLANNING 13

and an action with p as effect. Causal link explanations have also been extended to fully
observable nondeterministic planning [Sreedharan et al., 2022] and state action policies
[Sreedharan et al., 2023]. Sohrabi et al. [2011] do not answer the question “Why is A
in plan π?” but rather the related questions “How happens A?” from a partially defined
state. As an answer, a set of facts that need to hold initially and a plan π satisfyingA is given.

By far the most interest has been shown in contrastive explanations addressing the
question “Why is A in plan π rather than B?”. Krarup et al. [2021] and Murray et al. [2022]
provide a whole framework for contrastive explanations using the differences between the
original plan π satisfying A and an alternative plan π’ that satisfies B. If the alternative plan
is of lower quality, Coles and Krarup [2024] provide explanations based on abstractions
to identify the part of the model causing the quality difference. These explanations and
the model refinements to provide alternative plans are designed for the iterative planning
approach described by Smith [2012]. The approach by Lindsay and Petrick [2021a] uses
abstract explanations by focusing on individual objects, such as the rover and its movement
or in a transportation domain the location changes of a single package. Explanations are
provided based on alternative transition sequences for individual objects as well as a causal
justification for the chosen sequence. Kim et al. [2019] assume that the contrastive question
is not formulated as two contrastive properties of a given plan, but as two sets of contrasting
sample plans. As an explanation they use temporal properties that the positive samples
have in common, while they are not satisfied by the negative samples.

Answering the question “Why is there no plan?”, i. e. explanation of unsolvability, may
be necessary if, for example, the model is faulty or the user has imposed restrictions that
make the model unsolvable. Göbelbecker et al. [2010] had the former reason in mind, when
introducing excuses for unsolvability. Excuses are minimal changes to the initial state in the
form of changes to the state of an object or additional objects. In contrast, Sreedharan et al.
[2019b] use solvable abstractions and landmarks thereof as explanations.

To make most of these generic approaches applicable to specific domains, some do-
main specific specifications are necessary. Lindsay [2019, 2020] provides more tailored
explanations without domain dependent implementations based on problem structures, like
moving or transporting, common to many domains.

Explanations of Policies In probabilistic planning, a solution is generated by executing a
policy, a function that maps states to actions. As before if this solution, i. e. the decisions
of the policy in a given state or over a sequence of states, does not align with the users’
expectations, an explanation is required. In a multi-objective setting, Sukkerd et al. [2020]
facilitates finding a trade-off with explanations based on the Pareto-optimal alternative
policies. Sreedharan et al. [2023] extend causal link explanations to policies. Sreedharan
et al. [2025] provide contrastive explanations for alternative policies suggested by the user.
Model simplifications, such as abstractions, determinization and decomposition, are used to
create explanations, which are simplified models in which the original policy performs better,

14 CHAPTER 2. RELATED WORK EXPLAINABLE AI

with respect to plan cost and probability of achieving the goal, than any of the alternative
policies.

Plan generation based on learned policies [Toyer et al., 2020, Ståhlberg et al., 2022], for
probabilistic but also classical planning, is now more widely used. A first approach extends
abductive explanations from explainable deep learning to policies [Selvey et al., 2023]. It
explains the execution sequence of a deterministic state-action policy by identifying the
properties of a state that ensures the specific execution.

Use Cases The introduced approaches have been applied to different use cases, ranging
from teaching children [Tulli et al., 2020] to set up a home entertainment system [Seegebarth
et al., 2012]. Tulli et al. [2020] teach children a game using contrastive explanations to
facilitate learning. They use the difference between an optimal plan and different suboptimal
plans as explanation. The causal link explanations by Seegebarth et al. [2012] are applied
by Bercher et al. [2014] to the task of setting up a home entertainment system in case where
replanning is necessary due to unexpected problems. Brandao et al. [2021a] introduced
contrastive explanations to path planning which was then extended by Alsheeb and Brandao
[2023] to road navigation systems to provide contrastive explanations based on properties of
the map and road conditions. To support the process of model acquisition for a dialog system,
Sreedharan et al. [2020b] provide explanations in case of an unsatisfiable specification
or unexpected behavior based on model reconciliation [Sreedharan et al., 2019b, 2021].
Lindsay and Petrick [2021b] apply explanations to a tour guide system which interacts with
a user through a dialogue system. They provide explanations on two abstraction levels, first
explaining the next high level task, like visiting a café, and then, if necessary, explanations
following the model reconciliation approach to align the systems and human’s model of a
given map for a successful guidance of the human.

Explanation Selection and Communication So far, all approaches mainly address the
first step of explanations, the generation of the causality information. However, the second
step, i.e. the selection of the most relevant explanation and the communication to the user
is equally important. One of the aspects to be considered here is to choose the right level of
abstraction that corresponds to the knowledge of the users. Within the model reconciliation
framework Sreedharan et al. [2018b] use the minimal state abstractions of the systems
model that addresses the conflict with the user’s contrastive suggestion. Vasileiou and
Yeoh [2023] instead opt for a task-specific vocabulary the human is familiar with to provide
personalized explanations in the logic based model reconciliation approach [Vasileiou et al.,
2019]. However, not only choosing the best suited explanation, but also the way it is
communicated to the user has an impact on the clarity of the explanation. Kumar et al.
[2022] chose visualizations as a means of communication, to simplify the understanding of
model reconciliation explanations introduced by Sreedharan et al. [2021].

The recent boom in large language models (LLMs) has prompted a discussion on their
application in generating and communicating explanations. While the capabilities of LLMs in
reasoning and thus planning are limited [Valmeekam et al., 2024], there is the proposal for
leveraging them in conjunction with a verifier to ensure the correctness of the generated
plan [Kambhampati et al., 2024]. A similar approach can be considered for explanations,

2.2. EXPLAINABLE AI PLANNING 15

where for example LLMs provide a natural language interface to logic-based explanations or
where the explanations provided by an LLM are checked and refined in an iterative process
with an explanation framework that can ensure correctness.

CHAPTER 3

BACKGROUND

We next introduce the background on classical and oversubscription planning and heuristic
state space search. This is followed by a short introduction to linear temporal logic.

3.1 PLANNING AND SEARCH TECHNIQUES

First we introduce the formalism for classical and oversubscription planning and the resulting
search spaces represented by a labeled transition system.

3.1.1 OVERSUBSCRIPTION PLANNING

There are different variants of planning, distinguished by their expressiveness. The variants
include probabilistic action outcomes, temporal aspects and continuous variables. For an
overview we refer the reader to [Ghallab et al., 2004]. In this work, we focus on classical
planning1. A classical planning task consists of states that are described by discrete
variables with finite domains, all of which are known in advance in their entirety. The actions
to change these states are deterministic, and their effect is instant. As the formalism for
classical planning we use the finite-domain representation (FDR) [Bäckström and Nebel,
1995, Helmert, 2009].

DEFINITION 1: CLASSICAL PLANNING TASK

An FDR planning task is a tuple τ = (V,A, c, I,G), where

• V is a finite set of variables, each v ∈ V being associated with its finite
domain Dv. A complete assignment to V is called a state.

• A is a finite set of actions. Each action a ∈ A has a precondition prea and
an effect eff a, both partial assignments to V .

• c : A→ R+
0 is the action cost function.

• I is the initial state.

1In Section 5.4 we introduce planning with resource and time window constraints. However, these extensions
can be compiled to classical planning and do not add any expressiveness.

17

18 CHAPTER 3. BACKGROUND

• G is the goal, defined by a partial state.

The partial FDR model of our running example, not taking any constraints into account, is
given in Example 1.

EXAMPLE 1: FDR PLANNING TASK

• Variables V :

– The location a rover can be at:
R with DR = {crater1, rock, crater3, ice}

– A data sample a rover can take:
dp ∈ {image-ice, image-crater3, x-ray-image-crater3,
x-ray-image-rock, soil-sample-rock, soil-sample-ice} = DP

with Ddp = {todo, in-memory, uploaded}

• Actions A:

– move rover from location l1 to location l2:
drive(l1,l2) for {l1, l2} ∈ {{crater1, rock}, {rock, crater3},
{crater3, ice}, {ice, crater1}}

* pre : {R = l1}

* eff : {R = l2}
– take a soil sample at location l:

soil-sample(l) for l ∈ {rock, ice}

* pre : {R = l, soil-sample-l = todo}

* eff : {soil-sample-l = in-memory}
– take an image at location l: image(l) for l ∈ {crater3, ice}
– take an x-ray image at location l: x-ray-image(l) for
l ∈ {crater3, rock}

– upload data point d to relay satellite: upload(d) for d ∈ DP

• Action Cost:

– c(drive(l1,l2)) = v for ({l1, l2}, v) ∈ {({crater1, rock}, 3),
({rock, crater3}, 1), ({crater3, ice}, 3), ({ice, crater1}, 2)}

– c(soil-sample(l)) = 1 for l ∈ {rock, ice}
– c(image(l)) = 1 for l ∈ {crater3, ice}
– c(x-ray-image(l)) = 2 for l ∈ {crater3, rock}
– c(upload(d)) = 1 for d ∈ DP

• Initial State:{R = crater1} ∪ {dp = todo | dp ∈ DP}

• Goal: {x = uploaded | x ∈ DP}

3.1. PLANNING AND SEARCH TECHNIQUES 19

We will refer to variable-value pairs v = d with v ∈ V and d ∈ Dv as facts and identify
partial variable assignments with sets of facts. The value assigned to a variable v in state
s is referred to by s(v). An action a is applicable in a state s if prea ⊆ s. The set of all
applicable actions in state s is defined as A[s] := {a | a ∈ A, prea ⊆ s}. Applying a in s
leads to successor state sJaK, that is defined as

sJaK(v) =

{
eff a(v) if eff a(v) defined

s(v) otherwise

The outcome state of an iteratively applicable action sequence π is denoted by sJπK. The
prefix of an action sequence π = a0, · · · , ai−1, ai, ai+1, · · · , an is defined as prefix(π, i)
= a0, · · · , ai−1.

The state space of such an FDR task is defined by a labeled transition system.

DEFINITION 2: LABELED TRANSITION SYSTEM

A labeled transition system (LTS) is a tuple Θ = (S, L, c, T, I,SG, b), where

• S is a finite set of states,

• L is a finite set of transition labels,

• c : L 7→ R+
0 is the cost function mapping each label to a non-negative cost,

• T ⊆ S × L× S is a set of transitions,

• I ∈ S is the initial state,

• SG ⊆ S is the set of goal states

• b ∈ R+
0 ∪ {∞}.

A path in a LTS is a sequence of labels π = l0, . . . , ln such that there exists a sequence
of states s0, . . . , sn with (si, li, si+1) ∈ T . The cost of a path π is the sum of the costs of
its labels, cost(π) =

∑n
i=0 c(li). A path is a solution for state s if s0 = s and sn ∈ SG and

cost(π) ≤ b. A solution for I is a solution for the LTS. A state s is reachable from state
s′ if there is a path π from s′ to s and cost(π) ≤ b. A state s is reachable in an LTS if it is
reachable from I. The set of all reachable states in an LTS is denoted by Sr and the set of
all reachable goal states Sr ∩ SG by SrG. We consider deterministic LTSs, meaning for all
s ∈ S and l ∈ L there is at most one s′ ∈ S, such that (s, l, s′) ∈ T .

The state space of a classical planning task is defined by the following LTS.

DEFINITION 3: STATE SPACE

The state space of a planning task τ = (V,A, cτ , Iτ , G) is the LTS Θτ =

(S, L, cΘ, T, IΘ,SG, b) where

• S is the set of all states of τ ,

20 CHAPTER 3. BACKGROUND

• L = A, the labels are the actions of τ ,

• the cost function cΘ = cτ is the cost function of τ ,

• (s, a, s′) ∈ T , iff s, s′ ∈ S, a ∈ A, prea ⊆ s and sJaK = s′,

• the initial state IΘ = Iτ is the initial state of τ ,

• SG = {s ∈ S | G ⊆ s},

• b =∞.

An exemplary part of the state space based on the FDR definition of the running example in
Example 1 is given in Example 2.

EXAMPLE 2: STATE SPACE

Below a part of the state space of the FDR task in Example 1 is depicted. We use
the following abbreviations: crater1: c1, rock: R, crater3: c3, ice: i and R for
the rover.

R = c1
ii = todo
ic3 = todo
xc3 = todo
xr = todo
sr = todo
si = todo

R = r
ii = todo
ic3 = todo
xc3 = todo
xr = todo
sr = todo
si = todo

dr
iv

e(
c1

,r
)

dr
iv

e(
r,

c1
)

R = i
ii = todo
ic3 = todo
xc3 = todo
xr = todo
sr = todo
si = todo

drive(c1,i)
drive(i,c1)

R = r
ii = todo
ic3 = todo
xc3 = todo
xr = in-memory
sr = todo
si = todo

x-ray-image(r)

R = r
ii = todo
ic3 = todo
xc3 = todo
xr = todo
sr = in-memory
si = todo

soil-sample(r)

R = c3
ii = todo
ic3 = todo
xc3 = todo
xr = todo
sr = todo
si = todo

drive(r,c3)

drive(c3,r)

R = i
ii = in-memory
ic3 = todo
xc3 = todo
xr = todo
sr = todo
si = todo

image(i)

R = i
ii = todo
ic3 = todo
xc3 = todo
xr = todo
sr = todo
si = in-memory

soil-sample(i)

R = c3
ii = todo
ic3 = todo
xc3 = todo
xr = todo
sr = todo
si = todo

drive(i,c3)

drive(c3,i)

R = r
ii = todo
ic3 = todo
xc3 = todo
xr = in-memory
sr = in-memory
si = todo

x-ray-image(r)
R = r
ii = todo
ic3 = todo
xc3 = todo
xr = uploaded
sr = todo
si = todoupload(xr)

R = c1
ii = todo
ic3 = todo
xc3 = todo
xr = todo
sr = todo
si = in-memory

drive(r,c1)

drive(c1,r)

R = c3
ii = todo
ic3 = todo
xc3 = todo
xr = todo
sr = in-memory
si = todo

drive(r,c3)drive(c3,r)

A solution π for state s in state space Θτ is a plan for s in task τ . We say that task τ is
solvable if a plan for the initial state exists, and unsolvable otherwise. A plan π is optimal
if its cost cost(π) is minimal among all plans.

In the following we consider oversubscription planning [Smith, 2004, Mirkis and Domsh-

3.1. PLANNING AND SEARCH TECHNIQUES 21

lak, 2013, Domshlak and Mirkis, 2015, Aghighi and Jonsson, 2014] an extension of classical
planning with an overall cost bound for the plan cost. Additionally, we distinguish two types
of goals.

DEFINITION 4: OSP TASK

An oversubscription planning (OSP) task is a tuple τ = (V,A, c, I,Ghard, Gsoft, b)

like an FDR task but with

• hard goal Ghard,

• soft goal Gsoft,

• cost bound b ∈ R+
0 ,

where Ghard and Gsoft are partial states on disjoint sets of variables.

The hard goal is defined as the set of goals, that must be satisfied by a solution for a given
task. In contrast, the soft goal represents the additional goals, that we would like to be
satisfied. However, due to the cost bound this might not be possible. Example 3 describes
a possible OSP version of our running example.

EXAMPLE 3: OSP TASK

In an OSP version of our running example, one could for example consider uploading
the image of the ice surface as mandatory and thus make it a hard goal, while all
other data points are optional and thus soft goals. A cost bound of 15, reflecting the
available energy, prevents all data points to be uploaded.

• hard goal: {image-ice = uploaded}

• soft goal: {dp = uploaded | dp ∈ DP} \ {image-ice}

• cost bound: b = 15

A possible plan π including the hard goal image-ice= uploaded and the two soft
goals x-ray-image-rock = uploaded and image-crater3 = uploaded:

• drive(crater1,rock) (3)

• x-ray-image(rock) (2)

• drive(rock, crater3) (1)

• image(crater3) (1)

• drive(crater3,ice) (3)

• image(ice) (1)

• upload(x-ray-image-rock) (1)

• upload(image-ice) (1)

• upload(image-crater3) (1)

22 CHAPTER 3. BACKGROUND

The numbers in the brackets indicate the action cost, the plans cost cost(π) = 14.
With a cost bound of 15 no additional soft goal can be achieved.

The state space of an OSP task is analogous to that of a classical planning task, with the
exception of the definition of goal states and the finite cost bound.

DEFINITION 5: STATE SPACE OSP TASK

The state space of an OSP task τ = (V,A, c, I,Ghard, Gsoft, b) is the LTS Θτ =

(S, L, cΘ, T, IΘ,SG, bΘ) where S, L, cΘ, T and IΘ are defined as for a classical
planning task, and where SG = {s ∈ S | Ghard ⊆ s} and bΘ = b.

We say that G ⊆ Gsoft is solvable in τ if τ ′ = (V,A, c, I,Ghard ∪G, ∅, b) is solvable.

Usually, the goal facts in Gsoft are assigned a utility u : Gsoft 7→ N0. The utility of a
plan π is then given by the utility of the final state u(π) =

∑
g∈(Gsoft∩IJπK) u(g). A plan π is

utility-optimal, if there is no plan π′ where u(π′) > u(π). Here, however, we assume that
the utility function is not given because the user’s preferences with regard to the soft goals
are difficult to specify or have not yet been formed.

3.1.2 HEURISTIC STATE SPACE SEARCH

One of the most effective approaches for solving classical planning and OSP tasks is
heuristic state space search [Bonet and Geffner, 2001]. The state space is systematically
explored, typically starting from the initial state I in order to then generate the successor
states by applying actions. To decide which state to expand next, the states are ranked by a
heuristic, which is a function estimating the plan cost from a state to a goal state.

DEFINITION 6: CLASSICAL PLANNING HEURISTIC

A heuristic h : S 7→ R+
0 ∪∞ is a function that maps each state s of a planning task

τ to an estimate of the cost of a plan from s, or to∞ to indicate that there is no plan.
The perfect heuristic h∗ maps each state to the cost of an optimal plan, or to∞ if
no plan exists.
A heuristic h is admissible if for all states s, h(s) ≤ h∗(s).

Heuristics are used to guide the search towards a goal. For optimal planning A∗ [Hart et al.,
1968] is the most commonly used search algorithm (see Algorithm 1). It explores states
in the order of g(s) + h(s), where g is the cost to reach state s and h the estimation of
reaching a goal state from s. A∗ requires an admissible heuristic to produce optimal plans.
For satisficing planning greedy best-first search (GBFS) [Doran and Michie, 1966] (see
Algorithm 1) can be used. It greedily follows the most promising state determined by the
heuristic.

3.1. PLANNING AND SEARCH TECHNIQUES 23

Algorithm 1 A∗ and Greedy Best First Search (GBFS)
1: Given: task τ , heuristic h
2: function A∗/GBFS(τ, h)
3: g(s)←∞ for all states s 6= I and g(I)← 0

4: f(I)← h(I)

5: O ← {(I, 0)} . priority queue ordered by ascending f(s)
6: while |O| > 0 do
7: s, gs ← POP(O)
8: if g(s) < gs then . duplicate check
9: continue

10: if G ⊆ s then
11: return SOLUTION(s)

12: for all a ∈ A(s) do
13: s′ ←sJaK
14: gs′ ← g(s) + c(a)

15: if gs′ < g(s′) then . duplicate check
16: g(s′)← gs′

17: f(s′)← g(s′) + h(s′) for A∗ and f(s′)← h(s′) for GBFS
18: O ← O ∪ (s′, g(s′))

19: return failure

To efficiently compute our explanations, we will build on existing heuristics.

Max Heuristic The max heuristic [Bonet and Geffner, 2001] estimates the remaining cost
to achieve all goals G by the cost to achieve the most expensive g ∈ G.

DEFINITION 7: MAX HEURISTIC

Let τ = (V,A, c, I,G) be a planning task. The max heuristic hmax for τ is the
function hmax(s) := hmax(s,G) where hmax(s,G′) is the point-wise greatest function
that satisfies

hmax(s,G′) =


0 G′ ⊆ s
mina∈A,g′∈eff a

c(a) + hmax(s, prea) G′ = {g′}
maxg′∈G′ hmax(s, {g′}) |G′| > 1

hmax is admissible. For further information we refer to [Bonet and Geffner, 2001].

Abstraction Heuristic In optimal planning a commonly used family of admissible heuris-
tics are abstraction heuristics [Helmert et al., 2007]. Abstractions group states of a transition
system into abstract states.

24 CHAPTER 3. BACKGROUND

DEFINITION 8: ABSTRACTION

Let Θ = (S, L, c, T, I,SG) be a transition system. An abstraction of Θ is a surjective
function α : S 7→ Sα. The abstract state space induced by α is the transition system
Θα = (Sα, Lα, cα, Tα, Iα,SGα) defined by:

• Iα = α(I)

• SαG = {α(s) | s ∈ SG}

• Tα = {(α(s), l, α(t) | (s, l, t) ∈ T)}

A heuristic based on such an abstraction uses the perfect heuristic in the abstract state
space to estimate the remaining cost in the concrete state space.

DEFINITION 9: ABSTRACTION HEURISTIC

Let Θ = (S, L, c, T, I,SG) be a transition system and α an abstraction of Θ. The
abstratction heuristic induced by α is the heuristic function hα : S 7→ R+

0 ∪ ∞
which maps each state s ∈ S to h∗Θα(α(s)), i. e. to the cost of an optimal plan of α(s)
in Θα.

Many variants of abstractions and methods for their calculation have been introduced.
Abstractions can be based on the projection of individual variables [Culberson and Schaeffer,
1998, Edelkamp, 2001], the abstraction of individual variable domains [Domshlak et al.,
2009], the cross product of subsets of domains [Seipp and Helmert, 2013] or any arbitrary
mapping [Helmert et al., 2007].

Potential Heuristics Potential heuristics [Pommerening et al., 2015] assign a numeric
value to each fact called potentials. The resulting heuristic estimate of a state s is the sum
of the potentials of all facts satisfied by s.

DEFINITION 10: POTENTIAL HEURISTICS

Let τ be a classical planning task with Variables V and facts F . Given a potential
function pot : F 7→ R the potential heuristic for pot of state s is:

hpot(s) =
∑
v∈V

pot(v = s(v))

The potentials are chosen such that it is guaranteed that the resulting heuristic is admissible.
A linear program ensuring these constraints can optimize with respect to different criteria
[Seipp et al., 2015], e.g. the initial state or a sample set of states.

3.2. FINITE LINEAR TEMPORAL LOGIC 25

3.2 FINITE LINEAR TEMPORAL LOGIC

A language commonly used to define temporal properties is Linear Temporal Logic (LTL)
[Pnueli, 1977]. To define more complex user preferences we use finite Linear Temporal
Logic (LTLf) [Baier and McIlraith, 2006a, De Giacomo and Vardi, 2013], an adaption of LTL
to finite traces.

For a planning task τ with facts F , a LTLf formula φ can be composed as follows:

φ ::= final | true | ϕ | ¬φ | φ1 ∧ φ2 | ©φ | φ1 U φ2

with ϕ ∈ F

LTLf formulas are interpreted over a finite sequence of states (finite trace) σ = s0s1 · · · sn
where each state si ⊆ F is a set of facts satisfied by si. We use the abbreviation σ[i] for
si · · · sn. Given a finite trace σ and a LTLf formula φ, σ satisfies φ, denoted by σ |= φ, iff
σ[0] |= φ where:

• σ[i] |= true

• σ[i] |= final iff i = n.

• σ[i] |= ϕ, where ϕ ∈ F iff ϕ ∈ si.

• σ[i] |= ¬φ iff σ[i] 2 φ.

• σ[i] |= φ ∧ ψ iff σ[i] |= φ and σ[i] |= ψ.

• σ[i] |=©φ iff i < n and σi+1 |= φ

• σ[i] |= φ U ψ iff ∃j : i ≤ j ≤ n such that σj |= ψ and ∀k : i ≤ k < j : σk |= φ

Additionally, the following standard temporal operators are used:

• Eventually: ♦φ := true U φ,

• Always: �φ := ¬♦ ¬φ,

• Release: φ R ψ := ¬(¬φ U ¬ψ),

• Weak Until: φ W ψ := (φ U ψ) ∨�φ.

The size of a LTLf formula |ϕ| is defined as the number of subformulas.

|ϕ| =


1 ϕ ∈ F ∪ {final, true}
1 + |ϕl|+ |ϕr| ϕ = ϕl � ϕr,� ∈ {∧,∨,→,↔, U , W , R }
1 + |ϕ′| ϕ = �ϕ′,� ∈ {¬,�,♦}

Approaches that enforce the satisfaction of temporal preferences generally do so by first
computing an automaton Aφ that accepts the formula φ. Here we use an approach that
based on non-deterministic finite automata [Baier and McIlraith, 2006b, Edelkamp, 2006].

26 CHAPTER 3. BACKGROUND

DEFINITION 11: NON-DETERMINISTIC FINITE AUTOMATA

A non-deterministic finite automata (NFA) for a LTLf formula is a tuple Aφ =

(Q,Σ, δ, q0, Qa) where

• Q is a finite set of states

• Σ ⊆ P(F) contains all subsets of facts in φ

• δ : S × L(F) 7→ P(S) is the transition relation, where L(F) is the set of
propositional formulae over F

• q0 ∈ Q is the initial state

• Qa ⊆ Q a set of accepting states.

Executing an automaton Aφ on a trace σ = s0s1 · · · sn ∈ Σ∗ results in a sequence of
automaton states q0q1 · · · qn, where (qi, φi, qi+1) ∈ δ and si |= φi. The execution is
accepted if qn ∈ Qa. There might be multiple executions for a given trace σ. A trace is
accepted if there exists an accepted execution.

3.2. FINITE LINEAR TEMPORAL LOGIC 27

CHAPTER 4

EXPLANATIONS BASED ON

GOAL CONFLICTS

Planning is typically a non-collaborative process. When given a model, a goal, and an
optimization objective the planner provides one plan. However, this approach is in many
real-life scenarios not applicable. Optimization objectives are often complex and/or implicit
in the heads of human users. For example, the year-long experience of space mission
planners and their individual preferences [Smith, 2012] cannot easily be reflected. Smith
[2012] proposed an iterative process, in which the system provides sample plans, allowing
the human user to refine their preferences and interactively tailor the plan accordingly.

In such an iterative process, explanations are crucial to support the user. Especially,
questions of the form “Why does sample plan π not achieve Q?” need to be answered
[Smith, 2012, Krarup et al., 2021]. To answer these questions, insights about the space of
possible plans are necessary. We propose addressing these questions through conflicting
goals or preferences, such as “Because to achieve Q is necessary to forgo A.” or going
back to our running example “Because it is not possible to take the crater image when the
ice surface soil sample is collected.”

Krarup et al. [2021] present an alternative approach to addressing the question “Why
does sample plan π not achieve Q?”. Their method involves generating a plan π′ that
satisfies Q and then providing an explanation based on a comparison between π and π′.
The disadvantage of this approach is that there might be differences between π and π′

that are unrelated to Q. In contrast, our approach replaces the comparison with a single
alternative satisfying Q with an analysis of common properties of all alternative plans. This
approach can be seen as a universal variant of contrastive plan explanations.

In the following, we introduce a framework for explanations based on conflicts between
soft goals in oversubscription planning [Smith, 2004, Domshlak and Mirkis, 2015]. More
precisely, we use goal conflicts of the form Q → ¬A, meaning that all plans satisfying Q
cannot satisfy all goals in A. These conflicts are then used to formalize explanations based
on the soft goals that are satisfied and not satisfied by the sample plan in the current iteration
step. A compact representation of the needed goal conflicts are minimal unsolvable goal
subsets (MUGS). These are analogous to minimal unsatisfiable core/subsets of constraints
in constraint satisfaction and SAT [Liffiton and Sakallah, 2008, Marques-Silva, 2010, Gamba

29

30 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

et al., 2023].
We present two algorithmic approaches to compute all MUGS for a given OSP task.

The first approach involves successively exploring the space of soft goal subsets, using
either an explicit or a symbolic planner to test the solvability of each individual goal subset.
The second approach involves an exhaustive exploration of the state space using a branch-
and-bound approach, where all maximal solvable goal subsets are maintained. To prune
states where the solvable goal subsets cannot be improved, we leverage approximations
based on admissible classical planning heuristics.

To access the feasibility of MUGS computation we provide an empirical analysis on
the international planning competition (IPC) benchmarks extended with cost bounds as
implemented by Katz et al. [2019] for OSP.

More expressive preferences such as orderings, e. g. “The X-ray image of the crater
group should be taken before the soil sample of the ice surface?” enable more nuanced
questions and explanations. To support these we build on existing work on temporal prefer-
ence compilation into singleton goal facts [Edelkamp, 2006, Baier et al., 2009]. Extending
a collection of IPC domains with temporal preferences, we analyze how far our approach
scales for conflicts between more powerful preferences.

Finally, to evaluate the usefulness of the proposed explanations are in an iterative
planning process, we conducted a user study. For this purpose, we first implemented the
IPEXCO web tool for Iterative Planning with EXplanations of COnflicts. Then, we conducted
an online user study in which we examined users’ performance in finding a solvable goal
subset that maximizes a given preference metric, with and without access to explanations.

Papers and Contributions The chapter is based on three papers. The framework and
the algorithms for MUGS computation are covered by:

Rebecca Eifler, Michael Cashmore, Jörg Hoffmann, Daniele Magazzeni and Marcel
Steinmetz
A New Approach to Plan-Space Explanation: Analyzing Plan-Property Dependencies in
Oversubscription Planning.
Proceedings of the 34th AAAI Conference on Artificial Intelligence (2020)

Rebecca Eifler, Marcel Steinmetz, Alvaro Torralba and Jörg Hoffmann
Plan-Space Explanation via Plan-Property Dependencies: Faster Algorithms & More Power-
ful Properties.
Proceedings of the 29th International Joint Conference on Artificial Intelligence (2020)

These papers were principally developed by the author in joint work with Marcel Steinmetz,
Alvaro Torralba, Jörg Hoffmann, Michael Cashmore and Daniele Magazzeni. The framework
is designed based on ideas proposed by Jörg Hoffmann and Daniele Magazzeni for the
project “Explaining the Space of Plans” funded by AFOSR. The adaption necessary for
symbolic search and the respective implementation was done by Alvaro Torralba. The
formalization of nogood and trap learning and their implementations were done by Marcel
Steinmetz. The remaining implementation of the search algorithms and the LTLf and Action-

4.1. EXPLANATIONS 31

Set soft goal compilations were done by the author. The evaluation of all approaches are
the author’s work. Michael Cashmore provided support in the benchmark design.

The iterative planning tool and the user study are covered by the paper:

Rebecca Eifler, Martim Brandao, Amanda Coles, Jeremy Frank and Jörg Hoffmann
Evaluating Plan-Property Dependencies: A Web-Based Platform and User Study.
Proceedings of the 32th International Conference on Automated Planning and Scheduling
(2022)

This paper was principally developed by the author in joint work with Martim Brandao,
Jeremy Frank, Jörg Hoffmann and Amanda Coles. The implementation of the web tool
IPEXCO is the author’s work. The user study instances were design by the author. The
author conducted the study as well as the quantitative evaluation. Martim Brandao advised
the user study setup and provided the analysis of the free text questions.

4.1 EXPLANATIONS

Assume an OSP task τ = (V,A, c, I,Ghard, Gsoft, b). In order to facilitate iterative planning,
our idea is to explain how the soft goals Gsoft conflict with each other. The explanations
provided in the iterative planning process then take the form of user questions “Why does
the plan π you suggest not satisfy my goal g ∈ Gsoft?” and are answered with “Because
achieving g would necessitate to forego your goal g′ ∈ Gsoft.” Beyond such binary mutexes
between goal facts, we address arbitrarily large conflicts, involving any number of goal facts.

Importantly, while we define our framework at the level of goal facts, its use extends to
arbitrary goals. Temporal plan preferences p as in PDDL3 [Gerevini et al., 2009], or more
generally any plan property function p that maps action sequences π in τ to Boolean values,
can be addressed, as long as these can be compiled into goal facts. For such extended
use, we assume that each plan property p was compiled into a goal fact gp, modifying
and extending τ such that p(τ, π) = true iff gp ∈ IJπK1. The set Gsoft of soft goals thus
represents the set of plan properties which do not absolutely have to be satisfied (they
are not hard goals), but which the user is interested in, and whose trade-offs they wish to
explore in the iterative planning process.

We next spell out our conceptual framework. Then we describe the application in an
iterative planning process. To facilitate its implementation, we then identify an equivalence
to minimal unsolvable goal subsets.

4.1.1 CONCEPTUAL FRAMEWORK

We derive our notion of goal conflicts, and therewith the supported question/answer expla-
nations, via a general concept of plan-space entailment.

1Our current implementation supports this process for plan properties p formalized in finite linear temporal
logic. We do so based on known techniques described in Section 4.3.

32 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

DEFINITION 12: PLAN-SPACE ENTAILMENT

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task, and Π its set of plans.
We say that π ∈ Π satisfies a propositional formula φ over Gsoft, written π |= φ,
if φ evaluates to true under the truth value assignment where g ∈ Gsoft is true iff
g ∈ IJπK.
We denote byMΠ(φ) := {π | π ∈ Π, π |= φ} the subset of plans that satisfy φ. We
say that φ Π-entails ψ, written Π |= φ→ ψ, ifMΠ(φ) ⊆MΠ(ψ).

This definition views Π in the role traditionally taken by a knowledge base, identifying a set of
“possible worlds” within which the entailment between formulas is considered. Π-entailment
is stronger than standard entailment: φ⇒ ψ implies that Π |= φ→ ψ, but not vice versa.
Π-entailment captures entailments specific to the space of plans Π, and therewith to the
planning task context. This is needed for entailment over goals to be meaningful as goals
will rarely entail other goals in the standard logical sense. For an example of plan-space
entailment see Example 4.

EXAMPLE 4: PLAN-SPACE ENTAILMENT

In our running example, we consider all goals as soft goals. With an initial battery level
of 8 we have Π |= image-ice = uploaded→ ¬(soil-sample-rock = uploaded).
If we achieve image-ice = done then only 5 units are left which is not sufficient to
drive to the rock and collect the soil sample. If we set the initial energy level to 9, on
the other hand, then the knowledge base changes – Π includes more plans – and
that entailment no longer holds.

From a general perspective, Definition 12 specializes concepts from model checking [Clarke
et al., 2018] to our setting. The planning task τ takes the role of the model, the plans π ∈ Π

are the model’s execution traces, and Π |= φ → ψ means that τ |= φT → ψT where φT

(ψT) is a temporal formula expressing that φ (ψ) is true at the end of the finite plan trace
(this kind of statement is supported by LTLf [Baier et al., 2009, De Giacomo et al., 2014]).
Our simpler special-case notation here captures exactly what is needed in our approach.

Deciding about Π-entailment has the same complexity as deciding plan existence:

PROPOSITION 1: COMPLEXITY OF PLAN-SPACE ENTAILMENT

Deciding whether Π |= φ → ψ for propositional formulas over soft goals in OSP
tasks is PSPACE-complete.

Proof:
Both hardness and membership can be shown from the respective properties of deciding
FDR plan existence (direct from [Bylander, 1994]).
For hardness, assume an FDR task τ = (V,A, c, I,G), and consider the OSP task

4.1. EXPLANATIONS 33

τ ′ := (V,A, c′, I, ∅, G, 0) where c′ assigns all actions cost 0. Π |=
∧

g∈G → false, i. e.
MΠ(

∧
g∈G) = ∅ holds in τ ’ iff τ is unsolvable.

For membership, FDR plan existence can be decided via a non-deterministic algorithm
that iteratively enumerates all paths through the state space, remembering only a single
state s at a time and maintaining a path-length counter l. The algorithm stops when
l = Πv∈V |Dv| or when G ⊆ s. The same algorithm decides whether or not Π |= φ→ ψ,
by replacing the test G ⊆ s with s |= φ ∧ ¬ψ.

�

We use plan-space entailment to define goal conflicts, as follows:

DEFINITION 13: GOAL CONFLICT

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task, and Π its set of plans.
A goal conflict (GC) is an entailment of the form Π |=

∧
g∈Q g → ¬

∧
g∈A g where

Q,A ⊆ Gsoft, Q 6= ∅, and Q ∩ A = ∅. For brevity, we write goal conflicts as
Q→Π ¬A.
We say that goal conflict Q′ →Π ¬A′ dominates goal conflict Q→Π ¬A if Q′ ⊆ Q
and A′ ⊆ A. We say that Q→Π ¬A is dominant if it is not dominated by any other
goal conflict.

We will discuss the first part of this definition, its meaning and implications below. First we
address the definition of dominance. This corresponds to the logical strength of the goal
conflict, in the following sense:

PROPOSITION 2: DOMINANCE

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task, Π its set of plans and
Q,Q′, A,A′ ⊆ Gsoft where Q ∩A = ∅ and Q′ ∩A′ = ∅.
If Q′ →Π ¬A′ dominates Q→Π ¬A, then Q′ →Π ¬A′ is stronger than Q→Π ¬A:

Π � (
∧
g∈Q′

g → ¬
∧
g∈A′

g)→ (
∧
g∈Q

g → ¬
∧
g∈A

g)

Proof:
By standard logical transformations we can reduce the implication as follows

34 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

(
∧
g∈Q′

g → ¬
∧
g∈A′

g)→ (
∧
g∈Q

g → ¬
∧
g∈A

g)

≡(
∧
g∈Q′

g ∧
∧
g∈A′

g) ∨ (¬
∧
g∈Q

g ∨ ¬
∧
g∈A

g)

≡
∧

g∈Q′∪A′

g ∨ ¬
∧

g∈Q∪A
g

≡
∧

g∈Q∪A
g →

∧
g∈Q′∪A′

g

If Q′ ⊆ Q and A′ ⊆ A, then the last formula is true, and is in particular Π-entailed.
�

Intuitively, dominating conflicts are stronger by the nature of standard entailment. Smaller
Q′ means weaker left-hand side (smaller conjunction), while smaller A′ means stronger
right-hand side (smaller disjunction, after moving the negation inside).

Note here the use of standard entailment, not taking into account the “knowledge base”
Π. Indeed, the opposite direction of Proposition 2 does not hold: Q′ →Π ¬A′ may be
stronger than Q→Π ¬A even though Q′ 6⊆ Q or A′ 6⊆ A. This is because, in plan space,
the necessary entailment Π |=

∧
g∈Q∪A g →

∧
g∈Q′∪A′ g may hold anyhow if the truth of

goals in Q∪A Π-entails the truth of other goals g ∈ Q′ ∪A′ \ (Q∪A). For example image-
ice (taking the image of the ice surface) Π-entails visit-ice (visiting the ice surface at
some point).

Let us now turn to the first part of Definition 13, and therewith its conceptual moti-
vation and nature. Goal conflicts, as defined here, capture exclusion relations between
sets of goals. These relations are of interest in OSP where, modulo the precise soft-goal
preferences, the task is to achieve as many goals as possible. Indeed, we assume that
understanding and navigating goal conflicts is an important aspect of the user’s quest for a
good plan in iterative planning.

From a conceptual and technical perspective, the following notes are in order.

• The requirement Q ∩ A = ∅ in Definition 13 is natural as it would make no intuitive
sense for a goal to be in conflict with (part of) itself.

• The special case Q = ∅ is excluded from Definition 13 (as well as from Definition 15,
discussed below) as this is not a meaningful “conflict” between left-hand side and
right-hand side.

• The rim case A = ∅ is permitted in Definition 13 however (and therewith can be
an answer in Definition 15). This makes sense because ¬

∧
g∈∅ g is equivalent to

false, so that the entailment Π |=
∧

g∈Q g → ¬
∧

g∈A g in this case means that Q is
unsolvable in the OSP task τ . This case can naturally appear in iterative planning –

4.1. EXPLANATIONS 35

the user’s question may be about a set of goals that cannot be achieved conjunctively
at all – and is therefore handled as a possible case in our framework.

• Finally, deciding about goal conflicts has the same complexity as deciding about
Π-entailment (the arguments in the proof of Proposition 1 remain valid).

The following section describes the concrete iterative planning setup we address, as well as
how goal conflicts are leveraged as explanations.

4.1.2 EXPLANATIONS IN ITERATIVE PLANNING

We instantiate an iterative planning process as described by Smith [2012]. At each iteration
step the user determines a set of soft goals the next sample plan must satisfy. The user can
then request explanations by asking questions regarding the soft goals not satisfied by the
sample plan. Based on the insights gained, the user refines their preferences, which is then
reflected in the set of enforced soft goals in the next iteration step. One such iteration step
is defined as follows:

DEFINITION 14: ITERATION STEP

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task with Gsoft 6= ∅ and Genf ⊆ Gsoft.
An iteration step is a pair δ = (Genf, π), where if task τ ′ = (V,A, c, I,Ghard ∪Genf,

Gsoft \ Genf, b) is solvable then π is a plan of τ ′ and π = ε the empty sequence ε
otherwise.

The soft goals Genf are selected by the user, to be then enforced in the sample plan
generation, i. e. moving Genf from the soft to the hard goals. Assuming Ghard ∪ Genf is
solvable, this results in a sample plan π that satisfies at least Ghard ∪Genf. With Gtrue(π) =

{g | g ∈ Gsoft ∧ g ∈ I[[π]]} we denote the set of soft goals satisfied by π, which are a super
set of the enforced goals Genf ⊆ Gtrue(π) and with Gfalse(π) = Gsoft \ Gtrue(π) the set of
unsatisfied soft goals, which are a subset of the not enforced goals, Gfalse(π) ⊆ Gsoft \Genf.

Given a plan π exists, our explanation approach allows users to ask questions about the
unsatisfied soft goals Gfalse(π) as follows:

DEFINITION 15: CONFLICT EXPLANATION

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task, Π its set of plans, and δ =

(Genf, π) the current iteration step, where π 6= ε. Denote by min⊆ S for a set S of
sets the set-inclusion minimal element sets S ∈ S.
A user question is a subset Q ⊆ Gfalse(π) where Q 6= ∅. The answer to such
a question is AC(Q) := min⊆{A′ | Q′ →Π ¬A′ is a dominant GC, Q′ ⊆ Q,A′ ⊆
Gtrue(π)}. We refer to the pair (Q,AC(Q)) as conflict explanation.

The question-answer pairs in a natural-language formulation are “Why does the plan π you
suggest not satisfy my goals Q?” – “Because achieving Q would necessitate to forego
one goal in each set in AC(Q).” This is a form of contrastive explanation, based on a

36 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

what-if analysis where a set Q of goals requested by the user is hypothetically enforced. An
example iteration step with an explanation is given in Example 5.

EXAMPLE 5: ITERATION STEP WITH EXPLANATION

!

!

!

!

?

!

!!

Gsoft ! Genf Gtrue Gfalse Q A(Q)

sample plan π1 explanation sample plan π2

Example plan π1 satisfies three soft goals, two of which are enforced (left). Then the
user asks a question Q = { ? } by selecting a subset of Gfalse (center). The answer
A(Q) = {{ , ! }} consists of two soft goals in Gtrue and means: “If you want to
satisfy ? then you have to forego one of { , ! }”. For the next iteration step the
user decides that forging is acceptable (as it was not enforced in the first place)
and enforces ? . Then they get the next sample plan π2 (right).

Regarding the concept of user questions and the corresponding answers, note the following:

• The rim case Q = ∅ is excluded from Definition 15 as this is not a meaningful user
question.

• The definition of answers furthermore mirrors the definition of dominance in Defini-
tion 13, in the sense that the condition Q ⊇ Q′ uses the same simplified notion of
“stronger than”: we use standard entailment (which boils down to set inclusion)

• Answers only include soft goals that are currently true (A′ ⊆ Gtrue(π)). One could
argue that telling the user what needs to stay false to include Q, could be beneficial
too. However, this information does not address the user’s question, of why Q is not
satisfied. We assume that the user includes all soft goals they want to be considered
in the question or ask multiple questions to cover all goals of interest.

• We return only the minimal answers A′ because these are the strongest replies to
the user question. For example, if {q1} →Π ¬{p, r} and {q1, q2} →Π ¬{p} are
dominant goal conflicts, then including both {p, r} and {p} in the answer to question
Q = {q1, q2} would be misleading.

• When answering questions we do not specify which part Q′ ⊆ Q causes the conflict
for each A′. This additional information again does not address the user’s question.
If they are interested in the conflicts of a particular subset of Q, we assume them to
phrase their questions accordingly.

4.1. EXPLANATIONS 37

Depending on whether the question Q is part of a goal conflict, the answer may be inter-
preted in different ways. Figure 5 depicts the three possible cases.

!

!

?!

!

?
?

!

!

?
?

Q′

A′
Q′

A′

Gsoft ! Genf Gtrue Gfalse Q A(Q)

Case 1 Case 2 Case 3

Figure 5: Different possible questions Q and answers AC(Q) depending on their relation to
a dominant goal conflict.

Case 1:
There exists a dominant GC Q′ →Π ¬A′ such that Q′ ⊆ Q and A′ = ∅. Then the answer is
AC(Q) = {∅}, meaning: “Achieving Q itself is not possible.” This case happens if the user
is not aware that achieving the soft goals in their questions Q is not possible.

Case 2:
There exists a dominant GC Q′ →Π ¬A′ such that Q′ ⊆ Q,A′ ⊆ Gtrue(π) and A′ 6= ∅.
Then the answer is AC(Q) = {A′} meaning: “Because achieving Q would necessitate to
forego one of the soft goals in A′.” This is the "normal" case where the user wants to include
additional soft goals, but has to forego satisfied soft goals to do so.

Case 3:
There exists no dominant GC Q′ →Π ¬A′ such that Q′ ⊆ Q,A′ ⊆ Gtrue(π). Then the
answer is AC(Q) = {}, meaning “Achieving Q is possible.” It can happen that Q ∪Gtrue(π)

can be satisfied and thus Q could be enforced without foregoing any currently true soft goal.

If Q can be satisfied without foregoing any goal facts (Case 3), the question of why the
plan does not satisfy Q in the first place might arise. The only objective of a plan is to
satisfy Ghard ∪Genf. Any additional soft goals that are satisfied are either a coincidence or
implied by one of the enforced soft goals. Including more soft goals in the plan than the
user specified would imply that satisfying more soft goals is always preferable, though this
is not necessarily the case. If the user wants to ensure satisfaction, they have the option to
enforce them. The automatic inclusion of soft goals could potentially result in unnecessary
overhead, as the answer size is increased by soft goals that are not currently of interest to
the user.

38 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

Unsolvable Task If Ghard ∪Genf is not solvable then there exists no plan for iteration step
δ = (Genf, ε). Goal conflicts can also provide an explanation in this case, as they represent
the information as to which subsets of Genf cause the unsolvability.

DEFINITION 16: EXPLANATIONS OF UNSOLVABILITY

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task and δ = (Genf, π) the current
iteration step, where π = ε.
AE = {G | G→Π ¬∅ is a dominant GC, G ⊆ Genf}.

The question “Why is there no plan for Genf
i ?” can be answered by “Because the soft goal

subsets AE cannot be satisfied”. We do provide all goal conflicts contained in Genf
i , since

they must all be addressed in order to obtain a solvable selection of enforced hard goals
Genf

i+1 for the next iteration step.

4.1.3 EQUIVALENCE TO MUGS

We now show that our notion of explanations can be equivalently formulated via unsolvable
goal subsets, facilitating its implementation. Dominant goal conflicts can alternatively be
characterized as minimal unsolvable goal subsets.

DEFINITION 17: MUGS

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task.
We say that G ⊆ Gsoft is a minimal unsolvable goal subset (MUGS) if plan-
ning task τ ′ = (V,A, c, I,Ghard ∪ G, ∅, b) is unsolvable but for all G′ ⊂ G

τ ′′ = (V,A, c, I,Ghard ∪G′, ∅, b) is solvable.
By GMUGS(τ) := {G | G ⊆ Gsoft, G is a MUGS} we denote the set of all MUGS in τ .

PROPOSITION 3: DOMINANT GOAL CONFLICT⇔ MUGS

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task, and Π its set of plans.
Then, for any Q,A ⊆ Gsoft where Q 6= ∅ and Q ∩ A = ∅, Q→Π ¬A is a dominant
GC iff Q ∪A ∈ GMUGS(τ).

Proof:
A Π-entailment Π |=

∧
g∈Q g → ¬

∧
g∈A g holds iff Q∪A is unsolvable, i. e., if there is no

plan for (V,A, c, I,Ghard ∪Q ∪A, ∅, b). Dominant entailments result from set-inclusion
minimal Q and A, corresponding to the set-inclusion minimality of MUGS.

�

The number of MUGS can be exponentially larger than the number of soft goals. All MUGS
in our running example are depicted in Example 6.

4.1. EXPLANATIONS 39

EXAMPLE 6: MUGS

In the following list we represent the soft goal x = uploaded simply with x. Our
running example has 10 MUGS with 2 or 3 elements.

• {image-crater3, x-ray-image-rock, x-ray-image-crater3}

• {image-crater3, x-ray-image-crater3, soil-sample-ice}

• {x-ray-image-rock, soil-sample-ice}

• {image-ice, x-ray-image-rock}

• {image-crater3, soil-sample-rock, soil-sample-ice}

• {image-ice, image-crater3, x-ray-image-crater3}

• {x-ray-image-crater3, soil-sample-rock, soil-sample-ice}

• {image-ice, x-ray-image-crater3, soil-sample-ice}

• {x-ray-image-rock, x-ray-image-crater3, soil-sample-rock}

• {image-ice, soil-sample-rock}

In the following visualization, each column corresponds to one MUGS. It shows that
x-ray-image-crater3 is involved in the most conflicts, while image-ice is part of
two conflicts of size 2 with the data points of the rock. This is not surprising, since
the rock is on the other side of the map.

70%
2%
10%
...

15%
5%
1%
...

Given this, our desired explanations can be provided based on MUGS.

THEOREM 1: EXPLANATIONS FROM MUGS

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task and δ = (Genf, π) the current
iteration step, where π 6= ε. Let ∅ 6= Q ⊆ Gfalse(π) be a user question.
Then AC(Q) = min⊆{G \Q | G ∈ GMUGS(τ), G ⊆ Q ∪Gtrue(π)}.

40 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

Proof:
Recall that AC(Q) = min⊆{A′ | Q′ →Π ¬A′ is a dominant GC, Q′ ⊆ Q,A′ ⊆
Gtrue(π)}. In what follows, we prove that {A′ | Q′ →Π ¬A′ is a dominant GC, Q′ ⊆ Q,
A′ ⊆ Gtrue(π)} = {G \Q | G ∈ GMUGS(τ), G ⊆ Q ∪Gtrue(π)}, dropping the reduction
to set-inclusion minimal members from both sets. The claim then follows from:
⊆: Let Q′ →Π ¬A′ be a dominant goal conflict where Q′ ⊆ Q and A′ ⊆ Gtrue(π). By
Proposition 3 G := Q′ ∪ A′ is a MUGS. With Q′ ⊆ Q and A′ ⊆ Gtrue(π), we have
that G = Q′ ∪ A′ ⊆ Q ∪ Gtrue(π). It remains to show that G \ Q = A′, i. e., that
(Q′ ∪ A′) \ Q = A′; this follows directly from Q′ ⊆ Q and Q ∩ A′ = ∅ which holds
because of Q ⊆ Gfalse(π) and A′ ⊆ Gtrue(π).
⊇: Let G be a MUGS where G ∩ Q 6= ∅. Define Q′ := G ∩ Q and A′ := G \ Q′. By
Proposition 3 and because Q′ = G ∩ Q 6= ∅, Q′ →Π ¬A′ is a dominant goal conflict.
We have Q′ ⊆ Q by construction. With G ⊆ Q∪Gtrue(π) and Q∩Gtrue(π) = ∅ we have
A′ = G \ Q′ = G \ (G ∩ Q) = G \ Q ⊆ (Q ∪ Gtrue(π)) \ Q = Gtrue(π). It remains to
show that A′ = G \Q, i. e., that G \Q′ = G \Q; this follows directly from Q′ = G ∩Q.

�

The three cases of answers as introduced for goal conflicts in Figure 5 can be applied to
MUGS as shown in Figure 6. For Case 1 there exists a MUGS G such that G ⊆ Q; for
Case 2 there exists a MUGS G such that G \Q ⊆ Gtrue(π); and for Case 3 for all MUGS
G : G \ (Q ∪ Gtrue) 6= ∅ holds. MUGS answer the question of why a set of enforced soft
goals Genf leads to an unsolvable task with AE = {G | G ∈ GMUGS(τ), G ⊆ Genf}.

!

!

?!

!

?
?

!

!

?
?

Gsoft ! Genf Gtrue Gfalse Q A(Q) MUGS

Case 1 Case 2 Case 3

Figure 6: Different possible questions Q and answers AC(Q) depending on their relation to
MUGS.

This alternative representation of our explanations is useful because, a single MUGS G

represents 2|G| − 1 dominant goal conflicts: every way of selecting a non-empty Q from G

and thus splitting G into the left-hand/right-hand sides Q and A of the goal conflict. Hence,
MUGS are our representation of choice for computing dominant goal conflicts. Specifically,
our approach is to compute all MUGS i. e., to compute the set GMUGS(τ).

DEFINITION 18: ALLMUGS

Let τ be an OSP task. By AllMUGS we denote the algorithmic problem of computing
GMUGS(τ).

4.1. EXPLANATIONS 41

Through solving AllMUGS, with Theorem 1 we pre-compute the answers to all possible
user questions as per Definition 15. This can be done offline, prior to the iterative planning
process, which makes sense given that responses to user questions should ideally be
instantaneous. Deciding whether a goal set is a MUGS is PSPACE-complete given the
above (Propositions 1 and 3). We will see later that many of our algorithms solving AllMUGS
solve cardinality-optimal oversubscription planning (every soft goal has the same utility) as
a side effect.

That said, one can also use Definition 18 in an online setting, computing only the answer
to an individual user question Q for a given plan π. This can be done by a simple task
modification.

THEOREM 2: INDIVIDUAL ANSWER BY TASK TRANSFORMATION

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task and δ = (Genf, π) the current
iteration step, where π 6= ε. Let Q ⊆ Gfalse(π) with Q 6= ∅ be a user question.
With τQ! := (V,A, c, I,Ghard ∪ Q,Gsoft \ Q, b) the conflict explanation is given by
AC(Q) = {A′ | A′ ∈ GMUGS(τQ!), A

′ ⊆ Gtrue(π)}.

Proof:
Leveraging the equivalence identified by Theorem 1, what we need to show is that
min⊆{G \ Q | G ∈ GMUGS(τ), G ⊆ Q ∪ Gtrue(π)} = {A′ | A′ ∈ GMUGS(τQ!), A

′ ⊆
Gtrue(π)}.

⊆: Let A′ := G \Q.

• A′ ⊆ Gtrue(π) follows from G ⊆ Q ∪Gtrue(π)

• A′ ∈ GMUGS(τQ!):

– A′ is unsolvable in τQ! follows from G ∈ GMUGS(τ). If G ∈ GMUGS(τ) then
Ghard ∪ G is unsolvable. If A′ is unsolvable in τQ! then Ghard ∪ Q ∪ A′ =

Ghard ∪Q∪ (G \Q) = Ghard ∪Q∪G, which is unsolvable because Ghard ∪G
is unsolvable.

– That A′ is minimal, we show with proof by contradiction. Assume A′ is not
minimal, that means ∃g ∈ A′ : A′ \ g is unsolvable in τQ!. This means
(A′ \ g) ∪Q is unsolvable in τ . Thus, there exists C ∈ GMUGS(τ), such that
C ⊆ (A′ \ g) ∪ Q. Because of A ⊆ Gtrue(π) and Q ⊆ Gfalse(π) we have
A′ ∩ Q = ∅ and thus C \ Q ⊆ (A′ \ g ∪ Q) \ Q = A′ \ g (A′. However,
C \ Q (A′ implies that if C \ Q is in T then A′ cannot be in min⊆ T and
thus A’ has to be minimal.

⊇: Because of A′ ∈ GMUGS(τQ!), Q ∪ A′ is unsolvable in τ . Let G ⊆ A′ ∪ Q and
G ∈ GMUGS(τ).

• G ⊆ Q ∪Gtrue(π) holds, because of A′ ⊆ Gtrue(π).

42 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

• A′ = G \Q:

– A′ ⊇ G \Q follows from A′ ∪Q ⊇ G and A′ ∩Q = ∅.

– We show with proof by contradiction A′ ⊆ G \ Q. Assume A′ * G \ Q.
Because of G ∈ GMUGS(τ), G \Q is unsolvable in τQ!, but then G \Q (A′

is unsolvable in τQ!. This is not possible, because A′ is minimal.

• It remains to show, that set-inclusion minimality does not remove A′. We use
a proof by contradiction, assuming that A′ is removed. If this is the case, then
there exists A′′ (A′ in {G \ Q | G ∈ GMUGS(τ), G ⊆ Q ∪ Gtrue(π)}. Because
A′ \ A′′ * Q there exists a G′ (G such that G′ ∈ GMUGS(τ), but this is not
possible because G is minimal.

�

An example for an online computation based on Theorem 2 is given in Example 7.

EXAMPLE 7: INDIVIDUAL ANSWER BY TASK TRANSFORMATION

Let’s consider our running example again where all data points are soft goals. As-
sume the current plan πi does include image-ice but none of the rock data points.
Thus, the user asks “Why does πi not include any rock data points?”. This gives us the
question Q = {soil-sample-rock, x-ray-image-rock}. To compute an answer
online, we compute GMUGS(τQ!) whereGhard = Q is the question andGsoft = DP \Q
includes all other data point.
The resulting MUGS:

• {soil-sample-ice}

• {x-ray-image-crater3}

• {image-ice}

give us the answer AC(Q) = {image-ice}.
This is the same answer we get based on all MUGS in GMUGS(τ) that contain a rock
data point:

• {image-crater3, x-ray-image-rock, x-ray-image-crater3}
• {x-ray-image-rock, soil-sample-ice}
• {image-ice, x-ray-image-rock}
• {image-crater3, soil-sample-rock, soil-sample-ice}
• {x-ray-image-crater3, soil-sample-rock, soil-sample-ice}
• {x-ray-image-rock, x-ray-image-crater3, soil-sample-rock}
• {image-ice, soil-sample-rock}

By first removing all rock data points

4.2. ALLMUGS ALGORITHMS 43

• {image-crater3, x-ray-image-crater3}
• {soil-sample-ice}
• {image-ice}
• {image-crater3, soil-sample-ice}
• {x-ray-image-crater3, soil-sample-ice}
• {x-ray-image-crater3}
• {image-ice}

and then restoring subset minimality

• {soil-sample-ice}
• {x-ray-image-crater3}
• {image-ice}

4.2 ALLMUGS ALGORITHMS

Next we introduce two algorithmic approaches to compute AllMUGS. The first approach is
based on a systematic exploration of the goal subset space, while the second approach
uses one exhaustive state-space exploration. Both algorithms use the notion of maximal
solvable goal subsets (MSGS).

