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Abstract

This thesis explores aspects of proteomics, transcriptomics and dental research
using computational and experimental approaches to address scientific chal-
lenges. In transcriptomics, distinguishing diseased from healthy cell states is
crucial for understanding disease mechanisms and identifying therapeutic tar-
gets. Differential protein abundances and rewired protein-protein interactions
(PPIs) provide insights into disease progression. RNA-seq data analysis com-
bined with PPIXpress, PPICompare, and ClusterONE identified as effective
tools for detecting significant differential networks and protein clusters rele-
vant to melanoma progression, enriched by Reactome pathways for targeted
therapies and diagnostics.

In dental research, the limited availability of human enamel has led to
the use of hydroxyapatite (HAP) as a surrogate to study biofilm formation. A
systematic comparison of HAP and enamel examined protein composition,
molecular functions, isoelectric points and molecular weight patterns. The
results highlighted similarities between HAP and enamel, supporting the
suitability of HAP for preventive dental research.

The study also investigated peroxiredoxins (Prxs), a family of antioxi-
dant enzymes. Several studies have suggested that Prx isoforms form hetero-
oligomers. In silico modelling using HADDOCK and AlphaFold analysed
their structural dynamics, contributing to our understanding of protein bio-
chemistry.






Zusammenfassung

In dieser Arbeit werden Aspekte der Proteomik, der Transkriptomik und
der Dentalforschung mit Hilfe rechnerischer und experimenteller Ansitze
untersucht, um wissenschaftliche Herausforderungen zu bewaltigen. In der
Transkriptomik ist die Unterscheidung zwischen kranken und gesunden Zel-
lzustanden entscheidend fiir das Verstandnis von Krankheitsmechanismen
und die Identifizierung von therapeutischen Zielen. Unterschiedliche Pro-
teinhdufigkeiten und neu verdrahtete Protein-Protein-Interaktionen geben
Aufschluss tiber das Fortschreiten von Krankheiten. Die Analyse von RNA-
seg-Daten in Kombination mit PPIXpress, PPICompare und ClusterONE hat
sich als wirksames Instrument zur Erkennung signifikanter differentieller Net-
zwerke und Proteincluster erwiesen, die fiir das Fortschreiten des Melanoms
relevant sind und durch Reactome-Pfade fiir gezielte Therapien und Diag-
nosen angereichert werden.

In der zahnmedizinischen Forschung hat die begrenzte Verfiigbarkeit
von menschlichem Zahnschmelz dazu gefiihrt, dass Hydroxylapatit (HAP)
als Surrogat fiir die Untersuchung der Biofilmbildung verwendet wird. In
einem systematischen Vergleich von HAP und Zahnschmelz wurden Pro-
teinzusammensetzung, molekulare Funktionen, isoelektrische Punkte und
Molekulargewichtsmuster untersucht. Die Ergebnisse zeigten Ahnlichkeiten
zwischen HAP und Zahnschmelz auf, was die Eignung von HAP fiir die
praventive Zahnforschung unterstreicht.

Die Studie untersuchte auch Peroxiredoxine (Prxs), eine Familie von
antioxidativen Enzymen. Mehrere Studien haben gezeigt, dass Prx-Isoformen
Hetero-Oligomere bilden. Die In-silico-Modellierung mit HADDOCK und
AlphaFold analysierte ihre strukturelle Dynamik und trug so zu unserem
Verstandnis der Proteinbiochemie bei. (Translated using DeepL.com)
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Chapter 1
Introduction

1.1 Motivation

Proteins are essential macromolecules in all living organisms, serving as
the primary functional and structural units within cells [1]. They perform
a multitude of roles, including biocatalysis, cell communications, immune
response, molecular mobility, and structural support. The complex three-
dimensional structures of proteins, which are determined by their amino acid
sequences, underpin their specific biological functions [2]. Understanding
proteins and their mechanisms of action is, therefore, a fundamental aspect
of biological research. In particular, protein-protein interactions (PPIs) form
the backbone of cellular networks, coordinating processes such as signal
transduction, immune responses and metabolic regulation [3]. Unravelling
these interactions is crucial to understanding the molecular basis of health
and disease.

Despite notable advances in experimental and computational method-
ologies, the landscape of protein interactions remains only partially elucidated.
The development of high-throughput experimental technologies has markedly
enhanced our capacity to identify and characterise protein-protein interac-
tions. Techniques such as yeast two-hybrid screening, affinity purification
coupled with mass spectrometry, and proximity labelling have enabled the
systematic mapping of interaction networks. Concurrently, computational
approaches have become indispensable for the processing, modelling and
interpretation of the vast datasets generated by these experimental methods
[4, 5, 6]. The application of bioinformatics tools, molecular docking simula-
tions, and network analysis frameworks has proved invaluable in elucidating
the structure, dynamics, and functional implications of protein interactions.
Although high-throughput techniques have provided insights into the vast
networks of protein interactions, the datasets generated are often incomplete
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or non reproducible, limiting their utility for comprehensive biological inter-
pretation [7]. Moreover, the transient and context-dependent nature of many
PPIs represents a significant challenge for experimental characterisation [8].
Computational tools and algorithms have begun to address these limitations,
offering scalable and integrative methods for the analysis of protein data.
However, as biological systems become increasingly complex, it is imperative
that existing approaches evolve to meet the demands of more accurate pre-
dictions, deeper structural insights and improved functional annotation of
interactions.

Protein abundance data, derived from technologies such as mass spec-
trometry based proteomics, provides a snapshot of the concentration of pro-
teins within a system under specific conditions [9, 10]. These quantitative
measurements are of great value for the exploration of differential expression
patterns in response to external stimuli, stress, or disease [11, 12]. Neverthe-
less, the interpretation of protein abundance data is a challenging process.
The presence of variability in experimental conditions, technical noise, and
potential biases in protein detectability can result in the masking of genuine
biological signals [13, 14]. The application of advanced data analysis tech-
niques, including normalization, statistical modelling, enrichment analysis
and machine learning, is essential for the extraction of meaningful insights
[13] and the integration of protein abundance data with other omics layers,
such as transcriptomics and metabolomics.

In addition to understanding and analysing protein abundance data
and protein interactions, it is equally critical to examine the three-dimensional
conformations of proteins. The spatial structure of a protein is pivotal to
understanding its function, as it dictates the protein’s interaction capabilities,
stability, and activity. Conventionally, the determination of protein structures
has been undertaken through the utilisation of experimental techniques, in-
cluding nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction,
and cryo-electron microscopy (cryo-EM). Whilst these methodologies yield
high-resolution structural insights, they are often laborious, costly and reliant
on the specialised expertise of structural biologists. Moreover, the experimen-
tal determination of protein structures is constrained by factors such as the
size of the protein, its flexibility, and the difficulty of crystallization, which
renders it inaccessible for many targets. In silico modelling has emerged as a
powerful alternative for predicting protein structures and interactions. The
employment of computational methods enables researchers to generate struc-
tural models with efficiency, thereby reducing dependency on labour-intensive
experimental techniques. Notable tools in this field include AlphaFold [15],
HADDOCK [16], and MODELLER [17]. These tools not only accelerate the
process of structure determination but also enable the modelling of complexes,
interactions, and conformational changes that are often challenging to capture
experimentally.

There is a great need for more robust, integrative and interpretable
tools for protein data analysis. Continued research in this field will not only
address critical knowledge gaps but also facilitate new avenues for innovation



in drug discovery, precision medicine, and synthetic biology. This motivation
highlights the necessity of developing methodologies for protein interaction
analysis, which will facilitate both fundamental scientific inquiry and applied
research.

1.2 Overview

The present thesis is primarily concerned with the downstream processing of
transcriptomic and proteomic data. The objective was to integrate transcrip-
tomic data with protein interaction data in order to identify clusters that are
responsible for the observed change in cell state. In this project, we employed
a melanoma RNA-seq dataset to identify clusters of genes that work together
to convert a healthy cell into a melanoma cell. In addition to this project, I also
contributed to the analysis of proteomic data derived from saliva and biofilm
pellicles collected from the oral cavity of subjects, which were subjected to
nano liquid chromatography-mass spectrometry. The objective was to under-
take a comparative analysis of the proteins deposited on pellicles of different
surfaces and conditions, as well as those present in saliva. The study yielded
multiple conclusions. These include the potential use of HAP as an alternative
material for enamel research studies, the observation that proteins remaining
in saliva and not adsorbed to form a pellicle exhibit contrasting molecular func-
tions, and the identification of a completely different composition of proteins
in the pellicles of patients with caries compared to those of patients who have
undergone treatment or have no history of caries. Furthermore, I contributed
to the prediction of protein complex structures through the utilisation of in
silico modelling techniques, namely HADDOCK [16] and AlphaFold [15]. The
peroxiredoxin proteins were the subject of study, which are known to exist as
homo-dimeric structures that homo-oligomerise to form a decameric structure
based on redox-dependent equilibrium. In recent years, evidence has emerged
indicating that two monomers belonging to two closely related peroxiredoxin
proteins have undergone hetero-dimerisation. The docking of heterodimers
demonstrates the potential for heterodimer formation at the corresponding
active sites.

1.2.1 First author publication

S. Thangamurugan, V. Helms, "Comparing workflows for combining tran-
scriptomic with protein interaction data", Submitted to IEEE Transactions on
Computational Biology and Bioinformatics.

Abstract:

Characterising and understanding the differences between diseased and
healthy cell states is a growing focus in biomedical research. As first step
one may identify differentially expressed and construct differential networks
of the proteins encoded by these genes to reveal their roles in biological pro-
cesses. Alternatively, differences in cell states can be identified by constructing
condition-specific networks and estimating differential networks to detect
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rewired protein-protein interactions (PPIs). These rewired interactions, which
are newly exhibited or lost in diseased states, have the potential to provide cru-
cial insights for targeted therapy. This study compared six software pipelines
that infer rewired protein-protein interactions based on RNA-seq data from
diseased and healthy cells. In the last step, each pipeline identified cohesive
protein clusters in the differential network to predict protein components that
may jointly exert certain molecular functions. The biological relevance of these
clusters was assessed through Reactome pathway enrichment. The PPIXpress
and PPICompare tools in combination with the DESeq2 package were able to
identify highly meaningful, compact protein clusters when comparing RNA
seq data of nevi and melanoma samples. Such pipelines appear to be a good
basis for enhancing our understanding of disease progression and for finding
solutions for targeted therapies

1.2.2 Coauthor publications

J. Dudek, T. Faidt, C. Fecher-Trost, S. Thangamurugan, P. Bayenat, S. Traut-
mann, A. Holtsch, F. Miiller, V. Helms, K. Jacobs, M. Hannig, "Synthetic
hydroxyapatite — a perfect substitute for dental enamel in biofilm formation
studies", Submitted to Scientific Reports.

Abstract:

Dental enamel consists mainly of hydroxyapatite (HAP). The chemical com-
position of dental apatite differs between individuals and influences enamel
properties. In contact with saliva, enamel is covered immediately by salivary
molecules. This initial biofilm is mostly composed of proteins, and in addition
to its protective properties mediates bacterial adhesion. The resulting bacterial
biofilm is a highly complex ecosystem, which can provoke the development
of diseases. Therefore, dental biofilms are the focus of preventive research.
Chemically standardized surfaces are a good choice for dental biofilm studies.
Synthetic HAP pellets meet the criteria for such well-defined enamel-like
model surfaces. Therefore, we compared the in situ biofilm formation on
HAP and enamel. No differences in formation kinetics, microstructure, and
thickness of the initial biofilm on both materials were detected. Differences in
the proteome composition depended mainly on the volunteer and not on the
surface material. Formation kinetics and morphology of the bacterial biofilm
as well the coverage with bacteria were also not distinguishable. However,
bacterial viability on enamel was lower, which might be due to the presence
of fluorine in enamel. Overall, synthetic HAP can be considered as a full
substitute substrate for enamel. For viability studies, synthetic HAP may even
be the preferred substrate.

My contribution: I carried out the qualitative and quantitative proteomic
analysis and the statistical test of similarity. I also wrote the first drafts of the
of the corresponding method sections and prepared the corresponding figures
in the manuscript.



S. Trautmann, S. Thangamurugan, C. Fecher-Trost, ]. Dudek, V. Flock-

erzi, V. Helms, and M. Hannig, "Snapshot of the seconds-pellicle - first insights
in its ultrastructure, proteomic composition and changes over time", planned
to submit to Journal of dental research.
Abstract: The dental pellicle is a continuously growing layer present at the in-
terface between the oral surfaces and saliva. It possesses protective properties
by shielding the dental surfaces against chemical and mechanical damages.
The pellicle represents the basis for all oral biofilms and its formation starts
immediately after oral hygiene through the adsorption of mostly salivary
proteins to all exposed surfaces. The objective of the current study was 1) to
visualize and elucidate the individual proteomic composition of the seconds
pellicle 2) to analyse changes in its proteomic composition over time.

The in situ-pellicle was formed on polished bovine enamel or ceramics
specimens. Transmission electron microscopic analyses were used to depict
its ultrastructure at different formation times starting from 5 s up to 30 min.
Its complex proteomic composition and changes over time were analysed by
gel electrophoresis in combination with coomassie-staining and nano-tandem
mass spectrometry, analysing individual 10-s, 3-min and 30-min pellicle sam-
ples.

This resulted in very first insights in the ultrastructure and proteome
of the very initial seconds-pellicle, possessing an unexpected high number
of up to 841 proteins on individual level. The analysis of several pellicle
formation times enabled the qualitative and quantitative analysis of changes
in the pellicle proteome over time as well as the first direct verification of
protein desorption processes occurring during pellicle formation. Individual
analyses enabled the identification of the core pellicle proteome at the different
formation times. Comparisons between the salivary and pellicle proteomes
at the different formation times revealed insights in enriched and depleted
proteins within the pellicle and variations in the amount of substance of single
pellicle proteins over time.

These informations represent the basis for future selective modifications
of the pellicle layer in order to control of the hence originating biofilm and
develop preventive strategies for the oral biofilm management. My contribu-
tion: I conducted qualitative and quantitative proteomics analysis, including
differential analysis, molecular weight and isoelectric point distributions and
enrichment analysis of molecular functions. Furthermore, I drafted the initial
versions of the corresponding method sections and prepared the relevant
figures for the manuscript.

T. Do, S. Thangamurugan, V. Helms, "PPIXpress and PPICompare Web-
servers infer condition-specific and differential PPI networks", In press at
Bioinformatics Advances.

Abstract: We present PPIXpress and PPICompare as two webservers that
enable analysis of protein-protein interaction networks (PPINs). Given a refer-
ence PPIN and user-uploaded expression data from one or multiple samples,
PPIXpress constructs context-dependent PPINs based on major transcripts and
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high-confidence domain interactions data. To derive a differential PPIN that
distinguishes two groups of contextualized PPINs, PPICompare identifies sta-
tistically significant altered interactions between multiple context-dependent
PPINs from PPIXpress. We present a case study where PPIXpress and PPI-
Compare webservers were used in combination to construct the PPINs specific
for melanocytic nevi and primary melanoma cells, and to detect the rewired
protein interactions between these two sample types

Availability and Implementation: PPIXpress and PPICompare webservers are
available at https://service.bioinformatik.uni-saarland.de/p
pi-webserver/indexPPIXpress.jsp and https://service.bioi
nformatik.uni-saarland.de/ppi-webserver/indexPPICompare
. Jsp, respectively. Alternatively, the webservers and application updates can
be found at https://service.bioinformatik.uni-saarland.de/p
pi-webserver/

My contribution: I conducted the case study using the PPIXpress and PPI-
Compare webserver and significant results were identified which validate
the functioning of the tool. Furthermore, I drafted the initial versions of the
corresponding case study sections and prepared the relevant figures for the
manuscript.

A. Papazian, S. Agerbaek, S. Thangamurugan, M. Bengtson Loven-
dorf, B. Dyring-Andersen, V. Helms, "Rewiring of protein-protein interactions
inferred from proteomics data of nevi and melanoma samples", planned to
resubmit this manuscript to Journal of Proteome Research
Abstract: Analysis of protein-protein interactions (PPIs) may provide deeper
insight into protein functions and reveal how components of cellular path-
ways interact with each other. There are multiple software tools that infer
condition-specific PPI networks based on transcriptomic data. However, it is
well known that the transcriptome does not always reflect the proteome. To
address this, we present here a new computational approach that is able to
characterize rewiring events in PPI networks based on proteomic data exclu-
sively. We applied this approach by comparing a cohort of 14 nevi samples
to their corresponding nevus-associated melanomas. Thereby, we were able
to identify differentially expressed proteins, deregulated protein interactions,
protein clusters and hub proteins that were consistent with previously pub-
lished evidence on the progression of nevi to melanoma. Additionally, we
compared the proteomics data against matched spatial transcriptomics data
(GeoMX data for 8 out of 14 samples). This comparison highlighted the dif-
ferent outcomes of each approach and further emphasize the importance of
considering multiomics analysis.

My contribution: I conducted statistical analysis to compare the proteomic
data with respective genomic data with the objective of inferring any potential
overlap of results.
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Chapter 2
Background

This chapter introduces the fundamental concepts pertaining to pro-
teins, protein-protein interaction networks, and public repositories for these
networks, and reviews the basic properties of human PPINs and those of
model organisms such as Saccharomyces cerevisiae. It also considers the iden-
tification of complexes within protein-protein interaction networks and the
diverse computational tools and software employed for the computational
analysis of complex biological data. The sections 2.2 and 2.5 were adapted
and expanded from Chapter 5: Identification of Putative Protein Complexes
in Protein-Protein Interaction Networks, written by myself and Prof. Volkhard
Helms as part of the book Protein Interactions: The Molecular Basis of Interac-
tomics edited by Helms and Kalinina (2022). [18].

2.1 Proteins

The central dogma of molecular biology postulates that deoxyribonucleic acid
(DNA) contains characteristic, defining genes and instructions for protein
synthesis. The dogma provides an explanation of the unidirectional flow of
genetic information from DNA to RNA to protein [19]. A schematic represen-
tation of this process can be found in Fig. 2.1. Proteins constitute a group of
macromolecules, composed of sequences of amino acids, which are responsible
for a range of cellular processes. For example, they are involved in metabolic
processes that provide structural support to cells, they act as enzymes that
catalyse biochemical reactions within cells, and they are involved in the trans-
mission of signals that enable cells to interact with their environment. It is
therefore evident that the formation of proteins and their interactions with
other macromolecules are of paramount importance in determining a cell’s
function and overall health. The function of each protein is contingent upon
its distinctive amino acid sequence and three-dimensional conformation.
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Figure 2.1: The central dogma of molecular biology, as pioneered by Francis
Crick, postulates the transmission of genetic information within a biological
system. This theory elucidates the process of unidirectional transfer of infor-
mation from nucleic acid to nucleic acid or nucleic acid to proteins.

The analysis of proteins offers a fundamental understanding of human
physiology and the progression and diagnosis of diseases. Given the diversity
of proteins, which are distinguished by their specific combination of amino
acids, their physicochemical properties exhibit a range of characteristics. Con-
sequently, a variety of analytical, separation and identification techniques are
employed in order to exploit the different properties of proteins. The most
commonly employed technique for protein identification and quantification is
liquid chromatography coupled with mass spectrometry called LC-MS. This
combination of techniques is most effective when employed for targeted and
untargeted protein analysis. Liquid chromatography is a technique employed
for the separation of a mixture of diverse substances, including molecules
and proteins, in a mobile liquid phase that traverses a column. During this
process, the components interact with the stationary phase to varying degrees
based on their distinct physicochemical properties, resulting in their elution
from the column in a specific order. For example, the interaction between the
molecules and the stationary phase may vary depending on their molecular
size. Larger molecules may elute from the column at a faster rate than smaller
molecules, potentially due to their ability to traverse the pores of the column
more effectively. Similarly, other physicochemical properties are employed to
separate the proteins based on charge, hydrophobicity, affinity, and so forth.
This method is renowned for its high efficiency, accuracy and selectivity [20].

As an additional benefit, reducing the diameter of the chromatographic
column allows for more precise analysis and quantification. This is called
the nano LC-MS technique. A reduction in diameter results in a decrease in
the quantity of sample and solvents required, thereby enabling the analysis
of smaller volumes and less concentrated samples. Moreover, reducing the
diameter of the column enables more precise regulation of the flow rates of
the liquid mobile phase, thereby ensuring a linear speed of the molecules
[21]. The eluted molecules are then converted to ions for quantitation in mass
spectrometry. These ions are subsequently separated according to their mass-
to-charge ratio, and their ratio and abundances are measured qualitatively
and quantitatively.



2.2 Protein-Protein Interactions

In biological systems, the majority of cellular and molecular mechanisms are
dependent on protein activity. Infrequently, a single protein serves as the reg-
ulator or executor of an entire mechanism. Alternatively, proteins frequently
bind to other biomolecules, frequently other proteins, in order to execute
cellular functions. Protein-protein interactions (PPIs) are defined as highly
specific physical contacts between two or more proteins. These interactions
are formed due to the conformational and physico-chemical properties of the
involved proteins.

The majority of biological cells are composed of water, with the remain-
ing dry weight consisting of proteins, which account for 40-55% of the total
[22]. It can be thus surmised that freely diffusing cytosolic proteins frequently
collide with other cellular proteins and may occasionally remain bound to
each other for a short time as a non-specific assembly. It can be reasonably
assumed that only a small proportion of these interactions will involve two
or more proteins that are naturally destined to bind with each other. Specific
PPIs can be classified according to their lifetime, with transient and stable
interactions representing the two main categories. Transient (specific) interac-
tions between proteins are of short duration and serve to perform functions
such as signal transduction or to instigate further changes (for example, the
sodium-potassium pump). Stable protein interactions are characterised by a
long lifetime and frequently serve the purpose of forming macromolecular
machines, such as haemoglobin or RNA polymerase.

For a single protein, all its physical interactions with other proteins
can be represented as a mathematical graph, where the vertices represent
the proteins and the undirected edges connecting the vertices represent the
physical interactions between the proteins. A protein-centred network offers
insight into the protein complexes in which the protein of interest may be
involved and their associated biological functions. For instance, the enzyme
aspartate semialdehyde dehydrogenase from Arabidopsis thaliana has been
observed to be involved in three distinct protein complexes that are active
in either an oxidation-reduction process, in methionine biosynthesis, or in
lysine biosynthesis [23]. In contrast, protein-protein networks (PPINs) are
global PPI graphs or networks that provide an overview of all PPIs existing
in an organism. These comprehensive networks are catalogued by several
established databases, including the Biological General Repository for Interac-
tion Datasets (BioGRID) [24], Mentha [25], the Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) [26], the Molecular Interaction Database
(MINT) [27], the Protein Interaction Database (IntAct) [28], and others. Fig. 2.2
illustrates the connectivity of a small toy protein-protein interaction network
(PPIN).

In graphs, the degree of a vertex is defined as the number of edges
connected to it. In PPINS, this value thus represents the number of interactions
involving the protein represented by the vertex. One method for examining
the general connectivity and topology of a PPIN is to compute its degree
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Figure 2.2: Schematic representation of a protein-protein interaction network.
The circles are called the vertices of the network and represent all copies of
an individual protein type. The lines connecting the vertices are called edges
and represent physical contact between two proteins. The degree of a vertex
measures the number of edges connected to it. The vertex highlighted in red
has 6 edges connected to it or 6 binding partners, and hence its degree is 6.
Note that this representation does not carry information on whether multiple
interactions of one protein can occur simultaneously, potentially leading to
the formation of a larger protein complex, or not.

distribution, which describes the frequency of each vertex degree occurring
in the given network. The visual representation of degree distributions is
frequently achieved through the use of plots, wherein the vertex degrees are
displayed on the x-axis and their respective frequencies are represented on the
y-axis. The analysis of multiple PPINs from diverse species revealed that these
networks exhibit a "scale-free" topology, irrespective of the species in question
[29]. In scale-free networks, the degree distribution follows a power law with
a negative exponent \, whereby the probability of vertex degree k is given
by P(k) = k~7. Consequently, the highly connected proteins, referred to as
hubs, are observed to occur at a significantly higher frequency than would be
expected in an exponentially decaying scenario, where the probability is given
by P(k) = e~7*. This scale-free nature implies that the average length of the
shortest pathway between any two vertices increases at a much slower rate
as a function of network size than would be expected under an exponentially
decaying model.
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2.3 Integration of various PPI resources in public data
repositories

The field of protein interaction databases is characterised by two distinct cate-
gories: primary databases and meta databases. Primary databases collate the
findings of numerous experimental interaction assays. Notable examples in-
clude the Biomolecular Interaction Network Database (BIND) [30], the IntAct
molecular interaction database, the Molecular INTeraction Database (MINT),
the Database of Interacting Proteins (DIP) [31], and the Biological General
Repository for Interaction Datasets. In contrast, metadatabases typically in-
tegrate data from multiple primary databases. To illustrate, the Integrated
Interactions Database (IID) [32] collates data from BIND, BioGRID, DIP, MINT,
IntAct, and a few other sources, whereas the Agile Protein Interactomes
DataServer [33] contains interactions from BioGRID, DIP, IntAct, MINT, and
the Human Protein Reference Database (HPRD) [34]. In the case of model
organisms, the meta-database Mentha integrates evidence-based interactions
from BioGRID, DIP, IntAct, and MINT.

The International Molecular Exchange (IMEx) consortium, an interna-
tional collaboration of major contributors of PPI data, has established guide-
lines to maintain a consistent set of uniquely defined molecular identifiers and
interactions[35]. A number of prominent databases, including IntAct, MINT,
DIP and BIND, are active members of the IMEx consortium. The STRING
database is of particular interest as it provides interactions from both the IMEx
consortium and BioGRID.

BIND Primary Evidence Multiple http://binddb.org

BioGRID  Primary Evidence Multiple thebiogrid.org

DIP Primary Evidence Multiple dip.doe-mbi.ucla.edu

IntAct Primary and meta Evidence Multiple ebi.ac.uk/intact

MINT Primary Evidence Multiple mint.bio.uniroma2.it
Meta: BioGRID, DIP,

APID HPRD, IntAct, and Evidence Multiple apid.dep.usal.es
MINT
Meta: IntAct, MINT,

1D BioGRID, BIND, DIP, Evidence and predicted Multiple iid20.ophid.utoronto.ca
and others
Meta: BioGRID, DIP,

mentha  IntAct, MINT and Evidence Multiple mentha.uniroma?2.it
others

STRING ?ﬁfjajg[g;) é?{l'IIIS)O ™ Evidence and predicted Multiple string-db.org

Table 2.1: Overview of selected primary and meta protein-protein interaction
databases.
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2.4 Protein-protein interaction networks of model organ-
isms

As previously stated, the majority of biological processes within an organism
are facilitated by protein interactions. An understanding of the interactome
of an organism facilitates the identification of the proteins and genes associ-
ated with a specific process or disease. This, in turn, facilitates more accurate
and comprehensive identification and mechanistic comprehension of disease-
related pathways and potential regulatory mechanisms. Consequently, a
significant aspect of computational systems biology is the examination and
comparison of PPINs in one or more organisms, with the objective of elucidat-
ing the mechanisms and regulations of biological systems.

2.4.1 PPIN of Saccharomyces cerevisiae

In order to characterise the protein-protein interaction network of the eu-
karyotic model organism Saccharomyces cerevisiae, Gavin et al. [36] employed
Tandem-Affinity Purification (TAP) and mass spectrometry. Uetz et al. [37]
and Fields et al. [38] used the yeast two-hybrid method. The results obtained
by these methods yielded protein-protein interaction networks (PPINs) com-
prising 16,000-40,000 interactions, involving the majority of the 6,000 yeast
proteins. As previously stated, the network displays a power-law connectivity
distribution, whereby a small number of proteins exhibit high connectivity
and form hubs, while the majority of proteins interact with only a limited
number of other proteins. In the initial experiments, the coverage of PPIs was
relatively limited, at approximately 10%. This prompted concerns about the
true scale-free nature of these networks, and whether they appeared to be
scale-free due to other factors [39]. Nevertheless, the subsequent expansion of
the coverage demonstrated that they do, in fact, possess a scale-free topology
[40].

A crucial question is which vertices are the most significant in a PPIN.
One method of defining importance is to ascertain whether a gene product is
essential for the cell. If an "essential" gene is removed from the genome, the
result is the death of the cell. In contrast, cells in which non-essential genes
have been knocked out remain viable. In their experimental studies, Winzeler
et al. [41] and Giaever et al. [42] demonstrated that approximately 1120 (19%)
of the protein-coding genes in S. cerevisiae are "essential." A Gene Ontology
analysis of these genes revealed that approximately 74% are involved in
metabolic processes, while at least 14% are involved in cell cycle regulation.
These appear to be the two essential functions for cell survival [43]. Fig. 2.3
illustrates the interconnectivity of yeast proteins based on the data in the latest
version of the Mentha database http://www.mentha.uniroma2.it/. The
proteins are coloured according to their essentiality (red) or non-essentiality
(green).

Interestingly, when information about protein connectivity was com-
bined with information about gene essentiality, it was found that highly
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Figure 2.3: Complete interactome of S. cerevisiae derived from the mentha
database and constructed using Cytoscape [44]. The interactome contains
6,342 genes and 233,322 interactions. Red node vertices represent essential
genes (948 essential genes identified), green node vertices represent non-
essential genes (3,583 non-essential genes identified), purple node vertices
represent conditional genes (270 conditional genes identified) and yellow
node vertices represent unknown essentiality (1,541 genes have unknown
essentiality).

connected "hub proteins" are much more likely to be encoded by essential
genes (about 60%) than low-degree proteins (about 15%) [29]. This makes
intuitive sense. Knocking out a highly connected protein is likely to cause a
major disruption in cellular processes. This behaviour is illustrated in Fig. 2.4,
which plots the proportions of essential vs. non-essential genes as a function
of the connectivity of the proteins they encode in the yeast PPIN.

Following the initial studies based on yeast two-hybrid screens men-
tioned above, various high-throughput methods have been used to determine
PPIs in S. cerevisiae, such as HT mass spectrometric protein complex iden-
tification (HMS-PCI) [45] correlated mRNA expression, in silico predicted
interactions, etc. In total, there is now confirmed evidence for approximately
80,000 interactions between S. cerevisiae proteins [46]. When the early data
were pooled, about 2,400 of the 80,000 interactions were common to more
than one high-throughput method [47]. This may be due to certain biases
in the detection assays. Some methods, such as Y2H, were reported to have
relatively high false positive rates (around 59%) or to be unable to detect cer-
tain types of interactions. For example, the Y2H method was found to detect
comparatively fewer proteins that regulate translation [47]. Therefore, [48]
constructed a “filtered yeast interactome’ (FYI) dataset by intersecting data
from different methods. This interactome consists of 2,493 high-confidence
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Figure 2.4: For the degree distributions for essential proteins and non-essential
proteins (shown on the x-axis on a log scale), we colour-coded the respective
fractions of essential (orange) and non-essential (blue) genes for different de-
grees. This analysis recovers the previously observed enrichment of essential
genes/proteins among the high-degree vertices of the PPIN.

interactions (observed in common by at least two methods to rule out false
positives), 1,379 proteins with an average of 3.6 degrees of interaction per
protein, and a large connected component of 778 proteins. For each hub in
the FYI, an average Pearson correlation coefficient (avPPCC) was calculated,
correlating the hub and its binding partners under different conditions. The
hubs with a degree greater than 5 showed a bimodal probability distribution
for a few conditions. The hubs with a degree greater than 5 showed a bimodal
probability distribution for a few conditions. The hubs with a degree of 5 or
less showed a normal distribution centred at 0.1. It was understood that the
bimodal distribution suggests two kinds of hub types, static hubs and dy-
namic hubs, based on their expression profiles, see Fig. 2.4. In the 91 identified
static hubs, the binding partners interact at the same time and are involved
in the main functional part of the complex. In the 108 identified dynamic
hubs, the binding partners interact with each other at different times or in
different locations and rather tend to connect separate modules of the PPIN.
The hubs with degree 5 or less showed a normal distribution centred at 0.1. It
was assumed that the bimodal distribution suggested two types of hubs, static
hubs and dynamic hubs, based on their expression profiles, see Fig. 2.5. In
the 91 static hubs identified, the binding partners interact simultaneously and
are involved in the main functional part of the complex. In the 108 dynamic
hubs identified, the binding partners interact at different times or locations
and tend to connect separate modules of the PPIN.

To the best of our knowledge, the distribution of essential proteins in ei-
ther dynamic or static hubs has yet to be analysed. Batada et al. [49] proposed
that the current data set for the protein-protein interaction network (PPIN)
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Figure 2.5: Schematic representation of static and dynamic hubs of the net-
work. Proteins of the static hub interact with each other at the same time and
location. Proteins of dynamic hubs interact with each other at different times
or locations.

of S. cerevisiae is insufficient to draw definitive conclusions or differentiate
between hubs. A number of the 5 conditions from the compendium utilised
only 10 data points to differentiate the hubs, which may be insufficient for
accurate differentiation. Agarwal et al. [50] reported that calculating avPCC
for hubs in all conditions of the compendium, rather than using only five
conditions, yielded 59 dynamic hubs with the same degree of threshold as 5.
This demonstrates that the differentiation of hubs is primarily based on the
expression profile and can vary with different experimental conditions. It is
therefore questionable whether avPCC is an appropriate parameter for differ-
entiating hubs. Furthermore, based on their functions, the hubs exhibited a
spectrum of structural roles, which makes it challenging to differentiate them
as static and dynamic hubs.

2.4.2 PPIN of Human

According to data from the GTEx consortium, 20,532 potential protein-coding
human genes have been annotated [51]. It is a significant challenge to com-
prehensively map the interaction network among human proteins. In the
initial phase of the project, Stelzl et al. [52] constructed a partial human pro-
tein interaction network based on yeast two-hybrid screening of 4,456 bait
and 5,632 prey proteins. This yielded 3,186 novel interactions between 1,705
proteins. In a more recent study, Agarwal et al. [53] collated data from the
Menche et al. [54] and Chatr-Aryamontri et al. [55] studies, as well as fifteen
additional databases. This resulted in the construction of a comprehensive
network comprising 342,353 interactions between 21,557 proteins.
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In the study Shin and colleagues [56] examined the process of identify-
ing drug targets within the human protein-protein interaction (PPI) network.
The development of any pharmaceutical agent commences with the identi-
fication of a drug target, that is to say, a receptor protein that possesses a
druggable binding pocket. As previously stated, PPIs are instrumental in
regulating biological pathways, including the onset and progression of dis-
ease. It has been proposed that consideration of the PPI network of humans
is advantageous for the identification of novel drug targets [57]. In recent
years, approximately 40 PPIs have been identified as potential drug targets
for drug development from the human interactome, which comprises 130,000-
650,000 PPIs [58]. New computational structure-based approaches have been
presented for the determination of inhibitors of PPIs, which are termed Small
Molecule Protein-Protein Interaction Inhibitors (SMPPIs). To illustrate, the
small ubiquitin-like modifier (SUMO) protein forms a covalent interaction
with proteins that possess a SUMO interaction motif (SIM) through a process
known as sumoylation. This process regulates a number of general cellular
processes, including cell proliferation, chromosome winding, DNA replication
and DNA repair. Additionally, it is involved in the development of neurode-
generative diseases and cancer. In light of the electrostatic similarity with the
native binding partner protein, as identified by the software Elekit [59], an
inhibitor was discovered that binds to the SUMO protein with low micromolar
activity and interferes with the SUMO-SIM interaction [60]. Fig. 2.6 provides a
schematic illustration of the rationale behind the design of mimicking SMPPIs.

‘__.

SUMO Protein with SUMO-SIM motif protein-protein interaction
protein SIM motif
b) SUMO-SIM motif protein PPI
~gtinhibited
SUMO SMPPI with SUMO-SMPPI protein-
protein SIM motif protein interaction

Figure 2.6: Overview mechanism of SUMO protein interactions. a) Proteins
with SIM motifs (highlighted in red) interact with SUMO proteins by forming
covalent bonds by the process called sumoylation. b) The SUMO proteins are
targeted by SMPPIs (with SIM motifs highlighted in red) by binding to them
and hence inhibiting proteins with SIM motifs to bind.
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2.5 Complex identification in PPINs

It was initially recognised that protein complexes frequently function as macro-
molecular machines, playing a pivotal role in numerous cellular processes.
To illustrate, RNA polymerase is a protein complex comprising 10 individual
protein units and serves as the principal enzyme in gene transcription and the
synthesis of a copy of mRNA from a DNA template. In order to gain a deeper
comprehension of cellular mechanisms, a multitude of mathematical algo-
rithms have been devised with the objective of identifying potential protein
complexes based on interactomics data. The intuitive notion was that putative
protein complexes could be identified from a protein-protein interaction net-
work (PPIN) by detecting dense regions containing a multitude of connections
or regions with considerable weights in a weighted PPIN [61]. The following
section presents an overview of the various methods and algorithms employed
for the detection of protein complexes within a protein-protein interaction
network (PPIN).

2.5.1 Clustering with Overlapping Neighborhood Expansion (Clus-
terONE)

In the study, Nepusz and colleagues introduced the ClusterONE graph clus-
tering algorithm, which takes a weighted protein-protein interaction network
(PPIN) as input and constructs overlapping protein complexes [62]. The al-
gorithm identifies clusters by discerning densely connected regions within
a network and categorising them as non-overlapping complexes. However,
in the case of a PPIN, proteins often possess multiple functions and may,
therefore, be assigned to more than one complex on a situational basis. Clus-
terONE addresses the combinatorial nature of overlapping complexes, thereby
accounting for the possibility that a single protein may participate in multiple
complexes.

The ClusterONE algorithm employs a three-step process to detect over-
lapping complexes. (1) Proteins are grouped based on high cohesiveness by
a greedy algorithm, which is run repeatedly from different starting proteins
with the objective of identifying multiple and overlapping complexes. (2) The
extent of overlap between complexes is quantified for each pair of groups, and
those groups with an overlap score exceeding a preset threshold are merged.
(3) Ultimately, any complexes formed by fewer than three proteins or with a
density below the preset threshold are discarded.

Definitions

In this algorithm, the input PPIN is represented as a graph G, comprising
three sets: V, which contains the vertices representing proteins; E, which
contains the edges representing protein interactions; and W, which contains
the weights associated with edges.

G=(V,E,W)
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The overall density d¢ of a graph G is commonly defined as the fraction
of the number of edges |E| over the maximum number of edges:

E|

dg =
|E’max

For a group of selected proteins V, one can distinguish between two
types of edges: internal edges, which represent interactions between members
of V, and outgoing edges, which represent interactions between members
of V and proteins in the rest of the protein-protein interaction network (Fig.
2.7). The cohesiveness of the selected proteins relative to the remainder of the
network can be evaluated by comparing the aggregated weight of the internal
edges (w(™ (V) to that of the outgoing edges (w(*“Y) (V).

f (V) - (in) out
w (V) 4wl (V) + p|V|

As a result of incomplete knowledge regarding protein interactions, a
supplementary term, p|V'|, has been introduced to account for the p unknown
outgoing interactions of each member of V. The cohesiveness is a measure
of the density of physical interactions among a group of proteins relative
to the average density observed in their environment. Two scenarios may
be posited with regard to high cohesiveness: (1) The group of proteins V'
forms dense and reliable edges among themselves (high w™)(V)), or (2) the
group of proteins is more or less separated from the rest of the network (low
w(?) (V). Protein groups with cohesiveness values exceeding one-third can
be regarded as promising candidates for putative complexes, given that above
this threshold, the internal weights begin to exceed the external weights.

