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Abstract

With the rising adoption of machine learning (ML) and deep learning (DL) applications,
the demand for deploying these algorithms closer to sensors has grown significantly, par-
ticularly in sensor-driven use cases such as predictive maintenance (PM) and condition
monitoring (CM). This study investigated a novel application-oriented approach to repre-
senting interpretable ML inference as deep neural networks (DNNs) regarding the latency
and energy efficiency on the edge, to tackle the problem of inefficient, high-effort, and
uninterpretable-implementation ML algorithms. For this purpose, the interpretable deep
neural network representation (IDNNRep) was integrated into an open-source interpretable
ML toolbox to demonstrate the inference time and energy efficiency improvements. The
goal of this work was to enable the utilization of generic artificial intelligence (AI) accel-
erators for interpretable ML algorithms to achieve efficient inference on edge hardware
in smart sensor applications. This novel approach was applied to one regression and
one classification task from the field of PM and validated by implementing the inference
on the neural processing unit (NPU) of the QXSP-ML81 Single-Board Computer and the
tensor processing unit (TPU) of the Google Coral. Different quantization levels of the
implementation were tested against common Python and C++ implementations. The novel
implementation reduced the inference time by up to 80% and the mean energy consump-
tion by up to 76% at the lowest precision with only a 0.4% loss of accuracy compared to
the C++ implementation. With the successful utilization of generic Al accelerators, the
performance was further improved with a 94% reduction for both the inference time and
the mean energy consumption.

Keywords: edge computing; smart sensors; interpretable ML; Al accelerator; latency;
energy efficiency

1. Introduction

In recent years, the number of machine learning (ML) applications has increased
rapidly. The area of industrial application ranges from predictive maintenance (PM) [1]
over structural health monitoring (SHM) [2] to different applications in the field of condition
monitoring (CM) [3]. The widespread adoption of ML techniques across various processes
has increased both the number of deployed sensors and the volume of collected data. To
handle the massive amount of data, the focus has shifted from sending the collected data
to centralized units with a high computational power and resources to smart sensors pro-
cessing data directly on the edge. On-sensor pre-processing reduces the energy consumed
by transmitting data to central units [4]. To extend this approach, training and inference
processes can be executed in two different environments. The resource-intensive training
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process can be executed in a computationally powerful cloud system and the inference
can be run directly on the operating sensor. By taking this approach, not only is the data
transmission energy reduced, but the latency, a crucial factor in real-time applications, is
also minimized (Figure 1).
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Figure 1. Edge computing workflow for reducing energy and latency.

These advantages regarding energy consumption and latency lead to a strong desire
to implement ML algorithm inference directly onto sensors. Sensors that combine data
collection and further data processing are referred to as smart sensors [5,6]. In addition
to energy constraints, most smart sensor platforms have a limited storage capacity and
computational power. In particular, complex ML models are computationally expensive
and often need powerful and optimized hardware for them to run efficiently. This repre-
sents a significant challenge for implementing edge Al [7]. Edge computing and edge Al
enhance the process of data processing and the following data transmission by providing
computing resources directly on or near the sensors and the data collection system.

To tackle this problem, many IC and hardware manufacturers are developing hard-
ware dedicated for ML algorithms, particularly neural networks (NNs) [8]. Most of these
dedicated Al accelerators are based on application-specific integrated circuits (ASICs)
or field-programmable gate arrays (FPGAs) to optimize the data processing directly on
the edge [9-11]. Combined with available DL frameworks, like TensorFlow, Keras, or
ONNX [12], and the corresponding DL compilers, this development empowers the efficient
execution of DNNs on dedicated hardware. These frameworks allow for the training
and also the inference on tensor processing units (TPUs), neural processing units (NPUs),
and graphical processing units (GPUs) instead of general-purpose hardware like central
processing units (CPUs), with minimal additional effort in hardware-specific program-
ming [13-15].

These generic Al accelerators often enable computation capabilities through ML inter-
faces and frameworks that are best suited for usage with neural networks (NNs), especially
DNNSs [16-18]. However, DNNs are often criticized for producing uninterpretable results
and exhibiting black-box behavior [19]. Conventional ML algorithms based on feature
extraction (FE), feature selection (FS), and classification or regression (C/R) have gained
attention [20-22] because of their robustness and interpretable properties [23]. Compared
to DL approaches, these FESC/R algorithms comprising FE, FS, and C/R allow the user to
analyze the data and features in each processing step of the ML pipeline freely, offering the
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physical interpretability of cause and effect. This enables a detailed analysis of the behavior
of the ML system and facilitates the interpretation of its outcomes, thereby enhancing the
transparency and reliability of the ML approach. This aspect is of particular importance for
safety-critical applications and industrial environments.

One disadvantage of these interpretable ML algorithms is an inefficient or high-effort
implementation on sensors or near sensors, as resource-constrained hardware often limit
their usage in edge Al. While most of the recent studies [24,25] have focused on the inference
of DNNs on the edge, investigations on and the usage of interpretable ML algorithms are
comparably low. Other studies have tried to enable DNN accelerators for non-ML-based
applications by leveraging the hardware [26], which requires a high-effort programming
and modification step. A different approach is introduced in [27]. This approach tries to
accelerate parts of a signal-processing pipeline on ASICs and FPGAs, but also leads to
high-effort, hardware-specific programming.

We recently introduced the interpretable deep neural network representation (IDNNRep)
to implement the inference of interpretable ML algorithms as DNNs [28-30]. This approach
allows them to be run on typical Al accelerators, reducing the inference time and energy
consumption without any further programming effort. This application-oriented method
breaks down the inference of interpretable ML algorithms into basic mathematical matrix
operations to represent them with DNN layers to enable generic Al accelerators for those
algorithms. The fast matrix algebra allows the user to efficiently implement the inference
on dedicated hardware, which greatly accelerates the matrix and vector operations. With
the IDNNRep, the performance of interpretable ML algorithms is significantly improved
and outperforms traditional computing architectures in terms of energy consumption and
the inference time. This approach combines the interpretable characteristics of FESC/R
algorithms and the efficient implementation of DNNs on dedicated hardware.