DEFINITION 19: MSGS

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task.
We say that G ⊆ Gsoft is a maximal solvable goal subset (MSGS) if planning
task τ ′ = (V,A, c, I,Ghard ∪ G, ∅, b) is solvable and for all G′ ⊃ G task τ ′′ =

(V,A, c, I,Ghard ∪G′, ∅, b) is unsolvable.
By GMSGS(τ) := {G | G ⊆ Gsoft, G is a MSGS} we denote the set of all MSGS in τ .

MSGS hence are the dual of MUGS, just like minimal unsatisfiable subsets and maximal
satisfiable subsets in CP [Bailey and Stuckey, 2005, Liffiton and Sakallah, 2008].

PROPOSITION 4: MUGS-MSGS RELATION

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task. The relation between
GMUGS(τ) and GMSGS(τ) is given by GMUGS(τ) = HIT(GMSGS(τ)) and
GMSGS(τ) = HIT(GMUGS(τ)).

Where S = {Gsoft \ S | S ∈ S} is the complement set with respect to Gsoft and
HIT(S) = min⊆{S | ∀S′ ∈ S : S ∩ S′ 6= ∅} are the minimal hitting sets that contain
one element from each set in S.

44 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

EXAMPLE 8: MUGS VS MSGS

Given Gsoft = {A,B,C,D} and GMSGS(τ) = {{A,D}, {B,C}, {B,D},
{C,D}}. Then GMSGS(τ) = {{A,B}, {A,C}, {A,D}, {B,C}} and
HIT(GMSGS(τ)) = GMUGS(τ) = {{A,B}, {A,C}, {B,C,D}}.

GMSGS(τ) GMSGS(τ) HIT(GMSGS(τ))

A × × × × × ×
B × × × × × ×
C × × × × × ×
D × × × × ×

GMUGS(τ) HIT(GMUGS(τ)) HIT(GMUGS(τ))

A × × × × × ×
B × × × × ×
C × × × × ×
D × × × × ×

Some of the algorithms introduced below use MSGS as an intermediate step to compute
MUGS. We use Proposition 4 to translate MSGS into MUGS. Minimal hitting sets is a
known NP-complete decision problem [Karp, 1972]. We use the algorithm for hitting set
computation by Berge [Bailey and Stuckey, 2005, Berge, 1989], with the following recursive
definition for goal subsets G = {G0, · · · , Gn}:

HIT(G) =

{
{{g} | g ∈ G0} if G = {G0}
min⊆{H ∪ {g} | g ∈ G ∈ G,H ∈ HIT(G \G)} otherwise

The equation can be solved in time exponential in |G|.

4.2.1 GOAL-LATTICE SEARCH

For a given OSP task τ with soft goals Gsoft to determine whether G ⊆ Gsoft is a MUGS,
you have to check if G is unsolvable and for each proper subset G′ (G whether G′ is
solvable. To check these properties for all goal subsets, we systematically traverse the goal
lattice composed of all goal subsets.

DEFINITION 20: GOAL LATTICE

Given a set of goals G, the goal lattice is defined as L(G) = (P(G),⊆).

The goal lattice defines a graph over the subsets of soft goals Gsoft, with edges between
G,G′ ⊆ Gsoft if G′ = G ∪ g for some g ∈ Gsoft. An example of a goal lattice is shown in
Figure 7. The (un-)solvability of goal subsets is transitive, i. e. for all G′ (G if G is solvable
then G′ is solvable and for all G′) G if G is unsolvable then G′ is unsolvable. Thus, the

4.2. ALLMUGS ALGORITHMS 45

solvable and unsolvable goal subsets partition the goal lattice graph into two parts, with
MSGS and MUGS forming the border of goal subsets with only unsolvable super sets and
only solvable subsets respectively.

∅

A B C D

AB AC AD BC BD CD

ABC ABD ACD BCD

ABCD

S

S S S S

SW SW SW SW SW SW

W W W SW

W

s
ys
te
m
a
tic

s
tre

n
g
th
e
n
in
g

s
ys
te
m
a
ti
c
w
e
a
ke
n
in
g

unsolvable GMUGS solvable GMSGS

S tested goal sets sysS W tested goal sets sysW

Figure 7: Goal lattice for Gsoft = {A,B,C,D}; AB is the abbreviation for the set
{A,B}. GMSGS(τ) = {{A,D}, {B,C}, {B,D}, {C,D}} and GMUGS(τ) = {{A,B},
{A,C}, {B,C,D}} form the border between the solvable and unsolvable parts.

To find this border, we traverse the goal lattice systematically. Each subset G is tested
for solvability. Depending on the result, we use the transitivity property of (un-)solvability
to cut off the search. Keeping track of the frontier of solvable and unsolvable goal subsets
allows to extract GMUGS(τ) in post-processing. The pseudo-code for goal lattice search
(GLS) is given in Algorithm 2.

The order in which goal subsets are tested has a major impact on the number of tests
required to determine (un-)solvability for all goal subsets. We implement two complementary
expansion orders:

SysW: starting with Gsoft and systematically weakening the goal subsets by removing goal
facts;

SysS: starting with ∅ and systematically strengthening the goal subsets by adding goal
facts.

For both the open list O is a FIFO queue, leading to a breath first exploration of the goal
lattice. The pseudo code for the corresponding expansion functions is given in Algorithm 3.
The subsets that need to be tested for SysW and SysS assuming a lexicographical ordering
of the children are marked in Figure 7. In SysW, a goal subset is further weakened only

46 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

Algorithm 2 Goal-Lattice Search (GLS).

1: Input: OSP task τ
2: function GOALLATTICESEARCH(τ, INITSET, EXPAND)
3: Solvable← {}
4: Unsolvable← {}
5: O ← INITOPEN(Gsoft) . FIFO queue
6: while |O| > 0 do
7: G← POP(O)
8: isSolvable← TESTSOLVABLE(τ ′ = (V,A, c, I,Ghard ∪G, ∅, b))
9: if isSolvable then

10: Solvable← Solvable ∪ {G}
11: else
12: Unsolvable← Unsolvable ∪ {G}
13: O ← UPDATEOPEN(G, isSolvable,O,Solvable,Unsolvable)

14: return {G ∈ Unsolvable | @G′ ∈ Unsolvable : G′ ⊂ G}

if it is unsolvable, since if G is solvable all subsets are solvable too. A goal subset G′ is
added only if there is no solvable super set that determines that G′ is also solvable. The
open list is updated to remove all subsets that are now known to be solvable. For example
in Figure7, {A} is added as a child of {A,B}, but since {A,D} proves to be solvable, {A}
is also solvable and does not require separate testing. The same rules apply to SysS. Here
a subset is only further strengthened if it is solvable and a subset is only added if there is no
unsolvable subset.

Algorithm 3 Expansion functions for systematic weakening and strengthening.

1: function INITOPENSYSW(G)
2: return {G}
3: function UPDATEOPENSYSW(G, isSolvable,O,Solvable,Unsolvable)
4: if isSolvable then . Prune via solvability transitivity
5: return O \ {G′ ∈ O | G′ ⊂ G}
6: else . Expand: remove single goal facts
7: G ← {G \ {g} | g ∈ G, ∀G′ ∈ Solvable : G \ {g} * G′}
8: return O ∪ G
9: function INITOPENSYSS(G)

10: return {∅}
11: function UPDATEOPENSYSS(G, isSolvable,O,Solvable,Unsolvable)
12: if ¬isSolvable then . Prune via unsolvability transitivity
13: return O \ {G′ ∈ O | G′ ⊃ G}
14: else . Expand: add single goal facts
15: G ← {G ∪ {g} | g ∈ Gsoft \G, ∀G′ ∈ Unsolvable : G \ {g} + G′}
16: return O ∪ G

4.2. ALLMUGS ALGORITHMS 47

PROPOSITION 5: CORRECTNESS GOAL LATTICE SEARCH

Goal Lattice Search (Algorithm 2) with SysW or SysS computes GMUGS(τ).

Proof:

SysW: On termination, Unsolvable contains all unsolvable goal subsets, because if a
goal subset is unsolvable, all its children are tested unless solvability can be derived
from the subset relation. This means Solvable∪Unsolvable is only missing solvable
subsets. Thus, the return statement {G ∈ Unsolvable | @G′ ∈ Unsolvable : G′ ⊂
G} is equivalent to the MUGS property.

SysS: On termination, (1) Solvable contains all solvable goal subsets and (2) GMUGS(τ)

⊆ Unsolvable. The former is true, because if a goal subset is solvable, all its
children are tested unless unsolvability can be derived from the subset relation.
(2) is true, because according to the definition all proper subsets of a MUGS are
solvable. Thus, all subsets are considered during the search and each MUGS is
pushed to the open queue. Since all subsets are solvable a MUGS can never be
pruned from the open queue, thus it will eventually be part of Unsolvable. Thus, all
MUGS are computed.

�

Worst case the number of subsets checked for solvability is exponential in |Gsoft|. For
SysW all unsolvable goal subsets and GMSGS(τ) and for SysS all solvable goal subsets and
GMUGS(τ) are tested (follows from Proof of Proposition 5). Intuitively SysW is better suited
if GMSGS(τ) are large and thus encountered early, while SysS is better suited if GMUGS(τ)

are large. However, often finding a plan is easier than proving unsolvability, which could
give SysS an advantage. A corresponding empirical analysis for the IPC domain is given in
Section 4.3.1.

Similar approaches are used in constraint satisfaction to compute minimal unsatisfiable
constraint sets. In this context, other exploration functions targeting an anytime approach
have been proposed [Liffiton et al., 2016]. Our objective is to compute all MUGS. Since
planning is PSPACE-hard, we instead focus on optimizing the individual solvability checks.
For further references see Section 4.6.

In GLS, each subset must be tested for solvability. To do so, any off-the-shelf classical
planner that can handle cost bounds can be used. However, an explicit state space search
has the disadvantage of generating similar search spaces multiple times, which is therefore
very inefficient. The only difference between the tasks is the goals, so they all share the
same state space. We exploit this in two different ways. First, we use symbolic search for a
more efficient solvability check in GLS. Then, we introduce a branch-and-bound approach
to compute allMUGS in one exhaustive explicit state space exploration.

48 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

SOLVABILITY CHECK WITH SYMBOLIC SEARCH

Contribution: Álvaro Torralba provided the following description and the implementation of
the BDD representation of a cost bounded reachable search space.

For a more efficient solvability check, we propose using symbolic search, a search
paradigm that uses Binary Decision Diagrams (BDDs) [Bryant, 1986] to represent sets of
states, often requiring exponentially less memory than their explicit enumeration. Thus,
BDDs are a suitable and compact representation for the set Sr. After computing a BDD βτ
that represents Sr, each test within the goal-lattice search (line 8 in Algorithm 2) can be
efficiently performed as detailed below.

Furthermore, symbolic search has been shown to be a powerful tool for state space
exhaustion, both in model-checking [McMillan and McMillan, 1993, Burch et al., 1994]
and planning [Edelkamp and Kissmann, 2009, Torralba et al., 2017]. In symbolic search,
operations on BDDs are used to manipulate sets of states. For example, the disjunction of
two BDDs corresponds to computing the BDD that represents the union of the correspond-
ing sets of states, whereas the conjunction represents the intersection. Assembling this
machinery for our purposes, the main difference to previous work is that we need to adhere
to the cost bound. To this end, given an OSP task τ = (V,A, c, I,Ghard, Gsoft, b), we run a
symbolic forward uniform-cost search.

Symbolic forward uniform cost-search starts with a BDD, β0, representing the initial
state, I . Then, it iteratively generates the set of states reachable with a cost g for increasing
values of g = 0, . . . , b. To that end, successor-state generation can be directly implemented
on the BDD representation, via BDD operations whose runtime depends only on the BDD
size, not on the number of states represented. For a thorough description of the algorithm
and implementation details, we refer the reader to [Torralba et al., 2017].

The process terminates when all reachable states have been generated or the cost
bound b is reached. The result is a BDD, βτ =

∨
g∈[0,...,b] βg, which represents the set of

states reachable Sr in τ with cost bound b. Additionally, we can terminate earlier whenever
we reach a state satisfying Ghard ∪Gsoft. In that case, no lattice search is needed as all soft
goals can be reached simultaneously and therefore the set of MUGS is empty.

After computing βτ , each test for some G ⊆ Gsoft within the goal-lattice search (line 8 in
Algorithm 2) can be efficiently performed in time polynomial in the size of βτ and the number
of tested goals |Ghard ∪G|. This test requires determining whether there exists some state
s ∈ Sr such that Ghard ∪G ⊆ s.

Algorithm 4 Symbolic TestSolvable

1: Input: Goal: Ghard ∪G, b-reachable states: βτ
2: function SYMBOLICTESTSOLVABLE(Ghard ∪G, βτ)
3: βG ←

∧
g∈Ghard∪G g

4: return βτ ∧ βG 6= ∅

Algorithm 4 shows the simple procedure. First, we produce the BDD βG representing∧
g∈G∪Ghard g. As this BDD is simply a conjunction of atomic propositions, this only takes

4.2. ALLMUGS ALGORITHMS 49

time O(|βG|) where |βG| is the number of nodes in the resulting BDD. This is O(|G∪Ghard| ·
maxv∈V log2(|Dv|)) as each goal over variable v is represented with at most log2(|Dv|) + 2

BDD nodes.
βG represents the set of states where the goal is satisfied, {s | G ∪ Ghard ⊆ s},

regardless of whether they are reachable or not. Then, the conjunction βτ ∧ βG results in a
BDD that represents the intersection of both sets of states, i.e., the set of states that are
reachable and satisfy the goal. Then, G is solvable if and only if such a set is not empty.
The conjunction of two BDDs can be computed in time O(|βτ ||βG|), and testing whether a
BDD represents the empty set can be done in constant time. Thus, the overall algorithm
runs in O(|G ∪Ghard| ·maxv∈V log2(|Dv|) · |βτ |).

4.2.2 GOAL-SUBSET BRANCH AND BOUND SEARCH

An alternative to symbolic search for state space exhaustion is an exhaustive explicit state
space exploration. This approach enables the computation of MUGS via the maximal
solvable goal subsets (MSGS). The MSGS refer to the subset maximal soft goal subsets
that are satisfied by all reachable goal states.

PROPOSITION 6: GMSGS FROM EXHAUSTIVE STATE SPACE EXPLORATION

Let τ be an OSP task with soft goals Gsoft and state space Θτ = (S, L, c, T, I,SG, b).
The maximal solvable goal subsets of τ (GMSGS(τ)) are given by GMSGS(Θτ) :=

max⊆{
⋃

s∈Sr
G
(s ∩Gsoft)}, where SrG ⊆ SG are all the reachable goal states.

Proof:

max⊆{
⋃

s∈Sr
G
(s ∩Gsoft)} ⊆ GMSGS(τ):

Let G ∈ max⊆{
⋃

s∈Sr
G
(s ∩Gsoft)}. G is solvable because there is a state s ∈ SrG

such that G ⊆ s. G is maximal because if there would be a G′ with G (G′ ⊆ Gsoft

that is solvable and thus G′ ∈
⋃

s∈Sr
G
(s ∩Gsoft), G would be removed by max⊆.

max⊆{
⋃

s∈Sr
G
(s ∩Gsoft)} ⊇ GMSGS(τ):

Let G ∈ GMSGS(τ). G ⊆ Gsoft is solvable and thus there exists a reachable goal
state s ∈ SrG, such that G ⊆ s. It follows G ∈

⋃
s∈Sr

G
(s ∩Gsoft). G is not removed

by max⊆, because it is maximal solvable in τ . This means there is no G′ with
G (G′ ⊆ Gsoft that is solvable. Thus, there is no reachable goal state s ∈ SrG
where G′ ⊆ s. It follows G′ /∈

⋃
s∈Sr

G
(s ∩Gsoft).

�

Based on Proposition 6 we introduce a branch-and-bound approach to compute GMSGS(τ).
During the exploration of the search space, for each goal state sg ⊇ Ghard the satisfied soft
goals Gsoft ∩ sg are tracked. To prune states that cannot further improve the solvable goal
subsets, we introduce the concept of a new-goal-subset heuristic.

In classical planning, where the objective is to find a plan, that satisfies all goals, the

50 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

heuristic is normally a function h : S 7→ R+
0 ∪ {∞}, estimating the optimal plan cost. In

our case, however, we are looking for all subsets of soft goals that can be satisfied while
satisfying Ghard. This involves exploring the state space beyond the first goal state, to
identify new soft goal subsets that have not yet been satisfied. A heuristic can help to prune
states that do not lead to new soft goal subsets within the cost bound b. Since new is
relative to what has already been seen, the needed heuristic does not only depend on the
state s and the remaining cost but also on the already satisfied soft-goal subsets.

DEFINITION 21: NEW-GOAL-SUBSET HEURISTIC

Let τ be an OSP task. A new-goal-subset heuristic is a function H : S × R+
0 ×

P(P(Gsoft)) 7→ R+
0 ∪ {∞}.

DEFINITION 22: NEW-GOAL-SUBSET COST

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task with states S. For a state s ∈ S,
remaining cost br ∈ R+

0 and soft goal subsets G ⊆ P(Gsoft), the new-goal-subset
cost is

min(

{c | Gnew ⊆ Gsoft,∀G′ ∈ G : Gnew * G′,

c = h∗(s,Ghard ∪Gnew), c ≤ br}
∪ {∞}

)

where h∗(s,Ghard ∪ Gnew) is the optimal plan cost from s in task τ ′ = (V,A, c, I,

Ghard ∪Gnew).
The perfect goal-subset heuristic, denoted by H∗, assigns every state s ∈ S for
each remaining cost br ∈ R+

0 and each G ⊆ P(Gsoft) its new-goal-subset cost.

The new-goal-subset cost for a state s and a set of soft-goal subsets G is the cost of an
optimal plan from s to a within the remaining cost cheapest-to-reach goal subset G for which
there is no superset in G. If the new-goal-subset cost of state s is∞ there are two possible
reasons. First, there may be no plan from s, i. e. Ghard is not reachable within the remaining
cost. Second, there may be no new reachable soft-goal subset.

For a new-goal-subset heuristic to be used safely for pruning, that is not pruning any
states from which the MSGS can be improved, it must be admissible.

DEFINITION 23: ADMISSIBLE

Let τ be an OSP task with soft goals Gsoft and H a new-goal-subset heuristic.
H is called admissible if, for all s ∈ S, bounds b ∈ R+

0 and G ⊆ P(Gsoft),

4.2. ALLMUGS ALGORITHMS 51

H(s, b,G) ≤ H∗(s, b,G).

Next, we present a branch-and-bound (BnB) algorithm called goal-subset BnB (GSBnB) that
computes all MSGS. In an OSP setting with goal utilities Domshlak and Mirkis [2015] use a
similar approach to compute an optimal plan that maximizes the utility. The pseudocode is
given in Algorithm 5.

Algorithm 5 Goal-Subset BnB (GSBnB)

1: Input: OSP task τ , new-goal-subset heuristic Hp, heuristic Hg, under-approximation of
solvable goal subsets M̃

2: function GSBNB(τ = (V,A, c, I,Ghard, Gsoft, b),Hp,Hg, M̃ = {{}})
3: G ← M̃ . current maximal solvable goal subsets
4: g(s)←∞ for all states s 6= I and g(I)← 0

5: O ← {(I, 0)} . priority queue ordered by ascending Hg(s, b− g(s),G)
6: while |O| > 0 do
7: s, gs ← POP(O)
8: if g(s) < gs then . duplicate check
9: continue

10: if Ghard ∪Gsoft ⊆ s then
11: return {Gsoft} . all goals are solvable

12: if Ghard ⊆ s then
13: UPDATE(G, s ∩Gsoft)

14: for all a ∈ A(s) do
15: s′ ←sJaK
16: gs′ ← g(s) + c(a)

17: if gs′ ≥ g(s′) then . duplicate check
18: continue
19: g(s′)← gs′

20: if g(s′) > b ∨Hp(s, b− g(s′),G) =∞ then
21: continue . prune s′ if nothing new reachable

22: O ← O ∪ (s′, g(s′))

23: return G
24: function UPDATE(G, G)
25: if ∀G′ ∈ G : G * G′ then
26: G ← (G \ {G′ ∈ G | G′ (G}) ∪ {G}

G stores the currently maximal solvable goal subsets (line 3). If the hard goals are
satisfied, then G is updated with the satisfied soft goals G = s ∩Gsoft (line 13). If G is not a
subset of any set in G, then G is added and all subsets of G are removed. This ensures that
G always contains the maximal solvable goal subsets. If all hard and soft goals are satisfied
the algorithm terminates early (line 10), because then all soft goals are solvable. Duplicate
checking and reopening of states reached via a cheaper path are handled as in A∗ [Hart
et al., 1968].

52 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

The new-goal-subset heuristic is used to prune states, from which no new soft goal
subset can be reached within the cost bound (line 20). Given that Hp does not only depend
on the state s and the remaining cost but also on the soft goal subsets G that have been
reached, the heuristic value can change between the time a state is added to the open list
(line 22) and when it is removed from the open list to be expanded (line 7). Thus, it could
make sense to reevaluate Hp if G has changed between these two points. We leave this
extension for future work, and evaluate Hp for each state only before it is inserted into the
open list.

If an admissible new-goal-subset heuristic is used for pruning, then GSBnB solves
allMUGS by computing all MSGS.

PROPOSITION 7: CORRECTNESS GSBNB

Given an OSP task τ and an admissible new-goal-subset heuristic Hp,
GSBnB(τ,Hp,Hg) computes GMSGS(τ).

Proof:
To prove that G = GMSGS(τ) at the end of Algorithm 5, we have to show, that (1) for
all G ∈ GMSGS(τ) GSBnB visits a state s such that G = s ∩ Gsoft, (2) no state s with
G = Gsoft ∩ s for which exists G′ ∈ GMSGS(τ) such that G′ (G is reached, and (3) G
only contains subset maximal sets.

(1) GSBnB only terminates, if Ghard ∪Gsoft is reached or if all states that are not pruned
due to (a) a duplicate check, (b) exceeding of cost bound g(s) > b or (c) pruning
based on Hp, (Hp(s, b − g(s′),G) = ∞), are explored. In the first case, a plan π
with cost(π) ≤ b satisfying Ghard ∪ Gsoft is found and thus {Gsoft} = GMSGS(τ) is
returned. For the latter case, we address each condition separately.

(a) If a state s with gs is pruned due to (a) a duplicate check, then a shorter path to
s with cost g′s has been found. Since all states reachable from s with remaining
cost b− g′s can also be reached with remaining cost b− gs, state s reached via a
more expensive path can be pruned.

(b) If (b) the cost to reach a state s exceeds the cost bound g(s) > b, then s is not
reachable. If g(s) is not the minimal cost to reach s, then pruning based on (a)
duplicate check will not prune s if it is reached via cheaper paths and thus s is
considered later if it is reachable within cost bound b.

(c) If a state s is pruned (c) based on Hp and a Ghard ∪ G with G ∈ GMSGS(τ)

is reachable from s within the cost bound, then this means G must be in G.
Otherwise because Hp is admissible and Ghard ∪G reachable, we have
Hp(s, b− g(s),G) ≤ H∗(s, b− g(s),G) ≤ h∗(s,Ghard ∪G) <∞.

(2) holds because of Proposition 6 and the fact that only states reachable within the cost
bound b are explored.

4.2. ALLMUGS ALGORITHMS 53

(3) holds because all subsets are removed by the function UPDATE.

�

In contrast to A∗, the order in which states are popped from the open list does not affect
the correctness of the solution (Proposition 7). However, it can affect the performance.
Guiding the search first to states that promise to solve many goals could have a positive
effect on the pruning function, as G grows quickly at the beginning, which could then lead to
more effective pruning. We evaluate this hypothesis empirically in Section 4.3.1.

Note that, by computing GMSGS(τ), the algorithm also computes an optimal plan to a
state that satisfies the maximum number of soft goals. In Section 4.3.1 we compare our
approach to the state of the art in OSP planning.

IMPLEMENTATION OF GOAL-SUBSET HEURISTICS

The new-goal-subset cost is defined as the minimal cost of a plan for any new reachable
soft goal subset. However, when computing the new-goal-subset cost it is not necessary to
consider every new soft goal subset, but only the subset minimal goal subsets. All larger
goal subsets are at least as expensive and are dominated in the minimization step. We refer
to the set of all minimal new soft goal subsets with respect to G as Gmin

new = {Gnew ⊆ Gsoft |
∀G ∈ G,∃g ∈ Gsoft : Gnew \G = {g}}. A straightforward method for computing H(s, b,G)
involves iterating over Gmin

new and computing h(s,Ghard ∪ Gnew) for each Gnew ∈ Gmin
new .

However, Gmin
new can become large, and each call to h can be computationally expensive.

Given that the heuristic is computed for every state during the search, implementing this
approach is bound to cause a substantial overhead. Thus, we introduce an approximation
of the new-goal-subset cost using classical planning heuristics of singleton goals.

DEFINITION 24: NEW-GOAL-SUBSET COST ESTIMATION WITH SINGLETON GOALS

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task and η = {hg | g ∈ Ghard ∪Gsoft}
a set of admissible classical planning heuristics for tasks τg = (V,A, c, I, {g}).
The estimation of H∗ for s ∈ S, remaining cost br ∈ R+

0 and soft goal subsets
G ⊆ P(Gsoft) based on singleton goals is defined as

Hη(s, b,G) =


∞ if ∃g ∈ Ghard : hg(s) > br

∞ if ∃G ∈ G : G≤b ⊆ G
0 otherwise

where G≤br = {g ∈ Gsoft | hg(s) ≤ br}.

The estimation based on singleton goal facts considers the hard and soft goals separately.
Since all hard goals must be satisfied, if one hard goal estimate exceeds the remaining
cost then, Ghard cannot be satisfied, and thus the state can be pruned. As enumerating
all new soft goal subsets and estimating which ones are reachable within the cost bound
is not feasible, we take the opposite approach. We check if an over-approximation of the

54 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

reachable soft goals G≤b is new, i. e. no super set of G≤b is contained in G. G≤b contains
all soft goals, that are individually reachable within the remaining cost br. If we have already
seen a superset of G≤b, then we know that no new soft goal subsets are reachable, and
the state can be pruned. In case all hard goals are reachable and the reachable soft goals
are new, we do not want to prune the state and thus return 0. Some example heuristic
evaluations are given in Example 9.

EXAMPLE 9: NEW-GOAL-SUBSET COST ESTIMATION WITH SINGLETON GOALS

Let’s consider the task τ with Ghard = ∅ and Gsoft = {A,B,C,D,E}. Let G =

{{A,B}, {B,C}, {C,D,E}} be the current maximal solvable goal subsets and
br = 3 the remaining available cost.

s1: with the heuristic estimates:

Gsoft A B C D E

hg 3 2 4 1 4

G≤3 = {A,B,D} → Hη(s1, 3,G) = 0

Thus, s1 is not pruned, because no superset of {A,B,D} has been reached
and thus {A,B,D} could improve the MSGS.

s2: with the heuristic estimates:

Gsoft A B C D E

hg 4 2 1 4 4

G≤3 = {B,C} → Hη(s2, 3,G) =∞

Thus, s2 is pruned, because {B,C} has already been reached.

To ensure the safe use of Hη for pruning, it needs to be admissible (Proposition 7). This is
the case if only admissible estimates are used for the individual goals.

PROPOSITION 8: ESG IS AN ADMISSIBLE GOAL-SUBSET HEURISTIC

Given OSP τ = (V,A, c, I,Ghard, Gsoft, b) and η = {hg | g ∈ Ghard ∪ Gsoft} a set
of admissible classical planning heuristics for tasks τg = (V,A, c, I, {g}), Hη is an
admissible goal-subset heuristic.

Proof:
We consider each case of Hη(s, b,G) separately. Recall Gnew ⊆ Gsoft and for all
G ∈ G : Gnew * G. (1) If G ⊆ G′ then h∗(s,G) ≤ h∗(s,G′) since all plans satisfying G
also satisfy G′.

(a) If ∃g ∈ Ghard : hg(s) > b then Hη(s, b,G) = ∞. Let g ∈ Ghard such that hg(s) > b.
Since hg is admissible, i. e. hg(s) ≤ h∗(s, {g}) and (1) we have b < hg(s) ≤

4.2. ALLMUGS ALGORITHMS 55

h∗(s, {g}) ≤ h∗(s,Ghard ∪G) for any G ⊆ Gsoft and thus H∗(s, b,G) =∞.

(b) If ∃G ∈ G : G≤b ⊆ G then Hη(s, b,G) = ∞. Let G ∈ G such that G≤b ⊆ G.
Because G ∈ G for all Gnew, Gnew * G holds, and thus (Gsoft \G≤b) ∩Gnew 6= ∅.
Let g ∈ (Gsoft \G≤b) ∩Gnew. For all g′ ∈ Gsoft \G≤b, because hg′ is admissible we
have b < hg′ < h∗(s, {g′}). Then from (1) it follows that b < hg′ < h∗(s, {g′}) <
h∗(s,Ghard ∪Gnew) for all Gnew. Thus, H∗(s, b,G) =∞.

(c) Otherwise, Hη(s, b,G) = 0 which is admissible, because H∗(s, b,G) ≥ 0 for any
input.

�

In general, any admissible heuristic can be used to compute the heuristic for each goal fact
g ∈ Ghard ∪ Gsoft by computing the heuristic for task τg = (V,A, c, I, {g}). However, this
requires |Ghard ∪Gsoft| computations, which can be excessive. To compute hg for each goal
efficiently, we consider heuristic functions that are either quickly to evaluate or that estimate
the cost of reaching a state that satisfies a goal G by calculating an admissible estimate for
each goal fact g ∈ G individually. The latter requires only one heuristic evaluation per Hη

computation.

Max Heuristic hmax [Bonet and Geffner, 2001] approximates the remaining cost by the
maximal cost of reaching each goal fact individually (see Definition 7). The last step in
the hmax computation is maxg∈G h

max(s, {g}). This allows to extract, from a single hmax

computation for task τ ′ = (V,A, c, I,Ghard ∪Gsoft), for each goal fact g ∈ Ghard ∪Gsoft the
estimation hmax

g (s) := hmax(s, {g}).

Abstraction Heuristic Abstraction heuristics [Helmert et al., 2007] use the perfect heuris-
tic in the abstract state space to estimate the remaining cost in the concrete state space
(see Definition 9). Often multiple abstractions and a cost partitioning [Seipp et al., 2017] are
used to achieve a compatible performance. Here we are using one cartesian abstraction
[Seipp and Helmert, 2018] for each goal fact g ∈ Ghard∪Gsoft. Each abstraction αg is based
on the task τg = (V,A, cτ , Iτ , {g}). This corresponds to the abstraction by goal strategy
described by Seipp and Helmert [2018]. To generate an abstraction αg, counter-example
guided abstraction refinement, as introduced by Seipp and Helmert [2018], is used. The
heuristic estimate for each goal fact is then given by hcarg (s) := h∗Θαg (αg(s)).

Potential Heuristics Potential heuristics [Pommerening et al., 2015] assign a numeric
value to each fact called potential. The sum of the potentials of all facts satisfied by state
s is then used as heuristic estimate (see Definition 10). Thus, the evaluation of potential
heuristics is quite fast. Here, for each task τg = (V,A, c, I, {g}) with g ∈ Ghard ∪Gsoft we
use one potential heuristic hpotg .

56 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

4.3 COMPUTATIONAL EVALUATION

First, we evaluate the performance of the presented algorithms on simple soft goal atoms
based on an OSP version of the IPC domains. Then, we analyzed the scalability of our
approach for more complex soft goals by utilizing compilations of temporal goals to goal
facts.

4.3.1 SOFT-GOAL ATOMS

EXPERIMENT SETUP & BENCHMARKS

Our implementation is based on the planning framework Fast Downward2 (FD) [Helmert,
2006]. We used the following search algorithms, which are either included in the official FD
release or are available for public use.

• Greedy Best First Search (GBFS): described in [Doran and Michie, 1966] and provided
by FD

• Symbolic Search (Sym): described by Torralba et al. [2017] and implemented in
symbolic Fast Downward3.

As heuristic functions, which are either included in the official FD release or are available for
public use we used the following implementations and specifications:

• blind: It returns 0 for goal states and the minimal action cost otherwise. It is used as
a baseline for the exhaustive state space search.

• hFF [Hoffmann and Nebel, 2001]: It is a non-admissible heuristic based on delete-
relaxation. We used the implementation provided by FD.

• hmax [Bonet and Geffner, 2001]: We used the implementation provided by FD.

• hpot [Seipp et al., 2015]: We used the implementation of potential heuristics provided
by FD, with one potential function per goal fact optimized each for 1000 sample states.

• hcar [Seipp and Helmert, 2018]: We used the implementation for Cartesian abstrac-
tions generated with counter example guided abstraction refinement provided by FD,
with the default configuration (maximum number of abstract states overall: ∞, maxi-
mum number of transition overall: 1M, maximum time for abstraction generation: ∞,
split selection strategy: max refined). Using the goals subtasks generator generates
one abstraction per goal state. We modified the implementation to provide a heuristic
value of 0 for each goal fact satisfied in the initial state and did not use any cost
partitioning, i. e. the sum of the estimates are not admissible but the estimate for each
goal fact is.

We ran the following combinations of (meta-)search and heuristics:

2https://github.com/aibasel/downward
3https://gitlab.com/atorralba/fast-downward-symbolic

https://github.com/aibasel/downward
https://gitlab.com/atorralba/fast-downward-symbolic

4.3. COMPUTATIONAL EVALUATION 57

• Goal Lattice Search (GLS)

– expansion orders:

* systematic weakening (SysW)

* systematic strengthening (SysS)

– solvability check:

* explicit cost-bounded search: GBFS with hFF (GBFS(hFF))

* symbolic cost-bounded forward search (Sym)

• Goal-Subset BnB (GSBNB(hp, hg)), if the same heuristic is used for pruning and
guidance we denote this by GSBNB(h).

– with pruning heuristic hp based on:

* blind (baseline, no pruning)

* h
max

* h
pot

* h
car

– with guidance heuristic hg based on:

* blind (baseline)

* hp = hg: sum of the individual goal estimates

* h
FF

The extensions of Fast Downward and symbolic Fast Downward are publicly available4.
All experiments are performed on a cluster with Intel E5-2695 v4 2.1G machines. If not

mentioned differently the time-out it set to 30 min and the memory limit to 4 GB.

Benchmarks As benchmarks, we used the instances from the International Planning
Competition (IPC) [classical domains, 2018], in particular the instances from the optimal
track. Those are not OSP tasks but rather classical planning tasks. This means they have
no cost bound b and only one set of goals G. To obtain OSP domains, we follow [Domshlak
and Mirkis, 2015, Katz et al., 2019] and use all goals as soft goals Gsoft = G and no hard
goals Ghard = ∅ and as cost bound b = x ∗ c where x ∈ {0.25, 0.5, 0.75} and c is the best
known solution cost [api.planning.domains, 2018]. The specific cost bounds we used are
publicly available5. Due to an implementation restriction, we only consider instances with
less than 32 goal facts.

In the following, we take a closer look at the most important features of the benchmark
instances, the number of soft goals and the number and size of the MUGS. Figure 8 depicts
the number of goal facts for the tasks in the IPC benchmark set. Many domains scale
difficulty with the number of goal facts. For example Miconic, which models an elevator
controller, scales by increasing the number of served passengers. Other domains like
Agricola, FreeCell, Movie, Pegsol, Termes and Tidybot have a fixed number of goal facts,

4https://doi.org/10.5281/zenodo.14989835
5https://doi.org/10.5281/zenodo.14988342

https://doi.org/10.5281/zenodo.14989835
https://doi.org/10.5281/zenodo.14988342

58 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

due to the structure of the problem they model. In FreeCell for example, there are four goals
one for each color of playing cards. Agricola has only one goal indicating that the last stage
of a harvesting game has been completed successfully. In Section 4.3.1 we will analyze
how the different approaches scale with respect to the number of soft goals.

Ag
ric

ol
a

Ai
rp

or
t

Ba
rm

an
Bl

oc
ks

wo
rld

C
hi

ld
sn

ac
k

D
at

a-
N

et
wo

rk
D

ep
ot

s
D

riv
er

lo
g

El
ev

at
or

s
Fl

oo
rti

le
Fr

ee
C

el
l

G
ED G
rid

G
rip

pe
r

H
ik

in
g

Lo
gi

st
ic

s
M

ic
on

ic
M

ov
ie

M
pr

im
e

M
ys

te
ry

N
om

ys
te

ry
O

pe
ns

ta
ck

s
O

rg
-s

yn
-s

Pa
rc

pr
in

te
r

Pa
rk

in
g

Pa
th

wa
ys

Pe
gs

ol

Pi
pe

s-
N

oT
an

k
Pi

pe
s-

Ta
nk

PS
R

R
ov

er
s

Sa
te

llit
e

Sc
an

al
yz

er
Sn

ak
e

So
ko

ba
n

Sp
id

er
St

or
ag

e
Te

rm
es

Te
tri

s
Ti

dy
bo

t
TP

P
Tr

an
sp

or
t

Tr
uc

ks
Vi

si
ta

ll

W
oo

dw
or

ki
ng

Ze
no

tra
ve

l

1

5

10

15

20

25

30

nu
m

be
ro

fg
oa

lf
ac

ts

Figure 8: Distribution of number of goal facts in the IPC domains. The larger the dot, the
more instances with the corresponding number of goal facts exist.

1 5 10 15 20 25 >30

0

10

20

30

nu
m

be
ro

fi
ns

ta
nc

es
in

%

x = 0.25

1 5 10 15 20 25 >30

0

10

20

30

number of MUGS

x = 0.5

1 5 10 15 20 25 >30

0

10

20

30

x = 0.75

1 2 3 4 5 6 7 8 9

0
10
20
30
40
50
60
70
80

nu
m

be
ro

fi
ns

ta
nc

es
in

%

1 2 3 4 5 6 7 8 9

0
10
20
30
40
50
60
70
80

avg size of MUGS
1 2 3 4 5 6 7 8 9

0
10
20
30
40
50
60
70
80

Figure 9: Distribution of number (top) and average size (bottom) of MUGS over commonly
solved instances among all cost bounds of the IPC OSP benchmark set. For the size only,
instances with less than 100 MUGS are considered. From left to right cost bound of 0.25,
0.5 and 0.75 times best known solution cost. All instances with more than 30 MUGS are
aggregated at > 30.

4.3. COMPUTATIONAL EVALUATION 59

The objective of our algorithms is to compute allMUGS. Figure 9 depicts the distribution
of number and size of MUGS for all instances, of which one of our algorithms could compute
all MUGS. We only consider instances where MUGS are known for all cost bounds, which
allows us to analyze the number and size changes by increasingly weaker bounds. For
the size, we only consider data for instances with less than 100 MUGS. For a very tight
bound x = 0.25 the number of MUGS resembles more or less the distribution of goal facts,
as most of them have size one. This indicates that, in many domains, individual goal facts
share common actions in their plans. Therefore, if the cost bound is tight, achieving even a
single goal fact is not feasible. With increasing cost bound, the number of MUGS decreases
and their size increases. 50% of the instances have less than 6, 7 and 6 MUGS for the
cost bounds 0.25, 0.5 and 0.75 respectively. The average size of MUGS stays below 10 for
almost all tasks. For cost bounds 0.25/0.5/0.75 there are 140/165/119 instances with more
than 100 MUGS. The maximum is 74613/48620/26334 for a gripper instance. On average
there are 222/530/361 (arithmetic mean) and 9.3/11.8/7.8 (geometric mean) MUGS per
instance.

As the number of goal fact varies per domain and instance, the number and size of
MUGS also varies. The problem structure itself influences how the number and size of
MUGS changes when the cost bound is changed. Generally, the number of MUGS begins
at the number of goal facts |G|, when the cost bound is so low, that no single goal fact can
be satisfied, and ends at 0 when the cost bound is high enough to satisfy all goal facts
(assuming this is possible). The number of MUGS can vary between these two extremes.
For a common pattern see Example 10. The evaluation of the number of MUGS and their
size, for each domain can be found in Appendix A.1.

EXAMPLE 10: MUGS WITH INCREASING COST BOUND

For tasks with independent goals – that is, goals that can be satisfied separately
from others (e.g., transport, where each package can be delivered individually) – the
number of MUGS first increases as more combinations of goal facts can be satisfied.
For example different combinations of packages can be delivered. At some point, the
number of MUGS decreases again as more goal facts are satisfied together, leading
to the merging of MUGS. The average size begins at 1 and increases with rising cost
bound. The following graphs depict the number (blue/solid) and size (orange/dashed)
of MUGS for an increasing cost bound in a Transport and Blocksworld instance:

100 200

6

8

10

12

cost bound

nu
m

be
ro

fM
U

G
S

6 transport (opt08)

1

2

3

4

av
g

si
ze

of
M

U
G

S

6 transport (opt08)

0 10 20

0

5

10

cost bound

nu
m

be
ro

fM
U

G
S

8-0 blocksworld

2

4

av
g

si
ze

of
M

U
G

S

60 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

OVERALL COVERAGE

An instance is considered solved if all MUGS could be computed within the specified time
and memory limit. We first evaluate the two main approaches, goal-lattice (GLS) and
branch-and-bound search (GSBNB), individually and then compare the best performing
configurations to each other.

The coverage per domain for GLS is presented in Table 1. The symbolic approach for
testing solvability performs significantly better than the solvability test based on explicit state
space search. It solves on average more than 200 tasks more. Overall, there are only three
domains where explicit search performs better: Airport, Org-syn-s and Sokoban. In the
following we will focus on GLS with symbolic search and will refer to it just as SysW and
SysS. As expected, for lower cost bounds, 0.25 and 0.5, SysW performs better, while for
0.75 SysS solves more instances.

Next, we analyze the coverage for the branch-and-bound search (GSBNB) approach,
considering the different heuristics for pruning and for guidance. The coverage results for all
configurations are given in Table 2. First we focus on the impact of the guidance heuristic.
The order in which states are visited, has an impact on the pruning. If states that satisfy
many soft goals are included early on in the current MSGS, then the bar for new subsets
is higher, and therefore more states are pruned. For a cost bound of 0.25, the use of a
guidance heuristic decreases the coverage. However, for larger cost bounds, additional
guidance has a positive effect. Overall, it is not worthwhile to compute hFF in addition to the
heuristic used for pruning.

Next we assess the impact of the pruning function and the chosen heuristic. In compari-
son with the baseline to no pruning, all pruning heuristics have a positive effect, on average,
increasing the coverage by about 30 instances. The greatest impact is observed for cost
bound 0.5. There is no universally best choice; the most suitable heuristic varies depending
on the cost bound. For cost bounds 0.25 the best choice is GSBNB(hcar, blind), for cost
bound 0.5 GSBNB(hpot) and for cost bound 0.75 it is GSBNB(hcar). GSBNB(hcar) has the
most consistent performance, while hpot only has a higher overall coverage for 0.5 due to
the single domain FreeCell.

Finally, we compare the best approaches from GLS and GSBNB to each other. If we
just consider the overall coverage, then GSBNB performs best. When considering the most
effective approach for each cost bound, GSBNB solves 36, 44 and 9 instances more for
each cost bound respectively. However, comparing the number of domains in which each
approach solves the most instances, as shown in Figure 3, no clear winner emerges. While
GSBNB performs better at cost bounds 0.25 and 0.5, the number of domains where each
approach performs better is almost equal at cost bound 0.75.

Comparing the different pruning heuristics for GSBNB, shows that, except for 0.25, hcar

performs better in more domains than hmax or hpot.

SCALING OVER SOFT-GOAL COMPLEXITY

To determine when GSBNB and GLSperform better, we take a closer look at the influence
of the number of soft goals. The relative coverage as a function of the number of soft goals
is shown in Figure 10.

4.3. COMPUTATIONAL EVALUATION 61

x = 0.25 x = 0.5 x = 0.75
SysW SysS SysW SysS SysW SysS

domain hFF Sym hFF Sym hFF Sym hFF Sym hFF Sym hFF Sym
Agricola(20) 20 20 20 20 15 20 16 20 3 20 3 20
Airport(50) 24 23 25 23 19 21 22 21 20 19 21 18
Barman(34) 13 24 15 24 4 13 4 13 4 11 5 11
Blocksworld(35) 29 32 35 35 21 29 26 29 17 23 18 23
Childsnack(20) 0 6 0 6 0 4 0 4 0 4 0 4
Data-Network(20) 17 19 19 19 14 17 14 17 11 13 12 13
Depots(22) 12 15 14 15 7 11 7 9 4 7 4 7
Driverlog(18) 14 15 15 15 10 14 12 14 8 12 9 12
Elevators(30) 26 30 28 30 22 25 24 25 17 24 20 24
Floortile(36) 6 11 10 18 2 11 2 9 2 6 2 4
FreeCell(80) 36 76 44 76 15 29 19 29 14 19 14 18
GED(20) 15 15 20 20 10 15 15 19 10 15 13 15
Grid(5) 4 5 4 5 3 3 3 3 2 2 2 2
Gripper(14) 5 6 6 10 4 8 4 8 4 10 4 7
Hiking(20) 14 19 15 19 11 16 12 17 11 15 11 15
Logistics(61) 22 37 26 38 14 26 18 26 12 23 12 23
Miconic(150) 55 75 69 110 45 90 47 89 41 94 45 77
Movie(30) 30 30 30 30 30 30 30 30 30 30 30 30
Mprime(35) 35 35 35 35 29 34 28 34 24 28 23 29
Mystery(19) 19 19 19 19 18 19 18 19 16 17 16 17
Nomystery(20) 16 20 20 20 10 16 10 16 8 12 8 12
Openstacks(58) 17 17 29 38 15 17 29 38 15 19 29 38
Org-syn-s(15) 7 8 10 8 7 8 9 8 6 8 8 8
Parcprinter(15) 7 7 9 9 7 7 7 7 7 7 7 7
Parking(40) 5 14 16 22 0 2 1 2 0 0 0 0
Pathways(24) 5 7 5 7 4 5 4 5 4 5 4 5
Pegsol(2) 0 0 1 1 0 0 1 1 0 0 0 0
Pipes-NoTank(50) 38 45 43 45 20 29 24 29 16 22 18 22
Pipes-Tank(50) 21 41 27 41 13 24 16 24 9 18 10 18
PSR(50) 48 48 48 48 48 48 48 48 48 48 48 48
Rovers(31) 12 19 12 19 7 14 7 14 6 14 6 14
Satellite(19) 7 12 8 15 6 12 6 12 4 7 5 7
Scanalyzer(22) 4 4 10 11 4 10 4 10 4 10 4 4
Snake(17) 5 6 8 8 3 8 6 7 2 6 3 6
Sokoban(30) 29 30 30 30 26 27 28 27 23 23 25 23
Spider(12) 0 0 6 6 0 0 6 6 0 0 5 6
Storage(30) 18 19 18 20 16 17 16 17 15 16 15 16
Termes(20) 5 20 18 20 1 18 7 18 0 15 3 15
Tetris(17) 7 7 12 15 3 8 7 9 3 8 3 7
Tidybot(30) 29 30 30 30 21 27 25 27 10 19 15 19
TPP(30) 8 12 8 12 6 8 6 8 6 8 6 8
Transport(59) 26 36 28 36 19 26 24 26 22 23 22 23
Trucks(30) 9 17 12 19 6 12 6 12 5 9 5 9
Visitall(13) 6 6 11 10 7 8 10 10 7 10 8 9
Woodworking(20) 5 5 14 12 5 8 7 8 5 8 5 7
Zenotravel(20) 12 14 13 14 8 12 9 12 8 10 8 10
sum(1443) 742 956 895 1083 555 806 644 836 483 717 534 710

Table 1: Overall coverage for GLS approaches on OSP IPC benchmarks. Cost bounds set
to x times the best known plan cost. Best result per cost bound highlighted in bold.

62 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

x
=

0.
25

x
=

0.
5

x
=

0.
7
5

h
p

h
m

ax
h

po
t

h
ca

r
h

m
ax

h
po

t
h

ca
r

h
m

ax
h

po
t

h
ca

r

h
g

h
m

ax
h

FF
h

po
t

h
FF

h
ca

r
h

FF
h

m
ax

h
FF

h
po

t
h

FF
h

ca
r

h
FF

h
m

ax
h

FF
h

po
t

h
FF

h
ca

r
h

FF

A
gr

ic
ol

a(
20

)
20

20
20

20
20

20
20

20
20

20
20

19
17

18
20

20
19

20
20

16
11

4
2

4
17

17
6

11
12

3
A

irp
or

t(5
0)

29
31

32
32

30
29

27
33

33
33

25
25

25
26

26
27

24
26

27
26

23
24

24
24

23
24

23
25

25
24

B
ar

m
an

(3
4)

18
23

21
21

18
18

18
25

25
25

11
11

11
11

11
11

11
11

11
11

4
10

4
4

4
4

4
8

8
6

B
lo

ck
sw

or
ld

(3
5)

35
35

35
35

35
35

35
35

35
35

29
29

29
30

29
29

29
29

29
29

21
22

23
24

21
21

21
21

22
22

C
hi

ld
sn

ac
k(

20
)

2
2

2
2

2
2

2
2

2
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

D
at

a-
N

et
w

or
k(

20
)

18
20

20
20

19
19

19
20

20
20

17
17

17
17

17
17

17
17

17
17

13
15

13
14

13
13

13
15

15
15

D
ep

ot
s(

22
)

16
17

16
17

17
17

15
18

18
17

12
12

12
12

12
12

12
12

12
12

7
7

7
7

7
7

7
7

7
7

D
riv

er
lo

g(
18

)
15

15
15

15
15

15
15

15
15

15
14

14
14

14
14

14
14

14
14

14
11

12
12

12
11

11
11

11
12

12
E

le
va

to
rs

(3
0)

30
30

30
30

30
30

30
30

30
30

25
25

25
25

25
25

24
25

25
25

24
24

23
25

24
24

24
24

24
27

Fl
oo

rt
ile

(3
6)

16
16

16
16

16
16

16
16

16
16

6
6

6
6

6
6

6
6

6
6

2
2

3
3

2
2

2
2

2
2

Fr
ee

C
el

l(8
0)

80
80

80
80

80
80

80
80

80
72

31
37

39
37

67
71

57
36

36
31

21
20

19
20

29
31

24
22

22
20

G
E

D
(2

0)
20

20
20

20
20

20
20

20
20

20
20

20
20

20
20

20
20

20
20

20
20

20
20

20
20

20
20

20
20

20
G

rid
(5

)
5

5
5

5
5

5
5

5
5

5
3

3
3

3
3

3
3

4
4

4
2

3
2

3
2

2
2

3
3

3
G

rip
pe

r(
14

)
7

7
7

7
7

7
7

7
7

7
6

6
6

5
6

6
6

5
6

6
5

5
6

6
5

6
6

5
6

6
H

ik
in

g(
20

)
19

20
20

20
20

20
20

20
20

20
14

16
16

14
16

16
15

18
18

17
13

14
13

13
13

13
13

14
14

14
Lo

gi
st

ic
s(

61
)

29
33

34
33

32
33

33
35

36
36

21
23

23
23

21
21

21
23

24
24

16
18

19
19

16
18

17
19

19
19

M
ic

on
ic

(1
50

)
93

93
93

93
93

93
91

95
93

95
64

65
64

64
65

64
63

66
65

65
55

55
55

55
55

55
55

55
55

55
M

ov
ie

(3
0)

30
30

30
30

30
30

30
30

30
30

30
30

30
30

30
30

30
30

30
30

30
30

30
30

30
30

30
30

30
30

M
pr

im
e(

35
)

35
35

35
35

35
35

35
35

35
35

32
34

34
34

33
33

32
35

35
35

27
31

31
31

28
28

28
31

31
31

M
ys

te
ry

(1
9)

19
19

19
19

19
19

19
19

19
19

19
19

19
19

19
19

19
19

19
19

17
18

18
18

18
18

17
19

19
19

N
om

ys
te

ry
(2

0)
20

20
20

20
20

20
20

20
20

20
14

16
15

15
14

14
14

16
18

16
10

10
10

10
10

10
9

12
12

12
O

pe
ns

ta
ck

s(
58

)
45

45
44

45
45

45
44

50
50

44
40

41
40

41
41

40
40

40
40

40
36

36
36

36
36

36
36

36
36

36
O

rg
-s

yn
-s

(1
5)

10
15

15
15

13
13

11
10

10
10

9
15

15
15

11
10

10
9

9
9

9
15

15
15

9
9

9
9

9
9

P
ar

cp
rin

te
r(

15
)

15
15

15
15

15
15

14
15

15
15

13
13

14
14

13
13

13
13

14
14

12
12

12
12

12
12

11
12

12
12

P
ar

ki
ng

(4
0)

26
26

26
26

26
26

26
26

26
26

7
6

6
6

7
7

7
7

7
7

1
1

1
1

1
1

1
1

1
1

P
at

hw
ay

s(
24

)
5

6
6

6
5

5
5

6
6

6
4

5
5

5
4

4
4

5
5

5
4

4
4

4
4

4
4

4
4

4
Pe

gs
ol

(2
)

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

P
ip

es
-N

oT
an

k(
50

)
46

46
46

46
46

46
46

46
46

46
33

36
37

37
36

36
32

36
36

33
24

24
24

24
24

24
24

24
24

24
P

ip
es

-T
an

k(
50

)
37

36
37

37
39

40
38

38
38

38
21

21
21

21
24

24
23

24
24

22
16

16
16

16
16

16
16

16
16

16
P

S
R

(5
0)

50
50

50
50

50
50

50
50

50
50

50
50

50
50

50
50

50
50

50
50

50
50

50
50

50
50

50
50

50
50

R
ov

er
s(

31
)

16
17

17
17

16
16

16
16

16
16

9
9

9
9

9
9

9
9

9
9

7
7

7
7

7
7

7
7

7
7

S
at

el
lit

e(
19

)
11

11
11

11
11

11
11

11
11

11
7

7
7

7
7

7
7

7
7

7
6

6
6

6
6

6
6

6
6

6
S

ca
na

ly
ze

r(
22

)
13

12
12

12
15

14
13

14
13

14
10

10
10

10
10

10
10

10
10

10
10

7
7

7
10

10
7

10
10

7
S

na
ke

(1
7)

17
17

17
17

17
17

17
17

17
17

15
14

14
14

16
15

14
15

15
14

10
10

10
10

10
10

10
10

10
10

S
ok

ob
an

(3
0)

30
30

30
30

30
30

30
30

30
30

30
30

30
30

30
30

30
30

30
30

26
28

28
28

26
26

24
27

28
28

S
pi

de
r(

12
)

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

11
11

10
10

11
11

11
11

11
10

S
to

ra
ge

(3
0)

21
21

21
21

22
22

21
22

22
22

17
18

17
18

18
18

18
18

18
18

15
16

16
16

16
16

16
16

16
16

Te
rm

es
(2

0)
20

20
19

19
20

20
20

20
20

20
16

16
15

14
16

16
16

16
16

16
12

12
11

10
12

11
12

12
12

12
Te

tr
is

(1
7)

16
16

16
16

16
16

16
16

16
16

13
13

12
12

13
13

13
13

13
13

11
9

9
9

10
10

9
11

11
10

Ti
dy

bo
t(3

0)
30

30
30

30
30

30
30

30
30

30
29

28
28

28
29

29
26

29
29

27
24

23
23

21
24

24
18

25
26

19
TP

P
(3

0)
9

13
13

13
13

13
13

13
13

13
7

8
8

8
8

8
8

8
8

8
6

6
6

6
6

8
7

7
7

7
Tr

an
sp

or
t(5

9)
36

39
37

36
36

36
32

36
35

33
26

26
26

26
26

26
25

26
26

25
24

23
25

25
24

31
22

24
25

25
Tr

uc
ks

(3
0)

15
16

16
17

15
15

15
15

15
15

9
10

10
10

9
9

9
9

9
9

8
8

8
8

8
8

8
8

8
8

V
is

ita
ll(

13
)

13
13

13
13

13
13

13
13

13
13

10
10

10
10

10
10

10
10

10
10

10
10

10
10

10
10

10
10

10
10

W
oo

dw
or

ki
ng

(2
0)

18
18

18
18

18
18

18
18

18
18

12
12

12
12

12
12

12
12

12
12

10
10

11
11

10
10

11
10

11
11

Ze
no

tra
ve

l(2
0)

13
13

13
13

13
13

13
13

13
13

11
12

12
12

12
12

12
12

12
12

9
9

9
9

9
9

9
9

9
10

su
m

(1
44

3)
10

82
11

10
11

06
11

07
11

01
11

01
10

83
11

19
11

16
11

02
82

5
85

1
84

7
84

6
87

9
88

0
84

8
85

4
85

9
83

7
68

5
69

9
69

0
69

5
70

1
71

5
67

2
71

1
71

9
69

7

Table 2: Overall coverage for GSBNB approaches on OSP IPC benchmarks. Cost bounds
set to x times the best known plan cost. Best result per cost bound highlighted in bold.