Group of proteins (V)

Figure 2.7: Schematic representation of a group of proteins selected within
a PPIN. The blue lines represent the internal edges within the group. The
orange lines represent the edges that connect vertices inside the group to the
rest of the network. For example, with all edge weights set to 1 and p = 0, this
group would have w™ (V) = 6 and w** (V) = 5, resulting in a cohesiveness of
f(V)=6/11.
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Algorithm

The initial stage of the process is the formation of the groups. The ClusterONE
algorithm employs a greedy approach to the assembly of protein groups that
are highly cohesive. The initial composition of group V' is constituted by the
protein with the highest degree in the PPIN that has not yet been visited. In
each iteration, all proteins engaged in outgoing interactions are evaluated. An
external protein, designated as v, is incorporated into the group if this action
enhances the cohesiveness of the group, as indicated by the function f(V),
that is, when f(V 4 v) > f(V'). Conversely, an internal protein, identified as v,
is removed from the group if its exclusion improves the cohesiveness of the
group, that is, when f(V —v) > f(V'). Once no further enhancements to f (V)
can be achieved, the current group is deemed to be a local optimum, and the
algorithm commences the assembly of the subsequent group, continuing until
all proteins have been examined. The aforementioned process is exemplified
in Fig. 2.8.

The second step is the assembly of candidate complexes. As Clus-
terONE permits proteins to be included in more than one group, this phase
of the process examines the extent of the overlap between the locally optimal
cohesive groups that were identified in the previous phase. The overlap score,
denoted by w(A, B), is a measure of the similarity between two groups, A and
B. It is defined as the number of proteins that are common to both groups,
|A N B|, divided by the total number of proteins in each group, A and B. The
overlap score w(A, B) of two groups A and B is calculated as follows:

|An BJ?
|Al| B

If the overlap score is greater than 0.8, then all pairs of cohesive groups
are labelled as connected. Furthermore, if two groups are directly or indirectly
connected, then they are merged to form candidate complexes. Finally, if a
cohesive group does not overlap with and is not connected to other groups,
then it is classified as a candidate complex without merging.

The third step is the filtering of candidates. The final step entails the
assessment of the size and density (d_C') of each candidate complex (C) in
accordance with the specified threshold (¢), with d_C' as defined in section
2.5.1. Only those candidate complexes comprising a minimum of four proteins
and a density greater than the specified threshold are retained for further
consideration; all others are discarded.

For the same protein-protein interaction network (PPIN) from yeast
(see Fig. 2.2), the ClusterONE plugin of Cytoscape identified 842 clusters
as putative protein complexes when using the default parameters. These
parameters included a minimum cluster size of 3, a minimum density set to
auto-tuned (0.3 for weighted graphs and 0.5 for unweighted graphs), and a
vertex-node penalty set to 2. Fig. 2.9 shows three examples of these putative
protein complexes.

w(A,B) =
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Figure 2.8: Workflow of the ClusterONE algorithm showing the cohesive
growth of protein group V. (a) In this example, the group V consists of
the five vertices A, B,C, D, and E. Assuming that all edge weights are set
to 1 and the penalty p = 0, the cohesiveness of this group is f(V) = 7/12
with w™(V) = 7 and w?* = 5. The group starts to grow by adding external
vertices to or removing internal vertices from V' based on the resulting changes
in cohesiveness. The greedy algorithm adds an external vertex v only if
f(V +wv)> f(V). Panels b), c) and d) show different options for expanding V.
(b) Adding the external vertex F' would increase f(V) to f(V + F) = 10/12.
In contrast, (c) adding vertices G would lower f(V) to f(V + G) = 8/15,
and (d) adding H would similarly lower it to f(V + H) = 8/14. The greedy
algorithm thus only adds vertex F to group V" and the new group cohesiveness
is f(V)) = 10/12. In the next iteration, the expansion process terminates with
V ={A,B,C,D, E, F} as alocally optimal cohesive group, since adding G or
H in addition to F' would notincrease f (V') any further, with f(V+G) = 11/15
and f(V+H) = 11/14 both < 10/12. The algorithm then restarts the expansion
process by selecting the yet unvisited protein with the highest degree.
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(@) ’ (b)

Figure 2.9: Protein complex prediction based on the S. cerevisiaze PPIN ac-
cording to data from Mentha using the ClusterONE algorithm. (a) Cluster
with quality of 0.461, a p-value of 0.00022, 57 nodes vertices and 4346 inter-
actions. Green vertices belong to the 19/22s regulator complex (22 out of
22 in CYC2008 detected by ClusterONE)., Purple vertices belong to the 20S
proteasome complex (14 detected out of 14), and blue vertices belong to the
Pnglp/Rad23p complex (2 detected out of 2,). As for MCODE, the cluster
identified by ClusterONE contains further proteins that are not known to be
part of this complex. b) Protein complex identified by ClusterONE with a
quality of 0.613, a p-value of 0.00016, 10 vertice nodes and 245 interactions.
The green vertices belong to the ribonuclease MRP complex, the blue vertex
belongs to the nucleolar ribonuclease P complex. CYC2008 lists 10 proteins
for the ribonuclease MRP complex. Out of them, ClusterONE identified 9.

2.6 Docking of proteins structures

Protein docking is a computational method that employs a combination of
algorithms and mathematical models to predict the protein complex from
the individual binding partners that comprise it, thereby determining the
nature of the interaction and binding between them. This allows the nature
of the interaction and binding between them to be determined. In order to
achieve this, the algorithms traditionally focus on the steric complementarity
at the binding interfaces of the defined binding partners [63]. In the case of
protein-protein complexes, the conformation of the proteins in the complex
state differs from that observed in the unbound state. During the process of
protein-protein complex docking, these discrepancies in protein conformation
can be disregarded. This is accomplished through the utilisation of rigid body
docking, which accounts for rotations and Cartesian coordinates. An alter-
native approach is to employ flexible docking, which accounts for a greater
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number of coordinates, including internal coordinates. As the field of docking
algorithms has advanced, researchers have sought to account for a wider
range of properties beyond rigid and flexible conformations. For instance, al-
gorithms such as High Ambiguity Driven biomolecular Docking (HADDOCK)
[16], RosettaDock [64], and pyDockDNA [65] utilise rigid body docking in con-
junction with an energy-based approach. Global RAnge Molecular Matching
(GRAMM-X) [66] and ClusPro [67] employ a rigid body strategy in combi-
nation with Fourier fast Fourier transform (FFT). Shape-based incorporated
with Fourier fast Fourier transform (FFT) docking techniques include Hex
[68], PatchDock and SymmDock [69]. This section provides a comprehensive
explanation of the functionality of HADDOCK and AlphaFold used in section
5.

2.6.1 HADDOCK

High Ambiguity Driven biomolecular Docking (HADDOCK) is an integra-
tive modelling platform that utilises a multifaceted approach, integrating a
range of data types, including biochemical and biophysical interaction data,
experimental and bioinformatic information, binding interfaces, and orienta-
tion of binding information regarding the interactors. This approach enables
comprehensive and accurate modelling of complex structures [70]. The data
are derived from a variety of sources, including nuclear magnetic resonance
(NMR) titrations, cross-linking and other chemical modification data, mutage-
nesis, hydrogen-deuterium (H/D) exchange, and data from available literature
[71]. The information derived from NMR titrations provides insight into the
binding sites or allosteric sites of proteins, as indicated by shifts in signals
resulting from the binding of N1° to the proteins in question. In cross-linking
data, the artificial linkers connecting two proteins at corresponding lysine
residues, whether intramolecularly or extramolecularly, provide information
about the maximum distance between the proteins’ structures and the length
of the linkers. This is identified through the use of mass spectroscopy. The
mutagenesis data facilitate the identification of the amino acids that are crucial
for binding. In a known protein structure, when the amino acids are mutated,
if the mutations affect the protein interaction, it can be inferred that the mu-
tated amino acid is responsible for binding. Conversely, if the amino acid is
not involved in the interaction, it can be concluded that the amino acid is not
involved in binding. In the H/D exchange data, when a protein is dissolved
in heavy water, the exchangeable protons tend to undergo a chemical transfor-
mation, whereby they change into deuterons. Protected regions that do not
undergo deuteronisation are deemed to represent binding sites for a given
protein.

A review of the literature allows HADDOCK to consider additional
information regarding protein structure, including the identification of active
residues, residues involved in binding, and passive residues, which may also
be involved in binding. These residues are of great importance to HADDOCK,
as they are used to calculate an essential parameter called Ambiguous Inter-
action Restraints (AIR). This parameter provides information regarding the
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minimum distance that an active or passive residue of a protein must be from
the active or passive residues of another protein with which it is to interact.
In other words, it defines the distance between the interface of binding be-
tween two proteins. Considering two proteins A and B, this effective distance
parameter is then estimated by the formula below:

NAtho'm resB NBatom

D D D WO
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where N 440m refers to the total number of atoms of the residue in protein A,
N5 refers to the total number of residues defined at the binding interface of
molecule B and Npgiom refers to the total number of atoms of the residue in
protein B.

HADDOCK performs docking in three steps, utilising information from
the AIR parameter and other resources. In the initial phase (it0), the rigid bod-
ies undergo energy minimisation. The two protein structures are positioned
at a distance of 150A° and undergo random rotation in four cycles to identify
the orientation that results in the lowest intermolecular energy function. The
conformations with the lowest energy functions are then docked, which typi-
cally yields 1,000 conformations. From this initial set, 200 conformations are
selected for the subsequent phase. In the subsequent phase (itl), semi-rigid
refinement in torsion angles is employed to gradually optimise the rigid bod-
ies of the two proteins. In the initial stage, the side chains at the interface are
permitted to be flexible and undergo movement in order to identify an opti-
mised structure. Subsequently, the side chains and the backbone structure of
the two proteins are permitted to undergo movement in order to facilitate the
refinement of the optimisation process. In the final stage of the process (itw),
the structure is refined further by solvation with water molecules. The system
is subjected to heating, and positional restraints are permitted for all atoms,
with the exception of those belonging to flexible chains and the backbone at
the interface of the structure. Subsequently, the system is cooled, with the
position restraints being applied solely to the non-interface backbone of the
structure. The resulting conformations are then grouped or clustered together
based on the lowest root-mean-square deviation (RMSD) values observed in
the backbone.

Finally, the resulting clusters of conformations are ranked at each stage
based on van der Waals (F,q11), electrostatics (Fpgie.), restraint violation
(Earr) and desolvation (Epesow) given by the following scoring functions:

1t0 : 0.01Eyqw + 1Egiec +0.01E21r — 0.01EBsA + 1Epesoiy + 0.1Egym

1l 1E,qw + 1Eeiec +0.01E4r — 0.01EBsA + 1 Epesory + 0.1Esym
1tw : 1Eyqw + 0.2FEec + 0.1EA1R + 1 Epesolv + 0.01Egym

The results are clustered based on RMSD with a cut off of 7.5A°. At each
stage, HADDOCK allows the user to set the maximum number of clusters,
temperature, maximum time steps and symmetry restraints [71]. HADDOCK
can handle maximum of 20 molecules.
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2.6.2 AlphaFold

Two interrelated issues have constituted a significant challenge for researchers
in the field of protein studies: firstly, the determination of the procedure
by which proteins fold, and secondly, the determination of the final folded
structure of any given protein. The concept of Anfinsen’s dogma [72] was
subsequently proposed, which postulates that the structure of a protein can be
estimated based on the amino acid sequence that constitutes it. This dogma
was a significant advancement in the field, as it enabled researchers to at-
tempt prediction of the structure of proteins based on the reliable sequence
data that was becoming increasingly available. However, due to the mul-
titude of potential conformations that can arise from a given sequence, in
1960 Cyrus Levinthal [73] argued that it was not a straightforward task to
predict the structure of proteins from sequence data alone. Consequently,
advanced methodologies, such as machine learning and artificial intelligence
(AI), are employed to predict structures and complexes based on the available
information.

This section provides an overview of AlphaFold. AlphaFold is an
artificial intelligence system that employs generative machine learning models
and artificial neural networks to predict protein structures and complexes
based on sequence information. The system employs a variety of data sources,
including sequence and structure data from the Protein Data Bank (PDB),
alignment data from Multiple Sequence Alignments (MSAs), and information
about similar mutations in MSAs that determine the spatial proximity of
folded proteins. These data are integrated into a neural network, which is then
trained using the evolutionary relationships and sequence alignments. In the
latest iteration, AlphaFold 3, the system is capable of processing information
pertaining to other biomolecules, including DNA, RNA, and ligands.

The neural network is a collection of multiple layers of linked simu-
lated nodes, the links between which can be strengthened or weakened. Upon
the input of a FASTA file or a Macromolecular Crystallographic Information
File (mmCIF), the tool proceeds to extract the pertinent metadata, such as
sequence information (for FASTA files) and sequence, atom coordinates, and
resolution information (in the case of mmClIF files) from these files. Utilising
this information, a number of genetic databases are searched for MSAs. The
MSA information is then used to search for structural templates from the PDB.
The sequence of the templates is then compared with the input sequences.
In the event that the two sequences do not exhibit a match, they are subse-
quently aligned using Kalign [74]. The identified structural templates are then
incorporated into the model for training purposes. It should be noted that not
all of the identified templates are included in the training process, as those
that exhibit complete or partial identity with the input sequence are excluded.
Templates with short sequences, comprising fewer than 10 amino acids or less
than 10% of the input sequence, are excluded from further consideration. In
the event that the input mmClIF files indicate a resolution in excess of 9°A,
they are excluded from further consideration. In the event that the sequences
exhibit a sequence identity of less than 40% when clustered with PDB clusters,
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they are subsequently excluded.

The training is repeated several times over two sets of data: the self-
distillation set and the known structures from the PDB. The self-distillation
dataset is created by computing MSA of every cluster in Unbiclust30 against
the same database. The sequences that were found in another sequence’s
MSA, the sequences with more than 1,024 amino acids, and the sequences
with less than 200 amino acids were all filtered out. During the training of
the model, each iteration entails the preprocessing of the multiple sequence
alignment (MSA) and the cropping of residues. In the MSA preprocessing step,
sequences that are closely related and are likely to be in close proximity are
removed, as they tend to result in the deletion of branches of the phylogenetic
tree. Subsequently, in the MSA clustering phase, AlphaFold 3 replaces the
Evoformer module that was previously utilised in AlphaFold 2. The com-
putational complexity of this module is proportional to N2, X Nys, where
Njeq is the number of sequences and N, is the number of residues. This
necessitates a reduction in the number of sequences. Therefore, a random
fixed-size subset of the sequences was selected for input into the module. This
resulted in the loss of some sequences, which in turn affected the accuracy of
the prediction. Nevertheless, in the AlphaFold 3 iteration, the random subset
remains selected but is substituted with the nearest sequence. This process
is referred to as clustering. This ensures that all sequences have an equal
opportunity to influence the prediction.

In the residue cropping step, two modes of cropping are employed:
unclamped loss mode and clamped loss mode. In 90% of the training data, the
backbone of the structures is clamped by setting e,,,, = 10A4. Consequently,
in the clamped loss mode, the residue crop positions are randomly selected
from the set Uni form[1,n + 1], where n represents the length of the sequence
minus the crop size. The initial sequence crop size is set to 256, and then,
through a process of fine-tuning, it is increased to 384. In the unclamped loss
mode, the crop commences at Uniform[l,n — x + 1], where x represents the
value drawn from Uni form|[0, n].

The AlphaFold model is trained using a number of features, including
the number of amino acids in the sequence, MSA cluster center sequences,
binary values representing deletions to the left of every position in the MSA
cluster, and so forth from the input information of amino acid sequences,
MSA and structural templates. The final output comprises five predicted
structures, accompanied by information on atom coordinates, confidence
scores and distograms. Five confidence metrics are evaluated: predicted
local distance difference test (pLDDT), predicted aligned error (PAE) score,
predicted transmembrane (pTM) score, inner-pair pTM score, and per-chain
pTM and per-chain pair ipTM. The pLDDT score is an indicator of the degree of
confidence with which the local position of a specific atom in the structure can
be predicted. The PAE score pertains to the confidence with which the chains,
domains, or other biomolecules within the structure are packed. The pTM
score, in turn, represents the overall accuracy of the predicted structure. The
ipTM score indicates the degree of accuracy in the prediction of the interface.
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The per-chain pTM and per-chain pair ipTM metrics pertain to the confidence
with which chains or pairs of chains can be predicted. AlphaFold is capable
of processing a maximum of 5,000 tokens as input. Each token represents
either an amino acid residue present in proteins, a nucleotide base present
in DNA or RNA structures, an atom present in a ligand or post-translational
modification (except for ligands), or an atom in conjunction with the residue
to which it is attached in the case of glycans, or an ion.

2.7 Computational tools and analysis

This section introduces several key concepts in the field of data analysis,
including statistical hypothesis testing, differential expression analysis and en-
richment analysis. These concepts are widely employed in the computational
processing of biological data.

2.7.1 Statistical hypothesis testing

In essence, hypothesis testing is an inference method that is employed to
ascertain whether sample data adheres to a presumed formulated hypothesis
in comparison to the population data. In general terms, the sample data
represents a subset of the population [75]. It follows that the hypothesis
represents the pivotal element of this methodology, constituting a quantitative
declaration that describes the comparison of the data to the population. This
presumed formulated statement is referred to as the null hypothesis. The null
hypothesis typically reflects the prevailing assumption or commonly accepted
belief considered true unless evidence suggests otherwise.

The process of hypothesis testing is typically conducted in seven steps
[76]. In the first step of the process, a statistical measure or quantity that maps
the data to a numeric value is selected as the foundation for formulating a
null hypothesis. This measure is called test statistic. Examples of test statistics
that can be employed for hypothesis testing include the mean, median and
the variance. In the second step, the null hypothesis (Hy) and alternative
hypothesis (H4) are formulated. The alternative hypothesis is a formulated
statement that attempts to prove the alternative to the null hypothesis. For
example, if the test statistic is the population mean (u), the hypotheses can be
structured as follows:

Null hypothesis (Hy) : p = po

Alternative hypothesis (Ha) : p # o

where 11 is a randomly defined number. The null hypothesis (Hp) and the
alternative hypothesis (H 4) are inherently mutually exclusive, meaning that if
one is true, the other must be false [76]. The objective, therefore, is to determine
whether the value of 4 is equal to 19. The intention is to establish whether
there is compelling evidence to dismiss the Hy [77]. This is because the process
of invalidating the Hj is more concrete than that of finding numerous pieces
of evidence to validate it. Consequently, an attempt to invalidate the Hy may
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result in one of four possible outcomes. 1) where the Hj is invalidated and the
H 4 is accepted, 2) where there is no evidence to invalidate the Hj, and thus
it is not rejected and could be accepted. 3) An error occurs, where the Hy is
rejected, but should be accepted. This is known as a Type I error, 4) Another
error, where the H) is accepted, but should be rejected. This is known as a
Type Il error [78, 79]. The four potential outcomes are presented in Table 2.2.

Hy accepted Type I error
Type Il error  Hj rejected

Table 2.2: Summary of the possible outcomes from hypothesis testing

The specific formulation of the Hy and H 4 hypotheses, as determined
by the scenario under consideration, can be expressed as either one-sided
or two-sided. In the above example, the hypotheses were formulated in a
two-sided manner, as is typical in such cases. An example of a hypothesis
formulated in a one-sided manner is as follows [80]:

Right-tailed test:
Null hypothesis (Hy) : = po

Alternative hypothesis (Ha) : > po

Left-tailed test:
Null hypothesis (Hy) : = po

Alternative hypothesis (Ha) : u < po

In the third step, the distribution of the sample is determined. The
probability distribution of the sample data, as determined by the chosen test
statistic, is in accordance with the stated hypotheses. Accordingly, in order
to calculate the sample distribution in accordance with the H, the probabil-
ity distribution of the sample data derived from a population is estimated
in a manner that would substantiate the veracity of Hy with respect to the
selected test statistic. Similarly, for the H 4, the probability distribution of the
sample data derived from a population is estimated in a manner that would
corroborate the veracity of H 4 with respect to the aforementioned test statistic.
Consequently, two distinct sampling distributions are prepared for the two
hypotheses.

In the fourth step, a significance level value is determined. As demon-
strated in Table 2.2, the potential for error is inherent in any process. It is
therefore essential to establish a level that accurately reflects the risk of proba-
bility of such errors occurring. A Type I error occurs when the null hypothesis
(Hp) is incorrectly rejected, and the probability of this error is denoted by «.
Conversely, a Type II error takes place when an invalid null hypothesis (Hy) is
mistakenly accepted, with the probability of this error represented by 3 [81].
In general, the value of « is regarded as the maximum acceptable level of error,
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and it is referred to as the significance level [82]. For example, a significance
level (o) of 0.05 implies a 5% chance of incorrectly rejecting the null hypothesis
(Hp) when it is actually true. The most commonly used significance levels are
0.05 and 0.01 [83]. The a and /3 values are calculated by [81]:

a = P(Type I error) = P(Rejecting Ho | Hy is true)

B = P(Type II error) = P(Accepting Hy | Hy is false)

In the fifth step, a critical value is determined. It is defined as the value
that is compared with the test statistic and acts as a threshold that determines
if the Hy must be rejected. If the test statistic value exceed the critical value, the
H) is rejected. This is because it is unlikely for the test statistic value to exceed
the critical value if the H is true. And, if the test statistic value falls within
the the critical value, the Hj there is no evidence to reject Hy [84]. This value
is mostly derived from the significance level and sampling distribution of
sample data. The graphical representation of the critical value determining the
rejection of Hy on the sampling distribution curve of samples in the one-tailed
and two-tailed cases are represented in the Fig. 2.10

In the sixth step, the numerical values of the test statistics are evaluated
and the p-values are estimated. In the event that the test statistic was set as the
mean, the mean of the sample data is calculated using the following formula:
Consider a sample X = {x1,z2,....,2,}, then

1 i=1
Mean (p) = szl
n

where, n is the total number sample data, z; is the sample data values. In the
case of a selected test statistic of the median, the median value is calculated
using the formula:

Consider a sample X = {z1,x2,....,z,}, then

1 . .

5(xn +xn,q, 1f N1Seven
Median(X) = 2 (73 2 .f .

Tntl, if nisodd
2

where, n is the total number sample data, x is the sample data value. In the
case of a selected test statistic of the variance, the variance value is calculated
using the formula:

1
Variance (S?) = p— Z(wz —u)?
i=1

where, n is the total number sample data, z; is the sample data values, and 1
is the mean of sample data X.

The sample distribution and the numerical value of the test statistic
calculated are utilised for the determination of p-values. In other words,
a comparison is made between the numerical test statistic value and the
theoretical assumptions regarding the sampling distribution in accordance
with the hypotheses. A p-value provides an estimation of the probability of
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Figure 2.10: Representation of critical regions on probability distribution of
sample in two-tailed (left), left-tailed (middle) and right-tailed (right) cases.

observing extreme values that are greater the numerical test statistic value,
given that the Hj is true [77].

In the final step, a decision is made if the H, should be rejected based
on the obtained p-value. If the p-value obtained in less than the defined
significance level, we then reject the Hy. If the p-value is greater than the
defined significance level, we do not have enough evidence to reject Hy and
hence we accept it.

2.7.2 Common statistical tests

The principal objective of statistical tests in the biological context is to quantify
the degree of similarity between data samples. In other words, these tests are
employed to evaluate whether the two sample distributions exhibit a similarity
by test statistics. A plethora of statistical tests are available for the significant
conclusion of sample similarity. It is important to note, however, that these
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tests are susceptible to certain conditions and that the accuracy of the results
is contingent upon the selection of the appropriate test in accordance with the
specific conditions of the data sample in question. A number of tests are based
on the assumption that the data set under consideration follows a specific,
predefined distribution, most commonly a normal distribution. There also
exists some test that check if the sample data is normally distributed (DATAtab
Team (2023), DATAtab e.U. Graz, Austria, https://datatab.de) like Shapiro-
Wilk test [85], Kolmogrorov-Smirnov test [86], and Anderson-Darling test [87].
These tests are classified as parametric tests. Examples of parametric tests
are Student’s t-test [88], Welch t-test [89], and Analysis of variance (ANOVA)
[90]. Conversely, some tests are characterised by greater flexibility in their
conditions, and are not predicated on presumptions regarding the sample
distribution patterns. Tests of this nature are designated as non-parametric.
A few examples of non parametric tests are Mann Whitney U test [91], and
Kruska-Wallis test [92]. Further conditions are based on the degree of corre-
spondence between the data samples. In the event that the data samples being
compared are matched data collected from the same source, they are referred
to as paired data [93]. In such instances, a specific test must be utilised which
examines the difference between the matched pairs, as opposed to testing
the similarities between the unmatched data points [94].A number of tests
employ paired data, including the paired sample t-test [88] and the Wilcoxon
signed-rank test [95]. This section provides a detailed explanation of a few
commonly used statistical tests.

Shapiro-Wilk test

In order to ascertain whether a parametric or non-parametric statistical test is
required for the comparison of sample data, it is first essential to determine
whether the data in question are normally distributed. In instances where the
data are found to be of a normal distribution, parametric statistical tests are
employed; conversely, non-parametric statistical tests are utilised in instances
where this is not the case. Consequently, the Shapiro-Wilk test can be utilised
to assess the normality of data distribution. It should be noted, however,
that the suitability of this test is limited to small to moderate-sized datasets,
comprising approximately 50 data points. The null hypothesis Hy and the
alternative hypothesis H 4 for this test are stated below:

Hy: The sample is normally distributed
H 4: The sample is not normally distributed.

In order to establish whether a given sample is normally distributed,
the Shapiro-Wilk test employs a three-step process. In the initial step, the
data points of the sample are arranged in ascending order. Let us consider
a sample data denoted by X comprising n number of data points, that is,
X = {x1, 29,3, ..., x, }. The sample data, arranged in ascending order, is de-
noted by Y, where Y = {y1,92,y3, ..., yn }. In this case, y1 < y2 < y3 < ... < yn.
The second step involves estimating the W statistic using the following for-
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mula:

(T a)?
W= ST - )

where y; represents the sorted sample data points, 1., represents the mean of
the sorted sample data, and a; represents the tabulated coefficients that were
reported in the study conducted by Shapiro and Wilk (1965) [85]. Once the
W statistic has been estimated, the final step is to compare the W value to the
corresponding critical value at the specified significance level (typically 0.05).
This can be found in the Shapiro-Wilk p-value table, which is referenced in the
same paper [85]. Should the W statistic value be less than the corresponding
critical value at the 0.05 level, the null hypothesis Hj is rejected and the
alternative hypothesis H 4 is accepted.The data set exhibits a notable departure
from the expected normal distribution. Should the W statistic value exceed
the corresponding critical value at 0.05, no evidence will be found to reject the
Hj, and thus the sample will be deemed to exhibit a normal distribution.

Mann Whitney U test

The Mann-Whitney U test, which belongs to the category of non-parametric
statistics, is a method employed to evaluate the significance of the differences
between two independent samples of data. In order to ascertain the likelihood
of a difference, the rank sums of the two samples are considered as the test
statistic and compared on the basis of central tendency. In order to utilise the
Mann-Whitney U test, several conditions must be met. As previously stated,
the dataset in question must not adhere to a normal distribution, as this is
a non-parametric test. The sample data must be continuous. The samples
being compared must be independent and must not be related to each other;
they should not be matched samples from the same source. The sample must
have at least five data points and can be used with large sample data. The
null hypothesis, Hy, and the alternative hypothesis, H 4, for this test are stated
below:

Hy: There is no difference between the datasets
H 4: There is a difference between the datasets

The test is conducted in five steps to assess the similarity of the two
sample datasets. In the initial step, the rank sums of both sample datasets are
estimated through the assignment of ranks to both combined sample data set
based on all the data points. Let us consider two sample datasets, denoted
by X and Y, respectively. Each dataset comprises n; and ny data points, re-
spectively. Thus, X is given by the set of data points X = {z1, 22, x3, ..., Tn, },
and similarly, Y is defined by the set of data points Y = {y1,v2,y3, ..., Yn, }-
The combined data points of X and Y are assigned ranks, resulting in the
set R = {r1,72,73, ..., Tn14n2 }. Subsequently, the assigned ranks are summed
within each group, thereby yielding the rank sum values for each group. Let
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us define the sets of assigned ranks as follows: R;, € R denotes the ranks
allocated to the data points of X, and Ry, € R denotes the ranks allocated to
the data points of Y. Let us consider the rank sums of R; and R», respectively,
as 77 and Ts.

| R1]

T1 = Z’I“i

=1

| Ra|

T2 = Zri

=1

In the second step, the U value is estimated from the rank sums, U1 and
U2 values for each sample dataset in accordance with the following formula:

ni(ny +1
U1:n1n2+1(;)—T1

no(ng + 1
U2:n1n2+2(;)—T2

U = min(Uy, Us)

If the sample size of both the datasets are equal, the Uy = Uy = U.
In the third step, the mean py and standard error oy values of U are
calculated using the following formula:

ning
2

MU =

mng(nl + n9g + 1)
ov= 12

In the fourth step, the z-score () is calculated by:

Uf
227/11[]
ou

In the final step of the process, the p-value is derived from the z-score
by employing the z-distribution table. Consequently, it is possible to draw a
conclusion regarding the similarity of the datasets on the basis of the p-value
and the pre-defined significance level. In the event that the p-value is less than
the pre-defined significance level, it can be deduced that the H, is rejected
and the H 4 is accepted, thereby concluding that the datasets are different. In
the event that the p-value exceeds the significance level, no evidence exists to
reject the Hy. Consequently, the H is accepted, and the datasets are deemed
to be similar.
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Wilcoxon signed-rank test

The Wilcoxon signed-rank test is a type of non-parametric statistical test. It is
used to judge whether the mean values of two dependent datasets are signifi-
cantly different from one another, based on their central tendency. As this is
a non-parametric test, the datasets need not adhere to a normal distribution.
The data must be in the form of paired data, whereby the datasets are derived
from the same source or group and exhibit a one-to-one correspondence. It is,
however, important to note that the data points are recorded independently. In
general, the distribution of the datasets should exhibit a similar symmetrical
pattern. The number of samples in the datasets must be a minimum of 20 [96],
and may be applied to large datasets. The H, and the H 4, for this test are
stated below:

Hj: No difference between the datasets
H 4: There is a difference between the datasets

The test is conducted in five steps and ultimately determines whether
the mean values of the datasets are similar. In the initial phase of the process,
the discrepancies between the values of the datasets are determined. The
absolute difference values are employed for the purpose of ranking. For the
purposes of this discussion, we will consider two sample datasets, which
we will denote by X and Y/, respectively. The two datasets consist of the
same number of data points, denoted by n. Thus, the set of data points
comprising X is given by X = {z1, 22,23, ...,2,}, and similarly, the set of
data points comprising Y is given by Y = {y1,92,y3, ..., yn}. Let us define
the set of difference values between the datasets X and Y as D. Thus, D =
{d1,d2,ds, ...,d,} where d; = x1—y1, d2 = 22—y, and so on, up to d,, = ,—Yn.
The absolute values of D are ranked, resulting in the set R = {r1, 72,73, ..., Tn }.

In the second step, the W statistic value is determined from positive
and negative ranks of differences, and 7" and 7~ in accordance with the
following formula:

||
T+ = Zri wherer; > 0

i=1
||
T = Zri wherer; < 0
i=1
W =min(TT,T")
In the third step, the expected value p1- and standard error oy values
of W are calculated using the following formula:

n(n+1)

nw = 1
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where ¢ refers to the number of data points sharing a rank «.
In the fourth step, the z-score (z) is determined by:

_ W
ow

z

In the final step, the p-value is calculated from the z-score using the
z-distribution table, in a manner analogous to that employed in the Mann
Whitney U test. Consequently, a conclusion regarding the similarity of the
datasets can be drawn based on the p-value and the pre-defined significance
level. Should the p-value be less than the significance level, the Hj is rejected
and the H 4 is accepted, thereby concluding that the datasets are different. In
the event that the p-value exceeds the significance level, no evidence exists to
reject the Hy. Consequently, the H is accepted, and the datasets are consid-
ered to be similar.

2.7.3 Differential expression analysis

In recent times, high-throughput sequencing of omics data has provided re-
searchers with a wealth of valuable information, including quantitative count
data of the number of reads of transcript, viable binding regions on DNA
from RNA-seq and chip-seq assays [97]. The generation of count data from
an organism in different conditions gives rise to an important question: is
the abundance of the transcript similar in both conditions? If not, do these
variances play a role in phenotypic, physiological, or disease progression? As
the reads of a transcript are typically mapped to a target gene, and the number
of reads represents the active expression levels of the corresponding gene,
the difference in reads in different conditions can be used to identify changes
in the abundance of gene expression levels of specific genes [98, 99]. This
analysis, which determines genes with significant differential abundance of
expression levels is referred to as differential expression analysis. In this anal-
ysis, normalised count data is considered for statistical testing, with the aim of
determining whether there is a significant difference in the gene abundances
in the different conditions [100]. This analysis is conducted with the aim of
gaining insights into potential targeted therapeutics and diagnostics, as well
as for identifying disease development and progression. A number of tools are
available for conducting this statistical test, with the aim of identifying genes
that exhibit significant differential abundances in different conditions. Ex-
amples of such tools include DESeq2 (Bioconductor R package)[101], TREAT
(Bioconductor R limma package) [102], SAMseq (samr R package) [103], and
so forth. This section will discuss the functioning of a few of these tools in
detail.

DEseq2

The Deseq?2 tool employs an algorithmic approach to effectively fit a model to
the data, thereby estimating the expression levels of differentially expressed
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genes. The tool essentially fits the samples as a negative binomial distribution
[104], with the corresponding mean and variance being fitted by regression.
The workflow of this algorithm can be described in five steps.

As previously stated, the algorithm examines the count matrix and
develops a model in which the read counts are assumed to follow a negative
binomial distribution [105]. Let us consider a count matrix with n number of
genes and m number of samples, designated as K, in which the rows represent
genes and the columns represent samples. Therefore, the term K;; denotes
the read counts, non negative numbers, mapped to the gene i of sample j. It
is assumed that the reads of sample j, mapped to gene ¢, are modelled by a
negative binomial (N B) distribution given by :

K;j ~ NB(ﬂij7Ui2j)

where p;; and afj are the two parameters of the negative binomial distribu-
tion, mean and variance respectively. However, in the present context of the
count matrix, the two parameters remain unknown. Consequently, the two
parameters are estimated from the count matrix (Kj;).

In the first step, the mean parameter, or the expectation value, of the
counts mapped to gene ¢ from sample j is estimated using the following
formula:

Hij = bi,p(5)5;
where ¢; ,(;) is the condition-dependent value of gene i of sample j under
a specific condition p and s; is the size factor representing the sampling
depth and coverage of library j. It is typical for s; to be a constant, which
allows it to be used for all the genes in a sample. The rationale behind
utilising the size factor s; is to account for the disparate sequencing depths
observed across different samples. These discrepancies could be resolved by
normalising with the total reads value; however, it was observed that the
genes with higher expression values diminished the impact of genes with
lower expression values. This illustrates that normalising with total reads
is not a viable approach and thus, size factors were introduced. These size
factor for a sample s; represent the median of ratios of observed counts and
geometric mean of the counts across all samples [106], as determined by the

following formula:

s; = median—————

(Z;n:z kzw) m
The value of ¢; , is calculated by taking the mean of the counts from
the samples that exhibit the condition p, as detailed in the formula provided

below: ) K
Qip = —— Z -
Mp . = 83

J:p(j)=p

where m, number of samples exhibiting the condition p. g; , is a value that is
proportional to the fragments of DNA from gene i.

In the second step, the variance parameter of negative binomial distri-
bution is calculated. It estimates the spread of reads in a sample. The variance
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is estimated using a combination of a specific measure of dispersion («) and
the mean 1;; given by:
Var Kij = pij + aip;

Dispersion is used to describe the variability that can be estimated with
a high degree of accuracy if each condition had several replicate samples.
However, when the number of sample replicates for a given condition is
insufficient, high dispersion variability for each gene can compromise the
accuracy of the results. Therefore, it is assumed that genes with similar
expression levels have similar dispersions. Consequently, in the third step,
the initial estimation of dispersion is calculated using maximum likelihood,
and a curve is fitted to represent the estimated dispersion value based on
the read counts of the replicate samples in a condition. However, this does
not provide insight into the extent of deviation of each gene from the fitted
curve. In the fourth step, the empirical Bayes method is employed to reduce
the discrepancy between the initial estimation of the dispersion and the curve,
thereby improving the fit. The shrinkage method is a crucial technique in
reducing the number of false positives in differential expression analysis. It
also reduces the variability of genes with low expression levels.

In the fifth step, a statistical hypothesis test for differential gene expres-
sion is conducted. The null hypothesis Hy of this test posits that the expression
levels of a gene in one condition are identical to those in another condition.

Hy: qA=qB

where ¢; A refers to the expression level parameter of gene 7 in condition A
and ¢; B refers to the expression level parameter of the same gene in condition
B. The test statistic described below is employed to test the hypothesis [97].

KA= > Ky
Jp(§)=4A

KB= Y Ky
Jip(j)=B

where s represents the overall sum of samples in both conditions.

The sample data from both conditions were fitted to a generalised linear
model (GLM) in order to estimate the effect sizes of the conditions. This is
represented for each gene as follows:

lOgQ(Qij) = Z xjsﬁis

where z is a design matrix element representing the presence of the sample
in either condition A or B, and f;, are the coefficients from the GLM fitting,
which represent the overall strength of the fit and the log fold change values.
It has been observed that genes with low expression levels tend to exhibit a
high degree of variance in the estimated log fold change values. Accordingly,
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the algorithm utilises a shrinkage approach to the log fold change estimates,
employing an empirical Bayes method. This serves to reduce the high degree
of variability.

Subsequently, the Wald hypothesis test is conducted following the
fitting of the GLM for each gene. This is achieved by calculating the z-statistic,
which is obtained by dividing the shrunken estimates of log fold change values
by their standard error. The p-values are derived by comparing the z-statistic
with the values in the standard normal distribution tables. Given that multiple
comparisons are made, there is a tendency for the false discovery rate of the
genes to be high. Therefore, the issue of multiple testing is addressed by
filtering the genes based on their average expression levels across all samples.
Consequently, the filtered p-values assist in determining whether the null
hypothesis (Hy) should be rejected and thus concluded to be significantly
differentially expressed, or accepted on the grounds that there is no evidence
to reject Hy.