This study investigated the implementation of the novel DNN representation of
interpretable ML algorithms on generic Al accelerators. A comparison of the accuracy,
inference time, and energy consumption of the different implementations was benchmarked
on two system-on-chip (SoC) hardware systems, including an NPU or a TPU. These metrics
represent the most crucial figures of merit in edge computing. For this purpose, a detailed
benchmark was executed for one regression and one classification task to compare the
different implementations. The benchmark compared a Python code implementation, a
C++ 17 code implementation, and different quantized IDNNReps executed in a Python
3.12 environment for both tasks regarding the accuracy, energy consumption, current,
and inference time. Additionally, all the different implementations were benchmarked on
both hardware systems. The IDNNRep was compared for three different precision levels
from Floating Points 32 (FP32) and 16 (FP16) to Integer 8 (INT8), based on post-training
quantization (PTQ) [31]. The energy consumption was measured using a hardware-level
approach, which measured the power of the board and calculated the energy consumption
during the inference time.

To address the above-mentioned problems, this paper makes the following key
contributions:

e  Weintroduced a novel method to run interpretable ML on DNN-specific Al accelerators.

e  The proposed method outperforms conventional implementations in terms of the
inference time and energy efficiency.

e  The proposed method was evaluated using implementations at different quantization
levels on two hardware platforms.

The rest of this paper is structured as follows: Section 2 describes the materials and
methods used in this study, including a short explanation of the interpretable ML approach
and the used ML toolbox. Additionally, Section 2 briefly describes the methodology of
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the IDNNRep, the DL frameworks and used hardware, the dataset, and the measurement
setup. Section 3 presents the results of the measurements on the different edge hardware,
including the dedicated Al accelerators. Section 4 discusses the results of the different
implementations, and Section 5 concludes the paper and gives an outlook on future work.

2. Materials and Methods
2.1. Interpretable Machine Learning Approach and ML Toolbox

This paper focuses on implementing the inference of interpretable ML efficiently on
edge hardware. One approach of interpretable ML is to design a workflow that relies on the
input signal’s physically interpretable features. For this purpose, an algorithm consisting
of FE, FS, and C/R is created (FESC/R). The open-source interpretable ML toolbox [32],
implemented in MATLAB R2023b [33], provides different complementary methods. The
demonstration of the functionality of the DNN representation method is based on parts of
the ML toolbox and contains four FE, four FS, and two C/R algorithms.

Additionally, the toolbox provides an automated ML model selection based on a
benchmark comparison of all the available combinations in the toolbox. This allows for the
selection of the best available interpretable ML model for a specific dataset. The ML toolbox,
which forms the basis of the DNN representation in this paper, contains the methods listed
in Table 1.

Table 1. List of the feature extraction, feature selection, classification, and regression algorithms of
the AutoML toolbox, which are implemented as deep neural networks.

Processing Step

Methods

Feature Extraction

Adaptive linear approximation (ALA) [34]
Best Daubechies wavelet (BDW) [35]
Principal component analysis (PCA) [36]
Statistical moment (StatMom) [22]

Feature Selection

Pearson correlation coefficient (Pearson) [37]

RELIEFF [38]

Recursive feature elimination support vector machine (RFESVM) [39]
Spearman correlation coefficient (Spearman) [40]

Classification

Linear discriminant analysis with Mahalanobis distance classification (LDA-MD) [41,42]

Regression

Partial least squares regression (PLSR) [43]

2.1.1. Feature Extraction

FE algorithms aim to reduce dimensionality by extracting the input data’s physically
meaningful, interpretable features. Different FE algorithms extract features from various
domains, allowing developers to use physical or system-specific prior knowledge to extract
useful information. Reducing and representing input data always involves a trade-off,
which involves keeping the number of features low while maximizing information value in
the features. Some of the used FE methods rely on a prior training process to determine the
internal parameters, while others are non-trainable and can be applied directly without
any learning phase.

2.1.2. Feature Selection

FS methods are a supervised component of the machine learning workflow. They
aim to identify the most important features produced during the previous FE step. FS
techniques evaluate and rank the extracted features based on their informational value, to
reduce the data size while retaining as much information as possible.
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2.1.3. Classification/Regression

The final component of the FESC/R pipeline is either a classification or regression
algorithm. This element is also a supervised and trainable part of the workflow, responsible
for generating the final output. Classification algorithms aim to map the input data to
predefined categorical outputs while minimizing the error rate. In contrast, regression
algorithms are used to predict numerical values, typically aiming to minimize metrics such
as the root mean squared error (RMSE).

2.2. Interpretable Deep Neural Network Representation

The core element of this study was the novel approach used to represent the inference
of the trained interpretable ML algorithm as DNNs, the IDNNRep. This section briefly
describes the proposed method; a detailed description of the method is published in [29].
To find an appropriate ML algorithm consisting of an FS, FE, and regression or classification
method, the AutoML toolbox [20] allows for the training and testing of all the available
combinations in the pool of methods listed in Table 1. This phase includes the validation
of each ML algorithm (see Figure 2), typically using 10-fold cross-validation or leave-one-
group-out CV [23]. After the appropriate ML algorithm has been identified, the static
inference of the algorithm can be implemented, for example, by using Python or preferably
C++ code on general-purpose hardware. An alternative approach involves implementing
the inference on FPGAs or ASICs to achieve hardware-level acceleration, at the cost of
a significantly more complex and resource-intensive development process. This study
evaluated the IDNNRep to enable generic Al accelerators such as an NPU or TPU. These
accelerators were implemented as ASICs optimized for processing DNN layers, with their
primary benefits being a reduced inference time and an improved energy efficiency. The
hardware was developed to enable and optimize Al inference on the edge, directly within
the data acquisition system.

Novel Approach — IDNNRep

Al Accelerators

Create — | Deep |
Interpretable Algorith Generate Neural Neural Processing Unit ‘
ML Algorithm gorithm Network \ Frameworks

Learning ‘ ’ ‘
‘ ‘ ‘ Tensor Processing Unit ‘ :

| and Compiler |

Trained

Feature Extraction Algorithm TS e L DL

General Purpose
y lid: Final
Classification/ no | Algorithm |yes | Algorithm

Hardware
Standard
Implementation Central Processing
Regression Unit

Figure 2. Flowchart of the IDNNRep used to enable generic Al accelerators for interpretable ML.