4.3. COMPUTATIONAL EVALUATION 63

x
=

0
.2
5

x
=

0
.5

x
=

0
.7
5

GLS GSBNB

SysW SysS blind hmax hpot hcar

G
LS

SysW - 19 22 26 24 26

SysS 0 - 17 21 19 21
G

S
B

N
B

blind 11 14 - 12 9 11

hmax 9 12 2 - 3 8

hpot 9 12 0 8 - 7

hcar 9 12 1 4 4 -

be
st among 16 24 24 29 28 32

single 0 6 0 2 1 4

GLS GSBNB

SysW SysS blind hmax hpot hcar

G
LS

SysW - 7 18 19 19 23

SysS 4 - 17 18 18 22

G
S

B
N

B

blind 17 17 - 14 10 15

hmax 12 13 4 - 7 12

hpot 13 14 0 8 - 8

hcar 10 10 0 4 2 -

be
st among 23 22 21 24 28 33

single 2 0 0 2 1 5

GLS GSBNB

SysW SysS blind hmax hpot hcar

G
LS

SysW - 3 17 20 18 21

SysS 9 - 18 21 19 22

G
S

B
N

B

blind 21 22 - 13 10 20

hmax 19 19 6 - 8 13

hpot 18 20 2 10 - 16

hcar 17 18 0 2 4 -

be
st among 25 21 14 19 17 25

single 3 1 0 1 2 4

Table 3: Comparison of in how many domains of 45 each algorithm solves more instances.
Cost bounds set to x times the best known plan cost. For GSBNB, the best performing con-
figuration overall cost bound is used: GSBNB(hmax, blind), GSBNB(hpot), GSBNB(hcar).
Value v in row ar and column ac, means that algorithm ac solved in v domains more in-
stances than algorithm ar. The last two rows depict in how many domains each algorithm is
among the best performing algorithms and the single best performing algorithm respectively.

64 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

0 5 10 15 20 25 30 35

0

0.5

1

number of goals

co
ve

ra
ge

in
%

x = 0.25

SysW SysS GSBNB(hcar)

0 5 10 15 20 25 30 35

0

0.5

1

number of goals

x = 0.5

0 5 10 15 20 25 30 35

0

0.5

1

number of goals

x = 0.75

Figure 10: Relative coverage of IPC benchmarks over the number of goals for GLS with
SysS and SysW and GSBNB(hcar). Cost bounds set to x times the best known plan cost.

For all cost bounds, both GLS expansion directions eventually drop to 0. However, for
0.5 and 0.75, there is a range of around 15 goal facts, where GLS performs better than
GSBNB. For fewer goals, the results are very similar; for more goals, GSBNB solves more
instances.

Ag
ric

ol
a

Ba
rm

an
Bl

oc
ks

wo
rld

C
hi

ld
sn

ac
k

Fl
oo

rti
le

G
rip

pe
r

H
ik

in
g

Lo
gi

st
ic

s
M

ic
on

ic
Pa

th
wa

ys
Pi

pe
s-

Ta
nk

R
ov

er
s

Sa
te

llit
e

Te
rm

es
TP

P
Tr

uc
ks

Ze
no

tra
ve

l
Ai

rp
or

t

D
at

a-
N

et
wo

rk
Fr

ee
C

el
l

G
ED G
rid

M
pr

im
e

M
ys

te
ry

O
pe

ns
ta

ck
s

O
rg

-s
yn

-s
Pa

rc
pr

in
te

r
Pa

rk
in

g
Pe

gs
ol

Pi
pe

s-
N

oT
an

k
PS

R
Sn

ak
e

So
ko

ba
n

Sp
id

er
Te

tri
s

Ti
dy

bo
t

Tr
an

sp
or

t

W
oo

dw
or

ki
ng

D
ep

ot
s

D
riv

er
lo

g
El

ev
at

or
s

M
ov

ie
N

om
ys

te
ry

Sc
an

al
yz

er
St

or
ag

e
Vi

si
ta

ll

1

5

10

15

20

25

30

nu
m

be
ro

fg
oa

lf
ac

ts

SysW > GSBNB SysW < GSBNB SysW = GSBNB

Figure 11: Comparison of number of goal facts of tasks solved by SysW(Sym) (left/blue)
and GSBNB(hcar) (right/orange) for a cost bound of 0.75. The larger the dot the more
instances with this number of goal facts have been solved. (left) domains where SysW(Sym)

solved more instances than GSBNB(hcar); (middle) domain where GSBNB(hcar) solved
more instances than SysW(Sym); (right) domains where both algorithms solved the same
number of instances.

To investigate this further, Figure 11 depicts for a cost bound of 0.75 for SysW and
GSBNB(hcar) the number of goal facts for a task if the approach was able to solve it.
For SysW the increase in solved tasks is mainly due to Gripper and Miconic. Other domains,
where SysW solved more tasks than GSBNB(hcar), have less than 15 soft goals. Instances
that where solved by GSBNB(hcar) but not by SysW(Sym) have mostly more than 15 soft
goals. This suggests that up to about 15 goal facts, GLS should be used, and above
GSBNB.

4.3. COMPUTATIONAL EVALUATION 65

PERFORMANCE ANALYSIS

In the following sections, we analyze the reasons behind the performance of the approaches
as described in the previous sections. We begin by focusing on GLS. We compare the
fraction of the goal lattice that is explored by systematic weakening SysW, which starts with
all soft goals and iteratively removes them, and systematic strengthening SysS, which starts
with singleton sets and iteratively adds goals). An overview of the fraction of the explored
goal lattice is given in Figure 12.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x = 0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

x = 0.5

SysS SysW

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

x = 0.75

Figure 12: Comparison of the fraction of explored goal lattice. Histogram for each cost
bound, bins are half open, [x, x+ 0.05). Cost bound x times best known solution cost.

When using SysS and a tight cost bound, only a small part of the goal lattice needs to
be explored. As the cost bound increases, the fraction that needs to be explored increases
as well. For SysW it is the other way around. For 0.25, SysW explores for most instances
more than 95% of the goal lattice while SysS explores on average not more than a third. For
0.5 SysW still has to explore more than SysS, but for 0.75 it is less, although the difference
is less prominent than for 0.25. The actual values vary significantly between the individual
domains, however, the variance is typically less than 10%, suggesting that in most domains,
instances exhibit similar behavior with respect to the cost bounds. For most domains,
increasing the cost bound to 0.75 leads to SysW exploring a smaller fraction than SysS.
The evaluation of the goal lattice fraction for each domain can be found in the Appendix A.1.

GLS with the symbolic approach, is a two-step process. First the BDD representing
the reachable state space is constructed. Then, the goal lattice is traversed to identify the
MUGS. The first step is independent of the expansion direction of the goal lattice. However,
the generation time of the BDD representing the reachable search space, depends on the
search space size and consequently on the cost bound. As shown in the top of Figure 13,
the increase in time is clearly visible. The performance of the solvability check, i. e. the
intersection computation, remains unaffected by its outcome. As depicted in the bottom of
Figure 13 the time differences between SysS and SysW for GLS align with the difference
sizes of the explored goal lattice. On average, more time is spent on the BDD computation.
The difference in the explored goal lattice fractions and the time increase to generate the
BDD explains the smaller difference in coverage between SysS and SysW for cost bound
0.75 compared to cost bound of 0.25. SysS solves 127 instances more with x = 0.25, while
SysW only solves 7 instances more for x = 0.75.

In the following analysis we compare the average run time per goal lattice node. For the
explicit search approach this is the average time to solve a task or proof unsolvability. For the
symbolic approach this includes the construction of the BDDr representing the reachable

66 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

10−5 10−4 10−3 10−2 10−1 100 101 102 103

SysW

SysS

SysW

SysS

SysW

SysS

x = 0.75

x = 0.5

x = 0.25

B
D

D
M

U
G

S

x = 0.25 x = 0.5 x = 0.75

Figure 13: Runtime analysis of time to compute reachable BDD and time to perform the
GLS to compute the MUGS. Only instances commonly solved by SysS and SysW over all
cost bounds are considered. Cost bounds set to x times the best known plan cost, encoded
by color. Top (BDD): time to compute BDD representing the reachable state space; Bottom
(MUGS): time to traverse the goal lattice du compute the MUGS.

search space and then the test whether the intersection between BDDr and the BDDG for
each soft goal subset is empty. The per-instance comparison is depicted in Figure 14. With
GBFS(hFF) finding a plan is more efficient than proving unsolvability. As seen in the top
left of Figure 14, the time per goal lattice node for SysS is up to one magnitude faster than
for SysW. For all approaches, the number of solved instances decreases when the cost
bound increases. This is expected for SysS, but not necessarily for SysW. We would expect
a smaller number of meta-search nodes and thus fewer solvability checks to lead to more
solved instances; however, the search space size for each solvability check is larger for
larger cost bounds and the lower number of solvability checks cannot compensate for the
longer time needed per check. A comparison of the symbolic and explicit search methods
(see bottom of Figure 13) demonstrated the advantage of the symbolic approach. While
explicit search can be up to two orders of magnitude faster in certain instances, the symbolic
approach can be up to three orders of magnitude faster.

Next we analyze the performance of the different GSBNB configurations in more detail.
First we evaluate the impact of the guidance heuristic. In Figure 15 we compare the explored
state space size and the search time per state for the different guidance options, i. e. no
guidance, a shared heuristic for guidance and pruning, and hFF for guidance. Using a
guidance heuristic has clearly a positive effect on the search space size. Overall using hFF

for guidance decreases the search space by up to one order of magnitude. When using
the same heuristic for pruning and guidance, hmax and hcar perform slightly better than hpot.
Using hFF for guidance instead of the pruning heuristic has hardly any impact on the number
of explored states (see right column of Figure 15). However, computing hFF in addition to
the pruning heuristic can lead to a significant increase in the time required per state, up to
an order of magnitude more using hmax and up to two when using hpot and hcar.

4.3. COMPUTATIONAL EVALUATION 67

10−2 100 102 104

10−2

100

102

104

SysS

Sy
sW

GBFS(hFF)

10−2 100 102 104

10−2

100

102

104

SysS

Sy
sW

symbolic

10−2 100 102 104

10−2

100

102

104

symbolic

G
B
F
S
(h

FF
)

SysW: symbolic vs GBFS(hFF)

10−2 100 102 104

10−2

100

102

104

symbolic

G
B
F
S
(h

FF
)

SysS: symbolic vs GBFS(hFF)

x = 0.25 x = 0.5 x = 0.75

Figure 14: Comparison of time per solvability check of goal lattice node. Cost bounds set to
x times the best known plan cost, encoded by color. Top: comparison between SysS and
SysW; Bottom: comparison between GBFS(hFF) and Sym.

To evaluate the impact of the pruning, we compare in Figure 16 the search space sizes
and search time per state for GSBNB with hmax, hpot and hcar used for pruning and no
guidance to GSBNB with no pruning and no guidance. All heuristics effectively reduce the
search space size compared to the blind heuristic. hpot performs best, followed by hcar, and
then hmax. Using hmax,hpot and hcar reduces the search space size up to 2, 1, and 1 orders
of magnitude, respectively, while on the other hand increasing the search time per state by
up to 3, 1 and 1 orders of magnitude, respectively. Comparing the heuristics between each
other, reveals that hmax and hcar are similarly informed, while hcar is much faster to compute.
hpot is even faster to compute, but is less informed overall.

68 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

se
ar

ch
sp

ac
e

siz
e

(#
st

at
es

)
tim

e
pe

rs
ta

te
(s

)
se

ar
ch

sp
ac

e
siz

e
(#

st
at

es
)

tim
e

pe
rs

ta
te

(s
)

se
ar

ch
sp

ac
e

siz
e

(#
st

at
es

)
tim

e
pe

rs
ta

te
(s

)

h
m

a
x

h
p
o
t

h
c
a
r

100 102 104 106 108

100

102

104

106

108

GSBnB(hmax, blind)

G
SB

nB
(h

m
a
x
,h

m
a
x
)

10−5 10−3 10−1

10−5

10−3

10−1

GSBnB(hmax, blind)

G
SB

nB
(h

m
a
x
,h

m
a
x
)

100 102 104 106 108

100

102

104

106

108

GSBnB(hmax, blind)

G
SB

nB
(h

m
a
x
,h

ff)

10−5 10−3 10−1

10−5

10−3

10−1

GSBnB(hmax, blind)

G
SB

nB
(h

m
a
x
,h

ff)

100 102 104 106 108

100

102

104

106

108

GSBnB(hmax, hmax)

G
SB

nB
(h

m
a
x
,h

ff)

10−5 10−3 10−1

10−5

10−3

10−1

GSBnB(hmax, hmax)

G
SB

nB
(h

m
a
x
,h

ff)

100 102 104 106 108

100

102

104

106

108

GSBnB(hpot, blind)

G
SB

nB
(h

p
o
t
,h

p
o
t
)

10−5 10−3 10−1

10−5

10−3

10−1

GSBnB(hpot, blind)

G
SB

nB
(h

p
o
t
,h

p
o
t
)

100 102 104 106 108

100

102

104

106

108

GSBnB(hpot, blind)

G
SB

nB
(h

p
o
t
,h

ff)

10−5 10−3 10−1

10−5

10−3

10−1

GSBnB(hpot, blind)

G
SB

nB
(h

p
o
t
,h

ff)

100 102 104 106 108

100

102

104

106

108

GSBnB(hpot, hpot)

G
SB

nB
(h

p
o
t
,h

ff)

10−5 10−3 10−1

10−5

10−3

10−1

GSBnB(hpot, hpot)

G
SB

nB
(h

p
o
t
,h

ff)

100 102 104 106 108

100

102

104

106

108

GSBnB(hcar, blind)

G
SB

nB
(h

c
a
r
,h

c
a
r
)

10−5 10−3 10−1

10−5

10−3

10−1

GSBnB(hcar, blind)

G
SB

nB
(h

c
a
r
,h

c
a
r
)

100 102 104 106 108

100

102

104

106

108

GSBnB(hcar, blind)

G
SB

nB
(h

c
a
r
,h

ff)

10−5 10−3 10−1

10−5

10−3

10−1

GSBnB(hcar, blind)

G
SB

nB
(h

c
a
r
,h

ff)

100 102 104 106 108

100

102

104

106

108

GSBnB(hcar, hcar)

G
SB

nB
(h

c
a
r
,h

ff)

10−5 10−3 10−1

10−5

10−3

10−1

GSBnB(hcar, hcar)

G
SB

nB
(h

c
a
r
,h

ff)

x = 0.25 x = 0.5 x = 0.75

Figure 15: Per-instance comparison of number of expanded states and search time per
state for GSBNB with hmax, hpot and hcar as pruning heuristic and either no guidance (blind)
or same guidance and pruning heuristic or hFF as guidance. GSBNB(hp, hg) where hp is
used for pruning and hg for guidance.

4.3. COMPUTATIONAL EVALUATION 69

se
ar

ch
sp

ac
e

siz
e

(#
st

at
es

)
tim

e
pe

rs
ta

te
(s

)
se

ar
ch

sp
ac

e
siz

e
(#

st
at

es
)

tim
e

pe
rs

ta
te

(s
)

100 102 104 106 108

100

102

104

106

108

GSBnB()

G
SB

nB
(h

m
a
x
)

10−5 10−3 10−1

10−5

10−3

10−1

GSBnB()

G
SB

nB
(h

m
a
x
)

100 102 104 106 108

100

102

104

106

108

GSBnB()

G
SB

nB
(h

p
o
t
)

10−5 10−3 10−1

10−5

10−3

10−1

GSBnB()

G
SB

nB
(h

p
o
t
)

100 102 104 106 108

100

102

104

106

108

GSBnB()

G
SB

nB
(h

c
a
r
)

10−5 10−3 10−1

10−5

10−3

10−1

GSBnB()

G
SB

nB
(h

c
a
r
)

100 102 104 106 108

100

102

104

106

108

GSBnB(hmax)

G
SB

nB
(h

c
a
r
)

10−5 10−3 10−1

10−5

10−3

10−1

GSBnB(hmax)

G
SB

nB
(h

c
a
r
)

100 102 104 106 108

100

102

104

106

108

GSBnB(hmax)

G
SB

nB
(h

p
o
t
)

10−5 10−3 10−1

10−5

10−3

10−1

GSBnB(hmax)

G
SB

nB
(h

p
o
t
)

100 102 104 106 108

100

102

104

106

108

GSBnB(hcar)

G
SB

nB
(h

p
o
t
)

10−5 10−3 10−1

10−5

10−3

10−1

GSBnB(hcar)

G
SB

nB
(h

p
o
t
)

x = 0.25 x = 0.5 x = 0.75

Figure 16: Per instance comparison of number of expanded states and search time per
state for GSBNBwith hmax, hpot and hcar as pruning heuristic (GSBNB(h)) and no guidance
to GSBNB with no guidance and no pruning (GSBNB()).

70 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

COMPARISON TO OSP PLANNING

By computing all maximal solvable goal subsets (MSGS), we also compute a plan for
a largest solvable soft goal subset. We evaluate how our best-performing approaches
compare to the state-of-the-art OSP planner. For this comparison, we use the same
benchmark as before and assign a utility of one to each goal fact. As cost bound, we use
b = x ∗ c where x ∈ {0.25, 0.5, 0.75} and c is the best-known solution cost. Our version is
publicly available6. This differs from the benchmark set used by [Katz et al., 2019], in that
they introduce additional goal facts not present in the original IPC instances.

We are comparing to two different approaches for OSP planning, one based on symbolic
search and one based on an explicit branch-and-bound search. The approach by Katz et al.
[2019] (BnB7) uses a branch-and-bound search on a reformulation of the OSP task with
multiple cost functions, but no utility function. They use two heuristics, one for guidance
and one for pruning. We use the best-performing configuration using the blind heuristic for
both. The state-of-the-art OSP planner (Sym8) by Speck and Katz [2021], is similar to our
symbolic approach, performing an exhaustive symbolic forward search. However, since
they only try to find one goal subset with the highest utility, or in the spacial case here, the
largest goal subset, they keep track of it during the state space exploration instead of the
extraction during GLS as in our case.

We use our most effective approaches based on GLS using symbolic search (SysS
and SysW), and GSBNB, with the same heuristic for guidance and pruning, hpot and hcar.
To provide an optimal plan to a MSGS with maximal size, the following modifications are
made. For GLS, during the goal lattice exploration a maximally sized MSGS is collected
and afterwards a plan to it is extracted as done in symbolic search for a classical task. In
GSBNB, we maintain a currently maximally sized MSGS and the state in which it is satisfied
during the states space exploration. After the search, the optimal plan leading to that state
is reconstructed.

Table 4 contains the coverage results. An instance counts as solved if an optimal plan
for a largest soft goal subset could be computed within the time and memory limit. BnB is
for all cost bounds the worst performing approach. Sym performs better for a cost bound
of 0.75, solving 29 instances more than our best approach GSBNB(hcar). For the smaller
cost bounds we outperform Sym by solving 57 and 54 additionally instances for cost bounds
0.25 and 0.5 respectively.

As shown in Table 5, we examine the number of domains where each approach performs
best. It shows that our MUGS computation approaches, especially GSBNB, are orthogonal
to Sym. For the smaller cost bounds of 0.25 and 0.5, GSBNB performs better in significantly
more domains than Sym. For the largest cost bound of 0.75, Sym and GSBNB(hcar) are
orthogonal, performing better in 21 and 18 tasks respectively.

This indicates, that computing allMUGS has in practice a similar difficulty to solving the
OSP task itself.

6https://doi.org/10.5281/zenodo.14988342
7https://doi.org/10.5281/zenodo.3359211
8https://github.com/speckdavid/symbolic-osp

https://doi.org/10.5281/zenodo.14988342
https://doi.org/10.5281/zenodo.3359211
https://github.com/speckdavid/symbolic-osp

4.3. COMPUTATIONAL EVALUATION 71

x
=

0.
25

x
=

0.
5

x
=

0.
75

O
S

P
M

U
G

S
O

S
P

M
U

G
S

O
S

P
M

U
G

S
S

ym
B

nB
G
L
S

G
S

B
N

B
S

ym
B

nB
G
L
S

G
S

B
N

B
S

ym
B

nB
G
L
S

G
S

B
N

B
do

m
ai

n
S

ys
W

S
ys

S
h

po
t

h
ca

r
S

ys
W

S
ys

S
h

po
t

h
ca

r
S

ys
W

S
ys

S
h

po
t

h
ca

r

A
gr

ic
ol

a(
20

)
6

0
20

20
20

20
6

0
20

20
20

20
6

0
20

20
17

12
A

irp
or

t(5
0)

22
27

23
23

29
33

20
24

21
21

27
27

20
21

19
18

24
25

B
ar

m
an

(3
4)

15
10

24
24

18
25

11
7

13
13

11
11

11
4

11
11

4
8

B
lo

ck
sw

or
ld

(3
5)

35
35

32
35

35
35

28
27

29
29

29
29

21
21

23
23

21
22

C
hi

ld
sn

ac
k(

20
)

6
0

6
6

2
2

4
0

4
4

0
0

4
0

4
4

0
0

D
at

a-
N

et
w

or
k(

20
)

14
4

19
19

19
20

14
1

17
17

17
17

14
1

13
13

13
15

D
ep

ot
s(

22
)

14
16

15
15

17
18

7
11

11
9

12
12

5
7

7
7

7
7

D
riv

er
lo

g(
18

)
15

15
15

15
15

15
14

13
14

14
14

14
11

10
12

12
11

12
E

le
va

to
rs

(3
0)

21
18

30
30

30
30

14
10

25
25

25
25

14
10

24
24

24
24

Fl
oo

rt
ile

(3
6)

9
7

11
18

16
16

2
2

11
9

6
6

2
2

6
4

2
2

Fr
ee

C
el

l(8
0)

65
76

76
76

80
80

24
29

29
29

71
36

15
20

19
18

31
22

G
E

D
(2

0)
20

20
15

20
20

20
20

20
15

19
20

20
20

20
15

15
20

20
G

rid
(5

)
5

5
5

5
5

5
3

3
3

3
3

4
2

2
2

2
2

3
G

rip
pe

r(
14

)
14

11
6

10
7

7
14

8
8

8
6

6
14

8
10

7
6

6
H

ik
in

g(
20

)
19

18
19

19
20

20
16

14
16

17
16

18
15

12
15

15
13

14
Lo

gi
st

ic
s(

61
)

34
27

37
38

33
36

26
20

26
26

21
24

21
14

23
23

18
19

M
ic

on
ic

(1
50

)
13

2
94

75
11

0
93

93
10

1
64

90
89

64
65

95
55

94
77

55
55

M
ov

ie
(3

0)
30

30
30

30
30

30
30

30
30

30
30

30
30

30
30

30
30

30
M

pr
im

e(
35

)
35

35
35

35
35

35
31

28
34

34
33

35
27

24
28

29
28

31
M

ys
te

ry
(1

9)
19

19
19

19
19

19
18

19
19

19
19

19
15

17
17

17
18

19
N

om
ys

te
ry

(2
0)

20
20

20
20

20
20

16
14

16
16

14
18

12
9

12
12

10
12

O
pe

ns
ta

ck
s(

58
)

58
44

17
38

45
50

55
42

17
38

40
40

54
42

19
38

36
36

O
rg

-s
yn

-s
(1

5)
10

9
8

8
13

10
10

9
8

8
10

9
10

9
8

8
9

9
P

ar
cp

rin
te

r(
15

)
15

9
7

9
15

15
15

9
7

7
13

14
15

9
7

7
12

12
P

ar
ki

ng
(4

0)
16

25
14

22
26

26
0

2
2

2
7

7
0

0
0

0
1

1
P

at
hw

ay
s(

24
)

7
5

7
7

5
6

5
4

5
5

4
5

5
4

5
5

4
4

Pe
gs

ol
(2

)
2

2
0

1
2

2
2

2
0

1
2

2
2

2
0

0
2

2
P

ip
es

-N
oT

an
k(

50
)

40
45

45
45

46
46

23
30

29
29

36
36

16
21

22
22

24
24

P
ip

es
-T

an
k(

50
)

37
33

41
41

40
38

20
18

24
24

24
24

17
16

18
18

16
16

P
S

R
(5

0)
50

50
48

48
50

50
50

50
48

48
50

50
50

50
48

48
50

50
R

ov
er

s(
31

)
19

15
19

19
16

16
14

8
14

14
9

9
14

6
14

14
7

7
S

at
el

lit
e(

19
)

16
9

12
15

11
11

11
7

12
12

7
7

7
6

7
7

6
6

S
ca

na
ly

ze
r(

22
)

10
10

4
11

14
13

10
10

10
10

10
10

10
10

10
4

10
10

S
na

ke
(1

7)
17

17
6

8
17

17
10

17
8

7
15

15
7

14
6

6
10

10
S

ok
ob

an
(3

0)
30

30
30

30
30

30
30

30
27

27
30

30
30

30
23

23
26

28
S

pi
de

r(
12

)
12

12
0

6
12

12
12

12
0

6
12

12
12

12
0

6
11

11
S

to
ra

ge
(3

0)
18

20
19

20
22

22
16

17
17

17
18

18
15

15
16

16
16

16
Te

rm
es

(2
0)

20
19

20
20

20
20

17
15

18
18

16
16

15
12

15
15

11
12

Te
tr

is
(1

7)
10

16
7

15
16

16
6

10
8

9
13

13
5

7
8

7
10

11
Ti

dy
bo

t(3
0)

30
30

30
30

30
30

22
29

27
27

29
29

12
24

19
19

24
26

TP
P

(3
0)

12
9

12
12

13
13

8
7

8
8

8
8

8
6

8
8

8
7

Tr
an

sp
or

t(5
9)

19
13

36
36

36
35

18
13

26
26

26
26

19
13

23
23

31
25

Tr
uc

ks
(3

0)
15

14
17

19
15

15
10

8
12

12
9

9
9

6
9

9
8

8
V

is
ita

ll(
13

)
13

13
6

10
13

13
13

13
8

10
10

10
13

12
10

9
10

10
W

oo
dw

or
ki

ng
(2

0)
20

7
5

12
18

18
20

7
8

8
12

12
20

7
8

7
10

11
Ze

no
tra

ve
l(2

0)
13

13
14

14
13

13
12

10
12

12
12

12
9

8
10

10
9

9
su

m
(1

44
3)

10
59

95
6

95
6

10
83

11
01

11
16

82
8

72
3

80
6

83
6

88
0

85
9

74
8

62
8

71
7

71
0

71
5

71
9

Table 4: Coverage comparison of cardinal maximal OSP planning to allMUGS computation
on IPC benchmarks modified with a plan-cost bound. Cost bounds set to x times the best
known plan cost. Best performance within each cost bound shown in boldface.

72 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

x
=

0
.2
5

x
=

0
.5

x
=

0
.7
5

OSP MUGS

Sym BnB GLS GSBNB

SysW SysS hpot hcar

O
S

P Sym - 7 15 18 18 18

BnB 22 - 17 20 26 27

M
U

G
S G
LS

SysW 17 19 - 19 24 26

SysS 12 12 0 - 19 21

B
nB

hpot 9 2 9 12 - 7

hcar 8 2 9 12 4 -

be
st among 25 16 17 22 29 30

single 5 0 0 3 2 4

OSP MUGS

Sym BnB GLS GSBNB

SysW SysS hpot hcar

O
S

P Sym - 10 21 22 18 21

BnB 26 - 23 23 27 30

M
U

G
S G
LS

SysW 13 14 - 7 19 23

SysS 13 15 4 - 18 22

B
nB

hpot 14 4 13 14 - 8

hcar 13 4 10 10 2 -

be
st among 21 11 21 20 26 29

single 5 1 1 0 1 4

OSP MUGS

Sym BnB GLS GSBNB

SysW SysS hpot hcar

O
S

P Sym - 8 17 17 14 18

BnB 26 - 27 24 22 26

M
U

G
S G
LS

SysW 15 13 - 3 18 21

SysS 16 15 9 - 19 22

B
nB

hpot 21 7 18 20 - 16

hcar 20 6 17 18 4 -

be
st among 24 9 22 20 13 19

single 7 1 1 0 2 7

Table 5: Comparison of in how many domains out of 45 each algorithm solves more
instances, from top to bottom for cost bounds 0.25, 0.5 and 0.75. Value v in row ar and
column ac, means than algorithm ac solved in v domains more instances than algorithm ar.
The last two rows depict in how many domains each algorithm is among the best performing
algorithms and the single best performing algorithm respectively.

4.3. COMPUTATIONAL EVALUATION 73

4.3.2 TEMPORAL GOALS

In the conflict analysis, we have previously focused on soft goals, represented by individual
facts, such as image-ice = uploaded. However, often this is not sufficient to fully express
a user’s preferences. For example, it does not capture preferences like the image-ice to
be uploaded before soil-sample-ice or that the rover never visiting the crater. In the
following, we discuss two languages for defining such temporal goals and how they can be
compiled into the planning task, to make them accessible to the conflict analysis.

COMPILING TEMPORAL GOALS INTO GOAL FACTS

To include temporal goals in the conflict analysis, it is necessary to indicate their satisfaction
by a single fact gpt . These facts can then be incorporated as soft goals in Gsoft, and the
corresponding MUGS can be computed with one of the introduced algorithms. To apply this
procedure, a temporal goal compilation must satisfy the following constraints.

DEFINITION 25: TEMPORAL GOAL COMPILATION

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task and pt a temporal goal. Then
the task τpt = (Vpt , Apt , cpt , Ipt , G

hard
pt , Gsoft

pt , bpt) with gpt ∈ Gsoft
pt is a temporal goal

compilation of pt with plan mapping β : A∗
pt 7→ A∗ where X∗ is any sequence of

elements from X, if

(1) ∀π ∈ Π(τ) : π � pt → ∃π′ ∈ Π(τpt) : β(π) = π′ ∧ gpt ∈ IptJπ′K.

(2) Π(τ) = {β(π′) | π′ ∈ Π(τpt)},

(3) ∀π ∈ Π(τpt) : G
soft ∩ IptJπK = Gsoft ∩ IJβ(π)K

Condition (1) ensures that for all plans that satisfy the temporal goal pt, there is a corre-
sponding plan in the compilation that satisfies the fact gpt . The compilation must preserve
the plans (2) and the achieved soft goals (3). Otherwise, the compilation would compromise
the satisfiability of soft goal subsets and introduce new conflicts that are not necessarily
caused by the unsatisfiability of pt.

PROPOSITION 9: TEMPORAL GOAL COMPILATION: MUGS CORRECTNESS

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task and pt a temporal goal and task
τpt = (Vpt , Apt , cpt , Ipt , G

hard
pt , Gsoft

pt , bpt) with gpt ∈ Gsoft
pt a temporal goal compilation

of pt. Then

GMUGS(τpt) = GMUGS(τ) ∪ {G ∪ gpt | G ⊆ Gsoft ∧ IS-MUGS(G, pt)}

where IS-MUGS(G, p) = (∀π ∈ Π(τ) : G ⊆ IJπK → π 2 p) ∧ (∀G′ (G : ∃π ∈
Π(τ) : G′ ⊆ IJπK ∧ π � p)

74 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

Proof:
Let (1), (2) and (3) be the requirements from Definition 25.

⊇: Let C ∈ GMUGS(τ). C is unsolvable and minimal in τpt , because based on (2)
and (3) all soft goal subsets G ⊆ Gsoft that are solvable/unsolvable in τ are also
solvable/unsolvable in τpt .

Let C ∈ {G∪ gpt | G ⊆ Gsoft ∧ IS-MUGS(G, pt)}. C is unsolvable in τpt . All plans
π ∈ Π(τ) that satisfy C \ {gpt} do not satisfy pt and from (2) follows for all plans
π ∈ Π(τpt) : β(π) 2 pt → gpt /∈ Igpt JπK. Thus, based on (2) and (3) there is no
π ∈ Π(τpt) such that C ⊆ Igpt JπK. C is minimal because for all G′ (C there
exists a plan π ∈ Π(τpt) such that G′ ∪ {gpt} ⊆ IptJπK. This holds, because there
exists a π ∈ Π(τ) such that G′ ⊆ IJπK ∧ π � pt. From (1) follows there exists a
plan π′ ∈ Π(τpt) such that gpt ∈ IptJπ′K and because of (2) and (3) G′ ⊆ IptJπ′K.

⊆: Let C ∈ GMUGS(τpt). This means there is no plan π ∈ Π(τpt) such that, C ⊆
IptJπK.

gpt /∈ C: C is unsolvable and minimal in τ because of (2) and (3) in and thus
C ∈ GMUGS(τ).

gpt ∈ C: For all plans π′ ∈ Π(τpt) where C \ {gpt} ⊆ IptJπ′K it holds gpt /∈ IptJπ′K.
From (2) and (3) in follows that C \ {gpt} ⊆ IJβ(π′)K and from (1) that
β(π′) 2 pt. (Otherwise there would be a plan in Π(τpt) that satisfies C.) For
all G (C, G ∪ {gpt} is solvable τpt because C is minimal. Thus, from (2)
and (3) in follows that there exists a plan π such that G ⊆ IJπK and from (1)
that π � gpt .

�

In the following we discuss two languages, to define temporal goals, provide compilations
into soft goal facts and evaluate their performance with different allMUGS computation
approaches. First, we explore LTLf, a version of Linear Temporal Logic (LTL) [Huth and
Ryan, 2004] for finite traces. LTLf allows the expression of complex temporal soft goals.
Secondly, we consider a simpler language based on used action subsets. While less
expressive, it can lead to a more efficient compilation.

LTLF SOFT GOALS

A common language to express temporal preferences over infinite traces in model checking
is Linear Temporal Logic (LTL) [Huth and Ryan, 2004]. In planning, however, plans represent
finite traces. We follow Baier and McIlraith [2006a] and adopt their finite LTL (LTLf) language.
It is an adaptation of LTL with a semantic over finite traces. For syntax and semantics
of LTLf, we refer to Section 3.2. Example 11 outlines some temporal preferences for our
running example, expressed in LTLf.

4.3. COMPUTATIONAL EVALUATION 75

EXAMPLE 11: TEMPORAL SOFT GOALS USING LTLF

We give examples of some commonly used temporal goals, also provided as temporal
preferences in PDDL3 [Gerevini et al., 2009] and possible instantiations in our running
example. We assume that there are multiple rovers.

• Never: �¬a

– Do not use the connection between the crater and the rock:
�¬(drive(crater1, rock) ∨ drive(rock, crater1))

– The rovers should never be at the same location:
�¬(

∨
l∈DR

R1 = l ∧ R2 = l)

• Eventually: ♦a

– Rover R1 should visit the rock: ♦R1 = rock

– Rover R1 should take the image-ice: ♦image(R1, image-ice)

• a before b: ¬b U a

– image-ice uploaded before the soil-sample-rock:
¬(soil-sample-rock = upload) U (image-ice = upload)

• At most once a: �(a→ (a W �¬a))

– Visit the rock at most once:
�((R1 = rock∨R2 = rock)→ ((R1 = rock∨R2 = rock) W �¬(aR1 =

rock ∨ R2 = rock)))

More examples for commonly used LTLf templates can be found in Table 14 and the
temporal soft goals we used in our evaluation in Table 16.

LTLf is interpreted over states. To include actions, as in some examples in Example 11, you
can add action effects that identify the last action applied.

DEFINITION 26: APPLIED ACTIONS COMPILATION

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task and Ā ⊆ P(A) a set of action
subsets. Then τ ′ = (V ′, A′, c, I ′, Ghard, Gsoft, b) with VĀ = {vA | A ∈ Ā} and
D(vA) = {>,⊥} for every A ∈ Ā

• V ′ = V ∪ VĀ

• I ′ = I ∪ {vA = ⊥ | vA ∈ VĀ}

• A′ = {a′ | a ∈ A}

– prea′ = prea

76 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

– eff a′ = eff a ∪ {vA = >|vA ∈ VĀ, a ∈ A} ∪ {vA = ⊥|vA ∈ VĀ, a /∈ A}

is the applied actions compilation for action subsets Ā.

A common approach to compile LTLf soft goal pt into a planning task τ with actions A has
two steps:

(1) Produce an automaton accepting traces that satisfy the LTLf soft goal pt.

(2) Compile the automaton into additional variables and actions Apt and enforce an alter-
nating execution of actions in Apt and A.

For step (1) we use Baier and McIlraith [2006a]’s tool. It produces a non-deterministic finite
automaton (NFA). For step (2), we cannot use Baier and McIlraith [2006a] compilation as it
relies on PDDL axioms [Thiebaux et al., 2005] which we do not support. Instead, we are
using a compilation introduced by Edelkamp [2006], as it only adds and modifies variables
and actions. In the following, we assume that the NFA guards are given in disjunctive normal
form with only positive literals.

DEFINITION 27: LTLF-COMPILATION BASED ON EDELKAMP [EDELKAMP, 2006]

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task and GLTLf a set of LTLf temporal
goals. Given N a list of NFAs N i = (Si,Σ, T i, si0, S

i
a) accepting traces satisfying

LTLf soft goals pit ∈ GLTLf , then τ ′ = (V ′, A′, c′, I ′, Ghard′, Gsoft′, b) is the LTLf-
compilation where

• V ′ = V ∪
⋃

N∈N {vSN , vaN }∪{sync} whereD(v
SNi) = Si, D(vaN) = {>,⊥}

and D(sync) = N ∪ {τ}

• A′ = Aτ ∪
⋃

N i∈N 〉 AN

– Aτ = {aτ | a ∈ A}

* preaτ = prea ∪ {sync = τ}

* eff aτ = eff a ∪ {sync = N0}

– AN i = {act | t = (s, g, s′) ∈ T i, c ∈ g}

* preact = {S
N i

= s, sync = N i} ∪ c

* eff act
= {SN i

= s′} ∪ {vai = (s′ ∈ S
aNi)} ∪

{sync = x | x = N i+1 if N i+1 ∈ N else τ}

• c′(a) = 0 for all a ∈
⋃

N i∈N 〉 AN and c′(a) = c(a) for all a ∈ Aτ

• I ′ = I ∪ {sync = N0} ∪ {v
sN

i
0

= >, v
aNi = ⊥ | N i ∈ N}

• Ghard′ = Ghard ∪ {sync = τ}

• Gsoft′ = Gsoft ∪ {v
aNi = > | N i ∈ N}

4.3. COMPUTATIONAL EVALUATION 77

To satisfy Definition 25 it is necessary that sync = τ is a hard goal. Otherwise, it is not
guaranteed, that all NFAs have been evaluated before vai = > is used to check if pit is
satisfied.

Another important detail is that, as temporal goals are soft goals in our context, we
need to continue search paths even when one of the automata cannot reach an accepting
state anymore. Edelkamp [2006] achieves this by adding an action for each automaton that
results in a dead state, allowing future synchronizations with that automaton to be skipped.
Instead, we address this problem in step (1) by converting Baier and McIlraith [2006a] initial
NFA into a complete NFA. This means that there is an applicable transition in each state.
This is a standard operation that adds a new state with a self-loop with guard true, which is
reached via a new transition if none of the existing transitions are applicable.

PROPOSITION 10: CORRECTNESS LTLF COMPILATION

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task, GLTLf a set of LTLf temporal
goals and τ ′ = (V ′, A′, c′, I ′, Ghard′, Gsoft′, b) is the LTLf-compilation based on Defi-
nition 27.
Let the plan mapping β : A′∗ 7→ A∗ be defined as β(π = a0 · · · an) = β(a0) · · ·β(an)
with

β(a) =

{
ε if a ∈ AN

a′ with pre′a = prea[A] and eff ′
a = eff a[A] otherwise

where P [V] is the projection of partial assignment P to the variables in V .
Task τ ′ is a temporal goal compilation according to Definition 25.

For the proof see Appendix A.2.1.

ACTION-SET SOFT GOALS

Two very common temporal goals are to eventually perform action a and to never perform
action a, which correspond to the LTLf formulas ♦a and �¬a. For example, the temporal
goals can be used to express that the rover should visit a certain place or that a certain
connection must be avoided, see Example 11. To determine whether these temporal goals
are satisfied, it is not necessary to know the sequence of events but only whether they
appeared. For this special case we introduce Action-Set soft goals.

DEFINITION 28: ACTION-SET SOFT GOALS

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task, Π its set of plans, and
A1, . . . , An ⊆ A.
An Action-Set soft goal for τ and A1, . . . , An is a function gφ : Π→ {>,⊥}. φ is a
propositional formula over the atoms A1, . . . , An, and gφ(π) = > iff φ evaluates to
> under the truth value assignment where Ai is > iff π contains at least one action
from Ai.

78 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

Action-Set soft goals are compiled by introducing two phases: the planning phase and the
evaluation phase, and an action to switch from planning to evaluation phase. One variable
isUsed i per action set tracks during the planning phase which action sets have been used.
In the evaluation phase actions evaluate each gφ based on the isUsed i flags (following
[Gazen and Knoblock, 1997, Nebel, 2000]). The result is stored in isTrueφ which can be
used as a soft goal. In the compilation, we assume that φ is given in disjunctive normal
form.

DEFINITION 29: ACTION-SET COMPILATION

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task. Let GAS be a set of Action-Set
soft goals and A1, . . . , An ⊆ A the used action subsets.
Then τ ′ = (V ′, A′, c′, I ′, Ghard′, Gsoft′, b) is the compilation where

• V ′ = V ∪ {phase} ∪
⋃

Ai
{isUsed i} ∪

⋃
gφ∈GAS

{isTrueφ}
where D(isUsed i) = D(isTrueφ) = {>,⊥} and D(phase) = {plan, eval}

• A′ = Aτ ∪ {acp} ∪
⋃

gφ∈GAS
Agφ

– Aτ = {aτ |a ∈ A}

* preaτ = prea ∪ {phase = plan}

* eff aτ = eff a

– acp

* preacp = {phase = plan}

* eff acp = {phase = eval}

– Agφ = {aC | C ∈ clauses of φ}

* preaC = {isUsed i = > | Ai ∈ C} ∪ {isUsed i = ⊥ | ¬Ai ∈ C}

* eff at = {isTrueφ = >}

• c′(a) = 0 for all a ∈ {acp} ∪
⋃

gφ∈GAS
Agφ and c′(a) = c(a) for all a ∈ Aτ

• I ′ = I ∪ {phase = plan} ∪ {isUsed i = ⊥ | Ai} ∪
{isTrueφ = ⊥ | gφ ∈ GAS}

• Ghard′ = Ghard

• Gsoft′ = Gsoft ∪ {isTrueφ = > | gφ ∈ GAS}

PROPOSITION 11: CORRECTNESS ACTION-SET COMPILATION

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task, GLTLf a set of LTLf temporal
goals and τ ′ = (V ′, A′, c′, I ′, Ghard′, Gsoft′, b) is the Action-Set compilation based on
Definition 29.

4.3. COMPUTATIONAL EVALUATION 79

The plan mapping β : A′∗ 7→ A∗ is given by β(π = a0 · · · an) = β(a0) · · ·β(an) with

β(a) =

{
ε if a ∈ Agφ

a′ with pre′a = prea[A] and eff ′
a = eff a[A] otherwise

where P [V] is the projection of partial assignment P to the variables in V .
Task τ ′ is a temporal goal compilation according to Definition 25.

For the proof see Appendix A.2.1.

LTLf is more expressive than Action-Set goals. Every Action-Set goal gφ can be expressed
as an LTLf goal. To do so, φ is transformed into disjunctive/conjunctive normal form and
every Ai is replaced by a ♦Ai and every ¬Ai by a �¬Ai.

In the following section, we evaluate the scalability of our algorithms with respect to the
number of temporal goals and compare the LTLf and Action-Set compilation.

EXPERIMENTS SETUP & BENCHMARK

We implemented both, the LTLf and Action-Set compilation in the Fast Downward9 translator
[Helmert, 2009] after the grounding step. This process requires the grounded PDDL instance
and a list of temporal soft goals as input, and outputs a modified task with single goal facts
for each temporal soft goal. To generate the NFAs, we use a tool developed by Camacho
[2017]. This tool provides a DFA that we pass to Spot (version 2.6.3) [Duret-Lutz et al.,
2022] to transform the DFS into a complete NFA.

The temporal goals are specified in JSON format and are passed to our extension of
Fast Downward as an additional input. For an example and the input definition, please refer
to Appendix A.2.2.

Benchmark We use 7 domains as a benchmark10. Nomystery, Rovers R and TPP,
as used by Nakhost et al. [2012] and, Blocksworld, all with two encoded resources for
trucks/rovers/hands. Rovers T and Satellite are based on the IPC domains, which have
been extended with encoded time windows for uploading data and capturing images.
Lastly, Parent’s Afternoon, a domain we developed for the user study (see Section 4.5). It
models the afternoon activities of a family where a subset of the activities is constrained
by time windows. All these domains have encoded constraints, i. e. resources or time, see
Section 5.4 for a detailed discussion. Thus, we do not use a cost bound, but rather choose
the constraints so tight, that not all soft goals are satisfiable.

Each problem has a fixed number of non-temporal goal facts (Blocksworld 8-13, No-
mystery 5-8, Parent’s Afternoon 4-8, Rovers R 5-7, Rovers T 4-8, Satellite 5-10, TPP 4-6).
Additionally, we generate two sets: onlyAS and all, each with up to 15 temporal goal facts
for every instance. The temporal goals are based on domain-dependent templates, which
are listed in the Appendix in Table 16. onlyAS includes only temporal goals that can be

9https://github.com/aibasel/downward
10https://doi.org/10.5281/zenodo.14988342

https://github.com/aibasel/downward
https://doi.org/10.5281/zenodo.14988342

80 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

encoded as Action-Set goals, while for all the selection is not restricted. The templates are
instantiated by randomly selected objects. We then generate 15 benchmark instances with
1 to 15 temporal goals based on a fixed sequence. Only instances that contain at least one
MUGS are included in the benchmark. All goals, temporal and non-temporal, are treated as
soft goals. The scripts for generating the instances and the temporal goal in both encodings
are publicly available11.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

5

10

20

50

100

200

400

#temporal goal facts

av
g

#
M

UG
S

Blocksworld Nomystery Parent’s A RoversR
RoversT Satellite TPP
onlyAS all

0

0.1

0.2 Blocksworld

0

0.1

0.2 Nomystery

0

0.1

0.2 Parent’s Afternoon

0

0.1

0.2 Rovers R

0

0.1

0.2 Rovers T

0

0.1

0.2 Satellite

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2 TPP

Figure 17: Left: Average number of MUGS over number of temporal goal facts per domain
of instances solved by SysS. Only data for number of temporal goal facts with more than
9 data points are displayed. Right: Histogram over explored goal lattice fraction for SysS
(blue) and SysW (red) in onlyAS.

The average number of MUGS over the number of temporal goals are depicted on the
left in Figure 17. As expected, for all domains the number of MUGS increases with the
number of temporal goals. However, the absolute numbers can vary significantly depending
on the domain. The constraint levels of the domains, i. e. the position of the border between
MUGS and MSGS in the goal lattice, affect the performance of algorithms, especially GLS.
The fraction of the goal lattice explored by SysS and SysW is shown on the right in Figure 17.
Nomystery has a more or less equal distribution. Blocksworld, Satellite, and TPP have more
large MUGS, while Parent’s Afternoon, Rovers R and Rovers T have smaller MUGS.

Algorithms In the following, we focus on the best-performing algorithms in the IPC
domains. Thus, we use goal lattice search with the symbolic approach to test for solvability
of each soft goal subset. Since it is not known in advance how constrained the instances
are, we use both expansion orders systematic strengthening SysS and weakening SysW.

For GSBNB, hcar is not suitable for pruning because the way the individual abstractions
are constructed, they favor good estimates for reachable states over proving unreachability.
Since our benchmark has encoded resource and time constraints, rather than an external
cost bound, only proof of unreachability, i. e. heuristic estimates of∞ for individual goals,

11https://doi.org/10.5281/zenodo.14989566

https://doi.org/10.5281/zenodo.14989566

4.3. COMPUTATIONAL EVALUATION 81

will contribute to pruning. For hpot, we consider a goal fact unreachable if its estimate is
above 108. For more details about hpot and dead-end detection we refer to [Seipp et al.,
2015]. However, it turned out that hpot is not suitable for instances with compiled temporal
goals. For a majority of the tasks the resulting LP exceeded the memory limit. Thus, we
only use hmax and the blind heuristic as a baseline.

OVERALL COVERAGE

First, we evaluate the overall coverage, the number of instances where the MUGS could
be computed within the specified time and memory limits. The coverage results for onlyAS
for both encodings and for all with the LTLf encoding are given in Table 6 and Table 7
respectively.

domain GSBNB(blind) GSBNB(hmax) SysS SysW
AS LTLf AS LTLf AS LTLf AS LTLf

on
ly

AS

Blocksworld(557) 250 351 247 308 173 168 169 165
Nomystery(575) 125 103 206 165 402 303 295 245
Parent’s A(730) 395 419 531 470 709 696 546 539
Rovers R (580) 211 289 247 298 505 501 296 295
Rovers T (777) 531 746 377 422 746 733 475 475
Satellite(596) 189 208 196 183 332 324 299 283
TPP(340) 124 136 173 192 240 216 231 220
sum (4155) 1825 2252 1977 2038 3107 2941 2311 2222

Table 6: Coverage results per domains of onlyAS, Action-Set (AS) vs. LTLf encoding.
The best performance within each algorithm is underlined, the best performance overall
algorithms per encoding is shown in boldface.

domain GSBNB(blind) GSBNB(hmax) SysS SysW

al
l

Blocksworld(545) 322 278 118 159
Nomystery(558) 65 120 240 228
Parent’s A(847) 383 498 701 509
Rovers R (561) 260 272 354 294
Rovers T (797) 765 445 679 461
Satellite(620) 258 248 343 299
TPP(394) 202 253 260 254
sum (4322) 2255 2114 2695 2204

Table 7: Coverage results per domains of all encoded as LTLf goal. The best performance
overall algorithms is shown in boldface.

Overall, the best approach is SysS, followed by SysW. Comparing the coverage between
Action-Set and LTLf encoding within each algorithm shows, that only blind state space search
prefers the LTLf encoding, with hmax it is domain dependent and goal lattice search (GLS)
performs better with Action-Set encoding. With the preferred encoding SysS performs best

82 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

in 6 domains and GSBNB(blind) in 1 for onlyAS. For all SysS solves most instances in 4,
GSBNB(blind) in 2 domains. Comparing GSBNB(blind) and GSBNB(hmax) shows that in
4 domains, Nomystery, Parent’s Afternoon, Rovers R and TPP, using pruning based on hmax

can improve the performance significantly. SysS performs significantly better than SysW in
Parent’s Afternoon, and the Rovers domains due to the smaller fraction of the goal lattice
that needs to be explored (see right Figure 17).

SCALING OVER NUMBER OF SOFT-GOALS

Next, we evaluate how many temporal goals are feasible. The coverage over the number of
temporal goals for onlyAS and all are depicted in Figure 18 and Figure 19 respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.5

1

#temporal goals

co
ve

ra
ge

in
%

GSBnB(blind)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.5

1

#temporal goals

GSBnB(hmax)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.5

1

#temporal goals

co
ve

ra
ge

in
%

SysS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.5

1

#temporal goals

SysW

Blocksworld Nomystery Parent’s A RoversR
RoversT Satellite TPP
Action Set LTLf

Figure 18: Relative Coverage over the number of temporal goals for onlyAS, Action-Set
encoding dashed, LTLf encoding solid lines.

For GSBNB(blind) and GSBNB(hmax), the decrease in solved instances is similar
across all domains, except for Rovers T. For most domains, there is no significant difference
between Action-Set and LTLf encoding for up to about 8 − 10 temporal goals. For more
temporal goals, the LTLf encoding has a clear advantage. For SysW, the coverage for
most domains with increasing numbers of goals only decreases slightly or not at all, until
a sudden drop. For SysS, this behavior is delayed until more soft goals are handled. For
GLS there is no advantage for the LTLf encoding for larger number of temporal soft goals.

4.3. COMPUTATIONAL EVALUATION 83

Overall, the most consistent advantage of the Action-Set encoding is in Nomystery.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.2

0.4

0.6

0.8

1

#temporal goals

co
ve

ra
ge

in
%

Blocksworld

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.2

0.4

0.6

0.8

1

#temporal goals

co
ve

ra
ge

in
%

Nomystery

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.2

0.4

0.6

0.8

1

#temporal goals

co
ve

ra
ge

in
%

Parent’s Afternoon

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.2

0.4

0.6

0.8

1

#temporal goals

co
ve

ra
ge

in
%

Rovers R

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.2

0.4

0.6

0.8

1

#temporal goals

co
ve

ra
ge

in
%

RoversT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.2

0.4

0.6

0.8

1

#temporal goals

co
ve

ra
ge

in
%

Satellite

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.2

0.4

0.6

0.8

1

#temporal goals

co
ve

ra
ge

in
%

TPP

GSBNB GSBNB(hmax)

SysS SysW

Figure 19: Relative Coverage over the number of temporal goals for all.

Figure 19 depicts the coverage comparison per domain on the all benchmark set. GLS
outperforms GSBNBconsistently for smaller number of soft goals. In Blocksworld GSBNB
performs better with 7 temporal goals, in Rovers R with 11 and in TPP and Rovers T with 12.
However, in Nomystery, Parent’s Afternoon and Satellite GSBNB does not surpass GLS.

84 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

PERFORMANCE ANALYSIS

To analyze the reason for performance differences depending on the encoding, we compare
the number of expansions and the search time for both encodings in Figure 20 for the
branch-and-bound approaches and in Figure 21 for GLS.

103 104 105 106 107 108

103

104

105

106

107

108

LTLf

Ac
tio

n-
Se

t

#expansions GSBnB(blind)

103 104 105 106 107 108

103

104

105

106

107

108

LTLf

Ac
tio

n-
Se

t

#expansions GSBnB(hmax)

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

LTLf

Ac
tio

n-
Se

t

search time GSBnB(blind)

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

LTLf

Ac
tio

n-
Se

t

search time GSBnB(hmax)

Blocksworld Nomystery Parent’s A RoversR
RoversT Satellite TPP

Figure 20: Instance wise comparison of number of expansions and search time for onlyAS,
between Action-Set encoding (y-axis) vs. LTLf encoding (x-axis)

It is important to note that the state space and thus search space sizes of the two
compilation approaches differ. For the LTLf encoding, there is one additional expansion for
each temporal goal due to the automaton synchronization. However, the order in which the
automata are evaluated is fixed. For the Action-Set encoding, there are additional states
during the planning phase, depending on the use of an action set, but no additional actions.
The new actions are limited to the evaluation phase. Since the evaluation order of the
temporal goals is not fixed, a larger number of them leads to a larger branching factor.

For GSBNB(blind), the number of expansions is comparable for both encodings. The
larger branching factor for the Action-Set encoding leads to a higher search time, particularly
in domains with many MUGS, Rovers T and Blocksworld. For GSBNB(hmax), except for
some instances mostly Rovers T and Blocksworld, the number of expansions is up to one

4.4. ITERATIVE PLANNING PLATFORM 85

10−2 10−1 100 101 102 103

10−2

10−1

100

101

102

103

LTLf

A
ct

io
n-

S
et

SysS

Blocksworld Nomystery Parent’s A RoversR

RoversT Satellite TPP

Figure 21: Instance wise comparison of time to constructed BDD for reachable search
space for onlyAS, between Action-Set encoding (y-axis) vs. LTLf encoding (x-axis)

order of magnitude larger for the LTLf encoding, indicating, that hmax performs better with
the Action-Set encoding. The smaller search space is also reflected in a shorter search
time, exceptions are some instances from Blocksworld and Rovers R. This shows that the
Action-Set encoding is overall more beneficial for hmax.

For GLS we compare the time it takes to generate the BDD representing the reachable
state space. The LTLf encoding takes overall up to 1 order of magnitude and for Nomystery
specifically up to 2 orders of magnitude longer. This clearly shows why Action-Set encoding
is more suitable for GLS.

4.4 ITERATIVE PLANNING PLATFORM

We implemented the web-based platform IPEXCO for Iterative Planning with Explanations
of COnflicts. It enables users to perform iterative planning with temporal soft goals and
provides explanations based on soft goal conflicts. The platform also supports unsupervised
online user studies by accommodating lay person, in addition to providing tools for defining
test instances and evaluating the performance of test persons in a controlled environment.

In the following, we first describe the workflow supported by the tool, and then the
extensions made to conduct user studies.

4.4.1 ITERATIVE PLANNING WORKFLOW

First we describe the full workflow supported by the tool. The target group of users is
people familiar with planning. The adaptations for a layperson taking part in a user study
are described in the next section.

Initially, the user provides a planning task. The domain and initial state are provided

86 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

as PDDL [Fox and Long, 2003] domain and problem file. Both are fixed and cannot be
changed during the iterative process. Hard and soft goals are defined separately and can
be changed for each iteration step, reflecting the evolution of user preferences. A sample
collection of goals is depicted in Figure 22.

Figure 22: A sample collection of goals as displayed by the platform. Each goal can be
associated with an integer utility and a color, icon and a class which can be used for a visual
grouping and reference. Global hard goals must be satisfied in each iteration step.

Goals are defined by explicitly stating the corresponding goal fact, Action-Set, or LTLf

formula. In addition, there exists the possibility to use domain-dependent templates. These
map a predefined natural language representation to the corresponding formula. The user
then only needs to select objects, pre-selected by type and further constraints, for each
parameter. An example of using such a template to create a goal for road usage is shown in
Figure 23. In this example, the location selection is restricted by their type and whether they
are connected. In the appendix, we provide sample templates in Table 16, and describe the
definition of such a template for IPEXCO in Section A.3.

Figure 23: Interface for goal definition based on natural language definition.

The iterative planning process is divided into individual steps. In each step, if possible,
a sample plan is provided. Based on this sample plan, the user decides which goals to
enforce in the next iteration step. While doing so, the user has access to the explanations

4.4. ITERATIVE PLANNING PLATFORM 87

based on the current sample plan. Figure 24 depicts a diagram visualizing the interaction
between the user and the platform within one iteration step. Figure 25 shows the main
interface for iterative planning implementing these interactions.

plan and question for iteration step i

g1
g3

g5

Genf
i

plan πi g1

g2

g3

g4

g5

g6

g7

Gsoft
i

explanation framework

Why not ? ...Because of ? ...

selection enforced soft goals
iteration step i+ 1

g1

g2

g3

g4

g5

g6

g7

Gsoft
i+1

g1
g3

g5

Genf
i+1

enforce ?disregard ?

add ?

remove ?

Figure 24: Diagram of supported iterative planning workflow with explanations for iteration
step δi in case a plan exists. Gtrue(πi) are represented by green circles and Gfalse(πi) by
red ones. Dashed arrows represent actions performed by the platform; solid arrows reflect
the interaction possibilities of the user.