T-tests relative to a threshold (TREAT)

T-tests relative to a threshold represent another algorithm that is used to es-
timate whether a gene is significantly differentially expressed in different
conditions. In contrast to the other algorithms, which merely indicate whether
a gene is or is not differentially expressed without providing insight into
the significance of the observed difference, this algorithm enables the user
to define a threshold, thereby facilitating the determination of whether the
observed difference is biologically meaningful.In the previous method, we
described how False Discovery Rate (FDR) filters genes and adjusts p-values.
However, the threshold defined for a log fold change to be considered signifi-
cant does not account for variability, which results in a lack of reliability in
terms of reproducibility. The TREAT algorithm represents an extension of the
empirical Bayes statistic initially proposed by Smyth [107] and incorporates
the fold change threshold, taking into account the FDR correction. The TREAT
workflow can be defined in four steps.

In the first step, the hypotheses underlying the statistical tests are
established. In consideration of the log fold change values (3;) estimated for
a given gene, designated as ¢, between two distinct conditions, denoted as A
and B, the null hypothesis, represented as Hj, and the alternative hypothesis,
represented as H 4, can be formulated as follows:

Hy: |G| <7

Hyp:|Bi| > 7

where 7 is a value specified by the user and used to determine the significance
of differential gene expression. In other words, the log fold change values that
exceed the specified threshold are deemed to be biologically meaningful. The
null hypothesis (Hy) is employed to assess whether a log fold change value
falls within the specified interval of values, defined as [—, 7].
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In the second step, the read counts for each gene are fitted into a linear
model. Let us consider a gene, designated as g, present in m number of
samples. The count data of gene g from all m samples can be represented as a
vector, yg = {yg1, Yg2, --., Ygm }, Where y ; is the count of gene g from sample j.
The linear model used to fit the sample data can be represented as follows:

Yg = Xayg

where X is a design matrix element that represents the presence of a sample
in a specific condition or group, and o, represents the unknown coefficients
that are to be determined.

In the third step, the variance of the fit model is shrunk to increase
accuracy. In the linear model fitted, the estimated variance of the gene may
be noisy, particularly in cases where the gene exhibits low expression values,
which can result in a high degree of disparity. Consequently, the algorithm
incorporates a hierarchical model that postulates the requisite form of the prior
distribution of the variance. This is achieved by adjusting the gene variances
to a posterior variance, which serves to shrink the observed variances to a
prior estimate. This is achieved by combining the read count of a gene with the
average variance across all genes. The degree of shrinkage is contingent upon
the discrepancy between the degrees of freedom of the observed and prior
distributions. Subsequently, the moderated t-statistic is defined in accordance
with the posterior variance, as illustrated below:

posterior var SE(S)

tg

where 3, is the log fold change value of gene g between conditions A and B,
and posterior var SE(f,) is the standard error of the posterior variance.

In the final step, the p-values are calculated from the observed t-statistic,
denoted as t,. Given that the null hypothesis H, defines the potential for
observing 3, within a specified range, the p-value seeks to estimate the proba-
bility of rejecting Hy under the most extreme conditions. Consequently, the
following probabilities are subjected to analysis:

p = P(T > tops + 0) + P(T < tops — 9)

where § represents the minimum value of the observed log fold change and
the defined threshold, T" represents the theoretical t-distribution value for
the corresponding degree of freedom. The p-value thus determines whether
the null hypothesis (Hy) must be rejected in favour of the alternative hypoth-
esis (H4), thereby concluding that the gene g is significantly differentially
expressed between conditions A and B. Alternatively, the null hypothesis (Hy)
may be accepted in the absence of evidence to the contrary.

2.7.4 Biomolecule annotations

The advancement of high-throughput technology has led to an exponential
increase in the amount of sequencing data obtained for various biomolecules,
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including DNA, RNA, and proteins [108, 109, 110]. From these sequencing
data, biologists postulate the unification of biology, whereby it is proposed that
a significant proportion of genes and proteins are conserved in the majority of
living cells, and that the functional information can be shared between diverse
organisms [111]. However, these sequence data sets are typically comprised
of a lengthy list of genes, which can be tedious to interpret in terms of their
biological relevance through manual literature mapping. It was therefore
crucial to create a repository of all scientific findings regarding biomolecules
and to tag them with terms that define their roles, biological tendencies and
locations in any organism.

A number of databases have been developed with the specific purpose
of annotating genes and proteins, thereby facilitating the interpretation and
analysis of lists of data. One such database is the Gene Ontology Consortium
[111], which originated from three other databases: FlyBase [112], Mouse
Genome Informatics [113, 114] and Saccharomyces Genome Database [115]
and have been extended and now encompass important databases for other
organisms, including plants, animals and microbes [116]. As the volume of
information about biomolecules continues to expand and evolve, it is vital
that the database is able to accommodate this growth in a way that avoids
any overlap or contradiction between the annotation terms. Accordingly, the
database employs a structured approach, comprising three non-overlapping
categories for annotations: cellular component, molecular functions, and bio-
logical processes. The term "biological process" is used to denote the specific
biological function to which a particular gene or gene product contributes,
thereby highlighting its role within the cellular context. The term "molecular
function" is used to describe the role of a gene product in biochemical activity.
The term "cellular component" can be defined as the anatomical location in
which the activity of a gene product is observed. The annotation terms are also
structured in a directed acyclic graph (DAG) representation, where each term
is connected to at least one parent term and zero, one or multiple child terms
[117]. The more general terms are considered to be parent terms, with each
subsequent level of child terms becoming increasingly specific. The various
terms are associated by five predefined relation types, which are based on
the biological roles of genes and gene products. The following relations are
used: "is a", "is part of", "regulates"”, "positively regulates" and "negatively
regulates" [117, 118]. The "is a" relation is applied when a term is identified as
a subclass (or child) of another term (the parent term). The term "part of" is
applied when a term constitutes a division or member of another parent term.
The term "regulates” is used to indicate that a term modulates or controls the
biological processes of its parent term. The terms "positively regulates" and
"negatively regulates” are used to denote the activation and deactivation of
the parent term, respectively.

An illustrative example of the structured representation of the Gene
Ontology (GO) term "peptidase inhibitor activity" is presented in Fig. 2.11.
The term "peptidase inhibitor activity" is classified within the Molecular Func-
tion category of Gene Ontology (GO) annotations. The hierarchical level of
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this term indicates that the genes or gene products annotated to it are also
annotated to broader parent terms, such as "enzyme inhibitor activity" and
"peptidase regulator activity." The black arrow represents the "is a" relation
to the parent terms. It is evident that the term refers to a negative control or
deactivation type of activity. Consequently, it is also related to parent terms
such as "peptidase activity" with a "negatively regulates" relation, which is
represented by the red arrow. The remaining terms that indicate a modulation
type of activity in relation to the parent terms are associated with the term
"regulates,” as illustrated by the yellow arrow. he most recent consortium
statistic, updated in November 2024, indicates that there are a total of 40,635
GO terms. Of these, 26,467 are classified under the Biological Process category,
10,146 under the Molecular Function category, and 4,022 under the Cellular
Component category [119].
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Figure 2.11: The figure represents the directed acyclic graph (DAG) of the
molecular function category of the Gene Ontology (GO) terms, specifically
the "Peptidase inhibitor activity” branch. The black arrows indicate the “is a’
relation, the yellow arrow represents a ‘regulates’ relation, and the red arrow
represents a ‘negatively regulates” relation with the corresponding parent
terms. This figure was adapted from the QuickGO web service [117].

In addition to the ontology terms based on molecular function, biologi-
cal processes and cellular components, the biomolecules are also annotated
in accordance with the biological pathways in which they participate. This
would facilitate the analysis and decoding of bottlenecks in systems biology,
the identification of targeting therapy and the interpretation of their roles in
disease-related pathways.

One of the most widely used open-source and peer-reviewed databases
for the annotation of pathways of genes and gene products is the Reactome



41

pathway database [120]. The database catalogues a range of biochemical
processes and interactions between biomolecules, including those involved
in transportation, replication, and metabolism. The functional relations and
curated biologically processes are combined and presented in an interactive
map, facilitating visualisation and analysis. The database permits researchers
to upload a list of genes or gene products, and the tool generates a reaction
map as a graphical representation of the subset of the uploaded list that is
involved in any pathway. The most recent statistics, updated in September
2024, indicate that the database contains pathway information for 15 species.
A total of 2,742 pathways in the Homo sapiens database are associated with
11,289 proteins and 15,492 reactions. For illustrative purposes, Fig. 2.12 shows
an example of the oncogenic MAPK signalling from the Reactome database.

'SIGNALING BY HIGH-KINASE PARADOXICAL ACTIVATION OF RAF
ACTIVITY SRAF MUTANTS SeNALNe BYRARIMUTANS
ACTIVITY BRAF MUTANTS

T, e
X

RAS SIGNALING DOWNSTREAM OF \ /
NF1LOSS-OF-FUNCTION VARIANTS
SIGNALING BY MAPZK MUTANTS
MRAS,
LYWHAB | sHoc2, Pa MAPK1,3 P QW
PP1
RAF l
MAPK1,3 MAPK1,3,
—
SIGNALING BY MRAS-COMPLEX MUTANTS MAPK1,3 MAPK1,3

reactc
DISEASE

Figure 2.12: Oncogenic MAPK signalling pathways extracted from the web
service reactome pathway viewer [121]

2.7.5 Overrepresentation statistical analysis

In addition to the annotation of the extensive list of genes or gene products
derived from high-throughput sequencing, the overrepresentation statistical
analysis is a prevalent and indispensable analytical tool that provides insights
into whether the groups of genes or proteins that collaborate in a biological
process or pathway are statistically overrepresented [122, 123]. This is of par-
ticular importance in many subsequent analyses, such as differential gene
expression [124]. From the list of genes that are either upregulated or down-
regulated, the enrichment analysis can reveal whether there is a significant
subset of genes that function together in a pathway in one condition, but
which is essentially insignificant in the other condition. Consequently, this
analysis can provide a substantial amount of information regarding a set of
genes that may be responsible for disease progression or the development and
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differentiation between conditions. There are many online tools that perform
enrichment analysis, such as Gene Ontology Enrichment Analysis, which is
linked to PANTHER [125], enrichR [126], gProfiler [127], etc. In this section
you will find a detailed description of how this test works.

The input list for the overrepresentation analysis is comprised of a list
of genes or gene products from a population, which is uploaded into the tools.
The list may comprise significant genes or genes that are either upregulated or
downregulated as a result of an experiment. The ontology or pathway terms
are then annotated for the uploaded list. Subsequently, the uploaded data
is divided into groups corresponding to specific biological processes, molec-
ular functions, cellular components, or pathway terms. In addition to the
uploaded list, a reference list of genes or gene products is also provided. The
specified reference list may be the population from which the subset of genes
are typically derived. Subsequently, a binomial test is employed to investigate
whether the uploaded genes or gene products belonging to the classified terms
are statistically overrepresented or under-represented in comparison to the
reference list. The null hypothesis (Hp) and the alternative hypothesis (H4)
of the binomial test employed are stated below:

Hy: The observed likelihood of a gene being annotated to a term from the
upload list is the same as that in the reference list.

H 4: The observed likelihood of a gene being annotated to a term from the
upload list is not the same as that in the reference list.

Let us consider M to be the total number of genes in the reference
list and N to be the total number of genes in the input list. The observed
likelihood, p(C), of a gene being annotated to a term C is calculated by the
following equation [128]:

where N (C') refers to the number of genes from the input list that have been
annotated to a term C.

The p-values are subsequently estimated using the probability of ob-
serving i(C') or more genes (or a greater number, to determine the upper
limit for rejecting Hy) being annotated to a given term C. The formula for
estimation is provided below:

pratue =3 (T ey - pey

A p-value of less than 0.05 indicates that the observed results are not
random and that the annotation of the input list of genes differs from that of
the reference list. In the event that the number of observed genes is greater
than the expected number of genes (i.e. the summation from i(C) to N), it is
deemed to be overrepresented. In the event that the number of observed genes
is less than the expected number of genes (i.e. the summation ran from 0 to
i(C)), it is considered to be under-represented. In addition to the estimation of
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p-values using the binomial distribution, other tests are employed, including
the hypergeometric test, Fisher’s exact test, and the chi-squared test, among
others [124, 129].
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Chapter 3
Downstream analysis of
transcriptomic data

This chapter introduces six workflows for identifying and analysing
protein clusters from differential protein-protein interaction (PPI) networks in
healthy and diseased conditions. The workflows were then compared in order
to ascertain which one produced the most biologically meaningful results. The
sections from 3.1 to 3.5 were adapted and expanded from the manuscript from
Thangamurugan, S. and Helms, V. (2024), entitled "Comparing workflows
for combining transcriptomic with protein interaction data", 2024. I was re-
sponsible for the design and implementation of the pipelines, the performance
of computational analysis, and the preparation of the manuscript. Volkhard
Helms provided assistance in the design of the study, the analysis of the data,
and the editing of the manuscript.

3.1 Introduction

Analyzing protein-protein interaction networks (PPINs) is one key area of
modern computational biology. PPINs often contain dense subnetworks or
clusters. These are groups of proteins that interact with each other and con-
certedly play a role in processes such as gene expression, transport, signalling,
apoptosis, and others [130, 131]. Protein clusters may manifest themselves
as transient or permanent protein complexes. Alterations in components of
these clusters, due to mutations or differential expression, can potentially
lead to abnormal interactions and the activation of disease-related pathways
[132]. Over the years, many algorithms have been developed to identify pro-
tein clusters in PPINs [133, 134, 135]. One noteworthy algorithm is called
ClusterOne (Clustering with Overlapping Neighborhood Expansion) [62]. It
employs a greedy-based search based on a cohesiveness score as a heuristic
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to identify protein clusters. The algorithm allows for the overlap of proteins
between clusters, accounting for the multifunctional nature of proteins. It
has been shown that identification and analysis of protein complexes present
opportunities to uncover functional and disease-related pathways, potentially
benefiting the development of targeted therapies [130, 136, 137].

Transcriptional regulation of genes varies between cell types and cell
states, leading to phenotypic, physiological, and even trajectory variations
towards a diseased state [138, 139]. Investigating these variations between
cell types and states provides a profound basis for understanding what dis-
tinguishes healthy from diseased states. In recent years, high-throughput
technologies have frequently been applied to capture active genes, transcripts,
proteins, metabolites and the entire interactome of biological samples. For
example, one often examines the gene expression profiles of two conditions
followed by differential expression analyses to identify the differentially ex-
pressed (DE) genes in diseased conditions [140]. This is done to get insights
into potential therapeutic targets, to monitor disease progression, and to iden-
tify biomarkers for diagnosis. To enhance the functional interpretation of the
set of DE genes, some studies have annotated interactions between the pro-
teins encoded by these DE genes by interactome data taken for example from
the popular STRING database [26]. STRING compiles compendia of functional
and/or physical interactions in many organisms. The network then comprises
nodes representing the DE genes and edges representing the protein interac-
tions between the encoded proteins as recorded in the STRING database. By
identifying clusters in this network, one aims to identify groups of proteins
that are associated with the rewired biological functions and possibly with
disease-related pathways.

The complete PPIN or interactome of a multi-cellular organism pro-
vides an overview of all protein interactions captured in any cells or samples
of this organism. In fact, in each cell type or condition, only a subset of these
interactions is active. When comparing two cell states such as healthy and dis-
eased states, a number of protein interactions may be “rewired” (e.g. gained or
lost) either due to differential expression of the respective genes or alternative
splicing. Then, some binding partners may not be available for interaction in
that condition. Consequently, examining the full interactome is not suitable
for identifying the rewiring events that distinguish the conditions of cells.
Instead, previous studies pruned the interactome to those genes expressed in a
specific condition and cell state [141, 142]. For example, our group developed
a tool, PPIXpress, that constructs condition-specific PPINs by pruning the in-
teractome of an organism based on provided gene/transcript expression data
[143, 144]. PPIXpress has been used to construct condition-specific networks
for healthy and diseased states. To facilitate a comparison of the networks
and estimate rewiring events between the two states, our group developed
another tool, PPICompare [145]. PPICompare performs pairwise comparison
by assigning the networks of one state, for example, the healthy state, as a
reference and reports the statistically significant rewired interactions that are
lost or gained in the networks of the other state, for example, the diseased
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state. Finally, the tool generates a differential network that contains all the
significantly rewired events between the two states.

In the past years, two distinct methodologies were established to iden-
tify protein clusters in differential PPI networks. The first strategy starts with
the estimation of differentially expressed (DE) genes, which are subsequently
used as a basis to construct a PPIN. The second entails the construction of
condition-specific networks and subsequent analysis of the differentially ex-
pressed interactions. In this study, we evaluated the comparison of different
workflows when applied to the same case-study dataset, with the objective
of identifying the workflow that yields the most biologically meaningful re-
sults. To this end, six pipelines were tested in this study, comprising three
pipelines following the first technique and three pipelines following the sec-
ond technique. These pipelines were then subjected to cluster prediction on the
networks, with computing enrichment of Reactome pathways in individual
protein clusters being the final step. The main objective was to identify which
pipeline is most effective at accurately elucidating the enriched pathways that
underpin the transition from a healthy to a diseased state.

The accuracy and suitability of the pipelines were evaluated based on a
number of criteria. Firstly, an analysis was conducted on the global properties
of the networks. Secondly, the degree of overlap between the predicted clusters
and reported protein complexes was estimated. Finally, we analysed which
pipeline was most effective at determining pathways that are most closely
related to its biological state.

3.2 Materials and method

3.2.1 Gene expression dataset

An RNA sequencing (RNA-seq) dataset comprising 80 samples [146] was re-
trieved from the GEO database (GSE112509). It includes 57 primary melanoma
samples (M) and 23 benign melanocytic nevi samples (N) biopsied from
patients. We kept the split of the original authors into two transcriptomic
subtypes of melanocytic nevi (13 samples of N1 and 10 samples of N2) and
melanoma (26 samples of M1 and 31 samples of M2).

3.2.2 Pipelines

Melanoma and nevi data were processed using six distinct software pipelines
that each generate a differential analysis of PPI inferred from gene expression
data, as illustrated in Fig 3.1. Pipelines 0, I and II follow a workflow that is
similar to that of conventional pipelines. Initially, the gene expression data
underwent pre-processing and normalization, after which a list of signifi-
cantly differentially expressed genes between melanoma and nevi samples
was generated. This was estimated either employing the Bioconductor R
package DEseq2 [101] or a t-test relative to a threshold called TREAT [102].
Subsequently, we inferred interactions between the proteins encoded by the
significantly differentially expressed genes using the databases STRING or
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Figure 3.1: Summary of the six pipelines used to process the 80 samples of
melanoma and nevi RNA-seq data.

IntAct [28]. Consequently, a network was constructed comprising the sig-
nificantly differentially expressed genes that interact with each other on the
proteome level. In contrast, pipelines IV, V and VI employ an inverse or-
der of processing. Initially, condition-specific protein interaction networks
were constructed using the tool PPIXpress, and then differentially abundant
protein interactions were estimated using the tool PPICompare. In addition,
pipelines IV and V refined the identification of differentially abundant protein
interactions by additionally incorporating the criterion that at least one of the
involved genes must be significantly differentially expressed.

In the second-last step of each pipeline, significant clusters were identi-
fied in the networks using the algorithm ClusterONE inside Cytoscape [44].
Finally, pathway enrichment analyses were conducted on these clusters in
order to gain insight into the biological processes and pathways associated
with each cluster.

In this study, we conducted enrichment analyses using the Gene Ontol-
ogy tool, accessible via the following http://geneontology.org/. Itis
linked to the PANTHER classification system [125], which is a comprehensive,
annotated library of gene families and protein-coding genes in a genome.

3.2.3 PPIXpress

PPIXpress is a platform-independent JAVA-based tool to infer condition and
cell-specific PPINs based on respective gene-level or transcriptome-level ex-
pression data. The tool requires as inputs gene-level or transcript-level ex-
pression data of at least one sample and a reference complete PPIN of the
respective species. The tool then infers a PPIN for each specific condition or
transcriptomic sample via a mapping and a subsequent contextualization step.
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Fig 3.2 provides an overview of the methodology.

In the mapping step, the tool evaluates the complete PPIN, which can
be loaded manually by the user or automatically retrieved from the latest
versions of the MENTHA [25] or IntAct databases. Each PPI is annotated with
a corresponding domain-domain interaction (DDI). The longest isoform of
each protein is considered, as it is typically the principal variant identified
in experimental analyses and databases [147, 148]. Proteins are identified by
querying UniProt [149], and this information is used to access the Ensembl
[150] database for gene, protein, and transcript annotations. Pfam domain
associations of each transcript are determined via Pfam domain annotation
database [151] and InterProScan [152]. Subsequently, physical interactions be-
tween domains are retrieved from high-confidence data in the DOMINE [153]
and IDDI [154] databases, complemented by info from 3did [155] and iPfam
[156]. Consequently, PPIXpress generates a corresponding reference domain-
domain interaction network (DDIN). If a specific PPI cannot be mapped to a
known DDJ, artificial domains are added to the interacting proteins to ensure
a complete association between the protein-level and domain-level reference
networks.

In the contextualization step, gene or transcript-level expression data
is utilized. The user sets a lower threshold for the minimum abundance
required for a gene or transcript to be considered. Here, we set the threshold
to the smallest possible value of 1 read mapped to a gene. For gene-level
expression data, genes expressed above or at this threshold are mapped to their
longest coding transcripts via Ensembl, with these transcripts representing the
associated proteins. The domain annotations and domain-domain interactions
from the mapping step are used to infer a pruned, sample-specific domain-
domain interaction network (DDIN) based on the expression data. Proteins
not supported by domains are removed from the reference PPIN, generating
a sample-specific PPIN. For transcript-level data, the tool performs the same
mapping of proteins and node pruning process. Additionally, edge pruning is
conducted by removing edges in the reference PPIN that lack support from
the sample-specific DDIN, resulting in a sample-specific PPIN.

3.24 PPICompare

Each sample-specific PPIN generated by PPIXpress reflects the PPI network
in one sample of a particular state. When aiming at identifying the biological
processes that drive a cell towards differentiation or disease, one is interested
in characterizing the rewiring of PPIs between two different states by compar-
ing representative sets of samples for both states. To this end, the JAVA tool,
PPICompare, enables downstream processing of the PPIXpress results. The
tool requires two groups of sample-specific PPINs that can be generated either
by PPIXpress or by other methods. PPICompare then detects the significantly
rewired PPIs between the sample-specific PPINs of the two groups, estimates
the causes for each rewired PPI, and identifies a small set of causes that can
explain all rewired PPIs. This is done essentially in three steps: The first step is
to examine the interactome differences between all pairs of samples between
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Figure 3.2: PPIXpress operates in two stages. In the initial mapping step,
a), the protein nodes (red circles) of the reference PPIN (where black lines
represent interactions between the proteins) are associated with respective
protein domains (small coloured circles on the circumference of the red circles)
yielding a corresponding domain-domain interaction network (DDIN). Artifi-
cial domains (grey rectangles) are introduced when a PPI cannot be mapped to
an underlying DDL. b) represents the contextualisation step, where the sample
expression profile is used to infer a corresponding sample-specific DDIN. The
reference PPIN is then pruned by comparison to the sample-specific DDIN to
create a subnetwork, the sample-specific PPIN.

groups. The second step is to assess the statistical significance and causes of
each rewiring event. Finally, a small set of likely changes in the transcriptome
is identified that explain all detected rewirings. These steps are illustrated in
Fig. 3.3.

In the first step, one group is designated as the reference group, and
each sample of the second group is compared to each sample of the reference
group. The tool records PPIs lost or gained in the second group compared to
the reference group, creating a differential network for each pairwise compar-
ison. Edges in this network are annotated with +1 if a PPI is present in the
second group but absent in the reference group, and -1 if a PPI is absent in the
second group but present in the reference group. Summing these differential
networks yields a global differential network, where edge annotations reflect
the total number of changes for each PPI between the two groups. The pro-
portion of rewiring events in each pairwise comparison is quantified using
the Jaccard distance [157], referred to as the rewiring probability (Prey ;). The
overall rewiring probability between the two groups (P, ) is the average of
all individual pairwise probabilities:
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In the second step, PPICompare identifies statistically significant rewired
interactions using a one-tailed binomial test, with p-values corrected for multi-
ple testing via the Benjamini-Hochberg method at a user-defined FDR thresh-
old. The tool outputs these significant rewired interactions as a differential
network. It also reads the ‘'major_transcript’ file from each sample, an output
from PPIXpress, to determine transcriptomic changes underlying the differen-
tial interactions. This identifies whether rewiring is due to differential gene
expression, alternative splicing, or both.

The final step involves identifying a small set of transcriptomic changes
explaining all rewiring events. The significant rewiring events and their causes
form a bipartite graph, with reasons for rewiring connected to corresponding
events. Each reason is weighted based on the number of significant rewiring
events it causes and the number of pairwise comparisons in which these
events occur. A greedy algorithm [158] is then used to solve this set coverage
problem, estimating a minimal subset of reasons that explain all rewiring
events.
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Figure 3.3: Workflow of PPICompare, where a) represents the examining
of interactome differences between all pairs of samples between groups, b)
represents assessing the significance and causes of each rewiring event and c)
represents identifying a small set of likely changes that explain all the observed
rewirings.
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3.3 Results and discussion

3.3.1 Overall results

We executed all 6 pipelines for three different comparisons, either nevi sub-
type N1 samples against melanoma subtype M1 samples, nevi subtype N2
samples against melanoma subtype M2 samples, or all nevi samples against
all melanoma samples (N vs M), respectively. An overview of the results from
this analysis is presented in Table 3.1, namely the number of significant DE
genes, the number of nodes and interactions in the differential networks and
the number of clusters predicted in the differential network by ClusterONE.
Pipelines II and IV, which incorporate the TREAT method, identified far fewer
significant DE genes than the other pipelines. This resulted in smaller differen-
tial networks with fewer proteins and a smaller number of clusters identified.
In pipelines III to V, which are based on the construction of PPINs using
PPIXpress prior to DE analysis, more clusters were identified, but these were
smaller in size in comparison to pipelines 0 to II. In the differential networks,
the number of interactions determined using IntAct and STRING in pipelines
0 and I was considerably larger than the number of interactions constructed
by PPIXpress and PPICompare. This may be one reason for the larger clusters
found by pipelines 0 to IL
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Then, we split up the differential networks generated by the six pipelines
into two networks based on the direction of expression regulation and rewirings
of protein interactions. For pipelines 0, I and II, the differential network was
split based on the direction of protein regulation. One of the networks was
formed by the significantly upregulated proteins and the other one by the
significantly downregulated proteins. For pipelines III, IV and V, the differ-
ential networks were split based on rewiring events. All protein interactions
that were expressed exclusively in the melanoma group were considered
as one network, and all interactions that were expressed exclusively in the
melanocytic nevi group were considered as another network. On all these
new sub-networks, cluster prediction was performed using ClusterONE. In
pipelines 0, I and 1I, these clusters represent clusters that are upregulated or
downregulated in melanoma. In pipelines III, IV and V, represent clusters that
are exclusively found or lost in melanoma. An overview of these results is
provided in Tables 3.2 and 3.3.

Pipeline 0 Pipeline I Pipeline II
NlvsMl N2vsM2 NvsM NlvsMl N2vsM2 NvsM | NlvsMl N2vsM2 NvsM
10,103 3,963 12,318 10,103 3,963 12,318 1,919 29 1,534

No. of sig
melanoma

3,774 1,029 4,596 3,774 1,029 4,596 711 11 824
ficantly downregulated proteins in
1,630 476 1,958 1,630 476 1,958 444 8 510
ﬂiﬁ;‘e’fj;tﬂ:‘;‘l‘i}("m)d““""Eg“l“‘ed el 1086/ 260/ 1341/ 1,626/ 475/ 1,953/ 443/ 8/ 501/
- ° ) 10,262 2,316 15,315 9,294 1,133 13,835 5,982 3 6,708
9 13 10 13 16 10 8 1 9
nt clusters in the downregulated
k. 21 5 18 37 23 52 12 0 18
6,329 2,934 7,722 6,329 2,934 7,722 1,208 18 710
of significantly upregulated proteins in
melanoma 3,799 1,340 4,097 3,799 1,340 4,097 486 12 341
NewoRkwith upregulated proteins (nodes/inter- [NEPRY 854/ 3499/ 3779/ 1332/ 4068/ 484/ 12/ 340/
- 47,443 5,640 54,287 73437 14,081 81,805 955 0 380
9 12 10 11 10 9 10 0 12
ficant clusters in the upregulated pro-
tein network. 12 35 18 17 12 19 25 0 20

Table 3.2: Prediction of clusters in upregulated and downregulated genes in
melanoma from pipelines 0, I and II.

Pipeline IIT Pipeline IV

NlvsMl N2vsM2 NvsM NlvsMl N2vsM2

Differential network 10,973/ 10,319/ 9,687/ 3,350/ 373/ 3,288/ 8,160/ 6,104/ 8,095/
interactions) 34,504 28,591 25,224 4,487 363 4,094 18,441 11,541 17,558

s found only in 7,687/ 8,993/ 7,577/ 2,068/ 70/ 2,645/ 5973/ 5132/ 6,401/
nodes/interactions) 16,369 20,322 15,263 2,416 60 3,143 10,373 7,872 11,139

eter 13 13 12 17 4 15 13 14 14

e et 111 115 17 13 3 120 146 168 146
ons found only in nevi 7,977/ 4,609/ 5,500/ 1,747/ 307/ 940/ 4,640/ 2,116/ 3,993/

acti 18,135 8,269 9,961 2,071 303 951 8,068 3,669 6,419

meter 11 12 12 18 2 16 12 16 13

g . nt cluster from the nevi 133 17 137 9% 0 61 136 54 136

only network

Table 3.3: Prediction of clusters by pipelines III, IV and V for networks
that contain interactions exclusively detected in melanoma or exclusively
in melanocytic nevi networks.

In both sub-network conditions, pipelines III to V generated networks
with larger diameters than those obtained by pipelines 0 to II. This indicates
that the networks constructed by pipelines III to V are less interconnected
than those generated by pipelines 0 to II. This may also explain the tangible
difference in the number of clusters identified. In both sub-network condi-
tions, the number of clusters identified in networks from pipelines III to V is
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considerably larger than the number of clusters identified in networks from
pipelines 0 to II.

3.3.2 Overlap of clusters with known complexes

Next, we compared the clusters identified in the differential networks to
reported protein complexes collected at the Complex Portal [159] by consid-
ering the Jaccard similarity score. In pipeline IV when N1 samples were
compared against M1 samples, Cluster 48 contained all elements of the known
chaperonin-containing T-complex and had the highest similarity score among
all clusters of 0.666. Previous studies indeed indicated that this chaperonin-
containing T-complex is highly expressed in melanoma tissues [160]. Fur-
thermore, silencing of this complex was shown to influence multiple cancer-
related pathways, including cyclin and cell cycle regulation signalling, PPAR-
alpha/RXR-alpha signalling, RhoGDI signalling and PPAR signalling [161].
Table 3.4 lists the five clusters with the highest similarity scores. It was shown
that neuronal nicotinic acetylcholine receptors and amiloride-sensitive sodium
channel complexes, which exhibit a high Jaccard similarity score, are directly
involved in the progression of melanoma [162]. Nicotine acetylcholine recep-
tors are involved in melanoma metastasis through NOTCHI1 signalling and are
also responsible for PI3K/AKT and ERK signalling pathways [163]. Amiloride-
sensitive sodium channel complexes are highly expressed in melanoma cells
and promote cell migration and proliferation [164].

No. of elements

; Size P-value Size A
Predicted similar be- Jaccard
P . of pre- of pre- Name of reported of re- . o a
cluster Pipeline ~ Comparison . . tween predicted  similar
dicted dicted cluster ported
number and reported score
cluster cluster cluster
clusters
Chaperonin-
48 v N1 vs M1 12 0.00065  containing T 8 8 0.666
complex

Neuronal nicotinic
acetylcholine recep-
tor complex, alpha3-
alpha5-beta4
Neuronal nicotinic
7 0 NivsMl 5 0.041 acetylcholine recep- 3 0.6
tor complex, alpha3-
alpha6-beta4
Cardiac  Troponin
91 v N1vs M1 5 0.021 3 3 0.6
complex
Amiloride-sensitive
133 v NvsM 5 0.028 sodium  channel 3 05
complex, delta-
alpha-beta-gamma

7 0 N1vs M1 5 0.041

Table 3.4: Clusters predicted by ClusterONE on differential networks are
compared with reported protein complexes. Number of overlapping proteins
and the Jaccard similarity scores are reported. Shown are the top five clusters
with the highest Jaccard similarity scores.

Similarly, we compared the clusters identified from the sub-networks
of up or downregulated proteins with reported protein complexes. The five
clusters with the highest Jaccard similarity scores are presented in Tables 3.5
and 3.6. It has been demonstrated that the E3 ubiquitin ligase complex plays
an essential role in the progression of melanoma and is a promising drug
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target, exhibiting reduced toxicity and enhanced selectivity [165, 166]. The E3
ligase has been demonstrated to influence the BRAF and MAPK pathways,
melanoma metastasis and differentiation [167]. A somatic mutation in one of
the NMDA receptors, GRIN2A, is prevalent in malignant melanoma cells and
was shown to disrupt tumour-suppressing characteristics and increase cell
migration [168]. The NuA4 histone acetyltransferase complex was shown to
be modulated by Inhibitor of growth protein 3 (ING3) to induce apoptosis in
melanoma cells following UV irradiation [169].

No. of elements

Size P-value Size

Predicted . similar be- Jaccard
) - " of pre- of pre- Name of reported of re- o oo
cluster Pipeline  Comparison . . tween predicted  similar

dicted dicted cluster ported
number ) and reported  score
cluster cluster cluster clusters
Chaperonin-
12 v N1vs M1 14 0.0000047 containing T- 8 8 0.57
complex
TRAPP II complex,
58 I NvsM 8 0.0017 TRAPPC?2 variant 10 6 0.5
Amiloride-sensitive
126 I NvsM 5 0028 ~ sodium - channel 3 0.5
complex, delta-
alpha-beta-gamma
TRAPP II complex,
25 I N2 vs M2 8 0.000103 TRAPPC? variant 10 6 0.5
Amiloride-sensitive
56 v NlvsMl 6 0pozg ~ Sodium - channel 3 0.42857

complex, delta-
alpha-beta-gamma

Table 3.5: Clusters predicted by ClusterONE in the sub-networks of downreg-
ulated proteins (from pipelines 0, I and II) and sub-network of interactions
lost in melanoma (from pipelines III, IV and V) were compared with reported
protein complexes. Shown are the top five clusters with the highest Jaccard
similarity scores.

No. of elements

similar be- Jaccard
tween predicted  similar
and reported score
clusters

Size P-value Size
of pre- of pre- Name of reported of re-

Predicted
cluster Pipeline ~ Comparison

dicted dicted cluster ported
number

cluster cluster cluster

GID E3 ubiqui-
tin  ligase com-
plex, RMNDS5A-
RANBP10 variant
NuA4 histone
29 v N1 vs M1 16 0.000055  acetyltransferase 19 11 0.458
complex
CCR4-NOT mRNA
deadenylase com-
plex, CNOT6L-
CNOTY variant
NuA4 histone
66 il N2 vs M2 27 0.018 acetyltransferase 19 14 0.437

complex

NMDA  receptor
81 11 NvsM 7 0.018 complex, GluN1- 3 3 0.428

GIluN2A-GIuN2B

37 v N1 vs M1 13 0.000786 9 7 0.466

14 11T N1 vs M1 16 0.000056 10 8 0.444

Table 3.6: Clusters predicted by ClusterONE in the sub-networks of upreg-
ulated proteins (from pipelines 0, I and II) and sub-network of interactions
newly added in melanoma (from pipelines III, IV and V) were compared with
reported protein complexes. Shown are the top five clusters with the highest
Jaccard similarity scores.
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3.3.3 Pathway enrichment of clusters

Finally, we analyzed the enrichment of Reactome pathways in all individual
clusters predicted from any of the differential networks constructed by the six
pipelines. A comprehensive list of all clusters and their top three significant en-
riched Reactome pathways is provided in the supplementary material (Tables
A.1to A.18). Recent studies have identified a number of key pathways that
are thought to be involved in the progression and development of melanoma.
For instance, the MAPK/ERK signalling pathway is upregulated in response
to mutations in the BRAF and RAS genes, which result in cell proliferation,
migration, and metastasis [170]. WNT signalling pathway is hyperactivated
due to mutations in the encoding components or genes encoding {3-catenin
[171]. The PI3BK-AKT pathway is frequently activated in melanoma, due to
mutations in the AKT1 or PIK3CA genes or changes in the copy numbers of
pathway components [172]. Table 3.7 lists which one of these major signalling
pathways that are associated with the initiation, development and migration
of melanoma, were recovered and enriched in the predicted clusters. Cluster 8
associated with PI3K-AKT signaling was identified by pipeline 0 in the N vs M
comparison. Furthermore, three clusters associated with WNT signalling were
identified by pipeline I. All other clusters listed in Table 3.7 were identified by
pipelines Il to V.

Similarly, Reactome pathway enrichment analysis was performed on
all clusters predicted for the up- or downregulated sub-networks constructed
by the six pipelines. The pathways that are associated with melanoma and
enriched in the predicted clusters are tabulated in Tables 3.8 and 3.9. Nevi are
generally composed of hyper-proliferated melanocytes with activated BRAF
or NRAS oncogenes that showed temporary proliferation but later underwent
oncogene-induced senescence. However, in some cases, the tumour suppres-
sor pathways are inactivated and proliferation-inducing pathways such as
WNT signalling pathways are activated [173]. This can be observed in Table 3.8
where WNT signalling is significantly enriched and upregulated in the protein
clusters detected in melanocytic nevi samples. Canonical WNT signalling reg-
ulates other oncogenic signalling pathways such as PI3K-AKT signalling and
MAPK signalling due to £-catenin stabilization [171]. In summary, pipelines
III to V identified clusters enriched for these signalling pathways in all three
comparisons (N vs M, N1 vs M and N2 vs M2). Pipeline I identified only WNT
signalling, whereas pipelines 0 and II did not yield any hits.