This study investigated the difference in the implementation of the IDNNRep on a standard CPU
compared to NPU/TPU processors regarding the energy consumption and inference time.

The IDNNRep breaks the static inference operations of the interpretable ML algorithm
down into basic mathematical operations. These mathematical operations, including sum-
mation, division, multiplication, square root calculations, and filtering, can be efficiently
implemented using standard DNN layers. After the initial training of the FESC/R algo-
rithm, no further modelling is required. To convert the inference successfully to an efficient
hardware-executable format, an in-depth knowledge of the to-be-implemented FESC/R
algorithms is necessary. Using this approach, the execution of the inference process of an
interpretable ML algorithm can be seen as a static computational graph that sequentially
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performs mathematical operations. As an example of the IDNNRep, Figure 3 illustrates the
DNN representations of the BDW and PCA feature extraction.
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Figure 3. (a) IDNNRep of the best Daubechies wavelet extractor; (b) IDNNRep of the principal

component analysis extractor.

The implementation of the full AutoML toolbox is described in detail in a previous
study [29]. To create the inference of a complete FESC/R algorithm, individual compu-
tational graphs were concatenated, enabling the dynamic integration of the methods. In
this paper, the IDNNRep was applied to the open-source AutoML toolbox [32]; however,
it is generalizable to arbitrary mathematical and statistically based algorithms. Once the
conversion is complete, additional benefits of DNNs become available beyond the efficient
implementation on edge hardware, including transfer learning (TL) techniques, which are
typically not applicable to conventional ML algorithms.

2.3. Deep Learning Frameworks

Due to the wide use of DL, a wide range of deep learning frameworks (DLFs) are
available. Two of the most common frameworks are the Open Neural Network Exchange
(ONNX) [44] and TensorFlow [45]. The benefit of these two DLFs is the interoperability
due to easy conversion methods between both frameworks. Both deliver runtime versions
for the model inference on the edge, named ONNX Runtime and TF Lite, which allow for
efficient implementation on edge hardware.

Additionally, common converters enable the quantization [46,47] of the DNN from
FP32 to FP16 and INT8 [48]. The quantization allows for an investigation of implementa-
tions of the DNN with different levels of precision. Since most Al accelerators, including
the hardware used in this study, only support quantized INT8 DNNSs, the process of quan-
tization is a prerequisite. In TensorFlow Lite, FP16 models are executed with native FP16
instructions on CPUs that support them, while on CPUs without full FP16 support, the com-
putations are internally converted to FP32 and the results are cast back to FP16. In contrast,
INT8 models utilize optimized integer kernels that leverage specialized hardware instruc-
tions. In this study, TensorFlow and TensorFlow Lite were used as DLFs. This decision was
based on the fact that both hardware platforms tested in this study support the delegation
of TensorFlow Lite operations to the specific Al accelerator. Post-training quantization
(PTQ) was selected as a quantization technique [46]. This quantization method enabled
the interpretability of the ML models to be maintained, which could be compromised by
quantization-aware training. Quantization-aware training would retrain the weights of
the IDNNRep to optimize the results. Retraining would alter the predefined architecture
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and weights of the IDNNRep networks, leading to changes in the extracted features and,
consequently, in the interpretability based on those features.

2.4. Hardware

To demonstrate the generic usage of the novel approach with different Al accelerators,
two different hardware platforms were chosen to demonstrate the functionality of the
IDNNRep. The hardware platforms were two single-board computers based on the NXP
iMX 8M Plus system-on-chip (SoC) [49]. The main difference between both platforms
was the unique co-processors. The QSXP-ML81 included an NPU, while the Coral Dev
Board [50] included a TPU. These Al co-processors are based on ASICs providing high-
performance ML inferencing. This study compared the different implementations on two
platforms. The following section briefly describes the specifications and functionalities of
the two hardware platforms.

2.4.1. NXP Neural Processing Unit

To enable the NPU, the IDNNRep of the FESC/R algorithms was deployed as a
TensorFlow Lite model on the QSXP-ML81. The model must be quantized to INTS8 precision.
The delegation of the TensorFlow Lite model can be performed in a Python script by
creating an interpreter of the model that points to the NNAPIL The NNAPI then delegates
the supported DNN operation of the DNN representation to the NPU (Figure 4a). The
NNAPI executes the supported operations on the NPU and the unsupported operations
on the CPU. Additionally, the QSXP-MLS81 enables the efficient execution of the quantized
INT8 DNNs using XNNPACK on the CPU of the LMX8 M processor.

DNN DNN

Representation Representation

TensorFlow TensorFlow

Input

XNNPACK

[

) Output QSXP-ML81 Coral
TensorFlow Lite Input TescHFIGH Lite Output

INT8 TPU Edge Compiler
NNAPI INT8

CPU: ARM Cortex

Edge TPU
Delegate Runtime
Delegate

NPU: Al Accelerator

TPU: Al Accelerator

(a) (b)

Figure 4. (a) Software stack of the neural processing unit on the QXSP-MLS81; (b) software stack of
the tensor processing unit on Coral.

2.4.2. Google Tensor Processing Unit

The Google Coral TPU supports TensorFlow Lite models, also within a Python script,
which delegates the appropriate DNN operations to the TPU (Figure 4b). To provide a
high-speed neural network performance, the edge TPU supports a specific set of DNN
operations that can be executed on the TPU. An edge-compiled version of the model has to
be created to run the model on the TPU.
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2.5. Data

The data used are an example from the field of PM recorded on a hydraulic system
(HS) equipped with multiple sensors [51]. The dataset consisted of four targets, which
can be seen as separate problems. The goal was to detect various faults or degradations
of the system. The system variables, the valve state and accumulator, were selected as the
target variables for training the algorithms in this paper. Both the targets were treated
as two independent datasets: HS (Acm) and HS (Valve). The work cycle of the pressure
sensor (PS1) shows the best correlation with these targets. This allows a single dataset to be
utilized for both a regression and a classification problem (Table 2).

