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Abstract

The acquisition, reproduction, analysis and modification of visual infor-
mation are important in all parts of human life – even more so since the
advent of sufficiently capable computers. Especially the computational
treatment of the temporal dimension is challenging, but also beneficial for
many applications. This thesis explores the temporal dimension in three
different contexts:

For the detection of semantically relevant manipulations, it demonstrates
that previous detection methods can be fooled by the same improvements
to the manipulation technique that would fool human observers. New
methods are presented to nevertheless achieve high detection accuracy,
and especially temporal dependencies are shown to help generalise to
unseen manipulation methods.

For the synthesis of new video signals, previous work has constructed
models that entangle spatial and temporal features. This thesis separates
these features, reducing memory demand and computation time, as well
as the amount of data necessary for training.

For the reconstruction of video signals from event data, a data modality for
which training data is scarce, the thesis presents a method to turn event
data into watchable signals, without using any training data at all, but
outperforming previous methods that do so.

In each of these contexts, the thesis highlights the degree to which
solutions depend on training sets of different sizes, and the impact this
has on performance and computational cost.
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Zusammenfassung

Erfassung, Reproduktion, Analyse und Modifikation visueller Informatio-
nen sind wichtig für alle Bereiche menschlichen Lebens – insbesondere seit
der Verfügbarkeit leistungsfähiger Rechner. Vor allem die Zeit-Dimension
ist informatisch herausfordernd, aber auch lohnenswert für viele An-
wendungen. Die vorliegende Arbeit untersucht diese Dimension in drei
verschiedenen Kontexten:

Für die Erkennung semantisch relevanter Manipulationen wird gezeigt,
dass Manipulationen, die menschliche Betrachter zuverlässig täuschen,
auch die bisherigen maschinellen Erkenner in die Irre führen. Neue Erken-
ner werden eingeführt, denen die Modellierung zeitlicher Abhängigkeiten
zu erhöhter Robustheit gegenüber ungesehenen Manipulationen verhilft.

Bei der Synthese neuer Videosignale haben vorherige Arbeiten räumliche
und zeitliche Zusammenhänge ineinander verwoben modelliert. Die
vorliegende Arbeit trennt diese Dimensionen und reduziert so Speicherbe-
darf, Rechenzeit und Bedarf an Trainingsdaten.

Für die Rekonstruktion von Videosignalen aus Event-Daten sind Trainings-
daten nur schwer zu beschaffen. Die Arbeit rekonstruiert Videosignale
aus Event-Daten besser als vorherige Methoden, ohne Trainingsdaten zu
benötigen.

Für alle drei Aufgaben beleuchtet die Arbeit den Bedarf an Trainings-
Datensätzen verschiedener Größen, sowie den daraus resultierenden Ein-
fluss auf Ausgabequalität und Ressourcenverbrauch.

vii





Acknowledgements

It is unthinkable that I could have completed this thesis without the
support and motivation that were supplied by a great number of friends
and colleagues, knowingly and unknowingly.

First and foremost I want to thank Christian Theobalt for the spectacular
opportunity given to me when I needed it, as well as for his continued
support and unshakable (and at times astonishing) optimism throughout
my time at MPI. I am sure that I have put his patience to the test more
than once.

The work presented here would have been impossible without my
closest collaborators Mohamed Elgharib, Ayush Tewari and Xingang Pan,
who invested countless hours into discussing research questions and
working through nights. A special thank you goes to Xingang for hosting
me in Singapore, which gave me many lasting memories.

I am grateful to my other collaborators and co-authors: In particular,
Wentao Liu, Jalees Nehvi, Pramod Rao and Kartik Teotia have helped
me out with experiments and evaluations under immense time pressure.
Viktor Rudnev not only shared some of the data he recorded, but also
helped me understand event cameras.

I thank Congyi Zhang for our very interesting collaboration on teeth
reconstruction. I also thank Zhening Xing and Yanhong Zeng for putting
up with the difficulties we navigated together.

I thank my proofreaders Franziska Müller, Hamza Pehlivan, Kartik
Teotia, Navami Kairanda and Wanyue Zhang for their helpful feedback
on the manuscript. Navami kindly helped me find examples of video
diffusion model outputs.

I am very grateful to all members of GVV and the departments D4+6,
present and previous, that I have worked with during my time at MPI.
Without all the fun we shared there would have been much less reason to
get out of bed in the morning! I especially thank my office mates Ikhsanul
Habibie, Marc Habermann, Heming Zhu and Hamza Pehlivan. Further
thanks go to Abhimitra Meka, who was my first advisor at MPI, and
Dushyant Mehta, whose being a human encyclopedia of neural network
architectures was most helpful in the early days. I also thank Mohit
Mendiratta for helping me help someone else.

Speaking of helping, I would like to thank all our administrative assis-
tants, especially Ellen Fries and Sabine Budde, whose pictures should be
printed in dictionaries next to the word “helpful”.

Hans-Peter Seidel I thank for giving me the most satisfying job I have

ix



ever had, namely that of department IT administrator in MPI. I enjoyed
this job so much because it is all about people, who I could usually help
by handing them the resources they needed. This was possible because
our IST department, who actually run and maintain all those resources
day in and day out, made my life very easy by being the most service-
oriented and intrinsically motivated IT staff that I have ever seen. In
my opinion we should just give them the digital infrastructure of all of
Germany to run, and all would be well. Mediating between users and
IST, however, translating their different languages into each other, is still
a time-consuming assignment, and so I am grateful to Jozef Hladký and
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Introduction 1
1.1 Motivation

Vision is undoubtedly among the most important of the five human senses,
because it quickly gives us very detailed information about our surround-
ings, even at a distance. We use vision to find out where we are, to locate
objects, to navigate the world, to avoid danger, to recognise other hu-
man beings, and to interact with them. Given this importance, it is not
surprising that from the very beginning of human history we can find at-
tempts to synthesize, capture, conserve and reproduce visual impressions.
Examples range from the earliest cave paintings, over devices like the
camera obscura, to modern-day photography. Starting in the twentieth
century, with the advent of sufficiently capable computers, the analysis
and synthesis of visual data has become an important field of research, fu-
elling technological progress in a large number of areas, including arts and
entertainment, robotics, self-driving cars, medical imaging and others.

Notably visual impressions, as a way of capturing information about
the world around us, do not only comprise two or three spatial dimensions,
but usually also a temporal dimension, that can contain very important
information: The presence of a car can be determined in the spatial dimen-
sions, but the danger it poses can only be assessed by estimating the speed
at which it moves, which we can only perceive by observing the situation
over a non-zero amount of time. In general, almost any visual impression
can be made more informative by adding a temporal dimension to the
spatial ones, as is obvious in many areas of everyday life. In contrast to
still imagery, however, technology only relatively recently has allowed
mankind to synthesize, capture, conserve and reproduce the temporal as-
pects of visual impressions. One of the earliest and a notable example are
the experiments by Eadweard Muybridge in the nineteenth century (see
Figure 1.1), in which he captured motion as a sequence of visual samples
along the temporal axis.

Evolving the capture and reproduction of still images into recording “mo-
tion pictures” required “only” the ability to capture and reproduce still
frames at a more rapid rate than before. But the editing of visual impres-
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Figure 1.1: The Horse in Motion, captured by Eadweard Muybridge in 1878,
is a series of short-exposure photographs forming one of the first “videos”
ever recorded.

sions comprising a temporal aspect poses a whole new kind of challenge:

A whole sequence of images that were recorded at a fast temporal rate,
i.e. a video, usually exhibits temporal dependencies: Information about
one of the images is likely to admit conclusions about other images in
the sequence. Viewers, based on their world knowledge, expect certain
forms of these conclusions to be valid, i.e. a video that appears to violate
the expected temporal dependencies would be perceived as “flawed”.
The same expectation, however, might lead viewers to mistake synthetic
videos as an accurate depiction of the world, provided the synthesis
process successfully emulates the expected dependencies.

The importance of temporal dependencies makes editing a video much
harder than merely editing each individual frame (i.e. each image of
the sequence): The editor must ensure that the modifications made to a
particular frame are consistent with the content of and the modifications
to at least the immediately neighbouring frames, but in general to all
other frames in the video. This requires a new capability on the part of
the editor, that was not necessary for single image editing. One obvious
consequence of not fully taking this aspect into account can be observed in
the film Loving Vincent (Kobiela et al., 2017, Figure 1.2): Its frames are the
result of a manual “style transfer”, where each previously photographed
live action frame was turned into an oil painting by hand. While each
oil painting on its own can be considered a convincing rendition of the
style of Vincent van Gogh and is consistent with the original live action
frame, displaying the oil paintings in rapid succession exhibits a very
noticeable “flickering” effect. This phenomenon can certainly be seen as

2



Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Frame 1 (detail) Frame 2 (detail) Frame 3 (detail) Frame 4 (detail) Frame 5 (detail)

Figure 1.2: The frames of Loving Vincent (Kobiela et al., 2017), a 94 minute
film, have been hand-painted in oil. Each painting is consistent with
the underlying live action frame and convincingly imitates the style of
Vincent van Gogh, but playback as a film makes the inconsistencies in
the textures very apparent to the viewer: The consecutive frames in this
figure (starting at about 22min45sec into the DVD version) differ strongly
in the texture that was applied to the right hand of the actor.

an interesting artistic aspect of the work, but it appears plausible that the
sheer number of oil paintings that had to be manufactured for 94 minutes
of film did likely not even leave the option of paying meticulous attention
to the temporal consistency of textures between subsequent frames.

The added difficulty of taking temporal dependencies into account
carries over to the computer-based editing of videos: Especially when the
goal is a photorealistic output, the complexity of temporal dependencies,
arising from the physical properties of the world around us, often makes
them very expensive to compute and together with their diversity across a
large set of scenarios can turn consciously modelling them into a challenge
beyond feasibility. Data-driven machine learning and the use of deep
neural networks promise a way out of this problem, because they provide
mathematical tools via which the machine can “discover” dependencies
on its own, without too much human intervention. This way, not only
complex, but also rather subtle dependencies can be incorporated into a
model, which a human might not have realised help solve the task at hand
more accurately and more efficiently than with the crudely engineered
mechanisms said human could have devised in a reasonable time frame.

There are many caveats to the usage of machine learning or neural
networks, in particular arising from the dependence on large amounts of
training data. In this respect, too, adding the temporal dimension to two
or more spatial ones multiplies the amount of data that is required, and
thus the difficulty: Acquiring the data in the first place is often a very labo-
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rious task, subject to legal restrictions such as the right to privacy and/or
copyright. Storing, preprocessing and transmitting the acquired data
tends to turn engineering challenges from “negligible” into proper budget
items. Actually training a neural network on all the data not only means
processing many videos, but often also requires the processor to operate
on items that occupy large amounts of working memory, necessitating the
use of state of the art hardware accelerators. Because of these considerable
resource penalties in dealing with large training corpora, developers are
motivated to limit the amount of data collected to the necessary minimum.
This ambition can easily lead to (advertently or inadvertently) biasing
the distribution of the collected data towards a particular subclass of the
inputs of interest. A model trained on such biased data will likely inherit
the bias, leading to lacking predictions, or (which is worse) incorrect pre-
dictions when it is applied to inputs outside the subclass. In addition, it
can be challenging to properly delineate said subclass, because its nature
results from conscious or unconscious decisions that the acquisition of the
training data was subject to.

While the previous paragraphs mostly focused on editing videos, the
importance of modelling temporal dependenciess also extends to other
tasks: For example, even a partial failure of the editor to take temporal
dependencies into account will give the viewer an opportunity to detect
that the video was modified in a way that may alter its semantics, i.e.
the conclusions to be drawn from it. The detection of manipulations is a
highly desirable capability in certain settings. Just like editing it requires
knowledge about temporal dependencies, leading to similar challenges if
they are to be discovered in large training corpora.

Another task for which temporal dependencies are of paramount im-
portance is the reconstruction of a denser video signal from a sparser
one: Given sparse/partial observations of a signal, missing information
is to be filled in to obtain a more “complete” signal. This task can be
considered a hybrid of analysis and synthesis, and since the problem is
under-constrained in the mathematical sense (i.e. many different ground
truth signals could explain the exact same set of observations), temporal
dependencies are a valuable tool in separating more likely solutions from
less likely ones.

Given the importance of temporal dependencies in video signals, as
well as the challenges arising from treating them computationally, this
thesis aims at furthering our understanding of these dependencies. It
does so by investigating temporal aspects of three different and partially
related tasks surrounding video signals:

1. Detection of semantically relevant manipulations in signals

2. Synthesis of new signals

4



3. Reconstruction of signals from partial observations

Each of these tasks is approached with the goal of highlighting the im-
portance of temporal dependencies, contributing new ways of capturing
them computationally and demonstrating the impact of varying degrees
of dependency on training data.

1.2 Overview

For the first task, the detection of semantically relevant manipulations
(Chapter 3), this thesis focuses on face videos, i.e. recordings of a single
person talking into the camera. Humans naturally use their faces to con-
vey their presence and to accompany their speech, which is why face
videos are a ubiquitous form of communication. As such, they are are also
an attractive target for the malicious modification of signals, for example
to give the impression that a specific person made a statement they would
never voluntarily make. Manipulations like these can be achieved by
transferring facial expressions or the facial appearance of a person from
a source video to a target video. They can have drastic consequences in
high-stakes contexts, such as during a coup d’état, in political campaign-
ing, or in other forms of political propaganda. But also on a smaller scale,
any person for which sufficient amounts of training data are available, for
example on social media, can be the target of a malicious forgery of this
kind, embedding their faces in disadvantageous contexts. Especially since
deep neural networks have made such editing approaches very capable of
achieving convincing results (H. Kim et al., 2018; Kowalski, 2018; torzdf
et al., 2020), there has been increasing concern about their misuse. This
prompted the research community to employ neural networks for the
detection of manipulations as well: The task is to decide, given an input
video, if this video is the result of a mere recording of a person, or if
the video contains traces of modifications that make the signal seman-
tically different from the person’s physical performance in front of the
camera. Prior to the work presented in Chapter 3, the community had
focused on detecting manipulations that humans could anyway spot with
the naked eye, because synthesis methods were not yet robust enough
to create large training corpora of manipulated content without human
intervention. Assuming that synthesis would improve in this respect,
Chapter 3 investigates the hypothesis that manipulating videos in a way
that reliably fools humans would also make automatic detectors struggle.
For the purpose of this investigation, the dataset VIDEOFORENSICSHQ
is presented, comprising both authentic and manipulated videos. The
quality of the manipulated content in VIDEOFORENSICSHQ is unprece-
dented for a dataset of comparable size, making it a valuable proving
ground for the investigation of said hypothesis. As a second contribution
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it is then demonstrated that despite the high quality of the manipulated
videos in VIDEOFORENSICSHQ, it is still very well possible to detect them,
by introducing a family of neural network architectures based on suit-
able preprocessing of the input video. These detectors focus not only on
the original colour frames, but also on spatially and temporally filtered
versions. In particular the temporal component is shown to potentially
improve not only the accuracy of the detector, but also its generalization
to unseen methods of manipulation. Given that obtaining manipulation
datasets of sufficient size is difficult and that generalization to unseen ma-
nipulation methods is an important capability in the “arms race” between
attackers and defenders, these findings show how important it is for both
sides to model temporal dependencies well and that neglecting them can
easily lead to defeat.

After this study in analysing signals, Chapter 4 turns to synthesising them,
presenting STYLEVIDEOGAN, a generative model for face videos. Previ-
ous work on video generation often involved training neural networks for
the entangled representation of spatial and temporal components of the
video. At the very least, it required rendering spatial content (i.e. colour
frames) during training on temporal data. STYLEVIDEOGAN is a neural-
network-based synthesis method that does not materialise actual colour
frames at training time. Instead, the training data is first embedded into
the parameter space of a generative model for still images, STYLEGAN
(Karras et al., 2020). Since this space has much fewer dimensions than the
space of colour frames, the embedding drastically reduces the amount of
memory needed during training of the temporal generator and also speeds
up the training process, making the discovery of more complex patterns
of motion tractable. By exploiting separability properties of STYLEGAN’s
parameter space, STYLEVIDEOGAN also requires less training data than
most previous methods, by orders of magnitude. For example, a single 10
minute training video from only one single subject is enough to synthesize
long-duration motion for a large, dense set of unseen subjects. This means
that in contrast to previous work, which required large, diverse training
corpora, with all the difficulties that come with them, the data collection
for a STYLEVIDEOGAN model can be finished within minutes. Although
the results shown in Chapter 4 are mostly on human faces, the concepts
introduced here are not limited to faces, as STYLEVIDEOGAN does not
make any strictly face-specific assumptions.

The third task is the reconstruction of signals from event streams
(Chapter 5): An event camera records not absolute brightness values for
its pixels, but merely reports the times at which brightness deviates from a
reference value by a sufficient margin. This is done for each pixel indepen-
dently, i.e. there is no notion of “frame”, that would temporally synchro-
nise brightness measurements across different pixels. Event cameras are
useful for recording fast motion under low-light conditions. Compared
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to “classical” RGB cameras they can have advantages in terms of power
consumption, bandwidth, and storage, because they only record sparse
observations about the signal. Because of the semantics of the event model
that is usually assumed, and because of the ways in which the physical
camera deviates from the assumptions of that model, it is in principle not
possible to fully reconstruct the input signal: For every recorded event
stream there can be many different input signals that would all explain
this event stream. It is thus challenging to turn a recorded event stream
into a plausible RGB video signal to be watched by a human viewer. Event
cameras are a relatively recent development, and, as was once the case
for RGB cameras, are not manufactured in large numbers (yet). While the
technology is promising for mobile applications with limited storage ca-
pacity and power supply, it is is still rather expensive and not widespread
among consumers, making the acquisition of training data even more
challenging than for the RGB-based tasks of the previous chapters. This is
especially true if paired data (events plus ground truth signals) is needed.
Nevertheless previous work has found ways to model event-based video
reconstruction: On the one hand, there are methods trained on real or
(partially) synthetic data, and on the other hand there are methods solely
based on hand-engineered algorithms. The method presented in this the-
sis belongs to the second category, avoiding the pitfalls of training data
bias and contributing novel solutions to dealing with noise in the event
stream. The method is based on a principled application of the phys-
ical/mathematical assumptions of the event camera model. Of course
the method is still “biased” in the sense that it contains certain design
decisions that could have been made in a different way. But in contrast to
a trained model, these design decisions can fully be described in a concise
form and they do not favour one particular semantic domain, which is
an advantage over previous work. In contrast to the two previous tasks,
that either analyse a completely given signal, or synthesize a completely new
signal, the presented solution to the third adheres to partial information
reported from the camera.

1.3 Structure

This thesis comprises six chapters:

• Chapter 1 gives the motivation for the work presented in this thesis,
provides an overview of its structure and lists the main contributions
as well as the publications they have first been presented in.

• Chapter 2 defines basic notions and notations to be used throughout
the thesis.
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• Chapter 3 presents a way of simulating a very advanced manipu-
lation and synthesis algorithm for face videos, in order to create
a large dataset of authentic and manipulated videos. In addition,
Chapter 3 introduces a family of detectors, that, when trained on
the presented and previous datasets, outperform previous detection
methods, in particular because of their use of temporal information.

• Chapter 4 describes a new approach to synthesizing nearly photore-
alistic face videos based on a prior of still images and a very small
set of motion data.

• Chapter 5 describes an algorithm for the reconstruction of video
signals from event streams, that does not require any training data
at all and outperforms previous work in terms of reconstruction
quality.

• Chapter 6 summarises important insights of this thesis and discusses
avenues for future work.

1.4 Contributions

The contributions of Chapter 3, published as Fox et al., 2021a, are:

• The dataset VIDEOFORENSICSHQ, consisting of high-quality face
videos, both authentic and manipulated, with a special focus on
temporal consistency of the synthetic videos. Only with this dataset
was it possible to evaluate the performance of state of the art forgery
detection algorithms on the kind of material that would reliably fool
the human observer, demonstrating that their detection performance
leaves room for improvement.

• A novel family of learning-based detectors that use combinations
of colour, low-level noise and temporal dependencies for the de-
tection of forgeries. These detectors are shown to perform better
than previous methods on high-quality manipulations. Especially
their temporal component helps generalise to unseen manipulation
methods.

The contributions of Chapter 4, published as Fox et al., 2021b, are:

• A novel approach for unconditional video generation that is super-
vised in the latent space of a pretrained image generator, STYLEGAN
(Karras et al., 2020), without having to render frames at training
time, which leads to large savings in computational resources.

• A demonstration of how the properties of STYLEGAN’sW+ space
can be used to greatly reduce the amount of training data needed to
train a generative video model.
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• A novel gradient angle penalty loss that helps generate videos of
arbitrary duration.

The contributions of Chapter 5, published as Fox et al., 2024, are:

• A new optimization-based method to reconstruct high-frequency
brightness signals that explain a stream of input events and a se-
quence of input frames with long exposure time. In contrast to
previous methods it does not require any training data and hence
avoids biases that would arise from difficulties in collecting such
data.

• Per-event confidence weights, regularised by a special loss term,
serve to account for noise in the event data.

• Additional signal control points in-between events help produce
smooth signals.

• Bézier interpolation in-between signal control points leads to im-
proved reconstruction accuracy.

1.5 Publications

The work documented in this thesis has been presented in the following
publications:

• Gereon Fox et al. (2021a): “VideoForensicsHQ: Detecting High-
quality Manipulated Face Videos”. In: 2021 IEEE International Con-
ference on Multimedia and Expo, ICME 2021, Shenzhen, China, July 5-9,
2021. IEEE, pp. 1–6

Supported by ERC Consolidator Grant 4DReply (770784).

Video presentation including results under

https://vcai.mpi-inf.mpg.de/projects/VForensicsHQ

• Gereon Fox et al. (2021b): “StyleVideoGAN: A Temporal Generative
Model using a Pretrained StyleGAN”. in: 32nd British Machine Vision
Conference 2021, BMVC 2021, Online, November 22-25, 2021. BMVA
Press, p. 220

Supported by the ERC Consolidator Grant 4DReply (770784).

Video presentation including results under

https://vcai.mpi-inf.mpg.de/projects/stylevideogan
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• Gereon Fox et al. (2024): “Unsupervised Event-Based Video Re-
construction”. In: IEEE/CVF Winter Conference on Applications of
Computer Vision, WACV 2024, Waikoloa, HI, USA, January 3-8, 2024.
IEEE, pp. 4167–4176

Video presentation including results under

https://vcai.mpi-inf.mpg.de/projects/colibri

Furthermore, contributions were made to the following publications, not
part of this thesis:

• Congyi Zhang et al. (2022): “An Implicit Parametric Morphable
Dental Model”. In: ACM Trans. Graph. 41.6, 217:1–217:13

• Pramod Rao et al. (2022): “VoRF: Volumetric Relightable Faces”. In:
33rd British Machine Vision Conference 2022, BMVC 2022, London, UK,
November 21-24, 2022. BMVA Press, p. 708

• Pramod Rao et al. (2024b): “A Deeper Analysis of Volumetric Re-
lightable Faces”. In: Int. J. Comput. Vis. 132.4, pp. 1148–1166

• Pramod Rao et al. (2024a): “Lite2Relight: 3D-aware Single Image
Portrait Relighting”. In: ACM SIGGRAPH 2024 Conference Papers,
SIGGRAPH 2024, Denver, CO, USA, 27 July 2024- 1 August 2024. Ed.
by Andres Burbano et al. ACM, p. 41

• Barbod Pajoum et al. (2024): “Adaptive Grids for Neural Scene
Representation”. In: 29th International Symposium on Vision, Modeling,
and Visualization, VMV 2024, Munich, Germany, September 10-13, 2024.
Ed. by Lars Linsen et al. Eurographics Association

• Zhening Xing et al. (2024): “Live2Diff: Live Stream Translation via
Uni-directional Attention in Video Diffusion Models”. In: CoRR
abs/2407.08701. arXiv: 2407.08701

• Viktor Rudnev et al. (2024): “Dynamic EventNeRF: Reconstructing
General Dynamic Scenes from Multi-view Event Cameras”. In:
CoRR abs/2412.06770. arXiv: 2412.06770
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Background 2
Videos are discrete representations of visual signals. Chapters 3 to 5
are concerned with the nature of this representation: Chapter 3 is about
detecting transformations of video signals that alter the conclusions an
observer would draw from them. Chapter 4 aims at generating videos
that are not derived from visual signals, but look as if they might have
been. Chapter 5 attempts to approximate the visual signal from which a
given video has been derived, with the help of event data.

This chapter defines some basic principles and notations and establishes
the notions of authenticity, generation and reconstruction used in this
thesis.

2.1 Basics

N denotes the set of natural numbers, R the set of real numbers. The thesis
uses the notions of

• discrete ranges N<n := {i ∈ N | 0 ≤ i < n}

• dense intervals [a; b] := {x ∈ R | a ≤ x ≤ b}

Besides mathematical foundations including probability theory, the thesis
assumes a basic understanding of neural networks and gradient-descent-
based optimization.

2.2 Temporal Dependence

Given a probability measure P , two probabilistic events A and B are
called independent, if and only if

P (A ∩B) = P (A) · P (B) (2.1)

Two random variables X,Y ∈ R are called independent, if and only if for
all x, y ∈ R, the events {X < x} and {Y < y} are independent.
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Informally, independence of two variables X and Y means that no
amount of information about the value of X can yield any information
about the value of Y , and vice versa. The above definitions show that
independence of events and independence of variables/quantities are
closely related.

Two events/variables are called dependent, or exhibiting a depen-
dency, if and only if they are not called independent. Informally, this
means that it is possible for information about one of the events/variables
to admit conclusions about the other event/variable, even if these con-
clusion may be of stochastic nature only, e.g. “Based on X having the
value x, it is now very likely that Y has value...”. The more the knowledge
about X reduces the uncertainty about the value of Y , the “stronger” one
considers the dependence of Y on X . This notion is formally captured by
the concept of mutual information (Cover et al., 1991).

The events/variables/quantities considered in this thesis range from
simple observations like physical signal values or colours of (sub-)pixels of
a video, to all sorts of variables/quantities/predicates that can be defined
on them. Informal examples are “Brightness value of pixel (123, 456) at
time 0.543s”, or “Center point of the left pupil of the dog in frame 42”.
The thesis does not explicitly formulate such random variables. Instead,
it postulates that the probability distributions and signals considered in
Chapters 3 to 5 admit a great multitude of possible random variables
and dependencies between them. In Chapters 3 and 4 it is up to the
neural networks to discover and utilise them. Chapter 5 takes a different
approach, by explicitly stating relationships between a ground truth signal
and the information reported by a sensor, to model the signal.