Finally, we need to mention one caveat with regard to Pipeline III,
which initially prompted our decision to carry out this research. When
we initially analyzed the differential networks constructed by pipeline III,
PPICompare reported statistically significant rewiring of the interactions of
P35354 (Prostaglandin G/H synthase 2 (PTGS2)) with P04439 (HLA class
I histocompatibility antigen, A alpha chain), Q55007 (Leucine-rich repeat
serine/threonine-protein kinase 2 (S5TK2)), 014939 (phospholipase D2) and
QI9HOVI (VIP36-like protein) when N1 was compared with N2, with N1 as
the reference group. This was labelled by PPICompare to be due to the loss of
P35354 in N2. Similarly, the same interactions were rewired when comparing
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Pathway Pipeline Nevi vs ' cypster No. Reactome Pathways Adjusted P-
Melanoma ) value

TGF-B8

! . I N2 vs M2 33 13 Downregulation of TGF-beta receptor 6.320e-04
signalling signalling (R-HSA-2173788)
WNT = sig- | | Nvs M 9 288 Signalling by WNT (R-HSA-195721) 1.120e-14
nalling TCF dependent signalling in response to WNT 4.510e-14
(R-HSA-201681)
Signalling by WNT (R-HSA-195721) 5.790e-11
I NvsM 10 347 TCF dependent signalling in response to WNT 1.610e-10
(R-HSA-201681)
. WNT ligand biogenesis and trafficking 1.570e-20
III NvsM 25 19 (R-HSA-3238698)
Signalling by WNT (R-HSA-195721) 3.170e-11
v N vs M 123 9 Negative regulation of TCF-dependent signalling | 4 580e-02
by WNT ligand antagonists (R-HSA-3772470)
. WNT ligand biogenesis and trafficking 2.530e-09
v NvsM & n (R-HSA-3238698)
Signalling by WNT (R-HSA-195721) 2.190e-04
Signalling by WNT (R-HSA-195721) 1.630e-12
! Nlvs Ml 15 262 TCF dependent signalling in response to WNT 2.360e-10
(R-HSA-201681)
WNT ligand biogenesis and trafficking 7.440e-17
I N1 vs M1 72 13 (R-HSA 3238698)
Signalling by WNT (R-HAS-195721) 2.120e-09
v N1 vs M1 7 47 Repression of WNT target genes 5.830e-03
(R-HSA-4641265)
v N1vs Ml 117 7 Signalling by WNT (R-HSA-195721) 1.820e-03
WNT ligand biogenesis and trafficking 1.610e-04
v NilvsMl | 72 7 (R-HSA-3238698)
Negative regulation of TCF-dependent signalling | g 910e-03
by WNT ligand antagonists (R-HSA-3772470
y & &
M l; sig” | NvsM 3 46 Oncogenic MAPK signalling (R-HSA-6802957) | 4.32¢-02
v N1vs M1 1 36 Signalling by MAP2K mutants (R-HSA-9652169) | 2.290e-02
111 N2 vs M2 37 18 P38MAPK events (R-HSA-171007) 4.270e-02
111 N2 vs M2 67 16 p38MAPK events (R-HSA-171007) 3.770e-02
\Y; N2 vs M2 73 5 IFNG signalling activates MAPKs 3.400e-03
(R-HSA-9732724)
P'BK'A}KT 0 Nvs M 8 18 Erythropoietin activates Phosphoinositide- 1.490e-04
signalling 3-kinase (PI3K) (R-HSA-9027276)
i N vs M 74 24 MET activates PI3K/AKT signalling 1.950e-02
(R-HSA-8851907)
v Nvs M 111 13 PIP3 activates AKT signalling (R-HSA-1257604) | 1.230e-02
Negative regulation of the PI3K/AKT network 3.220e-06
v NvsM 145 5 (R-HSA-199418)
PI5P, PP2A and IER3 Regulate PI3K/AKT 4.790e-06
Signalling (R-HSA-6811558)
v Nvs M 18 23 MET activates PI3K/AKT signalling 8.490e-03
(R-HSA-8851907)
v N1vs M1 70 13 PIP3 activates AKT signalling (R-HSA-1257604) | 1.230e-02
\Y; N1 vs M1 19 25 MET activates PI3K/AKT signalling 1.020e-02
(R-HSA-8851907)
Il N2vsM2 | 83 1 PI5P, PP2A and 1ER3 Regulate PI3K/AKT 6.5500-03
Signalling (R-HSA-6811558)
v N2 vs M2 60 13 AKT phosphorylates targets in the nucleus 1.420e-02
(R-HSA-198693)
BRAF Signalling by BRAF and RAF1 fusions 4.080e-02
signalling | I NvsM 3 46 (R-HSA-6802952)
Signalling by moderate kinase activity 4.780e-02
BRAF mutants (R-HSA-6802946)
cKITSCE |y NivsM1 | 34 18 Signalling by SCF-KIT (R-HSA-1433557) 2230e-03
signalling
RAS  sig- . CREBI phosphorylation through NMDA
nalling v NvsM 50 10 receptor-mediated activation of RAS signalling 3.180e-02
(R-HSA-442742)
111 N2 vs M2 67 16 Signalling to RAS (R-HSA-167044) 4.940e-02
PTEN PTEN Regulation (R-HSA-6807070) 3.300e-03
signalling v NvsM 1 13 Regulation of PTEN gene transcription 8.060e-03
(R-HSA-8943724)
PTEN Regulation (R-HSA-6807070) 3.300e-03
v Nlvs Ml 70 13 Regulation of PTEN gene transcription 8.060e-03
(R-HSA-8943724)

Table 3.7: Reactome pathways associated with the development of melanoma
that are enriched in protein clusters identified in differential networks.

N2 with M2 groups, using N2 as the reference group. This was labelled by
PPICompare to be due to the gain of P35354 in M2. This observation suggests
that P35354 is either absent or expressed at low levels in the N2 samples.
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Pathway Pipeline NEH V0 | G, | S Reactome Pathways Adjusted P-
¥ Melanoma value

TGE-R il N1vs M1 26 20 Signalling by TGFB family members 6.370e-03
signalling (R-HSA-9006936)
WNT  sig- I Nvs M 40 50 Signalling by WNT (R-HSA-195721) 8.740e-10
nalling TCF dependent signalling in response to WNT 6.620e-09
(R-HSA-201681)
WNT ligand biogenesis and traffickin 6.440e-18
m NvsM 2 13 (RHSA-3238698) ¢
Signalling by WNT (R-HSA-195721) 1.720e-09
i NvsM 136 5 Signalling by WNT in cancer (R-HSA-4791275) 3.400e-02
WNT ligand biogenesis and traffickin; 4.600e-05
v NvsM o 5 (R—HSA%3238698§ &
Signalling by WNT (R-HSA-195721) 2.470e-02
WNT ligand biogenesis and traffickin; 2.480e-18
I N1 vs M1 29 12 (RHS A%3238698§ g
Signalling by WNT (R-HSA-195721) 6.710e-10
v N1 vs M1 4 39 Repression of WNT target genes 1.620e-03
(R-HSA-4641265)
v N1 vs M1 61 8 Signalling by WNT (R-HSA-195721) 3.600e-03
WNT ligand biogenesis and traffickin, 5.490e-04
v N1 vs M1 90 10 (R-HS Ag_3238 698§ &
Signalling by WNT (R-HSA-195721) 1.060e-02
WNT ligand biogenesis and trafficking 9.1806-05
\4 N1vs M1 88 6 (R-HSA-3238698) :
Negative regulation of TCF-dependent signalling 6.370-03
by WNT ligand antagonists i
(R-HSA-3772470)
1 N2 vs M2 21 6 Signalling by WNT (R-HSA-195721) 9.070e-06
Negative regulation of TCE-dependent signalling | 6.750e-05

I N2 vs M2 68 9 by WNT ligand antagonists
(R-HSA-3772470)

Signalling by WNT in cancer (R-HSA-4791275) 4.420e-04
Signalling by LRP5 mutants (R-HSA-5339717) 2.190e-03

i N2 vs M2 115 5 Signalling by WNT in cancer (R-HSA-4791275) 3.400e-02
Vv N2 vs M2 53 6 Signalling by WNT in cancer (R-HSA-4791275) 3.390e-02
MAPK sig- | |y N1 vs M1 2 40 Signalling by MAP2K mutants (R-HSA-9652169) | 1.890e-02
nalling Oncogenic MAPK signalling (R-HSA-6802957) 2.460e-02
C,_KIT_SCF v NvsM 40 21 Signalling by KIT in disease (R-HSA-9669938) 1.190e-02
signalling
Iﬂ‘ﬁlsmg S8 | v NvsM 70 17 MET activates RAS signalling (R-HSA-8851805) | 4.610e-02
v Nvs M 77 1 CREB1 phosphorylatlgn ﬂ:lrough NMDA 3.8800-02
receptor-mediated activation of
RAS signalling (R-HSA-442742)
v Nvs M 131 10 CREB1 phosRhorylatlgn through NMDA 1.0400-04
receptor-mediated activation of
RAS signalling (R-HSA-442742)
I N1 vs M1 95 30 RAS signalling downstream of NF1 loss-of- 3.950e-02
function variants (R-HSA-6802953)
m N1 vs M1 122 8 CREB1 phosPhorylat19n through NMDA 2.3806-02
receptor-mediated activation of
RAS signalling (R-HSA-442742)
PTEN PTEN Regulation (R-HSA-6807070) 6.2300-03
signalling v NvsM o 15 Regulation of PTEN gene transcription 1.280e-02
(R-HSA-8943724)
PTEN Regulation (R-HSA-6807070) 1.070e-02
v NLvs Ml 8 7 Regulation of PTEN gene transcription 1.900e-02

(R-HSA-8943724)

Table 3.8: When comparing transcriptomic samples from melanocytic nevi
with melanoma samples, Reactome pathways associated with the develop-
ment of melanoma were enriched in protein clusters identified in the sub-
networks of downregulated proteins in melanoma (from pipelines 0, I and II)
or in the sub-networks of interactions lost in melanoma (from pipelines III, IV
and V).

However, the DisGeNET database documents that PTGS2 shows a significant
association with melanocytic nevi [174]. Hence, we conducted a meticulous
investigation of the expression level of this protein and questioned why it was
flagged by PPICompare. We examined the gene expression profile of PTGS2 in
all groups, with N2 samples exhibiting a considerably high expression level of
PTGS2 (Fig: 3.4). This suggests that the identified “reason” for the rewiring of
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TGF-8 1 N vs M 48 14 Downregulation of TGF-beta receptor signalling | 578E-04
signalling (R-HSA-2173788)
v N vs M 110 32 TGF-beta receptor signalling activates SMADs 2.98E-02
(R-HSA-2173789)
1 N1 vs M1 66 6 TGF-beta receptor signalling activates SMADs 3.59E-02
(R-HSA-2173789)
ot N2 vs M2 63 12 Downregulation of TGF-beta receptor signalling | 3 34g-04
(R-HSA-2173788)
io- TCF dependent signalling in response to WNT -
xll\lgg S8 g N1 vs M1 8 151 (R_Hspfizmég]) & 8 P 642805
Deactivation of the beta-catenin transactivating 1.15E-04
complex (R-HSA-3769402)
% N1 vs M1 32 20 Repression of WNT target genes 3.75E-04
(R-HSA-4641265)
MAPK sig- | 1r Nvs M 50 18 IFNG signalling activates MAPKs 4.61E-02
nalling (R-HSA-9732724)
v N vs M 95 10 IFNG signalling activates MAPKs 1.53E-02
(R-HSA-9732724)
v N vs M 113 9 IFNG signalling activates MAPKs 1.22E-02
(R-HSA-9732724)
v N1 vs M1 8 33 Oncogenic MAPK signalling (R-HSA-6802957) 2.25E-02
\ N2 vs M2 75 5 IFNG signalling activates MAPKs 3.40E-03
(R-HSA-9732724)
PBK-AKT | |y N vs M 53 2% MET activates PI3K/AKT signalling 1.67E-02
signalling (R-HSA-8851907)
Negative regulation of the PI3K/AKT network N
v NvsM 91 9 (R-%ISA-199§118) 371E07
PI5SP, PP2A and IER3 Regulate PI3K/AKT 5.10E-07
Signalling (R-HSA-6811558)
v N vs M 19 23 MET activates PI3K/AKT signalling 8.49E-03
(R-HSA-8851907)
I N1 vs M1 29 30 MET activates PI3K/AKT signalling 1.53E-02
(R-HSA-8851907)
\ N1 vs M1 27 2 MET activates PI3K/AKT signalling 1.67E-02
(R-HSA-8851907)
\ N2 vs M2 57 13 AKT phosphorylates targets in the nucleus 1.42E-02
(R-HSA-198693)
PTEN - PTEN Regulation (R-HISA-6807070) 2OFA
signalling v N2vs M2 46 2 Regulatiogn of PTEN gene transcription iiég_gg
(R-HSA-8943724)

Table 3.9: When comparing transcriptomic samples from melanocytic nevi
with melanoma samples, Reactome pathways associated with the develop-
ment of melanoma were enriched in protein clusters identified in the sub-
networks of upegulated proteins in melanoma (from pipelines 0, I and II) or
in the sub-networks of interactions only found in melanoma (from pipelines
II, IV and V).

interactions involving P35354 due to the loss of the protein is not valid. In the
N2 group, one of the samples exhibited zero gene expression levels for P35354.
When PPICompare was applied to compare N1 samples with N2 samples, 130
pairwise comparisons were performed between the samples of the two groups
(13 N1 melanocytic nevi samples, 10 N2 melanocytic nevi samples). Of these
comparisons, 13 necessarily involved the loss of P35354, which was deemed
to be significant in causing a rewiring event. Thus, in pipelines IV and V, we
added an additional criterion for significant rewiring events by additionally
requiring the differential expression of at least one of the binding partners.

3.4 Discussion
The results of our analysis demonstrate that the processing of melanoma

and nevi transcriptomic samples yielded diverse outcomes depending on the
software and pipelines used. Pipelines 0, I and II, where differential expression
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Figure 3.4: Box plot illustrating the associated gene expression levels of PTGS2
in the N1, N2, M1, and M2 groups.

analysis precedes network construction, yielded fewer clusters but they were
fairly large in size. The networks were constructed using either the IntAct or
the STRING databases. STRING comprises both predicted and experimental
protein interaction data, whereas IntAct contains only experimental protein
interaction data. Consequently, the networks constructed using STRING
were more densely connected than IntAct networks. Conversely, pipelines
III, IV and V, where PPI networks are constructed first and then subjected
to differential analyses, yielded more clusters but these were smaller in size.
In pipeline III, the networks were constructed based on the rewiring events
between melanocytic nevi and melanoma samples. In contrast, in pipelines
IV and V, these rewiring events were considered significant only if at least
one of the binding partners was also significantly differentially expressed.
Table 3.7 (and supplementary tables A.10, A.13, A.16) reveals that the clusters
constructed by pipelines III, IV and V exhibit a greater degree of enrichment
with specific Reactome pathways that are characteristic of melanoma initiation,
development and metastasis. The majority of clusters predicted by pipelines
0, I and II were not enriched with pathways specific to melanoma progression.
This may be attributed to the fact that certain supportive proteins that bind to
other differentially expressed proteins may play a role in melanoma-related
pathways, although they may not necessarily be differentially expressed.

We found that analysis of sub-networks provided a more detailed
understanding of which clusters are upregulated, downregulated, exclusively
found or lost in melanoma. The supplementary tables A.2, A.3, A.5, A.6 etc,,
also include enrichment analyses of the clusters, which provide insight into the
Reactome pathways that lead melanocytic nevi cells to develop into melanoma
cells. For instance, clusters predicted to be responsible for WNT signalling
were found to be upregulated and exclusively present in nevi samples. This
matches the findings of previous studies that demonstrated a crucial role
of WNT signalling in increasing proliferation and undermining senescence
signalling [171, 173]. This signalling pathway is responsible for the activation
of one of the most crucial melanoma oncogenes, Microphthalmia-associated
Transcription Factor (MITF), through £3-catenin.
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In conclusion, we found it beneficial to separately analyze PPINs of
upregulated or downregulated interactions. This approach led to the identifi-
cation of protein clusters that were more meaningful and better interpretable
than when analyzing the differential PPI network. The utilization of TREAT
in the context of PPI rewiring is not recommended. The PPIXpress and PPI-
Compare tools, in combination with DEseq2, were found to be an effective
approach for the identification of compact protein clusters that exhibited
good overlap with known protein complexes and meaningful enrichment of
pathways.
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Chapter 4

Downstream analysis of proteomic
data

4.1 Introduction

In this chapter, the section 4.3.1, was adapted from the submitted manuscript
from J. Dudek, T. Faidt, C. Fecher-Trost, S. Thangamurugan, P. Bayenat, S.
Traut- mann, A. Holtsch, F. Miiller, V. Helms, K. Jacobs, and M. Hannig (2024),
entitled "Synthetic hydroxyapatite — a perfect substitute for dental enamel in
biofilm formation studies". I was responsible for the bioinformatics analysis,
which entailed qualitative analysis, statistical similarity tests, the writing of the
corresponding methods, and the preparation of visualisations for the results
of the manuscript. I was also responsible for describing the computational
results in this chapter. Johanna Dudek was responsible for the design of the
project. She also provided assistance in the planning of the data analysis.
The section, 4.3.2, was adapted from the manuscript from S. Trautmann, S.
Thangamurugan, C. Fecher-Trost, J. Dudek, V. Flockerzi, V. Helms, and M.
Hannig, "Snapshot of the seconds-pellicle - first insights in its ultrastructure,
proteomic composition and changes over time". I was responsible for the
bioinformatics data analysis. Additionally, I drafted the initial versions of
the corresponding method sections and prepared the relevant figures for the
manuscript. I was also responsible for describing the computational results
in this chapter. Simone Trautmann was responsible for the design of the
project and also provided assistance in the planning of the data analysis. The
section 4.3.3, describes unpublished research work carried out by myself in
collaboration with Dr Lilia Lemke. I was responsible for the bioinformatic
analysis, and wrote this subchapter. Dr. Lilia lemke assisted me with the
design and planning for data analysis.

In the buccal cavity, shortly after teeth have been cleaned, a protein

63
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film, known as the salivary pellicle, is actively formed on the surface of the
oral cavity. The film serves to prevent the formation of tartar deposits and to
protect the teeth from acid-producing microorganisms. This pellicle functions
as a physical barrier, preventing the erosion and demineralisation of the teeth
[175]. A number of specific proteins present in saliva undergo adsorption as
a result of electrostatic calcium-phosphate ionic interaction, including glyco-
proteins, albumin, mucin, proline-rich proteins, cystatins, and so forth [176].
The adsorption of these proteins serves as the initial layer of the film, thereby
initiating the formation of the pellicle. The formation of this layer occurs
within a timeframe of 30 seconds to 3 minutes. Furthermore, additional inter-
action forces, including Van der Waals and hydrophobic interactions, exert
a considerable influence on protein adsorption, thereby contributing to the
formation of the initial layer of the pellicle [177]. Subsequently, further interac-
tions occur between the salivary proteins and the adsorbed proteins, resulting
in the adsorption of additional proteins and macromolecules, including lipids
and carbohydrates, onto the film. This results in the formation of a pellicle
matrix comprising a dense basal layer and a globular outer layer [178, 179].
This layer is formed within a timeframe of 30 to 120 minutes [180]. As time
progresses, the continually expanding outer layer forms a complex ecosystem
that provides numerous binding sites for microorganisms to adhere directly,
thus facilitating the development of dental bacterial biofilms [181]. These
biofilms can contain over 700 distinct bacterial species [182].In unfavourable
conditions, these bacteria may become pathogenic, leading to dental diseases
such as caries, gingivitis and periodontitis [183]. Consequently, an in-depth
understanding of biofilm formation is crucial for the prevention of dental
diseases.

The availability of human teeth for the purpose of understanding
biofilms and conducting further research is severely restricted. Hence, dental
studies are predominantly done on other alternative biomaterials. In recent
decades, bovine enamel has been the preferred substitute for human enamel
due to its accessibility and similarity to the latter’s microstructure [184].It
would therefore be optimal to utilise a well-defined, standardised material
that closely resembles human enamel surfaces in order to facilitate the under-
taking of dental preventive research. The composition of human enamel is
95% carbonated hydroxyapatite (HAP), a hard mineral that is tightly organ-
ised in a high-density structure [166]. The HAP pellets, which are prepared
through pressureless sintering of HAP powder, have been investigated as a
potential standardised enamel-like material due to their highly reproducible
properties, which are conducive to the investigation of dental biofilms [185].
In recent years, numerous studies have been conducted to compare HAP with
human enamel. In order to gain insight into the enamel microstructure and
the anti-wear mechanism, a microtribology comparative study was conducted
utilising the nano-scratch technique [186]. The fluoride uptake and the abil-
ity to withstand acid attacks were compared on enamel and HAP surfaces
[187, 188]. Additionally, a comparative study on the adhesion properties of
microorganisms, particularly Staphylococcus aureus, over the biofilms of HAP
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and enamel was conducted [189]. Nevertheless, a comprehensive investiga-
tion of the entire process of pellicle formation, conducted in direct comparison
with enamel under physiological conditions, has yet to be undertaken. In
this study, we conducted a systematic comparative analysis of the pellicle
formation on enamel and HAP, with the aim of determining whether HAP
can be considered a suitable standardised substitute for enamel.

Dental caries is a multifactorial disease, the aetiology of which is the
result of the complex interplay between dietary habits, host buccal hygiene,
and the microbial flora present in the oral cavity. Dental caries is a prevalent
disease affecting both children and adults. Adverse conditions may also result
in chronic effects [190]. The disease is caused by a specific species of bacte-
ria that colonise the enamel surface and overproduce acidic and proteolytic
products, which lead to demineralisation and digestion of the surface organic
matrix [191]. Nevertheless, a closer examination reveals that there is still
much to be discovered about the various aspects of caries formation, includ-
ing the composition, function and erosion properties of their proteinaceous
structures. It is established that the adsorption of salivary proteins facilitates
caries accumulation and lesion formation; [192] however, further study on the
adhesion, surface interactions and protein components would undoubtedly
contribute to a deeper understanding of the demineralisation processes and
the development of more effective preventive measures.

4.2 Materials and method

4.2.1 Datasets

Proteins adsorbed on HAP vs enamel analysis

A total of five consenting healthy human volunteers (male and female) were
recruited for the study. They were required to be free from gingivitis, caries,
periodontal diseases, and any other potential dental diseases that could affect
the composition of oral fluid. The oral pellicles formed in situ on HAP and
enamel surfaces were collected from all the volunteers. The protocols for
collecting the pellicles were approved by the ethics committee of the Medical
Association of Saarland, Germany.

Enamel slabs were prepared from a slit-like space on the ventral surface
of bovine incisors. The surfaces were polished and purified prior to oral expo-
sure. Hydroxyapatite (HAP) pellets were prepared via pressureless sintering
[185] of HAP powder compressed in a stainless steel mould. These pellets
were also polished and purified in a similar manner to the enamel surfaces
prior to oral exposure.

Two hours prior to the implantation of the enamel slab and HAP pellets,
all volunteers were instructed to brush their teeth and rinse their oral cavities.
In order to retrieve the data pertaining to the pellicle proteins adsorbed at 5
seconds and 3 minutes, the enamel slabs and the HAP pellets were placed, in a
similar manner to previous studies [193], in the molar regions of the lower jaw.
To obtain the pellicle protein data at 2, 24 and 48 hours, the enamel slabs and
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HAP pellets were mounted on silicon splints and exposed intraorally. During
the oral exposure period, the volunteers were refrained from using any oral
hygiene or cleaning measures, including toothpaste or other chemical agents.
Subsequently, the splints were removed and stored in a moist environment
outside of the mouth during mealtimes.

The pellicles that had formed on the surfaces of the enamel slabs and
HAP pellets were subjected to a series of chemical processes, including elution,
precipitation, and electrophoresis on a NuPAGE Bis-Tris gel. The peptides
from the gel were isolated and subjected to identification and quantitation
using nano-mass spectrometry.

Proteins in saliva vs proteins adsorbed on pellicle analysis

A total of five consenting healthy non-smoking human subjects (male and
female, aged between 32 and 47 years) were recruited for the study. As
mentioned before, it was imperative that the subjects be free from any potential
dental diseases, such as active caries, gingivitis, and periodontal disease,
which were examined by experienced dentists to ensure that the composition
of oral fluid was not affected. Furthermore, the subjects were selected to
have not consumed any antibiotics, antimicrobial agents, or anti-inflammatory
drugs, nor undergone radiotherapy, within the previous six months. Saliva
samples and enamel pellicles formed on the surfaces of the volunteers’ teeth
were collected at different time points. In this case, the time points were 10
seconds, 3 minutes and 30 minutes. The initial pellicle is the subject of study in
order to gain insight into the functions and processes of interactions between
the enamel and the biomolecules or microorganisms present in oral fluids. The
subsequent formation of pellicles at the 30-minute time point represents the
focus of the study, with the objective of understanding the interactions and
adsorption or desorption patterns of the oral fluid particles in relation to the
initial biofilm of the pellicle. The methodology for the collection of pellicles
was approved by the ethics committee of the Medical Association of Saarland,
Germany.

The enamel slabs were prepared from bovine incisors, specifically from
the labial surfaces. The surfaces were polished in a stepwise manner by means
of wet grinding with abrasive paper in order to increase the grit size, purified,
washed and rehydrated 12 hours prior to intraoral exposure. The enamel slabs
were positioned, in a similar manner to previous studies [193], within the
lower jaw, specifically in the premolar and molar teeth regions, for a period
of 10 seconds, 3 minutes, and 30 minutes, respectively, to allow for pellicle
formation.

In order to circumvent the potential circadian effects of salivary com-
position, the experiments commenced at 9:00 am. Two and a half hours prior
to the commencement of the experiment, the subjects were instructed to re-
frain from consuming food and beverages, and to perform oral hygiene in
accordance with standard practices. This was done to prevent any potential
influence on the samples and to minimise subject variability. Prior to the
collection and intraoral exposure of samples, the oral hygiene procedure was
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followed using dental silk tooth brushing without the use of toothpaste for a
period of 30 minutes.

Following the formation of the pellicle at varying time points, the slabs
were individually rinsed with water and then air-dried. The proteins were
eluted from the slabs by successive ultrasonication in urea/CHAPS buffer at
4°C, followed by incubation in Triton X-100 and subsequent ultrasonication
in RIPA buffer at 4°C. The eluted proteins were precipitated, washed, air-
dried and denatured for gel electrophoresis, after which they were subjected
to identification and quantification. For saliva sample collection, 10ml of
unstimulated saliva was collected on ice over 20 minutes. Subsequently,
90g of each sample were denatured for gel electrophoresis and subjected to
identification and quantification.

Proteins in pellicle and saliva from active caries, treated caries and healthy
conditions

A total of twenty-eight human subjects, comprising both male and female
participants aged between four and six years old, were recruited for the study.
Of the 28 subjects, 11 exhibited active caries, 9 had undergone treatment for
caries, and 8 showed no history of caries. The subjects were evaluated by
experienced dentists and the DMFT (Decayed, Missing due to caries, and
Filled Teeth ) classifcation of the permanent teeth was carried out to classifiy
the characteristics of the subjects. The pellicles that formed on the teeth
surfaces of the subjects were isolated and subjected to further investigation.
The ceramic slabs, each measuring 8 cm?, were prepared and mounted in situ
on a holder. These slabs were then exposed to the oral cavity for a period of
three minutes to allow for pellicle formation, after which they were removed.
The methodology for the collection of the pellicles was approved by the ethics
committee of the Medical Association of Saarland, Germany.

To eliminate the potential for circadian effects on salivary composition,
the experiments commenced at 9:00 am, analogous to the previous studies
[193]. Prior to the commencement of the protocol, the subjects were instructed
to perform oral hygiene without the use of toothpaste. To eliminate the
possibility of the paste exerting an influence on the samples. Furthermore, the
subjects were instructed to refrain from consuming food for a period of two
hours prior to the commencement of the protocol. This would serve to reduce
the degree of subject-specific variability in the data.

Protein abundances

A nano-MS/MS analysis can readily identify the proteins and provide a range
of quantitative data that illustrate the abundance of proteins. These include
scores, hit ranks and the number of peptides per protein. Nevertheless, the
mass spectrometry method is not without its limitations, particularly in regard
to ion suppression effects. The efficacy of droplet formation and evaporation
is susceptible to alteration by the presence of less volatile compounds. This af-
fects the abundance of charged ions in the gaseous phase, thereby influencing
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the detection of protein abundance [194]. It is therefore important to normalise
the protein abundance parameters. One such normalisation method is the
protein abundance index (PAI), in which the number of peptides per protein
is normalised with the theoretical amount of peptides of a protein [195, 196].

N_observed

PAl = ————
N _theoretical

Where the N_observed refers to the number of peptides per protein observed
and N_theoretical refers to the theoretical number of peptides of a protein.

To refine the absolute quantification and incorporate the molar frac-
tion expression, rather than merely relative abundance between proteins, the
exponentially modified PAI (emPAI) was developed. The emPAI values are
proportional to the protein content in the mixture. This is estimated by the
following formula [197]:

emPAI = 10741 — 1

In this study, the emPAI values were used to estimate the percentage of
protein content in molar fractions using;

PAI
Protein content (mole%) = % x 100

Another measure of protein abundance employed in the study is re-
ferred to as spectral abundance. It represents the number of spectra identified
by the spectrometer for a specific peptide or protein [198].

The two abundance values, emPAI and spectral counts were employed
for qualitative and quantitative analysis, including similarity testing, fold
change estimation, and the investigation of physio-chemical properties.

4.2.2 Bioinformatic analysis
Qualitative analysis

The Pandas and Numpy Python libraries were employed for the purpose of
sorting and structuring the proteomics data generated by nano-mass spec-
trometry [199, 200]. The samples were classified and distinguished using
these libraries according to the analyses. In a group or volunteer, a protein is
considered to be expressed if its emPAI value or spectral count is above zero.
Additionally, the Venn Python library was used to create Venn diagrams for
visualising the grouped clusters. This diagram facilitated comprehension of
the number of shared proteins amongst various categories following analysis.

Statistical analysis

In order to ascertain whether the protein abundance data of the samples can
be assumed to follow a normal distribution, thus rendering the computations
more straightforward and universally applicable, the Shapiro-Wilk test [85]
was employed with the null hypothesis that the data is normally distributed.
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The results of the Shapiro-Wilk test indicated that the data from all
samples were not normally distributed. Consequently, to ascertain whether the
replicate data from the samples were comparable, the Wilcoxon signed-rank
[201] test was employed. To evaluate the similarity of the proteins adsorbed
in all volunteers, Mann Whitney U test [202] was conducted.

Fold change analysis

Fold change analysis is a quantitative method that is utilised for the purpose
of evaluating the relative alterations in protein abundance that occur between
two distinct conditions or time points. The ratio of protein abundance values
in the two conditions is used to estimate the fold change. For instance, in
a study comparing protein adsorption between HAP and enamel, the fold
change of a protein can be estimated by calculating the ratio of the protein
abundance adsorbed on HAP to the abundance adsorbed on enamel.
abundace_a

Fold change = bundace b dace b

where abundace_a represents the protein abundance in condition a (for the
above example in HAP) and abundace_b represents the protein abundance in
condition b (in enamel).

If the foldchange is greater than zero, it indicates that the protein in
condition a is upregulated compared to condition b. Similarly, the fold change
is less than zero signifies that the protein in condition a is downregulated in
comparison to condition b. In general, in the context of biological references,
a fold change of equal to or above two is considered to be significantly up-
regulated, where this signifies that the proteins have doubled in condition A
as compared to condition B. Conversely, a fold change of equal or less than
0.5 is considered to be significantly downregulated, which signifies that the
proteins have halved in condition A as compared to condition B.

Given that these significance threshold values fall within a dispropor-
tionate range, it is more straightforward to utilise log foldchange values.

)

= log(abundance_a) — log(abundance_b)

abundace_a
Log fold change = l09<m

The log transformation of the fold change allows for the thresholding of sig-
nificantly up- and downregulated values to be symmetrical. In other words,
alog fold change of 1 or greater indicates that the abundance of a protein in
condition A is twice that of condition B and is therefore significantly upregu-
lated. A log fold change of less than or equal to -1 indicates that the protein
abundance at condition A is half that of condition B, and thus represents a
significant downregulation.

Accordingly, a log fold change analysis was conducted in the present
study to ascertain the discrepancy in protein abundance on disparate surfaces
(HAP vs enamel), at varying time points of the pellicle (proteins adsorbed
at 3 minutes vs 30 minutes) and under disparate conditions (active caries
condition vs healthy conditions).
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Molecular function enrichment analysis

The Ensembl BioMarts database [203] was employed to derive gene names and
identifiers from UniProt accession numbers. The Gene Ontology Molecular
Function terms for the proteins undergoing enrichment analysis were con-
ducted via the following http://geneontology.org/. Itis linked to the
PANTHER classification system [125], which is a comprehensive, annotated
library of gene families and protein-coding genes in the human and mouse
genomes.

The enriched molecular functions represent a summary of the subset
of proteins that are responsible for major molecular-level bio-processes, such
as catalysis, transport, and cellular organisation. In this study, we observed
the differences in enriched molecular functions between upregulated and
downregulated proteins in different conditions, as well as between proteins
expressed on different surfaces and at different time points.

Physiochemical properties

In order to gain further insight into the differences in protein adsorption under
varying conditions, surfaces and time points, an investigation was conducted
into the physicochemical properties of the proteins in question. The molecular
weights of the proteins adsorbed were subjected to thorough analysis with the
objective of identifying patterns of specific adsorption on surfaces, conditions
or time points that correlate to molecular weights. Similarly, the patterns
of adsorption based on the protein’s isoelectric points (using the Proteome
Isoelectric Point Database [204]) were also analysed to identify any differences.
The significance of the observed differences was determined by the Mann-
Whitney U test. The rank-biserial correlation [205] was used to determine the
effect size and the direction of the differences.

4.3 Results and discussion

4.3.1 Proteins adsorbed on HAP and enamel
Qualitative analysis

The pellicles from the HAP and enamel surfaces were permitted to form for
a period of three minutes. Subsequently, the proteome from both surfaces
was extracted and considered. The combined proteome data from the two
independent replicates of the oral exposure rounds on HAP and enamel were
tabulated in Table 4.1 and 4.2 represented as a Venn diagram in Fig 4.1 and 4.2.

The term "diversity" is used to describe the number of proteins that
have been identified on the material, at least in one of the volunteers. The
term "overlap" refers to the number of proteins deposited on the material,
which is a common occurrence across all subjects. The comparison of the
common proteins in HAP and enamel under diversity and overlap conditions
are represented as Venn diagrams in Fig 4.3.
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HAP
Subjects 1 2 3 4 5
No. of proteins 283 98 216 371 337
Diversity 490
Overlap 84

Table 4.1: Number of proteins in the HAP biofilms from two independent
replicates pooled of five subjects identified by protein mass spectrometry
(nanoLC-ESI-MS2).

\%
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Figure 4.1: Number of proteins in HAP biofilm. Numbers inside the ellipses
representing single subjects (I-V) indicate proteins identified within one or
commonly within two to five subjects

Enamel
Subjects 1 2 3 4 5
No. of proteins = 191 91 208 171 306
Diversity 381
Overlap 71

Table 4.2: Number of proteins in the enamel biofilms from two independent
replicates pooled of five subjects identified by protein mass spectrometry
(nanoLC-ESI-MS2).

A total of 567 distinct proteins were identified on both materials for
all five subjects, with 490 identified on HAP and 381 on enamel. A total of
490 proteins were adsorbed on HAP surfaces by at least one of the volunteers,
while 84 proteins were adsorbed by all volunteers. In the case of enamel
surfaces, 381 proteins were adsorbed in at least one of the volunteers, while 71
proteins were adsorbed commonly in all volunteers. A total of 304 proteins
were identified on both surfaces in at least one of the volunteers of each group.
61 proteins were identified on both surfaces and commonly in all volunteers.
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Figure 4.2: Number of proteins in enamel biofilm. Numbers inside the ellipses
representing single subjects (I-V) indicate proteins identified within one or
commonly within two to five subjects

186 304 77 23 61 10

Figure 4.3: Total amount of identified individual proteins (diversity) in the
biofilms of at least one volunteer formed on HAP, enamel and both materials
(left). The number of identified common proteins (overlap) in the biofilms of
all subjects formed on HAP, enamel and both materials (right.

Statistical analysis

The Wilcoxon signed-rank test was used to characterize the level of similarity
of proteins adsorbed on HAP and enamel. We applied the null hypothesis
that the number of shared proteins between the two HAP probes (or between
two enamel probes) is equal to the number of shared proteins between one
HAP and one enamel probe. Then, the number of proteins shared between
HAP1 and HAP2 (or enamel 1 and enamel 2) shown in the Venn diagrams was
compared to the number of proteins shared between HAP and enamel. The
p-value generated by the test determines whether or not the null hypothesis
should be rejected, based on a threshold of 0.05. A representation of this
analysis can be found in Fig 4.4
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p-values

subjectV  subject IV | subjectlll

HAP 1-enamel 1 HAP 1-enamel 2 HAP 2-enamel 1 HAP 2-enamel 2

compared to HAP 1-HAP 2

0.1875 0.0625 0.0625 0.0625

all subjects

compared to enamel 1-enamel 2

1 1 0.625 0.715

Figure 4.4: Similarity of proteins commonly found in 3 min biofilms formed
on HAP and enamel. Wilcoxon signed-rank tests were used to compare the
intersection values between HAP 1 and HAP 2 (or enamel 1 and enamel 2)
with the intersection values of HAP and enamel replicates
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4.3.2 Proteins in saliva vs proteins adsorbed on pellicle analysis
Quantitative analysis

The objective of this analysis was to identify the patterns of protein adsorption
on enamel and protein retention in saliva at the individual volunteer level.
Therefore, the pellicle formed on the enamel at different time points (10 sec-
onds, 3 minutes and 30 minutes) and the corresponding saliva samples were
analysed and compared. The combined proteome data from the pellicle of
different time points and saliva are presented in Table 4.3. In this table, the
proteins are considered to be adsorbed if at least one of the replicates of a
given volunteer has a protein abundance value above zero.

377 776 315 819 598 1055 221

Pellicle 10-s 342 624 376 841 527 1108 197
3-min 450 697 481 768 561 1080 274

cloniiil 553 808 607 659 520 1161 286

286 477 287 460 402 770 174

179 358 173 322 293 553 108

640 986 728 1124 672 1539 339

767 1237 823 1409 875 1816 778

Table 4.3: Number of identified proteins and overlaps in the individual pelli-
cles at 10 seconds, 3 minutes and 30 minutes on pellicle and saliva

In total, 1,055 proteins were eluted and expressed in at least one of the
volunteer readings. Furthermore, 221 proteins were eluted from all volunteers
in saliva. A total of 1,539 proteins were adsorbed on the pellicles in at least
one of the volunteer readings at all time points, while 174 proteins were eluted
from all volunteers at all time points. The initial biofilm formation process,
occurring within a 10-second timeframe, resulted in the adsorption of 197
proteins across all volunteers. Similarly, 274 and 286 proteins were identified
as adsorbed on the pellicle formed after 3 and 30 minutes, respectively, with
a high degree of consistency across all volunteers. A comparison of the 174
proteins that were expressed in all volunteer and time points pellicle readings
and the saliva proteins of all volunteers revealed that 108 of the former were
also present in the latter.