Table 2. Description of the hydraulic system dataset.

Dataset Observations Signal Size Task
HS (Valve) 1449 6000 Classification
HS (Acm) 1449 6000 Regression

2.6. Evaluation

The evaluation of the IDNNRep was based on several measurements, with the NXP
QSXP-ML81 and Google Coral representing an application-specific analysis to allow for
concrete statements in terms of the inference time and energy consumption. The mea-
surement setup consisted of three main components: a Keithley 2602B Source Meter, the
device under test (DUT), and a data store for the recorded values. Figure 5 describes the
measurement setup used to measure the inference time, current, and energy consumption.

Keithley 2602B
Source Meter

® w
DUT
—_— Google NXP
— Coral QSXP-ML81 -
— [
g H
T
Data Store
Data * Voltage Data

* Current
* Runtime

Figure 5. Testbench for inference time and energy consumption measurement.

The Keithley 2602B Source Meter [52] is a highly accurate source measure unit (SMU)
that combines a high-precision voltage or current source with a high-precision power
measurement, allowing for an accurate measurement of the power consumption of the
connected hardware. Compared to other studies [53,54], this represents a hardware-level
approach that can be used to measure the actual consumption of connected edge hardware.
The DUT was connected to the source meter with a USB-C connection. The source meter
delivered a constant 5 V DC voltage to power the DUT, while the current consumed by
the DUT was measured by the source meter. Table 3 lists the specifications for the current
measurement and the voltage supply.
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Table 3. Measurement and source specification of the Keithley 2602B source meter.

Range Accuracy
Voltage Source Specification 0..6V 0.02% £ 1.8 mV
Current Measurement Specification 0..3A 0.05% £ 3.5 mA

The measurement accuracies were incorporated into the energy evaluation via error
propagation to ensure the validity of the measurement results. The specific design of the
experiment for each measurement is described in the following sections. Except for the C++
implementation, all variants were executed using Python scripts. The DNN models were
invoked through the TensorFlow and Tensor Flow Lite APIs available in Python, which
also manage delegation to the Al accelerators [55].

2.6.1. Accuracy

In addition to the hardware-related metrics on the edge, such as the inference time
and energy consumption, the accuracy of the implemented interpretable ML algorithms
represents a key evaluation metric, especially concerning the changing quantization levels
of the underlying DNN representations. The accuracy of both the classification accj,ss and
regression accreg models was assessed as follows, respectively:

ACCclgss = 1-

S|
2

[Ypredi 74‘ Yactuall}r (1)
i=1

2
1
\/HZ?_1 (Ypredi - Yactuali)

max (Yactuul)

()

ACCreg = 1-—

Yp

date the prediction of the interpretable ML algorithms, a 10-fold stratified cross-validation

red describes the prediction of the model and Y4 is the true target value. To vali-

was performed. This validation approach divides the dataset into ten equally sized subsets
while preserving the original class distribution across the folds. The model was trained on
nine folds for each iteration and evaluated on the remaining one. After all ten folds had
been used as test sets once, the overall accuracy was computed based on the aggregated
predictions across all the test folds.

2.6.2. Inference Time

The inference time comparison for the different implementations of the interpretable
ML algorithms was based on two key metrics. The first metric was the mean inference time
t, measured using the high-resolution timing libraries in Python and C++ [56,57]. Each
implementation was executed k = 10,000 times, where each inference time f; was recorded.
After the 10,000 inferences, the mean inference time was calculated as follows:

E:

==

k
Yot 3)
i=1

In addition to the mean inference time, the standard deviation At was calculated to
show the relevance of the differences between the inference time measurement results.
To ensure that the variations caused by initialization did not influence the results, the
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initialization phases were excluded from the measurement, so that the observed inference
times followed a normal distribution N (f, Atz) :

At = (t;—1)° @

1 k
k=14

The resulting inference time is presented in a bar chart with the height of the mean
and an additional error bar representing the standard deviation.

2.6.3. Energy Consumption

Another metric under investigation was the energy consumption. The energy con-
sumption was derived from the current and voltage measurements taken by the SMU. Both
were recorded at a sampling rate of 50 Hz during the 10,000 inferences. A sliding RMS
filter, with a window size of 100 samples, was applied to the current signal to improve the
signal quality and reduce measurement noise (Figure 6).

Sliding RMS Filtering of Current Signal

0.48 T 1 0.75
Idle Current QSXP-ML81
o46Fr———+— F— | RMS Filtered Current
Idle Current Coral
0.7
0.44
0.42 - i
04 r

Current [A]
Current [A]

0.38 VAWM A DA AAAAAA A WA A aory O

0.36 |-
10.55

0.32 . L L L L . . los

Time [s]
Figure 6. Example of RMS filtering on the current in idle mode for both boards.

The power P(t;) was multiplied by the sample time t; and then summed over the total
number of samples 7 to calculate the energy W,;; for all inferences:

Wa = Zp(ti)'ts = Z;U' I(t;)-ts 5)

By summing up the product of the constant voltage U and the discrete currents I(t;)
during the k inferences, the total electrical energy consumption over all the inferences was
calculated. By dividing the total energy by the number of inferences k, an estimation for
one inference Wy,.,;, was achieved:

Wa

Wmean = T (6)

The mean energy Wiy,eqan simulates an inference if the edge hardware switches between
inference and a sleep mode with very low energy consumption. Another important energy-
related metric is the difference between the mean energy consumption Wy,es, and the
energy consumed in idle mode W;4, during the same inference time, namely the load
energy Wj,,4 (see Figure 7).



Sensors 2025, 25, 5681

11 of 25

Energy Comparison

Wmean = Wioad + Widie

\ ,lTirne

tioad

Figure 7. The difference between the mean energy and the load energy.