At the beginning of each iteration step δi a plan πi, if possible, is computed for task
τi = (V,A, c, I,Ghard ∪Genf

i , Gsoft
i \Genf

i , b). Depending on whether there exists a plan, the
user is either provided with the soft goals satisfied Gtrue(πi) and not satisfied Gfalse(πi) by
plan πi (see column 2 of Figure 25) or with the fact, that there is no plan. In either case,
the user must decide which soft goals Genf

i+1 should be enforced in the next iteration (see
column 4 of Figure 25). They are not restricted to the existing soft goals Gsoft

i . They can
add new soft goals that they did not think of initially or that they did not consider relevant,
and they can remove soft goals that are no longer needed. This is done through a separate
interface shown in Figure 22.

While deciding which soft goals to add and enforce, the user can ask questions (see
column 3 of Figure 25). Note, that we decided to only consider the soft goals Gsoft

i in the
questions and answer in step δi. If there is no plan, the only available question is “Why is τi
unsolvable?”. The answer according to Definition 16 lists the MUGS that are part of Genf

i .
If there is a plan, then the user can ask “Why is Q not satisfied?”, where Q ⊆ Gfalse(πi).
Then based on Definition 15, an answer lists all subsets of Gtrue(πi) that can no longer be
satisfied if Q would be enforced. Since the soft goals can change between iteration steps,
we use the task transformation (Theorem 2) to provide the individual answers.

The explanation interface itself works as follows. To ask a question, the user selects a
soft goal g that is not satisfied by the current plan, as shown in Figure 26. The selection

88 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

V
is

ua
liz

at
io

n
G

oa
ls

E
xp

la
na

tio
n

N
ex

tG
en

f

Figure 25: Main interface for iterative planning with explanations; first column: graphical
representation of the planning task; second column: goals satisfied and not satisfied by the
current plan; third column: explanation interface; fourth column: selection of enforced goals
for the next iteration.

4.4. ITERATIVE PLANNING PLATFORM 89

is interpreted as the question: “Why is g not satisfied by the current sample plan?”. The
answer is provided as a list of the soft goal subsets as depicted in Figure 27 on the left. In
the depicted shown, the answer states: “If you deliver package 4 to the post office, then you
cannot deliver package 1, and you can either not deliver package 2 or you cannot use the
same truck for packages 2 and 3”. If the selection of enforced goals is unsolvable, the user
can ask why it is unsolvable. In the example explanation, shown in Figure 27 on the right,
the enforced goals are unsolvable because: “You cannot deliver package 2 if you have to
use the same truck for packages 0 and 2”.

Figure 26: Interface to ask questions. The user selects on goal g from the list of unsatisfied
goals. This selection is interpreted as the question: “Why is g not satisfied by the current
sample plan?”

Figure 27: Left: Answer to question in Figure 26. The answer is given as a list of goal
subsets. From each subset the user must forego one goal to allow the goal in the question
to be satisfied. Right: Example answer to an unsolvable set of enforced goals. The answers
list all MUGS that are a subset of the enforced goals.

The user can ask as many questions as necessary. Once they commit to a new set of
soft goals Gsoft

i+1 and a new set of enforced goals Genf
i+1, the next iteration step starts.

90 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

This outlines the whole supported iterative planning process. The adaptations for
layperson and restrictions for user studies is described next.

4.4.2 ADAPTATIONS AND EXTENSIONS FOR USER STUDIES

The platform includes special adaptations for laypersons and supports unsupervised online
user studies. First, we focus on the restrictions of the iterative planning workflow and
accommodations for laypersons.

In order for a task to be utilized in a user study, the study creator must define a fixed set
of soft goals Gsoft

fix. This allows for the pre-computation of the MUGS, enabling instantaneous
responses and ensuring a responsive experience for test persons. Additionally, this ensures
that all test person are evaluated on the same tasks with the same set of soft goals.

Especially in user studies with laypersons, it is essential that the task and goal description
is as accommodating as possible. Each task can be accompanied by a visualization of for
example the map structure. Additionally, goals are not depicted as LTLf formulas but rather
in natural language, specific to the individual instance. Some examples can be found in
Figure 25. The user study creator is responsible for providing all task-specific visualizations
and natural language descriptions.

In many domains only domain experts have intrinsic preferences for different soft goals.
For non-expert test persons, it is necessary to provide artificial preferences. To this end, a
utility, defined as a fixed integer value, was added to each goal. The utility is assigned in the
list of soft goals in Figure 22 in column four and is visible below each goal as illustrated in
Figure 25.

Online User Study Support To support unsupervised online user studies, additional
extensions are necessary. To recruit and pay test persons, the platform connects to the
online recruitment service Prolific12.

To ensure a comprehensive evaluation, it is essential to closely monitor the test partici-
pants’ actions, recording each action with a timestamp. This includes all asked questions,
and enforced soft goals, enabling the reconstruction of the timeline of the iterative planning
process.

A user study is not limited to a single iterative planning process for a particular task, it
can consist of multiple tasks from different domains. It is possible to designate certain tasks
as training tasks, which provide instructions to facilitate user familiarization with the tool. In
addition, user studies can be enriched with information for test persons, such as the course
of the user study or descriptions of the tool and domains. The incorporation of external
questionnaires is also a possibility.

4.5 USER STUDY EVALUATION

We have demonstrated, that allMUGS can be solved reasonably efficiently. However, we
have yet to investigate whether the resulting explanations are useful for users. In the

12www.prolific.co

www.prolific.co

4.5. USER STUDY EVALUATION 91

following section, we present a user study that evaluates this question in terms of test
person performance in different case studies on iterative planning.

The long-term target audience for our explanations is domain experts who have intrinsic
preferences and have experience with the task at hand. The aim of the iterative planning
process with explanations is to support users in refining their preferences and understanding
the dependencies between them, enabling them to shape the plan accordingly and identify a
compromise. Ideally, the test persons would be experts in the individual case study domains.
Unfortunately, for a number of reasons including the abstract and non-applied nature of the
technology being evaluated, it is difficult to recruit these experts for XAIP baseline research.
However, when evaluating the usefulness of conflict explanations for iterative planning in
general, there is no need for expert users. We therefore decided to conduct an online user
study with crowdworkers recruited via Prolific [Palan and Schitter, 2018]. This allowed a
sufficiently large number N of test persons to obtain statistically significant results.

We conducted a study on three different planning domains, including a new domain
“Parent’s Afternoon”, which encodes the common challenge of family logistics, familiar to
layperson users. For each domain, we developed a use case with conflicting soft goals
that are complex enough to be non-trivial, yet simple enough to be solved within the limited
amount of time that crowd workers are willing to invest. We used N = 100 test persons for
each domain. To assess the impact of the explanations on the test person performance
they were divided into two groups of equal size: one with access to explanations and one
without.

4.5.1 CASE STUDY DESIGN – PLANNING DOMAINS AND OSP TASKS

To cover different sources of conflicts between soft goals, we used three different domains.
Other XAIP user studies used one domain [Chakraborti et al., 2019b, Chakraborti and
Kambhampati, 2019, Sreedharan et al., 2019c, 2020c, Lindsay et al., 2020, Das et al.,
2021, Kumar et al., 2022, Das et al., 2023, Shvo et al., 2022], two domains [Sreedharan
et al., 2019b, 2020d, Brandao et al., 2021b], three domains [Brandao et al., 2022a] or four
domains [Krarup et al., 2021].

We introduce a new domain, called Parents Afternoon, that encodes family logistics
familiar to lay users for example driving children to sports events and grocery shopping. The
source of conflicts are pick-up/drop-off/opening times and the limited load capacity of the car.
Our two other domains, Transport and Rovers, are variations of the IPC domains Nomystery
and Rovers. Transport encodes the transportation of packages via multiple trucks on a road
map with fuel consumption as a constraint. Thus, soft goals compete for the same consumed
resource, namely the limited fuel of the trucks. Competition for resources is a ubiquitous
source of conflict, consider for example money. This structure is also natural, and should be
familiar to lay users to some extent. Rovers encodes data collection and transmission on
Mars, which is constrained by both resource consumption and time constraints for uploading
data. This combines the two conflict sources mentioned above. This specific problem is
unknown to the layperson, but the underlying conflict-inducing structure is natural and easy
to understand.

The complexity of the domain instances, i. e., the OSP tasks, requires careful attention.

92 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

The task and soft goal conflicts must be sufficiently complex to be interesting, yet practicable
for users in crowd-sourcing. If the task is too complex or too long, test persons tend to
abandon it quickly, resulting in data that is not representative of real interaction with the
system. Given the exponential nature of the underlying structures (the size of the state
space and the number of MUGS), the transition from too easy to too hard instances is fast,
and the ideal task complexity is on a narrow edge. Our OSP task design balances the
difficulty level as follows.

We keep the soft goals simple so that they are easy for laypersons to understand, and it
is easy to see whether a particular soft goal is satisfied by the current plan. On the other
hand, MUGS of size 2 tend to be easier to identify and to remember, so we designed our
tasks to mostly feature larger MUGS incorporating more complex conflicts. Similarly, we
have tried to avoid soft goals, which included a large part of MUGS. Eliminating one of
these goals would immediately resolve most conflicts and thus make the task too easy.

We fine-tuned the task size and MUGS complexity based on small test studies, and we
settled on the instances13 depicted in Figure 28. More details are given in the Appendix in
Section A.4.

Parents Afternoon The Parent’s Afternoon instance has 6 locations and 4 persons, items
and activities. We defined 13 goals, reflecting achieved activities and ordering relations
between those.

1. Shopping is done.

2. Grandma’s shopping is done.

3. Parent’s sports is done.

4. Soccer training is done.

5. Music Lesson is done.

6. Bring friend to sport center.

7. Kid1 is back home.

8. Kid2 is back home.

9. Groceries are at home.

10. Grandma’s groceries are at grandma’s
house.

11. Grandma is back home.

12. Shopping is done before sports.

13. Grandma and friend are not together
in the car.

14. Shopping is done before sports.

The instance has 25 MUGS (size 2: 3, size 3: 13, size 4: 7, size 5: 11, size 6: 1). One
example MUGS is {“Bring friend to sport center”, “Grandma’s shopping is done”, “Shopping
is done before sport”}.

Transport The Transport instance has 9 locations, 2 trucks and 5 packages. There are 13

goals reflecting the delivery of packages, use or non-use of road connections, location visits,
and ordering relations between packages. There are 37 MUGS (size 3: 14, size 4: 7, size 5:

13https://doi.org/10.5281/zenodo.14988342

https://doi.org/10.5281/zenodo.14988342

4.5. USER STUDY EVALUATION 93

Figure 28: Visualization of the three instances used in the user study, from left to right:
Transport, Parent’s Afternoon and Rovers.

2, size 6: 2). One example MUGS is {“P0 is delivered”, “P1 is delivered”, “Supermarket is
not visited with truck 2”}.

Rovers The Rovers instance has 1 rover, 4 locations and 10 tasks. We designed 14 goals
pertaining to task achievement and the order of data uploads. There are 102 MUGS (size 2:
22, size 3: 56, size 4: 4). One example MUGS is {“Uploaded rock image”, “Uploaded crater
1 X-ray image”, “Crater 2 image is uploaded before rock sample”}.

4.5.2 USER STUDY DESIGN

After clarifying the test instances, we now turn to the user study itself. We begin by discussing
user motivation and then cover the general setup including test-person recruitment, payment,
and the experiment workflow.

USER OBJECTIVE

In application scenarios of iterative planning, users aim to understand conflicts between soft
goals and to converge to an acceptable compromise. However, in a user study, test persons
lack intrinsic motivation to do so. Therefore, we provide them with an objective to pursue,
namely additive utility maximization. This objective, canonical as it is, is easy to understand
for layperson users. We assign a fixed utility to each soft goal, and the test persons are
tasked with finding a solvable selection of soft goals, that maximizes the summed utility.
Fixed utility is a standard form of oversubscription planning, which could be solved optimally
using known algorithms (e. g. [Smith, 2004, Domshlak and Mirkis, 2015, Katz et al., 2019]).
Nevertheless, this setup is meaningful for evaluating our explanation approach, as test
persons in our study need to understand the conflicts to perform well.

In what follows, keep in mind that this objective is only in the heads of the test persons.
Neither the planner for the sample plans nor the explanation method take it into account.

94 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

This reflects the targeted application scenarios, where no such fixed (and simple) objective
exists.

The objective is linked to payment via a bonus that increases with the utility achieved,
providing a strong incentive to find good plans. Some prior work, e. g. [Chakraborti et al.,
2019b], has followed similar schemes. The basic compensation for participating in the user
study is 5£, the maximum reachable bonus payment is 2.50£. As shown in Figure 29 we
include a progress bar to convey to users the maximal possible utility, the utility that has
been reached, and the bonus payment levels. In preliminary test runs, we found that such
explicit information helped to motivate test persons.

Figure 29: Progress bar indicating the maximal possible utility, the utility that has been
reached and the levels to reach for bonus payment.

USER STUDY SETUP

To evaluate the impact of the explanations, we divided test persons randomly into groups
with vs. without the option to ask questions. We refer to these two groups as Q+ and Q-
respectively.

We fixed the ordering of domains to Transport, Parents Afternoon and then Rovers.
To maximize familiarity of test persons with the IPEXCO tool and iterative planning, we
re-invited test persons to also address the remaining domains. We waited with domain i
until the user study on domain i− 1 was completed, to maximize the number of re-invited
test persons. Finally, we fixed each person’s assignment to the Q-/Q+ group across all
domains. This serves to obtain consistent streams of test persons who are increasingly
familiar with one of the two tool variants. Distributing re-invited users across both variants
would have resulted in too many different subgroups for a meaningful analysis.

In addition to user performance measurements, we included a questionnaire for subjec-
tive measures. We used a Likert scale from 1 to 7 to measure the test person’s opinions.
The questions are listed in Table 9, which is included in our result’s analysis (Section 4.5.3)
for ease of reading.

Beyond these fixed-answer questions, we also included free-text questions, targeted
at qualitatively assessing the presentation and usefulness of explanations in the proposed
setting. The Q+ test persons were asked for comments about the structure and presentation
of the questions and explanations. The Q- test persons were asked to list questions that
would have helped them to completing the task.

Each experiment, i. e. each test-person run addressing the OSP task from one of our
domains, proceeded according to the following workflow:

1. Textual domain description: A general description of the domain is provided, in-
cluding an explanation of the possible soft goals and their varying levels of utility. The

4.5. USER STUDY EVALUATION 95

constraints present in the domain are highlighted, and their impact on the satisfiability
of the soft goals is addressed.

2. Textual tool description: The test persons are introduced to the iterative approach
of the tool. Their objective of finding a plan with the maximum utility is emphasized.
An instruction manual for the tool, accessible at all times, is provided. For Q+, the
functionality of the questions is explained.

3. Familiarization with tool through introductory instance: Given the complexity of
the task and tool, the test person is familiarized with the domain and tool through a
small introductory instance. Test persons must compute at least one plan, and in Q+,
they must ask at least one question before advancing to the next step.

4. Planning for evaluation instance: The test person processes the evaluation instance
(as described in Section 4.5.1). The test person can exit the task at any time,
particularly without achieving maximal utility.

5. Questionnaire: Finally the test person has to answer the questionnaire.

We used the test person recruitment facilities of Prolific [Palan and Schitter, 2018]. We
applied two filters on test persons to obtain meaningful results. We required fluency in
English and that at least 50% of each test person’s previous submissions in Prolific must
have been accepted by the respective study organizers.

4.5.3 USER STUDY RESULTS

In the following, we will evaluate the results of our user study. First, we address the
test person statistics. Second, we present our main results, regarding the impact of the
explanation facility on performance, in terms of utility achieved over time. Third, we analyze
the impact of tool and task experience, comparing new vs. re-invited test persons. Finally,
we evaluate the questionnaire results, in terms of a statistical analysis of the Likert scale
answers, and in terms of a thematic analysis of free-text answers.

TEST PERSON STATISTICS

Transport Parent’s A. Rovers
Q- Q+ Q- Q+ Q- Q+

new 52 66 14 42 26 31
filtered out -2 -16 -2 -11 -1 -4
re-invited – – 38 39 25 25
filtered out – – 0 0 0 -2∑

50 50 50 70 50 50

Table 8: Distribution of new, re-invited, and filtered-out test persons per domain and group.

As listed in Table 8, a total of 92 (139) individuals participated as Q- (Q+) test persons. 5
(31) of these test persons were filtered out because they did not complete the user study in

96 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

a meaningful way. Within Q+, we also filtered out those test persons who did not use the
explanation facility, that is, who did not ask any questions.

For each domain, we continued running the study until we had 50 test-person runs for
each of Q+ and Q-, resulting in a total of N = 100. For Parents Afternoon Q+, we increased
the number of test persons to 70 in ensure a similar number of test persons and facilitate a
meaningful comparison between Q+ new and Q+ re-invited. About 75% of the test persons
participated in two domains, while 50% of the test persons participated in all three domains.

The time invested by the test persons in processing the evaluation instance is depicted
on the left in Figure 30. With the exception of Transport, where more test persons from
group Q+ stayed up to 15 minutes, Q- and Q+ exhibited similar behavior. Overall, half of the
test persons spent up to 12min.

Transport

3 6 9 12 15 18 21 24 27 30
0

0.2
0.4
0.6
0.8
1

te
st

pe
rs

on
s

Parent’s Afternoon

3 6 9 12 15 18 21 24 27 30
0

0.2
0.4
0.6
0.8
1

te
st

pe
rs

on
s

Rovers

3 6 9 12 15 18 21 24 27 30
0

0.2
0.4
0.6
0.8
1

time (min)

te
st

pe
rs

on
s

Q- Q+

Transport

3 6 9 12 15 18 21 24 27 30

0

10

20

#plans

3 6 9 12 15 18 21 24 27 30

0

5

10

15

#questions

Parent’s Afternoon

3 6 9 12 15 18 21 24 27 30

0

10

20

#plans

3 6 9 12 15 18 21 24 27 30

0

5

10

15

#questions

Rovers

3 6 9 12 15 18 21 24 27 30

0

5

10

15

#plans

3 6 9 12 15 18 21 24 27 30

0

5

10

15

#questions

Q- Q+

Figure 30: General Statistics: (left) Test persons over processing time: x-axis time in min;
y-axis relative number of test persons that stayed up to that time. (right) Histogram of
number of plans and questions: buckets of size 3, the label refers to the upper bucket border
[x, x+ 3); y-axis number of plans/questions.

The histograms on the right in Figure 30 present the number of sample plans requested
and for Q+ the number of questions asked. Overall, Q- and Q+ generate a similar number
of plans, usually between 6 and 12 per task. The number of questions is relatively small,
typically less than 12 which is approximately one question per plan.

USER PERFORMANCE FOR Q- VS. Q+

The main focus of our evaluation is to access the impact of explanations on performance,
measured in terms of utility achieved over time. In what follows, we use the Student’s t-test
to determine the statistical significance of the difference between means, and the Wilcoxon
rank-sum test for the difference between medians.

The iterative planning process on the evaluation instance required up to 30 minutes (with
the remainder of the time allocated to the other components of the test-person workflow).

4.5. USER STUDY EVALUATION 97

Figure 31 shows the utility as a function of this processing time.

Transport

3 6 9 12 15 18 21 24 27 30
0

0.2

0.4

0.6

0.8

1

0.46
0.55

0.01
0.02

0.01
0.01

Parent’s Afternoon (all)

3 6 9 12 15 18 21 24 27 30
0

0.2

0.4

0.6

0.8

1

0.01
0.01

0.01
0.01

0.01
0.01

Rovers (all)

3 6 9 12 15 18 21 24 27 30
0

0.2

0.4

0.6

0.8

1

0.16
0.17

0.65
0.51

0.88
0.79

mean

95% confidence

* median

Q-

Q+

Figure 31: Performance over processing time: x-axis time in min; y-axis maximal achieved
plan utility until that time. Numbers shown below the curve are p-values, i. e., the likelihood
of the null hypothesis, for mean (top) and median (bottom) after 9/18/30 min processing
time.

In all three domains, the mean utility for Q+ is higher than that for Q- across the entire
timeline, indicating that Q+ indeed yields a performance advantage over Q-. In Parent’s
Afternoon, this advantage is statistically significant along the entire timeline of the experiment.
In Transport, both groups initially make similar progress, but the Q- utility growth slows
down earlier on while Q+ users are still gaining deeper insights and hence better trade-offs.
Consequently, the advantage of Q+ over Q- is statistically significant for t ≥ 15min. In
Rovers, the timeline effect is inverse, with Q+ users initially making quicker progress but Q-
users catching up eventually. For the majority of the timeline, the two curves are closer to
each other than in the other two domains, and the advantage of Q+ over Q- is not statistically
significant.

A deeper investigation of Rovers revealed that tool experience is a major factor here,
more than in the other domains. This is presumably due to the more complex structure
(resource consumption and time windows) and the larger number of MUGS. Figure 32
evaluates the impact by differentiating between new and re-invited users. In Parent’s
Afternoon re-invited test persons perform initially (t < 15min) better. This suggests that
tool expertise can help achieve better utility faster. Given the smaller sets of test persons
in both evaluations in Figure 32 and the substantial differences between individual crowd
workers, the variance is quite high (compare to Figure 31), so statistical significance is found
rarely. Nevertheless, in both evaluations, the differences between means and medians are
consistent across the entire timeline.

98 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

Parent’s Afternoon

3 6 9 12 15 18 21 24 27 30

0

0.2

0.4

0.6

0.8

1

0.18
0.19

0.81
0.83

0.83
0.79

time in min

ut
ili

ty

3 6 9 12 15 18 21 24 27 30

0

0.2

0.4

0.6

0.8

1

0.01
0.01

0.02
0.03

0.04
0.06

time in min

ut
ili

ty

new Q+ vs reinv Q+ reinv Q- vs reinv Q+

Rovers

3 6 9 12 15 18 21 24 27 30

0

0.2

0.4

0.6

0.8

1

0.13
0.10

0.10
0.04

0.05
0.02

time in min

ut
ili

ty

3 6 9 12 15 18 21 24 27 30

0

0.2

0.4

0.6

0.8

1

0.17
0.21

0.50
0.32

0.40
0.24

time in min
ut

ili
ty

new Q+ vs reinv Q+ reinv Q- vs reinv Q+

mean 95% confidence * median
Q- reinv Q+ new Q+ reinv

Figure 32: Performance over processing time in Parent’s afternoon (top) and Rovers
(bottom): (left) Q+ new vs. re-invited; (right) re-invited Q+ vs. Q-. p-values for mean (top) and
median (bottom) after 9/18/30 min processing time.

WORK PROCESS Q+

Let us briefly analyze the work process of Q+ test persons. Figure 33 shows data for the
number of questions asked, and plans generated, as a function of processing time.

Transport

[0:3] [3:6] [6:9] [9:12] [12:15]
0

2

4

6

Parent’s Afternoon (new)

[0:3] [3:6] [6:9] [9:12] [12:15]
0

2

4

6

Parent’s Afternoon (re-inv)

[0:3] [3:6] [6:9] [9:12] [12:15]
0

2

4

6

Mars Rovers (new)

[0:3] [3:6] [6:9] [9:12] [12:15]
0

2

4

6

Mars Rovers (re-inv)

[0:3] [3:6] [6:9] [9:12] [12:15]
0

2

4

6

Q- mean Q- 95% confidence *Q- median

#plans #questions

Figure 33: #plans and #questions over processing time: x-axis time in min (time buckets of
3 min); y-axis number of plans/questions in bucket; (left) new test persons, (right) re-invited
test persons.

The most interesting observation here is that the number of questions per time slot is

4.5. USER STUDY EVALUATION 99

similar to the number of plans. This indicates that test persons typically ask one question per
sample plan. However, they often first request a few plans before starting to ask questions.
In Parent’s Afternoon re-invited test person, tend to skip this initial exploration phase and
directly ask questions.

A deeper examination of question-asking behavior reveals, that when no sample plan
exists, i. e. the enforced goals Genf

i are not solvable, users tend to request explanations more
often. This is understandable, as in such cases, the existence of conflicts is evident, and
conflict explanations allow test persons to directly identify why. On average, test persons
ask at least one question in 53%/51%/51% of cases when a sample plan is available and in
68%/71%/57% of cases when there is none in Transport, Parent’s Afternoon, and Rovers,
respectively.

QUESTIONNAIRE EVALUATION

We now analyze the responses to the user questionnaire. Table 9 lists the Likert scale
questions we asked the test persons after using the iterative planning tool. The first
three questions were given to both groups, while the remaining questions addressing the
helpfulness of the explanations exclusively to Q+.

Likert scale labels
Question (1) (7)

Q-
an

d
Q+

Q1 How difficult was the task for you? very easy very difficult
Q2 How satisfied are you with your achieved result. not satisfied very satisfied
Q3 How confident are you, that you know which plans are

possible/which goals can be achieved together?
not confident very confident

on
ly

Q+

Q4 The possibility to ask questions helped me. don’t help at all very helpful
Q5 The possibility to ask questions reduced the level of

difficulty.
not at all much easier

Q6 The questions helped me to find better plans. don’t help at all very helpful
Q7 The questions helped me, when I wanted to improve a

plan.
don’t help at all very helpful

Q8 The questions helped me, when the selections of goals
was unsolvable.

don’t help at all very helpful

Q9 The questions helped me to understand which plans
are possible/which goals can be achieved together.

don’t help at all very helpful

Table 9: Questionnaire: Likert scale questions asked the test persons after using the iterative
planning tool.

First, we compare the results for the first three questions between the domains and user
groups in Figure 34. Test persons rated the task as fairly difficult, 5/6 out of 7, with little
difference between Q+ and Q-. This does not mean that the questions have no influence on
the level of difficulty. It is important to remember that the people in each group, Q+ and Q-,
were not aware of the alternative set-up. The result reflects the subjective difficulty of the
individual task, and not the difference between the ability to ask or not to ask questions. The
assessment of the test persons’ confidence with regard to existing conflicts is inconclusive.
Subjective user satisfaction is, however, higher for Q+ users, a trend that is again for Rovers

100 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

more evident among re-invited users.

R Q+

R Q-

PA Q+

PA Q-

T Q+

T Q-
p = 0.79

p = 0.40

p = 0.35

Q1
dificulty

R Q+

R Q-

PA Q+

PA Q-

T Q+

T Q-
p = 0.07

p = 0.02

p = 0.31

Q2
satisfaction

1 2 3 4 5 6 7

R Q+

R Q-

PA Q+

PA Q-

T Q+

T Q-
p = 0.25

p = 0.67

p = 0.70

Q3
confidence

R Q+

R Q-

PA Q+

PA Q-

-

-

p = 0.29

p = 0.81

R Q+

R Q-

PA Q+

PA Q-

-

-

p = 0.07

p = 0.15

1 2 3 4 5 6 7

R Q+

R Q-

PA Q+

PA Q-

-

-

p = 0.42

p = 0.96

Figure 34: Questionnaire results of questions asked both groups. (left) all test person; (right)
only re-invited test persons. Abbreviations: Transport T, Parent’s Afternoon PA, Rovers R.

In the second group of questions, which addressed the helpfulness of the explanations,
the responses to all questions were quite consistent. Figure 35 presents the data, which
indicates an average rating of 6 out of 7 for the helpfulness of the explanations across
all domains. The distribution of answers is uniform across domains, suggesting that the
explanations were perceived as equally useful in each domain, despite the noted differences.
Additionally, the results suggest that the explanations had a positive impact on the perceived
difficulty level. If we look only at re-invited users, their subjective rating of usefulness is
slightly higher compared to all users, suggesting that the explanations are more appreciated
with more experience.

Qualitative Analysis We now move on to the free-text questions. The test persons were
asked to:

(a) describe their problem-solving strategy (Q+ and Q-)

(b) criticize the explanation facility (Q+)

(c) suggest explanations they would like to have (Q-)

We received 360 meaningful answers to (a), 152 to (b), and 161 to (c). The answers
were quite diverse. In what follows, we summarize themes that were present in at least 5%
of the answers and that we found to provide interesting avenues for future research. Many
answers to (c) were criticisms of the iterative planning tool environment, so we group our
summary into problem-solving strategies, criticisms, and desired explanations.

(a) Problem-solving strategies A common problem-solving strategy in both groups (19%
of answers) was to start with high-utility soft goals. Q+ (13% of answers) used the

4.6. DISCUSSION 101

Helped with ...all re-invited

R
PA
T

Q4
in general

R
PA
T

Q5
difficulty

R
PA
T

Q6
find

better plans

R
PA
T

Q7
improve plan

R
PA
T

Q8
unsolvability

1 2 3 4 5 6 7

R
PA
T

Q9
undertanding

conflicts

R
PA

-

R
PA

-

R
PA

-

R
PA

-

R
PA

-

1 2 3 4 5 6 7

R
PA

-

Figure 35: Questionnaire results of questions about helpfulness of explanations. (left) all test
person; (right) only re-invited test persons. Abbreviations: Transport T, Parent’s Afternoon
PA, Rovers R.

question-asking interface to better understand goal conflicts: users said they used
the explanations to “help guide in what to change”, “to see which goals did not work
together”, and to help deduce “the most frequently conflicting goals”.

(b) Criticisms The criticisms were extremely diverse. The most common theme here was
visualization (5% of answers). Users asked for the ability to “draw” plans, plan animation,
visualization of plans and plan-utility, for example to see how the “timeline is occupied
as I go and select tasks, as well as to see the most time-efficient tasks”. Users said they
would like to see color-highlights overlaid on the task image, in order to “get a visual
representation of what is conflicting”, and to make explanations more “readable”.

(c) Explanations Q- users would like to have In the explanations suggested by Q- users,
one common theme (16%) were goal conflicts. This indicates that test persons find this
form of explanation natural.

Interestingly, another common theme (14%) pertained to planning-model explanations.
Users asked whether a package can “be left somewhere that another truck could pick it
up”, whether a truck can “go back the same way it came”, or whether a guitar can be
left at the “music lesson”.

4.6 DISCUSSION

In the following, we summarize the contributions and results presented in Chapter 4, discuss
related work specific to this chapter and offer an outlook on future work.

102 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

SUMMARY

Conflicting objectives naturally arise during oversubscription planning (OSP). Not all user
preferences are given from the start and are often not easily expressed. Therefore, we intro-
duced an iterative planning process with explanations to help users refine their preferences,
understand the conflicts between them and find a satisfactory compromise.

We proposed conflict explanations, contrastive explanations based on goal conflicts.
Contrastive explanations, address questions of the form “Why not Q?” by demonstrating the
consequences of implementing Q, the alternative proposed by the user. In our framework,
Q is a set of goals not satisfied by the current sample plan π. Conflict explanations
communicate to the user the goals satisfied by π they must forego in order to satisfy Q.

To provide such explanations, we compute all minimal unsolvable goal subsets (MUGS)
of an OSP task. We considered an exploration of the goal lattice (GLS), in which we use the
ability of symbolic planning to compactly represent the reachable state space to significantly
improve the solvability check. In addition, we developed a branch-and-bound (GSBNB)
approach that computes all maximal solvable goal subsets in an exhaustive state space
exploration. In this context, we introduced the new-goal-subset heuristic, which estimates
the cost to a state satisfying a goal subset that has not yet been covered. This heuristic is
used to prune stats from which the maximal solvable goal subset cannot be improved. We
implemented such a heuristic based on admissible estimates of singleton goal facts.

Our experiment results demonstrated the feasibility of MUGS computation for planning
tasks that are sufficiently large and complex to necessitate explanations. A comparison
with the most closely related, simpler problem (OSP for cardinal optimal soft goal subsets)
showed comparable performance.

We expanded the framework to include temporal goals, enabling users to incorporate
more complex preferences in the conflict analysis. We build on existing work on compilation
of temporal goals to support LTLf goals and introduced Action-Subset goals, as a subset
of LTLf goals with a more efficient compilation. Our results demonstrate the framework’s
capacity to handle a reasonable number of temporal goals.

Finally, we evaluated our conflict explanations in an online user study. The results
indicate that the explanations tend to enable users to find better trade-offs, which leads us
to conclude that our explanations are helpful.

RELATED WORK

In this section, we discuss further related work in terms of related approaches in XAIP, the
use of minimal unsolvable sets in other areas, and the relationships between algorithms
used to compute those sets.

We address contrastive explanations [Miller, 2019, 2021]. This means a user proposes
an alternative Q, and seeks to know why Q is not satisfied. Approaches addressing this
question, differ in the specific questions the user can ask and in how the contrast between
satisfying Q and not satisfying Q is provided. The most closely related approach is by
Krarup et al. [2021]. They likewise provide contrastive explanations in an iterative planning
process. The question of “Why does the sample plan satisfy P rather than Q?” is addressed

4.6. DISCUSSION 103

by generating a plan π′ that satisfies Q but not P . The explanation is then based on a
comparison between π and π′. The disadvantage of using a single alternative π′ is that
there might be differences between π and π′ that are not common to all plans satisfying Q.
We provide an analysis of common properties of all alternative plans. Lindsay and Petrick
[2021a] address a special case of dependency analysis based on plan options, focusing on
plan options based on object transition sequences, learned from a set of sample plans. In
addition to using the learned plan options in the framework of Krarup et al. [2021], they also
propose to explain why objects use a certain transition sequence, by learning a first-order
logic formula distinguishing positive and negative examples. While not addressing specific
user questions Kim et al. [2019] provide contrastive explanations by learning temporal
formulas distinguishing sets of sample traces. Thus, they do not explain why a particular
plan does not satisfy Q by providing a contrastive plan or its properties, but they provide
additional distinguishing properties of positive and negative samples for Q.

In constraint satisfaction, Minimally Unsatisfiable Subsets (MUSes) [Marques-Silva et al.,
2013] are used analogous to MUGS. Junker [2004] employs MUSes to elucidate over-
constraint problems. They assume that there exists a predefined ranking over constraints.
This allows them to provide preferred explanations, instead of an explorative iterative pro-
cess. To derive a satisfiable set of constraints, O’Sullivan et al. [2007] introduce an iterative
process supported by explanations based on correction sets, minimal hitting sets of MUSes.
In our framework, this process is comparable to starting with all soft goals and then iteratively
foregoing soft goals and asking “Why is there no plan?” in each iteration. However, instead
of providing all relevant MUGS O’Sullivan et al. [2007] provide a representative selection
of correction sets. Gupta et al. [2022a] provide contrastive explanations based on MUSes.
They leverage the MUSes in the over-constraint problem, caused by the user’s alternative
Q, to elucidate the necessary compromises for incorporating Q. This approach resembles
one step in our iterative process, where the user wants to include soft goals Q, but to do
so they have to decide which of the currently satisfied goals in AC(Q) they want to forego.
MUSes are not only employed to explain unsatisfiability, but also to provide user-friendly
explanations to solve a CSP [Bogaerts et al., 2020]. An example of a practical application of
MUSes is a Sudoku assistant [Guns et al., 2023].

There are several algorithms for computing MUSes using different approaches. Two
common approaches are iterative insertion or deletion of constraints [De Kleer and Williams,
1987, Marques-Silva, 2010], similar to our systematic strengthening and weakening goal
lattice search. The objective is either MUS extraction [Marques-Silva and Lynce, 2011,
Marques-Silva et al., 2013, Junker, 2001], i. e. computing one MUS, or enumerating all of
them [Bailey and Stuckey, 2005, Previti and Marques-Silva, 2013, Liffiton and Sakallah,
2008, Liffiton et al., 2016]. Computing preferred MUSes involves considering a utility or
ranking of constraints [Marques-Silva and Previti, 2014, Gamba et al., 2023]. For a more
detailed overview of algorithm approaches and applications, we refer to [Marques-Silva,
2010].

We consider here the enumeration of all MUGS. Two state-of-the art approaches for
enumerating all MUSes are CAMUS [Liffiton and Sakallah, 2008] and MARCO [Liffiton et al.,

104 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

2016]. CAMUS performs better in cases where enumerating all MUSes is tractable, while
MARCO can provide some MUSes, even when enumerating all is not feasible [Liffiton et al.,
2016]. CAMUS [Liffiton and Sakallah, 2008] operates in two phases. First, they calculate
the maximum satisfying subsets (MSSes) using an incremental solver and iteratively adding
constraints until the set of selected constraints is no longer satisfiable. Then, the hitting set
relation between MUSes and MSSes is used to compute the MUSes. MARCO [Liffiton et al.,
2016] on the other hand, computes one MUS/MSS at a time. Starting from a seed subset
of constraints Cs, if Cs is unsatisfiable, they weaken it to a MUS, and if it is satisfiable they
strengthen it to a MSS. Instead of committing to one direction of exploration, they pursue
a dual approach. Favoring large subsets as seeds, allows them to favor the generation
of MUSes over MSSes. Our objective is to identify all MUGS, and given that planning is
PSPACE-hard, we are focusing on the individual solvability test, rather than on optimized
any-time goal-lattice exploration.

FUTURE WORK

There are different directions for future work, focusing on various aspects of the explanation
process.

Expansion to More Expressive Planning Formalism Explanations based on MUGS
could also be useful in more expressive planning formalisms, such as numeric, temporal
and probabilistic planning. Each of these brings its own challenges with respect to the
definition of MUGS and the computation of them. In numeric planning, the extension
of MUGS to numeric facts would allow for a more natural definition of preferences such
as “less than 5 units of fuel”. For our approach GSBNB, it is necessary to exhaust the
search space needs, which makes heuristics proving reachability crucial to its performance.
Brandao et al. [2022b] saw this as a motivation for their extension of Merge & Shrink
heuristic to temporal planning. In probabilistic planning, Steinmetz et al. [2024] presented
algorithms for computing conflicts between policy properties considering the uncertainty
of action applications. These conflicts are determined by lower bounds on the reachability
probabilities of properties, and they extend to trade-offs between different cost functions.

Visualization One point of criticism in the user study was the presentation of the explana-
tions. The answers where presented as simple lists of the natural language description of
each goal. However, this is not suitable for a large number of conflicts. To create a better
interface to the explanations, a visualization would be useful. Ideally, such a visualization
should allow the user to get a better overview of which goals are involved in many conflicts,
but also provide better access to the conflicts with specific goals. While the former could
help to identify goals that represent a bottleneck, the latter could address a specific user
question. Senthooran et al. [2023] give some examples of visualizing MUCSes using simple
lists and graphs grouping and connecting constraints and the MUCSes they are contained
in.

Correction Sets O’Sullivan et al. [2007] use minimal correction sets, i. e. minimal sets
of constraints that must be omitted to leave a satisfactory set of constraints (hitting sets

4.6. DISCUSSION 105

of MUGS) as explanations. In our framework, the conflict explanation AC(Q) contains all
minimal conflicts that must be resolved to make Q feasible. This means, that the user has
to choose one goal from each conflict in AC(Q) to forego. Correction sets represent all
such minimal choices. The number of exclusion sets can be exponentially smaller and could
provide a more compact answer. While conflicts primarily address the question “Why is
the task not solvable?”, corrections address more directly the question “How can the task
be made solvable?”. Thus, depending on the user’s specific question, either conflicts or
corrections can therefore provide a more direct or a more compact answer. With the help
of conflict and correction sets Fouilhé et al. [2025] have begun to expand the questions
addressed by the framework presented, incorporating frequently asked questions from end
users.

Summarized Explanations The number of MUGS can be exponential in the number of
soft goals. Especially when there are many similar soft goals, leading to many symmetric
conflicts, it may be useful to summarize conflicts based on common features of soft Goals.
This could be a simple quantification like “Because no rover can visit location L1 and L2.”
or “Because all X-ray images are in conflict with the soil sample”, but also more complex
summaries considering e. g. the temporal aspects of soft goals such as “First visiting the
crater makes taking any soil sample infeasible.” However, which features are suitable for
such summaries can depend on many parameters, the current plan and the user question,
but also on the question and answer history.

Large language models (LLMs) have the potential to facilitate summarizing explanations,
either by explanations already available in natural language or by employing a one-step
process of translating and summarizing logic-based explanations. A basic framework has
been proposed that utilizes multi-agent LLMs to translate the question and then translate
and summarize the explanation [Fouilhé et al., 2025].

Preferred Explanations We assume that the user preferences have not yet fully formed,
may change during the iterative planning process, and are not easily expressed. Therefore,
we do not include a ranking for the soft goals to filter the MUGS, to provide so-called relevant
or preferred explanations [Sreedharan et al., 2018b, Vasileiou et al., 2019]. However, there
may still be conflicts that are more relevant to the user’s question than others and could be
prioritized if there are too many conflicts to handle them all at once. A possible correlation
between soft goals could be the objects or predicates involved, or for more complex temporal
goals, their structure. For example, if the user asks “Why can I not take the x-ray image of
the crater?”, then conflicts with soft goals that consider other X-ray images or other data
points of the crater might be more relevant than a conflict with using a certain connection on
the other side of the map.

Explanation Approximation For tasks where the exact computation of all MUGS is not
possible, an approximation of the conflicts could still provide useful information to the user.
Several approaches are possible. One possibility is to generate not all, but only a subset
of the MUGS, C̃ (GMUGS(τ). This would be an under-approximation, i. e. there might be

106 CHAPTER 4. EXPLANATIONS BASED ON GOAL CONFLICTS

conflicts that are not covered by the subset of MUGS. This could be done, for example,
using an approach similar to Liffiton et al. [2016].

An alternative approximation, would be to cover all conflicts, but not necessarily by
MUGS, but only unsolvable goal subsets, C̃ such that for all C ∈ GMUGS(τ) their exists a
U ∈ C̃ such that C ⊆ U . This would be an over-approximation, i. e. the conflicts might not
be minimal, and thus the conflict explanation might include goals that should be removed,
although there actually exists a plan that satisfies them. To compute such an approximation,
one can use an anytime approach of the branch-and-bound algorithm GSBNB, by limiting
the number of expansions or the time used to explore the state space. At any time, the
collected maximal solvable goal subsets (MSGS) are an under-approximation of the actual
MSGS. Thus, the hitting set relation provides an over-approximation of the MUGS. How to
most efficiently use the limited resources to explore the most promising and relevant parts
of the search space is an open question. An approach by Eifler et al. [2024] explores the
use of learned information by restricting the explored search space to a radius around a
domain-dependent action policy.

4.6. DISCUSSION 107

CHAPTER 5

EXPLAINING GOAL CONFLICTS

THEMSELVES

Explanations based on goal conflicts offer insights into the dependencies between goals,
such as the conflict between taking the crater image and collecting the soil sample. However,
they do not provide any information on the underlying causes of such conflicts. Exploring
the causes of conflicts and potential resolutions is crucial to identifying satisfactory and
understandable trade-offs.

Here, we examine the causes of soft-goal conflicts in tasks with constraints, such as
resource and time window constraints. In this context, soft-goal conflicts can naturally
be explained by identifying the minimal constraint relaxations under which the conflict
disappears. This approach can be used to address questions such as “Why can you
not take the crater image and the soil sample?” with answers like “Because one of the
rovers would need 3 additional energy units.” A similar approach is employed in constraint
programming [Lauffer and Topcu, 2019, Senthooran et al., 2021], wherein soft constraints
are introduced to suggest modifications to an unfeasible subset of constraints, thereby
rendering it feasible.

These follow-up questions regarding the reason for a conflict align seamlessly with the
iterative planning process. If the user asks “Why is Q not satisfied?” the answer “Because
then you have to forgoAC(Q)” identifies the underlying conflicts. The relaxation explanation
provides the user with the necessary information to understand why the conflicts exist and
how they can be resolved. Based on this additional information, the user then has a second
option to find a trade-off. The first option involves removing enforced soft goals that are in
conflict with the soft goals they would like to be satisfied. The second option is to relax a
constraint to resolve the conflict to allow for a plan satisfying all soft goals in conflict. For
example, they might decide that it is crucial to take the crater image and the soil sample,
and therefore it is worth allocating 3 extra energy units.

In the following, we define explanations of goal conflicts based on relaxations. These
explanations are based on the MUGS for a given set of relaxations, which allows determining
for which relaxations a certain subset of soft goals is no longer in conflict. The straightforward
extension to compute the MUGS for each relaxation is to iteratively call one of the previously
introduced algorithms. We present two algorithms that improve over this baseline by

109

110 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

exploiting the fact that information like reachable goal subsets and states can be propagated
from one relaxed task to another if the latter is more relaxed. The first algorithm, MSGS
propagation (GSBNBp), iteratively computes the MUGS for each increasingly relaxed
planning task and propagates the MSGS to more relaxed tasks. This approach provides a
growing set of reachable soft-goal subsets, which can be used to efficiently prune parts of
the search space that do not contain any soft-goal subsets that have not yet been achieved.
The second algorithm, Iterative Search Space Extension (ISSE), reduces redundancy by
iteratively increasing one search space instead of generating a new one for each relaxed
task. This is achieved by storing the search frontier for each task and using it as the starting
point for more relaxed tasks, ensuring that only the newly reachable states are generated
for each relaxed task. We demonstrate that these algorithms can in theory exponentially
outperform the baseline, with respect to the number of generated states.

An alternative interpretation of constraint relaxations is the interpretation as soft goals
rather than as task modifications. For example, by introducing soft-goals reflecting the
consumed resources, the MUGS containing these resource soft goals allow us to determine
the resource constraint relaxations needed to resolve the corresponding conflicts. This
approach eliminates the need for a specialized algorithm, and the MUGS for each relaxation
can be determined in a post-processing step.

We provide an empirical evaluation for resource and time window constraint domains of
the two new algorithms as well, as a comparison to the compilation approach.

Papers and Contributions This chapter is based on the paper:

Rebecca Eifler, Jeremy Frank and Jörg Hoffmann
Explaining Soft-Goal Conflicts through Constraint Relaxations.
Proceedings of the 31th International Joint Conference on Artificial Intelligence (2022)

The paper was principally developed by the author in collaboration with Jeremy Frank and
Jörg Hoffmann. The algorithms were developed by the author, and the implementation and
experimental evaluation were also the author’s work. Section 5.3 is not covered by this
publication and new work of the author.

5.1 EXPLANATIONS

Let τ be an OSP task and let us consider iteration step δ = (Genf, π). We address the
scenario where the user asked questions Q and received an answer AC(Q). They are
now aware of the conflicts C between the soft goals in Q and the soft goals satisfied by the
sample plan Gtrue(π). They then pose a follow-up question for conflict Q′ ∈ C: “Why are Q′

in conflict?” To address this question with the minimal relaxation required to resolve conflict
Q′, it is necessary to first establish a set of potential relaxations.

5.1. EXPLANATIONS 111

5.1.1 TASK RELAXATION

In general, relaxing a planning task means, allowing for more applicable action sequences.
Our approach is independent of the concrete implementation of relaxation. We require
the relaxation τ ′ of a planning task τ to preserve all plans of τ , the action cost, and the
satisfiability of soft goal subsets.

DEFINITION 30: RELAXED PLANNING TASK

Let τ = (V,A, c, I,Ghard, Gsoft, b) be a OSP task and Π(τ) the set of all plans for
task τ . Then τ ′ = (V ′, A′, c′, I ′, Ghard, Gsoft, b′) is a relaxed task of τ (denoted by
τ v τ ′) iff Π(τ) ⊆ Π(τ ′) and for all π ∈ Π(τ) we have IJπK ∩Gsoft = I ′JπK ∩Gsoft,
for all a ∈ A ∩A′ : c(a) = c(a′) and b ≤ b′.

By relaxing a task, larger soft goal subsets can be rendered satisfiable and thus conflicts
can be resolved.

PROPOSITION 12: MONOTONICITY MSGS

Let τ and τ ′ be OSP tasks. If τ v τ ′ then for all G ∈ GMSGS(τ) there exists a set G′

in GMSGS(τ ′) such that G ⊆ G′.

Proof:
Let G ∈ GMSGS(τ). Thus, there exists a plan π ∈ Π(τ) such that G ⊆ I[[π]]. Since
τ v τ ′ we have Π(τ) ⊆ Π(τ ′) and thus π ∈ Π(τ ′). From IJπK ∩ Gsoft = I ′JπK ∩ Gsoft

follows that there exists G′ ∈ GMSGS(τ ′) such that G ⊆ G′.
�

Both MSGS and MUGS increase in size when a task is relaxed. Larger MSGS indicate the
satisfaction of more soft goals, while larger MUGS indicate weaker conflicts, since more soft
goals are required to lead to unsolvability. However, it should be noted that all goals could
ultimately be solvable and then no MUGS exists.

PROPOSITION 13: MONOTONICITY MUGS

Let τ and τ ′ be OSP tasks with goals Ghard and Gsoft such that Ghard ∪Gsoft is not
solvable in τ ′. If τ v τ ′ then for all G ∈ GMUGS(τ) there exists a set G′ in GMUGS(τ ′)

such that G ⊆ G′.

Proof:
Because Ghard ∪Gsoft is not solvable in τ ′, GMUGS(τ ′) is not empty. Let G ∈ GMUGS(τ),
which means that for all G′ (G there is a plan π ∈ Π(τ) such that G ⊆ IJπK. Since
τ v τ ′ we have Π(τ) ⊆ Π(τ ′) and for all π ∈ Π(τ) it holds that IJπK∩Gsoft = I ′JπK∩Gsoft.

112 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

Therefore, either G ∈ GMUGS(τ ′) or G is solvable in τ ′ and therefore there exists a
G′′ ∈ GMUGS(τ ′) such that G ⊆ G′′ because GMUGS(τ ′) is not empty.

�

To provide explanations, we rely on a given set of relaxed tasks. Relaxations or abstractions
are a common way to compute heuristics. For example one can, modify action semantics to
accumulate variable values instead of updating them, called delete relaxation [Bonet and
Geffner, 2001]. Alternatively, one can abstract the state space by grouping concrete states
into abstract states. The abstraction function can be based on the projection of individual
variables [Culberson and Schaeffer, 1998, Edelkamp, 2001], the abstraction of individual
variable domains [Domshlak et al., 2009], the cross product of subsets of domains [Seipp
and Helmert, 2013] or any arbitrary mapping [Helmert et al., 2007].

While these relaxations can lead to strong heuristics, they are most likely of limited use
for explanations. Since the relaxations offered as explanations should not only inform the
user of the reasons behind a conflict, but also how it can be resolved, the relaxation should
reflect a modification of the planning task that can be realized in the real-world problem. For
example, the projection of whole variables might not be suitable. In addition, the relaxations
should not be too coarse, i. e. relaxing the task too much and in too large steps. Ideally, they
reflect a gradual relaxation of the task with steps that affect the conflicts. Thus, identifying
meaningful and actionable relaxations is not trivial. We operationalize our framework with
relaxations based on resource and time window constraints, whose concrete bounds are
specified by the user. We leave the automatic identification of suitable relaxations for future
work.

A set of relaxation which these properties, serves as the foundation to define relaxation
explanations for goal conflicts.

5.1.2 EXPLANATIONS BASED ON TASK RELAXATIONS

Given the question “Why are Q in conflict?” where Q ∈ GMUGS(τ) and a set of relaxed tasks
T for τ , we use tasks T ⊆ T for which Q is no longer a conflict as explanation. Ideally,
T should consist of the minimally relaxed tasks that resolve the conflict. Technically, any
relaxed task that resolves the conflict could serve as an explanation. However, using the
minimal relaxed task, leads to the most informative explanations based on the given set of
relaxed tasks. It provides the tightest bounds, for example, the least amount of fuel that
needs to be added.

DEFINITION 31: MINIMALLY RELAXED TASK

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task, T a set of relaxed tasks τ and
C ∈ GMUGS(τ) a conflict, τ ′ ∈ T is minimally relaxed, denoted by relaxmin(T, C, τ

′),
if C /∈ GMUGS(τ ′) and for all τ ′′ ∈ T : τ ′′ v τ ′ ∧ τ ′′ 6= τ ′ → C ∈ GMUGS(τ ′′).

A minimally relaxed task for conflict C is a task in which C is not a conflict, but for all less
relaxed tasks, it is. The relaxation explanation for a conflict can then be defined as follows:

5.1. EXPLANATIONS 113

DEFINITION 32: RELAXATION EXPLANATION

Let τ be an OSP task and T a set of relaxed tasks τ .
(Q,AR(Q,T)) is a relaxation explanation whereQ ∈ GMUGS(τ) is the user question
Q ∈ GMUGS(τ) and AR(Q,T) := {τ ′ ∈ T | relaxmin(T, Q, τ

′)} is the answer to
question Q.

The natural language formulation of the question-answer pair is “Why are the soft goals in
Q in conflict?” — “Because to resolve conflict Q, task τ would need to be relaxed at least
to one relaxation in AR(Q, T)”. A generic example is provided in Example 12 for more
concrete examples we refer to Section 5.4 and Example 22.

EXAMPLE 12: RELAXATION EXPLANATION

To illustrate the explanation for conflict C we use the diagram below. The minimal
relaxed tasks for C and the therefore given explanation is AR(C,T) = {τ2, τ6}. The
explanation in natural language is as follows: “To resolve conflict C, task τ would
need to be relaxed at least to τ2 or τ6”. τ4 is not part of the explanations because
τ2 v τ4, which means τ4 is not a minimally relaxed task.

τ0

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

τ9

C ∈ GMUGS(τi)

C /∈ GMUGS(τi)

τi ∈ AR(C,T)

Hasse diagram for a sample set of relaxations. τi → τj means τi v τj .

A few comments are necessary from a conceptual and technical point of view:

• Whether the iteration step δ is solvable or not, does not affect the explanation. For
both cases, the follow-up question is “Why are the soft goals in Q in conflict?”. If the
iteration step is solvable then Q refers to one of the conflicts revealed by the conflict
explanation AC(Q

′) of the preceding question “Why is Q′ not satisfied?”, while for an
unsolvable iteration step Q is one of the conflicts in the answer AE to the question
“Why is there no plan for Genf

i ?”.

• The question Q is restricted to minimal conflicts, i. e. MUGS. This is because we
assume that if Q is not minimal, the question “Why are the soft goals in Q in conflict?”
is first answered with the MUGS contained in Q. For more details see next section.

• The questionQ is limited to one conflict. In case the user is interested in a relaxation to
resolve a set of conflicts C, they can ask one question Qi ∈ C per conflict. The answer

114 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

resolving all conflicts are the least relaxed tasks from T that are at least as relaxed
as the tasks in the individual answers: τ ′ ∈ T for which for all τ ′′ ∈

⋃
Qi∈C AR(Qi,T)

holds τ ′′ v τ ′ and not exists τ ′′′ ∈ T such that τ ′′′ v τ .

• Given that T is only partially ordered, AR(Q,T) may contain multiple relaxations. We
assume that the user has not yet fully formed their preferences, including potential
relaxations. Therefore, we present all minimal relaxations to the user. The user must
decide, as part of the iterative planning process, whether the resolution of the conflict
is worth applying one of the relaxations.

As in the previous chapter, we use the MUGS for each task to represent all dominant goal
conflicts per task. Our approach requires computing the MUGS for all given relaxations.

DEFINITION 33: ALLRELAXMUGS

Let τ be an OSP task and T a set of relaxed tasks for τ . By AllRelaxMUGS we
denote the algorithmic problem of computing GMUGS(τ ′) for all τ ′ ∈ T.

These can be computed offline, prior to the iterative planning process, to ensure responsive-
ness when interacting with the user.

5.1.3 INTEGRATION INTO ITERATIVE PLANNING PROCESS

The relaxation explanation expects as question a minimal conflict, i. e. one MUGS. However,
the response to a conflict explanation (Definition 15) does not necessarily provide minimal
conflicts.

“Why is Q not satisfied by π?”:

Case 1: The answer AC(Q) = {∅} indicates that achieving the question Q itself is
not possible. However, Q could be non-minimal or even contain several conflicts.

Case 2: The answer AC(Q) = {A0, · · · , An} indicates that at least one soft goal in
each Ai must be foregone to satisfy Q. However, it does not reveal which part of
Q is in conflict with each Ai. Q ∪Ai does not need to be minimal and may also
contain several conflicts.

Case 3: If question Q is not in conflict with any soft goals satisfied by the sample plan,
then the answer is empty, AC(Q) = ∅. Since there is no conflict preventing the
user from enforcing Q in addition to the already enforced soft goals, no follow-up
question is necessary.

“Why is there no plan?”: In case there is no plan, as the enforced goals Genf are not
solvable, the answer AE provides the minimal conflicts in Genf.

For Case 1 and Case 2 the user may want to know the minimal conflicts causing the
unsolvability of Q and Q ∪Ai respectively. This provides the user with more fine-grained
information about the conflicts in their questions or with respect to the question and the soft

5.1. EXPLANATIONS 115

goals satisfied by the plan. It also provides the minimal conflicts necessary to ask for a
relaxation explanation.

DEFINITION 34: MINIMAL CONFLICT EXPLANATION

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task. (Q,AM (Q)) is minimal conflict
explanation where Q ⊆ Gsoft is a user question such that there exists a C ∈
GMUGS(τ) with C ⊆ Q and AM (Q) = {C | C ∈ GMUGS(τ), C ⊆ Q} is the answer.

This is analogous to how the question “Why is there no plan for Genf?” is addressed in
Definition 16. In both cases, the user has a set of unsatisfiable soft goals and wants to
identify the minimal conflicts that cause the unsolvability.

A concrete example of an iteration step containing all three question types is given in
Example 13.

EXAMPLE 13: ITERATION STEP WITH ALL EXPLANATION TYPES

Let’s again consider our running example with 8 units of energy and only soft goals.
We abbreviate x = uploaded with x. τe refers to the task with e units of energy for
the rover.

(1) Select Genf: Genf = {image-ice, image-crater3}

(2) sample plan π: Gtrue(π) = Genf and Gfalse(π) = DP \Genf

(3) Why not Q?: Q = {soil-sample-ice, x-ray-image-rock}
“Why is the soil sample of the ice surface and the x-ray image of the rock not
satisfied by π?”

(4) AC(Q): AC(Q) = {{image-ice}}
“Because to collect the soil sample of the ice surface and take the x-ray image of
the rock you have to forgo the image of the ice surface.”

(5) Why not Q′ a conflict?: Q′ = {soil-sample-ice, x-ray-image-rock,
image-ice}
“Why is it not possible to collect the soil sample and take an image of the ice
surface and take an x-ray image of the rock?”

(6) AM (Q′): AM (Q′) = {{image-ice, x-ray-image-rock}}
“Because it is not possible to take the image of the ice surface and the x-ray
image of the rock.”