Similarity test

In this analysis, the hypothesis that the adsorption patterns of proteins were
similar between the replicates of volunteers in saliva and pellicle data was
tested. The Shapiro-Wilk test was employed to ascertain whether the data
for each sample exhibited a normal distribution. The results demonstrated
that none of the samples exhibited a normal distribution. Consequently, the
Wilcoxon signed-rank test was employed to ascertain whether a discrepancy
existed in the distribution of the replicate data of volunteers. The null hypoth-
esis of this test states that there is no difference between the distributions of
the replicate data.
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It should be noted that not all volunteers had replicate data available
for analysis. Only volunteers 2 to 4 had this information for the saliva data
set, while volunteers 2 and 3 had this information for the pellicle data set.
The Tables 4.4 and 4.5 illustrate the outcomes of the Wilcoxon signed-rank
test, accompanied by P-values and an interpretation for the data pertaining to

saliva and pellicle, respectively.
Samples being tested P-value

Volunteer 2 Vs Volunteer 2 replicate  4.4697 X 10713

Volunteer 3 Vs Volunteer 3 replicate  6.2328 X 10~°

Volunteer4 Vs Volunteer 4 replicate 1.0756 X 10~44

Volunteer 4 Vs Volunteer 5 replicate 1.2467 X 1038

Inference
The two samples do not fol-
low a similar distribution of
protein abundance
The two samples do not fol-
low a similar distribution of
protein abundance
The two samples do not fol-
low a similar distribution of
protein abundance
The two samples do not fol-
low a similar distribution of
protein abundance

Table 4.4: Results from Wilcoxon signed-rank test to test the similarity of
replicates from proteome data collected from saliva

Time point: 10-s
Samples being tested P-value

Volunteer 2 Vs Volunteer 2 replicate  1.0952 X 10~1%

Volunteer 3 Vs Volunteer 3 replicate 0.00344

Time point: 3-min
Samples being tested P-value

Volunteer2 Vs Volunteer 2 replicate 0.1269

Volunteer 3 Vs Volunteer 3 replicate 0.0008

Time point: 30-min
Samples being tested P-value

Volunteer 2 Vs Volunteer 2 replicate  3.6187 X 106

Volunteer 3 Vs Volunteer 3 replicate 0.0108

Inference

The two samples do not fol-
low a similar distribution of

protein abundance
The two samples do not fol-
low a similar distribution of
protein abundance

Inference

The two samples could poten-
tially follow a similar distribu-
tion of protein abundance

The two samples do not fol-
low a similar distribution of
protein abundance

Inference

The two samples do not fol-
low a similar distribution of
protein abundance
The two samples do not fol-
low a similar distribution of
protein abundance

Table 4.5: Results from Wilcoxon signed-rank test to test the similarity of
replicates from proteome data collected from pellicle

In proteome data obtained from saliva samples, all p-values are less
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than 0.05, indicating that the null hypothesis is rejected. It can therefore be
concluded that the replicates are not similar. In the proteome data from the
pellicle, only at time point 3 minutes is there no evidence to reject the null
hypothesis between the replicates of volunteer 2. In contrast, the remaining
replicates at all other time points provide evidence to reject the null hypothesis,
indicating that they do not follow a similar protein abundance distribution.

In order to ascertain the degree of similarity in protein expression
between volunteers, a Mann-Whitney U test is employed in the analysis of
proteome data derived from saliva and pellicle. This test is employed due to
the fact that the preceding analysis demonstrated that the data set in question
does not adhere to a normal distribution. The results of the Mann-Whitney
U test are presented in tabular form in Tables 4.6 and 4.7 to 4.9 for the saliva
and pellicle data sets, respectively, together with the associated P-values and
interpretation.

Vol 11T Vol IV

Vol I
ORI 6.1078 X 1077
VBN 41898 X107 5.4543 X 10~ 1
\ORAAS 1.1982 X107° 0.6884 3.5209 X 10~ ™
\RY 0.0028 0.0003 1.0856 X 102  9.6848 X 106

Table 4.6: P-values from Mann Whitney U test to test the similarity between
volunteers from proteome data collected from saliva

Vol I1I
Vol I
WA 22391 X107
Vol III 0.5101 5.2181 X 10°
AN 15826 X107 1.7592 X 10—5 1.2855 X 10—12
L 4.76414 X 10—7 0.4794 0.0008 5.0302 X 10—6

Table 4.7: P-values from Mann Whitney U test to test the similarity between
volunteers from proteome data collected from pellicle eluted after 10 seconds

3-min Vol IIT Vol IV

Vol I
Vol II 0.0682

Vol 11 0.1286 7.2016 X 10— °
WA 8.3623X106 0.0011 6.1015 X 10— 12
Vol V 0.0005 0.1967 1.9160 X 10— 6 0.0699

Table 4.8: P-values from Mann Whitney U test to test the similarity between
volunteers from proteome data collected from pellicle eluted after 3 minutes

The proteome data obtained from saliva samples demonstrated a com-
parable distribution of protein abundance in Volunteers 2 and 4. The remaining
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7.7875 X 102
0.1836 1.7886 X 10— °
0.1185 0.0141 0.0161
0.1760 0.0531 0.3392  0.3346

Table 4.9: P-values from Mann Whitney U test to test the similarity between
volunteers from proteome data collected from pellicle eluted after 30 minutes

comparison was tested with a P-value less than 0.05, thereby rejecting the null
hypothesis that the distributions are similar.

In the proteome collected from the pellicle eluted at 10 seconds, there
was a notable similarity between the profiles of Volunteer 1 and Volunteer 3,
while Volunteer 5 exhibited a resemblance to Volunteer 2. With regard to the
pellicle eluted at 3 minutes, volunteer 1 exhibited similarities to Volunteers
2 and 3, while Volunteer 5 displayed similarities to Volunteers 2 and 4. With
regard to the pellicle eluted at 30 minutes, volunteer 5 exhibited similarities
to all the other volunteers. Similarly, volunteer 1 displayed similarities to
volunteers 3 and 4. The remaining comparison yielded P-values less than 0.05,
thereby rejecting the null hypothesis that the distributions are similar.

Fold change analysis

A total of 553 proteins exhibited differential abundance in saliva and pellicle,
out of the 778 proteins that were common between the proteome data from
saliva and pellicle and adsorbed in at least one of the volunteers. Of these,
90 proteins exhibited significant differential expression (i.e., logarithmic fold
change value > 1, logarithmic fold change value < -1, and p-value < 0.05)
in all time points of pellicle proteome with respect to saliva proteome data
(illustrated in Fig. 4.5).

The term "upregulated" is used to describe proteins that are expressed
at higher levels in the proteome data of pellicles in comparison to the proteome
data of saliva. Similarly, the term "downregulated" is used to describe the
proteins that are expressed in lower abundances in the proteome data of
pellicles as compared to that of saliva. The significance of the differential
expression is evaluated through the application of the F-test, which compares
the entire set of volunteer data from the pellicle against the data from saliva. A
comparison of the proteome data of the pellicle eluted at all time points with
the saliva data revealed that 32 proteins were significantly upregulated and 58
proteins were significantly downregulated in saliva.

The differential abundance of the 553 common proteins in the pellicle
eluted at different times was estimated. Fig 4.6 illustrates the differential
abundance of the 553 proteins present in the pellicle at different time points.

In this context, the term "upregulated" is employed to describe the
proteins that are adsorbed at a higher level at a subsequent time point in
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Figure 4.5: Bar plot and heatmap representation of the 90 proteins showing
significantly different abundance in saliva and pellicle at 10 seconds, 3 minutes
and 30 minutes.

comparison to the proteins adsorbed at an earlier time point. Similarly, the
term "downregulated" is employed to describe the proteins that are adsorbed
at a lower level at a later time point in comparison to the proteins adsorbed
at an earlier time point. To illustrate, in the left subplot of Fig. 4.6, the
upregulated proteins are those adsorbed at higher levels in the pellicle eluted
at 3 minutes with respect to the pellicle eluted at 10 seconds.

A comparison of the protein abundance in the pellicle eluted at 3 min-
utes and 10 seconds revealed that 9 proteins exhibited a significant upregula-
tion, while none demonstrated a downregulation. In the comparison between
the protein abundances in the pellicle eluted at 30 minutes and 10 seconds,
27 proteins demonstrated increased expression, while 1 protein exhibited
decreased expression. Similarly, in the comparison between the protein abun-
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Figure 4.6: Volcano plot representation of the 553 differentially abundant
proteins in pellicle at different time points. (left) depicts the differential abun-
dance of proteins adsorbed at 3 minutes in comparison to 10 seconds. (middle)
presents the differential abundance of proteins adsorbed at 30 minutes in
comparison to 10 seconds. (right) illustrates the differential abundance of
proteins adsorbed at 30 minutes in comparison to 3 minutes.

dances in the pellicle eluted at 30 minutes and 3 minutes, 5 proteins exhibited
increased expression, while no proteins exhibited decreased expression.

Molecular function enrichment analysis

In order to gain insight into the underlying mechanisms governing the selec-
tive adsorption of proteins to the pellicle and their subsequent retention in
saliva, a functional analysis is conducted. In order to achieve this, the proteins
that are exclusively present in saliva and absent from the pellicle in any given
volunteer are estimated. Similarly, the proteins that are only adsorbed in the
pellicle and not expressed in saliva are identified. The proportion of these
proteins is illustrated in a Venn diagram in Fig. 4.7

A total of 778 proteins were identified in at least one volunteer and at
least one time point of the eluted pellicle. However, none of these proteins
were expressed in saliva. Similarly, 277 proteins were identified in at least one
of the volunteers’ saliva samples, but none were identified in the proteome
pellicle data. A total of 761 proteins were identified as being expressed in both
the saliva and pellicle data sets for at least one of the volunteers.

The 761 and 277 proteins, which were exclusively identified in the
pellicle and saliva, respectively, were subsequently subjected to molecular
function enrichment analysis. The results of this analysis demonstrate the
functions of these proteins, thereby elucidating why the salivary protein
functions are not required in the pellicle and identifying the essential functions
that are necessary for adsorption on surfaces. The top 20 enriched molecular
function terms of salivary and pellicle proteins are depicted in Figs 4.8 and
4.9.

The most highly enriched molecular function term was ’structural
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1 Saliva
Pellicle

277 761

Figure 4.7: Venn diagram illustrates the number of proteins identified in saliva,
pellicles, and those present in both saliva and pellicles in at least one volunteer.
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Figure 4.8: Representation of the top 20 enriched molecular functions for the
277 salivary proteins.

molecule activity’, which is defined in QuickGO [206] as an action of a
molecule that works on the structural integrity of a complex. This was a
crucial function for the stable formation of pellicles on oral surfaces. The other
enriched molecular functions, such as cadherin binding and cell adhesion
molecule binding, also indicate a role in maintaining the structural integrity
of the biofilm. In contrast, a multitude of catalytic and protein processing
activities were observed in saliva. It would appear that minimal involvement
was observed with regard to complex formation and structural management.

In order to gain further insight into the distinction between the molecu-
lar functions observed in saliva and the pellicle, a distribution of the parent
molecular function terms was plotted, with the objective of determining the
percentage of genes that have been annotated to a given term in relation to
the total number of function hits. This would explain the proportion of pro-
teins involved in each molecular function, thereby allowing the variation in
importance attributed to each molecular function category to be concluded.
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Figure 4.9: Representation of the top 20 enriched molecular functions for the
761 pellicle proteins.

Fig. 4.10 presents a graphical representation of the importance assigned to
each molecular function category in saliva and the pellicle.
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Figure 4.10: Distribution of percentage of molecular function hit in pellicle
and saliva

It can be observed that proteins in saliva exhibit a greater propensity
for molecular functions pertaining to catalytic activity in comparison to those
present in the pellicle. In contrast, the proteins in the pellicle are more inclined
to engage in structural molecule activity than those found in saliva.

Physiochemical properties

In order to gain a deeper understanding of the factors that contribute to the
inability of certain proteins to adsorb onto biofilms developed on oral surfaces,
an investigation was conducted into the physicochemical characteristics of
the 304 proteins exclusively present in saliva, in addition to those of the 746
proteins that are exclusively present in pellicles. Firstly, the distribution of
molecular weights of these proteins present in saliva and pellicle was subjected
to a comprehensive and systematic analysis. It was observed that proteins with
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a molecular weight of less than 100 kDa were more prevalent in the proteome
data of saliva and pellicle. The Mann-Whitney U test also demonstrated that
the overall distribution of salivary proteins was significantly smaller than
that of pellicle proteins. The rank-biserial correlation coefficient revealed that
the distribution of pellicle proteins is 0.354 times higher than that of salivary
proteins. Fig. 4.11 illustrates the distribution of salivary and pellicle proteins
based on their respective molecular weights.
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Figure 4.11: Distribution of salivary and pellicle proteins based on their re-
spective molecular weights

Finally, the isoelectric points of the salivary and pellicle proteins were
investigated. The proteins were classified into three groups based on their
isoelectric point ranges. The salivary proteins were categorised into three
groups based on their isoelectric points: 1) negatively charged proteins in the
oral cavity (pH below 6.3), 2) neutral proteins (pH between 6.3 and 7.6, which
corresponds to the physiological pH range of the oral cavity), and 3) positively
charged proteins in the oral cavity (pH above 7.6). The proportion of proteins
identified within each category is illustrated in Fig. 4.12.

As anticipated, the majority of salivary proteins were identified within
the pH range characteristic of the oral cavity. The proportion of salivary
proteins found below the oral pH range was 16.9%, while 8.3% were found
above this range. In the case of pellicle proteins, the majority were found
to be present at pH values above those typically observed in the oral cavity.
A total of 33.3% of the pellicle proteins were identified within the pH range
below that of the oral cavity, while only 16.7% were found within the pH range
corresponding to that of the oral cavity. This suggests that the adsorption of
positively charged proteins was favoured for the formation of the pellicle.
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Figure 4.12: Distribution of salivary and pellicle proteins based on their re-
spective isoelectric points

4.3.3 Proteins in pellicle and saliva from active caries, treated caries
and healthy conditions

Qualitative analysis

The objective of this study was to identify the patterns of protein adsorption
in pellicle and protein expressed in saliva in individuals with active caries,
no caries (healthy) and treated caries conditions. This was done on 8 to 11
volunteers. Therefore, the pellicle formed under the various conditions was
analysed and compared to the corresponding saliva samples. The overall
statistics of the protein expression in the pellicle and saliva of the different
conditions are presented in Table 4.10. The proteins included in the table
exhibited an abundance value above zero in the samples.

Pellicle active Pellicle non-active Pellicle treated

279 523 567 823 714 636
694 1001
26 85
19 91 147 197 91 47
0 3 18 72 7 3

Table 4.10: Overall statistics of the number of identified, diversity and overlap
of proteins in pellicle and saliva samples from independent volunteers with
active caries, no caries (healthy) and treated caries conditions

A total of 1,001 proteins were identified in the proteome data of saliva
from at least one of the volunteers under all experimental conditions. More-
over, 694 proteins were adsorbed in the pellicle in at least one of the volunteers
under all conditions. A total of 823 proteins were identified in the saliva
samples from the volunteers with active caries, with 72 proteins being present
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in all volunteers. Similarly, 714 and 636 proteins were expressed in saliva
under non-active and treated caries conditions, respectively. Of these, 7 and 3
proteins were expressed in all volunteers in the respective conditions. Simi-
larly, in the pellicle proteome data, 279 proteins were adsorbed on the pellicle
under active caries conditions, yet none of them were found to be present
in all the volunteers. Similarly, 523 and 567 proteins were identified in the
pellicle under non-active and treated caries conditions, respectively. Of these,
3 and 18 proteins were identified as common to all volunteers in the respective
conditions.

Log fold change analysis

A total of 506 out of the 1,001 proteins were expressed in all conditions in at
least one of the volunteers of each group, as determined by analysis of saliva
samples. Similarly, 238 out of 694 proteins were expressed in all conditions in
at least one of the volunteers of each group adsorbed in the pellicle. A fold
change analysis was conducted using the 506 common proteins in saliva data
to elucidate the differences in protein abundances across various conditions.
Similarly, the 238 common pellicle proteins were employed for fold change
analysis, with a view to examining the change in protein abundances in
different conditions. Fig. 4.13 and 4.14 illustrate the differential abundance of
the common saliva and pellicle proteins in different conditions.

saliva active vs saliva non-active saliva treated vs saliva non-active Saliva treated vs saliva active

o Down-regulated o Down-regulated o Downregulated
31 o Upreguiated 1 o Upregulated Up-regulated
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Figure 4.13: Volcano plot representation of the 506 differential abundance of
proteins in different conditions from saliva samples.

In the three comparisons, the term "upregulated" is employed to de-
scribe elevated protein expression levels in active and treated caries conditions
relative to non-active caries conditions, and higher in treated caries condi-
tions in comparison to active caries conditions, as observed in both saliva and
pellicle proteome data. Similarly, the term "downregulated" is employed to
describe the proteins that are expressed in lower levels in active and treated
caries conditions in comparison to non-active caries conditions, and in treated
caries conditions in comparison to active caries conditions, in both saliva and
pellicle proteome data.
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Figure 4.14: Volcano plot representation of the 238 differential abundance of
proteins in different conditions from pellicle samples.

A comparative proteomic analysis of saliva samples revealed significant
upregulation of 17 proteins and downregulation of 9 proteins in individu-
als with active caries, as compared to those with non-active caries. In the
comparison between the treated caries condition and the non-active caries
condition, only 1 protein was found to be significantly upregulated, while 5
proteins were significantly downregulated. In the comparison between the
treated caries condition and the active caries condition, 4 proteins were found
to be significantly upregulated, while 36 proteins were significantly down-
regulated. In the proteome data obtained from pellicle samples, no proteins
were found to be significantly upregulated in the comparison between active
and non-active caries conditions. Conversely, 20 proteins were identified as
being significantly downregulated. In the comparison between the treated
caries condition and the non-active caries condition, no proteins exhibited
significant upregulation or downregulation. In the comparison between the
treated caries condition and the active caries condition, 24 proteins were found
to be significantly upregulated, while 4 were significantly downregulated.

A further fold change analysis was conducted to ascertain the disparity
in protein abundance between the data obtained from the pellicle and saliva in
a specific condition. A total of 166 proteins were identified as being commonly
expressed in at least one volunteer in both the saliva and pellicle samples,
irrespective of the condition under investigation. The 166 proteins were
subsequently subjected to a fold change analysis, the results of which are
represented in Fig. 4.15. This figure illustrates the differential abundance
observed between the pellicle and saliva for each condition.

The term "upregulated" is used to describe a situation in which the
level of protein expression in the pellicle is higher than that observed in saliva
proteome data across all experimental conditions. Similarly, the term "down-
regulated"” is used to describe a reduction in the levels of protein expression
data observed in the pellicle proteome in comparison to the saliva proteome
data across all conditions.
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Figure 4.15: Volcano plot representation of the 166 differential abundance of
proteins pellicle and saliva in each condition.

A comparison of the pellicle proteome data with that of the saliva
proteome in non-active caries conditions revealed a significant upregulation of
10 proteins and a significant downregulation of 42 proteins. In the comparison
between pellicle proteome data and saliva proteome data in active caries
conditions, 17 proteins were found to be significantly upregulated, while
95 proteins were significantly downregulated. In the comparison between
pellicle proteome data and saliva proteome data in treated caries conditions,
18 proteins were found to be significantly upregulated, while 22 proteins
were significantly downregulated. It would appear that there is a significant
disparity between the pellicle and saliva proteome data in the context of active
caries, with 57% of the proteins exhibiting a notable decrease in expression.

Molecular function enrichment analysis

In order to gain further insight into the mechanisms that are distinct in saliva
and pellicle under the influence of all the conditions, a molecular function
enrichment analysis was conducted. The proteins of each condition of the
saliva and pellicle proteome data were loaded into the https://geneonto
logy.org/ link for the enrichment analysis, and the results are presented in
Fig. 4.16.

It was evident that the proteins present in the pellicle samples played
a role in maintaining the structural integrity and molecular activities of the
samples, whereas the proteins present in the saliva samples demonstrated a
tendency to engage in catalytic activities within the oral cavity.
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Figure 4.16: Distribution of percentage of molecular function hit in pellicle
and saliva proteome data in all conditions

Principal Component Analysis

Principal Component Analysis (PCA) was further executed to determine if a
clear distinction could be made between the condition of active caries, treated
caries and the healthy state, using pellicle and salivary proteome data.To
do so, the list of proteins that were expressed in all conditions in at least
one volunteer of each condition of pellicle and salivary proteome data were
considered. The PCA was performed on a total of 506 common proteins from
the 1001 salivary proteins, and likewise on 238 common proteins from the 694
pellicle proteins.The results of these two PCAs are illustrated in figures 4.17
and 4.18

It is intriguing to observe that the proteome data from the pellicle of
cases treated for caries (represented in fig 4.18 by blue dots) and those from
healthy conditions (represented in fig 4.18 by green dots) exhibit a closer
proximity in their clustering. This finding suggests that the proteome data of
treated caries conditions may exhibit analogous trends to those observed in
healthy conditions. This finding serves to validate the healing effects of caries.
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Figure 4.17: Results from Principal Component Analysis using salivary pro-
teome data
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Figure 4.18: Results from Principal Component Analysis using pellicle pro-
teome data
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434 Conclusion

The findings of the comparative proteomic analysis of HAP and enamel sug-
gest that there are minimal discrepancies in protein adsorption and biofilm
formation between these two surfaces. This finding was supported by statisti-
cal similarity tests, which revealed comparable outcomes between replicates
and materials. In summary, key processes such as pellicle formation, bacterial
colonization, and individual-specific responses occur similarly on synthetic
HAP and natural enamel. These findings underscore the viability of HAP as a
substitute for enamel in future biofilm research endeavours.

A comparative proteomic analysis of saliva and pellicle was conducted,
revealing discrepancies in the similarity between replicates and between vol-
unteer data. However, it is anticipated that the incorporation of a more
substantial number of replicate and volunteer data in future studies would
facilitate the conclusion of statistical results with greater confidence. A further
observation from the study revealed that certain proteins were found to be
expressed at all time points in pellicle data, and these were also found to
be significantly differentially expressed in saliva. It was also observed that
certain proteins do not adsorb in the pellicles but rather remain in saliva. Fur-
ther enrichment analysis of these proteins revealed that those which remain
unabsorbed exhibit higher catalytic activity compared to the predominantly
structural molecule activities observed in pellicle proteins. This finding sug-
gests a potential role for these proteins in the formation of pellicle structures
on oral surfaces. In addition, an analysis of molecular weight distribution
patterns indicated that salivary proteins generally have smaller molecular
weights than pellicle proteins. However, there was no significant correlation
between their distributions. In addition, an examination of the isoelectric
point distribution patterns revealed that the majority of salivary proteins fall
within the pH range of the oral cavity, whereas the majority of pellicle proteins
are found in a higher pH range.

The comparative analysis of the proteome of the pellicle and saliva
samples collected from subjects in active caries, treated caries and healthy
conditions yielded valuable insights into the dynamic changes in protein com-
position. It is noteworthy that the protein profile of the pellicle in treated
conditions closely resembled that of healthy conditions, as evidenced by high
similarity in PCA plots. Furthermore, a detailed investigation into the differ-
ential expression of proteins in saliva from caries-active conditions revealed
significant up- and downregulation of proteins in comparison to healthy con-
ditions. Notably, a substantial proportion of proteins exhibited unique down-
regulation in pellicle data during caries activity. In treated samples, saliva
demonstrated substantial shifts in protein expression, with numerous proteins
showing altered expression patterns compared to caries-active conditions.
Conversely, the pellicle data from treated samples exhibited a prevalence of
proteins that were found to be overexpressed, indicating a recovery process
and functional adaptation. A detailed comparison of salivary and pellicle data
sets across the conditions revealed a large number of differentially expressed
proteins unique to each context, underscoring the distinct roles of saliva and
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pellicle in oral health and disease. Molecular function enrichment analysis
provided further insights, showing that pellicle proteins are predominantly
involved in structural molecule activity, which is critical for forming and
stabilising the pellicle layer on oral surfaces. Conversely, salivary proteins
demonstrated a stronger association with catalytic activities, likely reflecting
their involvement in biochemical processes essential for oral homeostasis.
These findings underscore the intricate interplay between saliva and pellicle
in maintaining oral health and adapting to pathological conditions, offering
potential targets for therapeutic interventions.



Chapter 5
Putative protein complexes of
peroxiredoxins

5.1 Introduction

This chapter describes unpublished research work carried out by myself in
collaboration with Prof. Bruce Morgan. The chapter was written by me.

Peroxiredoxins (Prxs) constitute a ubiquitous family of antioxidant
enzymes, with multiple isoforms expressed in a wide range of organisms,
including Arabidopsis thaliana, Saccharomyces cerevisiae and Homo sapiens [207,
208]. They are involved in the detoxification of peroxides, aliphatic and
aromatic hydroperoxides, and peroxynitrite [209, 210]. Moreover, they play a
significant role in the defence against oxidative stress [211]. Cysteine (Cys) is
a requisite residue for all catalytic processes involved in peroxide reduction
by peroxiredoxins (Prxs). Peroxiredoxins are classified into two groups based
on the number of cysteine residues present at the C-terminal: 2-Cys and 1-Cys.
The cysteine residue that is responsible for the catalytic processes is considered
to be the active site and is referred to as the peroxidatic cysteine (Cp or Sp).
The catalytic cycle of Prx is illustrated in the Fig 5.1.

Prxs have a globular structure comprising five dimers that homo-
oligomerise to form a decamer. It has been observed that certain Prxs exist
in a redox-dependent equilibrium between a decameric and a dimeric state
[212]. In general, hyperoxidised dimers have a propensity to form decamers,
while oxidised dimers have a propensity to remain as dimers. The assembly of
dimers is initiated by the interaction of two monomers at the B-type interface
(beta sheets), while the formation of decamers involves the interaction of
two dimers at the A-type interface (alpha helices). These interactions result in
the formation of a toroid-like or doughnut-like structure, which subsequently
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Figure 5.1: Representation of catalytic cycle of Peroxiredoxins adapted from
[209]

gives rise to the assembly of decameric structures [212]. Hyperoxidised dimers
have been observed to incorporate and form decamers, while oxidised dimers
remain in dimer structures. Figure 5.2 illustrates the decamer, dimer with
A-type and B-type interactions, and the monomer structure of a Prx from
Saccharomyces cerevisiae.

Furthermore, it is a common observation that multiple isoforms of
the Prxs are present in a number of organisms [213, 214]. For example, six
subclasses of Prxs are observed in mammals, which have been demonstrated
to influence a range of functions, including cell apoptosis, proliferation and
differentiation, by regulating the cytokine-induced hydrogen peroxide levels
[215, 216]. A number of studies have demonstrated that the monomers of the
various isoforms of Prxs are capable of forming hetero-oligomers at dimeric
or decameric stages in a multitude of organisms [217, 218, 219]. The reason
for hetero-oligomerisation remains unclear. However, it is evident that these
oligomers exhibit distinct enzymatic and mechanistic properties when com-
pared to their homo counterparts. In light of this, an in silico modelling of
Prxs hetero-oligomerisation was conducted using HADDOCK and Alphafold.
These approaches were employed to gain insights and analyse the interface
site, with the aim of verifying the possibility of hetero-oligomerisation.
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Figure 5.2: Representation of the crystal structure of TSA1 peroxiredoxin
(PDB ID: 3SBC) from Saccharomyces cerevisiae depicts the doughnut-shaped
decameric structure (a), the monomer (b), the dimers formed by interaction at
beta sheets (c), and the dimers formed by interaction at alpha helices (d).
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5.2 Materials and method

5.2.1 Datasets
Peroxiredoxins of Saccharomyces cerevisiae

Saccharomyces cerevisiae expresses five subtypes of Peroxiredoxins, TSA1, TSA2,
Dot5, Aphl and Prx1 [220, 221]. Of the five subtypes, TSA1 and TSA2 exhibit
the largest homology [220, 222]. Accordingly, these two Prxs were selected
for in silico modelling. The decameric crystal structure of TSA1 Saccharomyces
cerevisiae from X-ray diffraction was deposited in the RCSB Protein Data Bank
(PDB [223]) with the following PDB ID: 3SBC. The decameric crystal structure
of TSA2 Saccharomyces cerevisiae from X-ray diffraction was submitted to the
RCSB PDB, where it was assigned the PDB ID: 5DVB. In order to perform
the docking, the crystal structures and the corresponding sequences were
downloaded and used as input in HADDOCK and Alphafold.

Peroxiredoxins of Arabidopsis thaliana

The genome of Arabidopsis thaliana encodes ten Peroxiredoxins [224]. In this
study, PrxA was selected for in silico modelling due to its classification within
the 2-Cys Prx family, which is similar to that of TSA1 and TSA2 [225]. The
decameric crystal structure of PrxA from Arabidopsis thaliana, derived from
X-ray diffraction, was submitted to the RCSB PDB, where it was assigned the
PDB ID: 5ZTE. Consequently, the crystal structures and the corresponding
sequence were downloaded and employed as input in HADDOCK for the
purpose of docking.

522 HADDOCK

HADDOCK is an integrative modelling platform that incorporates a variety of
data types, including ambiguous and low-resolution data, information on the
symmetry and flexibility of molecules, and information on residues that are
important for binding to aid docking. Despite the fact that the docking process
is based on rigid body theory, it permits a certain degree of flexibility in the
structures under consideration, including those at the binding interface. Given
that HADDOCK handles data of low resolution, which may be inherently
inaccurate, the tool randomly eliminates half of the information in order to
arrive at the optimal solutions. However, there is a risk of deleting accurate
information and also producing false positive results.

The initial step in the HADDOCK process is to prepare the input struc-
tures. A maximum of 20 structures of the molecules can be inputted. For
the input, the most optimal results would be obtained from experimental
structures derived from X-ray, NMR crystallography or cryo-electron micro-
scope structures that have been deposited in the Protein Data Bank (PDB).
In the absence of experimental data for proteins in the PDB, homologous
protein structures may be employed as templates. Homologous structures can
be identified in the UniProt database [149] and the HMMER database [226].
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Homology modelling can be conducted using the SWISS-MODEL database
[227]and the MODELLER database [228].1t should be noted, however, that the
tool has a few rules regarding the PDB files that are to be input. It is imperative
that all PDB files conclude with an "END" statement. In the event of structural
discontinuities, it is advisable to utilise the "TER" statement to delineate the
respective chains or sub-molecules. In the event that the molecule contains
multiple chains, but the numbers of these chains overlap, it is of utmost im-
portance to re-number the chains. It is possible for high-resolution crystal
structures to contain multiple occupancy site conformations. Nevertheless,
only one conformation is to be retained. It is imperative that the input file does
not contain the name of the segment as the segment ID (SEGID). It is essential
that the numbering of ions is consistent. Fortunately, the experimental crystal
structures of the TSA1 and TSA2 Prxs of Saccharomyces cerevisiae and PrxA of
Arabidopsis thaliana were deposited in the Protein Data Bank (PDB), and thus
these structures were used as input. The PDB files were modified to comply
with the aforementioned rules.

Initially, dimers were constructed and evaluated at the A-type and
B-type interfaces from corresponding monomers of TSA1 and TSA 2 Prxs of
Saccharomyces cerevisiae, using HADDOCK to ascertain whether the outcomes
exhibited similarities to those observed in the wild-type deposited structure
at the interaction sites. Subsequently, trimers were constructed, whereby
two monomers interact at the B-type interface and a third monomer interacts
with the dimer at the A-type interface. And finally, ten monomers are given
as input with A and B types of interface to construct the doughnut shaped
decamer. To this end, the HADDOCK server is used to input the requisite data,
with the number of molecules selected as two for the construction of dimer,
three for the construction of a trimer, and ten for the construction of decamer.
For each molecule, the relevant PDB file is uploaded, and a chain is selected
as the monomer. As part of the input parameters, the active and passive
residues at the A and B-type interfaces are specified. The active residues at
B-type interface (for example, the 3 sheet interchain interaction sites of PrxA
A. thaliana are Q207, H208, S209, 1211, and N213) and A-Type interface (the «
helix interchain interaction sites of PrxA A. thaliana are S150, V175, and K177)
were provided as input. The remaining parameters were set to their default
values and the process was initiated to obtain the results.

Once the results have been generated, the top clusters of conformations
with the highest scores are presented in a list. Each cluster comprises the four
most optimal conformations. The conformations from the ten most prominent
clusters were aligned with the previously deposited structures in order to
estimate the root-mean-square deviation (RMSD) values. A lower RMSD value
indicates a greater degree of similarity between the predicted conformation
and the experimental structure.

In order to determine whether the Prxs form heterodimers or het-
erotrimers, one molecule was derived from the monomer of TSA1, and the
other was derived from the monomer of TSA2. The active and passive residues
were employed in conjunction with the HADDOCK algorithm to generate
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docked conformation clusters. The resulting conformations were aligned with
the experimental dimer and trimer structures of TSA1 and TSA2 in order
to estimate the RMSD values and ascertain the degree of similarity. Subse-
quently, the hypothesis was tested that the Prxs of monomers from one species
dimerise or trimerise with Prxs of monomers from other species. Therefore,
the monomers from TSA1 and TSA2 of Saccharomyces cerevisiae were docked
against the monomers from PrxA of Arabidopsis thaliana. The resulting confor-
mations from the clusters were aligned with those of the Prxs of both species
in order to estimate the similarity by RMSD values.

5.2.3 AlphaFold

AlphaFold 3 is a model designed by researchers at Google DeepMind with
the objective of predicting complexes from all types of molecules, with a
particular focus on protein-protein interaction complexes, deposited in the
Protein Data Bank (PDB) with high accuracy [15]. The model has demonstrated
the capacity to predict novel protein structures and complexes that are not
currently represented in the Protein Data Bank (PDB) [229, 230].

A variety of sequences, including those derived from proteins, DNA,
RNA, ligand molecules, or ions, can be entered as input by specifying the
appropriate entity and the number of copies of each molecule. However, for
certain molecules, such as ligands, ions, and chemical modifications, only a
specific molecule can be selected from the available list. Subsequently, Al-
phaFold seeks to identify pertinent MSA data for RNA chains and proteins.
In the case of protein inputs, the protein template structure information is also
employed. Based on the aforementioned three categories of input, five con-
formations are predicted. The predicted structures and complexes comprise
information regarding the coordinates of atoms belonging to the conformation,
as well as five confidence scores designed to assess the conformations.

In order to establish whether the Prxs form heterodimers or heterotrimers,
the overall decameric structures of the Prxs, including TSA1, TSA2 and PrxA,
were initially replicated in order to ascertain whether they exhibited a close
structural similarity to the corresponding PDB structures that had been de-
posited. To this end, ten monomers of the corresponding TSA1, TSA2 and
PrxA were loaded in individual runs. Subsequently, the predicted complexes
were compared and aligned with the experimental structures in order to
confirm the accuracy of the predictions. Once the results are accurate and
favourable, the hetero-dimerisation with alternating monomers will be tested
to ascertain the plausibility of the resulting structures.
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5.3 Results and discussion

5.3.1 Results from HADDOCK

B-type TSA1 dimers from Saccharomyces cerevisiae

The objective was to replicate the B-type dimers from the monomers of TSA1
Saccharomyces cerevisize. The monomer and the dimer at the B-type interface is
represented in Fig. 5.3

Figure 5.3: Representation of the monomer of TSA1 Saccharomyces cerevisiae
(a), and the dimers formed by interaction at beta sheets (b).

HADDOCK yielded 13 clusters, comprising a total of 89 conformations.
The ten most favourable conformations are presented in Table 5.1.

2 -138.5 +/-26.0 | 15 28+/-0.5 -2.5 25
6 -1043 +/-46 | 6 33+/-03 -0.5 3.8
1 -104.3 +/-94 | 18 6.1+/-0.8 -0.5 6.7
4 -98.8 +/-3.3 7 203 +/-0.1 -0.2 20.7
13 -96.2+/-132 | 4 18.1+/-04 -0.1 18.3
3 904 +/-117 |7 191+/-0.3 0.3 20.1
5 -835+/-189 | 6 18.8 +/-0.8 0.7 20.9
8 -814+/-74 5 35+/-0.7 0.8 39
10 <798 +/-122 | 4 21.7 +/-0.0 0.9 21.8
12 -75.0+/- 6.8 4 19.5+/-0.5 1.2 20.6

Table 5.1: The table depicts the ten most similar conformations to the TSA1
B-type dimer. The table contains information regarding the cluster, the HAD-
DOCK score, the cluster size, the RMSD of the lowest energy, the z-score and
the RMSD while aligning to the TSA1 B-type dimer.

In this study, a threshold of 10 A° is set as the threshold for the estimated
RMSD values. The structures of clusters 1, 2, 6 and 8 exhibit a high degree of
alignment with the reference dimer of TSA1. Furthermore, the low root-mean-
square deviation (RMSD) of atomic position value calculated lends additional
support to this conclusion. Therefore, the B-type dimers of yeast TSA1 were
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successfully replicated using only one monomer sequence.

A-type TSA1 dimers from Saccharomyces cerevisiae

The objective was to replicate the A-type dimers from the monomers of TSA1
Saccharomyces cerevisize. The monomer and the dimer at the A-type interface is
represented in Fig. 5.4

Figure 5.4: Representation of the monomer of TSA1 Saccharomyces cerevisiae
(a), and the dimers formed by interaction at alpha helices (b).

HADDOCK vyielded 18 clusters, comprising a total of 356 conforma-
tions. The ten most favourable conformations are presented in Table 5.2.

1 -117.3+/-0.7 | 170 1.1+/-09 2.1 14
9 -1049+/-37 |7 14.6 +/-0.3 -1.0 14.1
2 -96.7 +/-4.5 48 13.7 +/-0.1 -0.3 13.5
4 -948+/-7.3 22 22+/-03 -0.1 1.8
7 -93.6 +/-35 9 11.2+/-0.7 -0.0 11.9
3 -93.0+/- 6.8 31 25+/-0.3 0.0 24
18 -91.1+/-84 4 28+/-0.6 0.2 1.9
17 -86.1 +/-6.1 4 145+/-04 0.7 14.8
5 -82.7 +/-7.7 13 142 +/-0.3 1.0 14.2
6 -747 +/-3.3 9 14.7 +/-0.3 1.7 14.3

Table 5.2: The table depicts the ten most similar conformations to the TSA1
A-type dimer. The table contains information regarding the cluster, the HAD-
DOCK score, the cluster size, the RMSD of the lowest energy, the z-score and
the RMSD while aligning to the TSA1 B-type dimer.

The structures of clusters 1, 3, 4, and 18 exhibit a high degree of align-
ment with the reference A-type dimer of TSA1. This conclusion is further
supported by the low root-mean-square deviation (RMSD) of atomic posi-
tion values calculated. The successful replication of the A-type dimers of
TSA1 Saccharomyces cerevisiae using a single monomer sequence is therefore
demonstrated.
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A-type and B-type interface interaction in TSA1 trimers from Saccharomyces
cerevisiae

The objective was to replicate the A-type and B-type interface interactions
observed in the monomers of Saccharomyces cerevisiae TSA1. The monomer
and the trimer formed at the A-type and B-type interfaces are illustrated in
the Fig. 5.5

Figure 5.5: The monomer of TSA1 is represented in (a), while the trimer
formed by interaction at alpha helices (between yellow and orange chains)
and beta sheets (between yellow and magenta chains) is shown in (b).

HADDOCK yielded 7 clusters, comprising a total of 18 conformations.
The seven conformations are presented in Table 5.3.

1 -366.1 +/-12.2 | 35 8.8+/-6.5 -2.3 2.7

2 -217.5+/-10.8 | 27 6.5+/-3.6 -0.3 12.6
4 -1859+/-146 | 6 20.7 +/-1.1 0.1 19.6
3 -152.7+/-98 | 11 143 +/-6.0 0.6 5.6

7 -150.5 +/-16.1 | 4 19.7 +/-1.9 0.6 20.9
6 -1484 +/-182 | 4 214 +/-1.2 0.6 20.5
5 -146.1 +/-18.8 | 4 21.2+/-09 0.7 21.1

Table 5.3: The table depicts the seven most similar conformations to the TSA1
A-type and B-type trimer. The table contains information regarding the cluster,
the HADDOCK score, the cluster size, the RMSD of the lowest energy, the
z-score and the RMSD while aligning to the TSA1 trimer.