This metric simulates the energy consumption of edge devices if the device does not
switch into sleep mode and remains in idle mode. The specific hardware in use largely
determines the idle current I;;,. Beyond the absolute energy consumption, this metric
evaluates the relative efficiency gain compared to the idle state. As shown in Figure 7 Wj,,4,
the difference between the mean energy consumption and the energy consumed during
idle mode is presented.

n
Wioad_ati = Wait — Wiae = Wy — Y U- Tigr (£) £ )
i=1
By dividing the difference Wiy, 411 by the number of inferences k, the average energy
consumption per inference W,,; can be determined. This value was derived from the
current measurements and was calculated as follows:

Wigad = Wlo;zcd_ﬂll (8)
The uncertainties in the current measurement Al and the voltage source AU were
considered via error propagation applied to the energy consumption AW,;, enabling a
comparison between the different implementations. This allowed for an analysis of the
influence of the measurement uncertainty on the results. As the integer number of the
inferences was free of uncertainty, the error propagation for the energy measurement
was determined using Gaussian error propagation, which assumes that AU and Al are
statistically independent:

2 2
AW, = \/ (dz;l -Au) + (d?’;l ~AI> ©)

= \/i (I(t;)- AU-t)* 4 (U- AI(t;)-t5)? (10)

i=1

AU and AI describe the current measurement’s combined uncertainty based on the
SMU specifications given in Table 3. The combined uncertainty consists of the relative
uncertainty (AI,,;, AU, ) and the absolute uncertainty (A, , AU,,s) and is calculated
as follows:

rel” abs’



Sensors 2025, 25, 5681 12 of 25

Al = \/(Alrel)z + (Alabs)z (11)

AU = \/(Aurel)2 + (Auahs)z (12)

This error propagation is depicted by the error bars in the bar charts for the energy
consumption shown in Section 3.

3. Results

This section presents the results of the regression and classification tasks performed
on the selected edge hardware. First, the accuracy at each precision level and the resulting
DNN representation for both tasks are presented. Subsequently, the measured inference
time, current, and energy consumption are analyzed.

3.1. Interpretable ML Algorithm

As mentioned earlier, only the best possible combination of the algorithms in the
implemented AutoML toolbox was converted into the DNN representation. These inter-
pretable FESC/R algorithms formed the base of the later-created DNN representations.
The regression stack for the HS (Acm) dataset consisted of the StatMom extractor, followed
by RELIEFF to select 15 features and the PLSR regression. For the classification, the best
stack consisted of the ALA extractor, the Pearson correlation to select the 10 highest-ranked
features, and a final LDA-MD classification. The achieved accuracies are listed in Table 4.

Table 4. Accuracy comparison of regression and classification task for the different precision levels.

Accuracy: FP32

Task Python, C++, DNN Accuracy: FP16 Accuracy: INT8
Reoression 91.8% 90.4% 85.9%

& (RMSE: 10.6 bar) (RMSE: 12.5 bar) (RMSE: 18.3 bar)
Classification 99.9% 99.8% 99.4%

Since the focus was more on the inference time and energy performance, the accuracy
is briefly discussed in this section. Quantizing from FP32 to INTS resulted in a 5.9% drop
in the regression accuracy. Although this may seem like a substantial loss in accuracy, it
represents only a 7.7 bar increase in the RMSE, which should be considered in relation to
the target range (90-130 bar) to assess whether the prediction remains reasonable. For the
classification accuracy, the reduction in precision from FP32 to INT8 resulted in a drop of
only 0.5%. In a preliminary measurement, a first comparison between the Python and the
C++ code implementations of the classification and regression algorithms determined that
both showed huge differences, particularly concerning the inference time and the energy
consumption. Figure 8 illustrates the significant gap in the performance between the C++
and Python implementations on a logarithmic scale. The pre-compilation of the C++ code
allowed the CPU to execute instructions directly with minimal overhead. Python, as an
interpreted language, introduces additional layers between the code and hardware, causing
runtime overhead and a reduced execution efficiency. In the following comparison, C++
was therefore used as the baseline signal against which the IDNNRep was evaluated.
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Figure 8. (a) Inference time comparison of the C++ and Python implementation; (b) energy compari-
son of the C++ and Python implementation.
3.2. IDNNRep
3.2.1. Regression Dataset HS (Acm)
The complete regression network consisted of the concatenated networks of the Stat-
Mom, RELIEFF, and PLSR IDNNRep. The StatMom mainly consisted of basic mathematical
operations like addition, division, multiplication, and square root layers. These layers were
combined with average pooling and fully connected layers. The RELIEFF algorithm can be
implemented with a single fully connected layer, as can the PLSR. The resulting DNN is
shown in Figure 9. A detailed description of the resulting DNN representation is provided
in [29].
I 3.
Statistical
Moments
| RELIEFF |
| PLSR |

Input/Output
Fully Connected
Concatenation

]
1
I
=

Avrg. Pooling

.
N
C_]
[

Division
Addition
Multiplication

SQRT

Figure 9. DNN representation of the interpretable ML algorithm for the regression task.
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3.2.2. Classification Dataset HS (Valve)

The classification network consisted of the representations of the ALA extractor, the
Pearson selection, and the final LDA Mahalanobis classifier (see Figure 10). The ALA extrac-
tor comprised six fully connected layers, one addition layer, and one concatenation layer.
The selection, similar to the regression network, was represented by one fully connected
layer. The LDA-MD classifier consisted of four paths, representing the four target classes of
the dataset. Each path calculated the LDA transformation and the corresponding Maha-
lanobis distance to each class center with four fully connected layers, two addition layers,
and one multiplication layer. Afterward, the sign was changed, the calculated distances
were combined, and the smallest distance was determined with a max. pooling layer.

—

Adaptive Linear —
Approximation

Pearson

LDA Mahalanobis |

|:] Input/Output ﬁ Max. Pooling
I:l Fully Connected - Addition
- Concatenation - Multiplication

Figure 10. DNN representation of the interpretable ML algorithm for the classification task.

3.3. Inference Time

The inference time comparison in Figure 11 shows five implementations of the algo-
rithms on the two hardware platforms tested, i.e., C++ FP32, FP16, INT8 on the CPU (ARM
cortex), and INT8, using the respective Al accelerator.
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Figure 11. (a) Inference time of regression task on QXSP-ML81; (b) inference time of regression task
on QXSP-MLS81; (c) inference time of classification task on QXSP-ML81; and (d) inference time of
classification task on Coral.