The emphasis of this thesis is on temporal dependencies. A temporal
dependency is one between random variables X and Y that are defined
based on different subranges of the temporal dimension: While two pixels
of the same video frame may or may not be spatially dependent (for
example because they are direct neighbours and thus likely to have similar
values), two pixels from different frames may or may not be temporally
dependent, for example because they are part of the same feature of a
moving object. Temporal dependencies allow one to use information from
one temporal region to draw conclusions about another temporal region.

2.3 Visual Signals and Videos

A visual signal is a function V : R4 → R+ that maps coordinate tuples
(t, α, β, λ) to values V (t, α, β, λ). Visual signals in the real world originate
from physical light transport, at the end of which light of wavelength λ
is received at a point of a two-dimensional surface (parametrised by α
and β), at some time t. Physically speaking, a value V (t, α, β, λ) quantifies
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the spectral irradiance at surface position (α, β) at time t, resulting from
light of wavelength λ, i.e. spectral irradiance is an amount of physical
energy per time, per area and per wavelength, with standard unit 1 J

m3·s
(ISO 9288:2022(en), 2022).

A frame signal is a function B : R→ N<W × N<H × N<C → R+ where
(W,H) is called the spatial resolution and C is called the number of
channels of the signal. Spatial resolution will often be denoted W ×H ,
or (for W = H = A) as A2 in the remainder of the thesis, when confusion
with the Cartesian product over sets can be ruled out. In keeping with
previous literature (e.g. Stepan Tulyakov et al., 2022; X. Zhang et al., 2022)
values of B will often be called brightness, although this term is actually
a perceptual one, instead of a physical quantity.

In the physical world, spectral irradiance is captured by a sensor, that
consists of finitely many (sub-)pixels. To model this capture process, a
visual signal V can be turned into a frame signal BV by discretization
of surface and wavelength: For each (x, y, z) ∈ N<W × N<H × N<C the
set pixel(x, y, z) comprises all spatiospectral coordinates (α, β, λ) that con-
tribute to the (sub-)pixel with the address (x, y, z). BV is defined by
integration:

BV (t)(x, y, z) :=

∫
(α,β,λ)∈pixel(x,y,z)

S(t, α, β, λ, V (t, α, β, λ)) dα dβ dλ (2.2)

where S models physical properties of the sensor. By varying spatiotem-
porally, S can model all kinds of sensor noise.

A frame sequence or video is a function

F : N<K → N<W × N<H × N<C → R+ (2.3)

where K is called the temporal resolution, (W,H) is called the spatial
resolution and C is called the number of channels of the sequence.

The physical quantity corresponding to the values of F is radiant flux
(SI unit 1J

s ). The pixels of a physical sensor need to be exposed to radiant
flux for a non-zero amount of time, in order to accumulate electric charge
in their circuitry, that can be measured and quantised to obtain digital
data. This exposure process can be modelled by integration over time:
Given a frame signal B, the video FB is defined as

FB(i)(x, y, z) := CRF

i, x, y, z, t
close
i∫

t
open
i

B(t)(x, y, z) dt

 (2.4)
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where the intervals [t
open
i ; tclose

i ] are called exposure intervals, exposure
periods, or simply exposures, and the camera response function CRF :
N<K → N<W × N<H × N<C × R+ → N defines the mapping from accu-
mulated radiant flux to recorded values. The longer the temporal interval
over which Equation 2.4 integrates, the stronger the motion blur effect be-
comes, i.e. moving objects appear faint and elongated along the direction
of their movement.

Equation 2.4 allows only global shutter recording, i.e. topen
i and tclose

i

are the same for all pixels. Not all cameras use a global shutter, but the
DAVIS 346C in Chapter 5 does, while no assumptions are made about the
shutter mode in Chapters 3 and 4.

While the exposures of a video are pairwise disjoint, they do not form a
partitioning of sequence time, i.e.

K−1⋃
i=0

[t
open
i ; tclose

i ] ( [t
open
0 ; tclose

K−1] (2.5)

This is because the electric charges that have accumulated in the sensor
during exposure need to be read out and the pixels need to be refreshed,
which can take non-negligible amounts of time, during which no expo-
sure is possible. Chapter 5 refers to the intervals between exposures as
exposure gaps.

Unless specified otherwise, a frame is a video F of temporal resolution 1,
in which case the frame index argument may be omitted, i.e. F (x, y, z) :=
F (0)(x, y, z).

2.4 Authenticity

A proposition p is a statement about the world. It is not useful to try
and further formalise the notion of “statement about the world”, other
than to establish that for a statement to be called a proposition it must be
considered binary, i.e. it is either true, or false. P denotes the set of all
propositions. The world can then be modelled as the set

W := {p ∈ P | p is true} (2.6)

The world is consistent and complete, i.e. ∀p ∈ P : p ∈W↔ ¬p /∈W.

Chapter 3 axiomatically assumes the existence of an observer function
O : V→ P→ {>,⊥,Ω}, that interprets any given visual signal V ∈ V as
information about the world, i.e. for all p ∈ P, it holds that

(O(V )(p) = > → p ∈W) ∧ (O(V )(p) = ⊥ → p /∈W) (2.7)

while O(V )(p) = Ω denotes that the observer cannot determine if p is true
or false. This means: While the visual signal is giving only incomplete
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information about the world, it is assumed that all the information it does
give is consistent with the world.

As a second axiom, Chapter 3 assumes that sensors are well-behaved,
i.e.O is defined on videos as well and it is consistent with the visual signal
V a video was derived from:

∀p ∈ P : O(FBV )(p) 6= Ω→ O(FBV )(p) = O(V )(p) (2.8)

Note that this constraint does allow information from the signal to be lost
in the capture process (Equations 2.2 and 2.4).

Chapter 3 aims at deciding whether a video is “real” or “fake”. In this
context, a video F is called real, or authentic if and only if there is a visual
signal V , such that

∀p ∈ P : O(F )(p) 6= Ω→ O(F )(p) = O(FBV )(p) (2.9)

This means that every authentic video must only allow conclusions that
could as well be drawn from recording a visual signal with a well-behaved
sensor (see Section 2.3). All other videos are called synthetic or fake.

This is clearly not the only way in which authenticity could be defined.
For example it could be defined directly with respect to the world, circum-
venting the notions of visual signals or well-behaved sensors. This how-
ever, could all too easily admit synthetically generated videos to be called
authentic, provided that they look artificial enough for the observer to
conclude that they tell nothing about the world (i.e. ∀p ∈ P : O(F (p)) = Ω).
Inconveniently, making videos look less realistic would then make them
more likely to be called authentic, which is why it is important to tie the
definition of authenticity to the recording process.

It is beyond the scope of this thesis to comprehensively explore the space
of possible observer functions. Instead, the detectors in Chapter 3 learn to
distinguish real videos from fake videos by training neural networks to
tell videos recorded by well-behaved sensors apart from videos that are
of different origin.

2.5 Generative Models

Let F be the set of all videos and P a probability measure on F. Depending
on the application, P (A) = 0 for large subsets A ⊆ F. For example, P
could assign each set of videos a quantity proportional to the number
of elements in it that a majority of humans would identify as depicting
a cat. A generative model for P is a pair (Z,G) of a random variable
Z ∈ Rd and a function G : Rk → Rd → F for some k, d ∈ N, that takes a
parameter θ ∈ Rk and a value z ∈ Rd and maps them to a video. Usually
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Z is normally distributed, i.e. z ∼ N (0; 1)d. Pθ denotes the probability
measure of the random variable G(θ)(Z). In this context, values z of Z
may be referred to as latent codes and subsets of Rd as latent spaces.
The goal is to design G and optimise θ such that Pθ becomes as similar
as possible to P . This is desirable because it will enable G to produce
samples of cat videos.

To achieve this goal in a principled way, the notion of “similarity” of
two probability measures needs to be defined. A prominent choice for a
similarity measure is to minimise Jensen-Shannon divergence, defined as

JS(P, Pθ) :=
1

2
KL

(
P,
P + Pθ

2

)
+

1

2
KL

(
Pθ,

P + Pθ
2

)
(2.10)

where the nonsymmetric Kullback-Leibler divergence for two probability
measures PA and PB is defined as

KL(PA, PB) :=

∫
PA(x) log

(
PA(x)

PB(x)

)
dx (2.11)

Training a Generative Adversarial Network (GAN) is a way of approx-
imating the minimum of JS(P, Pθ): In addition to the generator G, the
GAN comprises a discriminator D : Rl → F→ [0; 1]. GAN training then
approximates a solution to

min
θ

max
φ

(
E

F∼P
logD(φ)(F )

)
+

(
E

z∼N (0,1)d
log(1−D(φ)(G(θ)(z)))

)
(2.12)

where the term that is minimised is equal to JS(P, Pθ) up to a constant
(Goodfellow et al., 2014), provided that G and D have sufficient capacity.
In practise the architectures of the neural networks constraining G and
D may prevent the theoretical optimum from being reached. Chapter 3
trains GANs by gradient descent in order to synthesize fake videos.

However, not only in practice can training a GAN to convergence be
difficult, but also, as Arjovsky et al., 2017, show, JS(P, Pθ) can be discontin-
uous, making its gradient with respect to θ unsuitable for gradient-descent-
based optimization. This suggests that the GAN objective (Equation 2.12)
makes training unnecessarily difficult. Instead, Arjovsky et al., 2017, pro-
pose to minimise the Wasserstein distance, or Earth Mover Distance, that
for probability distributions over videos can be defined as

EM(P, Pθ) := inf
γ∈Π(P,Pθ)

E
(F1,F2)∼γ

‖F1 − F2‖ (2.13)

where Π(P, Pθ) is the set of all joint distributions γ(x, y) whose marginals
are P and Pθ and for videos F1, F2 that are of equal temporal resolution
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K and spatial resolution (W,H) one defines

‖F1 − F2‖ :=
√√√√ ∑

0≤i<K
(0,0,0)≤(x,y,C)<(W,H,C)

(F1(i)(x, y, z)− F2(i)(x, y, z))2

(2.14)
If resolutions do not match, the smaller dimensions can be filled in with
zeros.

Arjovsky et al., 2017, show that if G can be represented by a neural
network with the usual building blocks (affine transformations, convolu-
tions and non-linearities, that are continuous in θ and component-wise
Lipschitz-continuous) then there exists a function f that solves

max
f is 1-Lipschitz

(
E

F∼P
f(F )

)
−
(

E
F∼Pθ

f(F )

)
(2.15)

By defining a neural network Cw with weights w, and training it by
gradient descent, one can make Cw approximate this f . Once such an
approximation is found, one can use it to compute

∇θ EM(P, Pθ) = − E
z∼N (0,1)d

∇θCw(G(θ)(z)) (2.16)

which is what is needed to minimise EM(P, Pθ) by gradient descent.
This framework of training the generator G with the help of a so-called

critic Cw is called a Wasserstein GAN. Chapter 4 uses this approach to
generate videos. The critic has a role similar to that of the discriminator
in a GAN, but instead of classifying samples its purpose is to establish a
well-behaved gradient between real videos and generated videos: While
the maximization in Equation 2.15 drives the average values of real and
generated videos under the critic as far apart as possible, thereby increas-
ing the average critic gradient between them, the Lipschitz constraint on
the critic prevents the gradient from exceeding certain limits. This means
that in contrast to a GAN discriminator, whose gradients can become
very staircase-like if it overfits to the current state of the generator, a
Wasserstein GAN critic cannot be “over-trained”.

To enforce the Lipschitz constraint of Equation 2.15, Arjovsky et al., 2017,
propose to bound w to a compact range, which suffices by the definitions
of the usual neural network building blocks in the critic’s architecture.
However, based on the findings by Gulrajani et al., 2017, and the out-
comes of early experiments, Chapter 4 instead uses the gradient penalty
proposed by Gulrajani et al., 2017: The L2 norm of the gradient of Cw
with respect to its input is averaged over a number of samples, to penalise
deviations of this norm from 1. This soft constraint has been found to lead
to smoother convergence, allowing higher learning rates. However, the
gradient penalty objective does not allow batch normalization in the critic
(Gulrajani et al., 2017).
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2.6 Event Streams

An event stream is a finite set E of tuples

ej = (tj , xj , yj , zj , pj) ∈ [tstart; tend]× [0 : W ]× [0 : H]× [0 : C]× {−1,+1}

for some temporal interval [tstart; tend] and W,H,C ∈ N that satisfies

∀t, x, y, z : |{e ∈ E | ∃p : e = (t, x, y, z, p)}| ≤ 1 (2.17)

The elements of E are called events, with tj the time, (xj , yj , zj) the
address and pj the polarity of the event ej . In the remainder of the thesis,
the word “event” will usually stand for the events defined here, not for
the concept from probability theory. Two events ej , ej′ ∈ E are called
consecutive if and only if tj < tj′ and

∃x, y, z : {(t, x, y, z, p) ∈ E | tj ≤ t ≤ tj′} = {ej , ej′} (2.18)

In this case, ej is called predecessor of ej′ and ej′ is called successor of ej .
The predecessor and successor of any event are unique if they exist.

Event streams are usually interpreted as information about a frame
signal B: It is assumed that there exist polarity-dependent logarithmic
brightness thresholds c+1, c−1 ∈ R+, by which the logarithm of B within
one pixel must deviate from a reference value in order to trigger an event.
This reference value is usually the logarithm of B at the predecessor
event.
An ideal event stream for B is any event stream E that satisfies the
following rules for all x, y, z: Let logarithmic brightness be defined
as B̃(t) := log(B(t)(x, y, z) + ε) for a small positive constant ε and let
next(t) := min{t′ | t < t′ ∧ ∃p : (t′, x, y, z, p) ∈ E} for any time tstart ≤ t <
tend. Then all t with t = tstart ∨ ∃p : (t, x, y, z, p) ∈ E must satisfy:

1. tstart ≤ t ≤ tend

2. For (t′, x, y, z, p′) ∈ E with t′ = next(t):

p′ · (B̃(t′)− B̃(t)) ≥ cp′ (2.19)

3. For all t′ ∈ ]t; tend] and p′ ∈ {−1,+1}:

p′ · (B̃(t′)− B̃(t)) ≥ cp′ → next(t) ≤ t′ (2.20)

The event model defined here is very similar to those used in previous
literature (e.g. Pan et al., 2019; Rudnev et al., 2021; X. Zhang et al., 2022),
although many of them assume c+1 = c−1.
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Assuming tstart, tend, ε, c+1, c−1 are fixed globally, there is exactly one
ideal event stream for everyB: For any given pixel, if one starts at t = tstart
and sweeps across the interval [tstart; tend] applying Equation 2.20 always
as early asB allows, one can add events toE that also satisfy Equation 2.19,
showing that an ideal event stream can exist. Let now E,E′ be two ideal,
but strictly different event streams. For any given pixel, if E contains no
events, then Equation 2.20 makes sure that Equation 2.19 is unsatisfiable
for any event, soE′ could not contain events either. It can thus be assumed
w.l.o.g. that t′ is the time of the earliest event in E \ E′, and t the time of
the predecessor event (contained in both), or t = tstart if no predecessor
exists. Then by Equation 2.19 the premise of Equation 2.20 is fulfilled for
E′, but the conclusion would not be, violating the assumption that E′ is
ideal.

The converse is not true: For a given ideal event stream E there are
in general infinitely many different frame signals B, for the following
reasons:

1. Initial brightness B(tstart) is not known.

2. Equation 2.20 allows logarithmic brightness to fluctuate in-between
events as long as it does not leave the corridor defined by c+1, c−1.
Because of the logarithm the corridor for the linear brightness be-
comes larger the brighter the signal at the predecessor event is (see
also Figure 5.12).

3. In practise c+1, c−1 are often unknown.

Nevertheless, event streams have an important advantage over videos
as sources of information about B: While a video averages the frame
signal over relatively long temporal intervals (Equation 2.4), an event
stream reports information about discrete points in time. This makes event
streams an attractive data modality for applications in which temporal
precision is of interest.

While the reconstruction of B from E is highly ambiguous already in
theory, it is made even harder by the circuitry of the event camera, i.e.
the electronic device that converts spectral irradiance into event streams:
The logarithmic thresholds not only depend on polarity, but also vary
spatially and temporally. The circuits take time to recover from events,
i.e. the next event can only be triggered after a certain refractory period.
This leads to a considerable event latency, i.e. the event time stamps tj
can be off by thousands of microseconds (McMahon-Crabtree et al., 2023;
Serrano-Gotarredona et al., 2013; Y. Yang et al., 2024). In addition the
circuitry tends to cause significant numbers of spurious events that violate
Equation 2.19, leading to errors that accumulate over the course of the
signal. While each of these effects can be amplified or reduced by tuning
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the hardware configuration, they interact with each other, e.g. reducing
the refractory period can greatly increase the number of spurious events.

Many approaches to event-based reconstruction (see Section 5.2) ad-
dress these theoretical and practical ambiguities by learning prior assump-
tions from data. Most of them use event binning: They partition sequence
time into a finite set of intervals and for each interval and pixel record
only the total sum of the event polarities. This turns the event data into a
format that allows pointer arithmetic (which is not possible on an event
stream, because different pixels usually contain very different numbers of
events for the same time interval) and it averages out noise. However, bin-
ning also discards most information about the distribution of the events
inside the interval, effectively undoing some of the advantage that event
streams have over videos in terms of temporal resolution.

In contrast, Chapter 5 uses hand-crafted priors to avoid laborious and
bias-prone data collection, does not require pointer arithmetic and ac-
counts for imperfections of the event camera by admitting confidence
values for events, alleviating the need for event binning. The event cam-
era model used in Chapter 5 is the DAVIS 346C (see Section 5.3), which
records long-exposure frames along with events through the same pixel
matrix, which further helps to disambiguate the reconstruction problem
to some degree.
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Detecting High-Quality
Face Video Fakes 3
This chapter investigates the relationship between a human’s ability to
rate the authenticity of a video and a machine’s ability to do the same
(published as Fox et al., 2021a). Since the learning-based synthesis of
photos and videos has reached quality levels that make the output hard
to discern from authentic footage, the scientific community has begun
to address concerns about the misuse of this technology. One branch
of these efforts is the development of learning-based forgery detection
algorithms, that are trained and evaluated on benchmark datasets. This
chapter examines if the performance of such detectors depends on the
presence of artefacts that the human eye can see. As a test bed for this
purpose, it introduces a new benchmark dataset for face video forgery
detection, VIDEOFORENSICSHQ, of unprecedented visual quality. This
dataset allows to demonstrate that previous detection techniques have
difficulties detecting fakes that reliably fool the human eye, especially
because they neglect the temporal dimension. The chapter introduces a
new family of detectors that examine combinations of spatial and temporal
features, to outperform existing approaches both in terms of detection
accuracy and generalization to unseen manipulation methods.

3.1 Introduction

Methods for face video synthesis have reached high levels of visual real-
ism. Some allow facial expressions to be modified or transferred (H. Kim
et al., 2018; Thies et al., 2020, 2016), while others implement face swapping,
i.e. replacing the face interior with a different face identity (Garrido et al.,
2014). Reacting to concerns that these could be misused to modify videos
in unethical ways, the research community has developed techniques to
detect forgeries for generic content (Afchar et al., 2018; Bayar et al., 2016,
2018; S. Wang et al., 2020) as well as specifically for faces (Agarwal et al.,
2019; Rössler et al., 2019; Sabir et al., 2019).

In order to compare the effectiveness of forgery detection methods
it is vital to evaluate them on benchmark datasets. As one example,
FACEFORENSICS++ (Rössler et al., 2019) contains internet videos modified
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by several face synthesis techniques (Dufour et al., 2019; Kowalski, 2018;
Thies et al., 2020, 2016; torzdf et al., 2020) and demonstrates that an off-
the-shelf image classifier, XCEPTIONNET (Chollet, 2017), outperforms
methods specifically designed for fake detection. However, whenever a
forgery detector achieves a high detection accuracy on a dataset, one must
wonder: Does this mean that the detector is very good, or does it mean
that the fakes in the dataset are just too easy to detect? The observation
that the fakes in existing benchmark datasets seem easy to spot for the
human eye (Figure 3.2) gives rise to the following hypothesis:

Hypothesis (H): The accuracy of existing face video forgery detection methods
depends on visual artefacts that humans would be able to spot with the naked eye.
As soon as fakes are missing such artefacts, detector performance will drop.

The relevant artefacts include implausible lighting, unnatural smooth-
ness and splicing boundaries occurring as part of the synthesis process.
In addition the synthesis methods often produce temporal artefacts, that
previously were neglected by many forgery detectors, but can easily be
seen by humans. In the course of investigating H this chapter makes two
main contributions:

First, it presents VIDEOFORENSICSHQ, a benchmark dataset of high
quality face video manipulations, designed to not include said artefacts
(Figure 3.1). A user study (Section 3.4) shows that humans find the fakes
in it considerably harder to detect than in previous datasets. Only VIDEO-
FORENSICSHQ allows to investigate H, by evaluating existing detectors
on it, showing that their performance leaves room for improvement.

Second, making use of this room, the chapter presents a novel family of
learning-based detectors that examine combinations of colour, low-level
noise and temporal dependencies. These detectors are found to perform
better than previous methods on high-quality fakes. Especially their
temporal component shows improved generalization to unseen synthesis
methods.

3.2 Related Work

3.2.1 Face Editing & Reenactment

The basis for the manipulation of facial imagery are methods to recon-
struct, edit and “reenact” face images or videos, where reenactment means
to combine the expressions and poses of a source actor with the appear-
ance of a target actor. Zollhöfer et al., 2018, give a good overview of the
state of the art of such techniques at the time, while this section focuses
on select methods with more direct relevance to the creation of “fakes”.

Many facial editing methods first fit a face model to the input data. A
prominent such model is the pioneering PCA model by Blanz et al., 1999,
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Figure 3.1: Frames from fake videos in VIDEOFORENSICSHQ: Each frame
is the output from the synthesis pipeline in Figure 3.3. While this pipeline
does produce artefacts typical for GAN-generated images, a human can
hardly spot any flaws. To examine motion, see the project video (Sec-
tion 1.5).
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FACEFORENSICS++ subsets FS, DF and F2F (Rössler et al., 2019)

FACEFORENSICS++ subset NEURALTEXTURES (Rössler et al., 2019)

Deep Fake Dataset (Dufour et al., 2019)

Deep Fake Detection Challenge Dataset (Dolhansky et al., 2020, 2019)

DeeperForensics-1.0 (L. Jiang et al., 2020)

CELEB-DF (Y. Li et al., 2020)

Figure 3.2: Previous face video manipulation datasets contain many arte-
facts that humans can spot easily. NEURALTEXTURES shows good spatial
quality, but playing its fakes back as videos allows humans to spot them,
see Section 3.4.
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but different sets of features, such as facial contours (W. Wu et al., 2018),
so-called neural textures (Thies et al., 2019), and/or correspondences to
reference images (Nagano et al., 2018) can also be used to model at least
parts of the information about the input face. Generative Adversarial
Networks (GANs; Goodfellow et al., 2014) are capable of learning large
and complex probability distributions, and so are a component of many
methods discussed in the following. Many GANs use U-NET-inspired
architectures (Isola et al., 2017; Ronneberger et al., 2015), that because of
their suitability for image-to-image transformation have been reused even
when generative capabilities are only of secondary importance.

FACE2FACE, by Thies et al., 2016, was the first approach for real-time fa-
cial reenactment on monocular RGB input. It tracks both source and target
actor by fitting a blend-shape model (Blanz et al., 1999) to the input frames
and then solves an optimization problem to transform source expressions
such that they fit into the distribution of target expressions. Wiles et al.,
2018, take several images of the target actor as input and compute corre-
spondences of these image pixels with one common reference image of
the actor. They then reenact this actor given a driving sequence, that can
be given as video or audio data. This method does not model temporal
dependencies. The method by W. Wu et al., 2018, trains subject-specific
autoencoders, that represent the state of a face by the shape of its contours.
By encoding a source face, transforming the resulting boundaries with a
CYCLEGAN-inspired approach (Jun-Yan Zhu et al., 2017) and then decod-
ing it with the decoder learned for a different identity, facial expressions
can be transferred between subjects. The method does not model tempo-
ral dependencies and thus exhibits a very noticeable flickering. Nagano
et al., 2018, take one single, neutral-expression input image of the target
actor, and drive it based on a video of the source actor. Notably there do
not appear temporal smoothness or consistency flaws in the results, but
spatially there are issues with lighting that is baked into textures and with
unnatural deformations around the eyes and mouth interior that give
away the artificiality of the results. Deep Video Portraits (DVP), by H. Kim
et al., 2018, for the first time showed space-time coherent realistic global
pose and expression editing in videos using a GAN. H. Kim et al., 2019,
even extended this method to one that preserves the personal speaking
style of the target actor. Depending on the amount of training material
that is available for the target actor, results can look flawless to human
viewers, even in the temporal domain, in which the network is actively
encouraged to learn dependencies. In NEURALTEXTURES Thies et al., 2019,
reconstruct input videos by fitting a 3D geometry model to their frames.
This geometry model is given a feature texture, that can be projected into
the image plane, and then turned into a photorealistic re-rendering of the
original frame, via a so-called deferred neural renderer. Both the renderer
and the texture are optimised to reconstruct the input video well. By re-
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constructing two videos in this way and then combining the texture from
one video with the geometry from the other, the appearance of a target
actor can be applied to the performance of a source actor. Both spatial
and temporal quality often appear flawless, but there do occur occasional
flickering artefacts. FACESWAP (Kowalski, 2018) and DEEP FAKES (torzdf
et al., 2020) at the time were very popular face editing implementations
on GitHub, but at least at the degree of automation that was necessary
to create FACEFORENSICS++ (Rössler et al., 2019) (see Section 3.2.2), both
their spatial and temporal quality are noticeably flawed. The method by
Zakharov et al., 2020, turns the input face image into an “avatar” that can
be reenacted at more than 20FPS on a smartphone, using facial landmark
vectors as a driving sequence. However, objects occluding the face (glasses
or hats) are not handled well, and identities are not preserved well enough
to reliably fool human viewers. Many of the aforementioned methods,
despite their decent spatial output quality, model temporal dependencies
either not at all, or only partially and so do exhibit noticeable flaws when
their output is played as a video. A good example for this observation is
NEURALTEXTURES (see Figure 3.2), where spatial artefacts are often small,
but temporal flaws could be spotted in the user study (Section 3.4).