The structures of clusters 1 and 3 exhibit a high degree of alignment
with the reference A-type and B-type interfaces of TSA1 Saccharomyces cere-
visiae. Furthermore, the low root-mean-square deviation (RMSD) of atomic
position value calculated lends additional support to this conclusion. It was
therefore demonstrated that the A-type and B-type interfaces of TSA1 Saccha-
romyces cerevisiae could be successfully replicated using only one monomer
sequence.
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Decamer of TSA1 from Saccharomyces cerevisiae

The objective was to replicate the decamer doughnut-like shaped structure
observed in Saccharomyces cerevisize TSA1. Therefore, five molecules of B-type
TSA1 dimers and the A-type interface active residues were incorporated as
the initial input. An illustration of the decamer structure can be found in the
Fig. 5.6.

Figure 5.6: The decamer structure of TSA1 Saccharomyces cerevisiae.

HADDOCK yielded 200 clusters, comprising a total of 200 conforma-
tions. The ten most favourable conformations are presented in Table 5.4.

RMSD
RMSD from aligning
Cluster No. Clustersize overall lowest Z-score TSA1 de-
score
energy (A°) camer
(A°)

HADDOCK

1 -4258 +/-0.0 |1 0.0+/-0.0 -1.7 48.6
2 -4194+/-00 |1 447 +/-0.0 -14 234
3 -4175+/-00 |1 49.1+/-0.0 -1.3 28.6
4 -390.1+/-0.0 |1 485+/-0.0 0.2 344
5 -3883+/-00 |1 48.1+/-0.0 0.3 29.9
6 -381.3+/-00 |1 47.1+/-0.0 0.6 46.5
7 -380.2+/-0.0 |1 49.7 +/-0.0 0.7 15.1
8 -379.7+/-00 |1 492 +/-0.0 0.7 24.3
9 -3752+/-00 |1 42.7+/-0.0 0.9 42.7
10 -3729+/-00 |1 494 +/-0.0 1.1 24.8

Table 5.4: The table depicts the ten most similar conformations to the TSA1
decamer. The table contains information regarding the cluster, the HADDOCK

score, the cluster size, the RMSD of the lowest energy, the z-score and the
RMSD while aligning to the TSA1 decamer.

It is evident that none of the predicted structures demonstrate a high
degree of similarity to the reference decamer Saccharomyces cerevisiae TSA1.
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RMSD of atomic position value calculated lends additional support to this
conclusion. The overall 3D orientation of the predicted structures did not
resemble a doughnut structure. Consequently, an attempt was made to dock
with other beta dimers, including chains C and D, chains E and F, chains G and
H, and chains I and ]. However, docking with all these dimers, in individual
runs, did not yielded successful results. The alignment with TSA1 was not
optimal.

B-type TSA2 dimers from Saccharomyces cerevisiae

The objective was to replicate the B-type dimers from the monomers of TSA2
Saccharomyces cerevisiae.

HADDOCK yielded 29 clusters, comprising a total of 308 conforma-
tions. The ten most favourable conformations are presented in Table 5.5.

RMSD from I

HADDOCK aligning

Cluster No. Seore Clustersize overall lowest Z-score —

energy (A% dimer (A°)

-2629 +/-9.1 | 80 0.8+/-0.5 -3.0 1.3
5 -96.5+/-2.3 12 15.0+/-0.5 0.1 13.8
11 -95.0+/-6.5 8 52+/-0.6 0.2 55
3 -88.5+/-35 19 55+/-03 0.3 5.8
6 -85.8 +/-4.7 11 21.7 +/-0.2 0.3 19.8
12 -84.0+/-173 | 8 14.7 +/-0.9 0.4 15.0
2 -82.5+/-82 30 54+/-04 0.4 59
14 -822+/-152 |7 16.8 +/-0.9 0.4 13.5
16 -81.0+/-109 |6 22.0+/-0.2 0.4 20.5
4 -80.8 +/-11.5 | 16 53+/-02 0.4 53

Table 5.5: The table depicts the ten most similar conformations to the TSA2
B-type dimer. The table contains information regarding the cluster, the HAD-
DOCK score, the cluster size, the RMSD of the lowest energy, the z-score and
the RMSD while aligning to the TSA2 B-type dimer.

The structures of clusters 1, 2, 3, 4 and 11 exhibit a high degree of
alignment with the reference dimer of TSA2. Furthermore, the low RMSD of
atomic position value calculated lends additional support to this conclusion.
It was thus demonstrated that the B-type dimers of Saccharomyces cerevisiae
TSA2 could be successfully replicated using only a single monomer sequence.

A-type TSA2 dimers from Saccharomyces cerevisiae

The objective was to replicate the A-type dimers from the monomers of TSA2
Saccharomyces cerevisiae.

HADDOCK yielded 7 clusters, comprising a total of 390 conformations.
The seven favourable conformations are presented in Table 5.6.

All the clusters exhibit a close alignment with the reference A-type
dimer of TSA2, a finding that is also corroborated by the low RMSD of atomic
position value calculated. Consequently, the A-type dimers of Saccharomyces
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RMSD from LD

HADDOCK aligning

Cluster No. Score Clustersize overall lowest Z- score —

Sy () dimer (A°)

1 -114.4 +/-49 | 245 1.2+/-1.0 -1.7 1.6
3 -97.3+/-5.6 58 3.0+/-02 -0.9 3.6
2 -87.3+/-3.2 61 45+/-0.6 -0.5 43
5 -66.5+/-156 |7 43+/-04 0.5 3.8
6 -64.6 +/- 6.6 6 24+/-04 0.6 3.3
4 -594+/-169 |8 50+/-03 0.8 3.8
7 -50.7 +/-148 |5 6.9 +/-09 1.2 59

Table 5.6: The table depicts the seven most similar conformations to the
TSA2 A-type dimer. The table contains information regarding the cluster, the
HADDOCK score, the cluster size, the RMSD of the lowest energy, the z-score
and the RMSD while aligning to the TSA2 A-type dimer.

cerevisine TSA2 have been successfully replicated using only a single monomer
sequence.

A-type and B-type interface interactions in TSA2 trimers from Saccha-
romyces cerevisiae

The objective was to replicate the A-type and B-type interface interactions
observed in the monomers of Saccharomyces cerevisiae TSA2.

HADDOCK yielded 9 clusters, comprising a total of 46 conformations.
The nine conformations are presented in Table 5.7.

RMSD from LD

HADDOCK aligning

Cluster No. Score Clustersize overall lowest Z- score —

energy (A°) trimer (A°)

1 -309.1+/-183 | 9 10.3+/-0.7 -1.6 14.7
7 -303.7 +/-13.1 | 4 13.3+/-0.3 -1.3 4.1

4 -2954+/-232 |5 24+/-19 -0.9 13.2
3 -2739+/-140 | 5 9.6+/-14 0.3 14.0
8 -272.6 +/-10.3 | 4 21.5+/-09 0.3 26.1
2 -2721+/-277 | 5 223 +/-0.3 0.4 234
6 -2702+/-175 | 5 23.0+/-0.3 0.5 23.7
5 -265.7+/-129 | 5 24.0+/-0.5 0.7 23.0
9 -2485+/-364 | 4 144 +/-0.7 1.6 14.1

Table 5.7: The table depicts the nine most similar conformations to the TSA2
A-type and B-type trimer. The table contains information regarding the cluster,
the HADDOCK score, the cluster size, the RMSD of the lowest energy, the
z-score and the RMSD while aligning to the TSA2 trimer.

The structures of cluster 7 exhibit a close alignment to the reference
A-type and B-type interfaces of Saccharomyces cerevisiae TSA2, a finding that
is also supported by the low RMSD of atomic position value calculated. This
demonstrates that the A-type and B-type interfaces of TSA2 can be successfully
replicated using only one monomer sequence.
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Decamers of TSA2 from Saccharomyces cerevisiae

The objective was to replicate the decamer doughnut-like shaped structure
observed in Saccharomyces cerevisine TSA1. Therefore, five molecules of B-type
TSA2 dimers and the A-type interface active residues were incorporated as
the initial input.

HADDOCK yielded 200 clusters, comprising a total of 200 conforma-
tions. The ten most favourable conformations are presented in Table 5.8.

RMSD
RMSD from aligning
Cluster No. Clustersize overall lowest TSA2

SO energy (A°) decamer
(A°)

HADDOCK

1 -495.7+/-00 |1 0.0+/-0.0 -2.2 454
2 -4278 +/-00 |1 299 +/-0.0 -0.6 43.2
3 -4249+/-00 |1 40.2+/-0.0 -0.5 40.3
4 -4223+/-00 |1 48.7+/-0.0 -0.5 52.4
5 -4222+/-00 |1 36.0 +/-0.0 -0.5 38.5
6 -3973+/-00 |1 33.7+/-0.0 0.1 43.8
7 -3714+/-00 |1 33.4+/-0.0 0.7 38.9
8 -359.0+/-00 |1 28.8+/-0.0 1 36.0
9 -355.1+/-0.0 |1 40.9 +/-0.0 1.1 38.1
10 -355.1+/-00 |1 31.7 +/-0.0 1.1 37.5

Table 5.8: The table depicts the ten most similar conformations to the TSA2
decamer. The table contains information regarding the cluster, the HADDOCK

score, the cluster size, the RMSD of the lowest energy, the z-score and the
RMSD while aligning to the TSA2 decamer.

The doughnut-shaped decameric structure, which bears resemblance
to the TSA2, is not formed. Consequently, an attempt was made to dock with
other beta dimers, including chains C and D, chains E and F, chains G and H,
and chains I and J. However, docking with all these dimers, in individual runs,
did not yielded successful results. The alignment with TSA2 was not optimal.

Hetero-dimerisation at B-type interface of Prxs from Saccharomyces cere-
visiae

The objective was to dock a monomer derived from TSA1 and a monomer
derived from TSA2 of Saccharomyces cerevisiae at B-type interfaces. Accordingly,
a molecule of a chain from TSA1, another molecule of a chain from TSA2, and
the B-type interface active residues in TSA1 and TSA2 were loaded as the
input.

HADDOCK yielded 23 clusters, comprising a total of 281 conforma-
tions. The ten most favourable conformations are presented in Table 5.9.

The structures of clusters 1, 2, 4, 12 and 15 exhibit a high degree of align-
ment with the reference B-type interfaces of TSA1 and TSA2. This conclusion
is further supported by the low RMSD of atomic position values calculated.
Consequently, successfully created heterodimer from monomers of TSA1 an
TSAZ2 at B-type interface.
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RMSD RMSD
HADDOCK aligning aligning

Cluster No. Score Cluster size Z- score TSA1 TSA2

dimer (A°) | dimer (A°)

1 -2702+/-62 |78 -3 1.654 1.9
4 -108.3 +/-11.6 | 15 0 3.754 3.9
7 -992 +/-142 | 12 0.2 20.125 20.0
6 -98.7+/-105 | 12 0.2 22224 21.0
3 -98.1+/-4.7 21 0.2 21.564 19.3
2 -90.5 +/-8.3 24 0.4 6.015 6.0
12 -85.5+/-8.5 9 0.4 6.72 6.3
15 -824+/-164 |6 0.5 4.853 5.0
5 -824+/-116 | 13 0.5 22.813 20.6
9 -80.8+/-14 11 0.5 22.072 20.3

Table 5.9: The table depicts the ten most similar conformations to the B-type
TSA1 and TSA2 dimers. The table contains information regarding the cluster,
the HADDOCK score, the cluster size, the RMSD of the lowest energy, the
z-score and the RMSD while aligning to the TSA1 and TSA2 dimer.

Hetero-dimerisation at A-type interface of Prxs from S. cerevisiae

The objective was to dock a monomer derived from TSA1 and a monomer de-
rived from TSAZ2 of Saccharomyces cerevisiae at A-type interfaces. Accordingly,
a molecule of a chain from TSA1, another molecule of a chain from TSA2, and
the A-type interface active residues in TSA1 and TSA2 were loaded as the
input.

HADDOCK yielded 14 clusters, comprising a total of 161 conforma-
tions. The ten most favourable conformations are presented in Table 5.10.

RMSD RMSD
HADDOCK aligning aligning

Cluster No. Score Clustersize Z- score TSA1 TSA2

dimer (A°) | dimer (A°)

5 -96.7 +/-174 | 14 2.1 3.849 37
2 -85.3 +/- 6.9 19 -1.2 1.715 1.6
3 -79.3+/-2.8 17 -0.7 7.629 6.9
1 -70.7 +/-0.8 28 0 12.382 11.8
4 -66.9 +/-5.2 17 0.2 11.408 11.6
9 -66.6 +/- 8.6 7 0.3 11.989 12.1
7 -62.7 +/-5.4 1 0.6 5.059 4.8
8 -59.6 +/-4.6 10 0.8 5.869 5.8
10 -59.6 +/-7.8 6 0.8 15.567 15.4
6 -53.4 +/-3.6 14 1.3 15918 15.7

Table 5.10: The table depicts the ten most similar conformations to the A-type
TSA1 and TSA2 dimers. The table contains information regarding the cluster,
the HADDOCK score, the cluster size, the RMSD of the lowest energy, the
z-score and the RMSD while aligning to the TSA1 and TSA2 dimer.

The structures of clusters 2, 3, 5, 7 and 8 exhibit a high degree of
alignment with the reference A-type interfaces of TSA1 and TSA2. This is
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supported by the low RMSD of atomic position values calculated. Therefore,
successfully created heterodimer from monomers of TSA1 and TSA2 at A-type
interface.

Hetero-trimerisation of Prxs from Saccharomyces cerevisiae

The objective was to dock a three-monomer derived from TSA1 and TSA2 of
Saccharomyces cerevisiae at A-type and B-type interfaces with the intention of
forming trimers that are similar in structure to those observed in the experi-
mental data. A total of six combinations exist in which the three molecules
derived from TSA1 and TSA2 can be inputted at the A-type and B-type inter-
faces for docking purposes. The combinations are presented in the table 5.11.
In order to ascertain which combination yields the most favourable results, all
six combinations have been subjected to docking.

Combination | Monomers interacting in B-type interface Monomer interacting at A-type interface
Combination 1 | TSA1 | TSA1 TSA2
Combination 2 | TSA1 | TSA2 TSA1
Combination 3 | TSA2 | TSA1 TSA1
Combination 4 | TSA1 | TSA2 TSA2
Combination 5 | TSA2 | TSA1 TSA2
Combination 6 | TSA2 | TSA2 TSA1

Table 5.11: The six possible combinations for docking hetero-trimers from
monomers of TSA1 and TSA2

Combination 1 of hetero-trimerisation

In this configuration, two monomers of TSA1 were loaded with B-type inter-
face residues, while one monomer from TSA2 is loaded with A-type interface
residues.

HADDOCK yielded 12 clusters, comprising a total of 26 conformations.
The ten most favourable conformations are presented in Table 5.12.

Using the combination 1 of monomers, the structures of cluster 4 exhibit
a high degree of similarity to the reference A- and B-type interfaces of TSA1
and TSA2. Furthermore, the low RMSD of atomic position value calculated
lends additional support to this conclusion.
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RMSD RMSD
HADDOCK aligning aligning

Cluster No. Score Cluster size Z- score TSA1 TSA2

trimer (A°) | trimer (A°)

3 -312.0+/-19.8 | 2 2.2 23.925 225
4 -2512+/-79.2 | 2 -1.2 5.45 5.3

1 -199.4 +/-215 | 3 -0.4 11.084 11.7
5 -191.5+/-45 |2 -0.3 12.495 13.2
8 -151.8 +/-10.6 | 2 0.3 24.089 23.5
6 -142.7 +/-344 | 2 0.5 10.295 111
7 -133.8 +/-299 | 2 0.6 13.921 14.1
9 -131.1+4/-19 |2 0.6 16.809 25.1
11 -1059 +/-54 |2 1 22.295 21.8
2 -101.2+/-135 | 3 1.1 13.075 13.0

Table 5.12: The table depicts the ten most similar conformations to the TSA1
and TSA2 trimers using combination 1 of monomers. The table contains
information regarding the cluster, the HADDOCK score, the cluster size, the
RMSD of the lowest energy, the z-score and the RMSD while aligning to the
TSA1 and TSA2 trimers.

Combination 2 of hetero-trimerisation

In this configuration, at the B-type interface, one monomer of TSA1 and one
monomer from TSA2 with the corresponding B-type interacting residues were
loaded. At the A-type interface, the hetero-dimer is expected to interact with a
monomer from TSA1 and the A-type interacting residues of TSA1 were loaded
accordingly.

HADDOCK yielded 4 clusters, comprising a total of 23 conformations.
The four conformations are presented in Table 5.13.

RMSD RMSD
HADDOCK . aligning aligning
Cluster No. Score Cluster size Z- score TSA1 —
trimer (A°) | trimer (A°)
2 -333.8 +/-20.7 | 7
1 -332.8+/-162 | 8 -0.9 9.867 11.7
4 -302.8+/-8.0 |4 0.6 8.951 10.5
3 -289.4 +/-165 | 4 1.3 13.749 14.8

Table 5.13: The table depicts the four conformations of the TSA1 and TSA2
trimers using combination 2 of monomers. The table contains information
regarding the cluster, the HADDOCK score, the cluster size, the RMSD of the
lowest energy, the z-score and the RMSD while aligning to the TSA1 and TSA2
trimers.

Using the combination 2 of monomers, the structural predictions gen-
erated by HADDOCK do not appear to exhibit similarities to TSA1 or TSA2.
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Combination 3 of hetero-trimerisation

In this configuration, at the B-type interface, one monomer of TSA2 and one
monomer from TSA1 with the corresponding B-type interacting residues were
loaded. At the A-type interface, the hetero-dimer is expected to interact with a
monomer from TSA1 and the A-type interacting residues of TSA1 were loaded
accordingly.

HADDOCK yielded 3 clusters, comprising a total of 15 conformations.
The three conformations are presented in Table 5.14.

RMSD RMSD
HADDOCK aligning aligning

Cluster No. Seore Clustersize Z- score TSA1 TSA2

trimer (A°) | trimer (A°)

-331.0+/-53.7 | 5 . .
1 -301.6+/-62 |6 0.6 27.160 26.8
3 -297.4+/-12.0 | 4 0.8 26.056 25.8

Table 5.14: The table depicts the three conformations of the TSA1 and TSA2
trimers using combination 3 of monomers. The table contains information
regarding the cluster, the HADDOCK score, the cluster size, the RMSD of the
lowest energy, the z-score and the RMSD while aligning to the TSA1 and TSA2
trimers.

Using the combination 3 of monomers, the structures of cluster 2 exhibit
a high degree of similarity to the reference A-type and B-type interfaces
of TSA1 and TSA2. Furthermore, the low RMSD of atomic position value
calculated lends additional support to this conclusion.

Combination 4 of hetero-trimerisation

In this configuration, at the B-type interface, one monomer of TSA1 and one
monomer from TSA2 with the corresponding B-type interacting residues were
loaded. At the A-type interface, the hetero-dimer is expected to interact with a
monomer from TSA2 and the A-type interacting residues of TSA2 were loaded
accordingly.

HADDOCK yielded 4 clusters, comprising a total of 23 conformations.
The four conformations are presented in Table 5.15.

Using combination 4 of monomers, the structures of clusters 1 and 3
exhibit a high degree of similarity to the reference A- and B-type interfaces
of TSA1 and TSA2. Furthermore, the low RMSD of atomic position value
calculated lends additional support to this conclusion.
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RMSD RMSD
HADDOCK aligning aligning

Cluster No. Score Cluster size Z- score TSA1 TSA2

trimer (A°) | trimer (A°)

3 -312.5+/-41.1 | 4 . 3.022 .

4 -306.4 +/-14.1 | 4 -0.3 12.055 12.3
1 -3044+/-88 |9 0 7.541 7.0
2 -2940+/-48 |6 1.5 24.817 23.8

Table 5.15: The table depicts the four conformations of the TSA1 and TSA2
trimers using combination 4 of monomers. The table contains information
regarding the cluster, the HADDOCK score, the cluster size, the RMSD of the
lowest energy, the z-score and the RMSD while aligning to the TSA1 and TSA2
trimers.

Combination 5 of hetero-trimerisation

In this configuration, at the B-type interface, one monomer of TSA2 and one
monomer from TSA1 with the corresponding B-type interacting residues were
loaded. At the A-type interface, the hetero-dimer is expected to interact with a
monomer from TSA2 and the A-type interacting residues of TSA2 were loaded
accordingly.

HADDOCK yielded 3 clusters, comprising a total of 15 conformations.
The three conformations are presented in Table 5.16.

RMSD RMSD
HADDOCK aligning aligning

Cluster No. Score Clustersize Z- score TSA1 TSA2

trimer (A°) | trimer (A°)

-319.0 +/-138 | 7 . 13.841 13.6
2 -253.0+/-322 | 4 0.4 26.325 25.6
3 -2289+/-63.1 | 4 1.0 5.478 5.3

Table 5.16: The table depicts the three conformations of the TSA1 and TSA2
trimers using combination 5 of monomers. The table contains information
regarding the cluster, the HADDOCK score, the cluster size, the RMSD of the
lowest energy, the z-score and the RMSD while aligning to the TSA1 and TSA2
trimers.

Using combination 5 of monomers, the structures of cluster 3 exhibit
a high degree of similarity to the reference A- and B-type interfaces of TSA1
and TSA2. Furthermore, the low RMSD of atomic position value calculated
lends additional support to this conclusion.
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Combination 6 of hetero-trimerisation

In this configuration, at the B-type interface, two monomer of TSA2 with
the corresponding B-type interacting residues were loaded. At the A-type
interface, the hetero-dimer is expected to interact with a monomer from TSA1
and the A-type interacting residues of TSA1 were loaded accordingly.

HADDOCK yielded 8 clusters, comprising a total of 38 conformations.
The eight conformations are presented in Table 5.17.

RMSD RMSD
HADDOCK aligning aligning

Cluster No. Score Clustersize Z- score TSA1 TSA2

trimer (A°) | trimer (A°)

1 -307.6 +/-11.8 | 7 -1.5 9.33 111
2 -301.0+/-85 |6 -1.1 7.745 9.6
5 -283.0+/-249 | 4 -0.2 24.717 24.8
3 -281.8+/-33.8 | 5 -0.2 3.519 6.8
6 2773 +/-264 | 4 0 21.907 222
8 -267.8+/-208 | 4 0.5 5.535 8.0
4 2674 +/-344 | 4 0.5 7.293 94
7 -238.0+/-414 | 4 2 25.21 25.7

Table 5.17: The table depicts the eight conformations of the TSA1 and TSA2
trimers using combination 6 of monomers. The table contains information
regarding the cluster, the HADDOCK score, the cluster size, the RMSD of the
lowest energy, the z-score and the RMSD while aligning to the TSA1 and TSA2
trimers.

Using combination 6 of monomers, the structures of clusters 2, 3, 4 and
8 exhibit a high degree of similarity to the reference A- and B-type interfaces
of TSA1 and TSA2. Furthermore, the low RMSD of atomic position value
calculated lends additional support to this conclusion.

B-type PrxA dimers from Arabidopsis thaliana

The objective was to replicate the B-type dimers from the monomers of PrxA
Arabidopsis thaliana.

HADDOCK vyielded 11 clusters, comprising a total of 377 conforma-
tions. The ten most favourable conformations are presented in Table 5.18.

The structures of clusters 1, 3, 4, 5, and 6 exhibit a high degree of align-
ment with the reference dimer of PrxA. Furthermore, the RMSD of atomic
position value calculated lends additional support to this conclusion. There-
fore, the B-type dimers of PrxA were successfully replicated using only one
monomer sequence.
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RMSD from LD

HADDOCK aligning

Cluster No. Clustersize overall lowest Z- score .
score PrxA dimer
energy (A°) (A°)

1 -281.3 +/-47 | 224 04+/-03 -3.0 3.8
2 -100.0 +/-34 | 32 16.8 +/-0.5 -0.1 159
3 -85.8+/-1.8 31 45+/-14 0.1 3.9
8 -733+/-13.1 | 10 10.2+/-0.3 0.3 10.1
4 <713 +/-9.7 20 6.6+/-09 0.4 7.1
9 -712+/-2.8 7 183 +/-0.3 0.4 171
6 -68.0 +/-7.6 13 46+/-04 0.4 6.1
10 -63.2 +/-9.8 6 182 +/-0.3 0.5 17.3
7 -62.4 +/-4.7 11 21.1+/-02 0.5 221
5 -61.8 +/-2.1 17 94+/-07 0.5 9.7

Table 5.18: The table depicts the ten most similar conformations to the PrxA
B-type dimer. The table contains information regarding the cluster, the HAD-
DOCK score, the cluster size, the RMSD of the lowest energy, the z-score and
the RMSD while aligning to the PrxA B-type dimer.

A-type PrxA dimers from Arabidopsis thaliana

The objective was to replicate the A-type dimers from the monomers of PrxA
Arabidopsis thaliana.

HADDOCK yielded 7 clusters, comprising a total of 177 conformations.
The seven conformations are presented in Table 5.19.

RMSD from LD

HADDOCK aligning

Cluster No. Clustersize overall lowest Z-score :
score 5 PrxA dimer
energy (A°) (A°)

1 -108.3 +/- 3.8 72+/-0.2 -1.8 5.1
2 -98.2+/-6.0 51 63+/-04 -1.1 14.4
5 -82.1+/-105 |7 9.7+/-15 0.0 3.8
7 -785+/-263 |4 19+/-12 0.3 10.9
3 -779 +/-5.1 10 75+/-0.3 0.3 59
6 -70.6 +/-7.1 6 14.3+/-0.9 0.8 6.7
4 -62.9 +/-4.1 9 16.4+/-0.8 1.4 12.3

Table 5.19: The table depicts the seven most similar conformations to the
PrxA A-type dimer. The table contains information regarding the cluster, the
HADDOCK score, the cluster size, the RMSD of the lowest energy, the z-score
and the RMSD while aligning to the PrxA A-type dimer.

The structures of clusters 1, 3, 5 and 6 exhibit a high degree of alignment
with the reference dimer of PrxA. Furthermore, the RMSD of atomic position
value calculated lends additional support to this conclusion. Therefore, the
B-type dimers of PrxA were successfully replicated using only one monomer
sequence.
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A-type and B-type interface interactions in PrxA from Arabidopsis thaliana

The objective was to replicate the A-type and B-type interface interactions
observed in the monomers of Arabidopsis thaliana PrxA.

HADDOCK yielded 4 clusters, comprising a total of 17 conformations.
The four conformations are presented in Table 5.20.

RMSD from L EID

HADDOCK aligning

Cluster No. Clustersize overall lowest | Z- score .
score o PrxA trimer
energy (A°) (A°)

1 -298.4+/-257 | 5 3.0+/-09 -1.3 12.6
2 -271.8+/-17.1 | 4 12.1+/-0.6 -0.6 4.8

3 -223.0 +/-46.0 | 4 6.7+/-04 0.6 11.1
4 -191.8 +/-594 | 4 6.2+/-1.0 1.3 13.4

Table 5.20: The table depicts the four conformations to the PrxA A-type
and B-type trimer. The table contains information regarding the cluster, the
HADDOCK score, the cluster size, the RMSD of the lowest energy, the z-score
and the RMSD while aligning to the PrxA trimer.

The structure of cluster 2 exhibits a high degree of alignment with the
reference A-type and B-type interfaces of PrxA Arabidopsis thaliana. Further-
more, the RMSD of atomic position value calculated lends additional support
to this conclusion. It was therefore demonstrated that the A-type and B-type
interfaces of PrxA could be successfully replicated using only one monomer
sequence.

Cross species hetero-dimerisation at B-type interface

The objective was to dock a monomer derived from peroxiredoxins of Saccha-
romyces cerevisine and a monomer from PrxA of Arabidopsis thaliana at B-type
interfaces. Therefore, for the input molecules, one chain from TSA1 or TSA2 of
S. cerevisine was loaded as one molecule and a chain from PrxA of A. thaliana
was loaded as the other molecule, with the active and passive residues at the
B-type interface of the corresponding monomers.

Upon docking a monomer from TSA1 and a monomer from PrxA at
B-type interface, the HADDOCK yielded 8 clusters comprising a total of 183
conformations. The eight conformations are presented in Table 5.21. Figures
B.1 and B.2 illustrate the eight aligned complexes of the predicted structures
and TSA1 and PrxA dimers, which are aligned in accordance with the eight
predicted structures.

The structures of cluster 1, 4 and 8 exhibit a high degree of alignment
with the reference B-type interfaces of TSA1 and PrxA. Furthermore, the
RMSD of atomic position value calculated lends additional support to this
conclusion.

Upon docking a monomer from TSA2 and a monomer from PrxA at
B-type interface, HADDOCK yielded 7 clusters comprising a total of 178
conformations. The seven conformations are presented in Table 5.22. Figure
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RMSD RMSD
HADDOCK aligning aligning

Cluster No. Score Cluster size Z- score TSA1 PrxA dimer

dimer (A°) | (A°)

1 -2541+/-62 |52 -2.5 1.650 3.8
5 -117.6 +/-4.6 | 18 0.0 20.225 20.8
2 -114.0 +/-18.7 | 41 0.1 21.032 21.0
7 -111.2+/-10.7 | 10 0.1 14.475 13.8
4 -96.7 +/-11.6 | 19 0.4 7.949 7.9
6 -95.7 +/- 6.5 16 0.4 20.521 214
3 -89.3 +/-5.7 21 0.5 9.505 10.4
8 -59.8+/-11.3 | 6 1.1 7.433 8.0

Table 5.21: The table depicts the eight of the hetero-dimer at B-type interface.
The table contains information regarding the cluster, the HADDOCK score,
the cluster size, the RMSD of the lowest energy, the z-score and the RMSD
while aligning to the TSA1 and PrxA dimer.

B.3 and B.4 illustrates the seven aligned complexes of the predicted structures
and TSA2 and PrxA dimers, which are aligned in accordance with the seven
predicted structures.

RMSD RMSD
HADDOCK aligning aligning

Cluster No. Score Clustersize Z- score TSA2 PrxA dimer

dimer (A°) | (A°)

3 -201.1 +/-16.5 | 26 2.4 1.862 4.0

4 974 +/-170 | 14 0.2 7.987 10.6
2 917 +/-65 32 0.3 19.011 21.6
7 -91.5+/-75 4 0.3 17.976 21.7
5 -90.7+/-153 | 8 0.3 5.800 5.3

1 -904 +/-15 88 0.3 17.844 215
6 -62.8 +/-5.1 6 1.0 14.183 14.0

Table 5.22: The table depicts the seven of the hetero-dimer at B-type interface.
The table contains information regarding the cluster, the HADDOCK score,
the cluster size, the RMSD of the lowest energy, the z-score and the RMSD
while aligning to the TSA2 and PrxA dimer.

The structures of cluster 3 and 5 exhibit a high degree of alignment with
the reference B-type interfaces of TSA2 and PrxA. Furthermore, the RMSD of
atomic position value calculated lends additional support to this conclusion.

Cross species hetero-dimerisation at A-type interface

The objective was to dock a monomer derived from peroxiredoxins of Saccha-
romyces cerevisiae and a monomer from PrxA of Arabidopsis thaliana at A-type
interfaces. Therefore, for the input molecules, one chain from TSA1 or TSA2 of
S. cerevisinze was loaded as one molecule and a chain from PrxA of A. thaliana
was loaded as the other molecule, with the active and passive residues at the
A-type interface of the corresponding monomers.
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Upon docking a monomer from TSA1 and a monomer from PrxA at
A-type interface, the HADDOCK yielded 6 clusters comprising a total of 191
conformations. The six conformations are presented in Table 5.23. Figures B.5
and B.6 illustrates the six aligned complexes of the predicted structures and
TSA1 and PrxA dimers, which are aligned in accordance with the six predicted
structures.

RMSD RMSD
HADDOCK . aligning aligning

Cluster No. Score Clustersize Z-score — PrxA dimer
dimer (A°) | (A°)

1 -118.0 +/- 0.9 . .

2 -94.6+/-3.2 18 -0.7 1.554 35

6 -739 +/-20.3 4 0.2 6.799 7.2

3 719 +/-9.8 13 0.3 12.872 13.3

4 -673+/-166 |7 0.5 7.603 8.4

5 -46.0+/-16.0 |5 1.4 5.590 6.8

Table 5.23: The table depicts the six of the hetero-dimer at A-type interface.
The table contains information regarding the cluster, the HADDOCK score,
the cluster size, the RMSD of the lowest energy, the z-score and the RMSD
while aligning to the TSA1 and PrxA dimer.

The structure of clusters 1, 2, 4, 5 and 6 exhibit a high degree of align-
ment with the reference A-type interfaces of TSA1 and PrxA. Furthermore,
the RMSD of atomic position value calculated lends additional support to this
conclusion.

Upon docking a monomer from TSA2 and a monomer from PrxA at
A-type interface, HADDOCK yielded 10 clusters comprising a total of 154
conformations. The ten conformations are presented in Table 5.24. Figures
B.7 and B.8 illustrate the ten aligned complexes of the predicted structures
and TSA2 and PrxA dimers, which are aligned in accordance with the ten
predicted structures.

The structure of clusters 1, 4, 6, 7, 8 and 9 exhibit a high degree of align-
ment with the reference A-type interfaces of TSA2 and PrxA. Furthermore,
the RMSD of atomic position value calculated lends additional support to this
conclusion.
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RMSD RMSD
HADDOCK aligning aligning

Cluster No. Score Cluster size Z- score TSA2 PrxA dimer

dimer (A°)  (A°)

1 -76.2+/-3.5 39 -2.0 10.410 7.4
2 -674 +/-3.0 33 -1.2 14.918 13.5
6 -619+/-7.0 9 -0.6 10.355 6.4
5 -56.5 +/-9.1 13 -0.1 15.295 13.6
4 544 +/-12 14 0.1 9.927 6.3
9 -514+/-100 |5 0.3 10.480 8.2
3 -50.8 +/-11.8 | 22 0.4 16.514 154
8 -48.8 +/-49 2 0.6 10.440 7.4
7 -454 +/-107 | 8 0.9 11.028 8.4
10 -37.6+/-144 |4 1.6 14.761 12.1

Table 5.24: The table depicts the ten of the hetero-dimer at A-type interface.
The table contains information regarding the cluster, the HADDOCK score,
the cluster size, the RMSD of the lowest energy, the z-score and the RMSD
while aligning to the TSA2 and PrxA dimer.

5.3.2 Results from AlphaFold

The objective was to replicate the decamer structure of TSA1 and TSA2 from
S. cerevisige and PrxA from A. thaliana using AlphaFold 3. Ten corresponding
monomers were input into AlphaFold 3 in order to predict the complex struc-
ture. The AlphaFold 3 algorithm yielded five top-predicted structures for each
peroxiredoxin.

Decamers of TSA1 from Saccharomyces cerevisiae

The decamer structure of TSA1 was replicated through the loading of ten
monomers in AlphaFold, which yielded five predicted structures. The scores
and RMSD values obtained by comparing the predicted structure with the
experimental structure are presented in Table 5.25. Figure B.9 illustrates
the five aligned complexes of the predicted structures and the experimental
decamers of TSAL.

Predicted | Fraction disor- Has clash | iptm Ranking RMSD align
structure dered = p score to TSA1 (A°)
2 0.0 0.0 0.84 0.85 0.84 1.5

3 0.0 0.0 0.84 0.85 0.84 1.6

4 0.01 0.0 0.83 0.85 0.84 1.7

5 0.0 0.0 0.81 0.82 0.81 1.5

Table 5.25: The table presents the scores of the five predicted structures using
the AlphaFold algorithm and the RMSD values while aligning to the TSA1
decamer. The table presents a range of data regarding various scores, including
those pertaining to fraction disordered, has_clash, Iptm, Ptm, and ranking
score.

As indicated by the RMSD values, all predicted structures exhibit an
average degree of similarity. The results of the ptm and iptm scores also
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indicate that the accuracy of the predicted complex and interface structures is
high.

Decamers of TSA2 from Saccharomyces cerevisiae

The decamer structure of TSA2 was replicated through the loading of ten
monomers in AlphaFold, which yielded five predicted structures. The scores
and RMSD values obtained by comparing the predicted structure with the
experimental structure are presented in Table 5.26. Figure B.10 illustrates
the five aligned complexes of the predicted structures and the experimental
decamers of TSA2.

Predicted | Fraction disor- Ranking RMSD align

Has_clash | iptm ‘ ptm

structure dered score to TSA2 (A°)
1 0.03 0.0 0.85 0.86 0.86 479
2 0.03 0.0 0.85 0.86 0.86 47.8
3 0.03 0.0 0.85 0.86 0.86 479
4 0.02 0.0 0.84 0.86 0.85 47.8
5 0.01 0.0 0.83 0.85 0.84 48.0

Table 5.26: The table presents the scores of the five predicted structures using
the AlphaFold algorithm and the RMSD values while aligning to the TSA2
decamer. The table presents a range of data regarding various scores, including
those pertaining to fraction disordered, has_clash, Iptm, Ptm, and ranking
score.

As determined by RMSD values, no structures demonstrated a high
degree of similarity. However, the outcomes of the ptm and iptm scores
suggest that the accuracy of all the predicted complex and interface structures
is high.

Decamers of PrxA from Arabidopsis thaliana

The decamer structure of PrxA was replicated through the loading of ten
monomers in AlphaFold, which yielded five predicted structures. The scores
and RMSD values obtained by comparing the predicted structure with the
experimental structure are presented in Table 5.27. Figure B.11 illustrates
the five aligned complexes of the predicted structures and the experimental
decamers of PrxA.

Predicted Fraction disor-

Ranking RMSD align

structure dered e ‘ iptm ‘ B score to PrxA (A°)
1 0.0 0.0 0.79 0.81 0.79 39.8
2 0.0 0.0 0.79 0.81 0.79 39.9
3 0.0 0.0 0.79 0.81 0.79 39.9
4 0.0 0.0 0.79 0.8 0.79 39.9
5 0.0 0.0 0.79 0.8 0.79 40.0

Table 5.27: The table presents the scores of the five predicted structures using
the AlphaFold algorithm and the RMSD values while aligning to the PrxA
decamer. The table presents a range of data of various scores, including those
pertaining to fraction disordered, has_clash, Iptm, Ptm, and ranking score.
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As determined by RMSD values, no structures demonstrated a high
degree of similarity. However, the ptm and iptm scores suggest that the
accuracy of all the predicted complex and interface structures is considerable.