3.3.1. Regression Dataset HS (Acm)

On the QXSP-MLS81 platform, the Python-based reference implementation showed the
highest inference time, averaging 155.20 ms per inference (Figure 8a). In contrast, the low-
level C++ implementation significantly reduced the inference time to 2.49 ms, representing
a substantial performance improvement (Figure 11a). The FP32 and FP16 implementations
yielded nearly identical inference times—1.47 and 1.50 ms, respectively—with overlapping
standard deviations. INT8 quantization led to a further reduction, halving the inference
time to 0.75 ms. The INT8 implementation executed on the NPU achieved the lowest
inference time of only 0.46 ms per inference, a further improvement of xx% compared to
the ARM cortex CPU.

The inference time measurements on the Coral board followed a similar trend to those
observed on the QXSP-MLS81 platform (Figure 11b). Again, the Python implementation
exhibited the highest inference time, with 130.27 ms (Figure 8a), comparable to the Python
inference time on the QXSP-MLS81. The C++ implementation significantly reduced this to
2.68 ms. The FP32 DNN representation further improved the performance, reducing the
inference time to 0.91 ms. Interestingly, the FP16 variant showed an inference time increase
of 1.29 ms, making it less efficient than FP32 in this case. The INT8-quantized version led to
an inference time of 0.85 ms, and the INT8 implementation delegated to the TPU achieved
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the lowest inference time at 0.41 ms, a reduction of more than 50%, compared to the INT8
version on the CPU.

3.3.2. Classification Dataset HS (Valve)

The same analysis was performed for the classification task. On the QXSP-MLS81,
the Python implementation again showed the longest inference time, averaging 6.50 ms
(Figure 8a). The C++ implementation reduced this to 0.87 ms. The FP32 model achieved an
inference time of 0.68 ms, while the FP16 variant, similar to the regression task, performed
slightly worse, with an inference time of 0.71 ms. Substantial improvements were observed
with INT8 quantization: the INT8 implementation on the CPU achieved 0.18 ms, and
further acceleration was achieved by the INT8 NPU version, which achieved the lowest
observed inference time of only 0.05 ms, i.e., an improvement of more than 70% vs. the
CPU and nearly 95% compared to the C++ reference implementation, with only a minimal
loss of accuracy.

On the Coral board, the Python implementation also exhibited the highest inference
time, at 9.12 ms. The C++ implementation significantly improved the performance, re-
ducing the inference time to 0.82 ms. Additional reductions were achieved using DNN
representations: the FP32 model lowered the inference time to 0.63 ms, while the FP16
version was again slightly higher, with 0.69 ms. A substantial performance gain was ob-
served with the INT8-quantized model, achieving an inference time of 0.23 ms. The best
performance was obtained with the INT8 model executed on Coral’s NPU, reducing the
inference time to 0.09 ms, an improvement of 60% vs. the CPU and approx. 89% compared
to the C++ reference implementation.

Table 5 presents the relative change in the inference time for the regression and clas-
sification tasks compared to the C++ implementation, which was seen as the baseline.
The results highlight the performance improvements achieved using the different DNN
representations, with the change in the percentage calculated relative to the C++ imple-
mentation. The table illustrates that each quantization level except FP16 led to a noticeable
decrease in the inference time. The most significant improvements were observed when
executing the interpretable ML models on dedicated Al accelerators, resulting in inference
time reductions of up to 94% compared to the C++ baseline.

Table 5. Inference time comparison of the IDNNRep relative to the C++ implementations. Positive
values indicate an increased inference time, while negative values indicate a reduced inference time
compared to the C++ implementations. The percentage was calculated by the accurate values.

Regression [%] Classification [%]
QXSP-MLS81 Coral QXSP-MLS81 Coral
FP32 —40.8 —65.9 -229 —22.3
FP16 —40.0 —51.9 —195 —15.3
INT8 —69.9 —68.3 —80.0 -72.1
INT8 AI ACC —81.5 —84.6 —94.0 —88.7

3.4. Current

Figure 12 depicts the SMU’s current measurements while executing 10,000 inferences
at a constant voltage level. The QXSP-ML81 operated at an idle current of approx. 0.38 A
(Figure 12a). The highest current during the regression tasks was observed for the FP32
and FP16 DNN implementations, each reaching approx. 0.54 A. The Python and INT8
implementations followed closely, with approx. 0.48 A. The inference time for the Python
code can be seen in Figure 8, as Figure 12 does not show the completion of the task for this
code. The C++ implementation showed a slightly lower current consumption, at 0.44 A.
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The lowest current was observed for the INT8 implementation executed on the NPU with
approx. 0.43 A.

Current Requirement for the Regression Task on QSXP-ML81

Current Requirement for the Regression Task on Coral
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Figure 12. (a) Current of regression task on QXSP-ML81; (b) current of regression task on Coral;
(c) current of classification task on QXSP-MLS81; and (d) current of classification task on Coral.

The Coral board showed a higher idle current consumption than the QXSP-MLS8]1,
drawing approx. 0.67 A. Among the regression tasks, the highest current was observed
for the FP16 implementation of the DNN, reaching 0.83 A. The FP32 implementation and
the INT8 variant executed on the TPU showed nearly identical current levels of around
0.82 A. A slightly lower current consumption was measured for the INT8 (CPU) and Python
implementations, at 0.79 and 0.78 A, respectively. The lowest current was recorded for the
C++ implementation, with approx. 0.76 A.

For the classification task on the QXSP-MLS81, the highest current consumption was
observed during the execution of the DNN FP32 and FP16 implementations, drawing
approx. 0.54 A. The DNN INT8 implementation followed, with a current demand of 0.51 A,
while the Python implementation consumed 0.48 A. The INT8 model executed on the
NPU further reduced the current consumption to 0.46 A, slightly higher than the C++
implementation, which showed the lowest consumption at 0.44 A.