3.2.2 Face Manipulation Datasets

At the time the work presented in this chapter was conducted, there al-
ready had appeared, and were appearing, several datasets of manipulated
images (Guan et al., 2019; Zhou et al., 2017) or videos (Dolhansky et al.,
2019; Guan et al., 2019; Korshunov et al., 2019; Rössler et al., 2019):

Zhou et al., 2017, provide 2010 manipulated images generated with a
popular smartphone app and with the method by Kowalski, 2018. Guan
et al., 2019, provide large numbers of manipulated images and videos, but
they cover general content, not just faces, and only contain 2340 images
and 118 videos resulting from GAN-based manipulations. Korshunov
et al., 2019, provide one of the first face video datasets using GAN-based
“deep fake” algorithms. It contains 620 manipulated videos of 43 sub-
jects, but the resolution of the face region is at most 1282 pixels. The
FACEFORENSICS++ dataset (Rössler et al., 2019) contains 1000 authentic
videos. Each of them was manipulated with 4 different editing techniques:
DEEP FAKES (torzdf et al., 2020), FACESWAP (Kowalski, 2018), FACE2FACE

(Thies et al., 2016), and NEURALTEXTURES (Thies et al., 2019). As al-
ready stated in Section 3.2.1, DEEP FAKES and FACESWAP exhibit very
noticeable artefacts, while FACE2FACE and NEURALTEXTURES produced
significantly better quality, but neither reliably fool human viewers (see
also Figure 3.2 and Section 3.4). Google released the Deep Fake Detection
Challenge Dataset (Dufour et al., 2019). It contains over 3000 manipu-
lated videos, with many exhibiting visual artefacts that humans can spot.
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Facebook released the Deep Fake Dataset (Dolhansky et al., 2020, 2019)
of manipulated face videos of varying quality, with face resolution of-
ten much less than 2992. Fakes are often easy to spot for the human
eye. The dataset DEEPERFORENSICS 1.0 (L. Jiang et al., 2020), provides,
augmentations aside, 1000 forgeries derived from FACEFORENSICS++.
Artefacts are more subtle than in previous datasets, but lighting baked
into textures and temporal flickering often give fakes away. CELEB-DF
(Y. Li et al., 2020), derives more than 5639 fake videos from 590 authentic
YouTube videos. Artefacts detectable by humans are rare, but do include
spatial artefacts (see Figure 3.2) as well as temporal flickering, especially
at blending boundaries.

As can be seen in Figure 3.2, the user study in Section 3.4, and the
evaluation in Section 3.6, none of these datasets meets the requirement
of containing a large number of high resolution manipulated face videos
that reliably fool human viewers and machines.

3.2.3 Detection of Manipulated Visual Content

Already before the advent of deep learning, the detection of manipulations
in digital images and videos was an active area of research. This section
focuses on the more recent efforts that either constituted or were directly
related to the state of the art in the detection of forged facial footage.
More comprehensive surveys are provided by Tolosana et al., 2020, and
Verdoliva, 2020.

Many detection techniques do not make any strictly face-specific as-
sumptions. A foundational work in this category is the one by Fridrich
et al., 2012. It introduced convolutional kernels designed for steganalysis,
that several later works built on: Cozzolino et al., 2014, combined some of
these kernels with an SVM-based classifier, while Cozzolino et al., 2017,
initialise a convolutional neural network (CNN) with the kernel weights
and fine-tune to further improve detection performance. Bayar et al.,
2016, 2018, constrain the convolutional layers of a CNN in such a way
as to limit their output to high spatial frequency content. This helps the
CNN focus on those spatial frequencies that typically contain traces of
manipulations. With a similar motivation Qian et al., 2020, apply the
discrete cosine transform (DCT) to input images before further process-
ing. Zhou et al., 2018, use a two-stream network to detect edited images.
One stream processes the image content while the other stream focuses
on high spatial frequencies, based on insights from Fridrich et al., 2012.
NOISEPRINT (Cozzolino et al., 2020) localises edited regions of an image
by extracting patterns that are characteristic for a particular model of cam-
era and detecting inconsistencies in these patterns. S. Wang et al., 2020,
showed that a standard image classifier trained on one CNN generator
can generalise well to data produced by unseen generators. The classifier
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is trained on a large volume of data with careful pre- and post-processing
and data augmentation. Results show high classification accuracy on
a variety of unseen synthesis methods, including architectures for face
generation. None of the aforementioned detection techniques take the
temporal dimension into account.

Face-specific forgery detection techniques can be classified into single-
image-based (Afchar et al., 2018; Agarwal et al., 2019; Durall et al., 2019;
L. Li et al., 2020; Raghavendra et al., 2017; Rössler et al., 2019; S. Wang
et al., 2019, 2020; Zhou et al., 2017) and multi-image-based (Agarwal et al.,
2019; Sabir et al., 2019) approaches. Zhou et al., 2017 (similar to their later
work; Zhou et al., 2018) use a two-stream network for the detection of
manipulations, but the focus is on faces and the spatial high frequency
stream refines the features from Fridrich et al., 2012, by means of a triplet
loss. Raghavendra et al., 2017, detect the rather specific manipulation of
morphing two faces into one. Their input is assumed to have undergone
physical printing and scanning. The detector by Rahmouni et al., 2017,
learns to distinguish authentic photos from computer-generated content,
but the synthetic images in their training data are easily identified as such
by humans. MESOINC-4 (Afchar et al., 2018) is an inception-inspired
(Szegedy et al., 2017) CNN with a small number of layers. It stacks the
output of several convolutional layers with different kernel shapes, to
learn at which level of granularity the input should be analysed. S. Wang
et al., 2019, sampled the space of manipulations that Adobe Photoshop’s
“Face-Aware Liquify” tool has to offer, in order to create a training set for
their detector. Remarkably, this detector generalises to a test set of of ma-
nipulated faces that an artist created with the same tool and a more general
version of it. Durall et al., 2019, classify the Discrete Fourier Transform
(DFT) of images using support vector machines, logistic regression and
k-means. L. Li et al., 2020, aim at detecting face images that result from
smooth blending of two source images, such that a blending boundary
can be extracted. Smooth blending is a component of many manipulation
techniques and the authors show that the model generalises to unseen
manipulations as long as they contain this component. XCEPTIONNET

(Chollet, 2017) is a deep neural network designed for general image classi-
fication. Rössler et al., 2019, used it for the detection of manipulations in
face images. Their evaluation has it outperform a number of other models
that were specifically designed for the fake detection task (Afchar et al.,
2018; Bayar et al., 2016, 2018; Cozzolino et al., 2014, 2017; Fridrich et al.,
2012; Rahmouni et al., 2017).

One of the few works that study temporal dependencies, by Y. Li et al.,
2018, learns to detect manipulated content by unnatural eye blinking. This
demonstrates the utility of temporal signals for forgery detection, but is of
course a rather constrained cue that attackers can easily avoid. Agarwal
et al., 2019, assume that the input video to be classified shows a known
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Figure 3.3: Every video in the “Synthesis” set undergoes monocular re-
construction, to obtain facial parameters that are close to the training
distribution. DVP (H. Kim et al., 2018) turns these into photorealistic
videos.

person of interest (POI) for which sufficient authentic training material is
available. Idiosyncratic patterns of facial and head movements, so-called
“action units” are learned for the POI, such that a support vector machine
(SVM) can distinguish their action units from those of other people. This
approach is shown to work well for both comedic impersonations of the
POI, as well as reenactment manipulations where a source actor is provid-
ing the driving motion. However, the authors admit that the approach
is not robust to context changes, i.e. the POI facing slightly off-camera
instead of looking directly into the camera can compromise detection
performance. Sabir et al., 2019, present a detector based on a recurrent
neural network (RNN) that processes the frames of a video. It improves
detection accuracy by 4.55% over state of the art detectors. The publication
measures this improvement on the strongly compressed version of the
FACEFORENSICS++ dataset. However, the evaluation only covers those
subsets that contain strong human-visible artefacts even under strong
compression (namely F2F, FS and DF), while a quantitative analysis on
the NT subset is not provided. This may be explained by the NT subset
having been added only to a later version of FACEFORENSICS++.

The detectors presented in Section 3.5 are based on XCEPTIONNET, but
they combine multiple input modes including temporally preprocessed
inputs. Section 3.6 shows that these detectors perform better than previous
ones on a dataset that contains very high quality face manipulations
(Section 3.3).

3.3 The VideoForensicsHQ Dataset

Investigating H (see Section 3.1) requires a benchmark dataset that con-
tains many fakes of high quality: In order for humans to be unable to spot
fakes, the dataset should avoid artefacts such as temporal jitter, unnatural
movement, implausible lighting, unusual smoothness, or strong blending
boundaries. Before the creation of VIDEOFORENSICSHQ there were state-
of-the-art synthesis techniques that achieved such quality under ideal
conditions, but no large-scale benchmark dataset aggregating many such
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high quality results. The user study in Section 3.4 confirms that the fakes
in VIDEOFORENSICSHQ fool humans significantly more often than those
in other datasets. Since it was by no means the goal of this work to find
a novel synthesis method, the GAN-based method Deep Video Portraits
(DVP, H. Kim et al., 2018) is adapted for large-scale fake creation. DVP
is a conditional GAN, i.e. instead of sampling from a learned distribution
completely randomly (which would make targeted fakes rather difficult to
construct), the attacker can make DVP’s output follow a desired “driving
sequence”.

While DVP can transfer performances from a source person to a different
target person, this mode can lead to artefacts if the distribution of facial
expressions differs a lot between source and target. Not even the “style-
preserving” variant (H. Kim et al., 2019) avoids glitches as reliably as
necessary. VIDEOFORENSICSHQ is thus limited to “intra-person” transfers
(i.e. source and target are the same person). Previous works (Fried et al.,
2019; Suwajanakorn et al., 2017) show this to be a very relevant threat
scenario. Since DVP is trained on a set of frames that is disjoint from
the source/target sequence, it has not seen the expressions to synthesize
in advance and must still generate the typical GAN artefacts that are
common with synthesis methods, but typically go unnoticed by humans.

3.3.1 Synopsis

VIDEOFORENSICSHQ contains 1737 videos of talking faces (43% male,
57% female), with 8 different emotions. Figure 3.1 shows example fakes
from the dataset. Most videos have resolution 1280× 720. They amount
to 1,666,816 frames with average resolution 9682 and the average face
covering 4872 pixels. There are three different subsets: Group #1 was
mined from the data used by H. Kim et al., 2019, Group #2 from RAVDESS
(Livingstone et al., 2018), and Group #3 from YOUTUBE. Table 3.1 lists the
sizes of these subsets. In total, VIDEOFORENSICSHQ contains 326,973 fake
frames, comparable to the NEURALTEXTURES (Thies et al., 2019) part of
FACEFORENSICS++. While their fakes are the ones that come closest to VI-
DEOFORENSICSHQ in terms of visual quality (see Figure 3.2), Section 3.4
shows that fakes in the latter are much harder to detect for humans: 65.8%
of VIDEOFORENSICSHQ fakes are mistaken as reals, while only 14.3% of
the NEURALTEXTURES fakes pass this test.

3.3.2 Production Process

Mining real videos as the basis for fakes is challenging because jump-cuts,
animations and unusual face poses need to be circumvented automatically,
especially for YOUTUBE. To synthesize video of an identity, DVP requires
about 5 to 10 minutes of training material, with all frames showing the
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same face at roughly the same distance, in a near-frontal pose. To find
such material, a facial landmark tracker (Saragih et al., 2011) runs over
all frames of each source video F , obtaining 66 landmark positions for
every frame F (i), and one confidence value in the range [0; 1] for every
landmark position. Three metrics are computed on this basis:

1. ci: average landmark confidence for frame F (i)

2. di: average offset between landmark positions in F (i) and F (i− 1),
divided by face size

3. mean and standard deviation of the ci’s and di’s

A frame is regarded unsuitable in any of the following cases:

a) ci < 0.2

b) di > 0.1

c) ci < 0.6 deviates from the confidence mean by more than 110% of
the standard deviation (in negative direction)

d) di > 0.025 deviates from the displacement mean by more than 110%
of the standard deviation (in positive direction)

If none of these apply, the frame is added to the current segment of suitable
frames. A segment here is a contiguous set of frames, with no scene cuts.
The longest good segments are added to the training set for the respective
identity until 5000 to 6000 frames are reached. All good segments beyond
that make up the disjoint synthesis set for this identity. While the training
set is used for training DVP, the synthesis set will be used as the basis for
the actual fakes.

The training set is processed with a monocular face reconstruction ap-
proach (Garrido et al., 2016), that encodes the facial performance as a
sequence of parameter vectors. The vectors are then rendered to obtain
the conditioning input that DVP learns to turn into RGB output again
(Figure 3.3). This way, for each identity, one obtains one DVP model that
can render facial performances at photorealistic quality. The input to such
a model can be any arbitrary facial performance, also given as a sequence
of parameter vectors. But to reliably avoid strong artefacts, one should
give facial performances as input that are close to the distribution that
DVP saw during training (without, of course, using any of the training
data!). One can simulate an attacker that is able to synthesize such param-
eter sequences, by applying monocular reconstruction to the synthesis set
as well, thereby obtaining parameters that have the necessary properties.
This is why VIDEOFORENSICSHQ mostly avoids visible glitches, but still
preserves the less noticeable artefacts that every GAN-based synthesis
method inevitably exhibits.
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Subset Source Real frames Fake frames
Group #1 H. Kim et al., 2019 119,992 60,058
Group #2 RAVDESS 190,259 74,765
Group #3 YOUTUBE 1,029,592 192,150

Total 1,339,843 326,973

Table 3.1: VIDEOFORENSICSHQ consists of three subsets. The authentic
frames for all subsets were mined from different sources.

3.3.3 Detailed Usage of DVP

The original version of DVP (H. Kim et al., 2018) cannot handle dynamic
backgrounds and works at a fixed resolution of 2562. Training frames
are thus cropped around the face and the background is masked out (see
Figure 3.3), to make the network focus all its capacity on the face region.
The resulting square images are scaled to resolution 2562. Instead of a sep-
arate conditioning image for the eye gaze (like in DVP), gaze renderings
are overlayed on the face rendering. Importantly, DVP allows the super-
vision of temporal dependencies, by means of “temporal windows”, as
proposed by H. Kim et al., 2018: The discriminator sees temporal volumes
of 5 frames for most of Group #2. Since they were found to not improve
subjective quality considerably, Group #1 and Group #3 were synthesized
with window size 1. DVP was trained for up to 200 epochs, estimating the
mean squared photometric error against ground truth on the validation
set. The model with the smallest error was used for synthesis. Since the
facial performances rendered at synthesis time have been reconstructed
from real footage, the coordinates of the face region in that footage are
known. This allows alpha-blending the DVP output into those original
frames.

3.4 User Study

To compare the quality of fakes in VIDEOFORENSICSHQ to FACEFOREN-
SICS++ (Rössler et al., 2019), 13 manipulated videos were randomly se-
lected from VIDEOFORENSICSHQ and the NEURALTEXTURES subset of
FACEFORENSICS++ (Rössler et al., 2019; Thies et al., 2019) respectively.
Other approaches in FACEFORENSICS++ produce fakes with much more
visible artefacts (see Figure 3.2). In addition, 6 unmodified videos from
VIDEOFORENSICSHQ and 7 from FACEFORENSICS++ were selected ran-
domly. In total the study contained 39 videos, randomly shuffled for each
participant.

For each video, participants had to answer the question “Does the video
look real or fake?”. Most participants were computer scientists, with little-
to-no knowledge of face manipulation techniques. 61 subjects participated
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Video set Rated “fake” Rated “real”
Real videos 15.0% 85.0%

NEURALTEXTURES fakes 85.7% 14.3%
VIDEOFORENSICSHQ fakes 34.2% 65.8%

Table 3.2: Study participants were given 39 videos from VIDEOFOREN-
SICSHQ and the NEURALTEXTURES subset of FACEFORENSICS++, both
authentic and manipulated, and had to rate them as “real” or “fake”.
Fakes from VIDEOFORENSICSHQ fooled the participants considerably
more often than NEURALTEXTURES.

in the study. On average, fakes from VIDEOFORENSICSHQ were rated
real 65.8% of the time, and fakes from FACEFORENSICS++ were rated real
only 14.3% of the time (see Section 3.4). Authentic videos were rated fake
15% of the time, which reflects a baseline error level in human detection
performance. Participants were also asked what made them flag videos
as fake. Some of the most common responses were:

1. Various visual artefacts, especially in the mouth interior

2. Non-natural eye movement

3. Body movements or hand gestures not matching speech

4. Non-natural mouth-related movements e.g. lips being tight when
they should not be, deforming/dislodging jaw, etc..

5. Incorrect audio-lip synchronization

6. A single glitch occurring over 2-3 seconds

7. Spoken language not matching language of written text

Many of these observations can only be made on videos, not on images,
i.e. when a temporal component is present.

3.5 Detecting High-Quality Face Manipulations

XCEPTIONNET (Chollet, 2017) was ranked best in FACEFORENSICS++
(Rössler et al., 2019). If H is true, XCEPTIONNET should perform worse on
VIDEOFORENSICSHQ than it does on FACEFORENSICS++. This expecta-
tion is justified because XCEPTIONNET is a generic image classifier that
has not been designed for fake detection and thus should look for clearly
visible artefacts in the image space. The goal of this section is to enhance
its ability to detect seemingly flawless fakes, without compromising its
ability to detect strong artefacts. To reach this goal, this section presents a
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Figure 3.4: The building blocks of XCEPTIONNET (Chollet, 2017) are the
basis for the multi-stream detectors presented in this section (see Fig-
ure 3.6). In order to trade memory capacity between multiple streams
and fuse them at the right locations, the numbers of features in each layer
vary in the different detectors. ε in M and ζ in Out are determined by
the number of output feature in the preceding block. All “Conv” and
“SepConv” layers are followed by batch normalization (Ioffe et al., 2015).

novel family of detectors (Figure 3.6) that examine combinations of multi-
ple cues: the original RGB values, low-level spatial noise, and temporal
dependencies (see Figure 3.7).

XCEPTIONNET can be modelled as a function

(N<W × N<H × N<C → R+)→ [0; 1]2 (3.1)

that maps RGB frames F to scores for the two classes “real” and “fake”,
with W = H = 299 and C = 3. XCEPTIONNET consists of an entry flow
InCαβγδε, a middle flow M, and an exit flow Out, see Figure 3.4. Parameters
α, β, γ, δ, and ε specify the number of features per convolutional layer.
One can denote XCEPTIONNET as

XC := In3,32,64,128,256,728 ◦M8 ◦Out (3.2)
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In the following, leading or trailing zeros in the indices of InC,α,β,γ,δ,ε
disable the respective layers.

Repetitions of M drive up memory consumption and training overhead.
To test whether 8 repetitions are actually necessary for forgery detection,
M can be omitted entirely:

XB := In3,32,64,128,256,728 ◦M0 ◦Out (3.3)

Since VIDEOFORENSICSHQ contains very few strong visual artefacts that
XC or XB could easily pick up, the network XS is defined to not classify
frames F themselves, but their spatially high-pass-filtered versions 1

2 ·
(F − g ∗F ) + 1

2 , where g ∗F is the convolution of F with a Gaussian kernel
of size 5 and standard deviation σ = 1.1. The architecture of XS is that of
XB.

The combination of XC and XS,

XCS := concat(In3,32,64,128,256,364, In3,32,64,128,256,364) ◦M2 ◦Out (3.4)

receives the same inputs as XC and XS and concatenates the colour and
noise features just before entering M2, where the combined receptive field
of the convolutional kernels has size 17× 17 (see Figure 3.6). XCS can be
extended to

PPct := concat(In3,32,64,0,0,0, In3,8,8,0,0,0) ◦ In0,0,72,128,256,512 (3.5)
PPcts := concat(PPct, In3,16,32,64,128,256) (3.6)

XCST := PPcts ◦M1 ◦Out (3.7)

which receives temporal features FT as a third input (Figures 3.6 and 3.7).
FT is extracted from a temporal slice of the input video as follows:

1. Let F be the input video.

2. Obtain F ′ by convolving all frames of F with a spatial 2D Gaussian
kernel (size 49, σ = 7.7), suppressing high spatial frequencies that
motion would turn into temporal ones (e.g. an edge sweeping over
a pixel).

3. Temporal high-pass filtering:

F ′′(i) := −1

4
F ′(i− 1) +

1

2
F ′(i) +−1

4
F ′(i+ 1) (3.8)

4. Batch normalization:

F ′′′(i)(x, y, z) := γz · F ′′(i)(x, y, z) + βz (3.9)

where γz and βz are per-channel parameters of an affine transforma-
tion that are tuned during training to bring the average frame F ′′′(i)
to mean 0 and variance 1.
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Figure 3.5: Graphs of clifft, for t ∈ {0.2, 0.4, 0.6, 0.8}. The function is used
in Step 5 to suppress small temporal amplitudes, that are assumed to be
of natural origin. clifft is differentiable in t, allowing the optimal cut-off
amplitude to be learned.

5. Amplitudes smaller than t are dampened by computing

A(i) := clifft(F
′′′(i))− clifft(−F ′′′(i)) (3.10)

where the cliff function

clifft(f) :=
t

10
· (log (1 + exp(χ(f))) + 10 · sigmoid(χ(f))) (3.11)

with χ(f) := 10
t · (f − t) is smooth and differentiable in t (see Fig-

ure 3.5.

6. Computation of temporal gradients: G(i) := |A(i)−A(i− 1)|.

7. Temporal low-pass filtering with kernel ( 1
32 ,

1
8 ,

3
16 ,

1
8 ,

1
32).

This process emphasizes unnaturally fast motions, often observed in
forgeries. With the exception of Step 2, all operations are pixel-wise.
Step 3 suppresses low temporal frequencies, which are likely of natural
origin. Steps 4 and 5 filter the high frequency spikes for those of a certain
minimum amplitude, which are most likely artificial: clifft is supposed
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to dampen low amplitudes of a signal. The parameter t is a threshold
specifying which amplitudes are to be dampened. Figure 3.5 plots clifft
for different values of F ′′′. The function is differentiable in t, such that
the training process can automatically determine a good position and
shape for the “cliff”. Step 6 turns oscillations between + and - into large
positive values. Step 7 stabilises the resulting signals, such that more
output frames exhibit bright regions that the classifier can detect.

The fact that Steps 1 to 7 use only very few trainable parameters (namely
the batch statistics in Step 4 and t), helps prevent them from overfitting to
the training distribution. The evaluation in Section 3.6.2 shows that XCST
generalises better to unseen manipulation methods than other detectors.

The number of repetitions of M and the points at which feature streams
are fused were chosen empirically to maximise detection accuracy while
not exceeding the 11GB of GPU memory in an NVIDIA 1080Ti. The
resulting trade-offs can lead to XS performing slightly better than XCS and
XCST on videos in which colour and temporal information do not give a
benefit over spatial noise, because the latter two cannot dedicate as much
memory to spatial noise as XS (Section 3.6). On the other hand, spatial
noise cues alone do not generalise as well as combinations with other
types of information (Section 3.6.2).

3.6 Results

VIDEOFORENSICSHQ and the family of detectors presented in Section 3.5
allow the investigation of H:

State of the Art Detectors The detectors of Section 3.5 are compared to a
number of previous approaches: Detector XC, i.e. XCEPTIONNET (Chollet,
2017), performs best in the FACEFORENSICS++ evaluation (Rössler et al.,
2019), that also includes MESOINC-4 (Afchar et al., 2018) and MISLNET

(Bayar et al., 2016, 2018). SIMPLEFEATURES (Durall et al., 2019) specifically
analyses footage in the frequency domain. S. Wang et al., 2020, have
trained an instance of RESNET-50 to generalise to the detection of unseen
synthesis methods, to be referred to in the following as EASYSPOT.

Preprocessing and training All training and test data for all detectors
was preprocessed by the same pipeline: Face bounding boxes were com-
puted using DLIB (King, 2009), with temporal smoothing of their coordi-
nates. Constant-size square bounding boxes were extracted and scaled to
resolution 2992 (exception MESOINC-4: 2562). All videos were resampled
at 25Hz. Frames for which no face bounding box could be found were
omitted. For SIMPLEFEATURES, 209-dimensional feature vectors were
computed as specified by Durall et al., 2019.
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XC (XCEPTIONNET) XS XCS

XCST

Figure 3.6: The detectors presented in this chapter extend XCEPTIONNET

(Chollet, 2017, see Figure 3.4) to a multi-stream classifier for combinations
of colour, spatial noise and temporal features (see also Figure 3.7).
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Normalised RGB Spatial noise Temporal noise

Figure 3.7: The top row was extracted from an authentic video, the bottom
row from a FACEFORENSICS++ fake. The X detectors (see Figure 3.6) pro-
cess normalised colour (left), spatial high frequency information (centre)
and the aggregation of temporal information defined in Steps 1 to 7 of
Section 3.5 (right). The latter focuses on high frequency flickering, that is
usually of unauthentic origin.
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The Xception-based detectors XC, XB, XS, XCS and XCST are all trained
with stochastic gradient descent (momentum 0.9, weight decay 10−5),
multiplying the initial learning rate of 0.03 with factor 0.970.1 per epoch.
For XCST the threshold t is initially set to 1

40 . Previous detectors are trained
as specified in their publications, except for EASYSPOT and SIMPLEFEA-
TURES: EASYSPOT is claimed to generalise well to unseen rendering meth-
ods and so this evaluation uses its pretrained weights and merely opti-
mises a threshold on its singular output value, based on the ROC curve
over the samples that were seen within one epoch of training. This opti-
mization is performed for 5 epochs, averaging the 5 resulting thresholds.
For every training batch of SIMPLEFEATURES a new SVM is optimised on
the Fourier features. At validation and test time the predictions of all SVM
models obtained in this way are averaged.

All detectors are trained with batch size 24, except for MESOINC-4
(512), SIMPLEFEATURES (512) and MISLNET (256). Except for EASYSPOT,
all methods are trained with a hard limit of 100 epochs. Training stops
earlier if 5 epochs with a validation accuracy of more than 99% have been
seen (not necessarily consecutively). The model with maximal validation
accuracy is used at test time.

To account for imbalances in the datasets (e.g. the different subsets
of FACEFORENSICS++ contain different numbers of frames), 10% of the
training frames and 20% of the validation frames are sampled in every
epoch as follows: First a class is sampled (“real”/“fake”), then a subset
(which is relevant for VIDEOFORENSICSHQ because it consists of three
different groups), then a subject and then one of the sequences for this
subject. Frames are sampled uniformly from sequences. Since SIMPLE-
FEATURES is not designed for the amounts of data resulting from the
aforementioned sampling rates, they are lowered to 0.5% training and 1%
validation samples for this method. This training procedure is the reason
why the accuracies reported in Table 3.3 for MESOINC-4 and MISLNET

are slightly lower than those reported by Rössler et al., 2019.
At test time, all frames of the test sets are used, but per-frame predictions

are weighed by the probability of a frame being sampled according to
above sampling process.