(7) Why not Q′′ a conflict?: Q′′ = {image-ice, x-ray-image-rock}
“Why is it not possible to take the image of the ice surface and the x-ray image of
the rock”

116 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

(8) AR(Q
′′): AR(Q

′′) = {τ9}
“Because you need one additional unit of energy to take the image of the ice
surface and the x-ray image of the rock.”

For one iteration step within the iterative planning process, this results in the interaction
sequence shown in Figure 36.

Select Genf

Sample plan
exists?

Why is Genf

not solvable?

No

AE

sample plan π

Yes

Why is Q
not satisfied?

AC(Q)
Q can be satisfied
without forgoing

any goal in Gtrue(π).

You have to forgo
one goal in each conflict

in AC(Q).
Q is not solvable.

Why is Q′

a conflict?

Q′ = QQ′ ∈ {Q ∪A | A ∈ AC(Q)}

AM (Q′)

Why is Q′′

a conflict?

Q′′ ∈ AM (Q′)Q′′ ∈ AE

AR(Q
′′,T)

Figure 36: Interaction options of the user and questions they can ask within one iteration
step.

5.2. ALLRELAXMUGS ALGORITHMS 117

5.2 ALLRELAXMUGS ALGORITHMS

To address any question of the form: “Why are soft goals Q in conflict?”, it is necessary
to compute the MUGS of all relaxed tasks T. A straightforward approach would be to
utilize any of the algorithms introduced in the previous chapter, either goal lattice search
GLS (Section 4.2.1) or branch-and-bound search (GSBNB) (Section 4.2.2), to compute the
MUGS for each task in T individually. However, this approach would entirely overlook the
relationship between the tasks in T. These tasks are relaxations of the original task τ and
often relaxations of each other. Therefore, we propose the following two approaches based
on GSBNB, which propagate information from less relaxed to more relaxed tasks. To do
so, we need to traverse the relaxed tasks following the partial order provided by v. This
traversal is based on the exploration of the relaxation graph, defined in the next section.

Relaxation Graph For the implementation of our algorithms we assume that a relaxation
graph with the relaxed tasks T as nodes and edges based on an under-approximation of v
with the following properties is given.

DEFINITION 35: RELAXATION GRAPH

Let τ be a planning task and T as set of relaxed tasks for τ . The directed graph
T = (T, E) with vertices T and edges E is a relaxation graph for τ if

(1) τ ∈ T,

(2) for all (τ ′, τ ′′) ∈ E it holds τ ′ 6= τ ′′,

(3) for all τ ′, τ ′′ ∈ T it holds that (τ ′, τ ′′) ∈ E → τ ′ v τ ′′,

(4) it exists τ∗ ∈ T such that for all τ ′ ∈ T, τ ′ v τ∗, and

(5) for all τ ′ ∈ T \ {τ, τ∗} there exists a path from τ via τ ′ to τ∗.

Task τ must be a vertex of the relaxation graph (1) and self-loops are not allowed (2). (3)
ensures that the edges reflect an under-approximation of v. Due to (2) and (3) τ has no
incoming edges. Our algorithms require a most relaxed task (4). We refer to this task as τ∗.
All tasks in T must be located on a path between task τ and the most relaxed task τ∗ (5).

In the following algorithms, we will need the functions pre(τ ′) and suc(τ ′) denoting the
predecessor (less relaxed) and successor (more relaxed) tasks of τ ′ within relaxation graph
T = (T, E). They are defined as pre(τ ′) = {τ ′′ ∈ T | (τ ′′, τ ′) ∈ E} and suc(τ ′) = {τ ′′ ∈
T | (τ ′, τ ′′) ∈ E}. An example relaxation graph is depicted in Example 14.

EXAMPLE 14: RELAXATION GRAPH

Below the relaxation graph T = (T, E) with vertices T = {τ, τ1, τ2, τ3, τ4,
τ5, τ6, τ7, τ8, τ9, τ10} and edges E = {(τ, τ1), (τ, τ2), (τ, τ5), (τ1, τ3), (τ1, τ4),
(τ3, τ6), (τ4, τ8), (τ5, τ8), (τ5, τ7), (τ6, τ10), (τ8, τ10), (τ7, τ9), (τ9, τ10)} is depicted.

118 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

The predecessor of τ4 are all tasks with an outgoing connection with τ4 and the
successor task have an incoming connection with τ4. τ10 is the most relaxed task.

more relaxed

original
task

suc(τ4)pre(τ4)
most

relaxed

τ

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8

τ9

τ10 = τ∗

We traverse the relaxation graph T = (T, E), starting in τ , to compute all MUGS for each
task in T. In the following we introduce two algorithms that during this exploration propagate
information from less to more relaxed tasks.

5.2.1 MSGS PROPAGATION

As described in Section 4.2.2, GSBNB explores the state space while maintaining all subset
maximal solvable goal subsetsM. To decrease the number of explored states, a heuristic
estimation based on the already encountered soft goal subsetsM is used for pruning. If
no goal subset that can improve M can be reached within the cost bound, the state is
pruned. The more soft goal subsets are reached, the more effective the pruning becomes.
This process can lead to more pruning ifM is initialized with an under-approximation of
GMSGS(τ) (all maximal solvable goal subsets of task τ). Such an under-approximation can
be provided by the MSGS of less relaxed tasks. In the following, we exploit this property to
extend GSBNB to compute AllRelaxMUGS.

Given a relaxation graph T = (T, E) for τ , we compute the MSGS for all τ ′ ∈ T by
traversing T , starting in τ , and computing the MSGS for each task individually. The MSGS
are then propagated from less to more relaxed tasks.

The pseudo-code of GSBNB with MSGS propagation (GSBNBp) is outlined in Algo-
rithm 6. M (line 3) is a map from tasks to sets of soft-goal subsets storing the MSGS for
each task. The aforementioned propagation of MSGS is realized by initializing GSBNB with
all MSGS reached in the predecessor tasks of τ (line 8). The heuristic functions depend on
the task, thus they needs to be recomputed for each task τ . The processing of relaxed tasks
is done in the order resulting from the traversal of the relaxation graph T . A task is selected
based on whether all its predecessors have been processed, and the order of incomparable
tasks is resolved randomly (line 6). If a task solves all hard and soft goals, all more relaxed
tasks are also solvable, and thus, they are skipped (line 10). The MSGS can then be used
to compute the MUGS for each task, as done in Section 4.2.

5.2. ALLRELAXMUGS ALGORITHMS 119

Algorithm 6 MSGS Propagation Search (GSBNBp)

1: Given: relaxation graph T = (T, E), new-goal-subset heuristic Hp, heuristic Hg

2: function GSBNBP(T ,Hp,Hg)
3: M← {} . map of MSGSs
4: Tp ← {} . processed tasks
5: while |Tp| < |T| do
6: τ ← RANDOM({τ ′ ∈ T \ Tp|pre(τ ′) ⊆ Tp}) . next relaxed task
7: Tp ←Tp ∪ {τ}
8: M̃ ← max⊆(

⋃
τ ′∈pre(τ)M[τ ′]) . propagate MSGS

9: M[τ]←GSBNB(τ,Hp(τ),Hg(τ), M̃)
10: if Ghard ∪Gsoft ∈M[τ] then . skip solvable tasks
11: Tp ←Tp ∪ {τ ′ ∈ T|τ ′ is reachable from τ in T }
12: return {HIT(M(τ)) | τ ∈ T}

PROPOSITION 14: SOUNDNESS AND COMPLETENESS OF GSBNBP

Given a relaxation graph T = (T, E) GSBNBp computes the MUGS of all tasks in
T.

Proof:
It follows from Proposition 12, that MSGS grow monotonically from less to more relaxed
task. Thus all MSGSM̃ reachable within the predecessor of task τ are also reachable in
τ . Thus, the soundness and completeness of GSBNBp follows from the soundness and
completeness of GSBNB.

�

5.2.2 ITERATIVE SEARCH SPACE EXTENSION

The MSGS propagation approach performs one exhaustive state space search for each
task. However, since we consider relaxed tasks, there is no need to generate individual
search spaces. Instead, one can iteratively extend the search space of less relaxed tasks
with states, that are only reachable in more relaxed tasks. This way, one must not generate
corresponding states multiple times.

DEFINITION 36: CORRESPONDING STATES

Let τ and τ ′ be OSP tasks, with initial states I, I ′, actions A, A′ and states S, S ′

respectively.
Two states s ∈ S and s′ ∈ S ′ are corresponding states, iff there exists an action
sequence π ⊆ A ∩A′ such that IJπK = s and I ′JπK = s′ holds.
The function κττ ′ : S 7→ S ′ ∪ ε maps each state to its corresponding state or to ε if no
such state exists. It is called corresponding state mapping.

120 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

States correspond to each other if they can be reached with the same action sequence. For
instance, if the relaxation allows to use a second rover, all action sequences that only use the
first rover are applicable in the original task and in the relaxation, resulting in corresponding
states. Since relaxations preserve all plans, if a task is relaxed then each goal state of the
task has a corresponding goal state in the relaxed task.

PROPOSITION 15: CORRESPONDING STATES FOR RELAXED TASKS

Let τ and τ ′ be OSP tasks. If τ v τ ′ then for all states s ∈ Sr(Θτ), there is a state
s′ ∈ Sr(Θτ ′) such that κτ

′
τ (s′) = s.

Proof:
Let π ∈ Π(τ) and s = IJπK. Since τ v τ ′ we have Π(τ) ⊆ Π(τ ′). Thus, there exists a
state s′ ∈ S ′ such that I ′JπK = s′ and hence κτ

′
τ (s′) = s.

�

Each goal state of τ has a corresponding goal state in the relaxed task τ ′, satisfying the
same soft goals. Thus, we can compute GMSGS(τ) by restricting the state space of τ ′ to
the states with corresponding reachable states in τ . To do so, we use the cost bound of τ
and only allow transitions in the relaxed state space, that also exist between corresponding
states in the non-relaxed state space.

DEFINITION 37: RESTRICTED STATE SPACE

Let τ and τ ′ be OSP tasks with state spaces Θτ = (S, L, c, T, I,SG, b) and Θτ ′ =

(S ′, L′, c′, T ′, I ′,SG′, b′) and κτ
′

τ the corresponding state mapping between τ ′ and τ .
The state space of τ ′ restricted to τ is the state space Θτ

τ ′ = (S ′, L′, c′, Tτ , I
′,SG′, b)

where Tτ = {(s, a, s′) ∈ T ′ |(κτ ′τ (s), a, κτ
′

τ (s′)) ∈ T }.

Then the MSGS of task τ can be computed based on the state space of a relaxed task τ ′,
restricted to τ .

PROPOSITION 16: GMSGS FROM RESTRICTED STATE SPACE

Let τ and τ ′ be OSP tasks where τ v τ ′. Then GMSGS(Θτ) = GMSGS(Θτ
τ ′).

Proof:
Using Proposition 16 we have GMSGS(Θτ) = max⊆{∪s∈Sr

G(Θτ)(s ∩ Gsoft)} and
GMSGS(Θτ

τ ′) = max⊆{∪s∈Sr
G(Θτ

τ ′)
(s ∩ Gsoft)}, where SrG(x), are the reachable goal

states of x.

{Gsoft ∩ s|s ∈ SrG(Θτ)} ⊆ {Gsoft ∩ s|s ∈ SrG(Θτ
τ ′)}: According to Proposition 15, every

state s ∈ SrG(Θτ) has a corresponding state s′ ∈ SrG(Θτ ′) that satisfies the same

5.2. ALLRELAXMUGS ALGORITHMS 121

soft goals. Since the restriction of Θτ ′ to τ maintains the reachability of all states
that have a corresponding state in Θτ , the states corresponding to SrG(Θτ) are also
reachable in SrG(Θτ

τ ′). Thus, {κττ ′(s) | s ∈ SrG(Θτ)} ⊆ SrG(Θτ
τ ′) and consequently

{Gsoft ∩ s|s ∈ SrG(Θτ)} ⊆ {Gsoft ∩ s|s ∈ SrG(Θτ
τ ′)}

{Gsoft ∩ s|s ∈ SrG(Θτ)} ⊇ {Gsoft ∩ s|s ∈ SrG(Θτ
τ ′)}: We have {κττ ′(s) | s ∈ SrG(Θτ)} ⊇

SrG(Θτ
τ ′), because if this is not the case, there would be a state s ∈ SrG(Θτ

τ ′) such
that there exists a plan π with s = I ′JπK and π is not applicable in I. However,
since Θτ

τ ′ only contains transitions that also exist in Θτ , π must also be applicable
in I. From this, and that corresponding goal states satisfy the same soft goals
{Gsoft ∩ s|s ∈ SrG(Θτ)} ⊇ {Gsoft ∩ s|s ∈ SrG(Θτ

τ ′)} follows.

�

The objective is to compute the MSGS for all relaxed tasks, by iteratively extending the
search space. Next, we describe how to transition from the states explored for τ to then
compute GMSGS(τ ′). This is possible, because the reachable states in Θτ

τ ′ are a prefix of
Θτ ′ .

DEFINITION 38: SEARCH SPACE PREFIX

Let τ and τ ′ be OSP tasks with state spaces Θτ = (S, L, c, T, I,SG) and Θτ ′ =

(S, L, c, T ′, I,SG).
Θτ is called a prefix of Θτ ′ if all states s ∈ S reachable in Θτ are also reachable in
Θτ ′ , Sr(Θτ) ⊆ Sr(Θτ ′).

PROPOSITION 17: RESTRICTED SEARCH SPACE IS PREFIX

Let τ and τ ′ be OSP tasks where τ v τ ′. Then Θτ
τ ′ is a prefix of Θτ ′ .

Proof:
According to Definition 37 we have Θτ ′ = (S ′, L′, c′, T ′, I ′,SG′, b) and Θτ

τ ′ = (S ′, L′, c′,

Tτ , I
′,SG′, b). Since Tτ ⊆ T ′ and they have the same cost function and cost bound all

states reachable in Θτ
τ ′ are also reachable in Θτ ′ .

�

For all states s ∈ S ′ that are only reachable in Θτ ′ , the path from I ′ to s can be decomposed
into two parts. The first part is applicable in Θτ

τ ′ and the second part is applicable only in
the non-restricted state space Θτ ′ . The border between these two parts are the frontier
states. They are the first states that are not reachable in the restricted search space.

122 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

PROPOSITION 18: FRONTIER

Let τ and τ ′ be OSP tasks with state spaces Θτ = (S, L, c, T, I,SG) and Θτ ′ =

(S, L, c, T ′, I,SG), such that Θτ is a prefix of Θτ ′ . For every state s ∈ Sr(Θτ ′) \
Sr(Θτ) (that is reachable in Θτ ′ but not in Θτ) there exists a transition sequence
σ = (I, l0, s1) · · · (si−1, li−1, si)(si, li, si+1)(si+1, li+1, si+2) · · · (sn−1, ln−1, s) from
I to s such that

• (sk, lk, sk+1) ∈ T for k < i

• (si, li, si+1) /∈ T

Proof:
Let s ∈ S be a state reachable in Θτ ′ but not in Θτ . Let σ be a shortest path from I to
s in Θτ ′ . Since s is not reachable in Θτ there must be a transition (s, a, s′) ∈ σ such
that (s, a, s) /∈ T . Let σ = (I, l0, s1) · · · (si−1, li−1, si)(si, li, si+1)(si+1, li+1, si+2) · · ·
(sn−1, ln−1, s). Select i such that for all k < i (sk, lk, sk+1) ∈ T , and (si, ai, si+1) ∈ T
holds. This is always possible, because i can be 0.

�

We call si+1, the first state in Θτ ′ , a frontier state and denote the set of all frontier states
with F τ

τ ′ . The frontier states together with the MSGS of task τ allow to compute the MSGS
for the relaxed task τ ′.

THEOREM 3: GMSGS BY EXTENTION OF RESTRICTED SEARCH SPACE

Let τ and τ ′ be OSP tasks where τ v τ ′ with cost bound b and b′ respectively. Let
Θτ

τ ′ = (S ′, L′, c′, Tτ , I
′,SG′, b) be the state space of τ ′ restricted to τ with frontier

states F τ
τ ′ .

Then

GMSGS(τ ′) = max
⊆
{GMSGS(Θτ

τ ′) ∪
⋃

f∈F τ
τ ′

GMSGS((S ′, L′, c′, T ′, f,SG′, b′ − g(f)))}

where g(f) is the cost of a cheapest path from I ′ to f in Θτ
τ ′ .

Proof:
⊆: Let G ∈ GMSGS(τ ′). If

(a) G ∈ GMSGS(τ): If G ∈ GMSGS(τ) then G ∈ GMSGS(Θτ
τ ′) follows from Proposition 16.

It remains to be shown that max⊆ does not remove G. If G ∈ GMSGS(τ ′) then there
exists no G′) G, for which there exists a stare s ∈ Sr(Θτ ′) such that G′ ⊆ s. So
no G′) G is added and thus G is not removed by max⊆.

(b) G /∈ GMSGS(τ): This means there is a state s ∈ Sr(Θτ ′) \ Sr(Θτ
τ ′) such that G ⊆ s.

5.2. ALLRELAXMUGS ALGORITHMS 123

Let σ = (I ′, a0, s1) · · · (si−1, ai−1, si)(si, ai, f)(f, ai+1, si+2) · · · (sn−1, an−1, s) be a
cheapest transition sequence reaching s in Θτ ′ . From Proposition 18 follows that
there is a frontier state in σ. Let f be this frontier state. Thus, s is reachable in state
space (S ′, L′, c′, T ′, f,SG′, b′− cost(a0 · · · ai)) via the transition sequence (si, ai, f)

((f, ai+1, si+2) · · · (sn−1, an−1, s). Because G is maximal in τ ′ there exists no state
s′ ∈ S ′ and G′) G such that G′ ⊆ s′. Thus, max⊆ does not remove G.

⊇:

(a) G ∈ GMSGS((S ′, L′, c′, T ′, f,SG′, b′ − g(f))) for any f ∈ F τ
τ ′ : Let s ∈

Sr((S ′, L′, c′, T ′, f,SG′, b′ − g(f))) such that G ⊆ s and (f, ai+1, si+2) · · ·
(sn−1, an−1, s) the transition sequence to reach s from f . Because f is
a frontier state (Proposition 18), there exists a transition sequence σ =

(I ′, a0, s1) · · · (si−1, ai−1, si)(si, ai, f)(f, ai+1, si+2) · · · (sn−1, an−1, s) in Θτ ′ that
reaches s. Thus, G is solvable in τ ′.

It remains to be shown that G is subset-maximal among GMSGS(τ ′).

• If there exists a frontier state f ′ such that a superset G′) G is reachable from
f ′ then max⊆ would remove G.

• Let G ⊆ Gsoft be subset-maximal among all soft goal subset reachable from
any frontier state. Now, assume G is not subset-maximal in τ ′, i. e. there exists
a state s ∈ SrG(Θτ ′) such that G′ = Gsoft ∩ s) G. If s ∈ SrG(Θτ

τ ′), then G′ is
covered by (b) and G removed by max⊆. If s ∈ Sr(Θτ ′) \ Sr(Θτ

τ ′), following
the argumentation from above (⊆: (a)) there is a frontier state f such that s
is reachable from f . However, this contradicts with G being subset-maximal
among all frontier states.

(b) G ∈ GMSGS(Θτ
τ ′): G ∈ GMSGS(τ) follows from Proposition 16. It remains to be

shown that G is either subset-maximal in GMSGS(τ ′) or removed by max⊆. From
Proposition 12 follows, that there is a G′ ∈ GMSGS(τ ′) such that G ⊆ G′. If
G′ = G then there is no state s′ ∈ S ′ and G′′) G′ such that G′′ ⊆ s′. Thus,
max⊆ does not remove G. If G (G′, then G′ or a superset is contained in
GMSGS((S ′, L′, c′, T ′, f,SG′, b′− g(f))) because of (⊇ (a)) and thus max⊆ removes
G.

�

According to Theorem 3, allRelaxMUGS for a set of relaxations T of a given relaxation
graph T = (T, E) can be computed by iteratively extending the search space of the most
relaxed task τ∗. The initialization of the search for more relaxed tasks is based on the stored
frontier nodes from predecessor tasks and their MSGS. The pseudo-code of the Iterative
Search Space Extension (ISSE) algorithm is outlined in Algorithm 7 and 8. The algorithm is
divided into two functions, ISSE (Algorithm 7), which iterates over the relaxed tasks and
maintains their MSGS and search frontiers, and EXTEND (Algorithm 8), which explores the
state space for one relaxed task.

124 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

Algorithm 7 Iterative Search Space Extension (ISSE)

1: Given: relaxation graph T = (T, E) with most relaxed task τ∗, new-goal-subset heuristic
Hp, heuristic Hg

2: function ISSE(T ,Hp,Hg)
3: M← {} . map of MSGSs
4: F ← {τ∗ : {(I∗, 0)}} . map of frontier states
5: Tp ← {} . processed tasks
6: while |Tp| < |T| do
7: τ ← RANDOM({τ ′ ∈ T \ Tp|pre(τ ′) ⊆ Tp}) . next relaxed task
8: Tp ←Tp ∪ {τ}
9: M̃ ←

⋃
τ ′∈pre(τ)M[τ ′] . propagate MSGS

10: F ←
⋃

τ ′∈pre(τ)F [τ ′] . possible frontier
11: F ← {(s, gs) ∈ F | ¬∃τ ′′ ∈ pre(τ) : APPLICABLE(τ ′′, π(s))}
12: I ← {(s, gs) ∈ F | APPLICABLE(τ, π(s))} . actual frontier
13: M[τ],F [τ]←EXTEND(I, τ∗,Hp(τ

∗),Hg(τ
∗), τ, M̃ ,)

14: F [τ]← F [τ] ∪ F \ I . add frontier states not reachable in τ
15: if Gsoft ∈M[τ] then . skip solvable tasks
16: Tp ←Tp ∪ {τ ′ ∈ T|τ ′ is reachable from τ in T }
17: return {HIT(M(τ)) | τ ∈ T}

For each task in T , its MSGSM and the resulting search frontier F are stored. As for
GSBNBp, the MSGS are propagated from less to more relaxed tasks (line 9). The frontier
is initialized with the initial state of the most relaxed task τ∗ (line 4). In each subsequent
iteration, it is initialized with the frontier states of all predecessor tasks of τ that are reachable
in τ (line 11-12). This reachability check is necessary because if τ 6= τ∗ there might be
states that are frontier states for the predecessors of τ as well as for τ .

Then for each task τ we call EXTEND, to extend the search space from the frontier states
I as far as possible and to collect all MSGS and frontier states of τ . Heuristic guidance
and pruning follows the same approach as in GSBNB. However, the heuristic and the cost
bound are not based on the current relaxed task τ (as in GSBNBp), but on the most relaxed
task τ∗. Otherwise, states that might be reachable in more relaxed tasks could be pruned.
The search frontier consists of the states that are generated in the search of τ but are not
reachable in τ (line 23 - 26). To determine whether s′ is reachable in τ , APPLICABLE tests if
the action sequence π(s′) leading to state s′ is applicable in the initial state of τ and whether
cost(π(s′)) ≤ b.

Upon termination of ISSE,M contains the MSGS of all tasks. They can then be used
to compute the MUGS of all task as described in Section 4.2.

PROPOSITION 19: CORRECTTNESS ISSE

Given a relaxation graph T = (T, E) ISSE computes the MUGS of all tasks in T.

5.2. ALLRELAXMUGS ALGORITHMS 125

Algorithm 8 Iterative Search Space Extension (ISSE): EXTEND

1: Given: task τ , most relaxed task τ∗, new-goal-subset heuristic Hp, heuristic Hg, MSGS
M̃ of predecessor tasks and frontier states I

2: function EXTEND(I, τ∗,Hp,Hg, τ, M̃)
3: G ← M̃ . current maximal solvable goal subsets
4: g(s)←∞ for all states (s, x) 6= I and g(s)← gs for (s, gs) ∈ I
5: O ← {(I, g(I)) | I ∈ I} . priority queue ordered by ascending Hg(s, b− g(s),G)
6: F ←{} . new frontier states
7: while |O| > 0 do
8: s, gs ← POP(O)
9: if g(s) < gs then . duplicate check

10: continue
11: if Ghard ∪Gsoft ⊆ s then
12: return Gsoft, F . all goals are solvable

13: if Ghard ⊆ s then
14: UPDATE(G, s ∩Gsoft)

15: for all a ∈ A(s) do .

16: s′ ←sJaK
17: gs′ ← g(s) + c(a)

18: if gs′ ≥ g(s′) then . duplicate check
19: continue
20: g(s′)← gs′

21: if g(s′) > b ∨Hp(s, b− g(s′),G) =∞ then
22: continue . prune s′ if nothing new reachable

23: if APPLICABLE(τ, π(s′)) then
24: O ← O ∪ (s′, g(s′))

25: else
26: F ←F ∪ {(s′, g(s′))} . update frontier

27: return G, F

Proof:

1. Hp(τ
∗) is an admissible heuristic for any task τ ′ if τ ′ v τ∗:

τ∗ is the most relaxed task of T , thus for all tasks τ ′ ∈ T : τ ′ ≤ τ∗. Since from
Π(τ ′) ⊆ Π(τ∗) follows that for all state s ∈ Sr(Θτ∗) and for all goals g ∈ Gsoft :

h∗τ ′,g(s) ≤ h∗τ∗,g(s), where h∗τ,g(s) is the perfect classical heuristic for task τ with
no cost bound and G = {g}. Thus, pruning is safe following Proposition 7.

2. Proof via induction over T = (T, E). The base case for task τ ∈ T follows from
Proposition 16. The induction step follows from Theorem 3.

�

126 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

Example 15 shows a schematic representation of such an iterative exploration of the state
space.

EXAMPLE 15: SEARCH SPACE FOR ISSE

Let’s consider an example with four tasks T = {τ0, τ1, τ2, τ4} such that τ0 v τ1,
τ0 v τ2, τ1 v τ3, τ2 v τ3. Below the search space of the most relaxed task, τ3 is
depicted. Each state is colored with respect to its reachability. The frontier states for
each task are labeled with a circle in the corresponding color. The “initial” states for
each call to EXTEND are labeled with arrows.

τ0

τ1

τ2

τ3

s5

s8

s12

s14

s6 s7

s12 s13

s3 s4 s5

s0

s1 s2

s3 s4 s5

s6 s7 s8 s9 s10

s11 s12 s13

s14 s15

For τ0 only the states {s0, s1, s2} are reachable thus the states {s3, s4, s5} are frontier
states. For τ1 the search then starts from {s3, s4} and explores states {s6, s7, s11},
which results in the frontier {s5, s8, s12, s14}. Notice that state s5 is in the frontier
of τ0 and τ1 because it is also not reachable in τ1. For τ3 we only have to consider
frontier states that are not yet covered by any less relaxed task, for example s8 that
is covered by τ2.

5.2.3 THEORETICAL COMPARISON

The propagation of MSGS can improve pruning, which can benefit both GSBNBp and ISSE.
Reusing the search space in ISSE reduces duplicate work, but states are only pruned
based on the reachability in the most relaxed task, not the current task. We compare the
overall number of generated states by each algorithm as a measure to determine whether

5.2. ALLRELAXMUGS ALGORITHMS 127

they are exponentially separated. As the baseline algorithm BASE, we consider GSBNBp
without the propagation of MSGS.

DEFINITION 39: EXPONENTIAL SEPARATION

Let {Tn | n ∈ N+} be a family of planning tasks of size (number of facts and actions)
polynomially related to n and S(X) the number of states generated by search method
X. If there exists a family of planning tasks such that for search method X and Y ,
|S(Y)− S(X)| is exponential in n, then X is exponentially separated from Y .

In the following we consider a family of resource constraint planning tasks (for the formal
definition see Definition 45), in which a robot has to visit different locations on a map. The
robot’s movement is restricted by a resource ρ with domain D(ρ) = {0, 1, 2}. Additionally,
some connections are initially locked, and the robot must first collect all n keys to unlock
them. The robot can collect keys one at a time (without using any resources) if it is in
the same location as the key. Since the keys can be picked up in any order, there can
be exponentially many search states depending on n. The specific map configuration is
defined for each example individually. We will consider tasks τ1 and relaxed task τ2 with
initial resource value initρ = 1 and initρ = 2, respectively.

In the following examples, pruning is based on the h2 heuristic [Haslum and Geffner,
2000] to estimate the reachability.

THEOREM 4: EXPONENTIAL SEPARATION FROM BASELINE

GSBNBp and ISSE are exponentially separated from BASE.

L0

R
L1 L2

L3 K

1

1

2

0

Figure 37: Map of separation of GSBNBp and ISSE from BASE, initial location: L0, goal:
visit L1 and L2; resource consumption per move is indicated by the edge labels. The dashed
connection is initially locked, and the location annotated with K holds a set of n keys.

Proof:
Consider the map depicted in Figure 37. For τ1 with initρ = 1 GSBNBp and the
baseline generate 2 states (R at L0 and L1). ISSE, whose state space is based on
τ2 with initρ = 2, generates the same two states and 2 additional states (R at L2 and
L3), which are not reachable and stored in the frontier. For both GSBNBp and ISSE
MSGS = {{L1}} is propagated. For τ2 with initρ = 2 in GSBNBp moving to L3 is

128 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

pruned because no new locations are reachable from there. The same holds for ISSE.
This leads to 2+3 and 4+1 states for GSBNBp and ISSE respectively. For the baseline,
the reachability of L1 is not propagated and moving to L3 is not pruned. Thus, we get
2 + 3 + 2 ∗ 2n states, for picking up any combination of keys.

�

THEOREM 5: EXPONENTIAL SEPARATION GSBNBP AND ISSE

GSBNBp is exponentially separated from ISSE.

L0

R

L1

K

L2

1
1

1

Figure 38: Map of separation of GSBNBp from ISSE, initial location L0, goal: visit L2;
resource consumption per move is indicated by the edge labels. The dashed connection is
initially locked, and the location annotated with K holds a set of n keys.

Proof:
Consider the map depicted in Figure 38. For τ1 with initρ = 1, GSBNBp generates only
one state. Moving to L1 is pruned because h2 recognizes that L2 is not reachable with
ρ = 1. In ISSE, the weaker constraint initρ = 2 prevents pruning of L1 and picking up
any combination of keys. Thus, 1 + 2n reachable and 2n (at L2 with any combination
of keys) unreachable states are generated. For τ2 with initρ = 2 in GSBNBp visiting L2

via the upper connection and extending the MSGS to {{L2}} leads to early termination.
The same holds for ISSE. This results in 1 + 3 states for GSBNBp and 1 + 2 ∗ 2n for
ISSE.

�

5.3 COMPILATION OF ALLRELAXMUGS TO ALLMUGS

Until now, we have considered relaxation to be an external factor, one that modifies the
planning task at hand. However, there is also another view, in which the planning task itself
reflects only the hard constraints, such as the total possible resource capacity or the time
windows given by natural circumstances. All actionable and useful soft constraints and
possible relaxations of them are instead reflected by soft goals. In fact, we have already
done so. In our running example, the soft goals that limit the usage of certain connections
can be seen as a relaxation of the road map. This approach allows for the inclusion of
relaxations in the conflict analysis without any special treatment. The following section
describes how relaxations are encoded as soft goals and how the resulting MUGS have to
be interpreted to yield AllRelaxMUGS.

5.3. COMPILATION OF ALLRELAXMUGS TO ALLMUGS 129

5.3.1 RELAXATION SOFT GOALS

In order to incorporate potential relaxations into the conflict analysis, it is necessary to
encode them as soft goals. These soft goals serve to indicate which states are reachable
within each relaxation.

DEFINITION 40: RELAXATION SOFT GOALS

Let τ be an OSP task and T = (T, E) a relaxation graph for τ with most relaxed
task τ∗.
A relaxation soft goal for task τ ′ ∈ T is a soft goal γτ ′ that is satisfied in all states
Sr(Θτ ′

τ∗) and that is not satisfied by any state Sr(Θτ∗) \ Sr(Θτ ′
τ∗).

The set of all relaxation soft goals for T is denoted by Γ.

It is essential to emphasize reachable states. This implies the necessity of the expressive
power of LTLf formulas over actions and facts to define relaxation soft goals. Once the
reachable states Sr(Θτ ′

τ∗) for τ ′ are left, γτ ′ must be false for any subsequent state (see
Example 16). These temporal soft goals are then compiled into a single goal fact as
described in Section 4.3.2.

EXAMPLE 16: RELAXATION SOFT GOALS

Consider the following relaxations of the movement of two available rovers. In task τ
no rover is used in relaxation τ1 only rover R1, in τ2 only rover R2 and in τ∗ both. At
first sight, the following relaxation soft goals, where l1 and l2 are the initial location of
the rovers, make sense: Γ = {γτ := R1 = l1 ∧R2 = l2, γτ1 := R2 = l2, γτ2 := R1 =

l1}. However, they are not only satisfied in all states reachable by action sequences
not moving the respective rover, but also in all states where a rover returns to its
initial location. Therefore, R1 = l1 needs to be globally enforced thus we need the
following temporal soft goals: Γ = {γτ := �(R1 = l1 ∧ R2 = l2), γτ1 := �R2 =

l2, γτ2 := �R1 = l1}. For further examples see Section 5.4.1.

Given the set of relaxation soft goals Γ, the next step to compute AllRelaxMUGS, is to
expand the soft goals of the most relaxed task τ∗ by Γ. This preserves the original MUGS
of τ∗.

PROPOSITION 20: EXTENDED SOFT GOALS AND MUGS

Let τ = (V,A, c, I,Ghard, Gsoft, b) and τ ′ = (V,A, c, I,Ghard, Gsoft′, b) be OSP tasks
that are equivalent except for the soft goals. If Gsoft ⊆ Gsoft′ then GMUGS(τ) ⊆
GMUGS(τ ′).

130 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

Proof:
Follows from Definition 17 of MUGS.

�

Based on the MUGS of the with Γ extended task τ∗, the MUGS for each relaxation reflected
by a soft goal in Γ can be determined. For each relaxation τ ′, the MUGS Mτ ′ that are
eventually resolved by a more relaxed task and the MUGSM∅ that are still present in the
most relaxed task τ∗ must be considered. The former are characterized by a relaxation soft
goal γτ ′ , while the latter are not.

THEOREM 6: ALLMUGS TO ALLRELAXMUGS

Let τ be an OSP task, T = (T, E) a relaxation graph for τ with most relaxed task τ∗

and soft goals Gsoft
∗ and Γ a set of relaxation goal facts for T . Let τΓ be task τ∗ with

soft goals Gsoft
∗ ∪ Γ.

Then for all τ ′ ∈ T the MUGS are given by:

GMUGS(τ ′) = min
⊆

(Mτ ′ ∪M∅)

with:

Mτ ′ = {G \ {γτ ′} | G ∈ GMUGS(τΓ), G ∩ Γ = {γτ ′}}
M∅ = {G | G ∈ GMUGS(τΓ) ∧G ∩ Γ = ∅}

Proof:
Given an OSP task τ with hard goals Ghard and soft goals Gsoft with state space Θ with
goal states SrG and soft goal subset G′ ⊆ Gsoft, we denote the reachable goal states
that satisfy G′ by RGS(Θ, G′) where RGS(Θ, G′) ⊆ SrG and for all s ∈ RGS(Θ, G′),
G′ ⊆ s holds.

GMUGS(τ ′) ⊆ min⊆(Mτ ′ ∪M∅):

Let C ∈ GMUGS(τ ′).

a) C ∈ GMUGS(τ∗): With Proposition 20 we have GMUGS(τ∗) ⊆ GMUGS(τΓ). Because
C is minimal it follows C ∩ Γ = ∅ and thus C ∈ M∅. Since C ∈ GMUGS(τ ′) and
C ∈ GMUGS(τΓ), there is no subset C ′ (C such that C ′ ∪ {γτ ′} ∈ GMUGS(τΓ) and
thus min⊆ will not remove C.

b) C /∈ GMUGS(τ∗): From C ∈ GMUGS(τ ′) it follows RGS(Θτ ′
τ∗ , C) = ∅, and for every

C ′ (C there is a state RGS(Θτ ′
τ∗ , C

′) 6= ∅. Since the goal state reachable in Θτ ′
τΓ

are the only goal states where γτ ′ is satisfied, RGS(ΘτΓ , C ∪ {γτ ′}) = ∅. Since
C /∈ GMUGS(τ∗),RGS(ΘτΓ , C) 6= ∅. Thus, C ∪ {γτ ′} is unsolvable in ΘΓ but every
subset is. It follows C ∪ {γτ ′} ∈ GMUGS(τΓ). Since C ∪ {γτ ′} ∈ GMUGS(τΓ) there can

5.3. COMPILATION OF ALLRELAXMUGS TO ALLMUGS 131

be no subset C ′ (C ∪ {γτ ′} with C ′ ∈ GMUGS(τΓ) and thus C is not removed by
min⊆.

GMUGS(τ ′) ⊇ min⊆(Mτ ′ ∪M∅):

a) Let C ∈Mτ ′ . This means C ∪ {γτ ′} ∈ GMUGS(τΓ). Thus, RGS(ΘτΓ , C ∪ {γτ ′}) = ∅
and so RGS(Θτ ′

τΓ
, C) where. It follows that C is unsolvable in τ ′. C is minimal,

because C ∪ {γτ ′} is minimal and so for all C ′ (C : s ∈ RGS(ΘτΓ , C
′ ∪ {γτ ′}) 6= ∅.

b) Let C ∈ M∅. This means C ∈ GMUGS(τΓ). Thus s ∈ RGS(ΘτΓ , C) = ∅ and hence
also RGS(Θτ ′

τΓ
, C) = ∅. It follows, C is unsolvable in τ ′. If C is not minimal, then

there is a C ′ ∈ GMUGS(τ ′) such that C ′ (C. This means RGS(Θτ ′
τΓ
, C ′) = ∅ and

hence RGS(ΘτΓ , C
′) = ∅. Thus, C ′ ∪ {γτ ′} ∈ GMUGS(τΓ) and C ′ ∈Mτ ′ . Therefore,

C would be removed by min⊆ because of C ′.

�

Mτ ′ are all MUGS for τ ′, which are resolved by a more relaxed task. M∅ are all MUGS of
τΓ that do not contain a relaxation soft goal. These MUGS are independent of the relaxed
task and are unsolvable for all tasks in T. However, they are not necessarily minimal for
every less relaxed task. Therefore, an additional subset minimization of Mτ ′ ∪ M∅ is
necessary. See Example 17 for an example.

EXAMPLE 17: ALLMUGS TO ALLRELAXMUGS

Let’s consider our running example, this time with at most 11 units of energy. Assume
we have given 10 relaxation soft goals Γ = {γi | 0 < i < 10} where i refers to the
available energy units for the rovers. This means γi is true in all states that can be
reached with at most i units of energy. This results in 100 MUGS:

γi 0 1 2 3 4 5 6 7 8 9 10 ∅
#MUGS 6 6 6 5 5 10 12 10 10 13 6 11

With 2 or fewer units of energy, no data point can be uploaded, thus we have 6

singleton MUGS. With more than 2 units of energy soft goals become satisfiable.
There are 11 MUGS not containing any relaxation soft goal. These are the conflicts
that still exist in the most relaxed task with 11 units of energy.

To compute the MUGS for task τ10 we first take the 6 MUGS with γ10 and remove
γ10:

• {image-ice, image-crater3, x-ray-image-rock}

• {x-ray-image-rock, x-ray-image-crater3, soil-sample-ice}

• {image-ice, x-ray-image-rock, soil-sample-rock}

• {x-ray-image-crater3, soil-sample-rock, soil-sample-ice}

• {x-ray-image-rock, soil-sample-rock, soil-sample-ice}

132 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

• {image-ice, x-ray-image-crater3, soil-sample-rock}

Here 8 of the MUGS in M∅ are supersets of a MUGS in Mτ10 ,
thus the subset minimization removes all of them. For example
{image-ice, image-crater3, x-ray-image-rock} is a stronger conflict and
thus

• {image-ice, image-crater3, x-ray-image-rock, soil-sample-rock}

• {image-ice, image-crater3, x-ray-image-rock, soil-sample-ice}

are removed fromM∅ by the subset minimization.

The remaining 3 MUGS fromM∅ are:

• {image-ice, x-ray-image-rock, x-ray-image-crater3}

• {image-ice, image-crater3, x-ray-image-crater3, soil-sample-rock}

• {image-ice, image-crater3, soil-sample-rock, soil-sample-ice}

Together this results in GMUGS(τ10).

5.3.2 NON-DOMINATED MUGS

We have defined minimal unsolvable goal subsets as subset minimal, meaning that if we
cannot remove any soft goal without resulting in a solvable goal subset, then we have a
MUGS. However, if we consider relaxation soft goals, then subset-minimal is not the only
relation that can be used. For two tasks τi and τj with relaxation soft goals γτj and γτi , if
τi v τj and γτj is satisfied in a state s of τj then γτi is also satisfied in s (Definition 40).
For example, in a resource-constraint task with relaxation soft goals γ≤2 and γ≤3 indicating
that at most 2 and 3 units have been used, when γ≤3 is satisfied, then γ≤2 is also satisfied.
Therefore, when G∪ {γ≤3} is unsolvable, then this also holds for G∪ {γ≤2}. Consequently,
when G ∪ {γ≤3} is a MUGS, then all subsets G ∪ {γ≤x} with x < 3 could be considered
non-minimal, since γ≤3 could be replaced by the “weaker” γ≤x without rendering the subset
solvable.

Following the example above, we define dominance between soft goals as follows.

DEFINITION 41: SOFT GOAL DOMINANCE

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task. Let g, g′ ∈ Gsoft be two soft goals.
We say that g′ dominates g, written g � g′ if for all plans π ∈ Π(τ) if g ∈ IJπK it
holds that g′ ∈ IJπK. We call � a soft goal dominance relation.

g′ dominates g, if whenever g is satisfied then g′ is satisfied as well. This reflects the relation
between the relaxation soft goals in our example, if ≤ 2 units of fuel have been consumed
so have ≤ 3 units.

5.3. COMPILATION OF ALLRELAXMUGS TO ALLMUGS 133

PROPOSITION 21: RELAXATION SOFT GOALS AND DOMINANCE

Given a task τ and a relaxation graph T = (T, E) with most relaxed task τ∗ and
the relaxation soft goals Γ for T. Then for all γi, γj ∈ Γ, τi, τj ∈ T if τi v τj then γj
dominates γi (γi � γj) in task τ∗.

Proof:
Based on Definition 40 γj is satisfied in all states Sr(Θτj

τ∗). From Proposition 17 follows
that when τi v τj we have Sr(Θτi

τ∗) ⊆ Sr(Θ
τj
τ∗). Thus, γτj is satisfied in all states

Sr(Θτi
τ∗), from which follows that for all s ∈ Sr(Θτ∗) it holds γi ∈ s→ γj ∈ s. Thus, for

all plans π ∈ Π(τ∗) if g ∈ IJπK then g′ ∈ IJπK.
�

Next, we combine the subset relation with the soft goal dominance relation.

DEFINITION 42: SUBSET DOMINANCE RELATION

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task, � a soft goal dominance relation
for Gsoft and G,G′ ⊆ Gsoft. G′ subset-dominates G, written G ⊆D G′, if G ⊆ G′,
or if for all g ∈ G there exists g′ ∈ G′ such that g � g′.

G′ subset-dominates G if G is a subset of G′ or if G contains only soft goals that are
dominated by soft goals in G′. For example, we have {g1, γ≤2} ⊆D {g0, g1, γ≤2} but also
{g0, g1, γ≤2} ⊆D {g0, g1, γ≤1}, where γ≤x refers to the relaxation with at most x units of
fuel can be consumed.

Based on this subset dominance relation, we can define non-dominated minimal un-
solvable goal subsets that are minimal concerning subset minimality and the dominance
relation between the soft goals.

DEFINITION 43: ND-MUGS

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task and � a soft goal dominance
relation for Gsoft.
Subset G ⊆ Gsoft is a non-dominated minimal unsolvable goal subset (nd-
MUGS) if τ ′ = (V,A, c, I,Ghard ∪ G, ∅, b) is unsolvable and for all G′ (D G τ ′′ =

(V,A, c, I,Ghard ∪G′, ∅, b) is solvable.
By Gnd-MUGS(τ,�) := {G | G ⊆ Gsoft, G is a nd-MUGS} we denote the set of all
nd-MUGS in τ for �.

Given the dominance relation GMUGS(τ) can be reconstructed from Gnd-MUGS(τ) and the
other way around.

134 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

PROPOSITION 22: FROM ND-MUGSTO MUGS AND BACK

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task and � a soft goal dominance
relation for Gsoft.

Gnd-MUGS(τ,�) = min
⊆D

GMUGS(τ)

GMUGS(τ) = {G′ | G ∈ Gnd-MUGS(τ,�),∀g ∈ G : ∃g′ ∈ G′ : g � g′}

Proof:
Follows from Definition 42.

�

To compute allRelaxMUGS for relaxation graph T = (T, E) the following steps are required:

(1) Define relaxation soft goals Γ for T.

(2) Compute Gnd-MUGS(τΓ,�) where γi, γj ∈ Γ : γτi � γτj if τi v τj

(3) Reconstruct GMUGS(τΓ) from Gnd-MUGS(τΓ,�) (Proposition 22)

(4) Reconstruct allRelaxMUGS from GMUGS(τΓ) (Theorem 6)

To conduct a basic evaluation of the impact of the dominance relation on the allRelaxMUGS
computation (see Section 5.5.3), we extended GLS, to compute Gnd-MUGS(τ,�) for a given
task and dominance relation.

COMPUTATION OF ND-MUGS WITH GOAL LATTICE SEARCH

For nd-MUGS, the goal lattice is based on two relations: the subset relation between the
soft goals and the soft goal dominance relation �. Each node contains only soft goals that
do not pairwise dominate each other.

DEFINITION 44: SUBSET-DOMINANCE GOAL LATTICE

Given a set of goals G and a dominance relation � between them the subset-
dominance goal lattice is defined as L(G,�) = (G,⊆D), where G = {G′ ⊆ G |
g, g′ ∈ G′ : g′ � g ∧ g′ � g}.

To traverse the subset-dominance goal lattice we have to adapt the expansion functions for
systematic weakening and strengthening as detailed in Algorithm 9.

For systematic weakening, we start with the subset of soft goals, that are not dominated
by any other soft goal and either remove a soft goal or replace it with a dominated goal.
For example, {g0, g1, γ≤2} can be weakened to {g1, γ≤2} or {γ≤3, g0, g1}. For systematic
strengthening, we start with the empty set and either add a soft goal which does not

5.4. PLANNING WITH RESOURCE AND TIME WINDOW CONSTRAINTS 135

Algorithm 9 Expansion functions for systematic weakening and strengthening for nd-MUGS.

1: function INITSETSSYSW(G,�)
2: return {G′ ⊆ G | ∀g, g′ ∈ G′ : g′ � g ∧ g′ � g, ∀g′ ∈ G′¬∃g ∈ G \G′ : g � g′}
3: function EXPANDSYSW(G, solvable,O,Solvable,Unsolvable,�)
4: if solvable then . Prune via solvability transitivity
5: return O \ {G′ ∈ O|G′ ⊂D G}
6: else
7: G⊂ ← {G \ {g} | g ∈ G, ∀G′ ∈ Solvable : G \ {g} *D G′}
8: G� ← {(G \ {g}) ∪ g′ | g ∈ G, g � g′,∀G′ ∈ Solvable : (G \ {g}) ∪ g′ *D G′}
9: return O ∪ G⊂ ∪ G�

10: function INITSETSSYSS(G,�)
11: return {∅}
12: function EXPANDSYSS(G, solvable,O,Solvable,Unsolvable,�)
13: if ¬solvable then . Prune via unsolvability transitivity
14: return O \ {G′ ∈ O | G′ ⊃� G}
15: else
16: G⊂ ← {G ∪ {g} | g ∈ Gsoft \ G, ∀g′ ∈ G : g′ � g ∧ g′ � g, ∀G′ ∈ Unsolvable :

G \ {g} (D G′}
17: G� ← {(G \ {g}) ∪ g′ | g ∈ G, g′ � g, ∀G′ ∈ Solvable : G \ {g}) ∪ g′ (D G′}
18: return O ∪ G⊂ ∪ G�

dominate any other soft goal or replace a soft goal with a dominating soft goal. For example
{g0, γ≤2} can be strengthened to {g0, g1, γ≤2} or {g0, γ≤1}. In both expansion orders,
sets that can be derived solvable/unsolvable because dominated/dominating sets have
already been checked are excluded. All unsolvable nodes with only solvable children are
the nd-MUGS.

5.4 PLANNING WITH RESOURCE AND TIME WINDOW CONSTRAINTS

In the following, we instantiate relaxation explanations for planning with resource and time
window constraints. Resources of various forms are present in many planning domains
and have a long tradition in planning [Koehler, 1998, Srivastava et al., 2001, Do and
Kambhampati, 2014, Haslum and Geffner, 2001, Nakhost et al., 2012, Coles et al., 2013]. A
resource is anything that has a limited amount and constrains the applicability of actions. We
differentiate between renewable resources and consumable resources [Haslum and Geffner,
2001]. Renewable resources are resources that are not available during the execution of an
action, but which regain their original value after the action is completed, e. g. the availability
of a machine or a worker. Consumable resources, on the other hand, are consumed or
produced when an action is applied. Examples include the fuel or energy resources of a
truck or rover, as well as memory space or the space in a truck or elevator. Capturing an
image consumes memory space, while transmitting the image frees up space again.

Actions are often completed over time, and certain conditions for their application may
only be met during specific time frames, such as when the sun is shining or when workers

136 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

are available. Planning with different notions of time has been of interest for a long time
[Smith and Weld, 1999, Haslum and Geffner, 2001, Fox and Long, 2003, Cushing et al.,
2007, Do and Kambhampati, 2014, Jiménez et al., 2015].

Limited resources and time constraints not only make it difficult to find a plan, but are
often the reason why there is no plan at all, and thus a common cause of conflicting soft
goals. The relaxation of such resources or time constraints represents a natural relaxation
for humans and is therefore well suited for explanations. For example, if your smartphone
battery will not last for the trip, you will charge it before leaving the house, thus relaxing
the resource by increasing the initially available amount. Similarly, if you cannot make it to
an appointment, you call and ask whether you can come later, relaxing the time window
by delaying the appointment. It is important to note that relaxations that are suitable for
explanations should not affect the mechanics of the planning task. For example, allowing
a rower to take photos even when it is dark would be a too drastic relaxation, leading to
unusable plans. In addition, relaxations based on resources and time constraints enable
gradual relaxations. For example, there are individual battery levels for energy, and there
are also incremental increases for time windows. This allows for a trade-off between the
amount of relaxation and the resolved conflicts.

In the following, we define OSP tasks with resource and time window constraints,
replacing the overall cost bound.

PLANNING WITH CONSUMED RESOURCES

We consider consumable resources [Haslum and Geffner, 2001, Nakhost et al., 2012], that
cannot be produced. This means the application of an action can only decrease, but not
increase its value, i. e. refueling or recharging is not possible. Resources are limited to
discrete domains, such that they can be compiled into classical planning. A planning task
can have multiple resources related to different objects, such as the batteries of the different
rovers.

DEFINITION 45: PLANNING TASK WITH CONSUMED RESOURCES

An OSP task with consumed resources is a task τ = (V,A, I,Ghard, Gsoft, R), where
R is a set of consumed resources.
A consumed resource ρ with domain D(ρ) = [0, ρmax] ⊂ N has an initial value
initρ ∈ D(ρ) and a function δρ : A 7→ N that maps each action to the amount of
resource consumed by that action.
A complete assignment to V ∪R is called a state.

The current resource values are represented by additional state variables. The applicability
of the actions is based on the current resource value and the quantity consumed by the
action. Applying action a in state s updates the variables in V according to their effect, and
decreases the resource by δρ(a) such that s[[a]](ρ) = s(ρ)− δρ(a).

5.4. PLANNING WITH RESOURCE AND TIME WINDOW CONSTRAINTS 137

DEFINITION 46: STATE SPACE OSP TASK WITH CONSUMED RESOURCES

The state space of a OSP task with consumed resources τ = (V,A, c, I,Ghard,

Gsoft, R) is the LTS Θτ = (S, L, T, IΘ,SG) where S, L,SG are defined as for an
OSP task and

• (s, a, s′) ∈ T , iff s, s′ ∈ S, a ∈ A, prea ⊆ s, for all ρ ∈ R : s(ρ) ≥ δρ(a) and
sJaK = s′,

• the initial state IΘ = Iτ ∪ {vρ = initρ | ρ ∈ R}

The amount of resource ρ consumed by an action sequence π is given by con(π) =∑
a∈π δρ(a).
The extension of our running example with resources is given in Example 18.

EXAMPLE 18: PLANNING TASK WITH CONSUMED RESOURCES

1

3

3

3

3
2

22

In our running example, we include the battery ρb as a resource. Its initial value is
initB = 8, its maximal value is Bmax = 12, and the energy consumed by each move
action is given by the corresponding values in the map above. Additionally, collecting
the data point also consumes energy:

• δρb(soil-sample(l)) = 1 for l ∈ {rock, ice}

• δρb(image(l)) = 1 for l ∈ {crater3, ice}

• δρb(x-ray-image(l)) = 2 for l ∈ {crater3, rock}

PLANNING WITH SIMPLE TIME WINDOWS

We consider planning with discrete time units, which includes an execution time for actions
and constraints on when an action is applicable. We restrict ourselves to a concept of time

138 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

that can be compiled to classical planning. This includes discrete time units and no parallel
execution of actions [Jiménez et al., 2015].

DEFINITION 47: PLANNING WITH SIMPLE TIME WINDOWS

An OSP task with simple time windows is a task τ = (V,A, I,Ghard,

Gsoft,W, δt, tmax), where tmax ∈ N is the maximal number of time units, δt : A 7→ N
a function that maps each action to its execution duration andW is a set of simple
time windows.
A simple (start) time window is a tuple W = (AW , o, c) with 0 ≤ o ≤ c ≤ tmax.
The application of the actions in AW ⊂ A is constrained by the opening time o and
closing time c.
A complete assignment to V ∪ {t} with D(t) = [0, tmax] is called a state.

The passed time is represented by an additional state variable. The applicability of an action
depends on the passed time and whether it is constrained by any of the time windows.
When an action is applied, the time advances by the execution time of that action δt(a) such
that s[[a]](t) = s(t) + δt(a).

DEFINITION 48: STATE SPACE OSP TASK WITH SIMPLE TIME WINDOWS

The state space of a OSP task with simple time windows τ = (V,A, I,Ghard,

Gsoft,W, δt, tmax) is the LTS Θτ = (S, L, T, IΘ,SG) where S, L,SG are defined as
for an OSP task and

• (s, a, s′) ∈ T , iff s, s′ ∈ S, a ∈ A, prea ⊆ s, for all (AW , o, c) ∈ W : a ∈ AW

then o ≤ s(t) ≤ c and sJaK = s′,

• the initial state IΘ = Iτ ∪ {t = 0}

The execution duration of an action sequence π is given by dur(π) =
∑

a∈π δt(a) and the
execution time point of action a in π by exec(π, a) = dur(prefix(π, a)).

The extension of our running examples with simple time windows is given in Example 19.

EXAMPLE 19: PLANNING TASK WITH SIMPLE TIME WINDOWS

1 5 10 15

In our running example, we introduce two time windows for uploading data

• W1 = (AW , 5, 7)

• W1 = (AW , 9, 13)

5.4. PLANNING WITH RESOURCE AND TIME WINDOW CONSTRAINTS 139

both with the same action set AW = {upload(d) | d ∈ DP}.
The maximal time value is tmax = 15 and the time spent by each move action is
given by the corresponding values in the map in Example 18. In addition, collecting
the data points also spends time:

• δρb(soil-sample(l)) = 2 for l ∈ {rock, ice}

• δρb(image(l)) = 1 for l ∈ {crater3, ice}

• δρb(x-ray-image(l)) = 1 for l ∈ {crater3, rock}

5.4.1 RESOURCE AND TIME CONSTRAINT RELAXATIONS

There are various ways in which resource and time window constraints can be relaxed.
In the following, we describe one option for each constraint type, the resulting relaxation
graphs T , and provide example explanations.

Resource Constraint Relaxations A task with consumed resources can be relaxed by
increasing the initial resource value.

DEFINITION 49: RESOURCE-RELAXED TASK

Let τ = (V,A, I,Ghard, Gsoft, R) be a task with consumed resources. Then a re-
source relaxed task for resource ρ ∈ R is defined as τ ′ = (V,A, I,Ghard, Gsoft, R′)

where ρ is replaced by resource ρ′ with D(ρ) = D(ρ′) = [0, ρmax], δρ′ = δρ and
initρ ≤ initρ′ ≤ ρmax.

PROPOSITION 23: RESOURCE-RELAXED TASK

Let τ ′ be a resource-relaxed task of τ . Then τ ′ is a relaxed task of τ according to
Definition 30 omitting the constraints on the action cost and cost bound, if soft goals
are not defined over resources.

Proof:
Π(τ) ⊆ Π(τ ′) because every action sequence π = a0 · · · an applicable in I of τ is also
applicable in I ′ of τ ′. For all actions ai ∈ π with πi = prefix(π, ai), s = I[[πi]], s′ =
I ′[[πi]] and c = con(πi), ai is applicable in s′ because ai is applicable in s, s(V) = s′(V)

and initρ − c = s(ρ) < s′(ρ′) = initρ′ − c. For all π ∈ Π(τ) : IJπK ∩Gsoft = I ′JπK ∩Gsoft

because in all intermediate states of π and thus also in the last state s(V) = s′(V) and
soft goals are not defined over resources.

�

For task τ with resources R, the set Tρ of all resource relaxed tasks for a resource ρ ∈ R,
yields a relaxation graph Tρ = (Tρ, Eρ) for τ . Relaxation τi ∈ Tρ refers to the resource-

140 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

relaxed task with initρi = i. Since all τi ∈ Tρ are exclusively distinguished by initρi , we
have Π(τ) ⊆ Π(τ ′) iff initρ < initρ′ (Proposition 23), which results in a total ordering for Tρ.
The edges of the relaxation graph Tρ are given by Eρ = {(τi, τj) | τi, τj ∈ Tρ, j = i+ 1}.
The task τ∗ with initρ∗ = ρmax represents the most relaxed task in Tρ. The resource
relaxations for our running example are given in Example 20.