For the classification on the Coral board, the highest current was consumed by the
DNN implementations executed on the CPU, with the DNN FP32 and DNN INT8 needing
0.86 A and the DNN FP16 being slightly higher, with 0.87 A. The DNN INT8 TPU imple-
mentation was slightly more efficient, with a demand of 0.83 A. The currents for the Python
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and C++ implementations were similar to the regression problem with 0.78 and 0.75 A,
respectively.
3.5. Energy Consumption

The energy consumption metric reflects the combined effects of the inference time and
the current requirement to execute the inference, and is shown in Figure 13.
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Figure 13. (a) Energy of regression task on QXSP-ML81; (b) energy of regression task on Coral;
(c) energy of classification task on QXSP-ML81; and (d) energy of classification task on Coral. The bar
graphs show both the total energy consumption W,eqa; and the difference to the idle state Wy,,;.

Among all the implementations, the Python version was the most energy-inefficient for
the regression tasks, with a mean consumption of 374 m] per inference (see Figure 8) on the
QXSP-ML81 and 505 mJ on the Coral board. The C++ implementation significantly reduced
the mean energy consumption to 5.53 mJ (QXSP-ML81) and 10.24 m]J (Coral). Notably, the
FP32 DNN representation consumed even less energy than the C++ baseline, achieving
3.98 mJ on the QXSP-ML81 and 3.72 m] on the Coral. In contrast, the FP16 implementation
was slightly less efficient, requiring 4.00 and 5.34 m], respectively. Further reductions
were achieved through INT8 quantization. On the QXSP-MLS81, the INT8 implementation
lowered the mean energy consumption to 2.01 mJ, while on the Coral board, it achieved
3.37 mJ. The most energy-efficient results were obtained using the hardware accelerators:



Sensors 2025, 25, 5681

19 of 25

the INT8 NPU implementation on the QXSP-ML81 reduced the energy use to 1.24 m], while
the INT8 TPU implementation on the Coral achieved 1.67 m].

The mean energy showed a larger improvement in the higher-precision DNN repre-
sentations than the load energy. The load energy for C++ was 0.80 mJ on the QXSP-ML81
and 1.30 mJ on the Coral. On the one hand, the FP32 and the FP16 representations increased
the load consumption on the QXSP-MLS81 to 1.15 and 1.16 MJ. On the other hand, the
implementations reached 0.67 and 1.10 m] on the Coral, representing a reduction compared
to C++. The INT8 implementations then decreased the consumption for both hardware
variants and for the implementation on the CPU and Al accelerators (see Figure 13a,b)
compared to the corresponding C++ implementation.

The comparison of the mean energy consumption per inference for the classification
showed that the Python code implementation had the highest mean energy consumption,
with 15.73 mJ on the QSXP-ML81 and 35.54 m] on the Coral. The C++ implementation
reduced the mean energy consumption to 1.89 mJ on the QSXP-ML81 and 3.08 m] on the
Coral. The DNN FP32 reached 1.85 and 2.76 m] and represents a further improvement to the
C++ implementation. On the one hand, the DNN FP16 increased the energy consumption
at the QSXP-MLS81 to 1.93 m]J. On the other hand, on the Coral, it was nearly the same
compared to the C++ implementation, with 2.98 m]. The INT8 representation on the CPU
Arm Cortex and the INT8 NPU and TPU versions made a large improvement. The INT8
implementation decreased the energy consumption to 0.45 mJ on the QSXP-MLS81 and to
0.98 mJ on the Coral. When enabling the Al accelerator, the NPU reached an improvement
to 0.12 mJ, and the TPU showed an improvement to 0.37 m]J.

Further comparisons with the load energy showed some trends for the classification
task. The C++ implementation outperformed the high-precision DNN representation, with
0.24 m] on the QXSP-ML81 and 0.35 mJ on the Coral board. The load energy for the FP32
and FP16 implementations represented an increase to 0.55 and 0.58 m]J on the QXSP-ML81
and 0.64 and 0.67 m] on the Coral. The further quantization to INT8 improved the load
energy to 0.11 and 0.22 m] for the QXSP-ML81 and the Coral, respectively. The use of the
Al accelerators then achieved a further improvement to 0.02 mJ for the NPU and 0.068 m]
for the TPU.

Similar to the inference time evaluation, Table 6 presents the relative energy consump-
tion compared to the C++ implementation across various quantization levels of the DNN
representations. The comparison included the mean energy consumption Wy, and the
load energy consumption Wj,,4, expressed as percentage changes. The table highlights
that nearly all the DNN representations demonstrated a reduction in the mean energy
consumption. However, when considering the load energy, which excludes idle power
consumption, significant improvements were primarily observed for the low-precision
data types, such as INT8 and INT8 with hardware acceleration.

Table 6. Energy consumption comparison of the DNN representations relative to the C++ implemen-
tations. Positive values indicate an increased energy consumption, while negative values indicate a
reduced energy consumption compared to the C++ implementations.

Regression [%] Classification [%]
QXSP-MLS81 Coral QXSP-MLS81 Coral
Wmean Wload Wmean Wload Wmean Wload Wmean Wload
FP32 —28.6 +43.6 —63.6 —47.0 —2.2 +127.2 —-10.3 +84.2
FP16 —27.6 +45.4 —47.9 —18.8 —-2.1 +137.0 —-34 +91.4
INTS8 —67.1 —50.8 —67.1 —58.9 —76.3 —53.5 —68.1 —36.8
INT8 AT ACC —82.0 —85.6 —83.7 —-76.8 —93.6 —-90.9 —88.0 —80.5
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4. Discussion

This paper demonstrates a novel approach that allows for the implementation of
the inferences of interpretable ML algorithms as DNNs on generic Al accelerators. The
IDNNRep was tested with the Coral TPU and the QXSP-ML81 NPU. The benchmark tests
performed in this paper demonstrate a significant inference time improvement compared to
common implementations in C++ and especially in Python. First, this paper demonstrates
the effect of quantization on the accuracy of the algorithms. On the one hand, a lower
precision resulted in a higher prediction error for the algorithm. On the other hand, the
quantization enabled, besides a reasonable drop in accuracy, the efficient implementation of
these algorithms on edge hardware. In terms of numbers, the inference time was reduced
by up to 94.0% using Al accelerators compared to the already efficient C++ implementation.
Similarly, the DNN representations executed on the CPU led to an improvement in all the
precision types. The FP32 version reduced the inference time by up to 65.9%, the FP16
version by 51.9%, and the INT8 version by 80.0% compared to the C++ implementation.