3.6.1 Detecting Highly Photorealistic Manipulations

To test H, detectors were trained on FACEFORENSICS++ (Rössler et al.,
2019) and DEEPERFORENSICS 1.0 (L. Jiang et al., 2020), which both contain
strong visual artefacts (Figure 3.2), as well as on VIDEOFORENSICSHQ,
which does not (Figure 3.1).

Table 3.3 confirms H: With the exception of the detectors developed in
Section 3.5 all accuracies are considerably lower on VIDEOFORENSICSHQ,
than on previous datasets. In fact, XCEPTIONNET (XC), the best detector
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Detector FF++
Deeper

VFHQ
Forensics

XC 99.23% 98.64% 88.59%
XB 99.34% 98.09% 91.95%
XS 99.38% 98.21% 99.45%
XCS 99.25% 98.32% 97.12%
XCST 99.35% 98.34% 97.78%

MESOINC-4 92.44% 97.25% 76.73%
EASYSPOT 75.55% 61.05% 56.44%

SIMPLEFEATURES 56.69% 62.88% 61.98%
MISLNET 95.82% 97.89% 74.65%

Table 3.3: All detectors were trained on the training+validation portions
of the respective datasets and then tested on their test sets. Percentages are
test accuracies averaged over two runs of the experiment. XB, XS, XCS and
XCST consistently achieve high accuracies on all three datasets, whereas
previous methods perform worse especially on VIDEOFORENSICSHQ.
XCS and XCST do not benefit from analysing more clues than XS, because
VIDEOFORENSICSHQ does not have strong artefacts in these channels
and the previous datasets contain strong artefacts that are easily detected.

in FACEFORENSICS++, drops by more than 10% and is even outperformed
by XB, which is a reduced version of XC. The detectors XS, XCS and XCST
on the other hand perform well on all three datasets. The table shows
XCS and XCST perform not quite as well as XS. This is because they had to
sacrifice some of the GPU memory that XS can dedicate to spatial noise,
in order to handle colour and temporal features (Section 3.5). Since VIDE-
OFORENSICSHQ does not contain strong visual or temporal artefacts, this
sacrifice does not pay off.

Only VIDEOFORENSICSHQ is able to differentiate the best detectors
from one another, while on previous datasets many detectors achieve
close to 100% accuracy.

3.6.2 Generalization across Manipulation Techniques

Since the genesis of a fake is often unknown, detectors should generalise
to unseen synthesis methods.

To evaluate this ability, detectors were trained on the FACEFORENSICS++
subsets FS ∪NT (created with FACESWAP, Kowalski, 2018 and NEURAL-
TEXTURES, Thies et al., 2019) and F2F ∪ DF (created with FACE2FACE,
Thies et al., 2016 and DEEP FAKES, torzdf et al., 2020). Then they were
tested on the subset they were not trained on. FACEFORENSICS++ is better
suited for this experiment than VIDEOFORENSICSHQ, because the latter
contains only one manipulation technique and differs from other datasets
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in more respects than just the synthesis method (higher resolution faces,
no visible artefacts, etc.).

Table 3.4 shows that training the X-detectors on FS ∪NT makes them
generalise well to F2F ∪ DF, where they outperform previous methods.
XCS ranking higher than XS and XC suggests that combining colour and
spatial noise can help generalization.

The opposite experiment, i.e. training on F2F ∪ DF, followed by testing
on FS, gives low accuracies for all detectors, suggesting that FS contains
artefacts not seen in F2F ∪ DF. Surprisingly, although the subset NT is
of significantly higher spatial quality than the others (see Figure 3.2), the
X-based detectors manage to generalise to this manipulation method. It is
here, in the absence of strong spatial artefacts, where especially temporal
dependencies help XCST perform significantly better than all the other
detectors. Although detectors like XC or MISLNET are theoretically able
to learn the spatial filtering hard-coded in XS, they perform considerably
worse than XS in Tables 3.3 and 3.4.

3.6.3 Importance of Temporal Features

It could be suspected that the only reason why XCST generalises better
than XCS in Table 3.4 is that it simply dedicates fewer neurons to colour
and spatial noise (see Equations 3.4 and 3.7), which serves as a kind
of regularization. This is why Table 3.4 also contains the architecture
XCST\T, that is exactly the same as XCST, but with temporal noise extraction
replaced by a layer that produces an all-zero image. This means that
XCST\T sees no actual temporal information, but dedicates exactly as many
neurons to colour and spatial noise as XCS does. Table 3.4 shows that
this ablation leads to a significant drop in accuracy compared to XCST
and XCS, especially on NT, where temporal features are most important
for detecting fakes. This demonstrates that the temporal component of
XCST does meaningfully contribute to its performance and generalization
ability. Temporal features more than compensate for the reduced number
of neurons for the colour and noise streams.

3.6.4 Training on a Union of Datasets

Since a single dataset can hardly cover all variations of forged video
content (synthesis methods, image qualities, lighting conditions, camera
angles, etc.), a robust detector should be trained on a union of datasets.

To evaluate how well detectors handle such a scenario they were
trained on the union of FACEFORENSICS++, VIDEOFORENSICSHQ and
DFDC (preview) (Dolhansky et al., 2019), to be tested on FACEFOREN-
SICS++ and VIDEOFORENSICSHQ (see Table 3.5). (Unfortunately, the test
accuracies on DFDC (preview) were only about 80% for all detectors,
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Detector
Train: FS ∪NT Train: F2F ∪ DF

Acc.F2F Acc.DF Acc.NT Acc.FS
XC 82.25% 92.91% 58.40% 50.09%
XB 90.40% 95.15% 66.03% 50.27%
XS 98.46% 94.93% 85.21% 55.19%
XCS 99.46% 98.74% 86.74% 51.78%
XCST 98.91% 99.03% 90.65% 56.77%

XCST\T 99.21% 99.18% 85.42% 57.65%
MESOINC-4 89.65% 71.94% 73.10% 49.76%
EASYSPOT 77.91% 80.03% 84.40% 58.89%

SIMPLEFEATURES 55.87% 55.47% 53.68% 54.19%
MISLNET 64.22% 94.53% 64.04% 50.02%

Table 3.4: All detectors were trained on the training+validation portions
of two out of four FACEFORENSICS++ subsets and then tested on the test
portions of the other two. Percentages are test accuracies averaged over
three runs of the experiment. Especially XCST, which exploits temporal
dependencies, achieves high accuracies on the unseen manipulation types.
This effect is strongest on the NT, that has the best spatial quality of the
four subsets (see Figure 3.2), so the temporal dependencies pay off the
most here. XCST\T is an ablated version of XCST (see Section 3.6.2). The FS
subset appears to be very hard to generalise to for all detectors.

because the very challenging perspectives and lighting conditions, as well
as the fast motion, made the common preprocessing pipeline struggle to
the point that it became the bottleneck for accuracy.)

Compared to training on only one single dataset (see Table 3.3), the task
is now hard enough to also differentiate the X detectors from one another:
XB again performs better than XC. XS and XCS are on par. XCST can once
more demonstrate the benefit of temporal information, ranking highest
on both test sets.

3.6.5 Impact of Training Corpus Size

VIDEOFORENSICSHQ contains only 45 identities, while FACEFOREN-
SICS++ contains 1000 identities. This raises the question if the number of
identities in VIDEOFORENSICSHQ is sufficient to train a good detector.

To answer this question, small training sets were randomly sampled
from VIDEOFORENSICSHQ, with different numbers of identities. Detec-
tors were trained on these subsets and then tested on random test sets
of 15 identities each (disjoint from the training sets). For each number
of training identities, the experiment was repeated 3 to 5 times, and the
accuracies were averaged, resulting in the curves in Figure 3.8.

The best detectors achieve close to 100% test accuracy already for train-
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Arch.
Test accuracy

FACEFORENSICS++ VIDEOFORENSICSHQ
XC 95.90% 78.99%
XB 96.16% 80.02%
XS 97.69% 88.94%
XCS 98.01% 87.91%
XCST 98.67% 90.63%

MESOINC-4 74.34% 76.65%
EASYSPOT 75.88% 56.75%

SIMPLEFEATURES 54.20% 55.51%
MISLNET 90.02% 78.85%

Table 3.5: Detectors were trained on the union of the training+validation
portions of FACEFORENSICS++, VIDEOFORENSICSHQ and DFDC (pre-
view) (Dolhansky et al., 2019). Percentages are detection accuracies on
the test portions. Compared to Table 3.3 all detectors perform less well,
but the detectors presented in this chapter suffer less than previous ones.
XCST handles the diversity of manipulation methods best.

XC

XB

XS

XCS

XCST

MESOINC-4
EASYSPOT

SIMPLEFEATURES

MISLNET

Figure 3.8: Detectors were trained on subsets of VIDEOFORENSICSHQ that
contained different numbers of identities (see Section 3.6.5). The resulting
test accuracies indicate that XS, XCS and XCST, i.e. those detectors that look
at something other than plain RGB, need much fewer training identities
than previous detectors to achieve a high accuracy on the test set.
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ing corpora of only 25 identities (training + validation), which is much
fewer than the total number of identities in VIDEOFORENSICSHQ, pro-
viding evidence that VIDEOFORENSICSHQ is sufficient to generalise to
unseen identities, and that the X detectors do not overfit to the training
identities.

3.7 Limitations

While XCST is one of the first fake detectors to take temporal dependencies
into account, its temporal processing (Steps 1 to 7) is still rather primi-
tive: It is designed to detect temporal high-frequency “flickering” and its
only learnable parameter is the cut-off amplitude t. However, temporal
dependencies of real-world videos are likely much more sophisticated
than merely ruling out high-frequency pixel changes. While XCST was
sufficient to detect state of the art fakes at the time, it may not be general
enough for more recent manipulation methods.

VIDEOFORENSICSHQ is the first dataset of high-quality manipulated
face videos, but all its fakes were computed using only one method, DVP,
which is based on a convolutional generator. Today’s fakes, however, are
often the result of diffusion-based approaches (Ho et al., 2020; Rombach et
al., 2022; Sohl-Dickstein et al., 2015), that can be controlled (L. Zhang et al.,
2023) without alpha blending as a post-processing step. In this sense VI-
DEOFORENSICSHQ would benefit from extension to further manipulation
methods.

3.8 Conclusions

This chapter has introduced VIDEOFORENSICSHQ, the first benchmark
for face video detection that provides a large number of manipulations a
human would not be able to spot. Only with this dataset was it possible to
investigate whether previous approaches to face video forgery detection
are ready for the advent of synthesis methods that produce seemingly
“perfect” results. This investigation confirmed hypothesis H, i.e. it showed
that previous detectors struggle to detect fakes that a human would not be
able to spot either, although these fakes still do contain traces of artificial
genesis.

To compensate for the shortcomings of existing detection approaches
in this scenario, Section 3.5 introduced a novel family of detectors that
combine spatial and temporal information in a way that has not been used
in the area of face video forgery detection before. Section 3.6 showed these
detectors to outperform related methods both on previous datasets and
on VIDEOFORENSICSHQ.
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While at first sight one might mistake the “intra-person” expression
transfers in VIDEOFORENSICSHQ to be harmless, there is work (Fried
et al., 2019; Suwajanakorn et al., 2017) that demonstrates even slight
manipulations of this kind to have dramatic consequences. The absence of
human-detectable artefacts in VIDEOFORENSICSHQ has the advantage of
preventing detectors from learning to rely on their presence. This suggests
that VIDEOFORENSICSHQ can enrich any detector training set.

While this chapter emphasized analysis of video footage, and only “sim-
ulated” a capable attacker in order to obtain training data of sufficient
quality and quantity, the next chapter focuses on the synthesis of videos
using very small training sets.
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Temporal Generation
using a Pretrained
StyleGAN 4
The previous chapter used existing Generative Adversarial Networks
(GANs) to produce training data for fake detectors. In this chapter, the
goal is to advance video generation itself: Most generators require an
extensive training dataset to learn temporal dependencies, while many of
them remain rather limited in the resolution and visual quality of their
output. This chapter presents a novel approach to the video synthesis
problem (published as Fox et al., 2021b) that helps improve visual quality
and drastically reduces the amount of training data and resources neces-
sary for generating videos. Its formulation separates the spatial domain,
in which individual frames are synthesized, from the temporal domain, in
which motion is generated. The spatial domain is covered by a pretrained
STYLEGAN network (Karras et al., 2021, 2019, 2020), the latent space of
which allows control over the properties of the objects it was trained for.
The expressive power of this model allows for training videos to be em-
bedded in its latent space. The temporal architecture can thus be trained
not on sequences of video frames, but on sequences of STYLEGAN latent
codes. The advantageous properties of the STYLEGAN space simplify
the discovery of temporal dependencies. It suffices to train the temporal
architecture on only 10 minutes of footage of 1 subject. After training, the
model can not only generate new portrait videos for the training subject,
but also for any subject that can be embedded in the STYLEGAN space.

4.1 Introduction

Generative Adversarial Networks (GANs; see Section 2.5) have achieved
unprecedented levels of output quality for the generation of complex
probability distributions. This is especially true for images of human
faces, where STYLEGAN (Karras et al., 2021, 2019, 2020) can produce
photorealistic images of high resolution (e.g. 10242). These capabilities,
however, did not automatically carry over to the domain of videos: While
several methods for video generation show promising results in modelling
content and motion (Muñoz et al., 2021; Saito et al., 2020; Tian et al., 2021;
Sergey Tulyakov et al., 2018; Weissenborn et al., 2020), they usually are
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Figure 4.1: Training STYLEVIDEOGAN on one single, short training video
(less than 10 minutes) of a human face, makes it learn temporal depen-
dencies that allow the generation of motion for random new subjects,
sampled from the latent space of STYLEGAN. Each row shows a different
new subject, but all frames were generated from the same model. More
results in the project video (Section 1.5).

subject to at least a subset of the following limitations: small spatial
resolution ( ≤ 1282); spatial artefacts; constrained motion; necessity of
large amounts of training data; large computational cost for training
(memory, time; see Table 4.4 and Section 4.4.4) .

This chapter presents STYLEVIDEOGAN, an approach to unconditional
video generation that addresses these problems: The goal is to learn a
generator for nearly photorealistic, high-resolution videos (up to 10242),
by training on a video dataset that contains no more than 10 minutes of
footage. In addition, although the training footage depicts only a single
subject, the trained model should be able to generate motion not only
for the training subject, but for many different (random) subjects. The
generation of portrait videos is a good proving ground for this method,
because portraits are an attractive target for animation and because high-
quality training data and STYLEGAN models for this domain are readily
available. To demonstrate that the method is also applicable to other
domains, very different from portraits, Sections 4.4.6 and 4.4.7 show that
it can be applied to other object classes as well.

The key idea of STYLEVIDEOGAN is to embed the training video into
the latent space of a pretrained STYLEGAN model: STYLEGAN is a
generator for images (see Section 2.5), i.e. it maps latent codes z that are
usually obtained as samples of a multivariate Gaussian to frames F . In
the course of this computation, the generator first maps z to a new latent
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code w ∈ W ⊆ R512, that is then copied 18 times, to be consumed by the
layers of STYLEGAN’s main network. Since encoding a given image as a
w ∈ W has been observed to give rather imprecise reconstructions, one
instead lifts the “18 copies” constraint and computes w ∈ W+ ⊆ R18×512,
i.e. the 18 sub-vectors can now differ from one another. Previous works
(Abdal et al., 2019; Richardson et al., 2021) have shown this to lead to
more precise reconstructions.

Embedding videos inW+ turns them from sequences of RGB frames
into sequences ofW+ vectors. While an RGB frame has 1024 · 1024 · 3 =
3,145,728 dimensions, aW+ code only has 18·512 = 9216 dimensions. This
means that the embedding allows the temporal generator to be supervised
in a much lower-dimensional space, which simplifies the discovery of
temporal dependencies. Also, this transformation completely eliminates
the necessity to actually render any video frames at training time, which
greatly reduces the amounts of memory and time required to train the
model.

There is another major advantage of the embedding approach, that
allows the model to generate motion for a great multitude of subjects,
even though it has seen only one subject at training time: The linear
separability properties ofW+ space (Nitzan et al., 2020; Shen et al., 2020;
Tewari et al., 2020a) allow for motion to be transferred from one subject
to another, unseen subject, which the chapter will refer to as the “offset
trick”.

Using these ideas, it is possible to train a Wasserstein GAN (Arjovsky
et al., 2017; see Section 2.5) for the generation of high resolution videos
using a minimal amount of training data and computational resources.
The temporal windows seen at training time are already longer (25 time
steps) than those possible in many previous methods, but it is desirable
to be able to generate videos that are considerably longer at test time.
This can be achieved by making the generator a recurrent neural network
(RNN). As previous work (Tian et al., 2021) has pointed out, a standard
RNN may tend to produce “looping” motion, i.e. repeat the same motion
pattern over and over. STYLEVIDEOGAN addresses this problem with
a novel gradient angle penalty. In summary, this chapter comprises the
following contributions:

• A novel approach to unconditional video generation that is super-
vised in the latent space of a pretrained image generator, without
having to render video frames at training time, leading to large
savings in computational resources.

• The first video generation approach to exploit the properties of
STYLEGAN’sW+ space, greatly reducing the demand for training
data.

49



• A novel gradient angle penalty loss that helps generate videos that
are longer than the temporal windows seen at training time.

4.2 Related Work

4.2.1 Generative Models for Videos

Blattmann et al., 2023a,b, provide a comprehensive overview of previous
works on video generation. This section focuses on the state of the art up
to (and including) 2021.

Recurrent neural networks (RNNs), which the GRU-based generator in
this thesis is an example of, have been been used in several earlier works,
to model the temporal dimension: Babaeizadeh et al., 2018 and E. Denton
et al., 2018, presented early methods of modelling videos by predicting
an entire distribution of possible futures given a suffix of the past. It
was shown that acknowledging this stochastic nature of videos (i.e. the
same limited information about the past admits many different futures of
different probability) improves the quality of the output. Castrejón et al.,
2019, showed that the performance of these and other previous methods is
limited by model capacity and introduced a hierarchical variational model
to improve the representation of distributions. Franceschi et al., 2020, aim
at separating static information about the video from temporally variable
information, but, like other methods mentioned in this section, supervise
their model in the image domain, which is computationally expensive and
thus limits them to much smaller resolutions than the method presented
in this thesis. This constraint is shared by notable methods based on
normalizing flows (Blattmann et al., 2021; Dorkenwald et al., 2021), which
require large video datasets and generate output only at low resolutions.

Weissenborn et al., 2020, generalised transformers (Vaswani et al., 2017)
to a three-dimensional self-attention mechanism, in order to construct an
autoregressive video generation model. Inspired by the work of Menick
et al., 2019, they produce videos as sequences of lower-resolution slices,
to reduce computational complexity. Nevertheless, spatial resolution is
only 642 and sampling a video of only 30 frames takes about 2 minutes
according to the authors.

Most related to the work presented in this thesis are GAN-based ap-
proaches (Goodfellow et al., 2014) to video generation. Many of these
are based on the Wasserstein GAN architecture (Arjovsky et al., 2017;
Gulrajani et al., 2017), that has been shown to be able to prevent mode
collapse. Villegas et al., 2017, aim to disentangle the content of videos
from their motion, by training separate encoders for content and motion
respectively. The output from the encoders is combined to predict the
next frame following a sequence of input frames. The output resolutions
are again rather small. This is also the case for the closely related work
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by E. L. Denton et al., 2017, who introduce an adversarial loss that makes
an encoder separate information about frames into a “content” part, that
should distinguish a given video from other videos, and a “pose” part,
that cannot distinguish different videos (because the same poses can occur
in different videos). The approach by Saito et al., 2017, is based on a
Wasserstein GAN with a novel parameter clipping method. The architec-
ture uses a shared image generator for each frame, but it is not pretrained,
and supervision is defined on the image domain. Output resolution is
fixed to 642. Sergey Tulyakov et al., 2018, presented MOCOGAN, decom-
posing the generation of videos into a motion part, the state of which is
evolved by an RNN throughout the sequence, and a content part, that
remains fixed over the sequence. MOCOGAN is trained using separate
discriminators for content and motion. Yushchenko et al., 2019, formu-
lated video generation by means of Markov Decision Processes (MDP),
extending the MOCOGAN framework. They identify “video freezing”
and “video looping” as important flaws in generated videos. J. Wu et
al., 2019, starting at small spatiotemporal resolution, progressively grow
their GAN model (Karras et al., 2018). This process enables, as one of
the first methods ever, the generation of video distributions at resolution
2562. Separating video content into appearance and motion, Y. Wang
et al., 2020, present a GAN with a 3-stream convolutional generator that
receives dedicated latent codes for appearance and motion. Its discrimina-
tor architecture is similar to that of MOCOGAN. The generated videos are
limited to a fixed duration (default 16 frames) and their resolutions are
small (642). Ye et al., 2020, present a method for the unconditioned gen-
eration of face videos. They emphasize the generation of long-duration
videos, but spatial resolutions are small (1282). Kahembwe et al., 2020,
show that three-dimensional convolution kernels in a video discriminator
make the loss landscape unnecessarily hard to optimise in. Instead they
propose a family of lower-dimensional kernels and apply them to the
discriminators of MOCOGAN and the work of Saito et al., 2017, which
improves their ability to model the training distribution. The method is
the first to generate videos at spatial resolution 5122. Saito et al., 2020,
decompose the generation problem into multiple generators, where earlier
generators “receive high-frame-rate, low-resolution videos” as input and
later generators receive “low-frame-rate, high-resolution videos” as input.
This makes computational complexity linear in the resolution and thus
allows the authors to show resolutions of up to 2562. Concurrently to the
method presented in this thesis, Yao et al., 2021, introduced a method
for the editing of human faces in videos, also exploiting the properties of
the STYLEGAN latent space. However, this approach merely preserves
the motion given in the input, performing spatial edits in a temporally
smooth way, but does not learn to generate new motion. K. Hong et al.,
2021, train their discriminator to infer the “arrow of time” as an auxiliary
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task, i.e. to determine whether the frames of a video are in forward, or
backward temporal order. The generator learns to produce frames in
forward order, but the gradient of the arrow of time estimated by the
discriminator serves as an additional corrective, forcing the generator to
model temporal dependencies more accurately. The authors show output
resolutions of up to 2562. Muñoz et al., 2021, similar to STYLEVIDEOGAN,
model videos as paths through a latent space, with each point in the latent
space representing one frame. Their generator consists of a sequence gen-
erator and a frame generator. Supervision by the discriminator happens
on the basis of RGB frames and resolutions up to 1922 are shown.

Summary All methods listed in this section, and especially the GAN-
based approaches, have in common that models are supervised in the
image domain. This means that at training time, full frames for all the
videos in a training batch need to be synthesized, which costs memory
and computation time. Furthermore they need to be analysed by the
discriminator, which again is very expensive both in terms of time and
space. Especially the space cost is a limiting factor here, as the available
GPU(s) will set a limit on the amount of memory that can be used for a
training iteration and thus constrains the maximum video resolution that
models can be trained for: Previous methods produce resolutions of 642

(Saito et al., 2017; Sergey Tulyakov et al., 2018), 1282 (Ye et al., 2020), 1922

(Muñoz et al., 2021), 2562 (K. Hong et al., 2021; Saito et al., 2020; J. Wu et al.,
2019) or 5122 (Kahembwe et al., 2020). Furthermore, many approaches
struggle with generating realistic videos of longer durations: Often the
number of generated frames is fixed at training time, to numbers as low
as 16 (Muñoz et al., 2021; Saito et al., 2017, 2020; Sergey Tulyakov et al.,
2018), or 32 (J. Wu et al., 2019) frames.

It is possible to offload some of the memory allocations to the ma-
chine’s main memory, but this makes implementations more complex
and there does not seem to be any previous work that makes use of this
possibility, one likely reason being that this would only soften the space
constraints, but not reduce the runtime cost. The biggest difference of
STYLEVIDEOGAN to all previously mentioned methods is that at training
time, no frames need to be rendered, which drastically reduces both space
and time demands and thus allows for much larger resolutions of 10242.

Tian et al., 2021, presented the only method that can generate videos at
this same resolution, 10242. The authors formulated video generation as
the problem of finding a suitable trajectory through the latent space of a
pretrained and fixed image generator, such as STYLEGAN. Despite this
commonality and their ability to produce high-resolution output, there
are a number of important differences between their approach and the
work presented in this chapter:
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• Their discriminator supervises the generator in the image domain,
which is a much higher-dimensional and more redundant domain
thanW+.

• Their design inherently relies on the image generator being available
for forward and backward passes at training time, which increases
the required amounts of GPU memory and computation time im-
mensely, compared to STYLEVIDEOGAN.

• Their method requires a diverse training set. When trained on a sin-
gle video, their results show very limited motion, as demonstrated
in Section 4.4.

4.2.2 StyleGAN Inversion & Latent Editing

STYLEGAN (Karras et al., 2018, 2019, 2020) is a GAN-based image gen-
erator that at the time the work presented in this chapter was conducted
represented the state of the art in image generation, due to its unprece-
dented spatial resolution and photorealism, especially for human faces.
Apart from the outstanding quality of the images it generates, multiple
works (Härkönen et al., 2020; Nitzan et al., 2020; Shen et al., 2020; Tewari et
al., 2020a) have investigated the properties of its latent space and found it
to be very suitable for editing. This is because for many “one-dimensional”
properties, one can find a hyperplane (Shen et al., 2020) in the STYLEGAN
latent space that is (approximately) perpendicular to the direction along
which this property changes. For example, in the case of human faces, if
the property is “age”, one can find a direction in the latent space along
which faces get older, whereas they get younger in the opposite direc-
tion. It is this property that STYLEVIDEOGAN uses in order to generalise
motion from the single training identity to new, unseen identities.