EXAMPLE 20: RESOURCE-RELAXED TASK

For our running example, we have four relaxed tasks for the battery Tρb = {τi | i ∈
{8, 9, 10, 11, 12}}, where in τi the initial battery level is i. The relaxation graph is
show below:

τ8 τ9 τ10 τ11 τ12

Reducing the resource requirements δρ of an action a is another method of relaxing a task
with consumed resources. Resources are exhaustible, and if action a appears once in the
plan, this is equivalent to increasing the initially available resources. We use increasing
resource availability as a proxy for any reduction in resource consumption.

Time Constraint Relaxations A task with simple time windows can be relaxed by increas-
ing the time window, either by decreasing the opening time or by increasing the closing
time.

DEFINITION 50: TIME-WINDOW RELAXED TASK

Let τ = (V,A, I,Ghard, Gsoft,W, δt, tmax) be a task with simple time windows. Then
a time-window-relaxed task for time window W = (AW , o, c) ∈ W is defined as
τ ′ = (V,A, I,Ghard, Gsoft,W ′, δt, tmax) where W is replaced by time window W ′ =

(AW , o
′, c′) with 0 ≤ o′ ≤ o ≤ c ≤ c′ ≤ tmax.

PROPOSITION 24: TIME-WINDOW-RELAXED TASK

Let τ ′ be a time-window-relaxed task of τ . Then τ ′ is a relaxed task of τ according to
Definition 30, omitting the constraints on the action cost and cost bound, if soft goals
are not defined over time windows.

Proof:
Π(τ) ⊆ Π(τ ′), because every action sequence π = a0 · · · an applicable in I of τ is also
applicable in I ′ of τ ′. For all actions ai ∈ π, exec(π, ai) is the same in both tasks and
with πi = prefix(π, ai), s = I[[πi]] and s′ = I ′[[πi]], ai is applicable in s′ because ai is

5.4. PLANNING WITH RESOURCE AND TIME WINDOW CONSTRAINTS 141

applicable in s, s(V) = s′(V) and if ai ∈ AW then o′ ≤ o ≤ exec(π, ai) ≤ c ≤ c′. For all
π ∈ Π(τ) : IJπK ∩Gsoft = I ′JπK ∩Gsoft because in all intermediate states of π and thus
also in the last state s(V) = s′(V) and soft goals are not defined over time windows.

�

For task τ all time-window-relaxed tasks TW for a time window W ∈ W compose a
relaxation graph TW = (TW , EW). τi,j ∈ TW denotes the time-window-relaxed tasks with
opening time i and closing time j. The subsumption relation of the intervals [o′, c′] for
time window W yields the partial ordering v. The edges of the relaxation graph TW are
given by EW = {(τi,j , τn,m) | τi,j , τn,m ∈ TW ∧ (m = j + 1 ∨ n = i− 1)}. The task with
W ′ = (AW , 0, tmax) is the most relaxed task of TW . The time-window relaxations for our
running example are given in Example 21.

EXAMPLE 21: TIME-WINDOW-RELAXED TASK

1 5 10 15

In our running example, we can relax either of the upload window. For the second
window, we have 12 different relaxed tasks TWU

= {τi,j | i ∈ {7, 8, 9} ∧ j ∈
{12, 13, 14, 15}}, where in τi,j the opening time is at i and the closing time at j.
The relaxation graph is show below:

τ9,12

τ9,13

τ9,14

τ9,15

τ8,12

τ8,13

τ8,14

τ8,15

τ7,12

τ7,13

τ7,14

τ7,15

An alternative approach to relax a task with respect to time constraints is the reduction of
the execution time of an action a by decreasing δt(a). However, in addition to affecting
multiple time windows, handling the explosion of possible relaxed tasks is not trivial, which
is why we leave this for future work.

An example for relaxation explanations based on time and resource constraint relax-
ations in given in Example 22.

142 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

EXAMPLE 22: RELAXATION EXPLANATION

First we consider the conflict C = {image-ice, x-ray-image-rock} and the re-
source relaxed tasks Tρb = {τi | i ∈ {8, 9, 10, 11, 12}}.
We have C ∈ GMUGS(τ8) but C /∈ GMUGS(τ9), thus τ9 is the minimally relaxed task
for C. For the question “Why is C a conflict?” we thus get the answer: “Because to
take the image of the ice surface and the x-ray image of the rock the rovers needs
one additional unit of energy.”

Next we consider the conflict C ′ = {image-ice, soil-sample-rock} and the time
window relaxations TWU

= {τi,j | i ∈ {7, 8, 9} ∧ j ∈ {12, 13, 14, 15}}. Below the
relevant part of the relaxation graph is depicted:

τ9,12

τ9,13

τ8,12

τ9,14

τ8,13

τ7,12

τ7,13

C ∈ GMUGS(τi,j)

C /∈ GMUGS(τi,j)

τi,j ∈ AR(Q,T)

The minimal relaxed task is τ9,13 and thus the relaxation explanation AR(C
′) =

{τ9,13}: “Because to upload the image of the ice surface and the soil sample of the
rock, the second upload window has to close 1 time unit later.”

RELAXATION SOFT GOALS FOR RESOURCE AND TIME CONSTRAINT RELAXATIONS

In the following, we define the relaxation soft goals for resource and time window relaxations
we have introduced in Section 5.4.1.

In a relaxation graph T = (T, E) based on resource-relaxed tasks, the most relaxed
task τ∗ has the maximal initial resource value ρmax. In a relaxed task τi with an initial
resource value of i one can maximally consume i units. Therefore, the resource value vρ
must not fall below ρmax − i to correspond to the resource available in τi.

PROPOSITION 25: RELAXATION SOFT GOALS FOR RESOURCE-RELAXED TASK

Let τ be a task with consumed resources R and T = (Tρ, E) a relaxation graph for
τ based on resource-relaxed tasks for resource ρ ∈ R.
The relaxation soft goals are:

Γρ = {γτi : �(vρ ≥ ρmax − i) | τi ∈ T}

where i is the initial value of ρ in τi and vρ is the current value of ρ.

5.4. PLANNING WITH RESOURCE AND TIME WINDOW CONSTRAINTS 143

Proof:
Let τ be a OSP task with resource ρ and τi ∈ Tρ a resource relaxation of τ with respect
to ρ with initρ = i. Let τ∗ be the most relaxed task of Tρ and γτi = �(vρ ≥ ρmax − i) be
a temporal soft goal. For γτi to be a relaxation soft goal for τi, γτi must be satisfied in all
Sr(Θτi

τ∗) (1) but not satisfied by any state in Sr(Θτj
τ∗) \ Sr(Θ

τi
τ∗), for all i < j ≤ ρmax (2).

(1) All Sr(Θτi
τ∗) have a corresponding state in Sr(Θτi) (Proposition 15). For all plans

π ∈ Π(τi) we have con(π) ≤ i. Since the δρ stays the same, we have for all states
s ∈ Sr(Θτi

τ∗), s(vp) ≥ ρmax − i and thus γτi is satisfied by all states in Sr(Θτi
τ∗).

(2) Let s ∈ Sr(Θτj
τ∗) \ Sr(Θ

τi
τ∗) where s(vp) ≥ ρmax − i. This means there is a cor-

responding state in s′′ ∈ Sr(Θτj) such that con(π) ≤ i where π is the action
sequence reaching s′′. However, because we have τi ≤ τj from Proposition 23
follows Π(τi) ⊆ Π(τj) and thus there is a corresponding state in Sr(Θτi) and thus
also in Sr(Θτi

τ∗). It follows s(vp) < ρmax − i.

�

For a time-window relaxed task, the specific window boundaries need to be satisfied. This
can be done by checking that reaching a state by applying action a occurs at a time that
satisfies the opening and closing times of the relaxed task.

DEFINITION 51: RELAXATION SOFT GOALS FOR TIME-WINDOW RELAXED TASK

Let τ be a task with simple time windowsW, and T = (TW , E) a relaxation graph
for τ based on time-window-relaxed tasks for time window W ∈ W .
The relaxation soft goals for time window W = (AW , o, c) are:

ΓW = {γτi,j : �(
∧

a∈AW

va → i ≤ t− δt(a) ≤ j) | τi,j ∈ T}

where i, j are the opening and closing times of τi,j , t is the current value of the time
variable and variable va indicates the application of an action a according to the
applied actions compilation in Definition 26.

Proof:
Let τ be a OSP task with resource ρ and τi,j ∈ TW a time-window relaxation of τ
with respect to W with o′ = i and c′ = j. Let τ∗ be the most relaxed task of TW and
γτi,j = �(

∧
a∈AW

vAW
→ i ≤ t − δt(a) ≤ j) be a temporal soft goal. For γτi,j to be a

relaxation soft goal for τi,j , γτi,j must be satisfied in all Sr(Θτi,j
τ∗) (1) but not satisfied by

any state in Sr(Θτn,m

τ∗) \ Sr(Θτi,j
τ∗), for all 0 ≤ n < i and j < m ≤ tmax (2).

(1) All Sr(Θτi,j
τ∗) have a corresponding state in Sr(Θτi,j) (Proposition 15). For all plans

π ∈ Π(τi,j) we have for all a ∈ AW : i ≤ exec(π, a) ≤ j. Since the δt stays the

144 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

same, this also holds for all Π(Θ
τi,j
τ∗). Let π ∈ Π(Θ

τi,j
τ∗) such that π = π0aπ1 for any

a ∈ AW . It follows that i ≤ dur(π0) ≤ j and thus IsJπK = s with i ≤ s(t) ≤ j. This
means after applying a when va is satisfied in s′ = sJaK then, s′(t) = s(t) + δ(a)

and thus i ≤ s′(t)− δt(a) ≤ j holds.

(2) Proof by contradiction: Let s ∈ Sr(Θτn,m

τ∗) \ Sr(Θτi,j
τ∗) such that IsJπaK = s for any

a ∈ AW and i ≤ s(t) − δt(a) ≤ j and thus i ≤ exec(π, a) ≤ j. This means there
is a corresponding state s′ ∈ Sr(τn,m) such that In,mJπaK and i ≤ exec(π, a) ≤ j.
However, because we have τi,j ≤ τn,m from Proposition 23 follows Π(τi,j) ⊆ Π(τn,m)

and thus there is a corresponding state in Sr(Θτi,j) and thus also in Sr(Θτi,j
τ∗). It

follows exec(π, a) < i or j < exec(π, a).

�

5.5 COMPUTATIONAL EVALUATION

Next, we evaluate both approaches to compute allRelaxMUGS for domains with resources
or time window constraints. First, we focus on the task relaxation approaches, and then we
return to the AllMUGS compilation approach using relaxation soft goals.

5.5.1 EXPERIMENT SETUP & BENCHMARKS

IMPLEMENTATION

MSGS propagation search (GSBNBp) and iterative search space extension (ISSE) are
implemented in Fast Downward1 (FD) based on the exhaustive state space search (GSBNB)
introduced in Section 4.2.2. The source code is publicly available2. Task relaxations are
provided as additional input. The input definition is provided in the Appendix in Section B.1.
For GSBNBp, the updates to the initial state are specified, and for ISSE the applicable
actions in each relaxation are defined.

In addition, some adaptations were implemented in the Fast Downward translator. First,
to circumvent the elimination of facts that are not delete-relaxed-reachable in the original
task but could be reachable in a relaxed task, we added an option to consider multiple initial
values for a variable during the reachability analysis. Second, the predicates defining the
opening and closing time of time windows are static, meaning that they are not used in
the effect of any action. Therefore, in the STRIPS-to-FDR transformation in the translator,
these facts are not converted into variables. Instead, they are reflected by individual action
instances, one for each possibility to satisfy the static preconditions. However, to allow for
the opening and closing times to be modified for different relaxed tasks, they need to be
represented as variables and preconditions of the grounded actions. To achieve this, we
added an option to transform a subset of static predicates into FDR variables.

1https://github.com/aibasel/downward
2https://doi.org/10.5281/zenodo.14989835

https://github.com/aibasel/downward
https://doi.org/10.5281/zenodo.14989835

5.5. COMPUTATIONAL EVALUATION 145

ALGORITHMS

As we are using the same domains with encoded resource and time constraints, as for the
temporal soft goals, hcar and hpot cannot be used for pruning (see discussion Section 4.3.2).
Thus, pruning is always based on hmax.

We evaluate the following algorithms:

baseline: As a baseline we use the straightforward approach of computing the MUGS for
each relaxed task individually without propagating or reusing any information (basically
GSBNBp without propagation of MSGS). As the search algorithm, we use GSBNB
with and without pruning, referred to as BASE+P and BASE.

GSBNBp: Iterative computation of MUGS with propagation of MSGS from less to more
relaxed tasks with pruning Section 5.2.1.

ISSE: Iterative search space extension without pruning ISSE and with pruning ISSE+P

Section 5.2.2.

For the approach based on relaxation soft goals we use the following algorithms:

GSBNB Exhaustive state space search without pruning (GSBNB) and with pruning based
on hmax (GSBNB+P) Section 4.2.2.

GLS Goal lattice search with symbolic search for solvability test with expansion functions
systematic weakening (SysW) and systematic strengthening (SysS) Section 4.2.1.

BENCHMARKS

The benchmark set is based on the same domains and instances used in Section 4.3.2 and
is publicly available3. In each of the resource-constrained domains, Blocksworld, Nomystery,
Rovers R and TPP, there are two resources R. Their initial value is set to the lowest value
needed to be solvable for all simple goals (without additional temporal goals). For each task
τ = (V,A, c, I,Ghard, Gsoft, R) and each resource ρ ∈ R we generated one benchmark
instance, τ ′ = (V,A, c, I,Ghard, Gsoft, R′) with initρ = 0 and ρmax = 2 ∗ initρ.

The time window constraint domains are Parent’s Afternoon, Rovers T and Satellite. For
each task τ = (V,A, c, I,Ghard, Gsoft,W, δt, tmax) and time window W ∈ W we generated
one benchmark instance. For Parent’s Afternoon and Satellite, each time window W =

(AW , o, c) is relaxed between [o, c] and [0, tmax]. In those domains, each time window
constrains one activity, so it makes sense to increase the window to the largest possible size.
For Rovers T, the time windows constrain when an upload to a relay satellite is possible.
Since the model does not allow for multiple simultaneous uploads with overlapping time
windows, we stop relaxing one time window once it matches the closing c< or opening o>
times of earlier and later upload windows respectively. So, each time windowW = (AW , o, c)

is relaxed between [o, c] and [max{c<, 0},min{o>, tmax}].
3https://doi.org/10.5281/zenodo.14988342

https://doi.org/10.5281/zenodo.14988342

146 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

For each τ = (V,A, c, I,Ghard, Gsoft, · · ·) resource or time window constrained, there
are no hard goals Ghard = ∅ and the soft goals consist of a fixed set of simple goals (
Blocksworld 8-13, Nomystery 5-8, Parent’s Afternoon 4-8, Rovers R 5-7, Rovers T 4-8,
Satellite 5-10, TPP 4-6) and from 1 up to 5 temporal soft goals. These, are the same 5

temporal soft goals used in the all benchmark set with LTLf encoding (see Section 4.3.2).
The distribution of relaxed tasks across domains is depicted in Figure 39. Among the

domains with resource constraints, TPP has the highest number of relaxed tasks, followed
by Nomystery, Blocksworld, and finally Rovers R. In Parent’s Afternoon and Satellite, the
number of relaxations is comparable, ranging from about 10 to over 30, In Rovers T the
majority of instances have fewer than 20 relaxations.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
0

50

100

#relaxed tasks

#t
as

ks

resource constraints

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43
0

50

100

150

#relaxed tasks

#t
as

ks

time constraints

Blocksworld Nomystery Parent’s A RoversR

RoversT Satellite TPP

Figure 39: Distribution of relaxations in our benchmark set; x-axis number of relaxations,
i. e.|T| for the relaxation graph T = (T, E) based on either resource or time window relaxed
tasks for each task τ , y-axis number of tasks.

For the instances for which the MUGS could be computed, the average number of MUGS
over the relaxations is depicted in Figure 40. This analysis is based on instances for which
complete data is available for the considered range of relaxations. For Blocksworld and TPP,
the number of MUGS first increases when more resources are available, while for Nomystery
and Rovers R, it decreases continuously. The zig-zag pattern in Blocksworld is due to the
fact that most soft goals require two actions (pick up/unstack and put down/stack) to change

5.5. COMPUTATIONAL EVALUATION 147

the truth value. Overall, the relaxations have a smaller impact on the time constraint tasks.
The average number of MUGS in Parent’s Afternoon changes slowly, suggesting that more
options in scheduling activities has a limited impact on the conflicts. A notable resolution
of conflicts is observed only after expanding the time windows for scheduling activities by
approximately 7 to 8 units. In Rovers T and Satellite, a slight increase in MUGS is observed
after relaxing the time windows by about 4 units.

0

10

20

30

av
g

#M
U

G
S

Blocksworld

0

5

10

av
g

#M
U

G
S

Nomystery

0

2

4

av
g

#M
U

G
S

Rovers R

0 5 10 15 20 25 30
0

5

10

relaxation distance

av
g

#M
U

G
S

TPP

0

2

4

6

8

av
g

#M
U

G
S

Parent’s Afternoon

0

20

40

av
g

#M
U

G
S

Rovers T

0 2 4 6 8 10
0

5

10

relaxation distance

av
g

#M
U

G
S

Satellite

Figure 40: Number of MUGS over relaxations for instances solved by any approach; left:
resource constraint domains, x value corresponds to initρ; right: time constraint domains, x
value corresponds to the size difference of the relaxed time window to the original one. The
shaded area represents the 90% confidence interval.

Next, we evaluate the approaches based on task relaxation and then compare the best
configuration to the AllMUGS compilation approach using relaxation soft goals.

148 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

5.5.2 TASK RELAXATION

OVERALL COVERAGE

The coverage results are shown in Table 10. An instance is considered solved, when all
MUGS for all relaxed tasks are computed. Pruning alone, without propagating the MSGS
(BASE+P vs BASE) , only improves the coverage in two domains (Nomystery and Rovers
R). Comparing BASE+P to GSBNBp shows that propagating MSGS increases the coverage
significantly in all domains. This results in a better performance than BASE in 4 domains.
Also, for ISSE+P pruning significantly improves the performance, especially for Rovers
R and the time-constrained domains. ISSE clearly has the advantage over GSBNBp in
the time-constrained domains, while GSBNBp performance better in resource-constrained
domains. Overall BASE performs best in 3 domains, ISSE+P in 1 domain, GSBNBp in 3.

domain # B
A

S
E

B
A

S
E
+

P

G
S

B
N

B
p

IS
S

E

IS
S

E
+

P

re
so

ur
ce

Blocksworld 320 264 179 184 170 185
Nomystery 320 95 107 126 45 52
RoversR 400 168 191 215 68 145
TPP 290 184 156 190 45 56

tim
e

Parent’s A 1125 584 479 657 442 788
RoversT 565 545 183 206 452 504
Satellite 1560 1099 808 874 775 965
sum 4580 2939 2103 2452 1997 2695

Table 10: Coverage (number of instances where allRelaxMUGS could be computed) com-
parison on resource and time window-constrained domains. The best result for each domain
is highlighted in bold.

SCALING OVER RELAXED TASKS COMPLEXITY

The algorithms based on relaxed tasks compute allRelaxMUGS from the least to the most
relaxed task, and can be seen as an anytime approach. Thus, even if not all relaxations
could be addressed, we can still provide explanations based on the finished relaxations.
Figure 41 depicts the relative number of instances where the MUGS could be computed
over the number of relaxations. In domains with resource constraints, such as Blocksworld,
Nomystery and TPP, as the number of relaxations increases, the coverage decreases and
eventually reaches a plateau. This indicates that in some instances all soft goals are eventu-
ally solvable, allowing for the skipping of all more relaxed tasks. BASE consistently performs
best in Blocksworld. For the remaining resource-constrained domains, the advantages
of GSBNBp over ISSE+P are clear across the entire range of relaxations. In domains
with time constraints, the number of relaxations has a smaller impact on the coverage,
decreasing more gradually with increasing relaxations. Eventually, a plateau is reached.
This is not due to all soft goals being satisfied, but rather because further relaxations do

5.5. COMPUTATIONAL EVALUATION 149

not result in more reachable states. There is a clear advantage of ISSE+P over GSBNBp
in Parent’s Afternoon and in Rovers, which increases with the number of relaxations. In
Satellite the coverage of ISSE+P eventually drops below the coverage of GSBNBp.

0 5 10 15 20
0

0.5

1

co
ve

ra
ge

in
%

Blocksworld

0 5 10 15 20 25 30
0

0.5

1

co
ve

ra
ge

in
%

Nomystery

0 5 10 15 20
0

0.5

1

co
ve

ra
ge

in
%

Rovers R

0 5 10 15 20 25 30 35
0

0.5

1

#relaxations

co
ve

ra
ge

in
%

TPP

0 10 20 30
0

0.5

1

co
ve

ra
ge

in
%

Parent’s Afternoon

0 10 20 30 40
0

0.5

1

co
ve

ra
ge

in
%

Rovers T

0 10 20 30 40
0

0.5

1

#relaxations

co
ve

ra
ge

in
%

Satellite

BASE BASE+P GSBNBp

ISSE ISSE+P

Figure 41: Relative number of finished relaxations, x-axis: number of relaxations, y-axis:
relative number of relaxed tasks where MUGS could be computed.

The results indicate that 5 relaxations are generally feasible for domains with resource
constraints. For Blocksworld and TPP, even 10 relaxations are still feasible in most cases.
For the time-constrained domains, the results suggest that if the MUGS can be computed
for the original task, then a larger number of relaxations can be handled.

PERFORMANCE ANALYSIS

The increase in reachable states caused by relaxing a time window is usually much smaller
than for a resource. This is because increasing a time window only adds a few more
time units at which an action a ∈ AW could start. However, as a is also constrained
by all other time-dependent actions, there may not be many added reachable states. In
contrast, relaxing a resource allows you to add new actions, such as traveling to more
distant locations, and can also increase the number of actions that can be applied.

This is in favor of ISSE, as it exclusively considers the newly reachable states. A

150 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

comparison between the number of expansions each algorithm requires per relaxed task,
as depicted in Figure 42, confirms this assumption. ISSE starts with more expansions due
to the weaker pruning, yet the advantage of GSBNBp diminishes with increasing number of
relaxations. This is particularly evident in time-constrained domains, where ISSE expands
significantly fewer states than GSBNBp for a window size difference of 1 or more.

Figure 42 illustrates, that the pruning of states that cannot improve MSGS has a
significant impact. The search space for BASE+P is reduced by up to one order of magnitude
in nearly all domains when compared to BASE. Additionally, the propagation of MSGS in
GSBNBp further reduces the search spae. In domains with constrained resources this
advantage increase with the number of relaxations, suggesting that GSBNBp is effective for
larger number of relaxations. The comparison of ISSE and ISSE+P indicates that pruning
based on the most relaxed task has no effect in the resource-constrained domains. This is
to be expected as for many instances eventually most soft goal subsets become solvable.
In contrast, there is a substantial difference between ISSE and ISSE+P in domains with
time constraints. This indicates that, depending on the constraints and the most relaxed
task, pruning against the most relaxed task can lead to a significant search space reduction.
The following further comments on the results can be made. The number of expansions for
BASE can drop because for some instances all soft goals become solvable, and thus the
more relaxed tasks do not need to be addressed and are included with 0 expansions. The
drop in GSBNB for Rovers R at 3 resource values is due to some cases where only one
soft goal cannot be satisfied. The pruning function recognizes early on that this will remain
unsolvable with the current fuel value.

Next, we compare the configurations in terms of their runtime, as shown in Figure 43.
The comparison between BASE and BASE+P (top left) indicates that pruning may not be a
worthwhile investment if the MSGS are not propagated. However, if they are propagated
(top right GSBNBp), then the time investment for Rovers R and parts of Parent’s Afternoon
and Nomystery pays off. A comparison of the runtime of ISSE and ISSE+P reveals that
ISSE either solves an instance within 100 sec or does not solve it at all. This is due to it
exceeding the memory limit so quickly. Within this short time frame, pruning pays off for
Satellite and partially in Parent’s Afternoon. In the remaining time ISSE+P solves about
600 additional instances, mainly in the time-constrained domains.

ISSE is more prone to memory issues than GSBNB. While, ISSE only expands the
newly reachable states, it must still store the frontier states reachable by any not yet
processed relaxation. In TPP, for instance, in the initial state of the most relaxed task, all
possible combinations of buy actions are applicable, resulting in a large frontier already in
the least relaxed task. Addressing this bottleneck is not trivial and thus part of future work.

As shown in Table 11, which analyzes the cause of an instance not being solved due to
memory and time exhaustion, this issue is confirmed. As expected, the baselines with no
pruning almost always exhaust the memory. For ISSE in the resource constrained domains
and in Satellite, memory is the limiting factor. For GSBNBp, however, time is the deciding
factor. This could be addressed by parallelizing tasks without a strict order.

While our methods are not yet outperforming the baseline in all domains, our analysis
has identified a clear limiting factor. The more relaxations we consider, the more pronounced
the impact of the information propagation underlying our approaches becomes.

5.5. COMPUTATIONAL EVALUATION 151

0 2 4 6 8

102

103

104

105

106

ex
pa

ns
io

ns

Blocksworld

0 1 2 3 4 5

104

105

106

ex
pa

ns
io

ns

Nomystery

0 2 4 6 8
102

103

104

105

106

ex
pa

ns
io

ns

Rovers R

0 2 4 6 8 10

103

104

105

106

initial resource value

ex
pa

ns
io

ns

TPP

0 1 2 3

104

105

106

ex
pa

ns
io

ns

Parent’s Afternoon

0 1 2 3 4

104

105

ex
pa

ns
io

ns

Rovers T

0 1 2 3 4

104

105

106

window size difference

ex
pa

ns
io

ns

Satellite

base base+p GSBnBp

ISSE ISSE+p

Figure 42: Comparison of the average number of expansions over commonly solved tasks.
Shaded areas represent the 90% confidence intervals. Left: resource constraint domains, x
value corresponds to initρ; right: time constraint domains, x value corresponds to the size
difference of the relaxed time window to the original time window size. We only consider
instances where all configurations have data for the full value range.

152 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

0.01 0.1 1 10 100 ∞

0.01

0.1

1

10

100

∞

ISSE

IS
SE

+
p

0.01 0.1 1 10 100 ∞

0.01

0.1

1

10

100

∞

base

ba
se

+
p

0.01 0.1 1 10 100 ∞

0.01

0.1

1

10

100

∞

base

G
SB

nB
p

0.01 0.1 1 10 100 ∞

0.01

0.1

1

10

100

∞

ISSE+p

G
SB

nB
p

Blocksworld Nomystery Parent’s A RoversR
RoversT Satellite TPP

Figure 43: Instance-wise comparison of run time (in s). Not solved instances are assigned
a runtime of∞. Top: MSGS propagation and pruning, bottom left: with vs without pruning
for ISSE and bottom right MSGS propagating vs iterative state space extension.

domain B
A

S
E

B
A

S
E
+

P

G
S

B
N

B
p

IS
S

E

IS
S

E
+

P

re
so

ur
ce

Blocksworld(320) 1 0 0 1 0.95
Nomystery(320) 1 0.08 0.08 1 1
RoversR(400) 1 0.7 0 1 1
TPP(290) 0.98 0 0 1 1

tim
e

Parent’s A(1125) 0.75 0 0 1 0.45
RoversT(565) 0.91 0 0 1 0.16
Satellite(1560) 0.91 0 0 1 1

Table 11: Relative number of not solved instances in which the memory was exhausted,
1 − x is the relative number of not solved instances cases in which the time limit was
reached.

5.5. COMPUTATIONAL EVALUATION 153

5.5.3 RELAXATION SOFT GOALS

Next we analyze the performance of the AllMUGS compilation using relaxation soft goals.
Instead of externally relaxing the task, each relaxation is represented by a soft goal that is
only satisfied by states reachable within that relaxation.

The coverage results, in comparison to the task relaxation approach, are shown in
Table 12. An instance is considered to be solved, when all MUGS for all relaxed tasks are
computed or when all MUGS for the with relaxation soft goals augmented most relaxed
task are computed. The results clearly show that, with a few exceptions in Blocksworld and
Rovers R, the trivial relaxation soft-goal approach is not competitive. The large number of
additional soft goals is not even feasible for GSBNB, which scales better than GLS in terms
of the number of goals.

relaxed tasks relaxation soft goals

domain B
A

S
E

G
S

B
N

B
p

IS
S

E
+

P

G
S

B
N

B

G
S

B
N

B
+

P

S
ys

S

S
ys

W

re
so

ur
ce

Blocksworld(320) 264 184 185 152 108 1 10
Nomystery(320) 95 126 52 3 6 6 7
RoversR(400) 168 215 145 0 65 100 102
TPP(290) 184 190 56 5 7 0 0

tim
e

Parent’s A(1125) 584 657 788 0 0 0 0
RoversT(565) 545 206 504 0 0 0 0
Satellite(1560) 1099 874 965 0 0 0 0
sum(4580) 2939 2452 2695 160 186 107 121

Table 12: Coverage comparison on resource and time window-constrained domains. Left:
algorithms based on task relaxation, right: algorithms based on relaxation soft goals. The
best result for each domain is highlighted in bold.

Theorem 6 does not consider the dependencies between the soft goals in Γ when com-
puting AllRelaxMUGS. Section 5.3.2 discusses how these dependencies and the resulting
non-dominated MUGS can be leveraged to accelerate the computation of AllRelaxMUGS.

We evaluate the computation of allRelaxMUGS via the computation of nd-MUGS, by
considering the computation of all non-dominated MUGS for the tasks augmented with the
relaxation soft goals τΓ (Gnd-MUGS(τΓ,�)). This corresponds to step (2) of the complete
procedure introduced in Section 5.3.2. The remaining steps are negligible in comparison.
We used both expansion directions for GLS denoted by SysS� and SysW�. Both use
the dominance relation for the relaxation soft goals based on the corresponding relaxed
tasks and g � g for every other soft goal. The input specifications are given in Appendix
Section B.1, and the extension of GLSimplemented in symbolic Fast Downward4 is publicly
available.

The coverage results are presented in Table 13. An instance is considered solved, if
either the MUGS for all relaxed tasks could be computed, or when all nd-MUGS/MUGS
in the with the relaxation soft goals augmented most relaxed task could be computed.

4https://doi.org/10.5281/zenodo.14989835

https://doi.org/10.5281/zenodo.14989835

154 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

relaxed tasks nd-MUGS MUGS

domain # B
A

S
E

G
S

B
N

B
p

IS
S

E
+

P

S
ys

S
�

S
ys

W
�

S
ys

S

S
ys

W

re
so

ur
ce

Blocksworld 320 264 184 185 44 123 1 10
Nomystery 320 95 126 52 88 95 6 7
RoversR 400 168 215 145 348 327 100 102
TPP 290 184 190 56 69 74 0 0

tim
e

Parent’s A 1125 584 657 788 863 753 0 0
Rovers 565 545 206 504 503 475 0 0
Satellite 1560 1099 874 965 757 948 0 0
sum 4580 2939 2452 2695 2672 2795 107 121

Table 13: Coverage comparison on resource and time window-constrained domains. Left:
algorithms based on task relaxation, right: algorithms based on relaxation soft goals via
nd-MUGSand MUGS computation. The best result for each domain is highlighted in bold.

It is evident that the dominance relation between the relaxation soft goals is essential
for the successful execution of the allRelaxMUGS calculation with relaxation soft goals.
The number of solved instances increases significantly, even performing better than the
approaches based on relaxed tasks, in 2 domains, Rovers R and Parent’s Afternoon. Overall,
time-constrained domains appear to be better suited to the approach with relaxation soft
goals.

This indicates that the usage of relaxation goal facts is a competitive alternative to the
task relaxation approaches. A more comprehensive analysis of the question which approach
is preferable for which type of relaxation is left for future work.

5.6 DISCUSSION

In the following we summarize the contributions and results presented in Chapter 5. We
also discuss related work specific to this chapter and give an outlook on future work.

SUMMARY

Once the conflicting soft goals C have been identified, a natural next questions is “Why
are C in conflict?”. We addressed this question by extending our explanation framework
with relaxation explanations, which are explanations based on minimal relaxations of the
planning task that resolve the conflict. This approach provides the user with information
about why the conflict exists, as well as options for how it can be resolved.

To compute relaxation explanations, we must address the problem of allRelaxMUGS, i.e.,
computing all MUGS for a given set of relaxations. We presented two different approaches to
address this problem, one based on two algorithms dealing specifically with task relaxations,
and the other based on a compilation from allMUGS to allRelaxMUGS. In the former,
we leverage information that can be propagated between relaxed tasks, such as MSGS

5.6. DISCUSSION 155

(GSBNBp) and the reachable search space (ISSE). We showed that GSBNBp and ISSE
are exponentially separated from the baseline. While the trivial compilation approach proved
to be infeasible, the inclusion of the dominance relation of soft goals reflecting the relaxations
led to a promising alternative.

We instantiated relaxation explanations with relaxations based on resource and time
window constraints, providing an example for relaxations well suited for explanations.

The empirical evaluation showed that relaxation explanations can be computed for a
reasonable number of relaxations. There was no approach with the best overall perfor-
mance, but a strong difference in performance depending on the domain and relaxation
type, reflecting the variance of the problem structure. We demonstrated the performance
improvement that can be achieved when using the right approach in conjunction with a
suitable heuristic for each domain. Additionally, we highlighted the increasing effect of
information propagation with increasing number of relaxations.

RELATED WORK

In the following we discuss related work with respect to the use of relaxations for explana-
tions and alternative approaches in planning to deduce why a task is unsolvable.

MUSes are used to explain why a set of constraints is unsolvable, and relaxations
of constraints are used to suggest how to modify an unfeasible subset of constraints to
make it feasible. In this context, relaxation often refers to removing constraints completely
rather than relaxing the individual constraints. The first option is more in line with what we
presented in Chapter 4, while the second approach is similar to what we discussed here.
For instance, Senthooran et al. [2021] relax linear constraints (e. g. x ≤ b) by using slack
variables s, which reflect the extent of relaxation for each constraint (e. g. x ≤ b+s). Different
minimization criteria, allow one to identify a minimal relaxation with respect to the number
of relaxed constraints or the overall slack. When multiple options exist for relaxing a task,
e.g., due to limited resources or time, it becomes crucial to consider different objectives with
respect to minimality. Elucidating the users preferences with respect to relaxation options
and the affected conflicts is here considered part of the iterative process. Gupta et al.
[2022b] provide explanations based on minimal relaxations to restore satisfiability for a new
constraint added based on a user question. Using a predefined relaxation space they start
with the loosest option for each constraint and tighten them iteratively until the constraint set
is unsatisfiable. In our settings this approach resembles an online computation, addressing
one specific user question rather than precomputing allRelaxMUGS. Starting from the user
question “Why is C a conflict?”, C is added to the hard goals and then by iterating over
the relaxations, from weakest to strongest or vice versa, the least relaxed tasks that are
solvable are determined.

The scheduling system by Agrawal et al. [2020] provides information about constraint
relaxations for no-scheduled activities. Their primary objective is to identify all unmet
constraints of an activity and present them alongside the schedule to facilitate user review.
Their analysis does not yet include any reasoning on the extent to which a constraint needs
to be relaxed to schedule the activity. Yu et al. [2017] provide relaxation explanations for

156 CHAPTER 5. EXPLAINING GOAL CONFLICTS THEMSELVES

over-constraint scheduling problems based on minimal execution duration shortening. In
addition to explaining unsolvability, their approach is also used to analyze robustness. By
finding the maximum feasible increase in execution, it is possible to determine how much
leeway the tasks have in terms of execution delay.

By explaining why C is a conflict, we also address the question of why Ghard ∪ C is
unsolvable. There has been some work in planning addressing the questions “Why is task τ
unsolvable?”, based on different motivations, as explanations for unsolvability of a specific
instance, but also as debug support for model designers. Thus, useful explanations, i. e.
changes to the task that can be implemented in a meaningful way, differ depending on
the application. Sreedharan et al. [2019b] explain the unsolvability of a task by identifying
necessary subgoals of relaxed solvable tasks, that are unachievable in the original task. This
provides the user with easier to fulfill goals that cannot be solved, thus pointing to the actual
cause of the unsolvability. However, due to the use of relaxations based on projections on
subsets of variables, this approach is not suitable for quantifying the relaxation necessary
to make the task solvable. An excuse for unsolvability, as defined by Göbelbecker et al.
[2010], is a series of value changes in the initial state and additional objects to make a task
solvable. These excuses may resemble relaxations, such as increasing the initial fuel value
or adding a rover, but are not explicitly treated as such. Their approach does not address a
specific conflict, but explains why the task in general is not solvable and focuses on pointing
out errors in the model description. Another approach for modeling support by Lin et al.
[2023] modifies the preconditions and effects of actions. Based on a valid plan and a flawed
domain, they compute the minimum action changes to make the plan applicable. While this
approach explains, why the current task/plan is unsolvable, the suggested task and model
updates are not necessarily relaxations. Thus, they might introduce new conflicts.

Finally, the unsolvability certificates provided by the proof system of Eriksson et al.,
Eriksson et al. [2017, 2018] are not intended to be human-readable and do not provide
information on how the task could be rendered solvable.

FUTURE WORK

User Study As was the case with conflict explanations, it is necessary to evaluate the
usefulness of the relaxation explanations for human users. Do they adequately address the
question “Why is C a conflict?” and do they help the user in finding better trade-offs? A user
study following a similar set up as for conflict explanations would be appropriate.

Combination of Relaxations The combination of relaxations appears to be intuitive and
useful. The user could define different relaxation graphs Ti each based on a specific way of
relaxing the task, such as used waypoints, rovers, and resources and time windows. So
far we are only considering individual relaxations. The response to “Why are Q in conflict?”
considers each option to relax the task individually, leading to an answer like “To resolve
conflict Q, you need to be able to traverse waypoints {l0, l1} or use both rovers or increase
the resource of rover R1 by 3 units.” It is possible that none of these relaxations is viable.
However, a feasible approach might involve combining less relaxed tasks of each relaxation
option. For instance, traversing waypoint l0 and increasing the resource of rover R1 by

5.6. DISCUSSION 157

1 unit could be an applicable relaxation. So the question arises how relaxations can be
combined and how the resulting MUGS can be calculated efficiently.

Relaxation Selection Relaxing resource constraints by increasing the initial available
amount and time constraints by increasing the time windows, is just one option. Alternatives
include reducing the resource consumption or execution time of individual actions. One could
also include relaxations of renewable resource like the number of rovers. However, handling
the explosion of possible relaxed tasks is not trivial, especially if also the combination
of different relaxation options should be considered. The applicability of relaxations and
the preferences between them must be defined in collaboration with the user as part of
the iterative planning process. It would therefore be advantages to automatically suggest
possible relaxations and for the user to then select the relaxations to be taken into account.

Alternative Applications Instead of identifying a conflict and determining a resolution,
the user could also adopt an alternative approach. The user could provide a relaxation and
identify conflicts that could be resolved by applying it. For example, if there is an option to
abort the previous mission early and finish with an overhead of resources, the question could
be whether these additional resources would allow more data points to be collected in the
next mission. Additionally, the robustness analysis as conducted by Yu et al. [2017], could
be a valuable application. By tightening a task, e. g. reducing resources or time windows, it
is possible to determine the extent of flexibility in terms of fuel reserves or execution delays.

Why? Questions never end, which means that the user may not understand why relaxation
τr resolves conflict C and therefore asks “Why does τr resolve C?”. Consider for example
the conflict C = {take_image_crater, take_sample_ice}, and the relaxation of the
rover’s resource by two additional units. Taking the two samples involves multiple steps,
such as initially driving to the corresponding locations. If conflict C ′ = {visit_crater,
visit_ice} exists, between visiting those locations, which is present in the original task
and is also resolved by two additional energy units, then you know that not collecting the
data is causing the conflict, but reaching the locations. An option to address the question
“Why does τr resolve C?”, could be to use conflicts between "related" soft goals that are
also resolved by τr. However, defining such soft goals is not trivial. One possible approach
is to use landmarks [Hoffmann et al., 2004] of the soft goals in C in the relaxed task τr,
similar to [Sreedharan et al., 2019b].

CHAPTER 6

LEARNING TEMPORAL GOALS

Our explanatory framework offers an analysis of conflicting soft goals. Ideally, these soft
goals represent user preferences that extend to the aspects of the plan space in which they
are interested. So far, we have assumed, that such a set of soft goals is provided by the
user. However, it is often difficult for users to formalize their preferences. So the question is,
how to simplify the process of preference elucidation.

There exist different approaches depending on the desired preferences and the possible
interactions with the user. For an overview of planning with preferences we refer to Jorge
et al. [2008]. For example, Lindsay et al. [2021], deal with the preference elucidation during
planning by considering actions that reveal previously unknown user attributes. Mantik
et al. [2022] introduce an elucidation framework for preferences represented by metrics
over domain attributes. Based on diverse sets of plans from a set of small sample instances,
they generate a set of questions consisting of pairwise comparisons of plans. The answers
then provide a data set that is used to learn a linear preference function over the domain
attributes. Using a similar setup, we explore the possibility of learning temporal soft goals
from annotated sample plans. This is done in an iterative process, focusing on one temporal
soft goal at a time. The individual steps are shown in Figure 44.

Step 1

planner

generate
sample plans

Π

Step 2

φt

annotate
good examples E+

bad examples E−

Step 3

learner

learn
temporal soft goal

φl

Figure 44: Process to learn one temporal soft goal φl based on annotated sample plans.

Step 1 is to generate a set of sample plans. Then, in Step 2, the user is asked to
annotate them as good/bad plans with respect to the temporal soft goal φt they have in
mind. The final Step 3 is to learn a temporal soft goal φl that correctly identifies these
positive/negative examples. These steps can be repeated to extract other temporal soft

159

160 CHAPTER 6. LEARNING TEMPORAL GOALS

goals until the user stops the process.
This approach itself is fairly straightforward, and its building blocks are known. For

the planner in the first step, we use prior work to generate multiple plans for a given task
focusing on different optimization and selection objectives [Katz et al., 2018, Speck et al.,
2020, Katz and Sohrabi, 2020a]. For the learner in the last step, we leverage prior work
for learning LTLf formulas from sample traces [Neider and Gavran, 2018, Camacho and
McIlraith, 2019, Kim et al., 2019]. Our contribution involves applying these techniques and
empirically investigating their merits for soft goal learning.

To emulate the user in systematic experiments, we employ hidden target formulas. For
each learned temporal soft goal, we fix a target formula φt. This formula is then used in Step
2, to annotate the sample plans. If a plan satisfies φt, it is a positive example, otherwise,
it is a negative example. In practice, the hidden target formula φt will be inside the user’s
head. Emulating users in this form allows us to systematically evaluate different algorithmic
methods.

We instantiate the hidden target formula φt with hand-made formulas based on PDDL3
preferences [Gerevini et al., 2009], as well as formula templates, which are often used in
model checking [Manna and Pnueli, 1990, Dwyer et al., 1999, Menghi et al., 2019] and
modeling business processes [van Der Aalst et al., 2009]. In Step 3, we use Camacho
and McIlraith [2019] techniques, to learn a smallest LTLf formula φl. The primary question
we address is how to instantiate the planner in Step 1. Top-k methods with a focus on
diversity are natural candidates, as they aim at producing k good-quality (in our context:
short) yet qualitatively different plans. This makes intuitive sense for our purposes, since
the example plans should cover different options for solving the task, but at the same
time should not include obviously redundant behavior. We experiment with three different
methods from the literature [Katz et al., 2018, Katz and Sohrabi, 2020a, Speck et al., 2020].
We furthermore, experiment with a simple randomized version of greedy best-first search
using hFF [Hoffmann and Nebel, 2001].

We evaluate the performance of different plan generation methods, by analyzing not
only computational effort, but also the quality of the learned formula φl relative to the hidden
formula φt, and the quality of plan examples in the sense of how many examples are needed
to learn a high-quality formula.

Papers and Contributions This chapter is based on the paper:

Valentin Seimetz, Rebecca Eifler and Jörg Hoffmann
Learning Temporal Plan Preferences from Examples: An Empirical Study.
Proceedings of the 30th International Joint Conference on Artificial Intelligence (2021)

which in turn is partly based on the master’s thesis by Seimetz [2020]. The author of this
work acted as advisor of the master’s thesis and proposed to evaluate the applicability of
temporal preference learning for the introduced explanation framework. Seimetz provided
the re-implementation of Camacho and McIlraith [2019] with the extension to learn all
formulas of a given size. He also explored other methods to generate diverse plans and the
learning of preferences without user input, not covered here.

6.1. RELATED WORK & BUILDING BLOCKS 161

The evaluation included here, which was conducted by the author of this work, encom-
passes an extension of covered templates, domains, plan generation approaches, and
evaluated parameters.

6.1 RELATED WORK & BUILDING BLOCKS

The two main building blocks of our approach are the generation of plans and the learning
of LTLf formulas. In the following, we highlight related work in this area, while describing the
approaches we decided to use in more detail.

6.1.1 PLAN GENERATION

To provide a set of sample plans to the user, we must generate multiple plans for the given
planning task. Since we assume that there is no prior knowledge of soft goals the user
is interested in, the sample plan should provide a diverse selection. Ideally, these plans
should cover different parts of the plan space, exhibiting different possibilities to reach the
goal. Optimality with respect to plan cost is not a necessity; indeed, it is undesirable as it
may exclude interesting plan options. However, this does not include redundant or repetitive
behaviors, such as unnecessarily driving in circles. This increases the plan length without
adding any valuable new options to the sample plan. In the following, we do not consider
OSP tasks with a cost bound that could prevent specific behaviors from being reflected
in sample plans. Instead, we use classical planning tasks without a cost bound and any
additional encoded constraints such as resources or time. Additionally, we allow sub-optimal
plans. Nevertheless, a bias toward small plan cost or length can make sense as cheap
plans are generally preferable and short plans are easier to understand.

In the literature, two objectives are pursued when generating a set with k plans: quality
[Katz et al., 2018, Speck et al., 2020] and diversity [Katz and Sohrabi, 2020b]. Quality
generally refers to plan cost while for diversity between two plans π0 and π1 different metrics
have been introduced. Uniqueness similarity [Roberts et al., 2014] identifies permutations
and partial plans. Stability similarity [Fox et al., 2006, Katz and Sohrabi, 2020b] considers
the ratio of common actions in π0 and π1 relative to all appearing actions. State similarity
[Nguyen et al., 2012, Katz and Sohrabi, 2020b], on the other hand, focuses on the sequence
of states resulting from the plan execution rather than on the similarity of actions. The
similarity of two states is determined by the number of common variable values relative to
the number of variables.

We explore four distinct plan generation techniques prioritize different objectives. All of
these approaches can be run as an anytime search, enabling the generation of plans until a
time limit is reached or a specified number of plans is found.

Top-K Planning First, we use top-k planning (TopK) [Katz et al., 2018, Speck et al.,
2020]. Its default variant returns the best k plans in terms of cost. There are two primary
approaches. First, an optimal plan is identified, and then, using an iterative method, a
different plan with the same cost is computed or, if none exists, the maximal plan cost is
increased. Katz et al. [2018] use an approach that iteratively calls an optimal planner and

162 CHAPTER 6. LEARNING TEMPORAL GOALS

modifies the planning task such that the found plan is not applicable in the next iteration.
Speck et al. [2020] use symbolic planning. Once a goal state is expanded not just one, but
all possible plans are reconstructed. The search space is then extended iteratively until k
plans have been found or no more new states can be reached.

Top-K Planning with Permutation Filter In domains with independent objects, such as
two trucks that can move independently, TopK frequently results in plans that are permuta-
tions of each other. These permutations do not reflect any temporal dependence between
actions. Rather, they are an instantiation of the partial order defined by the preconditions and
effects of the actions. As such, they do not represent another option for solving the planning
task. To address this issue, we adopt a second approach that utilizes top-k planning with
an additional filter. This filter removes plans that are permutations of already found plans,
resulting in a set of plans that each have at least one distinct action (TopKFil).

Agile Diverse Planning Our third variant is agile diverse planning (AgDiv) by [Katz
and Sohrabi, 2020a], which does not optimize plan quality but, similar to TopKFil, action
diversity. It uses satisficing planning and iteratively computes new plans while forbidding all
possible reorderings of already found plans.

Random As a simple approach generating different plans we also run a randomized
version of hFF [Hoffmann and Nebel, 2001] in greedy best-first search (RNDhFF). The
randomization adds a positive random number to each heuristic value. As this approach
does not guarantee to find different plans, the plans are filtered for uniqueness in a post-
process.

6.1.2 TEMPORAL SOFT GOAL LEARNING

There is substantial work in the area of learning LTLf formulas from sample traces that we
can build on [Neider and Gavran, 2018, Gaglione et al., 2021, Camacho and McIlraith, 2019,
Kim et al., 2019] . The learner takes as input two sets of positive examples E+and negative
examples E−. The output is a LTLf formula φ that identifies the positive and negative
examples. The objective is to maximize accuracy while minimizing formula size. Accuracy
is measured by how accurately φ partitions the set of sample traces E = E+ ∪ E− into E+

and E−:

α(φ,E+, E−) =
|{π ∈ E+ | φ � π}|+ |{π ∈ E− | φ 2 π}|

|E+|+ |E−|

A formula φ is perfect if α(φ,E+, E−) = 1.

The approach by Kim et al. [2019] is based on probabilistic Bayesian models and relies
on templates, meaning it cannot learn arbitrary LTLf formulas. The probabilistic model
enables robustness with respect to noise in the input data, which refers to traces that are
not correctly sorted into E+ or E−. In our context, such noise would reflect plans incorrectly
annotated by the user. This could be an interesting consideration for future work. For the

6.2. ARCHITECTURE 163

time being, we assume that the user either correctly annotates an example plan or does not
annotate it at all, meaning that such noise does not exist.

Instead we follow other works [Neider and Gavran, 2018, Camacho and McIlraith, 2019],
leveraging a SAT encoding to ensure perfect accuracy in identifying a smallest formula. This
approach can use templates but does not rely on them, facilitating the learning of arbitrary
formulas. In our evaluation, we use a modified re-implementation of the approach for LTLf

by Camacho and McIlraith [2019]. The learning process is an iterative process over the
size of the learned formula. In each step, a SAT encoding of all LTLf formulas of the given
size and the input traces are generated. This SAT formula is satisfiable if one of the LTLf

formulas satisfies all positive examples and does not satisfy any negative example. The first
satisfiable assignment the SAT-solver can find is then used to reconstruct the corresponding
LTLf formula. If the SAT encoding is unsatisfiable the size bound is increased.

6.1.3 TEMPORAL SOFT GOAL TEMPLATES

To instantiate the hidden target formulas we focus on templates based on commonly used
temporal formulas in planning, model checking and business process modeling. In planning,
LTLf has been used to express user preferences [Gerevini et al., 2009] as in our case
and also additional domain-dependent knowledge [Bacchus and Kabanza, 2000] to speed
up the planning process. PDDL3 [Gerevini et al., 2009] extends the Planning Domain
Definition Language (PDDL) with the feature to define temporal preferences. The language
to define those preferences is based on LTLf and supports a limited subset of nested
modal operators defined as meta operators like for example at-most-once. It also extends
to temporal planning, thus including operators referring to timed initial literals defined in
PDDL2.2 [Hoffmann and Edelkamp, 2005]. Here we use the PDDL3 Preferences [Gerevini
et al., 2009] that do not have numeric arguments. In the field of model checking [Manna
and Pnueli, 1990, Dwyer et al., 1999, Menghi et al., 2019], LTL is used to define safety
and liveness properties of systems. The most common language for modeling business
processes is DECLARE [van Der Aalst et al., 2009]. We use their templates, translated to
LTLf by Bonassi et al. [2023].

Table 14 lists the formula templates we will consider for the construction of hidden
target formulas in our empirical evaluation. These templates do not fully utilize the ex-
pressiveness of LTLf, as user preferences often favor simpler temporal structures. This is
evident, for example, by the fact that PDDL3 implements only a small part of LTLf and that
DECLARE, which is designed as an interface between LTL and human users, also limits the
expressiveness.

6.2 ARCHITECTURE

We now discuss how to assemble these building blocks into an architecture for soft goal
learning. We begin by briefly explaining the individual steps in our approach, highlighting
the challenges and relevant special cases that can arise. Recall in what follows, we will
assume a hidden target formula, denoted φt, inside the user’s head.

164 CHAPTER 6. LEARNING TEMPORAL GOALS

name/meaning LTLf formula size

P
D

D
L3

always(a) �a 2
sometimes(a) ♦a 2
sometimes-after(a,b) �(a→ ♦b) 5
at-most-once(a) �(a→ (a W �¬a)) 8
sometimes-before(a,b) (¬a ∧ ¬b) W (a ∧ ¬b) 10

M
od

el
C

he
ck

in
g

safety �a 2
guarantee ♦a 2
persistence ♦�a 3
recurrence �♦a 3
a before b ¬b U a 4
mutual exclusion �¬(a ∧ b) 5
precedence �(a→♦b) 5
simple obligation �a ∨ ♦b 5
sequence ♦(a ∧ ♦b) 5
b forbids a ♦(b→ �¬a) 6
persistent response ♦(a ∧©�b) 6
response �(a ∧©♦b) 6
exception ♦a→ ♦(b ∧ ♦a) 8
stability ♦�a ∧�(a→ �a) 9

D
E

C
LA

R
E

existence(a) ♦a 2
absence(a) ¬♦a 3
choice(a,b) ♦a ∨ ♦b 5
co-existence(a, b) ♦a↔ ♦b 5
responded-existence(a, b) ♦a→ ♦b 5
response(a, b) �(a→ ♦b) 5
absence2(a) ¬(♦a ∧©♦a) 7
precedence(a, b) (¬b U a) ∨�¬b 8
exclusive-choice(a,b) (♦a ∨ ♦b) ∧ ¬(♦a ∧ ♦b) 12

Table 14: LTLf templates used as hidden target formula to simulate the user. We define the
size of a formula as the number of sub-formulas.

STEP 1 PLAN GENERATION

In the first step, we generate a set E of plans for the given planning task, using one of the
introduced approaches: TopK, TopKFil AgDiv, RNDhFF. Given that the target formula φt is
hidden, the plan generation cannot be tailored to generate positive and negative examples
for φt. Therefore, we simply consider the first n plans generated. We will experimentally
explore the impact of the parameter n.

An important complication is that the learning step requires at least one positive and one
negative example, which may not be given in the first n plans. In this case one must either
give up or increase the value of n. However, the hidden user formula φt may be a tautology
or unsatisfiable in the planning task, i. e., may be true (or false) in all plans. In practice, we

6.2. ARCHITECTURE 165

are unable to verify this. Note though that tautological or unsatisfiable soft goals are not
meaningful in a conflict analysis. The former is not part of any MUGS, while the latter is a
singleton MUGS. Presumably, users will possess sufficient knowledge about the domain
and task at hand to formulate meaningful soft goals. In our experiments, we consider only
soft goals, for which positive and negative examples exist.

STEP 2: PLAN ANNOTATION

We provide the set of example plans E to the user and request that they annotate the plans
with respect to their hidden target formula φt as positive E+ and negative E− examples.
The number of plans n the user has to annotate, should be as small as possible. We will
evaluate empirically how many plans are necessary to learn φt. In practice, one could
interleave plan annotation and formula learning until the user is satisfied with the result. In
our setting here, this corresponds to analyzing learning performance as a function of n.

It is not necessary to annotate all plans in E. The user can select any subset of positive
and negative examples that most clearly resemble the desired behavior φt. We assume that
the user does not make any mistakes in the annotation, i. e. that φt has a perfect accuracy
on E+ and E−.

STEP 3: LEARNING

Given E+ and E−, we call the learner to obtain the set Φl of smallest LTLf formulas with
a perfect accuracy. We use formula size as a proxy for quality, thus only considering the
smallest perfect formulas. This is commonly done [Neider and Gavran, 2018, Gaglione
et al., 2021, Camacho and McIlraith, 2019, Kim et al., 2019] when no preference function
for different formulas is given. However, one has to keep in mind, that there are temporal
soft goals, that have straightforward natural language descriptions, but the respective LTLf

formula is quite large, for example at-most-once (�(a → (a W �¬a))) with a size of 8.
In order to not disadvantage such penalize goals, commonly used templates could be
introduced as meta-operators, which would not lead to an increase in formula size. This is
an interesting approach for future work.

As φt is not known, learned formulas Φl can not be filtered further without additional
user input. Therefore, all formulas in Φl are forwarded to the user for inspection.

There are five distinct ways in which the learned formulas Φl and the target formula φt can
be related, each of which can be used differently within our explanation framework.

DEFINITION 52: LEARNED FORMULA AND TARGET FORMULA RELATION

Given a planning task τ with plans Π, the formulas φl ∈ Φl are related to the target
formula φt in exactly one of the following ways:

(a) we learn the same formula: φl = φt

(b) φl is equivalent to φt: Π |= φt → φl ∧Π |= φl → φt

166 CHAPTER 6. LEARNING TEMPORAL GOALS

(c) φl is an over-approximation of φt: Π |= φl → φt

(d) φl is an under-approximation of φt: Π |= φt → φl

(e) no direct relation, i. e., none of (a)–(d) holds.

Note that for cases (b) to (d) we consider Π-entailment (Definition 12). Π |= φt → φl means
that φt entails φl based on Π, i. e. {π | π ∈ Π, π |= φt} ⊆ {π | π ∈ Π, π |= φl}. This does
not necessarily mean that φt implies φl based on the LTLf semantics.

In the ideal case (a), the user receives the expected result. In the worst case (e), the
user is presented with a set of unrelated formulas.

The intermediate cases are more difficult to judge. At first glance, equivalence (b)
appears unproblematic. However, depending on how similar, syntactically and semantically,
φl and φt are, the user may face difficulties in recognizing the equivalence. One has to keep
in mind that the formulas are equivalent based on Π-entailment. In our experiments, we
observed surprising equivalent formulas, that identified subtle dependencies in the planning
task (see Example 23). On a positive note, this form of dependency identification presents
an alternative application of our techniques. The plan annotation and formula learning are
then used to automatically identify new formulas that relate in particular ways to previously
identified preferences. We illustrate this potential alternative application of our techniques in
the future work Section 6.4.