The comparison of the FP32 and FP16 showed that the FP32 inference outperformed
the FP16 regarding the inference time. Since the FP16 models are reduced in memory
and bandwidth requirements, they should normally execute faster than the FP32 models.
This behavior could be triggered by the internal casting operation of TensorFlow Lite,
which can slow down the inference process [58]. This internal casting process can occur
if operations do not support the FP16 calculation, which leads to additional latency and
memory effort. The non-availability of the delegate for FP16 operations leads to an FP32
inference with a casting overhead, which results in an increased inference time, even if the
memory and bandwidth requirements are decreased. This internal casting overhead can be
mitigated by employing mixed-precision models rather than full FP16 models, as mixed
precision selectively uses FP16 where supported, while retaining FP32 for operations that
lack efficient FP16 implementations, thereby reducing the inference time.

Besides the improvement in the inference time, this paper also demonstrates a sig-
nificant reduction in the energy consumption. This metric was investigated using an
application-based method, which depends on the hardware and operation modes, showing
a significant decrease in the mean energy consumption of up to 93.6% with Al accelerators.
Nearly all the quantization levels decreased the amount of consumed mean energy. The
FP32 decreased the mean energy by up to 63.6%, the FP16 by up to 47.9%, and the INT8
by up to 76.3%. As for the inference time, FP32 outperformed FP16, although memory
benefits were derived from the lower-precision networks. This was due to the high correla-
tion between the inference time and energy: due to the similar current demand for both
implementations, the increased inference time of the FP16 version also resulted in a higher
energy consumption.

The load energy consumption resulted in a lower improvement than the mean energy
consumption improvement. At the higher quantization level, the DNNs even resulted
in a decrease in the load energy. The lower-quantization-level INT8 version still outper-
formed the common C++ implementation, and with the further usage of Al accelerators,
this improvement increased to 90.8%. The results indicate that the inference time has a
stronger impact on the mean energy consumption than on the load energy consumption.
In comparison to the inference time, the current draw has a greater effect on the load
energy than on the mean energy. The mean energy metric assumes that the energy usage
between inferences was negligible, while the load energy metric accounts for idle energy
consumption during those periods. This distinction enables a more precise evaluation of
the implementation efficiency across different operating modes. Incorporating a sleep mode
between inferences is recommended to further reduce the overall energy consumption.
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This strategy can significantly improve the mean energy usage and reduce idle-related
overhead reflected in the load energy metric.

Although this study demonstrated a reduction in the inference time and the overall
energy consumption, both critical metrics for system integration, it is essential to consider
the specific application context of the algorithm. Suppose that the inference process
constitutes only a small portion of the mean operational time. In that case, its impact
on the energy efficiency may be relatively minor compared to the energy consumed during
idle periods.

5. Conclusions and Future Work

This study explored the inference time and energy efficiency benefits of the IDNNRep
for executing the interpretable ML algorithm inference as DNN representations on the
edge hardware, including generic Al accelerators. This enables smart sensors to process
data on the edge, reducing the latency and increasing the energy efficiency. With this
novel approach, the volume of transmitted data over sensor networks is significantly
diminished, shifting from continuous raw data streams to compact prediction outputs. The
IDNNRep was demonstrated on an open-source AutoML toolbox. The proposed method
outperformed conventional implementations of interpretable ML inference on edge devices
in terms of both the inference time and the energy consumption, even without utilizing
dedicated AI accelerators. When Al accelerators were employed, further improvements
in both metrics were achieved. Deploying generic Al accelerators requires no additional
effort once the DNN representation is created, enabling the interpretable ML inference to
benefit from widely available hardware acceleration for DNNSs, but this comes at a price of
a reduced accuracy caused by the necessary quantization.

Optimizing the system’s operational modes, such as incorporating sleep modes, can
yield further energy savings. The investigation in this paper was based on the comparative
measurement of two selected hardware platforms. Due to hardware-dependent effects, the
cross-comparison between these platforms was more complex and therefore not included
in this study.

Future research could explore novel methods that further leverage the enhanced
inference time and energy efficiency of quantized INT8 models. Systematic oversampling
techniques may be applied to address the typical loss in the prediction accuracy associated
with INT8 representations, e.g., by performing inference over multiple inputs to recover
the lost accuracy.

An additional benefit that should be investigated in the future is the option offered
by the IDNNRep to also train the interpretable ML algorithms on the edge hardware to
allow for the influence of domain shifts to be reduced [23]. Compared to the conventional
interpretable ML algorithms, which are limited to standardization and normalization
techniques, this approach allows for the usage of transfer learning techniques, which have
outperformed conventional methods in other studies [59]. This also includes different
DNN-specific approaches, like federate learning.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

ALA Adaptive Linear Approximation

Acm Accumulator (Hydraulic)

ASIC Application-Specific Integrated Circuit

BDW Best Daubechies Wavelet

C/R Classification and Regression

CPU Central Processing Unit

DLF Deep Learning Framework

DNN Deep Neural Network

DUT Device under Test

FE Feature Extraction

FESC/R Feature Extraction, Feature Selection, and Regression or Classification
FP16 Floating Point 16

FP32 Floating Point 32

FPGA Field-Programmable Gate Array

FS Feature Selection

GM Gas Measurement

GPU Graphical Processing Unit

HS Hydraulic System

IDNNRep Interpretable Deep Neural Network Representation
INTS8 Integer 8

LDA-MD  Linear Discriminant Analysis with Mahalanobis Distance Classification
ML Machine Learning

NPU Neural Processing Unit

ONNX Open Neural Network Exchange

PCA Principal Component Analysis

Pearson Pearson Correlation Coefficient

PLSR Partial Least Squares Regression

PM Predictive Maintenance

PTQ Post-Training Quantization

RFESVM Recursive Feature Elimination Support Vector Machine
RMSE Root Mean Square Error

SHM Structural Health Monitoring

SM Source Meter

SMU Source Measure Unit

SoC System-on-Chip

Spearman  Spearman Correlation Coefficient
StatMom  Statistical Moment

TL Transfer Learning
TPU Tensor Processing Unit
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