5.4 Conclusion

The HADDOCK method has been demonstrated to be an effective means of
replicating the A-type and B-type homo dimerisation and trimerisation of the
peroxiredoxins TSA1 and TSA2 of S. cerevisiae and PrxA of A. thaliana. Further-
more, HADDOCK was able to successfully predict heterodimer complexes
from monomers of TSA1 and TSA2, which exhibited close similarity in RMSD
values to the homodimer structures of TSA1 and TSA2. However, HADDOCK
was unsuccessful in predicting the decameric structures of TSA1, and TSA2
from the ten corresponding monomers. In the attempt to create hetero-trimers
at the A-type and B-type interfaces with six combinations of monomers of
TSA1 and TSA2, only one combination (Combination 2, a monomer from TSA2
and a monomer from TSA?2 at the B-type interface and a monomer from TSA1
at the A-type interface) did not yield structures similar to those of the trimers
of TSA1 or TSA2. The predicted structures of the remaining combinations
exhibited at least one cluster of trimer structures with notable similarities. In
the cross-species dimerisation of docking a monomer from TSA1 or TSA2
and another from PrxA at the B-type interface, HADDOCK was successful
in identifying a cluster that showed similarity to both peroxiredoxin from S.
cerevisiae and PrxA of A. thaliana. While cross-species dimerisation of docking
a monomer from TSA1 or TSA2 and another from PrxA at the A-type interface,
HADDOCK was successful in identifying a cluster that showed similarity to
both peroxiredoxin from S. cerevisiae and PrxA of A. thaliana. In conclusion,
while HADDOCK predicted a number of structures, the majority of these
exhibited RMSD values higher than 2 A° when compared to the experimental
structures. Consequently, these structures may not be regarded as optimal for
further investigation.

The replication of the dimer and trimer complex was not feasible using
AlphaFold, as there was no option to provide the active binding sites for the
B-type and A-type interfaces. Consequently, an attempt was made to replicate
the decamer complex for TSA1, TSA2 and PrxA. RMSD scores were used to
calculate the average distance between the atoms of the predicted and the
experimentally deposited protein complex [231]. In addition, Alphafold gener-
ated further scores such as predicted Template Modelling (pTM) and Interface
Predicted Template Modelling (ipTM) for each prediction. These scores pro-
vide the global topological structure and are insensitive to local variations in
the orientations of the flexible loop or tail structures [232]. The pTM score
ranges from 0 to 1, with scores above 0.5 indicating a structure that is close to
the hypothetical true structure and scores below 0.5 indicating less confident
predictions. Similarly, the ipTM score is a metric that quantifies the accuracy
of the predicted relative positions of subunits. This score ranges from 0 to 1,
with scores in the 0.6 to 0.8 range falling within what is termed the ‘grey zone’.
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In this zone, the predicted relative positions of the structures may or may
not be correct. Scores above 0.8 are considered to be high quality predictions,
while scores below 0.5 are considered to be low quality predictions.

In the present study, the predicted structures were compared to the
corresponding TSA1, TSA2 and PrxA protein decameric structures using
Alphafold. The RMSD, pTM and ipTM scores were estimated. A notable
observation was that, in the comparison of the predicted structures with those
of TSA1, the pTM and iPTM scores were sufficiently high to substantiate
confident predictions, while the RMSD scores were sufficiently low to affirm
the similarity of the predicted structures to the experimental ones. Conversely,
when the experimental structures of TSA2 and PrxA were compared with their
respective predicted structures, it was observed that the pTM and the ipTM
scores were sufficiently high to substantiate the reliability of the predicted
structures. However, a high deviation was observed in the RMSD scores when
compared to the experimental structures. To further analyse this in detail, a
comparison was made of the dimers at the A-type and B-type interfaces of the
predicted structures and the experimental structures. The RMSD scores indi-
cated that the dimers exhibited a high degree of similarity to the experimental
structures. Subsequently, the trimer structures encompassing one A-type and
one B-type interface of the predicted and the experimental structures were
compared. The RMSD scores indicated a significant disparity between the
predicted and the experimental structures. The analysis revealed significant
variations in the folding of protein structures at the tails. In the predicted
structures, the tails of the complex folded as helixes, but in the experimental
structures, no helix formation was observed at the tails. These local variations,
leading to larger distances between atoms, could be the reason for the high
RMSD scores. The incorporation of helixes by Alphafold is indicative of en-
hanced tail stability, consequently leading to elevated pTM and ipTM scores.
The absence of tail helices in the experimental structures may be attributable
to external factors, such as the buffer utilized. Consequently, it can be deduced
that, while Alphafold claimed being able to predict stable decameric struc-
tures of peroxiredoxins, significant local variations were observed between its
structures and the experimental ones.
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Chapter 6
Conclusion and Outlook

The central objective of this thesis was to further advance the under-
standing of protein-protein interactions, with a particular focus on their collec-
tive functions as clusters within protein-protein protein interaction networks
that drive cellular state transitions. The thesis also encompassed protein abun-
dance analyses derived from technologies such as mass spectrometry. Such
analyses are of relevance to interdisciplinary fields, including dental research,
where they are employed to identify materials that can substitute for enamel.
Furthermore, the analyses are utilised to study protein adsorption patterns on
pellicle deposited in the oral cavity, and to examine the differences in protein
adsorption patterns in various active, non-active, and treated caries conditions.
The thesis concludes with a computational study on peroxiredoxin decameric
protein complex predictions by docking monomers using HADDOCK and
Alphafold.

6.1 Analysis of transcriptomics data

In chapter 3, six pipelines were constructed for the analysis of melanoma
and nevi transcriptomics sample data, with the objective of determining the
potential drivers of a healthy state to a diseased state. Pipelines 0, I and
IT involved the processing of differential analyses prior to the construction
of the protein-protein interaction network. In contrast, pipelines IV and V
involved the processing of data where network construction preceded dif-
ferential analyses. Pipeline III considered only rewiring events during net-
work construction. The results from all the pipelines were diverse, with the
pipelines 0, I and II yielding larger and more numerous clusters. This may
be due to the fact that network construction was carried out using available
databases such as STRING and IntAct, where protein interaction evidence
was supported not only by literature evidence but also by experimental and
predicted evidence.The enrichment analysis performed on these predicted
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clusters also showed results that were not specific to the initiation or pro-
gression of melanoma. In contrast, the predicted clusters from pipelines III,
IV and V were comparatively smaller in size. This was due to the fact that
condition-specific networks were constructed in the initial phase, at which
stage only the nodes of the networks were dependent on the expression of the
corresponding genes of that sample.The enrichment analysis on these clusters
resulted in pathways that were more specific to melanoma development and
progression. The clusters identified in pipelines II, IV and V were found to
be enriched with significant Reactome pathways that have demonstrated ev-
idence of melanoma development in the extant literature. These pathways
include the MAPK pathway [170, 233], PI3K-AKt pathway [172, 234], RAS
pathway [235, 236], BRAF signalling pathway [237, 238], PTEN signalling
pathway [239, 240], WNT signalling pathway [241, 242], amongst others.

In the subnetwork analysis, the clusters that were found to be overex-
pressed, underexpressed, or absent from nevi and melanoma samples were
more clearly identified and better interpretable. The enrichment analyses of
these clusters provided a more profound insight into the reactome pathways
that were significantly enriched in melanoma samples, exclusively enriched
in nevi samples, or enriched in melanoma samples. The findings of these
differential clusters will inform future research on improving the diagnosis of
changes in cell state and even targeted therapy for diseased conditions.

The significant clusters predicted in the networks and subnetworks
exhibited a high degree of overlap with the existing complexes deposited
in Complex Portal. This finding serves to validate the prediction of clusters.
However, no gold standard reference existed to validate the predicted clusters
for specific or diseased conditions. Consequently, there is currently no existing
knowledgebase that provides the list of complexes that drive a healthy cell to
a melanoma condition, against which our predicted clusters can be compared
and ranked.

6.2 Analysis of proteomics data

In the comparative proteomic analysis of HAP and enamel to determine if
HAP can be used as a standard material for enamel studies and research, it
can be concluded that there exists no statistically significant deviations in the
absorption of proteins or the formation of biofilms on these two substrates.
Overall, the fundamental processes, encompassing pellicle formation, bac-
terial colonization and subject-specific responses, are observed to occur in a
comparable manner on synthetic HAP compared to natural enamel surfaces.
This finding thus demonstrates the aptitude of HAP for use in biofilm in-
vestigations. Consequently, it can be hypothesised that HAP may serve as a
suitable replacement for enamel in subsequent research studies.

In the comparative proteomic analysis of saliva and pellicle, it can be
concluded that some proteins do not absorb in the oral cavity to form pelli-
cles. Further investigation revealed that these proteins that remain in saliva
exhibited higher catalytic activities than the structural molecule activities
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predominantly seen in pellicle proteins, suggesting a role in the formation of
pellicle structures on oral surfaces. Furthermore, an analysis of the molecular
weight distribution patterns of these salivary and pellicle proteins reveals that
the overall distribution of molecular weights of the salivary proteins were sig-
nificantly smaller than that of pellicle proteins, with no significant correlation
values also. Furthermore, an analysis of the isoelectric points of these proteins
reveals that the majority of salivary proteins are found within the pH range
of the oral cavity, while the majority of pellicle proteins are found in the pH
range higher than that of the oral cavity (i.e. above 7.6).

In the comparative proteomic analysis of pellicle and saliva data from
active caries, treated caries and healthy conditions, it was concluded that the
protein composition, especially in pellicle, of the treated condition reverts
back and expresses high similarity to the healthy conditions, as seen in the
PCA plots. Fold change analysis reveals a significant upregulation of 17 pro-
teins and downregulation of 9 proteins in saliva from caries-active conditions
compared to healthy conditions, while a 20 proteins were exclusively down-
regulated in pellicle data. In the case of treated samples, only 4 proteins were
significantly upregulated and 36 proteins were significantly downregulated
compared to caries active conditions in salivary data. However, a contrasting
pattern was noted in pellicle data, where a greater number of proteins (24
proteins) were found to be upregulated while 4 proteins were downregu-
lated. A further comparison of the salivary and pellicle data sets reveals a
significant number of proteins with differential expression in the respective
conditions. The molecular function enrichment analysis reveals a higher de-
gree of structural molecule activity in pellicle proteins than in salivary proteins.
Conversely, salivary proteins demonstrate a higher propensity for catalytic
activity in comparison to pellicle proteins.

The present project encountered several drawbacks. For instance, the
samples obtained from the volunteers lacked sufficient replicate data to fa-
cilitate a reliable statistical analysis. There was considerable variability both
between the available replicate data and between the inter-volunteer data.
In order to achieve a higher level of confidence in the results, it is desirable
increase the number of volunteers and the number of replicate measurements.

6.3 Protein complex predictions of peroxiredoxins

Peroxiredoxin, an antioxidant protein of a ubiquitous family with multiple
isoforms, is expressed in many organisms. However, they have a propensity to
oligomerise, forming a characteristic globular doughnut-shaped structure com-
prising five homodimers. Several recent studies have suggested the possibility
of hetero-oligomerisation at dimeric or decameric structures with monomers
of close isoforms. The present study aims to determine the plausibility of
such hetero-oligomerisation by employing in silico modelling tools such as
HADDOCK and Alphafold. The HADDOCK approach was employed to repli-
cate the A-type and B-type homo dimerisation, trimerisation and decamer
formation of the peroxiredoxins TSA1 and TSA2 of S. cerevisiae and PrxA of
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A. thaliana, with the objective of validating the docked results. The tool suc-
cessfully docked the dimers, trimers and decamers at the A-type and B-type
active site interfaces, showing high similarity to the experimental structures.
Subsequently, monomers from disparate isomers were introduced into the
tool in an effort to induce hetero-oligomerisation in a range of combinations.
The HADDOCK program demonstrated success in docking hetero-oligomers
with a comparable degree of similarity to the corresponding experimental
structures, utilising the majority of the combination of monomers. Further-
more, HADDOCK was also successful in docking monomers in a cross-species
manner, with an average degree of similarity to the corresponding species.
While it is evident that the resulting conformers bear a strong resemblance
to the experimental structures and the HADDOCK scores are indicative of
efficient binding energies, it is crucial to acknowledge that HADDOCK is a
data-driven tool. Consequently, it is highly sensitive to inaccuracies in the
experimental data, which can significantly impact the outcomes, particularly
at interfaces [243]. While the hetero-oligomer structures were predicted, there
was a lack of deposited experimental hetero-oligomer structures to facilitate a
comparison between the predicted structure and the experimental data. This
would have provided a more robust validation of the predicted structures.

Utilising AlphaFold, the replication of the dimers and trimer structures
proved unfeasible, as the functionality to feed active interface information
of specific A-type and B-type interfaces was not available. Consequently,
an attempt was made to replicate the complete decameric structures. While
AlphaFold yielded highly confident predicted structures, a comparison of
these with the corresponding experimental structures revealed high RMSD
scores, thus indicating that the predicted structures did not resemble the
experimental structures. Upon closer observation, it was noted that there was a
high degree of local variations in the tail regions from the monomer sequences.
It was also observed that Alphafold incorporated helices in instances where
the experimental structures did not exhibit any helices. The tail regions were
found to be enriched with alanine and leucine. These amino acids have
been identified as favourable in the formation of helices. Consequently, it is
quite plausible why Alphafold scored its predictions as "accurate”. However,
external factors, such as the buffer used to store the peroxiredoxins prior to the
X-ray diffraction snapshot, may have influenced the folding process, resulting
in the tails not folding into helices. However, given the observed discrepancy
between the RMSD and TM scores, the hetero-oligomerisation process was
not pursued.
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Appendix A
Supplementary Material for chapter 3

A.1 N vs M samples

Table A.1: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the differential network comparing all N samples with
all M samples using pipeline 0.

Cluster  Size ‘ Reactome pathways Adjusted P- ‘
value

1 1466 Unclassified (UNCLASSIFIED) 7.790e-71
Translation (R-HSA-72766) 8.380e-58
Cellular responses to stress (R-HSA-2262752) 1.660e-53
Transport of small molecules (R-HSA-382551) 5.630e-04

2 232 SLC-mediated transmembrane transport (R-HSA-425407) 8.730e-04
Transport of bile salts and organic acids, metal 1.020e-03
ions and amine compounds (R-HSA-425366)

3 128 Keratinization (R-HSA-6805567) 1.670e-43
Developmental Biology (R-HSA-1266738) 3.950e-18

4 15 Chemokine receptors bind chemokines (R-HSA-380108) 6.610e-28
Peptide ligand-binding receptors (R-HSA-375276) 1.090e-21
Class A /1 (Rhodopsin-like receptors) (R-HSA-373076) 5.460e-19

5 36 Chemokine receptors bind chemokines (R-HSA-380108) 4.730e-23
Peptide ligand-binding receptors (R-HSA-375276) 2.050e-16
Class A /1 (Rhodopsin-like receptors) (R-HSA-373076) 1.500e-13

6 20 Chemokine receptors bind chemokines (R-HSA-380108) 4.800e-25
Peptide ligand-binding receptors (R-HSA-375276) 7.710e-19
Class A /1 (Rhodopsin-like receptors) (R-HSA-373076) 3.730e-16
Signaling by Rho GTPases , Miro GTPases and RHOBTB3 9.470e-10

7 278 (R-HSA-9716542)
Signaling by Rho GTPases (R-HSA-194315) 9.960e-10
RHO GTPase cycle (R-HSA-9012999) 6.550e-08

8 19

9 10
Intrinsic Pathway for Apoptosis (R-HSA-109606) 3.150e-11

10 16 BH3-only proteins associate with and inactivate anti- 2.330e-10
apoptotic BCL-2 members (R-HSA-111453)
Apoptosis (R-HSA-109581) 3.170e-08
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1 7 Complement cascade (R-HSA-166658) 5.280e-03
Lectin pathway of complement activation (R-HSA-166662) 6.550e-03
Surfactant metabolism (R-HSA-5683826) 3.000e-02
Table A.2: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the network constructed by significantly downregulated
genes in M samples with respect to N samples using pipeline 0.
Cluster  Size Reactome pathways Adjusted P-
value
GTP hydrolysis and joining of the 60S ribosomal subunit 6.100e-66
1 448 (R-HSA-72706)
L13a-mediated translational silencing of Ceruloplasmin 7.670e-66
expression (R-HSA-156827)
Eukaryotic Translation Initiation (R-HSA-72613) 7.150e-65
2 72 Keratinization (R-HSA-6805567) 9.060e-51
Developmental Biology (R-HSA-1266738) 6.110e-24
3 14
4 20
5 20
6 39 Prolactin receptor signaling (R-HSA-1170546) 5.800e-03
Growth hormone receptor signaling (R-HSA-982772) 1.400e-02
STAT5 Activation (R-HSA-9645135) 3.360e-02
7 21
Signaling by PDGFRA transmembrane, juxtamembrane and 1.090e-04
8 18 kinase domain mutants (R-HSA-9673767)
Erythropoietin activates Phosphoinositide-3-kinase (PI3K) 1.490e-04
(R-HSA-9027276)
Signaling by PDGFRA extracellular domain mutants 1.630e-04
(R-HSA-9673770)
9 4 Formation of the cornified envelope (R-HSA-6809371) 6.800e-24
Keratinization (R-HSA-6805567) 3.360e-20
Developmental Biology (R-HSA-1266738) 2.340e-08
10 6 Intraflagellar transport (R-HSA-5620924) 1.580e-09
Cilium Assembly (R-HSA-5617833) 6.300e-07
Organelle biogenesis and maintenance (R-HSA-1852241) 2.820e-06
1 12 BBSome-mediated cargo-targeting to cilium (R-HSA-5620922) 6.850e-04
Cilium Assembly (R-HSA-5617833) 3.450e-03
Cargo trafficking to the periciliary membrane (R-HSA-5620920) 3.990e-03
12 25
13 26
Regulation of FOXO transcriptional activity by acetylation 2.200e-07
14 18 (R-HSA-9617629)
FOXO-mediated transcription of cell cycle genes (R-HSA-9617828) 1.240e-06
FOXO-mediated transcription (R-HSA-9614085) 1.910e-06
15 38 Formation of the cornified envelope (R-HSA-6809371) 7.840e-25
Keratinization (R-HSA-6805567) 3.940e-21
Developmental Biology (R-HSA-1266738) 3.270e-09
16 5 Trafficking of myristoylated proteins to the cilium (R-HSA-5624138) 1.770e-07
Cargo trafficking to the periciliary membrane (R-HSA-5620920) 1.840e-04
Cilium Assembly (R-HSA-5617833) 7.640e-03
17 5 Complement cascade (R-HSA-166658) 7.960e-09
Regulation of Complement cascade (R-HSA-977606) 1.020e-08
Terminal pathway of complement (R-HSA-166665) 3.300e-07
18 21

Table A.3: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the network constructed by significantly upregulated
genes in M samples with respect to N samples using pipeline 0.
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Cluster  Size ‘ Reactome pathways Adjusted P-
value
1 23 Chemokine receptors bind chemokines (R-HSA-380108) 3.690e-25
Peptide ligand-binding receptors (R-HSA-375276) 4.770e-18
Class A /1 (Rhodopsin-like receptors) (R-HSA-373076) 3.220e-15
2 20 Chemokine receptors bind chemokines (R-HSA-380108) 2.700e-29
Peptide ligand-binding receptors (R-HSA-375276) 1.490e-21
Class A /1 (Rhodopsin-like receptors) (R-HSA-373076) 1.780e-18
Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex 5.960e-07
3 149 (R-HSA-75035)
Signaling by Rho GTPases, Miro GTPases and RHOBTB3 1.240e-04
(R-HSA-9716542)
Signaling by Rho GTPases (R-HSA-194315) 1.300e-04
4 13 Lectin pathway of complement activation (R-HSA-166662) 1.400e-02
Complement cascade (R-HSA-166658) 3.960e-02
5 49
Butyrophilin (BTN) family interactions (R-HSA-8851680) 7.780e-06
6 6 Adaptive Inmune System (R-HSA-1280218) 7 8606-04
RUNXI1 regulates transcription of genes involved in differentiation of | 1 700e-03
keratinocytes (R-HSA-8939242)
7 1 Complement cascade (R-HSA-166658) 5.770e-04
Lectin pathway of complement activation (R-HSA-166662) 5.730e-03
Initial triggering of complement (R-HSA-166663) 6.850e-03
8 24
Immunoregulatory interactions between a Lymphoid and a non- 8.030e-14
9 26 Lymphoid cell (R-HSA-198933)
Endosomal/Vacuolar pathway (R-HSA-1236977) 6.640e-12
Immune System (R-HSA-168256) 1.580e-09
10 22 Metabolism of polyamines (R-HSA-351202) 3.840e-02
Regulation of ornithine decarboxylase (ODC) (R-HSA-350562) 5.170e-02
11 11
Intrinsic Pathway for Apoptosis (R-HSA-109606) 2.270e-10
12 11 BH3-only proteins associate with and inactivate anti-apoptotic 3.970e-09
BCL-2 members (R-HSA-111453)
Apoptosis (R-HSA-109581) 1.230e-07
13 12
14 36 G1/S Transition (R-HSA-69206) 9.960e-15
Mitotic G1 phase and G1/S transition (R-HSA-453279) 2.270e-14
Cell Cycle, Mitotic (R-HSA-69278) 2.860e-12
15 13
Respiratory electron transport (R-HSA-611105) 6.250e-27
16 104 Respiratory electron transport, ATP synthesis by chemiosmotic 4.650e-25
coupling, and heat production by uncoupling proteins. (R-HSA-163200)
The citric acid (TCA) cycle and respiratory electron transport 1.810e-23
(R-HSA-1428517)
Interferon alpha/beta signaling (R-HSA-909733) 3.220e-08
17 7 Interferon Signaling (R-HSA-913531) 2.240e-06
SARS-CoV-2 activates/modulates innate and adaptive immune 3.360e-05
responses (R-HSA-9705671)
Immunoregulatory interactions between a Lymphoid and a non- 1.130e-12
18 17 Lymphoid cell (R-HSA-198933)
Immune System (R-HSA-168256) 3.430e-09
Endosomal/Vacuolar pathway (R-HSA-1236977) 2.190e-07

A.1.1 Enriched reactome pathways using pipeline 1

Table A.4: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the differential network comparing all N samples with
all M samples using pipeline L.

Cluster  Size ‘ Reactome pathways

Adjusted P-
value
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1 487 Immune System (R-HSA-168256) 5.430e-123
Cytokine Signaling in Immune system (R-HSA-1280215) 3.280e-69
Innate Immune System (R-HSA-168249) 2.280e-43
5 36 Keratinization (R-HSA-6805567) 1.140e-115
Developmental Biology (R-HSA-1266738) 1.130e-71
Formation of the cornified envelope (R-HSA-6809371) 2.080e-40
3 361 Cell Cycle (R-HSA-1640170) 9.490e-105
Cell Cycle, Mitotic (R-HSA-69278) 6.380e-95
Cell Cycle Checkpoints (R-HSA-69620) 2.360e-62
4 469 Translation (R-HSA-72766) 8.040e-119
Metabolism of RNA (R-HSA-8953854) 2.660e-75
rRNA processing (R-HSA-72312) 4.700e-75
5 60 Keratinization (R-HSA-6805567) 9.210e-96
Developmental Biology (R-HSA-1266738) 2.260e-59
Formation of the cornified envelope (R-HSA-6809371) 1.400e-20
Metabolism (R-HSA-1430728)
. . 4.960e-146
6 517 The citric acid (TCA) cycle and respiratory electron transport 1.800e-40
(R-HSA-1428517) ’
Respiratory electron transport, ATP synthesis by chemiosmotic 1.530e-30
coupling, and heat production by uncoupling proteins. oves
(R-HSA-163200)
7 1084 Immune System (R-HSA-168256) 1.150e-94
Unclassified (UNCLASSIFIED) 5.000e-70
Signal Transduction (R-HSA-162582) 7.470e-64
8 45
9 288 Signaling by WNT (R-HSA-195721) 1.120e-14
TCF dependent signaling in response to WNT (R-HSA-201681) 4.510e-14
Developmental Biology (R-HSA-1266738) 1.260e-09
10 347 Signaling by WNT (R-HSA-195721) 5.790e-11
TCF dependent signaling in response to WNT (R-HSA-201681) 1.610e-10
Developmental Biology (R-HSA-1266738) 1.340e-08
11 73
12 36 Formation of the cornified envelope (R-HSA-6809371) 3.090e-15
Keratinization (R-HSA-6805567) 3.680e-13
Developmental Biology (R-HSA-1266738) 1.000e-05
13 40
14 14 Keratinization (R-HSA-6805567) 1.060e-21
Developmental Biology (R-HSA-1266738) 8.750e-13
15 125 Extracellular matrix organization (R-HSA-1474244) 9.320e-68
Collagen formation (R-HSA-1474290) 1.020e-37
Collagen biosynthesis and modifying enzymes (R-HSA-1650814) 3.760e-37
Developmental Biology (R-HSA-1266738) 7.070e-08
16 199 Transcriptional regulation of pluripotent stem cells (R-HSA-452723) 3.920e-06
POUSF1 (OCT4), SOX2, NANOG activate genes related to 4.200e-06
proliferation (R-HSA-2892247)
17 75
18 6
Amino acid transport across the plasma membrane (R-HSA-352230) | 3.480e-19
19 17 Transport of inorganic cations/anions and amino acids/ 3.180e-15
oligopeptides (R-HSA-425393)
SLC-mediated transmembrane transport (R-HSA-425407) 3.350e-12
20 253 Neuronal System (R-HSA-112316) 5.560e-42
Transmission across Chemical Synapses (R-HSA-112315) 1.330e-30
Protein-protein interactions at synapses (R-HSA-6794362) 3.400e-24
Table A.5: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the network constructed by significantly downregulated
genes in M samples with respect to N samples using pipeline I.
Cluster  Size o el

Reactome pathways

value
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L13a-mediated translational silencing of Ceruloplasmin expression 1.630e-104

1 147 (R-HSA-156827)
GTP hydrolysis and joining of the 60S ribosomal subunit 1.740e-104
(R-HSA-72706)
Formation of a pool of free 40S subunits (R-HSA-72689) 2.540e-103

2 43 Keratinization (R-HSA-6805567) 4.780e-71
Developmental Biology (R-HSA-1266738) 9.670e-43
Formation of the cornified envelope (R-HSA-6809371) 3.510e-29

3 53

4 60

5 31

6 39

7 108 Metabolism of RNA (R-HSA-8953854) 3.980e-17
Processing of Capped Intron-Containing Pre-mRNA (R-HSA-72203) | 7.380e-12
mRNA Splicing (R-HSA-72172) 5.210e-10

8 37
Post-translational modification: synthesis of GPI-anchored proteins 4.270e-05

9 48 (R-HSA-163125)
NOTCH2 Activation and Transmission of Signal to the Nucleus 1.120e-02
(R-HSA-2979096)
Signaling by NOTCH2 (R-HSA-1980145) 1.960e-02

10 45

1 70 GPCR downstream signalling (R-HSA-388396) 6.290e-25
Signaling by GPCR (R-HSA-372790) 1.060e-24
GPCR ligand binding (R-HSA-500792) 1.110e-19

12 14 Keratinization (R-HSA-6805567) 4.910e-22
Developmental Biology (R-HSA-1266738) 7.620e-13

13 7 Rab regulation of trafficking (R-HSA-9007101) 3.250e-06
Membrane Trafficking (R-HSA-199991) 1.040e-03
RAB GEFs exchange GTP for GDP on RABs (R-HSA-8876198) 2.780e-03

14 56 Transport of small molecules (R-HSA-382551) 4.900e-06
ABC-family proteins mediated transport (R-HSA-382556) 6.630e-05
ABC transporters in lipid homeostasis (R-HSA-1369062) 6.990e-05

15 21

16 55 Metabolism (R-HSA-1430728) 5.940e-16
Metabolism of amino acids and derivatives (R-HSA-71291) 2.410e-07
Branched-chain amino acid catabolism (R-HSA-70895) 5.320e-07

17 27

18 56

19 18

20 58

21 5 Cilium Assembly (R-HSA-5617833) 1.670e-15
Organelle biogenesis and maintenance (R-HSA-1852241) 5.710e-14
Cargo trafficking to the periciliary membrane (R-HSA-5620920) 1.770e-09

” 23 Biological oxidations (R-HSA-211859) 8.450e-33
Phase II - Conjugation of compounds (R-HSA-156580) 4.900e-15
Metabolism (R-HSA-1430728) 1.750e-14

23 31 COPI-dependent Golgi-to-ER retrograde traffic (R-HSA-6811434) 1.070e-05
Golgi-to-ER retrograde transport (R-HSA-8856688) 3.060e-05
Intra-Golgi and retrograde Golgi-to-ER traffic (R-HSA-6811442) 2.300e-04

24 5

25 11

26 30 ABC transporters in lipid homeostasis (R-HSA-1369062) 3.280e-03
ABC-family proteins mediated transport (R-HSA-382556) 8.530e-03

o7 71 Hyaluronan uptake and degradation (R-HSA-2160916) 8.160e-05
Integrin cell surface interactions (R-HSA-216083) 1.390e-04
Hyaluronan metabolism (R-HSA-2142845) 1.940e-04

28 41

29 18

30 36 Glycosaminoglycan metabolism (R-HSA-1630316) 6.330e-10
Metabolism of carbohydrates (R-HSA-71387) 6.690e-07
Chondroitin sulfate/dermatan sulfate metabolism (R-HSA-1793185) | 1.200e-05

31 28

32 58
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33 37 Keratinization (R-HSA-6805567) 2.370e-03
34 9
35 37
36 18
37 16
38 36 cGMP effects (R-HSA-418457) 1.460e-03
Physiological factors (R-HSA-5578768) 2.330e-03
Nitric oxide stimulates guanylate cyclase (R-HSA-392154) 3.260e-03
39 70 Metabolism of lipids (R-HSA-556833) 4.400e-09
Sphingolipid metabolism (R-HSA-428157) 8.450e-06
Metabolism (R-HSA-1430728) 1.230e-04
40 50 Signaling by WNT (R-HSA-195721) 8.740e-10
TCF dependent signaling in response to WNT (R-HSA-201681) 6.620e-09
Regulation of FZD by ubiquitination (R-HSA-4641263) 4.150e-07
41 10
42 50
43 10 O-linked glycosylation of mucins (R-HSA-913709) 6.410e-03
O-linked glycosylation (R-HSA-5173105) 1.750e-02
44 39 Gene Silencing by RNA (R-HSA-211000) 6.370e-05
Gene expression (Transcription) (R-HSA-74160) 7.510e-05
Pre-NOTCH Transcription and Translation (R-HSA-1912408) 8.730e-05
45 19
46 7
47 8
48 62 Pre-NOTCH Transcription and Translation (R-HSA-1912408) 2.790e-05
Pre-NOTCH Expression and Processing (R-HSA-1912422) 3.840e-05
Signaling by NOTCH (R-HSA-157118) 5.400e-05
49 35 Transcriptional regulation of white adipocyte differentiation (R-HSA-382346f)e-18
Metabolism of lipids (R-HSA-556833)
Regulation of lipid metabolism by PPARalpha (R-HSA-400206) 9.730e-10
2.700e-09
50 6
51 6
52 11
Table A.6: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the network constructed by significantly upregulated
genes in M samples with respect to N samples using pipeline 1.
Cluster  Size Reactome pathways Adjusted P-
value
1 300 Cell Cycle (R-HSA-1640170) 1.160e-111
Cell Cycle, Mitotic (R-HSA-69278) 5.540e-101
Cell Cycle Checkpoints (R-HSA-69620) 2.250e-75
5 409 Immune System (R-HSA-168256) 9.680e-121
Cytokine Signaling in Immune system (R-HSA-1280215) 1.490e-67
Innate Immune System (R-HSA-168249) 1.320e-42
3 250 Translation (R-HSA-72766) 9.200e-51
Mitochondrial translation (R-HSA-5368287) 1.040e-26
Mitochondrial translation initiation (R-HSA-5368286) 3.150e-26
4 293 Developmental Biology (R-HSA-1266738) 1.500e-09
Myogenesis (R-HSA-525793) 4.060e-09
Cardiogenesis (R-HSA-9733709) 9.530e-08
5 36
6 29 Formation of the cornified envelope (R-HSA-6809371) 2.040e-10
Keratinization (R-HSA-6805567) 6.880e-09
Developmental Biology (R-HSA-1266738) 2.000e-03
Transcriptional regulation of pluripotent stem cells (R-HSA-452723) | 5.520e-08
7 143 POUSF1 (OCT4), SOX2, NANOG activate genes related to 1.080e-07
proliferation (R-HSA-2892247)
Developmental Biology (R-HSA-1266738) 9.230e-07
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3 95 Metabolism of RNA (R-HSA-8953854) 1.900e-24
rRNA processing (R-HSA-72312) 5.280e-24
rRNA processing in the nucleus and cytosol (R-HSA-8868773) 4.600e-23

9 56

10 47 Striated Muscle Contraction (R-HSA-390522) 7.950e-17
Muscle contraction (R-HSA-397014) 5.650e-16
Smooth Muscle Contraction (R-HSA-445355) 1.090e-03

1 217 Asparagine N-linked glycosylation (R-HSA-446203) 1.990e-46
Metabolism of proteins (R-HSA-392499) 1.600e-25
Post-translational protein modification (R-HSA-597592) 3.980e-25

12 269 Gene expression (Transcription) (R-HSA-74160) 7.920e-35
Chromatin organization (R-HSA-4839726) 3.140e-34
Chromatin modifying enzymes (R-HSA-3247509) 4.700e-34
Antigen processing: Ubiquitination & Proteasome 1.900e-68

13 160 degradation (R-HSA-983168)

Class I MHC mediated antigen processing & presentation 7.970e-63
(R-HSA-983169)
Neddylation (R-HSA-8951664) 1.780e-62

14 6

15 157 Metabolism (R-HSA-1430728) 5.420e-64
Metabolism of carbohydrates (R-HSA-71387) 5.570e-24
Glucose metabolism (R-HSA-70326) 1.360e-21

16 60 Extracellular matrix organization (R-HSA-1474244) 2.590e-57
Collagen formation (R-HSA-1474290) 3.770e-43
Collagen biosynthesis and modifying enzymes (R-HSA-1650814) 7.410e-42

17 26
Respiratory electron transport, ATP synthesis by chemiosmotic 2.090e-37

18 82 coupling, and heat production by uncoupling proteins.

(R-HSA-163200)

The citric acid (TCA) cycle and respiratory electron transport 1.200e-33
(R-HSA-1428517)

Respiratory electron transport (R-HSA-611105) 6.270e-32

19 149 Striated Muscle Contraction (R-HSA-390522) 9.580e-12
Muscle contraction (R-HSA-397014) 2.920e-11
RHO GTPases Activate WASPs and WAVEs (R-HSA-5663213) 6.320e-07

A.1.2 Enriched reactome pathways using pipeline 2

Table A.7: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the differential network comparing all N samples with
all M samples using pipeline II.

Cluster  Size ‘ Reactome pathways Adjusted P-
value
1 144 Cell Cycle (R-HSA-1640170) 5.460e-59
Cell Cycle, Mitotic (R-HSA-69278) 4.780e-56
Cell Cycle Checkpoints (R-HSA-69620) 3.720e-42
2 190 Immune System (R-HSA-168256) 9.190e-29
Peptide ligand-binding receptors (R-HSA-375276) 1.030e-19
Class A/1 (Rhodopsin-like receptors) (R-HSA-373076) 4.920e-19
3 81 Complement cascade (R-HSA-166658) 1.910e-05
Extracellular matrix organization (R-HSA-1474244) 6.100e-05
Regulation of Complement cascade (R-HSA-977606) 7.910e-05
4 54 GPCR ligand binding (R-HSA-500792) 1.150e-21
Signaling by GPCR (R-HSA-372790) 1.450e-21
GPCR downstream signalling (R-HSA-388396) 1.520e-21
5 54 Passive transport by Aquaporins (R-HSA-432047) 7.820e-03
Extracellular matrix organization (R-HSA-1474244) 1.400e-02
6 14 ABC-family proteins mediated transport (R-HSA-382556) 2.740e-04
ABC transporters in lipid homeostasis (R-HSA-1369062) 3.860e-04
Transport of small molecules (R-HSA-382551) 1.730e-02
7 38 Passive transport by Aquaporins (R-HSA-432047) 4.830e-03
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8 28
9 51 Passive transport by Aquaporins (R-HSA-432047) 1.110e-02
10 8
1 14 Metabolism (R-HSA-1430728) 3.210e-05
Metabolism of carbohydrates (R-HSA-71387) 3.260e-05
Glycolysis (R-HSA-70171) 9.800e-03
12 22
Transport of small molecules (R-HSA-382551) 7.510e-06
13 37 Transport of inorganic cations/anions and amino acids/ 1.460e-05
oligopeptides (R-HSA-425393)
SLC-mediated transmembrane transport (R-HSA-425407) 3.860e-05
14 9
15 11
16 5
Biological oxidations (R-HSA-211859) 1.140e-08
17 17 Glutathione conjugation (R-HSA-156590) 4.0506-05
Highly calcium permeable nicotinic acetylcholine receptors 8.770e-05
(R-HSA-629597)
18 15
19 14 Biological oxidations (R-HSA-211859) 1.450e-09
Glutathione conjugation (R-HSA-156590) 1.710e-05
Ethanol oxidation (R-HSA-71384) 9.710e-05
20 7
21 23
Transport of inorganic cations/anions and amino acids/oligopeptides
22 12 (R-HSA-425393) 2.960e-02
23 32
24 15 Vitamin B1 (thiamin) metabolism (R-HSA-196819) 1.680e-02
25 12 Cytochrome P450 - arranged by substrate type (R-HSA-211897) 6.140e-05
Phase I - Functionalization of compounds (R-HSA-211945) 1.890e-04
Metabolism (R-HSA-1430728) 3.600e-04
26 12
27 9
28 10 Cytochrome P450 - arranged by substrate type (R-HSA-211897) 3.690e-05
Phase I - Functionalization of compounds (R-HSA-211945) 1.140e-04
Biological oxidations (R-HSA-211859) 1.410e-03
29 18 Vitamin B1 (thiamin) metabolism (R-HSA-196819) 2.670e-02
30 7
31 9
32 22
Table A.8: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the network constructed by significantly downregulated
genes in M samples with respect to N samples using pipeline II.
Cluster  Size Reactome pathways Adjusted P-
value
1 140 Cell Cycle (R-HSA-1640170) 2.580e-61
Cell Cycle, Mitotic (R-HSA-69278) 1.020e-56
Cell Cycle Checkpoints (R-HSA-69620) 7.550e-44
5 150 Immune System (R-HSA-168256) 6.340e-28
Cytokine Signaling in Immune system (R-HSA-1280215) 2.230e-16
Innate Immune System (R-HSA-168249) 1.650e-12
Neurotransmitter receptors and postsynaptic signal transmission 9.360e-03
3 39 (R-HSA-112314)
Glucagon-type ligand receptors (R-HSA-420092) 1.020e-02
Opioid Signalling (R-HSA-111885) 1.040e-02
G alpha (s) signalling events (R-HSA-418555) 5.180e-04
4 38 Neurotransmitter receptors and postsynaptic signal transmission 1.090e-02
(R-HSA-112314)
Glucagon-type ligand receptors (R-HSA-420092) 1.120e-02
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G alpha (s) signalling events (R-HSA-418555) 1.180e-04
5 16 Neurotransmitter receptors and postsynaptic signal transmission 1.830e-04
(R-HSA-112314)
Platelet homeostasis (R-HSA-418346) 2.360e-04
13
7 23 Signaling by GPCR (R-HSA-372790) 1.250e-06
GPCR downstream signalling (R-HSA-388396) 5.800e-06
G alpha (q) signalling events (R-HSA-416476) 4.940e-05
8 10
9 25 G alpha (s) signalling events (R-HSA-418555) 1.150e-03
GPCR downstream signalling (R-HSA-388396) 1.210e-03
Platelet homeostasis (R-HSA-418346) 1.380e-03
Neurotransmitter receptors and postsynaptic signal transmission 1.770e-06
10 38 (R-HSA-112314)
Transmission across Chemical Synapses (R-HSA-112315) 7.890e-06
Meiotic synapsis (R-HSA-1221632) 2.610e-05
11 7
12 9
13 5
14 5
15 7
16 28 G alpha (s) signalling events (R-HSA-418555) 7.850e-04
GPCR downstream signalling (R-HSA-388396) 8.700e-04
Signaling by GPCR (R-HSA-372790) 1.000e-03
17 11
18 7
Table A.9: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the network constructed by significantly upregulated
genes in M samples with respect to N samples using pipeline II.
Cluster  Size ‘ Reactome pathways LS 1
value
1 15
2 17
3 16 ABC transporters in lipid homeostasis (R-HSA-1369062) 3.160e-04
ABC-family proteins mediated transport (R-HSA-382556) 3.510e-04
Transport of small molecules (R-HSA-382551) 2.800e-02
4 8
5 8
6 10 Biological oxidations (R-HSA-211859) 1.320e-09
Ethanol oxidation (R-HSA-71384) 1.630e-05
Phase I - Functionalization of compounds (R-HSA-211945) 6.510e-05
7 11
8 13 GPCR ligand binding (R-HSA-500792) 4.890e-16
Class A/1 (Rhodopsin-like receptors) (R-HSA-373076) 1.530e-15
GPCR downstream signalling (R-HSA-388396) 6.220e-15
9 10 Cytochrome P450 - arranged by substrate type (R-HSA-211897) 2.900e-05
Phase I - Functionalization of compounds (R-HSA-211945) 9.770e-05
Biological oxidations (R-HSA-211859) 1.320e-03
10 12 ABC transporters in lipid homeostasis (R-HSA-1369062) 3.160e-04
Transport of small molecules (R-HSA-382551) 2.800e-02
ABC-family proteins mediated transport (R-HSA-382556) 3.240e-02
11 13
12 5
13 12 Passive transport by Aquaporins (R-HSA-432047) 2.130e-02
Transport of small molecules (R-HSA-382551) 2.830e-02
14 8
15 6
16 5
17 5
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18 3 Complement cascade (R-HSA-166658) 1.230e-09
Regulation of Complement cascade (R-HSA-977606) 1.450e-09
Terminal pathway of complement (R-HSA-166665) 1.850e-06
19 7 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the 1.030e-03
presence of ligand (R-HSA-3371497)
SUMOylation of intracellular receptors (R-HSA-4090294) 2.510e-02
20 9

A.1.3 Enriched reactome pathways using pipeline 3

Table A.10: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the differential network comparing all N samples with
all M samples using pipeline III.