The usefulness of over/under-approximations (c) and (d) of φt also highly depends on
their similarity to φt. A useful result would for example be φl = �a given the target formula
φt = �(a ∨ b), or in general if φl → φt based on the LTLf semantics regardless of the
planning task. For further examples see Example 23. In our experiments, we frequently
observed that the learning identified subtle unexpected dependencies, again suggesting the
aforementioned alternative use.

EXAMPLE 23: LEARNED FORMULAS

Let’s consider some examples for illustration, covering the different possible relations
to the target formula.

(a) φl = φt: The same formula is mostly learned for simpler templates like safety,
guarantee, a before b or mutual exclusion:

• Transport: ♦(in(p3, t0) ∧ in(p0, t0)) : At some point packages p0 and p3
are together in truck t0.

• Transport: �¬(in(p3, t1) ∧ in(p0, t1)) : Packages p0 and p3 are never
together in truck t1.

• Blocksworld: ¬on(b3, b1) U holding(b5, h0): Hand h0 holds block b5 before
block b3 is stacked on block b1.

(b) φl is equivalent to φt: Equivalent formulas can sometimes be identified assuming
some basic knowledge about the domain mechanics:

6.2. ARCHITECTURE 167

• Parent’s Afternoon: φt = ♦(todo(a2) ∧ in-car(p4)) : At some point person
p4 needs to be in the car and activity a2 still needs to be done.; φl =

todo(a2) U in-car(p4): Activity a2 stays undone until person p4 is in the car.
Since doing an activity can not be reversed φt is equal to the ordering φl.

• TPP: φt = �(stored(g1) → ♦at(t1,m2)): Whenever good g1 is stored,
then truck t1 visits market m2 afterwards; φl = ♦(stored(g1) ∧ at(t1,m2)):
At some point good g1 is stored and truck t1 is at market m2. stored(g1)
cannot be reversed and is a goal fact. Thus, there is the equivalent simpler
formula φl.

There are also formulas which are equivalent only in a specific instance:

• TPP: φt = ¬(loaded(g2, t1) ∨ at(t1,m3)) U at(t1,m2): Truck t1 does
not load good g2 or visits market m3 before it visits market m2; φl =

¬at(t1,m3) U at(t1,m2): Truck t1 does not visit market m3 before it visits
market m2. Good g2 is offered at market m2 and m3. Thus, not visiting m2

but loading good g2 Π-entails visiting market m3.

(c) Π |= φl → φt: Over-approximations can be simple sub-formulas which are
relatively easy to identify:

• Transport: φt = �(¬at(p3, l1)∨at(p0, l4)): Package p0 has to be at location
l4 or package p3 is not at location l1; φl = �¬at(p3, l1): Package p3 is
never at location l1.

But they can also reflect behavior entailed due the underlying planning task:

• Blocksworld: φt = ♦¬handempty(h0): At some point hand h0 is not empty;
φl = ♦holding(b1, h0): At some point hand h0 holds block b1. This is an
over-approximation, because hand h0 can hold any block to not be empty.

The entailment is often not only based on the domain mechanics but on the
specific instance.

• Transport: φt = �(¬at(p3, l1)∨at(p0, l4)): Package p0 has to be at location
l4 or package p3 is not at location l1; φl = ¬at(p3, l1) U �at(p0, l4): Pack-
age p3 is not at location l1 until package p0 is forever at location l4. This is
an over-approximation, because at(p0, l4) is a goal fact.

(d) Π |= φt → φl: Under-approximations can be simple sub-formulas which are
relatively easy to identify:

• Transport: φt = ¬in(p4, t1) U (at(p1, l3) ∧ in(p2, t0)): Package p1 has to
be at location l3 and package p2 in truck t0 before package p4 is in truck
t1; φl = ♦at(p1, l3): At some point package p1 has to be at location l3, or

168 CHAPTER 6. LEARNING TEMPORAL GOALS

φ′l = ¬in(p4, t1) U at(p1, l3): Package p1 has to be at location l3 before
package p4 is in truck t1.

But they can also reflect behavior entailed due the underlying planning task
mechanics or even instance:

• Rovers T: φt = ¬in-memory(i1) U uploaded(i0): image i0 has to be up-
loaded before image i1 is taken; φl = ¬uploaded(i1) U uploaded(i0): im-
age i0 has to be uploaded before image i1 is uploaded. This is an under-
approximation, because an image has to be taken before it can be uploaded.

• Blocksworld: φt = �(on(b4, b2)→ (on(b4, b2) W �¬on(b4, b2))): Put block
b4 only once on block b2; φl = �¬on(b4, b2) R ¬clear(b1): Unstacking b4
from b2 allows clearing b1. This is an under-approximation, because b4 is
initially on b2 and b2 on b1. b4 must be unstacked to satisfy all goals and
since it cannot be placed again on b2 it allows clearing b1 by unstacking
b2. This is an example where the learned formula is harder to understand,
although it is smaller than the target formula.

(e) no direct relation, i. e., none of (1)–(4) holds: Especially for smaller number of
plans there are often small templates that lead to perfect formulas that are not
related to the target formula. Some often appearing templates are:

• Blocksworld: ♦holding(b2, h1): Eventually hold block b2 in hand h1;
¬holding(b4, h1) U holding(b0, h1): Hold block b0 before block b4 with hand
h1. ©handempty(h1): Start with hand h0. Many of the formulas describe
which of the hands are used for which block.

• Transport: �¬at(t0, l1): Truck t0 never visits l1;©at(t1, l1): Start by driving
with truck t1 to l1; ¬at(p1, l3) U in(p0, t1): Package p1 stays at l3 until
package p0 is loaded into truck t1. Many of the formulas describe which
truck is used or in which order the packages are loaded.

• Parent’s Afternoon: ♦(at(p2, l2) R at(p0, l0)): Person p2 visits l2 before
person p0 leaves location l0;©at(parent, l3): The parent starts with driving
to l3; done(a3) R ¬done(a1): Activity a3 is done before activity a1. Many of
the formulas restrict the order of the activities directly or by restricting the
visited locations.

6.3. EMPIRICAL EVALUATION 169

6.3 EMPIRICAL EVALUATION

IMPLEMENTATION

For plan generation, we used the publicly available implementations of SymK1 [Speck et al.,
2020] for TopK and TopKFil, forbiditerative2 [Katz and Sohrabi, 2020a] for AgDiv, and
Fast Downward3 [Helmert, 2006] for RNDhFF. The plan selection for TopKFil is supported
by SymK as an internal filter. We extended the translator of each planner by the LTLf

compilation implementation introduced in Section 4.3.2. The extended planners are publicly
available4. This is a prerequisite for our experimental setup, as outlined in the next section.

The preferences we consider are LTLf formulas over facts. To convert plans to lists of
fact sets we use VAL [Howey et al., 2004]. We discard the static facts, which are always
true, e. g. defining the road connections in transportation domains.

The implementation we use for LTLf learning is a re-implementation of Camacho and
McIlraith [2019]. The original implementation only outputs one formula with the minimum
size. As we do not have a reason to prefer one formula over another, we extended the
implementation to provide all formulas with the minimum size. This is achieved by repeatedly
calling the SAT solver, adding a new clause each time to enforce that previously found
formulas are excluded. Our re-implementation is publicly available5.

6.3.1 EXPERIMENTS SETUP & BENCHMARKS

BENCHMARKS

We consider the instances from the resource and time constrained domains introduced
in Section 4.3.2. To allow for a diverse set of plans, we removed all resource and time
constraints. Since our experiment setup requires us to solve every task multiple times we
only consider the smaller instances.

To generate hidden target formulas for our experiments, we used the LTLf templates
given in Table 14. For each planning task τ = (V,A, c, I,G) we instantiated each template
with random facts from

⋃
a∈A eff a. For templates up to size 5, we also included extended

versions, by instantiating a or b with a conjunction or disjunction of two potentially negated
facts. Then, for each candidate formula φ, we checked whether φ is non-tautological: (τ, φ)
is added to our benchmark set only if both G ∪ {φ} and G ∪ {¬φ} were solvable. For
each task τ , we included at most three formulas based on the same template. To ensure
termination, we skipped a template after at most 5 failed candidate formula checks. This
procedure generated an average of 55 formulas per task, resulting in a benchmark set of
5247 task-formula pairs. The benchmark is publicly available6.

1https://github.com/speckdavid/symk
2https://github.com/IBM/forbiditerative
3https://github.com/aibasel/downward
4https://doi.org/10.5281/zenodo.14989440
5https://doi.org/10.5281/zenodo.14989191
6https://doi.org/10.5281/zenodo.14988342

https://github.com/speckdavid/symk
https://github.com/IBM/forbiditerative
https://github.com/aibasel/downward
https://doi.org/10.5281/zenodo.14989440
https://doi.org/10.5281/zenodo.14989191
https://doi.org/10.5281/zenodo.14988342

170 CHAPTER 6. LEARNING TEMPORAL GOALS

HYPOTHETICAL BEST-CASE FOR PLAN GENERATION

In practice, plan generation cannot be tailored to the planning formula φt, as it is hidden in
the user’s head. Yet, intuitively, it is important for the example plans to be balanced : the
same numbers of positive and negative instances. A highly imbalanced set of examples can
be expected to impede formula learning, because it fails to clarify the distinction between
the two classes.

To evaluate this hypothesis, we explored two distinct plan generation setups: the realistic
application setup Genapp where plans are generated without knowledge of φt; vs. the
hypothetical idealized setup Genideal where we generate perfectly balanced example plan
sets by enforcing φt and ¬φt each in half of the plan generation runs. Kim et al. [2019]’s
experiment setup features the same idealized setup, to guarantee the existence of positive
and negative sample traces. The idealized setup also sheds light on what could potentially
be achieved in future work by advanced methods trying to incorporate partial information
about the user preference i. e., what kinds of preference templates or objects are of interest.

EVALUATION WITH RESPECT TO THE TARGET FORMULA

In our experiments, to evaluate the quality of the learned formula, our main criterion is
the degree of direct relation to the hidden target formula φt, according to the categories
(a)–(e) discussed in Definition 52. Note that checking these relations involves expensive
implication tests to identify entailments in plan space. Our implementation works as follows.
The context of each test is a planning task τ with goals G. Given the target formula φt and
the learned formula φl, we test whether (1) Π |= φl → φt and (2) Π |= φt → φl. Each test
is performed through compilation into a modified planning task, namely G ∪ {φl,¬φt} for
(1) and G ∪ {¬φl, φt} for (2), where LTLf goals are encoded through compilation into goal
facts. Each test succeeds iff the corresponding planning task is unsolvable.

All experiments were run on Intel E5-2695 v4 2.1G machines with a memory limit of 4
GB. The example plan generation and the formula learning had time limits of 30min each.
As evaluating φt with respect to φl can be very time-consuming, we used a timeout of 2
hours for this step. For Genapp, we generated up to 50 example plans, and for Genideal, we
generated up to 25 positive and 25 negative examples.

6.3.2 EXPERIMENTAL RESULTS

Our evaluation is divided into two parts. The first part evaluates the plan generation, in
terms of computational performance, similarity measures and the balance of the resulting
plan sets. The second part evaluates the quality of the learned formulas relative to the
hidden target formula, as a function of target formula size, plan generation method, and the
number n of annotated example plans.

PLAN GENERATION

Computational Performance Figure 45 shows the average number of plans generated
over time. Top-k planning (TopK) and randomized hFF (RNDhFF) compute all 50 plans

6.3. EMPIRICAL EVALUATION 171

within the first second. Agile diverse planning (AgDiv) generates the requested 50 plans
within about 10 sec. Top-k planning with a permutation filter (TopKFil) is least suitable for
generating a larger number of sample plans. The combination of top-k search output and
permutation filtering proves to be so restrictive that the requested number of plans is not
reached within the time limit.

100 101 102 103

1
5
10
15
20
25
30
35
40
45
50

time in sec

a
vg

#
p
la
n
s TopK

TopKFil
AgDiv
RNDhFF

Figure 45: Average number of plans generated over time for each plan generation approach
in the application setup Genapp.

Similarity Measures The number of plans and their similarity to each other can influence
the number of different ways of solving the task they cover. Therefore, the next step is to
evaluate the similarity of the resulting sets of plans. To do so, we use the similarity measures
defined by Nguyen et al. [2012] and Katz and Sohrabi [2020b], and compute the average
similarity over all pairs of plans in Π. Given two plans π, π′, where A(π) is the set of actions
of plan π we have:

• Uniqueness Similarity: δu(π, π′) := [A(π) ⊆ A(π′)] + [A(π′) ⊆ A(π)] where [S ⊆ S′]

is 1 if S ⊆ S′ and 0 otherwise.

• Stability Similarity: δa(π, π′) :=
|A(π)∩A(π′)|
|A(π)∪A(π′)|

• State Similarity: Let (s0, s1, · · · , sk) and (s′0, s
′
1, · · · , s′k) be the set of states tra-

versed by π, π′. Assuming k′ ≤ k and ∆(s, s′) := |s∩s′|
|s∪s′| we have: δs(π, π′) :=

1
k

∑k′

i=1∆(si, s
′
i)

The average plan similarity for all three similarity measures is given in Table 15.
As we are measuring similarity and are seeking diverse plans, lower scores are prefer-

able. Overall, RNDhFF generates the most diverse plans, followed by AgDiv and TopKFil,
which perform similarly, as expected given their similar filter criteria. TopK performs the
worst overall, generating a high number of permutations. On average more than 75% of
actions and more than 80% of the states are identical. This suggests that in most domains,
there is no large variety among the first 50 optimal plans. RNDhFF and also TopKFil have
almost a perfect uniqueness similarity score. With AgDiv and TopKFil on average two
plans have about half the actions in common and two thirds of the states. RNDhFF generates

172 CHAPTER 6. LEARNING TEMPORAL GOALS

Blocks Nomy Parent’s A RoversR RoversT Satellite TPP all

δu

TopK 0.11 0.8 0.23 1.0 0.11 0.04 0.72 0.4
TopKFil 0.01 0.02 0.0 0.0 0.01 0.01 0.0 0.01
AgDiv 0.07 0.02 0.01 0.04 0.16 0.01 0.01 0.05
RNDhFF 0.0 0.0 0.01 0.0 0.02 0.0 0.0 0.01

δa

TopK 0.48 0.95 0.89 1.0 0.75 0.49 0.95 0.78
TopKFil 0.35 0.49 0.68 0.38 0.52 0.45 0.38 0.47
AgDiv 0.37 0.53 0.6 0.49 0.6 0.39 0.31 0.48
RNDhFF 0.26 0.32 0.59 0.26 0.48 0.28 0.41 0.38

δs

TopK 0.7 0.81 0.91 0.93 0.85 0.7 0.89 0.82
TopKFil 0.64 0.47 0.78 0.83 0.62 0.69 0.65 0.67
AgDiv 0.64 0.49 0.71 0.83 0.6 0.67 0.46 0.63
RNDhFF 0.4 0.24 0.59 0.74 0.24 0.55 0.28 0.43

Table 15: Average similarity per domain of all plans found per instance for each plan
generation approach, rounded to two decimal places.

plans with 10% less stability similarity and 20% less state similarity, compared to AgDiv and
TopKFil.

Balance of Plan Sets For the learning step, at least one positive and one negative
example is necessary. This is the case for 11% for TopK, 40% for TopKFil, 54% for AgDiv,
and 74% for RNDhFF out of the benchmark instances (task-formula pairs). TopK covers
only about a tenth of the sample formulas. This is due to its tendency to generate plan
permutations. Although, TopKFil and AgDiv have similar similarity scores, AgDiv covers
14% more formulas. RNDhFF, with the lowest similarity score, also covers the largest number
of formulas. This suggests that the known similarity measures can serve as a point of
reference to determine whether a set of plans is likely to contain positive and negative
examples for a variety of temporal preferences.

In what follows, we consider, for each plan-generation method, only those benchmark
instances where both positive and negative example plans were generated. The set of all
these benchmark instances (union across all plan-generation methods) is denoted by Ip&n.
Figure 46 evaluates how balanced the sets of example plans are for each plan-generation
method.

It may seem surprising that TopK generates the most balanced example plan sets within
Ip&n, given the results from above. As the red bars in Figure 46 show, TopKFil and AgDiv
also tend to be more balanced on these benchmark instances. RNDhFF results in a relatively
equal distribution. AgDiv suffers from an uneven behavior, delivering either a very balanced
or a very unbalanced set of sample plans. Overall, the superior plan generation algorithm in
terms of balancedness is TopKFil.

QUALITY OF LEARNED FORMULAS

Figure 47 and Figure 48 provide our evaluation of the learning quality. Our main criterion
for assessing quality are categories (a) - (e) from Definition 52. An instance is considered
solved if either the target formula or an equivalent formula has been learned.

We consider first Figure 47, which provides data for the realistic plan-generation setup
Genapp where the hidden target formula is not taken into account for plan generation. To

6.3. EMPIRICAL EVALUATION 173

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

50

100

TopK

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

50

100

150

TopKFil

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

100

200

300

AgDiv

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

100

200

RNDhFF

Figure 46: Histogram over relative number of negative examples for each plan-generation
method. Bins are half open, value x refers to bin [x, x+ 0.05). Blue: over all benchmark
instances Ip&n; Red: instances for which all plan generation approaches provided at least
one positive and one negative example.

2 3 4 5 6 7 8 9 10 12

0

20

40

60

80

100

formula size

re
la

tiv
e

#
in

st
an

ce
s

in
%

realistic plan generation Genapp

same equivalent over/under none only pos/neg examples

Figure 47: Realistic plan generation: Relative number of instances where the same, an
equivalent formula, an over/under-approximation, or no related formula at all is found. Order
of plan-generation approaches for each formula size: TopK, TopKFil, AgDiv, RNDhFF.

make the complete picture visible, we also include those cases where learning was not
possible, as only positive/negative example plans were generated. For very small formulas
(size 2 and 3), all plan generation approaches solve almost all the benchmark instances
(Ip&n) where learning could be run. For larger target formulas, performance declines
significantly. Comparing across plan-generation methods RNDhFF performs best, followed
by AgDiv. This ranking of plan generation approaches is exactly the ranking according to
the number of instances in Ip&n. While TopKFil tends to produce more balanced plan

174 CHAPTER 6. LEARNING TEMPORAL GOALS

sets than RNDhFF (see Figure 46), it does not produce a better ratio of high-quality learned
formulas. For instance, RNDhFF solves significantly more instances for formulas of size 4,
suggesting that the diversity of plans has a greater impact on the quality of the learned
formula than balanced example sets.

2 3 4 5 6 7 8 9 10 12

0

20

40

60

80

100

formula size

re
la

tiv
e

#
in

st
an

ce
s

in
%

hypothetical plan generation Genideal

same equivalent over/under none

Figure 48: Hypothetical plan generation : Relative number of instances where the same, an
equivalent formula, an over/under-approximation, or no related formula at all is found. Order
of plan-generation approaches for each formula size: TopK, TopKFil, AgDiv, RNDhFF.

Turning now to Figure 48, we see that the bottleneck of our approach is the quality
of plan generation. Recall that in the idealized hypothetical setting Genideal, the plan
generation methods have access to the target formula and produce balanced example
plan sets. The quality of the learned-formulas increases dramatically compared to Genapp.
For formula sizes 1 all and 2 about two-thirds are consistently solved, equivalent formulas
are often learned even for large formulas, and formulas unrelated to the target are almost
never learned. The quality of the learned formulas can differ significantly between the
plan generation approaches. RNDhFF provides the best quality, followed by AgDiv. The
key question for future work is how to reduce this performance gap between Genapp and
Genideal. We return to this in the future work section.

Finally, consider Figure 49, which provides an evaluation of plan generation methods in
terms of the number n of example plans required to solve a benchmark instance. To make
a meaningful comparison, we need commonly solved benchmark instances, we need to
exclude TopK, and exclude uninteresting instances solved by any method with n = 2, i. e.
one positive and one negative example. Given these restrictions, Genapp does not provide
a sufficient basis for a meaningful comparison, so we consider Genideal instead. Within
this selection, shown on the left side of Figure 49, TopKFil performs the best overall. Its
median is never greater than n = 4, and its variance is small. AgDiv requires on average
twice as many examples and RNDhFF three times as many. Looking only at the common
instances solved between AgDiv and RNDhFF on the right side of Figure 49 reveals, that
in this direct comparison RNDhFF needs fewer sample plans than AgDiv. This shows, that

6.4. DISCUSSION 175

3 4 5 6 7 8
0

5

10

15

20

25

30

formula size

#
e
x
a
m
p
le

p
la
n
s

n needed to learn same/equivalent formula

TopKFil AgDiv RNDhFF

3 4 5 6 7 8

0

10

20

30

40

formula size

#
e
x
a
m
p
le

p
la
n
s

n needed to learn same/equivalent formula

AgDiv RNDhFF

Figure 49: Distribution of number of plans needed, in Genideal setup, to solve an instance.
(left) 345 instances commonly solved by TopKFil, RNDhFF, and AgDiv; (right) 1119 in-
stances commonly solved by RNDhFF, and AgDiv. Instances solved with 2 plans by all plan
generation approaches are not included.

overall RNDhFF solves the most instances and requires the least number of plans, with a
median that is never larger than 8.

6.4 DISCUSSION

In the following we summarize the contributions and results presented in Chapter 6, discuss
related word specific to this chapter, and give an outlook on future work.

SUMMARY

It is often difficult for users to formalize their preferences. Here, we assembled an archi-
tecture to learn user preferences from annotated sample plans. We compared different
approaches to generate sample plans and evaluated them in terms of diversity and their
ability to provide positive and negative examples for a range of commonly used temporal
templates. The evaluation revealed a large performance gap between practical plan gen-
eration (without access to the hidden target formula) and idealized plan generation (with
such access). Thus, the main question for future work is how to effectively generate sample
plans, that cover a wider variety of potential user preferences. The results are encouraging
and represent a first step towards a more in-depth investigation of this form of preference
elicitation in planning.

RELATED WORK

Temporal properties are used in planning for various purposes, e.g. as temporal preferences
[Gerevini et al., 2009], for the design of plans or as domain-dependent control knowledge to
speed up the computation of plans [Bacchus and Kabanza, 2000]. However, not only for
plan generation but also for explanations of plans or the model, temporal properties have
been used in various ways. One approach is to summarize plans or traces by identifying

176 CHAPTER 6. LEARNING TEMPORAL GOALS

common temporal behavior. Lemieux et al. [2015] provide, given a set of traces and an LTL
template, a set of instantiations of the template that are satisfied by all traces. For example
instances of the template �(a → ©♦b) (a always followed by b) can provide information
about the joint occurrence of events.

Kim et al. [2019] address contrastive questions using discriminative temporal properties.
The question is given as two sets of contrasting sample traces E+ and E−, representing
examples of a positive and a negative outcome, leading to the question “Why do the traces
E+ succeed while the traces in E− fail?” Temporal properties that the positive samples
have in common, while they are not satisfied by the negative samples, are used to provide
information about common behavior/strategies of successful traces.

Sohrabi et al. [2011] address the questions “How happens A?” from a partially defined
state. As an answer, a set of facts that need to hold initially and a plan π satisfying A is
given. To provide preferred explanations efficiently they exploit explanation preferences,
temporal formulas, that include control knowledge and user preferences.

While not yet using temporal properties, Nguyen et al. [2012] also address the setting
where a user has not yet formed their preferences. Instead of first identifying the user’s
preferences and then allowing the user to explore multiple sample plans in an iterative
process, they offer a set of sample plans at once, hoping to cover one of the user’s
preferred plans. If nothing is known about the user’s preferences, they use different domain-
independent diversity measures, to generate a diverse set of sample plans. If the users
preferences are partially known, i. e. the features of interest (e. g. makespan or cost) and a
distribution of weights of their relative importance, diverse plans are generated with respect
to those measures.

Cruse and Muise [2022] proposed a procedure that learns a set of temporal formulas
that group a set of traces into k clusters. This is done in an iterative procedure, splitting
one set at a time. k is automatically determined by maximizing the information gain, i. e.
how evenly the sets are split. This approach may be useful for non-binary properties. For
example, if there are three rovers that are all equipped to perform a certain task, while none
of the rovers is preferred by the user, they would like to analyze the conflicts between the
use of each rover. Then three temporal goals reflecting the use of each rover would be
suitable.

FUTURE WORK

There are many ways to improve each of the three steps of the preference elucidation
process.

Meta-Operators The size of an LTLf formula does not necessarily correlate with the
complexity of its meaning to a human. For example, the template �(a→ (a W �¬a)) has
the simple meaning of at most once. The approach by Camacho and McIlraith [2019] does
not require templates and finds the smallest formulas with perfect accuracy. However, there
may be larger formulas with a simpler meaning that achieve the same accuracy. To keep the
freedom to explore formulas that are not covered by any template, while also considering
larger formulas with simple meaning, one can use the templates as meta-operators. The

6.4. DISCUSSION 177

size associated with such a meta-operator can be used to rank them according to complexity
or user preference.

Partial Plans The number of plans the user has to process before finding the expected
preference should be small. In addition to the number of plans, the length of the plans
themselves also affects the user’s load. For example, if the user’s target formula includes
the order in which samples are collected, then any actions involving the rovers driving or
uploading data are not relevant. Thus, the ability to consider only partial plans could reduce
the load on the user. The decision of which actions are relevant could be based on user
input. An automatic partitioning of a plan could be based on the decomposition of partial
order plans [Young et al., 1994] or plan options as described by Lindsay and Petrick [2021a].

Guided Plan Generation In general, any information provided by the user to narrow down
and shape the set of example plan E can be useful. Assuming that the iterative planning
process and the identification of new relevant preferences interleave, the soft goals that the
user decided to enforce could be used to constrain the plan space for the sample plans.

LTLf templates can be useful not only in the learning step, but also for the plan generation.
Knowing what kind of temporal structures the user is interested in, it may be possible to
develop plan-diversity measures tailored to the user’s interest.

Noisy Data So far, we have assumed that the user annotates all plans correctly, thus a
perfect formula represents what the user had in mind. However, if the user makes a mistake,
then the learned formula will capture that mistake. One could follow the approach of Kim
et al. [2019], which is based on probabilistic Bayesian models. The approach is robust to
noise (wrong annotated examples) because it does not try to find a perfect formula, but
instead optimizes accuracy. If you want to remain independent of LTL templates and learn
arbitrary formulas then the approach of Gaglione et al. [2021] could be applied.

Workflow for Plan Annotation To facilitate the annotation process, it is essential to
implement a suitable interface. Different workflows can be considered. For example, one
plan at the time could be presented to the user. The user then has the option to annotate
it either as positive, negative or neutral. Neutral in this case means, that the plan
does not exhibit the user’s preference, but also does not contradict it. However, without
an alternative, it may be difficult for the user to decide whether they like the plan. So, an
alternative approach could be to show two plans at the time and let the user decide, which
plan is better. This ranking of plans then needs to be transformed into labels by deciding,
where to divide the plans into positive and negative examples.

For this approach, plans need to be compared. To facilitate this process, a visualization
of the differences between the plans would be useful. Krarup et al. [2021] provide a simple
coloring approach, to highlight the differences between an original plan and an alternative
plan in their contrastive explanation framework. Chakraborti et al. [2024] implemented a
plan selection tool. Based on disjunctive action landmarks, they visualize the choice points
in a set of plans.

178 CHAPTER 6. LEARNING TEMPORAL GOALS

More Explanations While learned formulas that are not identical to the target formula may
not be easily recognizable to the user, as mentioned above, they could also serve as plan
space explications. In this alternative application setting, the task is not to learn a hidden
target formula, but instead to automatically identify new formulas entailing, or entailed by,
a known (previously already specified) plan preference φt. This may reveal non-obvious
properties of the plan space. How these explanations can be incorporated into the iterative
planning process remains to be decided.

6.4. DISCUSSION 179

CHAPTER 7

CONCLUSION

In this work, we sought to address the challenge of developing contrastive explanations for
oversubscription planning (OSP). Our objective was to provide explanations that elucidate
the dependencies between user preferences and goals, thereby enabling the user to find
better trade-offs in an iterative planning process. To this end, we addressed the following
three questions:

How can goal conflicts be identified and used to provide contrastive explanations? We have
developed an explanation framework based on goal conflicts, answering questions of the
form “Why is p not satisfied in the sample plan?” by “Because to satisfy p you have to forgo
q which is currently satisfied by the plan.” This way, users can obtain information about
the conflicts between the goals and their preferences while exploring the plan space. A
large-scale online user study demonstrated that the proposed explanations tend to enable
users to identify better trade-offs. Two algorithmic approaches have been introduced to
compute the minimal unsolvable goal subsets (MUGS) underlying our explanations. We
exploited symbolic search for efficient satisfiability checks in a goal space search. In
a branch-and-bound approach, a heuristic used for pruning was introduced to estimate
whether the set of maximal solvable goal subsets can be further improved. This heuristic
was instantiated based on admissible heuristics for individual goals. The result was a
computational performance comparable to that required to compute an optimal plan for an
OSP task.

Once a conflict has been identified, a natural follow-up question is: Why does a goal conflict
exist, and how can it be resolved? Conflicts are often caused by constraints, such as
limited resources or time. Minimal relaxations of these constraints that resolve the conflict
provide a natural explanation, offering the user information on the underlying causes of the
conflict, as well as on how it can be resolved. To this end, we have expanded our framework
to include explanations that take up this idea. Two algorithmic approaches have been
introduced to compute the MUGS for a given set of relaxations by exploiting information
that can be propagated between relaxed tasks, such as reachable goals and the search
space. Furthermore, we explored a compilation approach based on relaxations expressed
as temporal soft goals. The empirical evaluation demonstrated that relaxation explanations

181

182 CHAPTER 7. CONCLUSION

can be computed for a reasonable number of relaxations.

Valuable explanations must cover aspects of the plans in which the user is interested.
However, it is often challenging for users to formalize their preferences. Therefore, we
addressed the question: How to find suitable properties to provide valuable explanations
? We compiled and evaluated a framework for learning user preferences from annotated
sample plans. The results are encouraging and represent a first step towards a more in-
depth investigation of this form of preference elicitation in planning. The evaluation revealed
that current approaches to generating diverse plans are not yet suitable for providing plans
that reflect a wide variety of possible user preferences. This prompts the question of plan
diversity measures that are tailored to partially known user preferences.

The importance of AI systems that can provide explanations for their decisions is growing.
To successfully apply explanations based on goal conflicts to real-world problems and to
support the interaction with laypeople, some critical points must be addressed. For larger
tasks, it is unlikely that all MUGS can be computed, necessitating the use of approximations.
Methods that prioritize the exploration of the most significant conflicts using learned knowl-
edge could be a viable option. While classical planning allows for the modeling of a wide
range of problems, an extension of goal conflict explanations to more expressive planning
formalisms that encode numerical variables, time, and probabilities would be of significant
value. This presents a challenge in terms of efficiently computing conflicts between goal-
s/properties, as well as defining them and utilizing them effectively as explanations. As the
fields of planning and learning become increasingly intertwined, it becomes imperative to
explain not only the plan space but also the method used to generate the plans.

Providing explanations to a human user is a two-step process [Miller, 2019]. First,
the causal information for the explanations must be identified, and then the relevant parts
must be communicated to the user appropriately. In this work, our focus was on the first
step. The second step is equally relevant for a successful explanation and may involve
areas such as data visualization, natural language processing, and knowledge engineering.
This underlines the multidisciplinary nature of XAI and the major challenges that must be
overcome in the future to ensure safe, trustworthy, satisfying and successful use of AI
systems.

183

APPENDIX A

APPENDIX CHAPTER 2

A.1 COMPUTATIONAL EVALUATION: DATA FOR INDIVIDUAL DO-
MAINS

As illustrated in Figures 50 he average number of MUGS per domain varies significantly
across different cost bounds. Some domains have more than 1000 MUGS. The specific
trends observed in domains with cost bounds of 0.25, 0.5, and 0.75 are dependent on the
domain. For 19 domains the maximum number of MUGS is achieved at at a cost bound
of 0.5, while for 17 domains it continuously decreases, and for 9 the number of MUGS
increases. As the cost bound increases, the size of the MUGS increases as well. Figure 51
illustrated this relationship. For the tightest cost bound, the MUGS are for most domains not
larger than 3. For larger cost bounds, the size increases up to 3 or 4, rarely exceeding 6.

Figure 52 compares the fraction of the goal lattice explored by systematic weakening
(SysW) and strengthening (SysS) for each domain. One can clearly see how the explored
fraction decreases or increases with increasing cost bound for SysW and SyS, respectively.
In 28 out of 45 domains, the explored goal lattice fraction is larger for SysS than for SysW
when the cost bound is 0.75. For the smaller cost bounds SysW explores more than SyS.

185

186 APPENDIX A. APPENDIX CHAPTER 2

100 101 102 103 104 105 106 107 108

Agricola

Airport

Barman

Blocksworld

Childsnack

Data-Network

Depots

Driverlog

Elevators

Floortile

FreeCell

GED

Grid

Gripper

Hiking

Logistics

Miconic

Movie

Mprime

Mystery

Nomystery

Openstacks

Org-syn-s

Parcprinter

Parking

Pathways

Pegsol

Pipes-NoTank

Pipes-Tank

PSR

Rovers

Satellite

Scanalyzer

Snake

Sokoban

Spider

Storage

Termes

Tetris

Tidybot

TPP

Transport

Trucks

Visitall

Woodworking

Zenotravel

number of MUGS

x = 0.25

x = 0.5

x = 0.75

Figure 50: Average number of MUGS per IPC domain over all instances with data for all
three cost bounds. Cost bounds are encoded by color, from top to bottom 0.25, 0.5 and
0.75. The center dot is the geometric mean and the error bars represent the variance.

A.1. COMPUTATIONAL EVALUATION: DATA FOR INDIVIDUAL DOMAINS 187

1 2 3 4 5 6 7 8 9 10

Agricola

Airport

Barman

Blocksworld

Childsnack

Data-Network

Depots

Driverlog

Elevators

Floortile

FreeCell

GED

Grid

Gripper

Hiking

Logistics

Miconic

Movie

Mprime

Mystery

Nomystery

Openstacks

Org-syn-s

Parcprinter

Parking

Pathways

Pegsol

Pipes-NoTank

Pipes-Tank

PSR

Rovers

Satellite

Scanalyzer

Snake

Sokoban

Spider

Storage

Termes

Tetris

Tidybot

TPP

Transport

Trucks

Visitall

Woodworking

Zenotravel

average size of MUGS

x = 0.25

x = 0.5

x = 0.75

Figure 51: Average size of MUGS per IPC domain over all instances with data for all three
cost bounds. Cost bounds are encoded by color, from top to bottom 0.25, 0.5 and 0.75. The
center dot is the geometric mean and the error bars represent the variance. Only instances
with less than 100 MUGSare considered.

188 APPENDIX A. APPENDIX CHAPTER 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Agricola(18)

Airport(21)

Barman(12)

Blocksworld(22)

Childsnack(2)

Data-Network(13)

Depots(7)

Driverlog(12)

Elevators(24)

Floortile(3)

FreeCell(20)

GED(15)

Grid(2)

Gripper(6)

Hiking(15)

Logistics(5)

Miconic(30)

Movie(30)

Mprime(28)

Mystery(17)

Nomystery(12)

Openstacks(17)

Org-syn-s(10)

Parcprinter(7)

Parking(0)

Pathways(5)

Pegsol(1)

Pipes-NoTank(22)

Pipes-Tank(18)

PSR(48)

Rovers(14)

Satellite(7)

Scanalyzer(4)

Snake(5)

Sokoban(23)

Spider(0)

Storage(15)

Termes(15)

Tetris(7)

Tidybot(25)

TPP(8)

Transport(23)

Trucks(9)

Visitall(6)

Woodworking(5)

Zenotravel(10)

explored fraction of goal lattice

x = 0.25 x = 0.5 x = 0.75

 SysS # SysW

Figure 52: Comparison of average fraction of solved nodes in goal lattice for SysS (strong
color) and SysW (light color) per domain. Only instances commonly solved by SysS and
SysW for all cost bounds are used. The error bars represent the variance.

A.2. TEMPORAL GOALS: PROOFS AND INPUT DEFINITION 189

A.2 TEMPORAL GOALS: PROOFS AND INPUT DEFINITION

A.2.1 PROOFS

PROPOSITION 26: CORRECTNESS LTLF COMPILATION

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task, GLTLf a set of LTLf temporal
goals and τ ′ = (V ′, A′, c′, I ′, Ghard′, Gsoft′, b) is the LTLf-compilation based on Defi-
nition 27.
Let the plan mapping β : A′∗ 7→ A∗ be defined as β(π = a0 · · · an) = β(a0) · · ·β(an)
with

β(a) =

{
ε if a ∈ AN

a′ with pre′a = prea[A] and eff ′
a = eff a[A] otherwise

where P [V] is the projection of partial assignment P to the variables in V .
Task τ ′ is a temporal goal compilation according to Definition 25.

Proof:
Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task and pt a temporal goal defined in LTLf.
Let N = (S,Σ, T, s0, Sa) be a complete NFA accepting traces satisfying pt and task
τ ′ = (V ′, A′ = Aτ ∪AN , c, I

′, Ghard′, Gsoft′, b′) the LTLf compilation where the soft goal
fact gpt indicating the satisfaction of pt is given by va.
Because all removed actions have cost 0, both plans have the same cost, cost(π) =
cost(β(π)). Because N is complete there exists a relation β−1 : A∗ 7→ P(A′∗):

β−1(π = a0 · · · an) = {aN0 aτ0 · · · aNn aτnaNn+1 | aN ∈ A[s] ⊆ AN}

where aτi = a with preaτi = prea ∪ {sync = τ} and eff aτi
= eff a ∪ {sync = N0}.

Because all added actions have cost 0, the plan cost stays the same, for all π′ ∈ β−1(π) :

cost(π) = cost(π′).

(1) ∀π ∈ Π(τ) : π � pt → ∃π′ ∈ Π(τpt) : β(π) = π′ ∧ gpt ∈ IptJπ′K:
Let plan π ∈ Π(τ) and π � pt. Thus, there exists an execution of N ending in
an accepting state. Let E be the set of all accepting executions of N for pt. For
every execution e ∈ E there exists a plan π′ in β−1(π) with cost(π′) < b whose
automaton actions follow e. This holds, because the automaton actions have the
same preconditions as the automation transitions, expect for the sync variable, which
is satisfied based on the construction in β−1 and all added actions have cost 0.
Let ΠE be the plans in β−1(π) whose automaton actions follow an execution in E.
From (2) and β(π′) = π follows ΠE ⊆ Π(τpt). For all plans π′ ∈ ΠE : gpt ∈ IptJπK,
because of the definition of ΠE .

(2) Π(τ) = {β(π′) | π′ ∈ Π(τpt)}:

190 APPENDIX A. APPENDIX CHAPTER 2

⊆: Let plan π ∈ Π(τ). β−1(π) ⊆ Π(τpt) because, of the definition of β−1, the fact
that the added actions from AN only effect V ′ \ V , sync is satisfied due to the
alternation of task and automata actions in β−1 and the cost does not change.
Thus, all plan in β−1(π) are applicable in I ′ and satisfy the hard goals. Thus,
for all π′ ∈ β−1(π) we have π′ ∈ Π(τpt).

⊇: Let plan π ∈ Π(τpt). β(π) ∈ Π(τ) because all actions removed from π only
effect V ′ \ V , sync which is completely removed, and the action cost stays the
same. Thus, β(π) is applicable in I and satisfies the hard goals.

(3) ∀π ∈ Π(τpt) : G
soft ∩ IptJπK = Gsoft ∩ IJβ(π)K:

Follows the same reasoning as for (2).

�

PROPOSITION 27: CORRECTNESS ACTION-SET COMPILATION

Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task, GLTLf a set of LTLf temporal
goals and τ ′ = (V ′, A′, c′, I ′, Ghard′, Gsoft′, b) is the Action-Set compilation based on
Definition 29.
The plan mapping β : A′∗ 7→ A∗ is given by β(π = a0 · · · an) = β(a0) · · ·β(an) with

β(a) =

{
ε if a ∈ Agφ

a′ with pre′a = prea[A] and eff ′
a = eff a[A] otherwise

where P [V] is the projection of partial assignment P to the variables in V .
Task τ ′ is a temporal goal compilation according to Definition 25.

Proof:
Let τ = (V,A, c, I,Ghard, Gsoft, b) be an OSP task and φ a temporal goal defined as
Action-Set soft goal. Let task τ ′ = (V ′, A′ = Aτ ∪ {acp} ∪Agφ , c, I

′, Ghard′, Gsoft′, b′) be
the Action-Set compilation where the soft goal fact gpt indicating the satisfaction of φ is
given by isTrueφ.
The revers mapping β−1 : A∗ 7→ P(A′∗) is given by:

β−1(π = a0 · · · an) = {aτ0 · · · aτnacpae | ae ∈ Agφ ∩A[IJa
τ
0 · · · aτnacpK]}

where aτi = a with preaτi = prea ∪ {phase = plan}.

(1) ∀π ∈ Π(τ) : π � pt → ∃π′ ∈ Π(τpt) : β(π) = π′ ∧ gpt ∈ IptJπ′K:
Let plan π ∈ Π(τ) and π � pt. Thus, there exists a clause in pt that is satisfied, which
implies that there is an applicable evaluation action in Agφ , that sets isTrueφ = >.
Let ΠS be the plans in β−1(π) with the corresponding evaluation actions. From (2),
β(π′) = π and cost(π′) = cost(π) follows ΠS ⊆ Π(τpt). For all plans π′ ∈ ΠS :

gpt ∈ IptJπK, because of the definition of ΠS .

A.2. TEMPORAL GOALS: PROOFS AND INPUT DEFINITION 191

(2) Π(τ) = {β(π′) | π′ ∈ Π(τpt)}:

⊆: Let plan π ∈ Π(τ). β−1(π) ⊆ Π(τpt) because, of the definition of β−1, the fact
that the added actions from Agφ only effect V ′ \V , that phase is satisfied in the
initial state and only changes by the action acp and that the plan cost stays the
same. Thus, all plan in β−1(π) are applicable in I ′ and satisfy the hard goals.
Thus, for all π′ ∈ β−1(π), with β(π′) = π we have π′ ∈ Π(τpt).

⊇: Let plan π ∈ Π(τpt). β(π) ∈ Π(τ) because all actions removed from π only
effect V ′ \ V , phase is completely removed, and the plan cost stays the same.
Thus, β(π) is applicable in I and satisfies the hard goals.

(3) ∀π ∈ Π(τpt) : G
soft ∩ IptJπK = Gsoft ∩ IJβ(π)K:

Follows the same reasoning as for (2).

�

A.2.2 INPUT DEFINITION

Temporal goals are specified in JSON format and passed to our implementation based on
Fast Downward1 as an additional input. The supported input format is specified in Figure 53.

1 {
2 " plan_properties ": [temporal_goal]
3 " hard_goals ": [goal_name]
4 " soft_goals ": [goal_name]
5 }
6
7
8 temporal_goal :=
9 {

10 "name": <unique_name >,
11 "type": AS|LTL ,
12 " formula ": <formula >,
13 " actionSets ": [action_set]
14 }
15
16 action_set :=
17 {
18 "name": <unique_name >,
19 " actions ": [action]
20 }
21
22 action :=
23 {
24 "name": <name >,
25 " params ": [object |type]
26 }

Figure 53: Supported input format for temporal goals.

The type of a temporal goal, AS or LTL, determines the compilation used following
Definition 29 for temporal goals defined by Action-Sets and Definition 27 for LTLf. In

1https://github.com/aibasel/downward

https://github.com/aibasel/downward

192 APPENDIX A. APPENDIX CHAPTER 2

both cases the formulas are defined in prefix notation and can contain predicates (e. g..
at(t1,l1)) and names of action sets. Action-Set formulas must be in disjunctive normal
form. The action definitions support objects and types as parameters. If only the type is
specified, all grounded actions that match the template are included in the action set.

Example definitions are given in Figure 54. The Action-Set goal in the top specifies,
that no rover moves to the location l2. The action set move_to_l2 contains all move
actions of any rover from any location with any amount of fuel to location l2. The LTLf goal
in the bottom specifies, that soil sample soil_sample0 is uploaded before X-ray image
x_ray_image1.

1 {
2 "name": " never_move_to_locationl2 ",
3 "type": "AS",
4 " formula ": "! move_to_l2 ",
5 " actionSets ":[
6 {
7 "name": " move_to_l2 ",
8 " actions ":[
9 {"name": "move", " params ": [" rover ", " location ", "l2", " level

", " level ", " level ", " level ", " level ", " level "]}
10]
11 }
12]
13 }
14
15 {
16 "name": " do_uploaded_soil_sample0_before_uploaded_x_ray_image1 ",
17 "type": "LTL",
18 " formula ": "U ! uploaded (x_ray_image1) uploaded (soil_sample0)"
19 }

Figure 54: Example for Action Set (top) and LTLf (bottom) temporal goal definition

Templates for Temporal Goals Table 16 lists all templates used in the evaluation of the
Action-Set and LTLf encoding of temporal soft goals. The templates that can be encoded
as Action-Set goals are marked with (AS). Section 4.3.2 on generating the benchmark set
explains how the templates are used.

These or similar templates can be used in our online iterative planning tool IPEXCO, to
simplify the process of temporal goal definition as shown in Figure 23 and described in the
next section.

domain temporal goal template
Blocksworld Stack block bx on block by at some time. (AS)

Do not use hand h for block b. (AS)
Put block b on the table at some point. (AS)
Never put block b on the table. (AS)
Hold block b1 before block b2.
Use hand hx before hand hy.
Block bx and by are both on the table at some point.

Continued on next page

A.2. TEMPORAL GOALS: PROOFS AND INPUT DEFINITION 193

Block bx and by are never held together.
Block b is hold at most once.

Nomystery Use the road between location l0 and l1. (AS)
Do not use the road between location l0 and l1. (AS)
Use the same truck for package px and package py. (AS)
Deliver package p1 before package p1.
Package px and package py are never together in the same truck.
Package p is loaded at most once.

Parent’s Afternoon Drive to location l at some point.
Never drive to location l. (AS)
Do activity a not at time point t. (AS)
Do activity a at time point t. (AS)
Person p1 and person p2 are never together in the car.
Item ix and item iy are never together in the car.
Do activity a1 before activity a2.
Visit location l before location l2.
Visit location l at most once.
Person p is in the car at most once.

Rovers R Use the road between waypoint wx and wy. (AS)
Do not use the road between waypoint wx and wy. (AS)
Use rover r to take rock sample s. (AS)
Use rover r to take soil sample s. (AS)
Use rover r to take image i. (AS)
Use camera c to take image i. (AS)
Upload data dx before data dy.
Move rover r only once.

Rovers T Visit waypoint w with rover r. (AS)
Never visit waypoint w with rover r. (AS)
Idle at some point. (AS)
Never idle. (AS)
Collect sample sx before sample sy.
Visit waypoint wx with rover r before waypoint wy.
Sample sx and sample sy never together in memory of rover r.
Visit waypoint w with rover r at most once.
Do not visit waypoint w with rover r while sample s in memory.

Satellite Use satellite s to take image i. (AS)
Never turn satellite s into direction d. (AS)
Turn satellite s into direction d at some point. (AS)
Switch on instrument i at most once.
Point into direction d at most once.
Calibrate instrument ix before instrument iy.

TPP Use the road between location l0 and l1. (AS)
Do not use the road between location l0 and l1. (AS)

Continued on next page

194 APPENDIX A. APPENDIX CHAPTER 2

Use the same truck for goods gx and goods gy. (AS)
Load goods gx before goods gy.
Goods gx and goods gy never together in the same truck.
Buy goods g at most once.

Table 16: Templates for temporal goals. Temporal goals that can be encoded as Action-Set goal
are marked with (AS).

A.3 IPEXCO: INPUT DEFINITION

In IPEXCO, temporal goals can be defined by directly specifying the LTLf or Action-Set
formula and the necessary action sets, as outlined in Section A.2.2. However, for common
temporal goals based on the same pattern, it is more convenient and efficient to define a
template. This approach allows the user to simply select the desired instantiation of the
template, specifying only the specific objects. An example of such a template is provided in
Figure 55.

1 {
2 " class ": "Road Usage ",
3 "type": "AS",
4 " variables ": [
5 {
6 "name": "$T",
7 "type": " truck "
8 },
9 {

10 "name": "$Li",
11 "type": " location "
12 },
13 {
14 "name": "$Lj",
15 "type": " location "
16 }
17],
18 " nameTemplate ": " useLiLjwith$T ",
19 " formulaTemplate ": " useConnection ",
20 " actionSetsTemplates ": [
21 {
22 "name": " useConnection ",
23 " actionTemplates ": [
24 " drive $T $Li $Lj fuellevel fuellevel fuellevel ",
25 " drive $T $Lj $Li fuellevel fuellevel fuellevel "
26]
27 }
28],
29 " sentenceTemplate ": "The road between $Li and $Lj is used with Truck $T",
30 " initVariableConstraints ": [" connected ($Li ,$Lj)"]
31 }

Figure 55: Example for template definition.

This template is for an Action-Set goal with that states: Truck $T has to use the con-
nection between locations $Li and $Lj. variables defines the input parameters of the

A.4. ADDITIONAL MATERIAL USER STUDY 195

template, including their type. formulaTemplate and actionSetsTemplates follow the
same pattern as described in Section A.2.2. The sentenceTemplate is used in the inter-
face to select the objects and during the iterative planning process to display the goal. The
corresponding interface is shown in Figure 23.

To ensure that only meaningful instantiations are allowed, it is essential to consider more
than just the type of input parameter. Additional restrictions may be necessary for certain
templates. In our example, using a connection only makes sense if such a connection exists.
Therefore, it is possible to define additional constraints in initVariableConstraints that
must be satisfied by the input parameters in the initial state, e. g. $Li and $Lj must be
connected.

The property class is used to group templates with similar meanings in the interface to
define new goals.

A.4 ADDITIONAL MATERIAL USER STUDY

In the following we list all goals and the corresponding MUGS used in the three evaluation
instances of the user study. In each domain, there was one hard goal, which is marked with
GH. Since these goals must be satisfied by all plans, they are not part of the MUGS.

TRANSPORT

Goals:

1. Package 0 is delivered to Ms. Lopez.
d(p0, l)

2. Package 1 is delivered to Mr. Smith.
d(p1, s)

3. Package 2 is delivered to Ms. Jones.
d(p2, j)

4. Package 3 is delivered to Mr. Taylor.
d(p3, t)

5. Package 4 is delivered to Post Office.
(HG)

6. Truck 2 visits the supermarket.
v(sm, t2)

7. Package 2 is delivered before package
4.before(p2, p4)

8. The road between the bank and the
supermarket and is used by truck 1.
use(b, sm, t1)

9. The road between Ms. Lopez’ house
and teh packing station is used with
truck 1. use(l, ps, t1)

10. The road between the post office and
the supermarket is not used by truck 1.
not-use(j, s, t2)

11. The road between the cafe and Ms.
Jones’s house and is used by truck 2.
use(c, j, t2)

12. The road between Ms. Jones’s house
and Ms. Smith’s house is not used by
truck 2. not-use(po, sm, t1)

MUGS:

1. {d(p1, s), use(l, ps, t1), before(p2, p4)}
2. {d(p1, s), d(p2, j), d(p3, t)}
3. {d(p0, l), d(p3, t), before(p2, p4)}
4. {d(p0, l), d(p2, j), d(p3, t)}
5. {d(p2, j), d(p3, t), use(b, sm, t1)}

196 APPENDIX A. APPENDIX CHAPTER 2

6. {d(p0, l), d(p1, s), before(p2, p4)}
7. {d(p1, s), d(p3, t), before(p2, p4)}
8. {d(p0, l), d(p1, s), v(sm, t2)}
9. {d(p0, l), d(p1, s), use(l, ps, t1)}

10. {d(p0, l), d(p1, s), use(c, j, t2)}
11. {d(p0, l), d(p1, s), d(p3, t)}
12. {d(p1, s), d(p3, t), use(l, ps, t1)}
13. {d(p3, t), use(b, sm, t1), before(p2, p4)}
14. {d(p0, l), d(p1, s), d(p2, j)}
15. {d(p1, s), d(p2, j), not-use(po, sm, t1), use(b, sm, t1)}
16. {d(p0, l), use(l, ps, t1), v(sm, t2), before(p2, p4)}
17. {d(p1, s), use(b, sm, t1), v(sm, t2), before(p2, p4)}
18. {d(p2, j), d(p3, t), use(c, j, t2), not-use(j, s, t2)}
19. {d(p2, j), use(l, ps, t1), use(b, sm, t1), v(sm, t2)}
20. {d(p1, s), not-use(po, sm, t1), use(b, sm, t1), before(p2, p4)}
21. {d(p0, l), d(p1, s), not-use(po, sm, t1), use(b, sm, t1)}
22. {d(p1, s), d(p2, j), use(l, ps, t1), use(b, sm, t1)}
23. {d(p1, s), d(p2, j), use(b, sm, t1), v(sm, t2)}
24. {use(l, ps, t1), use(b, sm, t1), v(sm, t2), before(p2, p4)}
25. {d(p1, s), not-use(po, sm, t1), use(l, ps, t1), use(b, sm, t1)}
26. {d(p2, j), d(p3, t), use(c, j, t2), v(sm, t2)}
27. {d(p3, t), use(c, j, t2), not-use(j, s, t2), before(p2, p4)}
28. {d(p3, t), use(c, j, t2), v(sm, t2), before(p2, p4)}
29. {not-use(po, sm, t1), not-use(j, s, t2), use(l, ps, t1), use(b, sm, t1), before(p2, p4)}
30. {d(p2, j), not-use(po, sm, t1), not-use(j, s, t2), use(l, ps, t1), use(b, sm, t1)}
31. {d(p1, s), use(c, j, t2), use(l, ps, t1), use(b, sm, t1), v(sm, t2)}
32. {d(p1, s), d(p2, j), use(c, j, t2), use(l, ps, t1), v(sm, t2)}
33. {d(p0, l), not-use(po, sm, t1), use(b, sm, t1), v(sm, t2), before(p2, p4)}
34. {d(p0, l), d(p2, j), not-use(po, sm, t1), use(l, ps, t1), use(b, sm, t1)}
35. {d(p0, l), not-use(po, sm, t1), use(l, ps, t1), use(b, sm, t1), before(p2, p4)}
36. {d(p0, l), use(c, j, t2), not-use(j, s, t2), use(b, sm, t1), v(sm, t2), before(p2, p4)}
37. {d(p0, l), d(p3, t), use(c, j, t2), not-use(po, sm, t1), use(l, ps, t1), use(b, sm, t1)}

PARENT’S AFTERNOON

Goals:

1. Shopping is done. do(so)

2. Grandma’s shopping is done. do(spg)

3. Parent’s sports is done. do(sp)

4. Soccer training is done. do(st)

5. Music Lesson is done. do(ml)

6. Bring friend to sport center. do(fs)

7. Kid1 is back home. (HG)

8. Kid2 is back home. bring(k2, h)

9. Groceries are at home. bring(g, h)

10. Grandma’s groceries are at grandma’s
house. bring(g, gm)

11. Grandma is back home.
bring(gm, gm)

12. Shopping is done before sports.
before(so, sp)

13. Grandma and friend are not together
in the car. not-t(gm, f)

MUGS:

1. {do(ml), before(so, sp)}
2. {bring(g, gm), before(so, sp)}

A.4. ADDITIONAL MATERIAL USER STUDY 197

3. {do(st), before(so, sp)}
4. {do(sp), bring(g, gm), do(st)}
5. {do(fs), do(st), do(spg)}
6. {do(sp), do(st), do(spg)}
7. {do(fs), do(ml), do(st)}
8. {do(sp), do(ml), do(st)}
9. {do(fs), bring(g, gm), do(st)}

10. {do(fs), bring(g, h), do(st)}
11. {do(fs), do(spg), before(so, sp)}
12. {bring(g, gm), do(ml), do(st)}
13. {do(sp), bring(g, h), do(st)}
14. {bring(gm, gm), do(spg), before(so, sp)}
15. {bring(g, h), do(ml), do(st)}
16. {do(ml), do(st), do(spg)}
17. {do(fs), bring(g, h), bring(g, gm), do(ml)}
18. {bring(k2, h), do(sp), bring(g, gm), do(ml)}
19. {do(fs), bring(k2, h), bring(g, gm), do(ml)}
20. {do(fs), do(sp), bring(g, h), bring(g, gm)}
21. {bring(k2, h), do(sp), bring(g, h), do(ml)}
22. {do(fs), do(sp), bring(g, gm), do(ml)}
23. {do(sp), bring(g, h), bring(g, gm), do(ml)}
24. {bring(k2, h), do(sp), do(ml), do(so), do(spg)}
25. {do(fs), do(sp), bring(g, gm), do(so), not-t(gm, f)}
26. {do(fs), bring(k2, h), do(ml), do(so), do(spg)}
27. {do(fs), bring(k2, h), bring(g, h), do(ml), do(spg)}
28. {bring(gm, gm), bring(k2, h), do(sp), do(ml), do(spg)}
29. {do(fs), bring(k2, h), do(sp), do(ml), do(spg)}
30. {bring(gm, gm), do(fs), bring(k2, h), do(ml), do(spg)}
31. {bring(gm, gm), do(fs), bring(g, h), do(ml), do(spg)}
32. {bring(gm, gm), do(fs), do(sp), bring(g, h), do(spg)}
33. {bring(gm, gm), do(fs), do(sp), do(ml), do(spg)}
34. {bring(gm, gm), do(sp), bring(g, h), do(ml), do(spg)}
35. {bring(gm, gm), do(fs), do(sp), do(so), do(spg), not-t(gm, f)}

ROVERS

Goals:

1. Uploaded rock image. up(r, i)

2. Uploaded rock sample. up(r, s)

3. Uploaded crater 1 image. (HG)

4. Uploaded crater 1 x-ray image.
up(c1, x)

5. Uploaded crater 1 sample. up(c1, s)

6. Uploaded crater 2 image. up(c2, i)

7. Uploaded crater 2 x-ray image.
up(c2, x)

8. Uploaded crater 2 sample. up(c2, s)

9. Uploaded plain image up(p, i)

10. Uploaded plain sample. up(p, s)

11. Crater 2 image is uploaded before rock
sample. before(c2, i, r, s)

12. Plain sample is uploaded before rock
image. before(p, s, r, i)

13. Crater 2 sample is uploaded before
plain image. before(c2, s, p, i)

14. Crater 2 x-ray image is up-
loaded before crater 1 sample.
before(c2, x, c1, s)

198 APPENDIX A. APPENDIX CHAPTER 2

MUGS:

1. {up(c1, s), before(c2, i, r, s)}
2. {up(c1, s), before(c2, s, p, i)}
3. {up(r, i), before(c2, s, p, i)}
4. {up(c2, i), before(p, s, r, i)}
5. {up(p, s), before(c2, i, r, s)}
6. {before(p, s, r, i), before(c2, x, c1, s)}
7. {up(p, i), before(c2, x, c1, s)}
8. {up(c2, s), before(p, s, r, i)}
9. {up(c2, x), before(p, s, r, i)}

10. {before(p, s, r, i), before(c2, s, p, i)}
11. {before(c2, s, p, i), before(c2, x, c1, s)}
12. {up(c2, x), before(c2, s, p, i)}
13. {up(r, s), before(c2, s, p, i)}
14. {up(c1, x), before(c2, s, p, i)}
15. {before(c2, i, r, s), before(p, s, r, i)}
16. {up(p, i), before(c2, i, r, s)}
17. {up(c1, s), before(p, s, r, i)}
18. {up(r, i), before(c2, x, c1, s)}
19. {up(p, s), before(c2, s, p, i)}
20. {before(c2, i, r, s), before(c2, s, p, i)}
21. {before(c2, i, r, s), before(c2, x, c1, s)}
22. {up(p, s), before(c2, x, c1, s)}
23. {up(c2, s), up(c2, i), before(c2, x, c1, s)}
24. {up(p, i), up(c2, x), up(c2, s)}
25. {up(p, s), up(c2, s), up(c2, i)}
26. {up(p, i), up(c2, x), up(c1, x)}
27. {up(r, s), up(p, i), up(c2, x)}
28. {up(p, s), up(c2, x), up(c2, i)}
29. {up(c2, s), up(c1, x), before(c2, i, r, s)}
30. {up(p, s), up(c2, s), up(c1, x)}
31. {up(r, s), up(p, s), up(c2, s)}
32. {up(p, i), up(c2, s), up(c1, x)}
33. {up(r, s), up(p, i), up(c2, s)}
34. {up(p, s), up(p, i), up(c2, s)}
35. {up(r, s), up(c2, i), up(c1, s)}
36. {up(r, i), up(p, s), up(c1, s)}
37. {up(p, i), up(c2, x), up(c1, s)}
38. {up(r, i), up(p, i), up(c2, x)}
39. {up(r, i), up(c2, i), up(c1, s)}
40. {up(r, s), up(c2, s), up(c1, s)}
41. {up(p, s), up(c2, i), up(c1, x)}
42. {up(r, s), up(p, s), up(c2, i)}
43. {up(p, s), up(c2, i), up(c1, s)}
44. {up(r, i), up(p, s), up(c2, i)}
45. {up(r, s), up(r, i), up(p, i)}
46. {up(r, s), up(p, i), up(c1, s)}
47. {up(r, s), up(p, s), up(c1, s)}
48. {up(r, i), up(c1, x), before(c2, i, r, s)}
49. {up(c2, x), up(c2, s), before(c2, i, r, s)}
50. {up(p, s), up(c2, x), up(c2, s)}
51. {up(c2, s), up(c1, x), before(c2, x, c1, s)}

52. {up(r, s), up(c2, s), before(c2, x, c1, s)}
53. {up(p, i), up(c2, i), up(c1, x)}
54. {up(r, s), up(p, i), up(c2, i)}
55. {up(p, i), up(c1, x), before(p, s, r, i)}
56. {up(r, s), up(p, i), before(p, s, r, i)}
57. {up(r, i), up(p, i), up(c1, s)}
58. {up(c2, x), up(c1, x), before(c2, i, r, s)}
59. {up(r, s), up(p, s), up(c2, x)}
60. {up(p, s), up(c2, x), up(c1, x)}
61. {up(c2, i), up(c1, x), before(c2, x, c1, s)}
62. {up(r, s), up(c2, i), before(c2, x, c1, s)}
63. {up(r, s), up(c1, x), before(p, s, r, i)}
64. {up(r, s), up(c1, x), before(c2, x, c1, s)}
65. {up(r, i), up(c2, x), up(c1, s)}
66. {up(p, i), up(c2, s), up(c1, s)}
67. {up(r, i), up(p, i), up(c2, s)}
68. {up(p, i), up(c2, i), up(c1, s)}
69. {up(r, i), up(p, i), up(c2, i)}
70. {up(p, s), up(c2, s), up(c1, s)}
71. {up(r, i), up(p, s), up(c2, s)}
72. {up(r, i), up(c2, s), before(c2, i, r, s)}
73. {up(r, i), up(c2, s), up(c1, s)}
74. {up(p, s), up(p, i), up(c2, x)}
75. {up(p, s), up(p, i), up(c2, i)}
76. {up(r, i), up(c2, x), before(c2, i, r, s)}
77. {up(r, i), up(p, s), up(c2, x)}
78. {up(p, s), up(c2, x), up(c1, s)}
79. {up(c2, x), up(c2, s), up(c2, i), up(c1, s)}
80. {up(r, i), up(c2, x), up(c2, s), up(c2, i)}
81. {up(p, s), up(p, i), up(c1, x), up(c1, s)}
82. {up(r, i), up(p, s), up(p, i), up(c1, x)}
83. {up(r, s), up(c2, s), up(c2, i), up(c1, x)}
84. {up(r, s), up(c2, x), up(c2, i), up(c1, x)}
85. {up(r, s), up(c2, x), up(c2, s), up(c1, x)}
86. {up(c2, x), up(c2, s), up(c2, i), up(c1, x)}
87. {up(r, s), up(c2, x), up(c2, s), up(c2, i)}
88. {up(r, s), up(p, s), up(p, i), up(c1, x)}
89. {up(c2, s), up(c2, i), up(c1, x), up(c1, s)}
90. {up(r, i), up(c2, s), up(c2, i), up(c1, x)}
91. {up(r, s), up(r, i), up(c2, s), up(c2, i)}
92. {up(c2, x), up(c2, i), up(c1, x), up(c1, s)}
93. {up(r, s), up(r, i), up(c2, x), up(c2, i)}
94. {up(c2, x), up(c2, s), up(c1, x), up(c1, s)}
95. {up(r, i), up(c2, x), up(c2, s), up(c1, x)}
96. {up(r, s), up(r, i), up(c2, x), up(c2, s)}
97. {up(r, s), up(r, i), up(c1, x), up(c1, s)}
98. {up(r, s), up(r, i), up(p, s), up(c1, x)}
99. {up(r, s), up(r, i), up(c2, i), up(c1, x)}

100. {up(r, s), up(c2, x), up(c1, x), up(c1, s)}
101. {up(r, s), up(r, i), up(c2, x), up(c1, x)}
102. {up(r, s), up(r, i), up(c2, s), up(c1, x)}

APPENDIX B

APPENDIX CHAPTER 3

B.1 TASK RELAXATION INPUT DEFINITION

The Syntax to define relaxed tasks is defined below, along with an example of the definition
of relaxed tasks and relaxed soft goals that are used as input for our extension of Fast
Downward1 Helmert [2006].