However, to be able to train STYLEVIDEOGAN, one must be able to
embed the training footage into the latent space of the STYLEGAN model,
frame by frame. Various methods (Abdal et al., 2019, 2020; Pidhorskyi
et al., 2020; Richardson et al., 2021; Tewari et al., 2020b; Jiapeng Zhu et al.,
2020) exist for this embedding. They can broadly be divided into two
categories, namely those that find latent codes by optimization (Abdal
et al., 2019, 2020; Tewari et al., 2020b) and those that learn to encode the
input image as a latent code with one single forward pass (Pidhorskyi
et al., 2020; Richardson et al., 2021; Jiapeng Zhu et al., 2020). The latter
have the advantage of being faster, albeit at the expense of some precision.
In this category, PSP (Richardson et al., 2021) maps input images toW+.
STYLEVIDEOGAN uses a pretrained, fixed instance of PSP, that leads to
temporally smooth & consistent reconstructions of videos even though it
is applied to each frame in isolation.
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Figure 4.2: STYLEVIDEOGAN consists of a generator G and a critic C.
G contains a recurrent producer based on GRU cells, and a translator
that maps motion latent codes to STYLEGAN’sW+ codes (Section 4.3.2).
C is only needed at training time and so does not need to be recurrent
(Section 4.3.3).

4.3 Method

STYLEVIDEOGAN (Figure 4.2) is a Wasserstein GAN (Arjovsky et al.,
2017; Section 2.5), consisting of a generator G (Section 4.3.2) and a critic C
(Section 4.3.3).

To generate a video of K frames, G receives a pair (s, r) as input, with
s ∼ N (0; 1)32 and r ∼ N (0; 1)32×(K−1). At training time K := 25, but
since the generator is an RNN, K can take different values at test time.
The output of G is a sequence of K latent codes wi ∈ W+, with 0 ≤ i < K.
Before training, PSP (Richardson et al., 2021), an encoder-based inversion
method for STYLEGAN, embeds the training video in W+ space. This
embedding is the source of “real” samples for the critic to distinguish
from the generator’s output. No frames are rendered during training;
STYLEGAN is absent. This leads to considerable savings in training time
and memory consumption, in particular compared to the method by Tian
et al., 2021 (see Section 4.4). Only at test time is the output of G fed into a
STYLEGAN instance.

Although the most extensive results in this chapter are for portrait
videos, no part of STYLEVIDEOGAN other than the preprocessing step
(Section 4.3.1) is inherently face-specific: Sections 4.4.6 and 4.4.7 show its
application to other object classes.
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Figure 4.3: Projecting face videos intoW+ with the help of PSP reasonably
maintains the identity of the actor and leads to temporally smooth results.
The input video is from the YOUTUBE subset of VIDEOFORENSICSHQ.

4.3.1 Data Preprocessing

Training data is derived from 1 single video of 1 to 10 minutes duration.
Before embedding its frames inW+ via PSP, they are preprocessed in a
similar way that the training data for the respective STYLEGAN model has
been preprocessed. In the case of faces this means computing face crops
like for the FFHQ dataset (Karras et al., 2019). However, since FFHQ
is an image dataset without a temporal dimension, no mouth keypoints
(which move too much) but only eye corners are used for alignment, and
temporal low-pass filters are applied to the rotation and scale of the face
bounding boxes. Applying PSP to each frame of the training video reliably
leads to sequences ofW+ codes that, when rendered with STYLEGAN,
give a temporally smooth video again (Figure 4.3). The identity of the
training subject is not always preserved perfectly, but this is negligible if
the goal is to generate motion for a great multitude of generated identities.

4.3.2 Generator

The generator contains a producer stack P of 4 GRU cells (K. Cho et al.,
2014) that process the per-time-step randomness ri. To initialise the GRU
memory, the MLP H “hallucinates” some memory contents for the first
three cells, whereas the last is initialised with the initial randomness s:

(h0,0, h0,1, h0,2) := H(s) h0,3 := s

After this initialization, P can produce a sequence of low-dimensional
latent codes li ∈ R32 according to the following recurrence:

((hi+1,0, . . . , hi+1,3), li+1) := P (ri, (hi,0, . . . , hi,3))

55



for 0 ≤ i < K. The translator T : R32 → R512 (also an MLP; reminiscent
of STYLEGAN’s mapping network) maps these latent codes from the
space in which motion is generated to a higher-dimensional one. A set of
learned affine transformations then maps toW+ ⊆ R18×512, which gives
the final output w0, . . . , wK−1 ∈ W+ of G.

The design of G is not particularly novel: Previous works (e.g. Muñoz
et al., 2021; Tian et al., 2021; Sergey Tulyakov et al., 2018) have presented
similar designs. The novelty of STYLEVIDEOGAN lies in the ideas out-
lined in Section 4.1, i.e. supervision in W+ instead of image space, the
“offset trick”, the loss functions, and the resulting massive reduction in the
amount of data and resources required for training: Only at test time, not
at training time, are w0, . . . , wK−1 forwarded to STYLEGAN for rendering
of actual video frames. K can then be considerably larger than the 25 time
steps used at training time. Section 4.4 reports results for K = 250.

4.3.3 Critic

In contrast to G, the critic C is only used at training time and can therefore
rely on a fixed K: A 6-layer extractor MLP E :W+ → R32 mapsW+ codes
to a learned space of relevant features, that are then fed into a temporally
convolutional network. The convolutional part is derived from DCGAN
(Radford et al., 2016), turning spatial convolutions into temporal ones
and eliminating batch normalization layers. The latter is required for
the WGAN-GP objective (also known as “gradient penalty”) (Gulrajani
et al., 2017) that enforces the Lipschitz constraints of the Wasserstein GAN
(Section 2.5).

4.3.4 Loss Terms & Training

Training minimises the loss term

L = LWGAN + λGPLGP + λGAPLGAP (4.1)

where LWGAN + λGPLGP is the WGAN-GP loss (Gulrajani et al., 2017;
λGP = 50) and LGAP is a novel gradient angle penalty (with λGAP = 100):

Training STYLEVIDEOGAN only with the WGAN-GP loss (see ablation
study in Section 4.4.5) shows that synthesizing videos for K > 25 can
lead to outputs that seem to be looping, i.e. the same motion pattern
is repeated over and over. As observed in previous work (Tian et al.,
2021), P learns to simply ignore the per-time-step randomness ri and
to rely exclusively on (hi,0, . . . , hi,3), without modifying it much in the
course of the sequence. This means that there is a tendency to make s
determine the entire output, which makes looping very likely, because
the information contained in s has only ever been supervised in the first
K frames generated at training time and therefore may suffice only for
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that much unique output. To counteract this, the gradient angle penalty
makes sure that the gradient of the producer output with respect to ri is
at least a certain fraction of the gradient with respect to s:

LGAP := max
(

0,
π

4
− ϕ

)2
for ϕ := arctan

(∣∣∣∣[ ∂d∂r0 , . . . , ∂d
∂rK−2

]
∣∣∣∣

||∂d∂s ||

)
(4.2)

where d := dnorm(lK−1 − l0) is the per-dimension-normalised difference
between the last time step and the first time step generated by P : dnorm
normalises each component of its input vector independently from the
other components, according to running statistics that are tracked during
training, such that its output can be expected to have mean 0 and variance
1 in each component.

Unless stated otherwise, models were trained using the ADAM opti-
miser (Kingma et al., 2015) for 350 epochs, with exponentially averaging
the weights of the generator throughout training using a momentum of
0.995.

4.3.5 The Offset Trick

Although STYLEVIDEOGAN is trained on only 1 single subject, it should
be able to generate motion for a large set of randomly sampled actors. This
can be achieved by making use of the advantageous properties of STYLE-
GAN’sW+ space, that have been used for face editing before (Härkönen
et al., 2020; Shen et al., 2020; Tewari et al., 2020a): Given a point inW+,
the directions into which one would need to shift this point in order to
change the identity of the subject are mostly orthogonal to those directions
that would change the pose/expression/articulation. It should thus be
possible to first generate a motion trajectory for the training subject and
then shift this trajectory along a direction that is orthogonal to those latter
directions, to transfer it to a different subject that also exists inW+.

To find the directions responsible for pose/expression/articulation it
suffices to conduct a Principal Component Analysis (PCA) of the W+

embedding of the frames. This yields the 32 directions in which the point
cloud representing the training frames extends the furthest. Since these
training frames span the relevant range of motion states but always show
the same subject, it can be assumed that shifting points in these directions
changes the state, but not the identity of the face. Given the PCA basis and
having sampled a motion trajectory w0, . . . , wK−1 ∈ W+ for the training
subject, one can randomly sample a point from STYLEGAN’s Z space,
render it using STYLEGAN and then embed it inW+ using PSP, obtaining
wnew. This new point shows a random new subject, that already is in
a particular (likely non-neutral) state: For example, in the case of faces,
wnew might correspond to a person with their mouth closed. One must
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Model Reference FID (↓) FVD (↓)
Short Long Short Long

STYLEVIDEOGAN Original 54.1 ±0.1 54.2 ±1.2 627.6 ±25.5 629.1 ±24.7
W+ 1.1 ±0.1 3.9 ±1.5 42.9 ±12.9 84.0 ±17.7

STYLEVIDEOGAN \ LGAP
Original 53.9 ±0.5 58.8 ±4.8 603.7 ±39.4 727.1 ±159.1
W+ 1.1 ±0.0 7.0 ±4.2 33.2 ±3.7 178.4 ±94.4

Tian et al., 2021 W 4.07 97.9 706.3 2130.3
Sergey Tulyakov et al., 2018 Original 87.9 87.6 2849.3 2845.1

Saito et al., 2020 Original 108.8 169.0 1211.4 2339.2
Muñoz et al., 2021 Original 75.5 - 755.4 -

Table 4.1: Models were trained on footage of subject #1, to generate a set
of “short” videos and a set of “long” videos (see Section 4.4.1). FID and
FVD scores compare the generated output distributions to the training
distribution. In the case of STYLEVIDEOGAN and the work by Tian et al.,
2021, STYLEGAN re-renderings (fromW orW+) are used for computing
scores, to factor out the imperfection of PSP embedding. The scores for
STYLEVIDEOGAN are averages and standard deviations for 5 repetitions
of the experiment. Tian et al., 2021, kindly trained their model on the data
that was sent to them.

not naively use this point as the starting point for a “transferred” motion
trajectory, because the motion generated for the training actor might start
with a mouth-closing motion. Applying this motion to a mouth that is
already closed would likely lead to strong artefacts. Instead one projects
wnew onto the PCA basis, resulting in w′new. The point w′new represents
the training actor in the same state as the new actor. The difference
∆ := wnew−w′new is the exact offset by which to shift the motion trajectory,
i.e. the new trajectory is w0 + ∆, w1 + ∆, . . . , wK−1 + ∆.

As illustrated in Figure 4.4, thanks to the disentangled representation of
images inW+, this simple offset operation is sufficient to transfer motion
generated for the training subject to new random subjects. The project
video (see Section 1.5) shows that not embedding the new actor with PSP

or naively offsetting the sequence without using the PCA basis leads to
much stronger artefacts.

4.4 Results

4.4.1 Training Data & Metrics

For ablation studies and comparisons to previous work, videos of sub-
jects speaking into a commodity RGB camera were used, all less than
10 minutes long. Some of these are depicted in Figure 4.5. For quan-
titative evaluation of trained models, Fréchet Inception Distance (FID;
Heusel et al., 2017) rates spatial quality, while Fréchet Video Distance
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Figure 4.4: First row: motion trajectory generated for the training subject.
Second row: Result of naively shifting this trajectory to a point sampled
from W . Since the structure of W differs from that of W+, the transfer
result looks very unnatural. Third row: First rendering theW code with
STYLEGAN and then embedding it as wnew ∈ W+ with PSP before shifting
the trajectory to the result gives a much more natural face. Fourth row:
Adjusting the direction of the shift by projecting wnew onto the PCA basis
(see Section 4.3.5) leads to better alignment of the target actor with the
source actor.
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#1 #2 #3

Original:

W+:

Motion: Reciting short
poems.

Reading a text. Facial
expressions in
random order.

Figure 4.5: Footage of the subjects #1, #2 and #3 was used for the quan-
titative evaluation. The top row shows aligned crops from the original
RGB frames, while the bottom row shows theirW+ embeddings (see Sec-
tion 4.3.1).

Model Reference FID (↓) FVD (↓)
Short Long Short Long

STYLEVIDEOGAN Original 62.9 ±0.2 65.1 ±0.8 846.7 ±19.1 944.1 ±51.7
W+ 0.6 ±0.0 2.0 ±0.2 39.2 ±19.2 51.8 ±18.1

STYLEVIDEOGAN \ LGAP
Original 62.9 ±0.1 64.8 ±3.0 848.8 ±8.0 926.2 ±58.5
W+ 0.7 ±0.0 4.3 ±2.8 57.0 ±93.1 110.7 ±74.9

Sergey Tulyakov et al., 2018 Original 76.5 77.8 1318.7 1338.7
Saito et al., 2020 Original 41.5 51.6 640.0 935.2

Muñoz et al., 2021 Original 46.4 - 578.3 -

Table 4.2: The same experiment as in Table 4.1, but for subject #2.
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Model Reference FID (↓) FVD (↓)
Short Long Short Long

STYLEVIDEOGAN Original 52.7 ±0.2 53.7 ±0.5 589.2 ±9.7 625.3 ±3.1
W+ 3.7 ±0.2 4.8 ±0.4 61.4 ±4.2 98.6 ±11.3

STYLEVIDEOGAN \ LGAP
Original 52.3 ±0.5 55.2 ±2.1 590.9 ±15.2 679.0 ±28.9
W+ 3.4 ±0.1 8.2 ±2.0 54.0 ±3.6 133.5 ±28.5

Sergey Tulyakov et al., 2018 Original 123.0 141.1 1163.3 1500.3
Saito et al., 2020 Original 82.1 270.3 823.9 2090.8

Muñoz et al., 2021 Original 83.3 - 1037.0 -

Table 4.3: The same experiment as in Table 4.1, but for subject #3. This
subject was not talking, but instead performing some simple face motions
in a random order (like smiling or acting surprised). The training video is
only 1 minute and 20 seconds in length.

(FVD; Unterthiner et al., 2018) rates the quality of motion. The reference
sets for all methods are their training datasets, preprocessed as required
by the particular method. For STYLEVIDEOGAN both the original RGB
frames, as well as the STYLEGAN output for theW+ embedding are used
as references in Tables 4.1 to 4.3.

Each method was trained on the training video, depicting only one
subject. Then two sets of videos were sampled from each model: The
“Short” set consists of 2048 videos that are as long as the temporal window
the respective method saw at training time (see column “K” in Table 4.4).
The “Long” set consists of 128 videos that all have at least 128 frames. The
technique by Muñoz et al., 2021, is not able to produce samples longer than
its training window, which is why Tables 4.1 to 4.3 contain no numbers
for this set. FID scores are computed on 8000 frames randomly sampled
from the reference and generated sets. FVD scores are computed on 2048
videos from each of the two sets, with the duration of the videos again
equal to the default temporal window length of each method.

The temporal consistency of facial identity, i.e. the question whether
different frames of the generated video depict the same person, was
assessed using a variant of the Average Content Distance (ACD; (Sergey
Tulyakov et al., 2018)): For each generated frame, identity features are
extracted with a popular facial recognition library (Geitgey et al., 2020) and
the average L2 -distance between all pairs of frames in a video constitutes
the ACD score of that video.

4.4.2 Training Details

All methods were trained with their default hyper-parameters, except
for that by Saito et al., 2020, where batch size was set to 2 and clstm

channels = 512. Tian et al., 2021, kindly trained their technique on the
training data sent to them. All methods were trained with at least the
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computational resources that were available to STYLEVIDEOGAN, but
usually for much longer training time.

Each training video contains 1 single actor/object. For the proof of
concept on hands, all training data was recorded from one actor. Training
used a batch size of 128, learning rate 0.005, and exponential weight aver-
aging with momentum 0.997 in all experiments. All STYLEVIDEOGAN
models were trained for 350 epochs.

4.4.3 Evaluation Details

FID scores were computed by sampling 8000 frames from both the training
set (as preprocessed for the respective method) and the set of generated
videos.

FVD scores were computed by sampling 2048 video slices from both the
training set (as preprocessed for the particular method) and the set of gen-
erated videos. For each method, regardless of the length of the generated
samples (“short” versus “long”), the slices used for score computation
were always 25 frames long for STYLEVIDEOGAN and 16 frames long for
the previous methods.

ACD scores were computed always on 128 “long” samples generated by
the trained models. For STYLEVIDEOGAN these long samples were 400
frames long. For Tian et al., 2021, they were 128 frames long. Achieving a
good ACD score becomes harder as sequences grow longer.

4.4.4 Video Generation

Figure 4.6 shows sequences generated by three different models, each
for the respective training identity. As shown in Figure 4.1 however, the
“offset trick” allows STYLEVIDEOGAN to generate motion for randomly
sampled identities as well, despite the training set always containing
only 1 actor. All videos are synthesized at a resolution of 10242 and even
though STYLEVIDEOGAN was trained only on a temporal window of
25 frames, it can easily generate videos that are much longer, e.g. 1500
frames.

Comparison to Previous Methods STYLEVIDEOGAN is compared to
previous approaches by training them all on the training set and evaluat-
ing the metrics described above:

The method by Tian et al., 2021, also generates a trajectory in the STYLE-
GAN latent space, making it the most related to STYLEVIDEOGAN. The
model evaluated here was kindly trained by the authors. It does, by de-
fault, not generate videos of the training identity, but instead samples
random identities from STYLEGAN’sW space (notW+!). This is a prob-
lem for the computation of FID and FVD scores, which always compare
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Method Sample Res. K

STYLEVIDEOGAN 25

Tian et al., 2021 16

Muñoz et al., 2021 16

Sergey Tulyakov et al., 2018 16

Saito et al., 2020 16

Table 4.4: All methods were trained on subject #1 (see Figure 4.5) and a
sample was generated from the trained model. STYLEVIDEOGAN and the
method by Tian et al., 2021, can synthesize motion for unseen identities,
while the other methods are not capable of such generalization. STYLE-
VIDEOGAN is supervised only inW+ and not, like all other methods, in
RGB space, and thus reduces its resource demands such that it supports
the highest spatial and temporal resolutions at training time and picks
up more characteristic motion. According to their publications, Muñoz
et al., 2021, support spatial resolution 1922 and Saito et al., 2020, support
2562, but the resolutions given in the table were the ones used for the
experiment. Temporal quality can only be judged by the project video
(see Section 1.5).
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Figure 4.6: After training STYLEVIDEOGAN on one single, short training
video (less than 10 minutes) it has learned temporal dependencies that en-
able it to generate convincing output videos. Each row shows consecutive
output frames after training on one single subject.

the generated distribution (random identities) to the training distribution
(fixed training identity). The model thus needed to be forced to generate
samples depicting the training identity, as otherwise it would have been
impossible to compute fair scores. This is achieved by sampling random
frames from the training video and projecting (Karras et al., 2019) them to
W . The resultingW points are then “injected” as the initial code for the
model to condition its generated sequences on. As mentioned in previous
work (Richardson et al., 2021; Shen et al., 2020),W cannot represent real
images as faithfully asW+, which is why instead of the training video,
its re-rendering from theW codes was used as the reference set for score
computation. While the method is able to produce videos at resolution
10242, the model the authors trained on the given data does not generate a
lot of facial motion, i.e. while the camera is panning, the facial expression
is very static. This is reflected in Table 4.1. Training this method on larger
video datasets requires, according to the publication (Tian et al., 2021),
about 5 days on 8 Quadro RTX 8000 GPUs for a resolution of 10242, i.e.
40 GPU days in total. STYLEVIDEOGAN is trained on a single Quadro
RTX 8000 GPU in around 6 hours. While these numbers are not directly
comparable (large video dataset for Tian et al., 2021, versus a singleton
training set for STYLEVIDEOGAN), the much larger memory demand (8
GPUs versus 1 GPU), and the limited variety of motion despite much
more diverse training material (see also project video; Section 1.5) do show
that STYLEVIDEOGAN is computationally more efficient.

The methods by Saito et al., 2020, and Sergey Tulyakov et al., 2018,
generate realistic motion, but are limited in terms of spatial resolution
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(2562 and 642 respectively). As shown in the project video (see Section 1.5),
the results of the method by Muñoz et al., 2021, include strong structural
artefacts. All three methods are not capable of generalizing their output to
random identities after being trained on only one subject, i.e. their training
set would have to be much larger to make them generate the diversity of
output identities that Tian et al., 2021, and STYLEVIDEOGAN achieve.

Tables 4.1 to 4.3 report Fréchet distances for all methods. In addition,
ACD scores were computed for STYLEVIDEOGAN (random actors) and
for the method by Tian et al., 2021: While STYLEVIDEOGAN averages at
5.68 (over 5 models) Tian et al., 2021, achieve a score of 0.54. This large
difference can be explained by the very limited facial motion generated
by Tian et al., 2021, that of course makes it much easier to preserve the
identity across frames. For a visual impression of this observation see the
project video (Section 1.5).

4.4.5 Evaluation of the Gradient Angle Penalty

Tables 4.1 to 4.3 show that while disabling LGAP slightly improves the
scores for “short” samples, it can considerably increase the FVD scores
for “long” samples. However, since the primary purpose of LGAP is to
prevent looping, which may not be effectively captured by FVD, a very
short training training sequence (one single sentence, spoken three times,
20 seconds in total) was recorded, that provoked strong looping artefacts
in 19 out of 20 independently trained models if LGAP was absent. The
same sequence led to looping only in 6 out of 20 models that were trained
with LGAP enabled. This suggests that LGAP is indeed making looping
artefacts much less likely.

4.4.6 Proof of Concept: Hands

To demonstrate that STYLEVIDEOGAN can in principle be applied to
content categories other than talking faces, a proof-of-concept experiment
for hands was conducted: The right hand of a subject was recorded for
1 hour, performing various types of motions (like showing numerals
or performing a set of gestures), resulting in a dataset of around 100k
frames. The only constraint was for the hand to always turn the palm
to the camera and to never leave the recording space. This dataset was
used for training a STYLEGAN model and the corresponding PSP inverter,
both for resolution 2562. With these models available, STYLEVIDEOGAN
could be trained with a temporal window of 75 time steps, on several
test sequences (each about 8000 frames). Generated frames are shown in
Figure 4.7 and in the project video (see Section 1.5).
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Figure 4.7: After recording enough footage of hand motions to train STYLE-
GAN and PSP on it, STYLEVIDEOGAN can be trained to generate new
sequences of the hand moving. Temporal quality can be assessed in the
project video (see Section 1.5).

4.4.7 Proof of Concept: Cars

As a third domain, STYLEVIDEOGAN was applied to the category of cars:
Using the official STYLEGAN 2 checkpoint for the LSUN-CAR dataset
(F. Yu et al., 2015), PSP was trained from scratch. LSUN-CAR is a much
more challenging dataset than FFHQ, because the data is not as “clean”
and because different angles of cars cannot be aligned with each other.
PSP did thus not converge to the same level of precision as the official
FFHQ checkpoints and the W+ embeddings contained clearly visible
artefacts, with the identity of the car drifting depending on the orientation.
In order to nevertheless demonstrate the feasibility of the core concept of
STYLEVIDEOGAN, PSP was thus trained a second time, on the frames of
the car recordings. This easily achieves decent embeddings, showcased
in Figure 4.8 and in the project video (see Section 1.5). The disadvantage
of this approach is that it cannot demonstrate the offset trick, as the PSP

model has only ever seen the training car and cannot embed cars randomly
sampled from STYLEGAN’s latent space. Of course it would have been
preferable to use an object category (other than faces) for which there is
a general high-quality, temporally stable embedding method. However,
to the best of the author’s knowledge, nobody had demonstrated such a
method at the time STYLEVIDEOGAN was developed.

4.5 Limitations

Even though STYLEVIDEOGAN improves the state of the art in video
generation, in particular with respect to the amounts of computational
resources and training data necessary to generate a large amount of di-
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Figure 4.8: To show that STYLEVIDEOGAN is not face-specific, a video
of a car (top) was recorded. Its frames were embedded intoW+ (centre)
using a PSP model trained on the recorded video (because a more general
PSP model of sufficient quality was not available). STYLEVIDEOGAN was
then trained on this embedding, allowing the generation of new motion
around the car (bottom).
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BIGGAN category YOUTUBE key
indigo bird (014) DZOiCmxSU2k

green mamba (064) hG4Wvp0U18A

bison (347) L4eOhuLDfeU

gazelle (353) jMIiB9DnRXg

Table 4.5: The sequences embedded into the BIGGAN latent space were
excerpts of YOUTUBE videos.

verse videos, it has several limitations: One is that the quality of generated
videos strictly depends on the quality of the underlying STYLEGAN
model and its corresponding PSP inverter. For example, in the case of
faces, non-trivial video backgrounds tend to not be represented in a tem-
porally stable way. The importance of temporally stable embedding is
also underlined by an experiment in which STYLEGAN was replaced by
a BIGGAN model (Brock et al., 2019): Several short videos (see Table 4.5)
were embedded using a state-of-the-art optimization-based method (Huh
et al., 2020), as encoder-based BIGGAN inversion methods did not seem
to exist Xia et al., 2021. The embeddings contain strong temporal noise,
making training STYLEVIDEOGAN pointless. Visual results of this exper-
iment are available as part of the supplemental material on the project
page (see Section 1.5).

Another limitation is the fact that while STYLEVIDEOGAN does not
contain any inherently face-specific components (see proof-of-concept for
animating hands and cars; Sections 4.4.6 and 4.4.7), it is unclear whether
all the advantageous properties of STYLEGAN’sW+ space can be made
use of in any arbitrary domain, e.g. if the offset trick will work there.

4.6 Conclusions

This chapter has presented STYLEVIDEOGAN, a temporal Wasserstein
GAN for the unconditional generation of high resolution videos. STYLE-
VIDEOGAN shows that it is possible to learn the generation of motion
for only a single training subject, and then transfer it to a great multitude
of other subjects. Embedding the spatial information (i.e. the individual
frames) of the training set into the latent space of a time-agnostic model,
and then training on temporal sequences of such embeddings has been
shown to make training efficient enough to allow for large spatial and
temporal output resolutions. The diversity of the generated motion can be
ensured by forcing the model to make its output depend on per-time-step
randomness.

Like the previous chapter, this chapter was investigating temporal
dependencies “inside” videos. As a consequence, STYLEVIDEOGAN gen-
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erates videos with some spatial, but (apart from the training set itself) no
temporal conditioning, i.e. the user has little control over the generated
content. The next chapter, however, sets out to exploit dependencies be-
tween videos and the frame signals they originate from (see Equation 2.4).
This means that the output of the method developed in the next chap-
ter is very much conditioned on so-called event input, which helps to
approximate the original frame signal.
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Untrained
Event-based
Video Reconstruction 5
While Chapters 3 and 4 have considered distributions of videos as ground
truth and investigated dependencies within one video, this chapter will
instead explore dependencies between frame signals (see Section 2.3)
and the information recorded about them by a camera. Since a standard
camera typically approximates a temporal integration of the frame signal
(see Equation 2.4) that cannot easily be inverted, this chapter revolves
around a special type of camera, the event camera (see Section 2.6).

An event camera records the times at which individual pixels change
brightness, generating a stream of so-called events. The discrete and asyn-
chronous nature of events (see Section 2.6) makes reconstructing a frame
signal from event information a challenging task, even if conventional
video frames are recorded along with the events: The recorded informa-
tion under-constrains the frame signal, so spatiotemporal priors need to
be exploited in order to achieve good results. In addition, event data tends
to contain noise, i.e. time stamps can be imprecise, events may be omitted
and spurious events might be reported.

Previous works have addressed these problems with neural networks,
which learn spatiotemporal priors and smooth out noise, but tend to
be biased towards their training distributions. This chapter introduces
COLIBRI, a new approach to event-based reconstruction (published as Fox
et al., 2024). Instead of relying on learning spatiotemporal dependencies,
it models especially temporal dependencies explicitly, based on the event
semantics. To deal with noise, each event is assigned an explicit confi-
dence weight, accounting for the uncertainty arising from noise. A novel
loss term balances these confidences against each other. The chapter also
shows that brightness interpolation between events can benefit from the
use of Bézier curves and that allowing brightness changes in exposure
gaps can improve reconstruction quality. These ideas are shown to im-
prove the state of the art in the tasks of event-based video deblurring and
event-based frame interpolation.
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Input events Input RGB Output RGB

Figure 5.1: Given an event stream and a sequence of long-exposure RGB
frames, the goal is to model a continuous brightness signal that plausibly
explains this input. The model should be queryable at arbitrary exposure
times, for example to obtain deblurred output RGB frames. More results
in the project video (Section 1.5).

5.1 Introduction

Classic frame-based cameras synchronously expose their pixels to in-
coming brightness, for a non-zero exposure duration, as modelled in
Equation 2.4. The resulting video frames indicate the average brightness
(or, more precisely, the average amount of energy) flowing into each cam-
era pixel during exposure. This averaging is problematic for fast motion:
Either a high-end camera with very short exposure time and high framer-
ate is used, which requires large amounts of memory for storing frames
and consumes considerable amounts of power, or a low-end camera with
rather long exposure time and low framerate is used, where the averaging
leads to motion blur in the frames.

Event cameras (Leñero-Bardallo et al., 2011; Lichtsteiner et al., 2008;
Serrano-Gotarredona et al., 2013) have their pixels asynchronously report
so-called “events”: A pixel emits an event as soon as the brightness it
measures deviates from a reference value by a sufficient margin c. The
reference value is usually the level of brightness measured at the previous
event. For a formal model of events see Section 2.6. Event cameras
measure brightness at a far higher rate than conventional cameras, which
greatly reduces motion blur and also makes them suitable for low-light
conditions. In addition, the fact that pixels produce data only when they
measure a change in brightness makes event cameras encode sequences in
a much more compact format than frame-based cameras.
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Events can be considered an encoding of temporal dependencies as
defined in Section 2.2: The presence of two consecutive events at times t1, t2
allows to turn information about pixel brightness at t1 into information
about pixel brightness at t2 (see Equation 2.19). The absence of events
between t1 and t2 informs about brightness at all times in the interval
(Equation 2.20).

This chapter focuses on event cameras that not only record events, but
also low-framerate, long exposure video frames through the same pixel
matrix, see Figure 5.1. In this context, there are dependencies between the
video frames and the frame signal (Equation 2.4), as well as dependencies
between the events and the frame signal (Equations 2.19 and 2.20).

Given a recording of such a camera it is desirable to reconstruct a
frame signal that could explain both the events and the frames, which
will be referred to as event-based video reconstruction. In doing so,
one can obtain deblurred versions of the recorded frames, or interpolate
frames in-between exposures. This allows one to record sequences at
lower memory bandwidth and power consumption than with a classic
high-framerate camera, while capturing more temporal detail than a low-
framerate camera would.

Many approaches to the task of event-based video reconstruction (Z.
Jiang et al., 2020; Lin et al., 2020; Paredes-Vallés et al., 2021; Rebecq et al.,
2019, 2021; Scheerlinck et al., 2020; Stoffregen et al., 2020; Stepan Tulyakov
et al., 2021; B. Wang et al., 2020; Z. W. Wang et al., 2019; X. Zhang et al.,
2022) are based on neural networks, which learn priors that enable them
to account for noise in the input. However, training these models requires
the collection of a sufficiently large and diverse training dataset, which
is difficult because event cameras are still relatively exotic and pricey
sensors, not at all comparable to the ubiquity of the classic active pixel
sensors (APS) found in every smartphone. Datasets are thus often limited
to a certain domain. Synthetic data, i.e. event streams that are derived (for
example with ESIM; Rebecq et al., 2018) from high-framerate RGB frames,
is easier to obtain, but still expensive in the sense that large numbers of
frames need to be stored and used for supervision, with the additional
problem that the derived events contain assumptions made by the event
simulator.

In contrast, other methods (Pan et al., 2022, 2019; Z. Wang et al., 2021)
do not rely on dataset-based learning, but exploit the semantic properties
of events in a principled way, for example by solving an optimization
problem at test time. The method presented in this chapter, COLIBRI,
belongs into this category: Given events and long-exposure frames as
input, COLIBRI defines a family of frame signals (see Equation 2.2) that
incorporate the events by construction. This is achieved by exploiting
the temporal dependencies encoded by the events (see Equations 2.19
and 2.20) in such a way that any frame signal admitted by the model

73



will adhere to them. An energy term measures the compatibility of the
frame signals with the APS frames recorded by the camera. This energy
is minimised by gradient descent, in order to find a signal in the family
that optimally reproduces the frames. COLIBRI shares a loss term with
mEDI (Pan et al., 2022), but the model itself and the optimization strategy
are completely different. Beyond that, the model treats the problem of
spurious events in a novel way, by assigning each event a “confidence
weight” that can modulate its influence. Additional degrees of freedom
allow the model to reproduce brightness frames in regions in which
brightness changes are too small to trigger events. Lastly, frame signals are
constructed as piecewise Bézier functions, instead of piecewise-constant
functions, which is shown to improve reconstruction accuracy.

In summary, the contributions of this chapter are:

• A new method to reconstruct continuous frame signals that explain
a stream of input events and a sequence of input frames with long
exposure time.

• The method does not require any training and hence no training
data that it would be biased towards.

• Per-event confidence weights, regularised by a novel loss term, are
adjusted during optimization.

• Exposure-based control points help produce smooth signals when
brightness changes did not trigger events.

• Bézier interpolation in-between events leads to higher reconstruc-
tion accuracy.

5.2 Related Work

Because of their advantages over classical frame-based cameras, event
cameras have been covered by a great number of works in computer vision.
A number of comprehensive surveys (Chakravarthi et al., 2024; Gallego
et al., 2022; Zheng et al., 2023) are available. This section focuses only on
those related to frame interpolation, deblurring and video reconstruction.

5.2.1 Event-based Frame Interpolation

Given a sequence of short-exposure frames, along with an event stream,
frame interpolation is the task of computing additional frames that lie
temporally in-between the given ones.

Early approaches (Brandli et al., 2014; Scheerlinck et al., 2018) to this
task are engineered for online processing and use frames to prevent drift
arising from event noise.

74



More recent approaches (Chen et al., 2023; Gao et al., 2023; Han et al.,
2021; He et al., 2022; Kiliç et al., 2023; T. Kim et al., 2023; Paikin et al., 2021;
Stepan Tulyakov et al., 2022, 2021; S. Wu et al., 2022; Zhiyang Yu et al.,
2021) are learning-based. TIME LENS (Stepan Tulyakov et al., 2021) is one
of the most prominent examples: Events are aggregated in a voxel grid,
that is used for two estimates of the interpolated frame: The “synthesis-
based” estimate is obtained by directly combining the grid with the input
frames, and the “warping-based” estimate is obtained by deriving an
optical flow estimate from the voxel grid and warping the input frames
according to this flow. Both interpolation estimates and the flow are
combined and refined, in order for an attention mechanism to blend
them into one final output frame. This architecture allows TIME LENS to
have the warping-based estimate compensate for failures of the synthesis-
based one, and vice-versa. Like other methods in this category, TIME

LENS assumes the input frames to be the result of very short exposure,
containing as little motion blur as possible.

Several of the learning-based methods (Gao et al., 2023; Kiliç et al., 2023;
T. Kim et al., 2023; Stepan Tulyakov et al., 2022, 2021) collect training
data with custom hardware setups consisting of an event camera and
a short-exposure, high-framerate camera, that either have a very small
baseline between them, or receive their input through a beam splitter.
This makes data acquisition cumbersome and the setups used in real
applications are likely to differ. Other methods (Chen et al., 2023; Han
et al., 2021; He et al., 2022; S. Wu et al., 2022; Zhiyang Yu et al., 2021) use
(predominantly) synthetic events derived from high-framerate footage,
which differs even more from concrete use cases. Any model trained
on such a dataset will thus exhibit a bias towards not only the type of
content present in the dataset, but also the lighting conditions, motion
types (slow/fast, linear/non-linear), image resolutions, framerates and
even the presence or absence of colour.

In contrast, COLIBRI is not learning-based. While its design decisions
nevertheless bias it in some way, its optimization problem is only solved
once the input is known, as opposed to neural networks, that optimise
their losses before the input is known. Furthermore, most methods in this
section assume the input frames to be free of motion blur, while COLIBRI

is specifically designed for resolving strong motion blur.

5.2.2 Event-based Deblurring

Given a sequence of long-exposure frames, along with an event stream,
deblurring is the task of computing “latent” frames that lie inside the
exposure periods of the input frames. The input frames are expected to
contain strong motion blur. The output frames are supposed to be “sharp”
frames with an infinitesimally short exposure.
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A work in this category that many later works refer to is the (Multiple)
Event-based double integral model (EDI/mEDI) by Pan et al., 2022, 2019:
It is not learning-based, but describes the relationship between blurry
frames and event streams that originate from the same frame signal:
Integrating (i.e. counting) events gives an estimate of the signal, and
integrating this estimated signal over the exposure period gives the blurry
frame. The model assumes the frame signal to be piece-wise constant
between events. Since solving the equations of the EDI model frame by
frame tends to produce temporal flickering (due to noise in the event
stream), the mEDI equations are solved for all frames at once. COLIBRI

is also based on a global optimization problem, but it admits confidence
values for events and allows non-linear signal pieces in-between control
points. Furthermore, it treats the non-negligible “exposure gaps” in-
between frames. The advantages of these improvements are evaluated in
Section 5.5.

The great majority of later methods (H. Cho et al., 2023; Z. Jiang et al.,
2020; T. Kim et al., 2022; Lin et al., 2020; Shang et al., 2021; L. Sun et al.,
2022; F. Xu et al., 2021; H. Zhang et al., 2023) are learning-based. Lin et al.,
2020, treat the spatiotemporally varying event thresholds explicitly, by
using dynamic filter layers (Jia et al., 2016) in the CNN architecture of
their method LEDVDI. In contrast to most previous methods, the CNN
processes more than 2 subsequent blurry frames at once, allowing to
account for more far-ranging temporal dependencies. A side effect of this
design is that the factor by which temporal resolution is increased in the
deblurring process must be fixed at training time. The method uses event
binning (see Section 2.6).

As in Section 5.2.1, the learning-based methods in this section need to
account for the scarcity of real training data by using (partially) synthetic
data (L. Sun et al., 2022; F. Xu et al., 2021), or custom hardware for data
collection (H. Cho et al., 2023; L. Sun et al., 2022), giving rise to the
aforementioned domain gap issues. In contrast to COLIBRI, many methods
in this section (e.g. those by H. Cho et al., 2023; T. Kim et al., 2022; Lin
et al., 2020; L. Sun et al., 2022; F. Xu et al., 2021; H. Zhang et al., 2023,
judging by architectures and shown results) do not allow the temporal
output resolution to be chosen freely after training. Many methods (Z.
Jiang et al., 2020; Shang et al., 2021; L. Sun et al., 2022; F. Xu et al., 2021)
use binning of events (see Section 2.6), compromising temporal accuracy.

5.2.3 Event-based Video Reconstruction

Video reconstruction, in the context of this chapter, is the task of esti-
mating a frame signal from an event stream (see also Section 2.6). The
literature contains methods that use only event data as input, as well as
methods that use relatively long-exposure frames along with the events:
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5.2.3.1 From Events Only

Early methods formulate the task as a pure optimization problem, with
optical flow as an auxiliary output (Bardow et al., 2016), or by estimating
intensity directly from the surface of latest event times (Munda et al., 2018;
Reinbacher et al., 2016). In contrast to COLIBRI, they are designed for
reconstruction in real time.

More recent methods (Barua et al., 2016; Cadena et al., 2021; Scheerlinck
et al., 2020; L. Wang et al., 2019; Weng et al., 2021; Z. Zhang et al., 2023;
L. Zhu et al., 2022; Zou et al., 2021) are learning-based: Rebecq et al.,
2019, 2021, presented an RNN-based model that is trained on synthetic
data (Rebecq et al., 2018) and processes its input at real-time rates. As
in other methods that use only events, a still background cannot be re-
constructed: The camera must be moved slightly in the beginning of the
sequence in order to have background information in the event stream.
Although maintaining this background afterwards would be simple (by
copying pixel values), the network did not learn to do so reliably from
the synthetic training data. Stoffregen et al., 2020, introduce the High
Quality Frames (HQF) dataset, supposed to help bridge the domain gap
between real and synthetic event data. The authors identify the logarith-
mic brightness threshold of the event camera (see Section 2.6) to be an
important parameter contributing to the size of the domain gap, and re-
port it to vary significantly even within single datasets, presenting another
opportunity for training data bias. Zou et al., 2021, train a convolutional
recurrent network on paired data. They collect real data through a custom
beam splitter setup at 2000Hz. The method uses event binning. In con-
trast to other methods, that derive frames from events, this one derives
events from the estimated frames and penalises deviations from the input
events. Z. Zhang et al., 2023, cast the reconstruction problem as a “linear
inverse” one, that, given an optical flow estimate, can be solved using
learning-based regularisers. Since the authors do not explicitly model tem-
poral consistency, “two consecutively reconstructed images may change
appearance considerably”.

Many of the methods in this category (e.g. Paredes-Vallés et al., 2021;
Rebecq et al., 2019, 2021; Scheerlinck et al., 2020; L. Wang et al., 2019; Weng
et al., 2021; Zou et al., 2021) use event binning (see Section 2.6). Several (L.
Wang et al., 2019; Z. Zhang et al., 2023) do not explicitly model temporal
dependencies, which can lead to output discontinuities. By definition
none of the methods in this category use frames recorded alongside the
events.

5.2.3.2 From Events and Frames

If the event camera, such as the DAVIS 346C, records frames through the
same pixel matrix as the events, these can help constrain the reconstruction
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problem.
The Asynchronous Kalman Filter (AKF, Z. Wang et al., 2021) is a rare

example of a method not based on learning: It reconstructs an HDR video
from blurry LDR input frames plus events. The method operates online,
i.e. it must produce outputs before knowing inputs that lie in the future.
The authors specifically model the noise in the event data as a sum of three
Gaussian processes. In contrast to many other methods the authors model
the refractory period of the event pixels (see Section 2.6). The performance
of AKF is evaluated in Section 5.5.

Most other methods (Song et al., 2022; L. Sun et al., 2023; B. Wang
et al., 2020; Z. W. Wang et al., 2019; Weng et al., 2023; X. Zhang et al.,
2022) in this category are learning-based: X. Zhang et al., 2022, presented
Event-based Video Deblurring and Interpolation (EVDI). In this model, the
double integral from Pan et al., 2022, 2019, is not computed precisely, but
predicted from the event stream by a neural network, that thus has the
opportunity to compensate for noise in the events. Event data is parti-
tioned and “reversed” in a way similar to that by B. Wang et al., 2020.
It also undergoes binning. This way, for each target time the model can
make a forward prediction derived from the previous brightness frame
and a backward prediction derived from the following brightness frame.
Self-supervision encourages these predictions to be as similar as possible,
and a fusion module learns to combine them. Like the method presented
in this thesis, the EVDI supervision also computes the deviation of the in-
tegral under the estimated brightness signal from the blurry input frames.
However, this deviation is approximated numerically, and thus expen-
sive and/or imprecise, whereas the method presented here computes
the integral analytically. The compatibility between event stream and
estimated brightness signal is fulfilled by construction in COLIBRI, but
X. Zhang et al., 2022, need to supervise it explicitly. Section 5.5 evaluates
EVDI. Song et al., 2022, model the derivative of the brightness signal
of each pixel as a temporal interpolation between polynomial functions
whose parameters are regressed from events by a neural network (which
requires event binning). This is comparable to COLIBRI, but that method
represents the integral under the brightness signal and obtains the signal
itself by analytic derivation, while Song et al., 2022, obtain the signal from
its derivative via integration. A recurrent refinement module is trained to
reduce artefacts in the output frames. Both the U-NET predicting polyno-
mial coefficients and the refinement module are trained on synthetic data
(Rebecq et al., 2018). Weng et al., 2023, assume that exposure durations
of the input frames are unknown and that the shutter remains closed
for non-negligible amounts of time between exposures. The method is
related to EVDI, but generalises it both by the exposure estimation and by
abstracting several equations into neural networks. Supervision requires
sharp frames and blurry inputs of varying exposure durations, so training

78



relies on synthetic data. The event data is binned in order to feed it into the
neural networks. COLIBRI also handles shutter closures of non-negligible
duration, but uses the known exposure time stamps as reported by the
DAVIS 346C.

Almost all methods in this category need training data. Real data is
difficult to acquire and thus limited in size, leading to biases towards the
training distribution. Synthetic data is easier to acquire and the datasets
can therefore be larger and content-wise more diverse, but incorporate
assumptions made by event simulators like ESIM (Rebecq et al., 2018).

In contrast, COLIBRI solves an optimization problem at test time, with-
out any pre-training. This completely eliminates the need for data collec-
tion and training. This advantage comes at the cost of hand-made biases
that result from the design decisions of the method. However, the fact
that energy is minimised only once input data is known can still be an
advantage over the pretrained methods, which apply their priors to the
input without any corrective. As Section 5.5 shows, this advantage can be
big enough to compensate for the lack of priors learned from large data
distributions. Another advantage of COLIBRI is that it does not require
event binning (like Song et al., 2022; L. Sun et al., 2023; B. Wang et al.,
2020; Z. W. Wang et al., 2019; Weng et al., 2023; X. Zhang et al., 2022) but
incorporates each and every event at its precise time stamp. This makes
pointer arithmetic impossible (e.g. because different pixels contain differ-
ent numbers of events in the same temporal interval) but a combination
of sorting, index tensors and binary search still allows for a reasonably
fast implementation.

5.3 The DAVIS 346C Event Camera

The DAVIS 346C is a “hybrid” event camera, i.e. it records both a frame
signal and an event stream through the same pixel matrix, making com-
plex hardware setups involving a beam splitter unnecessary. The camera
uses a Bayer filter, which especially for convolution-based methods makes
it advisable to rearrange the brightness values as explained in Section 5.3.1.
Sequences are recorded in global shutter mode. Since the gaps between
exposures (see Section 2.3) cannot be reduced arbitrarily as exposure fre-
quency increases, higher framerates can result in less information about
the scene (see Section 5.3.2). COLIBRI is therefore designed for rather long
exposures (such as 0.2s).

For the experiments in Section 5.5, the DAVIS 346C was used with the
default parameters. FPGA filtering was enabled. Some sequences were
recorded with the background activity filter. While the rates of events
differ noticeably depending on the usage of the background activity filter,
no difference in reconstruction results was noticeable.
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Bayer filter

Demosaicing
y

Channel
x

Preprocessing

Postprocessing

2× 2× 3 2× 2× 1 1× 1× 4 .

Figure 5.2: The DAVIS 346C partitions its pixel matrix into 2× 2 tiles. Left:
Each of the 4 pixels in a tile is sensitive (brighter blocks) to only one of
three wavelet ranges, with with 25% of the pixels seeing red, 25% of the
pixels seeing blue and 50% of pixels seeing green. This principle was used
for synthetic data as well. Centre: The Bayer filter thus gives only one
colour value per pixel, not three. Demosaicing can interpolate “missing”
colour values (darker blocks on the left), which was done for all visual
results in this chapter. Right: Preprocessing rearranges each 2 × 2 × 1
tile to a 1 × 1 × 4 pixel, to obtain contiguous colour planes. This is the
representation that all methods in Section 5.5 operate on.

5.3.1 Frame Dimensions and Colour

The pixel matrix of the DAVIS 346C, of resolution 346× 260, is equipped
with a Bayer filter, which means that each pixel records brightness in only
one of three wavelength ranges (red, green and blue). The pixel matrix is
thus partitioned into 2× 2 squares, that are treated as 1 pixel of depth 4
(red, green, green, blue), see Figure 5.2. The brightness frames therefore
have the dimensions W ×H ×C = 173× 130× 4 . In post-processing this
transformation was undone followed by Bayer demosaicing and sRGB
gamma correction to obtain the results shown in Section 5.5.

5.3.2 Exposure Gaps

Long exposure times are more desirable than high framerates for the
DAVIS 346C. This is because as one shortens exposure times to obtain
higher framerates, the average “gap time” between exposures does not
fall below a certain minimum, as can be observed in Figure 5.3. The
mapping from exposure times to framerates is thus not at all linear and
the exposure coverage, i.e. the percentage of the sequence time during
which the shutter is actually open decreases as exposure time is reduced
(see Figure 5.4). This means that the shorter one makes exposures (e.g. to
reduce motion blur), the less information about the course of the sequence
can actually be represented by the frames. As a simple example, consider
a laser pointer moving non-linearly on a wall: A long exposure frame
representing this motion will be blurry, but it will inform the viewer
about the exact trace of the laser point. Two short exposure frames with
a considerable exposure gap between them will only give 2 positions
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Figure 5.3: A visualization of the “Gap per frame” column of Table B.1,
mapping exposure times to exposure “gaps”. As exposures become
shorter, gap times stay at around 18ms.

of the points and not inform the viewer about the path the point was
following between those positions. It is for this reason that one should
configure the camera with long exposures. For detailed measurements of
the relationship between exposure time and framerate see Appendix B.

5.4 Method

As input, an event stream E and a frame sequence F are given, both
interpreted to have been derived from the same frame signal B (see
Sections 2.3 and 2.6). As explained in Section 5.3.2, F was captured with
relatively long exposure durations. The goal is to find a frame signal B∗

that is as compatible as possible with the input. B∗ is modelled by directly
incorporating the events into the construction of the signal, whereas the
frames are used to formulate a loss term. This loss is minimised by
gradient descent, to find values for the free parameters of the model.
Once B∗ has been found, one can compute integrals over much shorter
exposures than were used for F , to re-render the sequence at arbitrary
temporal resolution.

The model treats each pixel (x, y, z) in isolation. To simplify notation,
much of the remainder of this section will assume one arbitrary but fixed
pixel identity (x, y, z) and omit arguments and tuple components x, y, z.
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Figure 5.4: A visualization of the “Coverage” column of Table B.1, map-
ping exposure times to the percentage of sequence time during which the
shutter is open. Shorter exposure times lead to less coverage and therefore
less of the sequence time being observed in the frame signal.

5.4.1 Model

The model M(t) designed here does not represent B∗(t), but its integral:

B∗(t) := M ′(t) (5.1)

This formulation is convenient because the main loss term (Equation 5.8) is
expressed in terms of integrals under B∗: Equation 5.1 allows to compute
integrals by evaluating M (see Equation 5.10), while B∗ can be computed
accurately and efficiently by automatic differentiation.

Equations 2.19 and 2.20 constitute a strong prior on the set of admissible
functions B∗, that can be exploited by representing each pixel signal of
M(t) as an interpolation between carefully defined control points (CP,
see Figure 5.5) Pk = (tk, yk, gk, w

left
k , w

right
k ) ∈ R5, that enforce, for all k:

M(tk) = yk M ′(tk) = gk (5.2)

while wleft
k , w

right
k govern the interpolation between Pk and its neighbours.

The Pk are subject to the following rules:

• Each Pk belongs to one of two types:

An event-based CP represents an event and its tk is fixed to the time
of the event. An exposure-based CP represents the transition from
one brightness frame F (i) to its successor with tk := 1

2

(
tclose
i + t

open
i+1

)
• yk ≥ 0 is a free parameter of the model.
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• gk is defined by the event semantics (see below).

• The gradient weights wleft
k , w

right
k are free parameters that determine

how quickly M ′(tk) turns into M ′(tk+1).

To make the model compatible with the events by construction, the gradi-
ent parameters gk need to be defined in accordance with Equations 2.19
and 2.20. The pixel signal is thus equipped with one confidence weight
γj per event and one overall parameter B̄. γj represents the confidence
the model has in the validity of event j. Modelling such confidence is
necessary because the assumption of only two threshold values c+1, c−1 is
a strong simplification: The physical properties of the camera circuit make
the thresholds rather fuzzy, leading to an entire distribution of thresholds
that could have caused a particular event. The confidence weights ac-
count for this uncertainty. The parameter B̄ is left free and represents the
average brightness assigned to the pixel over the entire sequence duration
(see Figure 5.5). The confidence weights are transformed and multiplied
with the thresholds, to obtain the effective (logarithmic) thresholds cj for
all events:

cj := cpj · sigmoid(γj · ωpj + βpj ) (5.3)

where the scales ωp ∈ {ω+1, ω−1} and biases βp ∈ {β+1, β−1} are shared by
all pixels. While the raw confidence weights are unbounded and will be
scaled and shifted according to ωpj , βpj , the sigmoid function makes sure
that cj is in [0; cpj ]. This allows events to be “weakened”, to compensate
for spurious events, or strengthened, to compensate for missed events.
As one configures the camera to use smaller logarithmic thresholds, to
increase precision, the frequency of spurious events increases, due to
imperfections of the circuitry.

Given B̄, chaining Equation 2.19 in the form pj+1 ·(B̃∗(tj+1)−B̃∗(tj)) =
cj admits only one possible valuation for those gk that are event-based, if
one assumes that brightness is constant between events (see Figure 5.5).
The computation of the event-based control points is described in Sec-
tion 5.4.2. For the remaining, exposure-based control points Pk, one consid-
ers the latest event j that occurs before tk: Since there exists an event-based
control point Pk′ with gradient gk′ for this event, one can set

gk := exp

(
δk · csign(δk) ·

cj
cpj

)
· gk′ (5.4)

where δk ∈ [−1; 1] is a free model parameter, allowing log-brightness
values at exposure-based control points to deviate from the value at the
beginning of the event interval they lie in by at most c+1 or c−1, satisfying
Equation 2.20.