Relaxed Tasks The resource and time window constraint relaxations are provided to
the planner as an additional input. For GSBNBp, the updates to the initial states for each
relaxation must be specified as seen in the top of Figure 56. For ISSE, we must check
each path for applicability in the current relaxation. For the relaxations considered here, it is
sufficient to check only the last action. In a resource-relaxed task, an action is applicable
if it does not consume more than is available in the relaxation. For example, if the most
relaxed task has 16 units, then an action is only applicable in the relaxation with 4 units
if it does not reduce the resource below 12. In TPP, there are two actions that consume
resources drive and buy. The parameter constraints for each action and each relaxed
task are defined as depicted in the bottom of Figure 56. All actions resulting in a remaining
resource level (parameter 5) between 16 and 12 are applicable. The parameter definition of
a constraint action allows wildcards *, to for example consider any drive action of truck
truck0 between any two locations and any initial fuel level. If an action is not constrained
it is assumed to be applicable in any relaxation. In the case of time window relaxations,
an action is applicable if the time lies within the time window of the relaxation. This is
defined analogously to the constraint on the resource level, by constraining the parameters
of actions within the time window.

Relaxation Soft Goals The relaxation soft goals described in Section 5.4.1 are defined
as depicted in Figure 57. Due to the direct accessibility if the execution time point via the
parameters of the actions in the grounded task, the formula for the time relaxation soft goals
can be simplified to �¬vnot-app, where vnot-app indicates whether an action outside the time
window has been applied.

1https://github.com/aibasel/downward

199

https://github.com/aibasel/downward

200 APPENDIX B. APPENDIX CHAPTER 3

1 {
2 "id": "4",
3 "name": " money_truck0_level4 ",
4 " inits ": [
5 " money (truck0 , level4)"
6],
7 " upper_cover ": [5],
8 " lower_cover ": [3]
9 }

10
11
12 {
13 "id": "4",
14 "name": " money_truck0_level4 ",
15 " applicable ": [
16 {
17 "name": " drive ",
18 " params ": [" truck0 ", "*", "*", "*", "*"],
19 " param_id ": 5,
20 " lower_bound ": 12,
21 " upper_bound ": 16
22 },
23 {
24 "name": "buy",
25 " params ": [" truck0 ", "*", "*", "*", "*"],
26 " param_id ": 5,
27 " lower_bound ": 12,
28 " upper_bound ": 16
29 }],
30 " upper_cover ": [5],
31 " lower_cover ": [3]
32 }

Figure 56: Example for relaxed task definition for TPP, top resource relaxation and bottom
time window relaxation. inits reflects the updates to the initial state and applicable
specifies in which time/resource bound an action is applicable.

B.1. TASK RELAXATION INPUT DEFINITION 201

1 {
2 "name": " relax_fuel_t0_level2 ",
3 "type": "LTL",
4 " formula ": "G || fuel(t0 , level15) || fuel(t0 , level14) fuel(t0 , level16)",
5 " actionSets ":[] ,
6 " weaker ": [" relax_fuel_t0_level3 "],
7 " stronger ": [" relax_fuel_t0_level1 "]
8 }
9

10 {
11 "name": " relax_relay3_17 -19" ,
12 "type": "LTL",
13 " formula ": "G ! relay3_17 -19 _actions ",
14 " actionSets ":[
15 {
16 "name": "relay3_17 -19 _actions ",
17 " actions ":[
18 {"name": " transmit ", " params ": [" rover ", " relay3 ", "

visual_image ", " level ", " level15 ", " level ", " level ", "
level ", " level "]} ,

19 {"name": " transmit ", " params ": [" rover ", " relay3 ", "
visual_image ", " level ", " level16 ", " level ", " level ", "
level ", " level "]} ,

20 {"name": " transmit ", " params ": [" rover ", " relay3 ", "
visual_image ", " level ", " level20 ", " level ", " level ", "
level ", " level "]} ,

21 {"name": " transmit ", " params ": [" rover ", " relay3 ", "
x_ray_image ", " level ", " level15 ", " level ", " level ", "
level ", " level "]} ,

22 {"name": " transmit ", " params ": [" rover ", " relay3 ", "
x_ray_image ", " level ", " level16 ", " level ", " level ", "
level ", " level "]} ,

23 {"name": " transmit ", " params ": [" rover ", " relay3 ", "
x_ray_image ", " level ", " level20 ", " level ", " level ", "
level ", " level "]} ,

24 {"name": " transmit ", " params ": [" rover ", " relay3 ", "
soil_sample ", " level ", " level15 ", " level ", " level ", "
level ", " level "]} ,

25 {"name": " transmit ", " params ": [" rover ", " relay3 ", "
soil_sample ", " level ", " level16 ", " level ", " level ", "
level ", " level "]} ,

26 {"name": " transmit ", " params ": [" rover ", " relay3 ", "
soil_sample ", " level ", " level20 ", " level ", " level ", "
level ", " level "]}

27]
28 }
29],
30 " weaker ": [" relax_relay3_16 -19"," relax_relay3_17 -20"],
31 " stronger ": [" relax_relay3_18 -19"]
32 },

Figure 57: Example for relaxation soft goals. Top: resource relaxation soft goal where at
most 2 units of fuel are consumed; bottom: time window relaxation soft goal where the
upload to a relay is only possible between open time 17 and closing time 19.

BIBLIOGRAPHY

Timo Speith. A review of taxonomies of explainable artificial intelligence (XAI) methods. In
Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency,
pages 2239–2250. Association for Computing Machinery, 2022.

Tathagata Chakraborti, Sarath Sreedharan, and Subbarao Kambhampati. The emerg-
ing landscape of explainable ai planning and decision making. arXiv preprint
arXiv:2002.11697, 2020.

David Gunning and David Aha. DARPA’s explainable artificial intelligence (XAI) program. AI
Magazine, 40(2):44–58, 2019.

Horizon Europe. Research and innovation funding programme until 2027, 2021. URL https:
//research-and-innovation.ec.europa.eu/funding/funding-opportunities/
funding-programmes-and-open-calls/horizon-europe_en.

David Smith. Planning as an iterative process. In Jörg Hoffmann and Bart Selman, editors,
Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI’12), pages
2180–2185, Toronto, ON, Canada, July 2012. AAAI Press.

Cédric Pralet, David Doose, Julien Anxionnat, and Jérémie Pouly. Building resource-
dependent conditional plans for an earth monitoring satellite. 32:490–498, 2022.

Benjamin Smith, William Millar, Julia Dunphy, Yu-Wen Tung, Pandu Nayak, Ed Gamble, and
Micah Clark. Validation and verification of the remote agent for spacecraft autonomy. In
1999 IEEE Aerospace Conference. Proceedings (Cat. No. 99TH8403), volume 1, pages
449–468. IEEE, 1999.

Florian Geißer, Guillaume Povéda, Felipe Trevizan, Manon Bondouy, Florent Teichteil-
Königsbuch, and Sylvie Thiébaux. Optimal and heuristic approaches for constrained flight
planning under weather uncertainty. 30:384–393, 2020.

Bart M de Vries, Gerben JC Zwezerijnen, George L Burchell, Floris HP van Velden, Catha-
rina Willemien Menke-van der Houven van Oordt, and Ronald Boellaard. Explainable
artificial intelligence (xai) in radiology and nuclear medicine: a literature review. Frontiers
in medicine, 10:1180773, 2023.

Patrick Weber, K Valerie Carl, and Oliver Hinz. Applications of explainable artificial intel-
ligence in finance–a systematic review of finance, information systems, and computer
science literature. Management Review Quarterly, 74(2):867–907, 2024.

203

https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe_en
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe_en
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe_en

204 BIBLIOGRAPHY

Alberto Pozanco, Kassiani Papasotiriou, Daniel Borrajo, and Manuela Veloso. Combining
heuristic search and linear programming to compute realistic financial plans. 33(1):
527–531, 2023.

Rita Matulionyte and Ambreen Hanif. A call for more explainable ai in law enforcement.
In 2021 IEEE 25th International Enterprise Distributed Object Computing Workshop
(EDOCW), pages 75–80. IEEE, 2021.

Saad Khan, Simon Parkinson, Monika Roopak, Rachel Armitage, and Andrew Barlow.
Automated planning to prioritise digital forensics investigation cases containing indecent
images of children. 33(1):500–508, 2023.

Robert R Hoffman, Shane T Mueller, Gary Klein, and Jordan Litman. Metrics for explainable
ai: Challenges and prospects. arXiv preprint arXiv:1812.04608, 2018.

Markus Langer, Daniel Oster, Timo Speith, Holger Hermanns, Lena Kästner, Eva Schmidt,
Andreas Sesing, and Kevin Baum. What do we want from explainable artificial intelligence
(xai)?–a stakeholder perspective on xai and a conceptual model guiding interdisciplinary
xai research. Artificial Intelligence, 296:103473, 2021.

Tathagata Chakraborti, Anagha Kulkarni, Sarath Sreedharan, David E Smith, and Subbarao
Kambhampati. Explicability? legibility? predictability? transparency? privacy? security?
the emerging landscape of interpretable agent behavior. In Proceedings of the inter-
national conference on automated planning and scheduling, volume 29, pages 86–96,
2019a.

Bryce Goodman and Seth Flaxman. European union regulations on algorithmic decision-
making and a “right to explanation”. AI magazine, 38(3):50–57, 2017.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan.
A survey on bias and fairness in machine learning. ACM computing surveys (CSUR), 54:
1–35, 2021.

Robert Hoffman, Shane Mueller, Gary Klein, and Jordan Litman. Measuring trust in the xai
context. PsyArXiv, 2021.

Benjamin Krarup, Senka Krivic, Daniele Magazzeni, Derek Long, Michael Cashmore, and
David E Smith. Contrastive explanations of plans through model restrictions. Journal of
Artificial Intelligence Research, 72:533–612, 2021.

Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham
Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina, Richard Ben-
jamins, et al. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities
and challenges toward responsible ai. Information fusion, 58:82–115, 2020.

Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial
Intelligence, 267:1–38, 2019.

Tim Miller. Contrastive explanation: A structural-model approach. The Knowledge Engi-
neering Review, 36:e14, 2021.

BIBLIOGRAPHY 205

Jörg Hoffmann and Daniele Magazzeni. Explainable AI planning (XAIP): Overview and
the case of contrastive explanation (extended abstract). In Reasoning Web. Explainable
Artificial Intelligence: 15th International Summer School 2019, Bolzano, Italy, September
2024, 2019, Tutorial Lectures, pages 277–282. Springer International Publishing, 2019.

Felipe Rech Meneguzzi and Ramon Fraga Pereira. A survey on goal recognition as plan-
ning. In Proceedings of the 30th International Joint Conference on Artificial Intelligence
(IJCAI’21). ijcai.org, 2021.

Turgay Caglar and Sarath Sreedharan. Help! providing proactive support in the presence
of knowledge asymmetry. In Proceedings of the 23rd International Conference on
Autonomous Agents and Multiagent Systems, 2024.

Gregory LeMasurier, Alvika Gautam, Zhao Han, Jacob W Crandall, and Holly A Yanco.
Reactive or proactive? how robots should explain failures. In Proceedings of the 2024
ACM/IEEE International Conference on Human-Robot Interaction, pages 413–422, 2024.

Pranut Jain, Rosta Farzan, and Adam J Lee. Co-designing with users the explanations for a
proactive auto-response messaging agent. Proceedings of the ACM on Human-Computer
Interaction, 2023.

Hendrik Baier and Michael Kaisers. Explainable search. In 2020 IJCAI-PRICAI Workshop
on Explainable Artificial Intelligence, 2020.

Ziyan An, Hendrik Baier, Abhishek Dubey, Ayan Mukhopadhyay, and Meiyi Ma. Enabling
MCTS explainability for sequential planning through computation tree logic. In ECAI 2024.
2024.

Tathagata Chakraborti, Sarath Sreedharan, Yu Zhang, and Subbarao Kambhampati. Plan
explanations as model reconciliation: Moving beyond explanation as soliloquy. arXiv
preprint arXiv:1701.08317, 2017.

Sarath Sreedharan, Tathagata Chakraborti, and Subbarao Kambhampati. Foundations of
explanations as model reconciliation. Artificial Intelligence, 301:103558, 2021.

Sarath Sreedharan, Subbarao Kambhampati, et al. Handling model uncertainty and multi-
plicity in explanations via model reconciliation. In Proceedings of the 28th International
Conference on Automated Planning and Scheduling (ICAPS’18), volume 28, pages
518–526. AAAI Press, 2018a.

Sarath Sreedharan, Alberto Olmo, Aditya Prasad Mishra, and Subbarao Kambhampati.
Model-free model reconciliation. arXiv preprint arXiv:1903.07198, 2019a.

Sarath Sreedharan, Subbarao Kambhampati, et al. Balancing explicability and explanation
in human-aware planning. In 2017 AAAI Fall Symposium Series, 2017.

Sarath Sreedharan, Tathagata Chakraborti, Christian Muise, and Subbarao Kambhampati.
Expectation-aware planning: A unifying framework for synthesizing and executing self-
explaining plans for human-aware planning. In Vincent Conitzer and Fei Sha, editors,

206 BIBLIOGRAPHY

Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI’20), volume 34,
pages 2518–2526. AAAI Press, January 2020a.

Sarath Sreedharan, Tathagata Chakraborti, Christian Muise, and Subbarao Kambham-
pati. Planning with mental models–balancing explanations and explicability. Artificial
Intelligence, 2024.

Akkamahadevi Hanni, Andrew Boateng, and Yu Zhang. Safe explicable planning. In
Proceedings of the 34th International Conference on Automated Planning and Scheduling
(ICAPS’24). AAAI Press, 2024.

Stylianos Loukas Vasileiou, Ashwin Kumar, William Yeoh, Tran Cao Son, and Francesca
Toni. Dr-hai: Argumentation-based dialectical reconciliation in human-ai interactions.
arXiv preprint arXiv:2306.14694, 2023.

Sachin Grover, Sailik Sengupta, Tathagata Chakraborti, Aditya Prasad Mishra, and Sub-
barao Kambhampati. Radar: automated task planning for proactive decision support.
Human–Computer Interaction, 35(5-6):387–412, 2020.

Valmeekam Karthik, Sarath Sreedharan, Sailik Sengupta, and Subbarao Kambhampati.
Radar-x: An interactive interface pairing contrastive explanations with revised plan sug-
gestions. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI’21),
volume 35, pages 16051–16053. AAAI Press, February 2021.

Stylianos L Vasileiou, William Yeoh, and Tran Cao Son. A preliminary logic-based approach
for explanation generation. In Proceedings of the 2nd Worshop on Explainable Planning
at ICAPS, pages 132–140, 2019.

Alan Lindsay. Towards transparent planning and legible plan representations–a rule based
planning approach. In Proceedings of Workshop on Explainable Logic-Based Knowledge
Representation at KR, 2021.

Yu Zhang, Sarath Sreedharan, Anagha Kulkarni, Tathagata Chakraborti, Hankz Hankui
Zhuo, and Subbarao Kambhampati. Plan explicability and predictability for robot task
planning. In 2017 IEEE international conference on robotics and automation (ICRA),
pages 1313–1320. IEEE, 2017.

Aleck M MacNally, Nir Lipovetzky, Miquel Ramirez, and Adrian R Pearce. Action selection for
transparent planning. In Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, pages 1327–1335, 2018.

Alan Lindsay, Bart Craenen, Sara Dalzel-Job, Robin L Hill, and Ronald Petrick. Investigating
human response, behaviour, and preference in joint-task interaction. In Proceedings of
the 3d Worshop on Explainable Planning at ICAPS, 2020.

Bastian Seegebarth, Felix Müller, Bernd Schattenberg, and Susanne Biundo. Making hybrid
plans more clear to human users - a formal approach for generating sound explanations. In
Blai Bonet, Lee McCluskey, José Reinaldo Silva, and Brian Williams, editors, Proceedings

BIBLIOGRAPHY 207

of the 22nd International Conference on Automated Planning and Scheduling (ICAPS’12).
AAAI Press, 2012.

Sarath Sreedharan, Christian Muise, and Subbarao Kambhampati. Why did you do that?
generalizing causal link explanations to fully observable non-deterministic planning prob-
lems. In Proceedings of the 32th International Conference on Automated Planning and
Scheduling (ICAPS’22). AAAI Press, 2022.

Sarath Sreedharan, Christian Muise, and Subbarao Kambhampati. Generalizing action
justification and causal links to policies. pages 417–426, 2023.

Shirin Sohrabi, Jorge Baier, and Sheila McIlraith. Preferred explanations: Theory and
generation via planning. In Proceedings of the 25th AAAI Conference on Artificial
Intelligence (AAAI’11), volume 25, pages 261–267. AAAI Press, 2011.

Andrew Murray, Benjamin Krarup, and Michael Cashmore. Towards temporally uncertain
explainable ai planning. In International Conference on Distributed Computing and
Internet Technology, pages 45–59. Springer, 2022.

Amanda Coles and Benjamin Krarup. Explaining plan quality differences. In Proceedings of
the 34th International Conference on Automated Planning and Scheduling (ICAPS’24).
AAAI Press, 2024.

Alan Lindsay and Ronald PA Petrick. Explaining plan selection through an analysis of object
transition sequences. In 36th Workshop of the UK Planning and Scheduling Special
Interest Group 2021, 2021a.

Joseph Kim, Christian Muise, Ankit Shah, Shubham Agarwal, and Julie Shah. Bayesian
inference of linear temporal logic specifications for contrastive explanations. In Sarit Kraus,
editor, Proceedings of the 28th International Joint Conference on Artificial Intelligence
(IJCAI’19), pages 5591–5598. ijcai.org, 2019.

Moritz Göbelbecker, Thomas Keller, Patrick Eyerich, Michael Brenner, and Bernhard Nebel.
Coming up with good excuses: What to do when no plan can be found. In Ronen I.
Brafman, Hector Geffner, Jörg Hoffmann, and Henry A. Kautz, editors, Proceedings of
the 20th International Conference on Automated Planning and Scheduling (ICAPS’10),
volume 20, pages 81–88. AAAI Press, 2010.

Sarath Sreedharan, Siddharth Srivastava, David Smith, and Subbarao Kambhampati. Why
can’t you do that HAL? explaining unsolvability of planning tasks. In Sarit Kraus, editor,
Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI’19),
pages 1422–1430. ijcai.org, 2019b.

Alan Lindsay. Towards exploiting generic problem structures in explanations for automated
planning. In Proceedings of the 10th International Conference on Knowledge Capture,
pages 235–238, 2019.

Alan Lindsay. Using generic subproblems for understanding and answering queries in xaip.
In Proceedings of the Worshop on Knowledge Engineering for Planning and Scheduling
at ICAPS, 2020.

208 BIBLIOGRAPHY

Roykrong Sukkerd, Reid Simmons, and David Garlan. Tradeoff-focused contrastive explana-
tion for MDP planning. In 29th International Conference on Robot and Human Interactive
Communication (RO-MAN), 2020.

Sarath Sreedharan, Siddharth Srivastava, and Subbarao Kambhampati. Explain it as simple
as possible, but no simpler–explanation via model simplification for addressing inferential
gap. Artificial Intelligence, 2025.

Sam Toyer, Sylvie Thiébaux, Felipe Trevizan, and Lexing Xie. Asnets: Deep learning for
generalised planning. Journal of Artificial Intelligence Research, 68:1–68, 2020.

Simon Ståhlberg, Blai Bonet, and Hector Geffner. Learning generalized policies without
supervision using gnns. arXiv preprint arXiv:2205.06002, 2022.

Renee Selvey, Alban Grastien, and Sylvie Thiébaux. Formal explanations of neural network
policies for planning. In Proceedings of the 22th International Joint Conference on
Artificial Intelligence (IJCAI’23), page 5446. International Joint Conferences on Artificial
Intelligence Organization, 2023.

Silvia Tulli, Marta Couto, Miguel Vasco, Elmira Yadollahi, Francisco Melo, and Ana Paiva.
Explainable agency by revealing suboptimality in child-robot learning scenarios. In
International Conference on Social Robotics, pages 23–35. Springer, 2020.

Pascal Bercher, Susanne Biundo, Thomas Geier, Thilo Hoernle, Florian Nothdurft, Felix
Richter, and Bernd Schattenberg. Plan, repair, execute, explain–how planning helps
to assemble your home theater. In Proceedings of the 24rd International Conference
on Automated Planning and Scheduling (ICAPS’14), volume 24, pages 386–394. AAAI
Press, 2014.

Martim Brandao, Amanda Coles, and Daniele Magazzeni. Explaining path plan optimality:
Fast explanation methods for navigation meshes using full and incremental inverse
optimization. In Proceedings of the 31th International Conference on Automated Planning
and Scheduling (ICAPS’21), volume 31, pages 56–64. AAAI Press, 2021a.

Khalid Alsheeb and Martim Brandao. Towards explainable road navigation systems. In
International Conference on Intelligent Transportation Systems, 2023.

Sarath Sreedharan, Tathagata Chakraborti, Christian Muise, Yasaman Khazaeni, and
Subbarao Kambhampati. –d3wa+–a case study of xaip in a model acquisition task for
dialogue planning. 30:488–497, 2020b.

Alan Lindsay and Ron Petrick. Supporting explanations within an instruction giving frame-
work. In Proceedings of the 4th Worshop on Explainable Planning at ICAPS, 2021b.

Sarath Sreedharan, Siddharth Srivastava, and Subbarao Kambhampati. Hierarchical
expertise level modeling for user specific contrastive explanations. In Carles Sierra, editor,
Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI’18),
pages 4829–4836. AAAI Press/IJCAI, 2018b.

BIBLIOGRAPHY 209

Stylianos Loukas Vasileiou and William Yeoh. Please: Generating personalized explanations
in human-aware planning. In ECAI 2023, pages 2411–2418. IOS Press, 2023.

Ashwin Kumar, Stylianos Loukas Vasileiou, Melanie Bancilhon, Alvitta Ottley, and William
Yeoh. Vizxp: A visualization framework for conveying explanations to users in model
reconciliation problems. 32:701–709, 2022.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan;
can lrms? a preliminary evaluation of openai’s o1 on planbench. arXiv preprint
arXiv:2409.13373, 2024.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Sid-
dhant Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: Llms cant plan, but
can help planning in llm-modulo frameworks. In Forty-first International Conference on
Machine Learning, 2024.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and practice.
Elsevier, 2004.

Christer Bäckström and Bernhard Nebel. Complexity results for SAS+ planning. Computa-
tional Intelligence, 11(4):625–655, 1995.

Malte Helmert. Concise finite-domain representations for PDDL planning tasks. Artificial
Intelligence, 173:503–535, 2009.

David E. Smith. Choosing objectives in over-subscription planning. In Proceedings of the
14th International Conference on Automated Planning and Scheduling (ICAPS’04), pages
393–401, 2004.

Vitaly Mirkis and Carmel Domshlak. Abstractions for oversubscription planning. In Daniel
Borrajo, Simone Fratini, Subbarao Kambhampati, and Angelo Oddi, editors, Proceedings
of the 23rd International Conference on Automated Planning and Scheduling (ICAPS’13),
volume 23, pages 153–161, Rome, Italy, 2013. AAAI Press.

Carmel Domshlak and Vitaly Mirkis. Deterministic oversubscription planning as heuristic
search: Abstractions and reformulations. Journal of Artificial Intelligence Research, 52:
97–169, 2015.

Meysam Aghighi and Peter Jonsson. Oversubscription planning: Complexity and com-
pilability. In Carla E. Brodley and Peter Stone, editors, Proceedings of the 28th AAAI
Conference on Artificial Intelligence (AAAI’14), Austin, Texas, USA, January 2014. AAAI
Press.

Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence Journal,
129:5–33, 2001.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determi-
nation of minimum cost paths. IEEE transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

210 BIBLIOGRAPHY

James E Doran and Donald Michie. Experiments with the graph traverser program. Pro-
ceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,
294(1437):235–259, 1966.

Malte Helmert, Patrik Haslum, Jörg Hoffmann, et al. Flexible abstraction heuristics for
optimal sequential planning. 2007.

Joseph C. Culberson and Jonathan Schaeffer. Pattern databases. Computational Intelli-
gence, 14(3):318–334, 1998.

Stefan Edelkamp. Planning with pattern databases. In A. Cesta and D. Borrajo, editors,
Proceedings of the 6th European Conference on Planning (ECP’01), pages 13–24.
Springer-Verlag, 2001.

Carmel Domshlak, Jörg Hoffmann, and Ashish Sabharwal. Friends or foes? on planning as
satisfiability and abstract cnf encodings. Journal of Artificial Intelligence Research, 36:
415–469, 2009.

Jendrik Seipp and Malte Helmert. Counterexample-guided Cartesian abstraction refinement.
In Daniel Borrajo, Simone Fratini, Subbarao Kambhampati, and Angelo Oddi, editors,
Proceedings of the 23rd International Conference on Automated Planning and Scheduling
(ICAPS’13), pages 347–351, Rome, Italy, 2013. AAAI Press.

Florian Pommerening, Malte Helmert, Gabriele Röger, and Jendrik Seipp. From non-
negative to general operator cost partitioning. In Proceedings of the AAAI conference on
artificial intelligence, volume 29. AAAI Press, January 2015.

Jendrik Seipp, Florian Pommerening, and Malte Helmert. New optimization functions
for potential heuristics. In Proceedings of the International Conference on Automated
Planning and Scheduling, volume 25, pages 193–201. AAAI Press, 2015.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pages 46–57. ieee, 1977.

Jorge A. Baier and Sheila A. McIlraith. Planning with first-order temporally extended goals
using heuristic search. In Yolanda Gil and Raymond J. Mooney, editors, Proceedings
of the 21st National Conference of the American Association for Artificial Intelligence
(AAAI’06), pages 788–795, Boston, Massachusetts, USA, July 2006a. AAAI Press.

Giuseppe De Giacomo and Moshe Y Vardi. Linear temporal logic and linear dynamic logic
on finite traces. In Francesca Rossi, editor, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI’13). AAAI Press/IJCAI, 2013.

Jorge A Baier and Sheila A McIlraith. Planning with temporally extended goals using
heuristic search. In Derek Long and Stephen Smith, editors, Proceedings of the 16th
International Conference on Automated Planning and Scheduling (ICAPS’06), pages
342–345, Ambleside, UK, 2006b. Morgan Kaufmann.

BIBLIOGRAPHY 211

Stefan Edelkamp. On the compilation of plan constraints and preferences. In Derek
Long and Stephen Smith, editors, Proceedings of the 16th International Conference on
Automated Planning and Scheduling (ICAPS’06), pages 374–377, Ambleside, UK, 2006.
Morgan Kaufmann.

Mark H Liffiton and Karem A Sakallah. Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning, 40(1):1, 2008.

Joao Marques-Silva. Minimal unsatisfiability: Models, algorithms and applications. In 2010
40th IEEE International Symposium on Multiple-Valued Logic, pages 9–14. IEEE, 2010.

Emilio Gamba, Bart Bogaerts, and Tias Guns. Efficiently explaining csps with unsatisfiable
subset optimization. Journal of Artificial Intelligence Research, 78:709–746, 2023.

Michael Katz, Emil Keyder, Dominik Winterer, and Florian Pommerening. Oversubscription
planning as classical planning with multiple cost functions. In Proceedings of the 29th
International Conference on Automated Planning and Scheduling (ICAPS’19), pages
237–245. AAAI Press, 2019.

Jorge A. Baier, Fahiem Bacchus, and Sheila A. McIlraith. A heuristic search approach to
planning with temporally extended preferences. Artificial Intelligence, 173(5-6):593–618,
2009.

Alfonso Gerevini, Patrik Haslum, Derek Long, Alessandro Saetti, and Yannis Dimopou-
los. Deterministic planning in the fifth international planning competition: PDDL3 and
experimental evaluation of the planners. Artificial Intelligence, 173(5-6):619–668, 2009.

Edmund M Clarke, Thomas A Henzinger, Helmut Veith, Roderick Bloem, et al. Handbook of
model checking. volume 10. Springer, 2018.

Giuseppe De Giacomo, Riccardo De Masellis, and Marco Montali. Reasoning on LTL on
finite traces: Insensitivity to infiniteness. In Carla E. Brodley and Peter Stone, editors,
Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI’14), Austin,
Texas, USA, January 2014. AAAI Press.

Tom Bylander. The computational complexity of propositional STRIPS planning. Artificial
Intelligence, 69(1–2):165–204, 1994.

James Bailey and Peter J Stuckey. Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In Practical Aspects of Declarative Languages: 7th Interna-
tional Symposium, PADL 2005, Long Beach, CA, USA, January 10-11, 2005. Proceedings
7, pages 174–186. Springer, 2005.

R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors,
Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

Claude Berge. Hypergraphs north holland mathematical library. 1989.

Mark H Liffiton, Alessandro Previti, Ammar Malik, and Joao Marques-Silva. Fast, flexible
mus enumeration. Constraints, 21:223–250, 2016.

212 BIBLIOGRAPHY

Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986.

Kenneth L McMillan and Kenneth L McMillan. Symbolic model checking. Springer, 1993.

Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. McMillan, and David L.
Dill. Symbolic model checking for sequential circuit verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 13(4):401–424, 1994.

Stefan Edelkamp and Peter Kissmann. Optimal symbolic planning with action costs and
preferences. In Craig Boutilier, editor, Proceedings of the 21st International Joint Confer-
ence on Artificial Intelligence (IJCAI’09), pages 1690–1695, Pasadena, California, USA,
July 2009. Morgan Kaufmann.

Álvaro Torralba, Vidal Alcázar, Peter Kissmann, and Stefan Edelkamp. Efficient symbolic
search for cost-optimal planning. Artificial Intelligence, 242:52–79, 2017.

Jendrik Seipp, Thomas Keller, and Malte Helmert. A comparison of cost partitioning
algorithms for optimal classical planning. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 27, pages 259–268. AAAI Press, 2017.

Jendrik Seipp and Malte Helmert. Counterexample-guided Cartesian abstraction refinement
for classical planning. Journal of Artificial Intelligence Research, 62:535–577, 2018.

Malte Helmert. The Fast Downward planning system. Journal of Artificial Intelligence
Research, 26:191–246, 2006.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

classical domains. International planning competition instances, 2018. URL https://
github.com/AI-Planning/classical-domains.

api.planning.domains. api.planning.domains, 2018. URL https://api.planning.
domains/.

David Speck and Michael Katz. Symbolic search for oversubscription planning. In Proceed-
ings of the 35th AAAI Conference on Artificial Intelligence (AAAI’21), pages 11972–11980.
AAAI Press, February 2021.

Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and reasoning about
systems. Cambridge university press, 2004.

Sylvie Thiebaux, Jörg Hoffmann, and Bernhard Nebel. In defense of PDDL axioms. Artificial
Intelligence, 168(1–2):38–69, 2005.

B. Cenk Gazen and Craig Knoblock. Combining the expressiveness of UCPOP with the
efficiency of Graphplan. In S. Steel and R. Alami, editors, Proceedings of the 4th European
Conference on Planning (ECP’97), pages 221–233. Springer-Verlag, 1997.

https://github.com/AI-Planning/classical-domains
https://github.com/AI-Planning/classical-domains
https://api.planning.domains/
https://api.planning.domains/

BIBLIOGRAPHY 213

Bernhard Nebel. On the compilability and expressive power of propositional planning
formalisms. Journal of Artificial Intelligence Research, 12:271–315, 2000.

Alberto Camacho. Ltlfkit, 2017. URL https://bitbucket.org/acamacho/ltlfkit/src/
master/.

Alexandre Duret-Lutz, Etienne Renault, Maximilien Colange, Florian Renkin, Alexan-
dre Gbaguidi Aisse, Philipp Schlehuber-Caissier, Thomas Medioni, Antoine Martin,
Jérôme Dubois, Clément Gillard, and Henrich Lauko. From Spot 2.0 to Spot 2.10: What’s
new? In Proceedings of the 34th International Conference on Computer Aided Verification
(CAV’22), volume 13372 of Lecture Notes in Computer Science, pages 174–187. Springer,
2022.

Hootan Nakhost, Jörg Hoffmann, and Martin Müller. Resource-constrained planning: A
monte carlo random walk approach. In Blai Bonet, Lee McCluskey, José Reinaldo
Silva, and Brian Williams, editors, Proceedings of the 22nd International Conference on
Automated Planning and Scheduling (ICAPS’12), pages 181–189. AAAI Press, 2012.

Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing temporal planning
domains. Journal of artificial intelligence research, 20:61–124, 2003.

Stefan Palan and Christian Schitter. Prolific.ac – a subject pool for misc experiments.
Journal of Behavioral and Experimental Finance, 17:22–27, 2018.

Tathagata Chakraborti, Sarath Sreedharan, Sachin Grover, and Subbarao Kambhampati.
Plan explanations as model reconciliation. In Proceedings of the 14th ACM/IEEE Interna-
tional Conference on Human-Robot Interaction (HRI’19), pages 258–266, 2019b.

Tathagata Chakraborti and Subbarao Kambhampati. (when) can ai bots lie? In Proceedings
of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pages 53–59, 2019.

Sarath Sreedharan, Alberto Olmo Hernandez, Aditya Prasad Mishra, and Subbarao Kamb-
hampati. Model-free model reconciliation. In Sarit Kraus, editor, Proceedings of the
28th International Joint Conference on Artificial Intelligence (IJCAI’19), pages 587–594.
ijcai.org, 2019c.

Sarath Sreedharan, Anagha Kulkarni, Tathagata Chakraborti, David E Smith, and Subbarao
Kambhampati. A bayesian account of measures of interpretability in human-ai interaction.
arXiv preprint arXiv:2011.10920, 2020c.

Devleena Das, Siddhartha Banerjee, and Sonia Chernova. Explainable ai for robot failures:
Generating explanations that improve user assistance in fault recovery. arXiv preprint
arXiv:2101.01625, 2021.

Devleena Das, Been Kim, and Sonia Chernova. Subgoal-based explanations for unreliable
intelligent decision support systems. In Proceedings of the 28th International Conference
on Intelligent User Interfaces, pages 240–250, 2023.

https://bitbucket.org/acamacho/ltlfkit/src/master/
https://bitbucket.org/acamacho/ltlfkit/src/master/

214 BIBLIOGRAPHY

Maayan Shvo, Toryn Q Klassen, and Sheila A McIlraith. Resolving articleonceptions about
the plans of agents via theory of mind. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 32, pages 719–729, 2022.

Sarath Sreedharan, Siddharth Srivastava, and Subbarao Kambhampati. Tldr: Policy
summarization for factored ssp problems using temporal abstractions. In Proceedings of
the 30th International Conference on Automated Planning and Scheduling (ICAPS’20),
pages 272–280. AAAI Press, 2020d.

Martim Brandao, Gerard Canal, Senka Krivić, Paul Luff, and Amanda Coles. How experts
explain motion planner output: a preliminary user-study to inform the design of explainable
planners. In 2021 30th IEEE International Conference on Robot & Human Interactive
Communication (RO-MAN), pages 299–306. IEEE, 2021b.

Martim Brandao, Masoumeh Mansouri, Areeb Mohammed, Paul Luff, and Amanda Coles.
Explainability in multi-agent path/motion planning: User-study-driven taxonomy and
requirements. In Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems, pages 172–180, 2022a.

Joao Marques-Silva, Federico Heras, Mikolás Janota, Alessandro Previti, and Anton Belov.
On computing minimal correction subsets. In Twenty-Third International Joint Conference
on Artificial Intelligence, 2013.

Ulrich Junker. Preferred explanations and relaxations for over-constrained problems. In
Proceedings of the 19st National Conference of the American Association for Artificial
Intelligence (AAAI’04), 2004.

Barry O’Sullivan, Alexandre Papadopoulos, Boi Faltings, and Pearl Pu. Representative
explanations for over-constrained problems. In Proceedings of the 22st National Confer-
ence of the American Association for Artificial Intelligence (AAAI’07), volume 7, pages
323–328. AAAI Press, 2007.

Sharmi Dev Gupta, Begum Genc, and Barry O’Sullivan. Finding counterfactual explanations
through constraint relaxations. arXiv preprint arXiv:2204.03429, 2022a.

Bart Bogaerts, Emilio Gamba, Jens Claes, and Tias Guns. Step-wise explanations of
constraint satisfaction problems. In ECAI 2020, pages 640–647. IOS Press, 2020.

Tias Guns, Emilio Gamba, Maxime Mulamba, Ignace Bleukx, Senne Berden, and Milan
Pesa. Sudoku assistant–an ai-powered app to help solve pen-and-paper sudokus. In
Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI’23), volume 37,
pages 16440–16442. AAAI Press, 2023.

Johan De Kleer and Brian C Williams. Diagnosing multiple faults. Artificial intelligence, 32
(1):97–130, 1987.

Joao Marques-Silva and Inês Lynce. On improving mus extraction algorithms. In Interna-
tional Conference on Theory and Applications of Satisfiability Testing, pages 159–173.
Springer, 2011.

BIBLIOGRAPHY 215

Ulrich Junker. Quickxplain: Conflict detection for arbitrary constraint propagation algorithms.
In IJCAI’01 Workshop on Modelling and Solving problems with constraints, volume 4,
2001.

Alessandro Previti and Joao Marques-Silva. Partial mus enumeration. In Proceedings of
the 27th AAAI Conference on Artificial Intelligence (AAAI’13), volume 27, pages 818–825.
AAAI Press, 2013.

Joao Marques-Silva and Alessandro Previti. On computing preferred muses and mcses.
In International Conference on Theory and Applications of Satisfiability Testing, pages
58–74. Springer, 2014.

Martim Brandao, Amanda Coles, Andrew Coles, and Jörg Hoffmann. Merge and shrink
abstractions for temporal planning. In Proceedings of the 32th International Conference
on Automated Planning and Scheduling (ICAPS’22). AAAI Press, 2022b.

Marcel Steinmetz, Sylvie Thiébaux, Daniel Höller, and Florent Teichteil-Königsbuch. Explain-
ing the space of SSP policies via policy-property dependencies: Complexity, algorithms,
and relation to multi-objective planning. In Proceedings of the 34th International Confer-
ence on Automated Planning and Scheduling (ICAPS’24). AAAI Press, 2024.

Ilankaikone Senthooran, Matthias Klapperstueck, Gleb Belov, Tobias Czauderna, Kevin Leo,
Mark Wallace, Michael Wybrow, and Maria Garcia de la Banda. Human-centred feasibility
restoration in practice. Constraints, 28(2):203–243, 2023.

Guilhem Fouilhé, Rebecca Eifler, Sylvie Thiébaux, and Nicholas Asher. Conversational
goal-conflict explanations in planning via multi-agent llms. In Workshop on Planning in
the Era of LLMs (LM4Plan) at AAAI, 2025.

Rebecca Eifler, Daniel Fiser, Aleena Siji, and Jörg Hoffmann. Iterative oversubscription plan-
ning with goal-conflict explanations: Scaling up through policy-guidance approximation.
In ECAI 2024 - 27th European Conference on Artificial Intelligence, 19-24 October 2024,
Santiago de Compostela, Spain - Including 13th Conference on Prestigious Applications
of Intelligent Systems (PAIS 2024), 2024.

Niklas Lauffer and Ufuk Topcu. Human-understandable explanations of infeasibility for
resource-constrained scheduling problems. In Proceedings of the 2nd Worshop on
Explainable Planning at ICAPS, 2019.

Ilankaikone Senthooran, Matthias Klapperstueck, Gleb Belov, Tobias Czauderna, Kevin Leo,
Mark Wallace, Michael Wybrow, and Maria Garcia de la Banda. Human-centred feasibility
restoration. In 27th International Conference on Principles and Practice of Constraint
Programming (CP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

Patrik Haslum and Hector Geffner. Admissible heuristics for optimal planning. In S. Chien,
R. Kambhampati, and C. Knoblock, editors, Proceedings of the 5th International Confer-
ence on Artificial Intelligence Planning Systems (AIPS’00), pages 140–149, Breckenridge,
CO, 2000. AAAI Press, Menlo Park.

216 BIBLIOGRAPHY

Jana Koehler. Planning under resource constraints. In ECAI, volume 98. Citeseer, 1998.

Biplav Srivastava, Subbarao Kambhampati, and Minh B Do. Planning the project manage-
ment way: Efficient planning by effective integration of causal and resource reasoning in
realplan. volume 131, pages 73–134. Elsevier, 2001.

Minh Do and Subbarao Kambhampati. Sapa: A domain-independent heuristic metric
temporal planner. In Sixth European Conference on Planning, 2014.

Patrik Haslum and Héctor Geffner. Heuristic planning with time and resources. In Sixth
European Conference on Planning, 2001.

Amanda Coles, M Fox, and D Long. A hybrid lp-rpg heuristic for modelling numeric resource
flows in planning. Journal of Artificial Intelligence Research, 46:343–412, 2013.

David E Smith and Daniel S Weld. Temporal planning with mutual exclusion reasoning. In
Proceedings of the 11st International Joint Conference on Artificial Intelligence (IJCAI’99),
volume 99, pages 326–337, 1999.

William Cushing, Subbarao Kambhampati, Mausam, and Daniel S Weld. When is temporal
planning really temporal? In Proceedings of the 19st International Joint Conference on
Artificial Intelligence (IJCAI’07), pages 1852–1859, 2007.

Sergio Jiménez, Anders Jonsson, and Héctor Palacios. Temporal planning with required
concurrency using classical planning. In Proceedings of the 25th International Conference
on Automated Planning and Scheduling (ICAPS’15), volume 25, pages 129–137. AAAI
Press, 2015.

Sharmi Dev Gupta, Begum Genc, and Barry O’Sullivan. Finding counterfactual explanations
through constraint relaxations. arXiv preprint arXiv:2204.03429, 2022b.

Jagriti Agrawal, Amruta Yelamanchili, and Steve Chien. Using explainable scheduling for
the mars 2020 rover mission. In Proceedings of the 3d Worshop on Explainable Planning
at ICAPS, 2020.

Peng Yu, Brian Williams, Cheng Fang, Jing Cui, and Patrik Haslum. Resolving over-
constrained temporal problems with uncertainty through conflict-directed relaxation. Jour-
nal of Artificial Intelligence Research, 60:425–490, 2017.

Moritz Göbelbecker, Thomas Keller, Patrick Eyerich, Michael Brenner, and Bernhard Nebel.
Coming up with good excuses: What to do when no plan can be found. In Ronen I.
Brafman, Hector Geffner, Jörg Hoffmann, and Henry A. Kautz, editors, Proceedings of
the 20th International Conference on Automated Planning and Scheduling (ICAPS’10),
pages 81–88. AAAI Press, 2010.

Songtuan Lin, Alban Grastien, and Pascal Bercher. Towards automated modeling assistance:
An efficient approach for repairing flawed planning domains. In Proceedings of the 37th
AAAI Conference on Artificial Intelligence (AAAI’23). AAAI Press, 2023.

BIBLIOGRAPHY 217

Salomé Eriksson, Gabriele Röger, and Malte Helmert. Unsolvability certificates for classical
planning. In Proceedings of the 27th International Conference on Automated Planning
and Scheduling (ICAPS’17), pages 88–97. AAAI Press, 2017.

Salomé Eriksson, Gabriele Röger, and Malte Helmert. A proof system for unsolvable
planning tasks. In Proceedings of the 28th International Conference on Automated
Planning and Scheduling (ICAPS’18), volume 28. AAAI Press, 2018.

Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered landmarks in planning. Journal
of Artificial Intelligence Research, 22:215–278, 2004.

A Jorge, Sheila A McIlraith, et al. Planning with preferences. AI Magazine, 29(4):25–25,
2008.

Alan Lindsay, Bart Craenen, and Ronald PA Petrick. Within task preference elicitation in net
benefit planning. In ICAPS 2021 Workshop on Knowledge Engineering for Planning and
Scheduling (KEPS), 2021.

Sheryl Mantik, Minyi Li, and Julie Porteous. A preference elicitation framework for automated
planning. Expert Systems with Applications, 208:118014, 2022.

Michael Katz, Shirin Sohrabi, Octavian Udrea, and Dominik Winterer. A novel iterative
approach to top-k planning. In Proceedings of the 28th International Conference on
Automated Planning and Scheduling (ICAPS’18). AAAI Press, 2018.

David Speck, Robert Mattmüller, and Bernhard Nebel. Symbolic top-k planning. In Vincent
Conitzer and Fei Sha, editors, Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI’20), pages 9967–9974. AAAI Press, January 2020.

Michael Katz and Shirin Sohrabi. Reshaping diverse planning. In Vincent Conitzer and Fei
Sha, editors, Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI’20),
pages 9892–9899. AAAI Press, January 2020a.

Daniel Neider and Ivan Gavran. Learning linear temporal properties. In 2018 Formal
Methods in Computer Aided Design (FMCAD), pages 1–10. IEEE, 2018.

Alberto Camacho and Sheila A McIlraith. Learning interpretable models expressed in
linear temporal logic. In Proceedings of the 29th International Conference on Automated
Planning and Scheduling (ICAPS’19). AAAI Press, 2019.

Zohar Manna and Amir Pnueli. A hierarchy of temporal properties (invited paper, 1989). In
Proceedings of the ninth annual ACM symposium on Principles of distributed computing,
pages 377–410, 1990.

Matthew B Dwyer, George S Avrunin, and James C Corbett. Patterns in property specifica-
tions for finite-state verification. In Proceedings of the 21st international conference on
Software engineering, pages 411–420, 1999.

218 BIBLIOGRAPHY

Claudio Menghi, Christos Tsigkanos, Patrizio Pelliccione, Carlo Ghezzi, and Thorsten
Berger. Specification patterns for robotic missions. IEEE Transactions on Software
Engineering, 2019.

Wil MP van Der Aalst, Maja Pesic, and Helen Schonenberg. Declarative workflows: Balanc-
ing between flexibility and support. Computer Science-Research and Development, 23:
99–113, 2009.

Valentin Seimetz. Learning ltl plan properties from example plans. In Masters Thesis at
Saarland University, 2020.

Michael Katz and Shirin Sohrabi. Reshaping diverse planning. In Vincent Conitzer and
Fei Sha, editors, Proceedings of the AAAI Conference on Artificial Intelligence, pages
9892–9899. AAAI Press, January 2020b.

Mark Roberts, Adele Howe, and Indrajit Ray. Evaluating diversity in classical planning. In
Proceedings of the 24rd International Conference on Automated Planning and Scheduling
(ICAPS’14), pages 253–261. AAAI Press, 2014.

Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina. Plan stability: Replanning versus
plan repair. 2006.

Tuan Anh Nguyen, Minh Do, Alfonso Emilio Gerevini, Ivan Serina, Biplav Srivastava, and
Subbarao Kambhampati. Generating diverse plans to handle unknown and partially
known user preferences. Artificial Intelligence, 190:1–31, 2012.

Jean-Raphaël Gaglione, Daniel Neider, Rajarshi Roy, Ufuk Topcu, and Zhe Xu. Learning
linear temporal properties from noisy data: A maxsat-based approach. In Proceedings of
the 19th International Symposium on Automated Technology for Verification and Analysis,
pages 74–90. Springer, 2021.

Fahiem Bacchus and Froduald Kabanza. Using temporal logics to express search control
knowledge for planning. Artificial intelligence, 116(1-2):123–191, 2000.

Jörg Hoffmann and Stefan Edelkamp. The deterministic part of ipc-4: An overview. Journal
of Artificial Intelligence Research, 24:519–579, 2005.

Luigi Bonassi, Giuseppe De Giacomo, Marco Favorito, Francesco Fuggitti, Alfonso Emilio
Gerevini, and Enrico Scala. Planning for temporally extended goals in pure-past linear
temporal logic. In Proceedings of the 33th International Conference on Automated
Planning and Scheduling (ICAPS’23), pages 61–69. AAAI Press, 2023.

Richard Howey, Derek Long, and Maria Fox. Val: Automatic plan validation, continuous
effects and mixed initiative planning using pddl. In 16th IEEE International Conference on
Tools with Artificial Intelligence, pages 294–301. IEEE, 2004.

Caroline Lemieux, Dennis Park, and Ivan Beschastnikh. General ltl specification mining (t).
In 2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 81–92. IEEE, 2015.

BIBLIOGRAPHY 219

Brennan Cruse and Christian Muise. Discrete time series clustering and delineation: A tree-
based approach to linear temporal logic discovery. In Proceedings of the 5th Worshop on
Explainable Planning at ICAPS, 2022.

R Michael Young, Martha E Pollack, and Johanna D Moore. Decomposition and causality in
partial-order planning. In AIPS, pages 188–194, 1994.

Tathagata Chakraborti, Jung koo Kang, Francesco Fuggitti, Michael Katz, and Shirin Sohrabi.
Interactive plan selection using linear temporal logic, disjunctive action landmarks, and
natural language instruction. In Proceedings of the 38th AAAI Conference on Artificial
Intelligence (AAAI’24). AAAI Press, 2024.

	Introduction
	Illustrative Example
	Contributions
	Publications

	Related Work Explainable AI
	Explainable Artificial Intelligence
	Explainable AI Planning

	Background
	Planning and Search Techniques
	Oversubscription Planning
	Heuristic State Space Search

	Finite Linear Temporal Logic

	Explanations based on Goal Conflicts
	Explanations
	Conceptual Framework
	Explanations in Iterative Planning
	Equivalence to MUGS

	AllMUGS Algorithms
	Goal-Lattice Search
	Goal-Subset Branch and Bound Search

	Computational Evaluation
	Soft-Goal Atoms
	Temporal Goals

	Iterative Planning Platform
	Iterative Planning Workflow
	Adaptations and Extensions for User Studies

	User Study Evaluation
	Case Study Design – Planning Domains and OSP Tasks
	User Study Design
	User Study Results

	Discussion

	Explaining Goal Conflicts Themselves
	Explanations
	Task Relaxation
	Explanations Based on Task Relaxations
	Integration into Iterative Planning Process

	AllRelaxMUGS Algorithms
	MSGS Propagation
	Iterative Search Space Extension
	Theoretical Comparison

	Compilation of AllRelaxMUGS to AllMUGS
	Relaxation Soft Goals
	Non-Dominated MUGS

	Planning with Resource and Time Window Constraints
	Resource and Time Constraint Relaxations

	Computational Evaluation
	Experiment Setup & Benchmarks
	Task Relaxation
	Relaxation Soft Goals

	Discussion

	Learning Temporal Goals
	Related Work & Building Blocks
	Plan Generation
	Temporal Soft Goal Learning
	Temporal Soft Goal Templates

	Architecture
	Empirical Evaluation
	Experiments Setup & Benchmarks
	Experimental Results

	Discussion

	Conclusion
	Appendix Chapter 2
	Computational Evaluation: Data for Individual Domains
	Temporal Goals: Proofs and Input Definition
	Proofs
	Input Definition

	IPEXCO: Input Definition
	Additional Material User Study

	Appendix Chapter 3
	Task Relaxation Input Definition

	Bibliography