One has now determined a set of control points Pk that make M con-
sistent with Equations 2.19 and 2.20, on the basis of the parameter B̄, the
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Figure 5.5: B∗ visualised in the log domain: Green rectangles represent
input exposures, with significant gaps in-between. The orange-hatched
area (∆T := tend−tstart) is defined by B̄ and the event times and polarities,
determining the brightness levels at each event (red for positive polarity,
blue for negative). Black points are exposure-based and must lie within
either the reddish or blueish rectangle that they are depicted in here
(Equation 5.4). Based on the gk, yk and other control point parameters, M
is constructed as a piece-wise Bézier curve (not depicted here!) and thus
M ′ = B∗, depicted as the black curve.

parameters γj for all events and the parameters δk for all exposure-based
control points k. Each pixel has its own set of these parameters. The only
parameters shared between pixels are ω+1, ω−1, β+1, β−1, and c+1, c−1.

To define M between the control points Pk and Pk+1, one could use
straight lines (which by Equation 5.1 would translate into piecewise-
constant brightness signals) or parabolas (leading to piecewise-linear
signals), but these methods would impose further constraints on the mod-
elled signal, because they cannot comply with arbitrary combinations of
control point parameters. Not even cubic interpolation along the temporal
axis is sufficient, because it takes as parameters only start and end points
of a signal, plus the slopes in those points, amounting to 6 degrees of
freedom. However, since the gradient weights wright

k , wleft
k+1 are supposed

to control how quickly the slope of B∗ transitions from gk to gk+1, a total
of 8 degrees of freedom is required, necessitating the use of Bézier curves.
As Section 5.5.4 shows, Bézier curves lead to higher accuracy than straight
lines or parabolas.

5.4.2 Computation of Control Point Gradients

To compute the gradients of event-based control points, i.e. to determine
the exact shape of the orange-hatched area in Figure 5.5, the events in a
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given pixel are sorted by time and numbered as (tj , pj), with j ∈ {1, ..., n−
1}. The artificial event (t0, p0) := (tstart,Ω) is added to simplify notation,
where Ω denotes some fixed, but undefined polarity that will never be
used. There are now n events in total.

By chained application of Equation 2.19 to the effective thresholds cj ,
for all events from the first one (artificial, at time tstart) up to event j, one
can compute the factor fj+ with which an initial brightness level must be
multiplied in order to obtain the correct brightness value after event j:

fj
+ := exp

(
j∑
l=1

pl · cl

)
(5.5)

Based on the average brightness parameter B̄ one can now define
brightness values (i.e. gradients) that M should have between events
j and j + 1:

gj :=
B̄ ·∆T∑n−2

l=0 fl
+ ·∆tl

· fj+ (5.6)

where ∆tj := tj+1 − tj and ∆T := tend − tstart. These are the exact values
of B∗ at the red and blue points of Figure 5.5, determining the shape of
the orange-hatched region and making its size exactly ∆T · B̄.

(The publication Fox et al., 2024, defined an additional fj− and argued
that it was needed for gradient backpropagation. That assertion has been
found to be an error in the write-up. All results in the publication and this
chapter were computed with a computation that does not use fj−).

For each control point Pk that is event-based and thus represents exactly
one event j (where j = 0 represents the first, artificial event at tstart), one
can now set gk := gj . The remaining, exposure-based gk are defined by
interpolation between the event-based ones, described in the next section.

5.4.3 Bézier Construction

Equation 5.2 requires a curve between two given points, (tk, yk) and
(tk+1, yk+1), the derivative of which takes specific values at times tk, tk+1.
A Bézier curve between the points must therefore be at least a cubic
one, which means that two additional helper points are needed. With
dA := w

right
k · (tk+1 − tk) and dB := wleft

k+1 · (tk+1 − tk) the helper points are
chosen as

PA
k,k+1 := Pk +

(
dA
gkdA

)
P B
k,k+1 := Pk+1 −

(
dB

gk+1dB

) (5.7)
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Figure 5.6: Between control points Pk and Pk+1 the model M is defined as
a cubic Bézier curve, which requires helper points PA

k,k+1 and P B
k,k+1 (see

Section 5.4.3). Note that the curve does not represent brightness, but the
integral under the brightness signal (see Equation 5.1).

Using the gradient weights wright
k and wright

k+1 in the definition of the helper
points makes them determine the curvature of the Bézier curve, as illus-
trated in Figure 5.6. The curve completely determines M between Pk and
Pk+1.

5.4.4 Optimization

M is differentiable with respect to its parameters, so the following losses
can be minimised via gradient descent:

The exposure loss forces the model to reproduce the input frames:

Lexposure :=
∑
∀i

erri

(∫ tclose
i

t
open
i

B∗(t) dt
)2

tclose
i − topen

i

(5.8)

where the error for frame i in saturated pixels is zero if B∗ saturates the
pixel as well:

erri(G) :=

{
F (i)−G : F (i) < 1

max (0, 1−G) : F (i) = 1
(5.9)

According to Equation 5.1 the integral can be computed as∫ tclose
i

t
open
i

B∗(t) dt = M(tclose
i )−M(t

open
i ) (5.10)

Lexposure is strictly necessary because it is the only loss that informs
the model about absolute levels of brightness recorded by the camera:
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Figure 5.8: Lconfidence (Equation 5.11) penalises integral mass that is miss-
ing because a confidence value is less than 1: The x axis is time, the y axis
is brightness. Red control points represent positive events, blue control
points represent negative events. Dark orange rectangles show the inte-
gral mass under the idealised brightness curve (see orange-hatched area
in Figure 5.5). Especially ej has cj � c+1. Increasing its confidence s.t.
cj = c+1 would add all of the light orange areas to the integral under the
idealised brightness curve, amounting to mj

+.

Without it the model (in particular the parameters B̄) could converge to
arbitrary multiples of the brightness values recorded in the frames and
each pixel could do so independently from the others. In addition, this
term helps suppress noise that may be present in the event data.

The confidence loss uses the helper variables mj
+ and mj

− to drive
all confidence weights γj up, such that the sigmoid term in Equation 5.3
approaches 1:

Lconfidence :=
∑
ej∈E

(
1
2mj

+ + 1
2mj

−)2
∆T

(5.11)

where mj
+ and mj

− are penalties on the the amount of integral mass
under the brightness signal (see Figure 5.8) that would be gained/lost by
making the sigmoid term in Equation 5.3 equal to 1:

Let ej ∈ E with time stamp tj and polarity pj . The “stop-gradient”
function SG denotes the identity function, but silences gradients in back-
propagation, to make Lconfidence affect no parameters other than the confi-
dence weights. For the l-th event in the pixel, there exists the event-based
control point Pk. The idealised integral mass ml under the brightness
signal between the events l and l + 1 is defined as

ml := SG(gk) ·∆tl (5.12)
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The number ρj is the factor by which the brightness level between events
j and j + 1 would change if the confidence for event j could make the
sigmoid term in Equation 5.3 equal to 1:

ρj := exp
(
SG(cpj ) ·

(
1− sigmoid(γj · ωpj + βpj )

))
(5.13)

ρj is also the factor by which all later event intervals would increase their
ml, which is why mj

+ equals the absolute amount of integral mass that
these intervals would gain:

mj
+ := (ρj − 1) ·

n−1∑
l=j

ml (5.14)

Penalizing only later intervals would make it very cheap for the last inter-
vals to have low confidence. This is why mj

− penalises earlier intervals:

mj
− :=

(
1− 1

ρj

)
·
j−1∑
l=0

ml (5.15)

Lconfidence encourages all events to be taken as “serious” as possible. With-
out it some events may be needlessly assigned a low confidence, leading
to high-frequency information being ignored, and thus more motion blur.

The linearity regulariser encourages Bézier curves to have linear deriva-
tives and thus B∗ to be piecewise linear in areas where other losses do
not determine a specific shape. This is achieved between Pk and Pk+1 by
penalizing the surface area Ak of the triangle between the points (tk, gk),
(tk+1, gk+1) and (

tk,k+1

gk,k+1

)
:=

(
1
2(tk + tk+1)

B∗(1
2(tk + tk+1))

)
resulting in the loss formulation

Llinearity :=
∑

Pk,Pk+1∈CP

A2
k

tk+1 − tk
(5.16)

where CP is the set of all control points for the pixel. Section 5.5.4 shows
that this loss gives better results than enforcing linearity by construction.

The overall loss

L := 1 · Lexposure + 0.2 · Lconfidence + 0.1 · Llinearity

is minimised by gradient descent, updating the model parameters B̄ for all
pixels, the parameters γj for all events, the parameters yk, wleft

k , and wright
k

for all control points, the parameters δk for all exposure-based control
points, and the global parameters c+1, c−1, ω+1, ω−1, β+1, β−1.

89



5.4.5 Implementation Details

Gradient descent The method was implemented using PYTORCH and its
ADAM optimiser (Kingma et al., 2015) for 1000 iterations. The learning rate
ri for iteration i is defined by setting αi := (1− i−100

900 )1.5 and specifying:

ri :=


10−2 : i = 0
i

100 · r0 : 0 < i < 100

(r0 − r999) · αi + r999 : 100 ≤ i < 999

10−3 : i = 999

(5.17)

The arrays representing model parameters are usually in the range [−1; 1]
(even though the range of the mathematical variables they represent may
be different!), but some of them, like the confidence weights for example,
have a far smaller range, which effectively increases their learning rate.

Initialization and invariants The model parameters are initialised and
bounded as follows:

1. Thresholds are always initialised as c+1 = c−1 = 0.15 and kept in
the interval [0.01; 1.8].

2. For each pixel, B̄ can easily be initialised to be the average brightness
level of this pixel over all input frames. It is only bounded to be
non-negative.

3. The yk and δk are initialised such that the orange-hatched area in
Figure 5.5 satisfies Lexposure reasonably well. To do so, exposure
gaps need to be taken into account. Since the total amount of phys-
ical energy received by a pixel up to some time t is monotonically
increasing, the function M should be monotonically increasing as
well, requiring ∀k : yk ≤ yk+1. The δk are kept in the range [−1; 1].

4. The confidence weights γj are initialised with 1 and not bounded
at all, because the sigmoid term in Equation 5.3 properly bounds
the effective thresholds based on these weights. For the same rea-
son, ω+1, ω−1 (initialised to 1) and β+1, β−1 (initialised to 0) are left
unbounded.

5. The gradient weights wleft
k , w

right
k are initialised to 0.45 and restricted

to the range [0.05; 0.45], to avoid numerical issues that might arise
in the computation of Bézier interpolation.

Bézier evaluation The usage of Bézier curves (8 degrees of freedom,
see Figure 5.6), as opposed to cubic interpolation (6 degrees of freedom)
has one subtle disadvantage: Bézier curves are not parametrised in the
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x coordinate of the coordinate system they are defined over, but in some
curve parameter t (inconveniently denoted in the literature by the same
symbol that this chapter uses for its temporal axis). This means that one
cannot straightforwardly map an x coordinate to a point (x, y) on the
curve. Instead, one must first map x to the curve parameter t, that in
a second step will give a point (xt, yt) on the curve. To find t such that
xt = x, one must find a root of a polynomial of degree 3. Fortunately,
this polynomial is so well-behaved that a small number of Newton steps
(fewer than 10) reliably approximates the solution very precisely. This
is much easier to implement than the analytical solution (e.g. Cardano’s
formula).

Performance All input data (frames and events) is loaded into the GPU
once before training begins, so there is no overhead for data loading. Ev-
ery forward and backward pass for optimization is using all the weights
of the model and is supervised by the entirety of the input data. Com-
putational performance varies greatly with the number of events and
their distribution. Recordings that were processed for this chapter were
typically 5 - 15 seconds long. None of them requires more than 48GB of
GPU memory, most of them require less than 24GB. Some sequences are
processed within tens of minutes, others might take 2 - 4 hours, due to
different numbers of events.

5.5 Results

5.5.1 Input Data

Recordings for evaluation were captured with a DAVIS 346C, at exposure
0.2s, resulting in 4.5FPS - 5.0FPS, due to the shutter remaining closed for
significant durations between frames. For the DAVIS 346C, the duration of
the exposure gaps remains constant as exposure time is decreased, leading
to exposures covering less and less sequence time (see Figures 5.3 and 5.4).
The long exposure time of 0.2s was chosen to keep this coverage high
(92%). For more information see Section 5.3.2. Ground truth signals for
quantitative evaluation were obtained in 2 ways: First, dropping every
other frame in the recordings allows the evaluation of how well a recon-
struction method is able to compute the missing long-exposure frames.
Second, similarly to previous work (X. Zhang et al., 2022), events were syn-
thesized from high-framerate RGB sequences: 30 REDS sequences (Nah
et al., 2019) were temporally upsampled to 800Hz using FILM (F. Reda
et al., 2022; F. A. Reda et al., 2022). Synthetic events were then computed
using ESIM (Gehrig et al., 2020; threshold c = 0.2). A 10Hz, long-exposure
frame sequence was derived from the 800Hz version, without exposure
gaps, to serve as input to the evaluated reconstruction methods. The
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Method PSNR ↑ SSIM ↑ LPIPS ↓

AKF 14.42dB 0.4861 0.3675
EVDI (pretrained) 23.32dB 0.7356 0.2504

LEDVDI (pretrained) 20.66dB 0.6491 0.2000
mEDI 24.68dB 0.7888 0.1831

COLIBRI 29.69dB 0.9039 0.0739

Table 5.1: All methods were evaluated quantitatively on a synthetic
dataset based on REDS (Nah et al., 2019). The scores in this table are
averaged over the 30 sequences in the REDS validation set.

sequences of the Color Event Camera Dataset (Scheerlinck et al., 2019) could
not be used because they lack exposure time information.

5.5.2 Comparison to Previous Work

All previous methods that COLIBRI is compared to take events and long-
exposure brightness frames as input: EVDI (X. Zhang et al., 2022) is a
learning-based method that is self-supervised, but needs to be pretrained.
Likewise, LEDVDI (Lin et al., 2020) is learning-based, but needs ground-
truth supervision and thus is trained on synthetic data. It increases tem-
poral frequency by a factor fixed at training time. Since COLIBRI does not
require any pre-training at all, the comparison uses the official checkpoints
of EVDI (“GoPro” checkpoint) and LEDVDI (frequency factor 6). Since
EVDI does not require ground truth for supervision, it is overfit to the
input for 10 epochs, helping overcome the domain gap between the input
and the training data. Like COLIBRI, AKF (Z. Wang et al., 2021) and mEDI
(Pan et al., 2022) do not require pre-training.

TIME LENS (Stepan Tulyakov et al., 2022, 2021) excels at frame interpola-
tion, but requires short-exposure frames that are free of blur. Section 5.5.3
demonstrates that it cannot deal with long-exposure frames. For more
information on these previous methods, see Section 5.2.

Each method is made to produce output sequences of latent images (i.e.
virtual exposure time 0) at 500FPS, which for most of them requires some
linear interpolation of the output frames, because they either produce
non-constant framerates or only a fixed multiple of the input framerate
(LEDVDI). All previous methods were extended to process coloured data,
by applying them to each colour channel individually. This is necessary
because official checkpoints have been trained on single channel data only.

Figure 5.7 shows a comparison on multiple recordings: Methods are ex-
pected to turn inputs with exposure 0.2s into output with exposure 0.002s,
which should reduce motion blur. AKF produces strong spatial noise.
Both EVDI and mEDI give results with considerable motion blur. Surpris-
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Method PSNR ↑ SSIM ↑ LPIPS ↓

AKF 22.64dB 0.5033 0.4505
EVDI (pretrained) 33.92dB 0.9498 0.0651

LEDVDI (pretrained) 30.74dB 0.9120 0.0739
mEDI 34.91dB 0.9114 0.0876

COLIBRI 37.91dB 0.9251 0.0882

Table 5.2: Evaluation of the frame drop experiment (see Section 5.5.2).
Exposure for both reference and input was 0.2s. Spurious events in the
scene background make it hard for COLIBRI to keep background bright-
ness constant, hence its scores do not beat those of EVDI.

Reference exposure 0.1s Reference exposure 0.002s
Variant PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Linear interpol. 40.72dB 0.9866 0.0112 29.50dB 0.9006 0.0624
Parabolic interpol. 39.21dB 0.9795 0.0174 28.95dB 0.8889 0.0793

No confidences 43.96dB 0.9933 0.0047 30.25dB 0.9105 0.0647
No exp.-based CP 43.69dB 0.9929 0.0052 29.52dB 0.9007 0.0755
Without Lconfidence 45.80dB 0.9957 0.0032 27.70dB 0.8677 0.1153
Without Llinearity 42.61dB 0.9915 0.0096 20.92dB 0.6678 0.2613

COLIBRI (full) 45.17dB 0.9949 0.0035 29.69dB 0.9039 0.0739

Table 5.3: Ablation study on synthetic data, comparing outputs to input
frames (exposure 0.1s) and to pseudo ground truth (exposure 0.002s).
Since this dataset does not contain real-world noise, the event confidences,
as well as Lconfidence are not improving performance. However, the full
method ranks second best more often than any other method ranks best.
Both linear interpolation and parabolic interpolation lead to the input
frames being reproduced far less faithfully.

ingly, LEDVDI, which can only produce output at exposure time 0.033s,
manages to reduce blur considerably for the racket, but suffers from a
“pulsing” artefact (best observed in the project video, see Section 1.5).
COLIBRI deblurs best, as can be seen in the third row for example, where
EVDI and mEDI struggle with clearly resolving the right edge of the
foreground leaf.

Methods were evaluated on synthetic data: Figure 5.9 confirms many
observations from the recordings, with the exception of LEDVDI, which
now also gives blurry results, possibly due to a bias towards its training
distribution. In fact, Table 5.1 lists rather weak scores for LEDVDI and
AKF, while COLIBRI consistently outperforms the others.

For quantitative comparison on real inputs, every second frame of the
real recordings was dropped, to serve as a blurry long-exposure reference
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(Section 5.5 and Figure 5.10). All methods struggle in this setting, because
no frame data is available for more than the typical exposure period.
As expected, those frames that were still remaining in the input were
reproduced more faithfully than those that were dropped, confirming
that event-based reconstruction greatly benefits from the availability of
long-exposure brightness frames. Table 5.2 averages scores over a number
of recordings: In both SSIM and LPIPS, COLIBRI is outperformed by EVDI.
The reason seems to be that the spurious events reported for the scene
background (i.e. exactly in those areas where no motion is happening)
make it hard for COLIBRI to keep the brightness of the background pixels
constant. Normally Lexposure (see Section 5.4.4) would correct that, but
without the dropped frames COLIBRI has no way of knowing whether
these events are legitimate or not. It is here, where the learned priors of
EVDI prove to be an advantage. Error maps and scores are shown in the
project video (see Section 1.5).

5.5.3 Time Lens is Out Of Scope

Comparing COLIBRI to TIME LENS (Stepan Tulyakov et al., 2022, 2021)
would be unfair to TIME LENS. This is because Section 5.4 investigates
the setting of long exposure RGB frames, which contain a lot of motion
blur. However, TIME LENS is designed for interpolation between short-
exposure frames, that are expected to be free of blur. To demonstrate that
TIME LENS is not suitable in the long-exposure setting, it was nevertheless
applied to some real recordings and synthetic data: Figure 5.11 shows
that TIME LENS is unable to compensate the motion blur present in the
long exposure input. Quantitative evaluation on 10Hz synthetic data (see
Table 5.1) gave a PSNR score of only 22.51dB, confirming that TIME LENS

is the wrong tool for the setting.

5.5.4 Ablation Study

Bézier interpolation Section 5.4 specifies that the interpolation between
control points is computed in the form of Bézier splines, which means
that the function M , i.e. the integral under the brightness signal (not
the brightness signal itself!) consists of Bézier curves. Since Llinearity
regularises these curves to approximate parabolas, encouraging B∗ to
become piecewise linear, it has to be investigated if these choices really
give better results than making the interpolation use parabolas already by
definition, or even linear functions (in which case the brightness signal
would be piecewise constant). However, both these “simplifications”
require the addition of further constraints to the model, because piecewise
parabolas or lines cannot satisfy Equation 5.2 in all cases, as they admit
fewer degrees of freedom than Bézier curves do. Technically this means
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Input RGB TIME LENS output COLIBRI output

Figure 5.11: A comparison to TIME LENS (Stepan Tulyakov et al., 2022,
2021), at output exposure time 0.002s. The top two rows show results on
recordings (see Figure 5.7), while the two lower rows show results on
synthetic data. Since TIME LENS was neither designed nor trained for
long exposure frames, it fails to resolve the motion blur present in the
input.
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that one cannot leave the y coordinates yk free, and instead has to compute
them from other parameters in a way that constrain the model to parabolas
or lines. These additional constraints change the dynamics of the signal
representation during optimization. Table 5.3 shows that they lead to
significant degradations in quality, especially with regard to the ability of
COLIBRI to reconstruct the input frames. Furthermore, the second row
of Figure 5.13 shows more spatial noise for the simplified interpolation
methods.

Exposure-based control points Similarly, Table 5.3 shows that omitting
exposure-based control points harms the fidelity with which input frames
are reconstructed. Figure 5.12 gives a possible explanation: Pixels in
the sky region change their brightness only very slightly as the camera
is panning. The logarithmic brightness threshold of 0.2 that was used
to synthesize events for the REDS sequences is apparently too large to
trigger frequent events for such subtle changes. Therefore, the control
points in these pixels are very sparse and cannot satisfy Lexposure, which
leads to the sky region having bad SSIM scores. Only exposure-based
control points add the necessary degrees of freedom here.

Confidence weights Table 5.3 shows the full method outperform all
ablations except those that are missing confidences or Lconfidence. The
reason why omitting these seems to even slightly improve the metrics
in this ablation study is that since no event camera noise was simulated,
almost all events in the synthetic dataset are legitimate (except for corner
cases due to quantisation), so allowing confidences to deviate from 1
cannot do much good. The PSNR metric (given only for comparison with
previous works that use it) is unreliable in the case of Table 5.3: Not only
is SSIM a more advanced metric for perceived quality, but also does PSNR
diverge towards infinity as images become more similar to the reference,
making PSNR differences less and less significant. This suggests that one
should focus on SSIM values especially in the first half of Table 5.3, where
similarity is very high. On real data however (Figure 5.13), many events
are not legitimate at all and especially in-between exposure periods the
lack of confidence weights can lead to severe artefacts.

Confidence loss SSIM scores in Table 5.3 show that omission ofLconfidence
leads to a significant loss of quality on synthetic data at short exposure
times, suggesting that confidences tend to needlessly deviate from 1.
The third row of Figure 5.13 confirms this as well, with the omission of
Lconfidence leading to strong artefacts in the orange tiles of the cube.
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Linearity regulariser Using Bézier interpolation without having Llinearity
regularise those parameters that are not strictly derived from the event
data leads to very strong artefacts, as indicated by the poor scores for short
exposures in Table 5.3 and the visual results in Figures 5.12 and 5.13.

5.6 Limitations

The design choices of COLIBRI make it avoid many of the limitations of
previous methods. For example, since it exploits the event semantics in a
principled way, it does not need any pre-training and thus no training data.
As a second example, the fact that pixels are treated rather independently
from each other makes it easy to handle complex lighting interactions (like
transparency in glass and water) non-linear motion and dis-occlusions,
which are more challenging for methods that use optical flow for example
(see Section 5.2). However, these same design choices of course give rise
to limitations as well:

The importance of Lexposure makes it strictly necessary to have exact
time stamps for the brightness frame exposures, i.e. to know the times
at which the shutter opens and closes. Some existing datasets, such as
the Color Event Camera Dataset (Scheerlinck et al., 2019) do not provide
this information. In addition, methods like TIME LENS (Stepan Tulyakov
et al., 2022, 2021) typically work on input frames that were recorded with
minimal exposure time, which, if used as input to COLIBRI, is likely to give
noisy results because short exposure times reduce the impact of Lexposure,
allowing noise in the event data to become more visible in the output.

Furthermore, COLIBRI uses GPU RAM rather generously: Representing
the entire sequence in memory requires significant GPU capacity, espe-
cially for large numbers of events. It is possible to apply COLIBRI only to
pairs of consecutive brightness frames, to stitch the results together. While
this was found to lead to qualitatively comparable results with less mem-
ory demand, it does take more computation time, because frame pairs
need to overlap (i.e. every frame is treated twice). Valuing computation
time higher than memory consumption this chapter reported results from
global optimization only.

Although COLIBRI produces estimates for the logarithmic brightness
thresholds c+1, c−1, it is not clear how close these estimates are to the
actual ground truth values: The event confidences allow not only to “tone
down” individual events, but also can reduce the impact of all events as a
whole (counter-acted by their regulariser). The latter can be compensated
by c+1, c−1, which means that the same model signal can be represented
by different values of the thresholds (compensating different levels of
average event confidence). Not many methods estimate the thresholds
accurately (one exception being mEDI; Pan et al., 2022), but knowledge
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about the thresholds for a particular sequence is often a valuable piece of
information for further processing.

5.7 Conclusions

This chapter has presented COLIBRI, a method for event-based video
reconstruction. COLIBRI does not rely on sophisticated priors picked up
from a large training corpus. Instead, it exploits the (idealised) temporal
dependencies encoded by an event stream, along with classic brightness
frames. Nevertheless COLIBRI is able to compete with previous works,
even ones based on learning.

This is because COLIBRI solves an optimization problem at test time,
instead of forcing a prior on input data that may or may not fit a training
distribution. Furthermore, instead of using event binning, as most previ-
ous methods do (see Section 5.2), the novel per-event confidence weights,
together with their regulariser, allow COLIBRI to effectively deal with spu-
rious events without discarding the precise event time stamps. In addition,
equipping the brightness signal with new degrees of freedom in-between
exposures and even, by the use of Bézier interpolation, in-between single
events, helps improve output quality compared to methods that assume
brightness to be piecewise constant.

These contributions enable COLIBRI to outperform previous approaches
at a temporal resolution 100 times as high as that of the input. Despite
remaining limitations, such as high memory consumption and the require-
ment for the frames to cover as much as possible of the sequence time (i.e.
COLIBRI is designed for long exposures), the performance of the presented
method suggests that training-time learning should be combined with
test-time optimization in order to alleviate domain gap issues.

Remarkably, while COLIBRI takes great care to precisely exploit tempo-
ral dependencies encoded by events, it only very weakly connects pixels
spatially: Only a handful of global parameters are shared across pixels (see
end of Section 5.4.4). This means that the model is not actively enforcing
(detailed) spatial dependencies. Nevertheless, the supervision by noisy
events and long-exposure brightness frames is enough to achieve spatially
coherent output frames. If one were instead building a model that actively
constructed spatial dependencies, e.g. by spatial (de-)convolutions, but
neglected the representation of temporal dependencies (e.g. could not use
knowledge about a previous frame when constructing the next one), the
viewer would not be equally satisfied, because such models are known to
lead to noticeable high frequency flickering (as acknowledged by L. Wang
et al., 2019; Z. Zhang et al., 2023). In this sense, temporal dependencies
can be considered even more important than spatial ones.
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Conclusions 6
This thesis has explored the nature of temporal dependencies in video
signals through the lenses of several concrete computational tasks in
which they play important roles.

Chapter 3 has constructed a fake detection benchmark dataset of un-
precedented visual quality, VIDEOFORENSICSHQ. This dataset helped
to show that previous fake detection methods rely to a great extent on
manipulation artefacts that a human could spot with the naked eye. The
detectors presented in the chapter use not only spatial filters to extract
fake detection clues, but also filter along the temporal axis, which is shown
to improve robustness against unseen manipulation methods.

The focus of Chapter 4 has been not the analysis, but the synthesis of
videos. The presented method, STYLEVIDEOGAN, learns the temporal
dependencies to preserve from a very small training set of only 10 min-
utes of footage. STYLEVIDEOGAN’s architecture, which separates spatial
components from temporal components, reduces computational cost com-
pared to previous approaches. It generates motion trajectories that can
be transferred to a great multitude of unseen subjects. Its novel gradient
angle penalty helps generate very long videos without looping artefacts.

In contrast to Chapters 3 and 4, which only captured dependencies
within videos, Chapter 5 has also investigated the relationship between a
video and the frame signal that it originates from (see Section 2.3): The
chapter presented COLIBRI, a new method to estimate said frame signal
from a combination of the video with an event stream. The method does
not require any training data, but is able to compete with learning-based
methods because it is not biased towards any training distribution. In-
stead of optimizing weights in a training phase, it optimises parameters
only once the input is known. Furthermore it exploits the temporal depen-
dencies encoded by events with greater precision than previous works, by
using per-event confidences instead of event binning.
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6.1 Insights

Apart from the contributions that this thesis makes to the individual tasks
treated in Chapters 3 to 5, it also provides evidence to support a number
of overarching insights:

Importance of temporal dependencies It did not take this thesis to
understand that temporal dependencies are an important aspect of vi-
sual information. However, the thesis gives concrete evidence for their
importance in several specific areas:

In the authenticity context, the arms race between attackers and de-
fenders still has significant room to develop in the temporal dimension,
because both had previously often neglected it (see Section 5.2). The rel-
atively simple temporal filter in XCST helped detect forged videos from
distributions that were not seen in training. This points at temporal de-
pendencies being a valuable dimension to invest in for fake detection,
especially since the spatial dimension seems to have been mastered in-
creasingly by the attackers (in the form of STYLEGAN and diffusion
models; Ho et al., 2020; Rombach et al., 2022; Sohl-Dickstein et al., 2015;
L. Zhang et al., 2023).

The comparison of STYLEVIDEOGAN with the work by Tian et al., 2021,
(Section 4.2.1) shows that temporal dependencies deserve to be disentan-
gled from spatial ones explicitly in the supervision of neural networks:
Tian et al., 2021, have their generator traverse a PCA space that has been
found without temporal data, and they supervise it by spatiotemporal
patches. While in theory this might suffice for the generator to learn
convincing motion patterns, the motion generated by Tian et al., 2021, is
not as characteristic of the training material as that of STYLEVIDEOGAN.
STYLEVIDEOGAN derives already its PCA basis from temporal trajecto-
ries. It does not even render spatial outputs at training time, such that
supervision is more explicitly focused on temporal dependencies. This
leads, for example, to the generated faces actually talking, instead of
merely being panned around (see project video, Section 1.5).

Finally, COLIBRI, presented in Chapter 5, treats temporal information
more accurately than previous works, by incorporating precise event time
stamps in its model, instead of resorting to event binning. Event binning
prevents the exploitation of any information about the distribution of
events inside a bin and thus limits the possible temporal resolution of the
output. This is one of the reasons why COLIBRI can compete with learning-
based approaches. COLIBRI adds strong temporal dependencies to its
model, but only rather weak spatial ones, nevertheless producing spatially
coherent output pixels. Other works (L. Wang et al., 2019; Z. Zhang et
al., 2023), that explicitly model spatial dependencies, but not temporal
ones, do show noticeable temporal artefacts. In this sense, temporal
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dependencies can be considered even more important than spatial ones.

Management of combinatoric blow-up Taking temporal dependencies
into account tends to make every aspect of an algorithm, be it training
data acquisition, storage, inference, or supervision, much more expensive.
This is because the temporal dimension usually acts as an additional
combinatoric factor that inflates resource usage. This indeed posed severe
engineering challenges in the development of VIDEOFORENSICSHQ and
it is the main reason for the large memory consumption of COLIBRI. But
as STYLEVIDEOGAN shows, it is possible to keep resource demand at bay
if one is able to properly disentangle the temporal axis from the spatial
ones: The problem of generating videos did not need to be solved all
at once. Instead a spatial model (STYLEGAN) was trained without a
temporal dimension first. Then videos were embedded in STYLEGAN’s
latent space, where temporal supervision could be done on a compact
representation, without even materializing actual video frames. In fact,
recent work (Choi et al., 2024) uses a similar principle for the detection
of fake videos (by having PSP map video frames to STYLEGAN latent
codes).

Constraints to learning While it is possible to discover and exploit
temporal dependencies in an automated, i.e. learning-based way, there
can be advantages to avoiding learning:

If the temporal component of XCST (Section 3.5) involved more learn-
ing, it might be susceptible to overfitting to the training distribution.
Additional regularisers would be needed in this case to maintain general-
ization ability to unseen manipulation methods. Likewise, COLIBRI is a
completely handcrafted method building on explicit physical priors, that
prevent it from learning dependencies that would only appear to exist
due to insufficient breadth of the training set. The method also satisfies
the semantic constraints of events (Equations 2.19 and 2.20) by construction
and does not need any “warm-up” before it somewhat approximates them.
The fact that the method solves an optimization problem at test time helps
it compete with methods that stoically apply learned priors to any given
input, without even assessing if this input fits their training distribution
or not. STYLEVIDEOGAN does learn temporal dependencies in a fully
automated way, but the fact that it only sees STYLEGAN latent codes at
training time prevents it from picking up too strong of a bias towards the
single training subject, that would not carry over to other subjects.

In all these cases, preventing models from relying on “false” dependen-
cies that only exist in the available data (but not in all the possible data) helps
solve the problem more accurately and/or efficiently than less constrained
machine learning could.
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6.2 Outlook

Although Chapters 3 to 5 contribute valuable ideas to their respective
areas, these tasks are still far from solved. Later works need to and
partially already have put forth advanced solutions:

6.2.1 Face Video Forgery Detection

Pei et al., 2024, provide a survey of recent developments concerning face
forgeries and their detection.

Among these, STYLEGAN (Karras et al., 2021, 2019, 2020) was already
emerging as a significant improvement to the spatial quality of face image
generation at the time the work in Chapter 3 was being conducted. How-
ever, it became relevant to the detection task mostly after the properties of
its latent space had been identified as being very advantageous for editing
(e.g. Bounareli et al., 2023; Hou et al., 2022; D. Lee et al., 2024; Z. Liu et al.,
2023; Oorloff et al., 2023 and Section 4.2). Thanks to STYLEGAN, artefacts
in the spatial domain have become much more subtle, and so the temporal
domain is becoming relatively more important for spotting deviations
from natural signals.

A second major development has been the widespread use of (latent)
diffusion models (Ho et al., 2020; Rombach et al., 2022; Sohl-Dickstein et
al., 2015; L. Zhang et al., 2023). Many diffusion-based models, specifically
for the generation of talking faces (conditioned on audio; Du et al., 2023;
G. Kim et al., 2023; Stypulkowski et al., 2024; S. Xu et al., 2024; Zhentao Yu
et al., 2023), avoid the artefacts that used to be common in previous meth-
ods. For example, the blending step, where an edited/synthesised region
is merged into an unedited background, is less common in diffusion mod-
els. This suggests that detectors looking for blending boundaries would
work less well here. On the other hand diffusion models, despite their
photorealism, still introduce visible artefacts, especially when generating
videos, see Figure 6.1.

While STYLEGAN and diffusion models enabled profound improve-
ments in the synthesis of face videos, there does not seem to have been an
equally fundamental change in the way that detection methods operate.
There are, however, methods that use spatiotemporal attention (Vaswani
et al., 2017), such as those by Z. Yang et al., 2023, and Yin et al., 2023. An
increasing number of works (Choi et al., 2024; Gu et al., 2022; J. Wang et al.,
2022; Z. Yang et al., 2023) is putting explicit emphasis on the temporal
dimension.

In light of these recent works, it must be assumed that many new
detection methods already supersede those in Section 3.5, not because
they exploit a fundamentally new kind of clue, but because they refine
especially the treatment of temporal dependencies, which the detectors
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Figure 6.1: Each row shows three subsequent video frames generated
by diffusion models (top: SORA, Edwards, 2024; bottom: STABLE VIDEO

DIFFUSION, Blattmann et al., 2023a). These models deliver unprecedented
quality, resolution and variety, in addition to being controllable by text
prompts. However, the frames often violate important temporal depen-
dencies that real footage would satisfy: The gymnast’s arms morph into
additional legs, while her head is unusually mobile. The girl’s skirt takes
a physically implausible shape, while her legs seem to fuse into one.

presented in this thesis were among the first to do (see Section 3.2.3).
Since diffusion models have superseded GANs as the state of the art

in generative modelling, it seems worthwhile to explore them them for
detection as well: For example, a dataset like VIDEOFORENSICSHQ, con-
taining fake recreations of real videos, could be used to train a diffusion
model to undo distortions introduced by the fake creation process (e.g.
with a technique similar to SDEDIT, Meng et al., 2022). Such a model
could serve both as a generator (“perfecting” fakes) and as a detector (if
one learns to classify pairs of videos and their “perfected” versions).

While Chapter 3 showed that temporal dependencies can help gener-
alise to unseen manipulation methods, the problem of generalization is
still far from solved. One way of making progress here could be “multi-
modal” fake detection, i.e. the combined evaluation of additional informa-
tion channels, such as audio (e.g. Haliassos et al., 2022).

6.2.2 Temporal Generative Models

After STYLEVIDEOGAN, several GAN-based video generators have been
presented (e.g. Brooks et al., 2022; Skorokhodov et al., 2022; S. Yu et al.,
2022). More recently, transformer- and diffusion-based methods have had
a great impact on generative modelling. Surveys are only beginning to
emerge (Lei et al., 2024; C. Li et al., 2024; R. Sun et al., 2024), but Blattmann
et al., 2023a, provide a good overview in their supplemental material.
Notable examples include early transformer-based methods (Ge et al.,
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2022; W. Hong et al., 2023; C. Wu et al., 2022), as well as the diffusion-
based IMAGEN VIDEO (Ho et al., 2022a), VIDEO LDM (Blattmann et al.,
2023b), STABLE VIDEO DIFFUSION (Blattmann et al., 2023a), ANIMATEDIFF

(Y. Guo et al., 2024) and SORA (Brooks et al., 2024).

While diffusion-based models supersede GANs in terms of output
resolution and quality, they also have several disadvantages: Training
sets are immense (e.g. WEBVID, Bain et al., 2021: originally 2, later 10
million video-text pairs, or LAION-5B, Schuhmann et al., 2022: over 5
billion image-text pairs) and inference takes more memory and time than
that of GANs. Various techniques exist for reducing the computational
cost, such as mixed image-and-video training (Ho et al., 2022b; Singer
et al., 2023), extending spatial models by temporal dimensions (Blattmann
et al., 2023b; K. Guo et al., 2024), low-rank decomposition of the weight
matrices (Hu et al., 2022), or distillation (Luo et al., 2023; Meng et al., 2023).
However, supervision still often happens in a spatial latent space that
appears relatively costly: The widely-used STABLE DIFFUSION (Rombach
et al., 2022), uses 4·64·64 = 16,384 coefficients for each image, compared to
18 · 512 = 9216 dimensions for STYLEGAN’sW+ space. Furthermore, the
latent space is still rather isomorphic to image space. Future work could
aim at further narrowing down its dimensionality and/or transforming it
into a space that is easier to supervise in, in the same way that supervision
inW+ space is cheaper than in image space.

Given the aforementioned drawbacks of diffusion models, there can
still be scenarios in which GANs are preferable, due to restricted compu-
tational capacity. To this end, STYLEVIDEOGAN could be improved in
several ways: PSP inversion tends to make skin appear wax-like, such
that outputs appear less photorealistic than the underlying STYLEGAN
model allows. Pushing theW+ vectors closer to the actual STYLEGAN
latent spaceW (without compromising temporal stability or altering iden-
tities too much) would help reduce this problem. Such an attempt should
probably be made on the basis of the more recent STYLEGAN 3 (Karras
et al., 2021), which does not require training data to be aligned, but also
has been found (Alaluf et al., 2022) to have a more entangled latent space.
Furthermore, while the “offset trick” enables the transfer of motion to an
arbitrary conditioning identity, the motion itself is being generated with-
out any conditioning. Conditioning would be necessary for applications
like temporal infilling. Investigating the latent space of STYLEVIDEOGAN
and adjusting it for such uses could make it a viable competitor against
diffusion-based models, in scenarios in which computational resources
are not abundantly available.
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6.2.3 Event-based Video Reconstruction

COLIBRI could be refined in several ways: An important property of
event cameras that Chapter 5 does not treat explicitly is event latency (see
Section 2.6). There are very recent learning-based works (H. Liu et al., 2024;
Y. Yang et al., 2024) that explicitly model this effect. While COLIBRI does
estimate logarithmic thresholds, Section 5.5 is lacking an evaluation of how
well these estimates correspond to the (average) logarithmic threshold
actually used by the camera: In theory, reconstruction quality could be
good despite the threshold estimates being far off, because the confidence
weights can compensate for such errors. Future work could explore
more elaborate regularisers that rule out this ambiguity and so force the
threshold estimates to be more accurate.

Several works for event-based frame interpolation (H. Cho et al., 2024;
Y. Liu et al., 2024; Y. Yang et al., 2024), deblurring (T. Kim et al., 2024)
and video reconstruction (Ercan et al., 2024; H. Liu et al., 2024; Y. Yang
et al., 2024; X. Zhang et al., 2023) have appeared concurrently with or after
COLIBRI, all learning-based. Several problems remain open:

First, there emerges a spectrum ranging from completely hand-crafted
methods, that are informed by physical principles (like EDI or COLIBRI)
and learning-based methods, that leave many physical details for neural
networks to learn (like the work by Weng et al., 2023). It appears, however,
that especially the noise characteristics of events are usually modelled
only very coarsely, either by averaging noise away in an event binning ap-
proach, or by leaving event semantics completely for neural networks to
learn. This gives ample opportunity to pick up domain-specific biases,
although the core of the event semantics could be modelled explicitly
(Equations 2.19 and 2.20). Instead, COLIBRI presents a novel way of ad-
dressing the noise problem, that avoids binning and training bias, by using
the idealised semantics, but allowing events to be “softened” by confi-
dence values. Future work could seek to import the confidence approach
into learning-based approaches, e.g. by leaving only the confidences to
be the output of a learned component, but explicitly using Equations 2.19
and 2.20.

Another strength of COLIBRI is the fact that optimization happens
only once the input data is known. This is common for hand-crafted
methods like EDI, but surprisingly the literature review in Section 5.2 did
not encounter many learning-based methods that fine-tune their neural
components at test time. Only very recent work (H. Cho et al., 2024) seems
to be going into this direction, which appears to be a promising route
towards bridging the domain gap between training distribution and test
distribution.
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Detailed architecture
of StyleVideoGAN A
Tables A.1 to A.4 give architecture details for Figure 4.2.

Input Module Outputs
s 4 layers (FC, LeakyReLU) m (3× 32)
m BNorm(affine=True) (h0,0, h0,1, h0,2) (3× 32)

Table A.1: The hallucinator H initialises the GRU memory: The first three
stacked GRU cells receive vectors of length 32, the fourth receives s.

Input Module Outputs
r0, (h0,0, . . . , h0,3) GRU (4 stacked) (h1,0, . . . , h1,3), l1 (3× 32, 32)
r1, (h1,0, . . . , h1,3) GRU (4 stacked) (h2,0, . . . , h2,3), l2 (3× 32, 32)
r2, (h2,0, . . . , h2,3) GRU (4 stacked) (h3,0, . . . , h3,3), l3 (3× 32, 32)

. . . . . . . . .

Table A.2: The producer P consists of four stacked GRU cells. Its hidden
state is initialised by H (Table A.1) and it recurrently turns per-time-step
randomness ri into intermediate latent codes li+1 for 0 ≤ i < K − 1.

Input Module Outputs
li BNorm(affine=True), PixelNorm l′i (512)
l′i 4 layers (FC + LeakyReLU) v′i (512)
v′i BNorm(affine=True) vi(512)
vi 18 parallel layers (FC + LeakyReLU + BNorm) wi (18 × 512)

Table A.3: The translator T transforms the outputs lk of P into STYLEGAN
latent codes wk ∈ W+: After a 4-layer MLP widened the dimensionality
from 32 to 512, features undergo 18 independent fully connected layers
(LeakyReLU activation), similar to how STYLEGAN broadcasts its W
vectors to its 18 style layers. The PixelNorm module divides input tensors
by the square root of their average squared entries (Seonghyeon et al.,
2020).
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Input Module Outputs
wi FC + LeakyReLU (2 layers) e′i (512)
e′i FC + LeakyReLU (4 layers) ei (32)

e0, . . . , eK−1 1D-version of the DCGAN critic
(Radford et al., 2016), with 32 in-
put channels

Critic Output (1)

Table A.4: The latent criticC takes a sequencew0, . . . , wK−1 of STYLEGAN
latent codes as input and produces a scalar output.

112



DAVIS 346C
Exposure Coverage B
Table B.1 lists the framerates obtained for different exposure durations in
the DAVIS 346C. This data is visualised in Figures 5.3 and 5.4.

Exposure FPS Gap per frame Coverage
900,000µs 1.1Hz 9090µs 99.00%
800,000µs 1.2Hz 33,333µs 96.00%
700,000µs 1.4Hz 14,285µs 98.00%
600,000µs 1.6Hz 25,000µs 96.00%
500,000µs 1.9Hz 26,315µs 95.00%
400,000µs 2.4Hz 16,666µs 96.00%
300,000µs 3.15Hz 17,460µs 94.50%
200,000µs 4.6Hz 17,391µs 92.00%
100,000µs 8.45Hz 18,343µs 84.50%
90,000µs 9.25Hz 18,108µs 83.25%
80,000µs 10.2Hz 18,039µs 81.60%
70,000µs 11.3Hz 18,495µs 79.10%
60,000µs 12.8Hz 18,125µs 76.80%
50,000µs 14.7Hz 18,027µs 73.50%
40,000µs 17.15Hz 18,309µs 68.60%
30,000µs 20.5Hz 18,780µs 61.50%
20,000µs 26.0Hz 18,461µs 52.00%
10,000µs 35.0Hz 18,571µs 35.00%
9000µs 36.5Hz 18,397µs 32.85%
8000µs 38.1Hz 18,246µs 30.48%
7000µs 39.0Hz 18,641µs 27.30%
6000µs 41.0Hz 18,390µs 24.60%
5000µs 43.0Hz 18,255µs 21.50%
4000µs 46.8Hz 17,367µs 18.72%
3000µs 47.0Hz 18,276µs 14.10%
2000µs 49.0Hz 18,408µs 9.80%
1000µs 51.6Hz 18,379µs 5.16%
500µs 53.0Hz 18,367µs 2.65%
100µs 54.0Hz 18,418µs 0.54%
10µs 54.0Hz 18,508µs 0.05%

Table B.1: Different exposure durations were set for the DAVIS 346C,
measuring the resulting framerates. This reveals that the exposure gaps
cannot be pushed under a non-negligible minimum of about 18ms. As
the gaps become more frequent with higher framerates, the percentage of
sequence time that is actually covered by exposures decreases.
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118



July 10-15, 2018. Ed. by Jennifer G. Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. PMLR, pp. 1182–1191.

Denton, Emily L. and Vighnesh Birodkar (2017): “Unsupervised Learning
of Disentangled Representations from Video”. In: Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Informa-
tion Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA.
Ed. by Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett,
pp. 4414–4423.

Dolhansky, Brian, Joanna Bitton, Ben Pflaum, Jikuo Lu, Russ Howes,
Menglin Wang, and Cristian Canton-Ferrer (2020): “The DeepFake
Detection Challenge Dataset”. In: CoRR abs/2006.07397. arXiv: 2006.
07397.

Dolhansky, Brian, Russ Howes, Ben Pflaum, Nicole Baram, and Cristian
Canton-Ferrer (2019): “The Deepfake Detection Challenge (DFDC)
Preview Dataset”. In: CoRR abs/1910.08854. arXiv: 1910.08854.

Dorkenwald, Michael, Timo Milbich, Andreas Blattmann, Robin Rom-
bach, Konstantinos G. Derpanis, and Björn Ommer (2021): “Stochastic
Image-to-Video Synthesis Using cINNs”. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25,
2021. Computer Vision Foundation / IEEE, pp. 3742–3753.

Du, Chenpeng, Qi Chen, Tianyu He, Xu Tan, Xie Chen, Kai Yu, Sheng Zhao,
and Jiang Bian (2023): “DAE-Talker: High Fidelity Speech-Driven Talk-
ing Face Generation with Diffusion Autoencoder”. In: Proceedings of
the 31st ACM International Conference on Multimedia, MM 2023, Ottawa,
ON, Canada, 29 October 2023- 3 November 2023. Ed. by Abdulmotaleb
El-Saddik, Tao Mei, Rita Cucchiara, Marco Bertini, Diana Patricia
Tobon Vallejo, Pradeep K. Atrey, and M. Shamim Hossain. ACM,
pp. 4281–4289.

Dufour, Nick and Andrew Gully (2019): Contributing Data to Deepfake
Detection Research. Google Blog.

Durall, Ricard, Margret Keuper, Franz-Josef Pfreundt, and Janis Keu-
per (2019): “Unmasking DeepFakes with simple Features”. In: CoRR
abs/1911.00686. arXiv: 1911.00686.

Edwards, Benj (2024): Twirling body horror in gymnastics video exposes AI’s
flaws. https://arstechnica.com/information-technology/2024/
12/twirling-body-horror-in-gymnastics-video-exposes-ais-

flaws/. Accessed: 2025-03-18.
Ercan, Burak, Onur Eker, Canberk Saglam, Aykut Erdem, and Erkut Er-

dem (2024): “HyperE2VID: Improving Event-Based Video Reconstruc-
tion via Hypernetworks”. In: IEEE Trans. Image Process. 33, pp. 1826–
1837.

Fox, Gereon, Wentao Liu, Hyeongwoo Kim, Hans-Peter Seidel, Mohamed
Elgharib, and Christian Theobalt (2021a): “VideoForensicsHQ: Detect-

119

https://arxiv.org/abs/2006.07397
https://arxiv.org/abs/2006.07397
https://arxiv.org/abs/1910.08854
https://arxiv.org/abs/1911.00686
https://arstechnica.com/information-technology/2024/12/twirling-body-horror-in-gymnastics-video-exposes-ais-flaws/
https://arstechnica.com/information-technology/2024/12/twirling-body-horror-in-gymnastics-video-exposes-ais-flaws/
https://arstechnica.com/information-technology/2024/12/twirling-body-horror-in-gymnastics-video-exposes-ais-flaws/


ing High-quality Manipulated Face Videos”. In: 2021 IEEE Interna-
tional Conference on Multimedia and Expo, ICME 2021, Shenzhen, China,
July 5-9, 2021. IEEE, pp. 1–6.

Fox, Gereon, Xingang Pan, Ayush Tewari, Mohamed Elgharib, and Chris-
tian Theobalt (2024): “Unsupervised Event-Based Video Reconstruc-
tion”. In: IEEE/CVF Winter Conference on Applications of Computer Vi-
sion, WACV 2024, Waikoloa, HI, USA, January 3-8, 2024. IEEE, pp. 4167–
4176.

Fox, Gereon, Ayush Tewari, Mohamed Elgharib, and Christian Theobalt
(2021b): “StyleVideoGAN: A Temporal Generative Model using a
Pretrained StyleGAN”. In: 32nd British Machine Vision Conference 2021,
BMVC 2021, Online, November 22-25, 2021. BMVA Press, p. 220.

Franceschi, Jean-Yves, Edouard Delasalles, Mickaël Chen, Sylvain Lam-
prier, and Patrick Gallinari (2020): “Stochastic Latent Residual Video
Prediction”. In: Proceedings of the 37th International Conference on Ma-
chine Learning, ICML 2020, 13-18 July 2020, Virtual Event. Vol. 119.
Proceedings of Machine Learning Research. PMLR, pp. 3233–3246.
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Zollhöfer, and Christian Theobalt (2018): “Deep video portraits”. In:
ACM Trans. Graph. 37.4, p. 163.

Kim, Taewoo, Yujeong Chae, Hyun-Kurl Jang, and Kuk-Jin Yoon (2023):
“Event-based Video Frame Interpolation with Cross-Modal Asymmet-
ric Bidirectional Motion Fields”. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June
17-24, 2023. IEEE, pp. 18032–18042.

Kim, Taewoo, Hoonhee Cho, and Kuk-Jin Yoon (2024): “Frequency-Aware
Event-Based Video Deblurring for Real-World Motion Blur”. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2024, Seattle, WA, USA, June 16-22, 2024. IEEE, pp. 24966–24976.

Kim, Taewoo, Jeongmin Lee, Lin Wang, and Kuk-Jin Yoon (2022): “Event-
guided Deblurring of Unknown Exposure Time Videos”. In: Computer
Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October
23-27, 2022, Proceedings, Part XVIII. Ed. by Shai Avidan, Gabriel J.
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and Nan Duan (2022): “NÜWA: Visual Synthesis Pre-training for
Neural visUal World creAtion”. In: Computer Vision - ECCV 2022 - 17th
European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings,
Part XVI. Ed. by Shai Avidan, Gabriel J. Brostow, Moustapha Cissé,
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