Cluster  Size Reactome pathways Adjusted P-
value
1 10 Nucleotide biosynthesis (R-HSA-8956320) 5.800e-03
Purine ribonucleoside monophosphate biosynthesis (R-HSA-73817) 6.240e-03
Metabolism of nucleotides (R-HSA-15869)
3.040e-02
Prolonged ERK activation events (R-HSA-169893) 1.160e-02
2 40 Signaling by Rho GTPases, Miro GTPases and RHOBTB3 2.940e-02
(R-HSA-9716542)
RHO GTPase cycle (R-HSA-9012999) 3.100e-02
Signaling by BRAF and RAF1 fusions 3.23e-02
3 46 (R-HSA-6802952) 3.97e-02
Signaling by moderate kinase activity BRAF mutants(R-HSA-6802946)
Oncogenic MAPK signaling (R-HSA-6802957) 4.32e-02
4 33 Chemokine receptors bind chemokines (R-HSA-380108) 2.440e-46
Peptide ligand-binding receptors (R-HSA-375276) 1.320e-35
Class A /1 (Rhodopsin-like receptors) (R-HSA-373076) 8.260e-31
Transcriptional regulation of white adipocyte differentiation 5.960e-15
5 23 (R-HSA-381340)
Regulation of lipid metabolism by PPARalpha (R-HSA-400206) 4.280e-14
PPARA activates gene expression (R-HSA-1989781) 5.910e-14
6 30 Interleukin-23 signaling (R-HSA-9020933) 6.640e-06
Interleukin-12 family signaling (R-HSA-447115) 3.320e-05
Interleukin-4 and Interleukin-13 signaling (R-HSA-6785807) 1.930e-02
7 16
8 24
9 29 Lectin pathway of complement activation (R-HSA-166662) 3.080e-12
Complement cascade (R-HSA-166658) 5.800e-08
Creation of C4 and C2 activators (R-HSA-166786) 2.160e-07
10 16
11 36
12 30
13 6 Glucuronidation (R-HSA-156588) 7.120e-11
Phase II - Conjugation of compounds (R-HSA-156580) 3.660e-08
Biological oxidations (R-HSA-211859) 7.600e-07
1 ’ Signaling by Nuclear Receptors (R-HSA-9006931) 2.420e-02
Estrogen-stimulated signalling through PRKCZ (R-HSA-9634635) 3.210e-02
Extra-nuclear estrogen signaling (R-HSA-9009391)
3.470e-02
15 29
Recruitment of mitotic centrosome proteins and complexes 4.350e-03
16 32 (R-HSA-380270)
Regulation of PLK1 Activity at G2/M Transition (R-HSA-2565942) 4.560e-03
AURKA Activation by TPX2 (R-HSA-8854518)
4.610e-03
17 1 Trafficking and processing of endosomal TLR (R-HSA-1679131) 2.330e-02
Innate Immune System (R-HSA-168249) 2.390e-02
Immune System (R-HSA-168256) 3.070e-02
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18 18 Interferon alpha/beta signaling (R-HSA-909733) 5.900e-12
Interferon Signaling (R-HSA-913531) 5.050e-09
Regulation of IFNA /IFNB signalling (R-HSA-912694) 2.310e-08

19 11 Metal sequestration by antimicrobial proteins (R-HSA-6799990) 1.870e-02
Immunoregulatory interactions between a Lymphoid and a non-

20 14 Lymphoid cell (R-HSA-198933) 2.100e-02

21 29

22 8

23 31

24 16 Class A/1 (Rhodopsin-like receptors) (R-HSA-373076) 7.570e-03
Adenosine P1 receptors (R-HSA-417973) 9.540e-03
GPCR ligand binding (R-HSA-500792) 1.280e-02

25 19 WNT ligand biogenesis and trafficking (R-HSA-3238698) 1.570e-20
Class B/2 (Secretin family receptors) (R-HSA-373080) 7.110e-16
Signaling by WNT (R-HSA-195721) 3.170e-11

2 12 Metabolism of amine-derived hormones (R-HSA-209776) 5.140e-04
Serotonin and melatonin biosynthesis (R-HSA-209931) 8.400e-03

27 36

28 24

29 12 GPCR ligand binding (R-HSA-500792) 5.770e-06
GPCR downstream signalling (R-HSA-388396) 2.250e-05
Signaling by GPCR (R-HSA-372790) 3.180e-05

30 10

31 14
Synthesis of bile acids and bile salts via 27-hydroxycholesterol 8.120e-11

32 9 (R-HSA-193807)
Synthesis of bile acids and bile salts via 24-hydroxycholesterol 1.220e-10
(R-HSA-193775)
Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol 3.430e-10
(R-HSA-193368)

33 5 Interleukin-20 family signaling (R-HSA-8854691) 1.190e-11
Signaling by Interleukins (R-HSA-449147) 7.320e-06
Cytokine Signaling in Immune system (R-HSA-1280215) 4.390e-05
Thromboxane signalling through TP receptor (R-HSA-428930) 7.380e-14

34 15 Signal amplification (R-HSA-392518) 1.440e-13
Thrombin signalling through proteinase activated receptors (PARs) 1.770e-13
(R-HSA-456926)

35 9 Creatine metabolism (R-HSA-71288) 4.320e-08
Metabolism of amino acids and derivatives (R-HSA-71291) 2.970e-04

36 16 Ligand-receptor interactions (R-HSA-5632681) 3.080e-07
Hedgehog ‘on’ state (R-HSA-5632684) 4.660e-04
Activation of SMO (R-HSA-5635838) 6.520e-04

37 26

38 7

39 14

40 11

1 13 G alpha (s) signalling events (R-HSA-418555) 8.900e-05
Peptide ligand-binding receptors (R-HSA-375276) 1.310e-04
Class A /1 (Rhodopsin-like receptors) (R-HSA-373076) 1.110e-03

42 24

43 16

44 38
Autophagy (R-HSA-9612973) 5.740e-05

45 6 Macroautophagy (R-HSA-1632852) 7.590e-05
Translation of Replicase and Assembly of the Replication 5.450e-03
Transcription Complex (R-HSA-9694676)

46 22

47 16
Highly calcium permeable nicotinic acetylcholine receptors 7.020e-09

48 24 (R-HSA-629597)
Presynaptic nicotinic acetylcholine receptors (R-HSA-622323) 7.210e-09
Highly calcium permeable postsynaptic nicotinic acetylcholine 7.640e-09
receptors (R-HSA-629594)

49 15
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50 38
51 12 Creation of C4 and C2 activators (R-HSA-166786) 2.930e-07
Role of LAT2/NTAL/LAB on calcium mobilization (R-HSA-2730905) | 3.100e-07
FCERI mediated Ca+2 mobilization (R-HSA-2871809) 3.530e-07
52 20
53 20
Clathrin-mediated endocytosis (R-HSA-8856828) 6.920e-03
54 32 Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) Translocation | 4030e-02
Mutant (R-HSA-2660825)
Diseases of signal transduction by growth factor receptors and 4.470e-02
second messengers (R-HSA-5663202)
55 8
56 29
57 13 Toll Like Receptor 4 (TLR4) Cascade (R-HSA-166016) 5.650e-05
Toll-like Receptor Cascades (R-HSA-168898) 5.660e-05
Innate Immune System (R-HSA-168249) 6.520e-05
58 23
59 37
60 13
61 12
62 15
63 14
Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 1.110e-05
64 12 (R-HSA-389958)
Protein folding (R-HSA-391251) 2.240e-04
Chaperonin-mediated protein folding (R-HSA-390466) 2.630e-04
65 37 Condensation of Prometaphase Chromosomes (R-HSA-2514853) 3.040e-05
66 8
67 15
Regulation of Insulin-like Growth Factor (IGF) transport and uptake 7.260e-11
68 16 by Insulin-like Growth Factor Binding Proteins (IGFBPs)
(R-HSA-381426)
Post-translational protein phosphorylation (R-HSA-8957275)
Extracellular matrix organization (R-HSA-1474244) 1.860e-09
1.270e-06
Mitotic Prometaphase (R-HSA-68877) 7.310e-08
69 33 Anchoring of the basal body to the plasma membrane 3.120e-07
(R-HSA-5620912)
Loss of Nlp from mitotic centrosomes (R-HSA-380259) 1.150e-06
Interferon alpha/beta signaling (R-HSA-909733) 1.120e-04
70 10 SARS-CoV-2 activates/modulates innate and adaptive immune 2.260e-04
responses (R-HSA-9705671)
Regulation of IFNA /IFNB signaling (R-HSA-912694) 2.740e-04
71 30 Generic Transcription Pathway (R-HSA-212436) 1.250e-05
RNA Polymerase II Transcription (R-HSA-73857) 1.960e-05
Gene expression (Transcription) (R-HSA-74160) 5.100e-05
Inhibition of the proteolytic activity of APC/C required for the 3.260e-09
7 15 onset of anaphase by mitotic spindle checkpoint components
(R-HSA-141405)
Inactivation of APC/C via direct inhibition of the APC/C complex 4.080e-09
(R-HSA-141430)
Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase 4.390e-09
(R-HSA-176407)
73 11
74 o4 MET activates PI3K/AKT signaling (R-HSA-8851907) 1.950e-02
MET activates PTPN11 (R-HSA-8865999) 2.100e-02
Signaling by MET (R-HSA-6806834) 2.910e-02
75 28
76 10
Fertilization (R-HSA-1187000) 3.550e-09
77 10 Interaction With Cumulus Cells And The Zona Pellucida 4.910e-08
(R-HSA-2534343)
Reproduction (R-HSA-1474165) 1.810e-06
78 22
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79 16
80 10
81 17
82 23
83 31
84 1 Complement cascade (R-HSA-166658) 1.980e-18
Regulation of Complement cascade (R-HSA-977606) 3.690e-16
Innate Immune System (R-HSA-168249) 2.020e-09
85 11
86 8
87 9
88 5
89 17 Striated Muscle Contraction (R-HSA-390522) 1.080e-02
90 27
91 5
Anti-inflammatory response favouring Leishmania parasite infection | 1.270e-02
92 20 (R-HSA-9662851)
Interleukin-3, Interleukin-5 and GM-CSF signaling (R-HSA-512988) 1.280e-02
Constitutive Signaling by EGFRVIII (R-HSA-5637810) 2.400e-02
93 13
94 11
Long-term potentiation (R-HSA-9620244) 3.550e-05
95 7 Synaptic adhesion-like molecules (R-HSA-8849932) 4.160e-05
Unblocking of NMDA receptors, glutamate binding and activation 6.250e-05
(R-HSA-438066)
96 7
97 7 Tachykinin receptors bind tachykinins (R-HSA-380095) 5.350e-03
98 25 Dectin-1 mediated noncanonical NF-kB signaling (R-HSA-5607761) 9.100e-05
Defective CFTR causes cystic fibrosis (R-HSA-5678895) 9.360e-05
Degradation of GLI1 by the proteasome (R-HSA-5610780) 9.450e-05
Response of EIF2AK1 (HRI) to heme deficiency (R-HSA-9648895) 7.870e-06
99 21 ATF4 activates genes in response to endoplasmic reticulum stress 4.680e-03
(R-HSA-380994)
PERK regulates gene expression (R-HSA-381042) 5.020e-03
PRC2 methylates histones and DNA (R-HSA-212300) 8.240e-04
100 13 ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression | 8.960e-04
(R-HSA-427389)
Defective pyroptosis (R-HSA-9710421) 9.420e-04
101 9
102 57 Signal Transduction (R-HSA-162582) 6.830e-03
G alpha (i) signalling events (R-HSA-418594) 7.720e-03
Negative regulators of DDX58/IFIH1 signaling (R-HSA-936440) 1.410e-02
103 13 Phase 0 - rapid depolarisation (R-HSA-5576892) 4.620e-08
Cardiac conduction (R-HSA-5576891) 1.780e-05
Muscle contraction (R-HSA-397014) 1.060e-04
104 28 Myogenesis (R-HSA-525793) 1.550e-06
105 32 Hormone ligand-binding receptors (R-HSA-375281) 9.610e-06
Peptide hormone biosynthesis (R-HSA-209952) 1.100e-05
Glycoprotein hormones (R-HSA-209822) 1.220e-05
106 8
SRP-dependent cotranslational protein targeting to membrane 2.390e-22
107 31 (R-HSA-1799339)
Nonsense Mediated Decay (NMD) independent of the Exon Junction | 5.790e-22
Complex (EJC) (R-HSA-975956)
Viral mRNA Translation (R-HSA-192823) 5.880e-22
Table A.11: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the interactions only found in M samples and not in N
samples using pipeline III.
Cluster = Size ‘ Reactome pathways Adjusted P-

value
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1 48
2 29
3 40
4 37 Chemokine receptors bind chemokines (R-HSA-380108) 1.300e-48
Peptide ligand-binding receptors (R-HSA-375276) 2.950e-37
Class A /1 (Rhodopsin-like receptors) (R-HSA-373076) 9.680e-32
5 39 Condensation of Prometaphase Chromosomes (R-HSA-2514853) 9.250e-06
Transcriptional regulation of white adipocyte differentiation 1.200e-16
6 28 (R-HSA-381340)
Regulation of lipid metabolism by PPARalpha (R-HSA-400206) 1.720e-15
PPARA activates gene expression (R-HSA-1989781) 2.330e-15
7 40 Creation of C4 and C2 activators (R-HSA-166786) 2.420e-06
Role of LAT2/NTAL/LAB on calcium mobilization (R-HSA-2730905) | 2.470e-06
FCGR activation (R-HSA-2029481) 2.840e-06
Metabolism of RNA (R-HSA-8953854) 6.350e-03
8 40 Eukaryotic Translation Initiation (R-HSA-72613) 5.060e-02
GTP hydrolysis and joining of the 60S ribosomal subunit 2.280e-02
(R-HSA-72706)
9 2% Integrin cell surface interactions (R-HSA-216083) 1.590e-04
Laminin interactions (R-HSA-3000157) 9.130e-03
Extracellular matrix organization (R-HSA-1474244) 2.700e-02
Response of EIF2AK1 (HRI) to heme deficiency (R-HSA-9648895) 2.790e-06
10 21 ATF4 activates genes in response to endoplasmic reticulum stress 3.390e-03
(R-HSA-380994)
PERK regulates gene expression (R-HSA-381042) 3.820e-03
11 17
12 37
13 23
Clathrin-mediated endocytosis (R-HSA-8856828) 9.500e-03
14 35 Signaling by EGFR (R-HSA-177929) 3.4806-02
Diseases of signal transduction by growth factor receptors and second| 3 g10e-02
messengers (R-HSA-5663202)
15 25
16 17
17 30 Diseases of Mismatch Repair (MMR) (R-HSA-5423599) 4.920e-02
18 15 Adenosine P1 receptors (R-HSA-417973) 3.310e-03
Class A/1 (Rhodopsin-like receptors) (R-HSA-373076) 4.770e-03
GPCR ligand binding (R-HSA-500792) 8.260e-03
19 22 Muscarinic acetylcholine receptors (R-HSA-390648) 2.800e-02
20 21
1 16 Gastrulation (R-HSA-9758941) 2.750e-03
Regulation of beta-cell development (R-HSA-186712) 4.450e-03
Developmental Biology (R-HSA-1266738) 1.010e-02
22 39
Highly calcium permeable nicotinic acetylcholine receptors 3.160e-07
23 22 (R-HSA-629597)
Presynaptic nicotinic acetylcholine receptors (R-HSA-622323) 4.130e-07
Highly calcium permeable postsynaptic nicotinic acetylcholine 4.130e-07
receptors (R-HSA-629594)
Mitotic Prometaphase (R-HSA-68877) 1.190e-07
24 36 Anchoring of the basal body to the plasma membrane 3.690e-07
(R-HSA-5620912)
Loss of Nlp from mitotic centrosomes (R-HSA-380259) 1.200e-06
25 12 Metabolism of amine-derived hormones (R-HSA-209776) 3.160e-04
Serotonin and melatonin biosynthesis (R-HSA-209931) 4.010e-03
Signal amplification (R-HSA-392518) 2.160e-16
26 16 Thromboxane signalling through TP receptor (R-HSA-428930) 9.170e-15
Thrombin signalling through proteinase activated receptors (PARs) 4.630e-14
(R-HSA-456926)
o7 44 Transcriptional Regulation by TP53 (R-HSA-3700989) 1.860e-02
Diseases of Mismatch Repair (MMR) (R-HSA-5423599) 3.470e-02
Disease (R-HSA-1643685) 3.620e-02
28 14
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29 34 Synthesis of very long-chain fatty acyl-CoAs (R-HSA-75876) 2.090e-02
Fatty acyl-CoA biosynthesis (R-HSA-75105) 4.300e-02
30 15 trans-Golgi Network Vesicle Budding (R-HSA-199992) 4.660e-02
31 40
0 39 Interleukin-2 signaling (R-HSA-9020558) 2.990e-03
Interleukin receptor SHC signaling (R-HSA-912526) 1.740e-02
Interleukin-4 and Interleukin-13 signaling (R-HSA-6785807) 3.950e-02
33 6
34 23
35 6 Cell surface interactions at the vascular wall (R-HSA-202733) 4.350e-02
36 17 FCERI mediated MAPK activation (R-HSA-2871796) 1.690e-07
Creation of C4 and C2 activators (R-HSA-166786) 1.410e-06
Role of LAT2/NTAL/LAB on calcium mobilization (R-HSA-2730905) | 1.440e-06
37 22
38 9
39 18
HSP90 chaperone cycle for steroid hormone receptors (SHR) in the 1.230e-11
40 19 presence of ligand (R-HSA-3371497)
COPI-independent Golgi-to-ER retrograde traffic (R-HSA-6811436) 1.430e-11
MHC class II antigen presentation (R-HSA-2132295) 1.660e-11
41 18 Activation of the pre-replicative complex (R-HSA-68962) 7.750e-03
Formation of Incision Complex in GG-NER (R-HSA-5696395) 8.720e-03
Translesion synthesis by POLI (R-HSA-5656121) 1.570e-02
0 2 Estrogen-stimulated signalling through PRKCZ (R-HSA-9634635) 2.800e-02
Extra-nuclear estrogen signaling (R-HSA-9009391) 3.230e-02
ESR-mediated signaling (R-HSA-8939211) 3.560e-02
43 14
44 14
Immunoregulatory interactions between a Lymphoid and a non-
45 15 Lymphoid cell (R-HSA-198933) 2.630e-02
46 15
Fertilization (R-HSA-1187000) 4.330e-09
47 12 Interaction With Cumulus Cells And The Zona Pellucida 2.800e-08
(R-HSA-2534343)
Reproduction (R-HSA-1474165) 4.610e-06
48 14 Downregulation of TGF-beta receptor signaling (R-HSA-2173788) 5.780e-04
Triglyceride catabolism (R-HSA-163560)
Triglyceride metabolism (R-HSA-8979227) 1.020e-03
1.410e-03
49 16
50 18 IFNG signaling activates MAPKSs (R-HSA-9732724) 4.610e-02
51 15
5 13 Toll Like Receptor 4 (TLR4) Cascade (R-HSA-166016) 4.770e-05
Toll-like Receptor Cascades (R-HSA-168898) 4.890e-05
Innate Immune System (R-HSA-168249) 6.200e-05
53 2% MET promotes cell motility (R-HSA-8875878) 1.150e-02
MET activates PI3K/AKT signaling (R-HSA-8851907) 1.670e-02
MET activates RAP1 and RAC1 (R-HSA-8875555) 1.880e-02
54 9 Interleukin-2 signaling (R-HSA-9020558) 2.240e-02
55 37
56 5 Interleukin-20 family signaling (R-HSA-8854691) 4.440e-12
Signaling by Interleukins (R-HSA-449147) 6.940e-06
Cytokine Signaling in Immune system (R-HSA-1280215) 4.250e-05
57 14 Creation of C4 and C2 activators (R-HSA-166786) 2.820e-09
Role of LAT2/NTAL/LAB on calcium mobilization (R-HSA-2730905) | 2.880e-09
FCGR activation (R-HSA-2029481) 3.310e-09
58 8 G alpha (s) signalling events (R-HSA-418555) 3.420e-06
Peptide ligand-binding receptors (R-HSA-375276) 5.230e-06
Class A /1 (Rhodopsin-like receptors) (R-HSA-373076) 4.810e-05
59 8
Sensing of DNA Double Strand Breaks (R-HSA-5693548) 5.100e-03
60 8 HDR through MME] (alt-NHEJ) (R-HSA-5685939) 1.120e-02
Defective HDR through Homologous Recombination Repair (HRR) 1.340e-02

due to PALB2 loss of BRCA1 binding function (R-HSA-9704331)
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61 22
62 61 Keratinization (R-HSA-6805567) 2.230e-06
Lectin pathway of complement activation (R-HSA-166662) 8.600e-09
63 13 Ficolins bind to repetitive carbohydrate structures on the target cell 1.010e-06
surface (R-HSA-2855086)
Complement cascade (R-HSA-166658) 6.580e-06
64 9
65 10 Retinoid cycle disease events (R-HSA-2453864) 1.420e-02
Diseases of the neuronal system (R-HSA-9675143) 2.130e-02
The canonical retinoid cycle in rods (twilight vision) (R-HSA-2453902)| 3.440e-02
66 17
67 5 Ligand-receptor interactions (R-HSA-5632681) 1.200e-10
Hedgehog ‘on’ state (R-HSA-5632684) 1.650e-06
Activation of SMO (R-HSA-5635838) 4.810e-06
68
69 14
70 11
71
Synthesis of active ubiquitin: roles of E1 and E2 enzymes 5.030e-08
72 18 (R-HSA-8866652)
Protein ubiquitination (R-HSA-8852135) 8.090e-08
Antigen processing: Ubiquitination & Proteasome degradation 3.710e-06
(R-HSA-983168)
73 13 Creation of C4 and C2 activators (R-HSA-166786) 1.620e-09
Role of LAT2/NTAL/LAB on calcium mobilization (R-HSA-2730905) | 1.650e-09
FCGR activation (R-HSA-2029481) 1.900e-09
74 26
75 9
76 40 Cellular Senescence (R-HSA-2559583) 1.040e-06
Oxidative Stress Induced Senescence (R-HSA-2559580) 1.110e-06
PRC2 methylates histones and DNA (R-HSA-212300) 9.790e-06
Factors involved in megakaryocyte development and platelet produc-
77 6 tion (R-HSA-983231) 2.250e-02
78 6 mRNA Splicing (R-HSA-72172) 1.810e-02
Metabolism of RNA (R-HSA-8953854) 2.460e-02
Processing of Capped Intron-Containing Pre-mRNA (R-HSA-72203) | 3.040e-02
Downregulation of ERBB4 signaling (R-HSA-1253288) 1.630e-05
79 11 Signaling by ERBB4 (R-HSA-1236394) 3.5706-03
Antigen processing: Ubiquitination & Proteasome degradation 1.280e-02
(R-HSA-983168)
80 30
Long-term potentiation (R-HSA-9620244) 2.380e-05
81 7 Synaptic adhesion-like molecules (R-HSA-8849932) 2.740e-05
Unblocking of NMDA receptors, glutamate binding and activation 4.110e-05
(R-HSA-438066)
82 7 Defective ABCC9 causes CMD10, ATFB12 and Cantu syndrome 2.550e-04
(R-HSA-5678420)
ATP sensitive Potassium channels (R-HSA-1296025) 7.650e-04
83 10 Creatine metabolism (R-HSA-71288) 1.510e-08
Metabolism of amino acids and derivatives (R-HSA-71291) 5.490e-04
84 19
85 27
86 12
87 9
Cellular response to heat stress (R-HSA-3371556) 2.010e-04
88 26 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the
presence of ligand (R-HSA-3371497) 6.470e-04
Attenuation phase (R-HSA-3371568) 8.300e-04
Synthesis of bile acids and bile salts via 27-hydroxycholesterol 1.410e-05
89 7 (R-HSA-193807)
Synthesis of bile acids and bile salts via 24-hydroxycholesterol 2.250e-05
(R-HSA-193775)
Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol 3.650e-05

(R-HSA-193368)
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90 19
91 5 VEGFR2 mediated cell proliferation (R-HSA-5218921) 1.460e-02
RHO GTPases Activate NADPH Oxidases (R-HSA-5668599) 1.670e-02
9 5 Serotonin receptors (R-HSA-390666) 3.890e-06
Amine ligand-binding receptors (R-HSA-375280) 1.090e-04
Class A /1 (Rhodopsin-like receptors) (R-HSA-373076) 2.780e-04
93 5 Elevation of cytosolic Ca2+ levels (R-HSA-139853) 9.900e-06
Platelet calcium homeostasis (R-HSA-418360) 2.890e-05
Platelet homeostasis (R-HSA-418346) 6.000e-04
GABA receptor activation (R-HSA-977443) 4.080e-05
94 12 Signaling by ERBB4 (R-HSA-1236394) 5.300e-05
Neurotransmitter receptors and postsynaptic signal transmission 3.250e-03
(R-HSA-112314)
95 37 Generic Transcription Pathway (R-HSA-212436) 2.260e-04
RNA Polymerase II Transcription (R-HSA-73857) 3.450e-04
Gene expression (Transcription) (R-HSA-74160) 8.610e-04
9% 14 Nervous system development (R-HSA-9675108) 5.760e-04
Axon guidance (R-HSA-422475) 6.660e-04
RET signaling (R-HSA-8853659) 1.140e-03
97 8
98 27 SARS-CoV-2 modulates autophagy (R-HSA-9754560) 8.480e-04
99 14
100 14
101 1 Peptide ligand-binding receptors (R-HSA-375276) 6.420e-03
Class A/1 (Rhodopsin-like receptors) (R-HSA-373076) 1.700e-02
G alpha (i) signalling events (R-HSA-418594) 2.070e-02
102 5
103 5
104 25
105 1 Creation of C4 and C2 activators (R-HSA-166786) 5.630e-05
FCGR activation (R-HSA-2029481) 6.390e-05
Role of phospholipids in phagocytosis (R-HSA-2029485) 6.450e-05
106 14
107 15 Nuclear Receptor transcription pathway (R-HSA-383280) 8.450e-03
108 8
109 15
110 38
111 11
112 16
113 6
114 7
115 7
116 19 tRNA modification in the nucleus and cytosol (R-HSA-6782315) 1.930e-02
117 8
Table A.12: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the interactions only found in N samples and not in M
samples using pipeline III
Cluster = Size ‘ Reactome pathways Adjusted P-
value
1 37
2 30 Interleukin-23 signaling (R-HSA-9020933) 6.000e-04
Recruitment of mitotic centrosome proteins and complexes 8.940e-03
3 40 (R-HSA-380270)
AURKA Activation by TPX2 (R-HSA-8854518) 9.270e-03
Regulation of PLK1 Activity at G2/M Transition (R-HSA-2565942) 9.470e-03
4 45 IKBKG deficiency causes anhidrotic ectodermal dysplasia with 1.800e-02
immunodeficiency (EDA-ID) (via TLR) (R-HSA-5603027)
IKBKB deficiency causes SCID (R-HSA-5602636) 3.600e-02
5 33
6 28
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7 31
8 35
9 20
10 39 O-linked glycosylation (R-HSA-5173105) 6.080e-03
11 26
Transport of small molecules (R-HSA-382551) 1.460e-11
12 40 Cation-coupled Chloride cotransporters (R-HSA-426117) 3.040e-04
Transport of inorganic cations/anions and amino acids/ 1.150e-03
oligopeptides (R-HSA-425393)
13 40 RNA Polymerase I Transcription Initiation (R-HSA-73762) 4.360e-03
RNA Polymerase I Transcription (R-HSA-73864) 1.220e-02
Regulation of TP53 Activity through Acetylation (R-HSA-6804758) 1.590e-02
14 40 rRNA modification in the nucleus and cytosol (R-HSA-6790901) 2.780e-04
rRNA processing (R-HSA-72312) 2.840e-02
rRNA processing in the nucleus and cytosol (R-HSA-8868773) 2.970e-02
15 29
16 38
17 35
18 30
19 18
20 28
Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 1.900e-06
21 28 (R-HSA-389958)
7.050e-05
Prefoldin mediated transfer of substrate to CCT/TriC (R-HSA-389957)| 1.170e-04
Chaperonin-mediated protein folding (R-HSA-390466)
22 31
23 12 Striated Muscle Contraction (R-HSA-390522) 2.750e-03
o4 16 Processive synthesis on the C-strand of the telomere (R-HSA-174414) | 2.410e-06
Telomere C-strand (Lagging Strand) Synthesis (R-HSA-174417) 1.430e-05
Extension of Telomeres (R-HSA-180786) 5.100e-05
25 44
2% 13 WNT ligand biogenesis and trafficking (R-HSA-3238698) 6.440e-18
Class B/2 (Secretin family receptors) (R-HSA-373080) 2.070e-13
Signaling by WNT (R-HSA-195721) 1.720e-09
27 11
Inhibition of the proteolytic activity of APC/C required for the onset | 2 890e-09
28 19 of anaphase by mitotic spindle checkpoint components (R-HSA-141405)
Inactivation of APC/C via direct inhibition of the APC/C complex 3.610e-09
(R-HSA-141430)
Conversion from APC/C:Cdc20 to APC/C:Cdh1 in late anaphase 3.670e-09
(R-HSA-176407)
Nonsense Mediated Decay (NMD) independent of the Exon Junction | 6.670e-06
29 37 Complex (EJC) (R-HSA-975956)
SARS-CoV-2 modulates host translation machinery (R-HSA-9754678) | 7.280e-06
Eukaryotic Translation Elongation (R-HSA-156842) 7.310e-06
30 o4 Collagen biosynthesis and modifying enzymes (R-HSA-1650814) 2.670e-03
Collagen formation (R-HSA-1474290) 4.180e-03
Extracellular matrix organization (R-HSA-1474244) 1.070e-02
31 16
IKBKG deficiency causes anhidrotic ectodermal dysplasia with 5.030e-03
32 24 immunodeficiency (EDA-ID) (via TLR) (R-HSA-5603027)
IKBKB deficiency causes SCID (R-HSA-5602636) 1.010e-02
IkBA variant leads to EDA-ID (R-HSA-5603029) 2.340e-02
33 17 mRNA Splicing (R-HSA-72172) 6.390e-11
Processing of Capped Intron-Containing Pre-mRNA (R-HSA-72203) | 3.730e-10
mRNA Splicing - Major Pathway (R-HSA-72163) 1.560e-09
34 10
HSP90 chaperone cycle for steroid hormone receptors (SHR) in the 9.710e-04
35 26 presence of ligand (R-HSA-3371497)
Attenuation phase (R-HSA-3371568) 1.660e-03
HSF1-dependent transactivation (R-HSA-3371571) 3.050e-03
36 14
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37 12 Maturation of spike protein (R-HSA-9694548) 2.990e-03
Translation of Structural Proteins (R-HSA-9694635) 5.600e-03
Late SARS-CoV-2 Infection Events (R-HSA-9772573) 6.950e-03
38 29
39 26
40 23
41 11
42 23
43 9 Interferon alpha/beta signaling (R-HSA-909733) 1.920e-07
Interferon Signaling (R-HSA-913531) 1.330e-05
Regulation of IFNA /IFNB signaling (R-HSA-912694) 8.740e-05
a4 o7 Platelet activation, signaling and aggregation (R-HSA-76002) 5.840e-04
Response to elevated platelet cytosolic Ca2+ (R-HSA-76005) 6.210e-04
Platelet degranulation (R-HSA-114608) 7.690e-04
45 12
46 13
47 8
48 14 Phase 0 - rapid depolarisation (R-HSA-5576892) 3.330e-08
Cardiac conduction (R-HSA-5576891) 2.290e-05
Muscle contraction (R-HSA-397014) 1.450e-04
49 30 CRMPs in Sema3A signaling (R-HSA-399956) 1.690e-05
Semaphorin interactions (R-HSA-373755) 2.820e-03
50 14 Metal sequestration by antimicrobial proteins (R-HSA-6799990) 1.660e-02
51 10 Fibronectin matrix formation (R-HSA-1566977) 4.250e-06
Cell surface interactions at the vascular wall (R-HSA-202733) 1.400e-03
Neutrophil degranulation (R-HSA-6798695) 1.950e-03
52 10 Neutrophil degranulation (R-HSA-6798695) 3.890e-03
53 6 Glucuronidation (R-HSA-156588) 2.660e-11
Phase II - Conjugation of compounds (R-HSA-156580) 2.920e-08
Biological oxidations (R-HSA-211859) 6.790e-07
54 14
55 13
Activation of BAD and translocation to mitochondria 1.360e-04
56 17 (R-HSA-111447)
Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdk1 complex | 1.710e-04
(R-HSA-75035)
SARS-CoV-1 targets host intracellular signalling and regulatory 1.810e-04
pathways (R-HSA-9735871)
57 8 Tachykinin receptors bind tachykinins (R-HSA-380095) 3.400e-03
58 8 COPII-mediated vesicle transport (R-HSA-204005) 7.420e-11
RAB GEFs exchange GTP for GDP on RABs (R-HSA-8876198) 1.970e-10
Rab regulation of trafficking (R-HSA-9007101) 8.650e-10
59 13
60 12
Clathrin-mediated endocytosis (R-HSA-8856828) 2.730e-02
61 12 InlB-mediated entry of Listeria monocytogenes into host cell 3.030e-02
(R-HSA-8875360)
Negative regulation of MET activity (R-HSA-6807004) 3.160e-02
RNA Polymerase II Transcription Initiation And Promoter Clearance | 4.580e-02
62 13 (R-HSA-76042)
Inhibition of DNA recombination at telomere (R-HSA-9670095) 4.800e-02
HIV Transcription Initiation (R-HSA-167161) 5.040e-02
63 16
64 10
Cooperation of Prefoldin and TriC/CCT in actin and tubulin folding | 3.930e-08
65 14 (R-HSA-389958)
Chaperonin-mediated protein folding (R-HSA-390466) 2.510e-06
Protein folding (R-HSA-391251) 2.610e-06
66 18 GPCR ligand binding (R-HSA-500792) 1.930e-06
GPCR downstream signalling (R-HSA-388396) 2.080e-06
Signaling by GPCR (R-HSA-372790) 2.740e-06
67 8
68 9
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69 9 Formation of the HIV-1 Early Elongation Complex (R-HSA-167158) 2.230e-02
HIV Transcription Elongation (R-HSA-167169) 2.540e-02
HIV elongation arrest and recovery (R-HSA-167287) 2.550e-02

70 6 Class A/1 (Rhodopsin-like receptors) (R-HSA-373076) 2.470e-03
GPCR ligand binding (R-HSA-500792) 4.740e-03
G alpha (q) signalling events (R-HSA-416476) 9.420e-03
Autophagy (R-HSA-9612973) 5.170e-05

71 6 Macroautophagy (R-HSA-1632852) 6.7606-05
Translation of Replicase and Assembly of the Replication 4.140e-03
Transcription Complex (R-HSA-9694676)

72 6

73 7

74 16

75 7

76 17 Integrin cell surface interactions (R-HSA-216083) 1.540e-05
Signal transduction by L1 (R-HSA-445144) 6.800e-04
Extracellular matrix organization (R-HSA-1474244) 2.830e-03
Signaling by Rho GTPases, Miro GTPases and RHOBTB3 8.110e-04

77 17 (R-HSA-9716542)
Signaling by Rho GTPases (R-HSA-194315) 1.400e-03
Striated Muscle Contraction (R-HSA-390522) 2.820e-03

78 12
Folding of actin by CCT/TriC (R-HSA-390450) 3.520e-21

79 17 Formation of tubulin folding intermediates by CCT/TriC 6.070e-17
(R-HSA-389960)
Prefoldin mediated transfer of substrate to CCT/TriC 8.040e-17
(R-HSA-389957)

80 3 Cilium Assembly (R-HSA-5617833) 5.790e-06
Intraflagellar transport (R-HSA-5620924) 7.560e-06
Organelle biogenesis and maintenance (R-HSA-1852241) 2.570e-05

81 18 Metabolism of vitamin K (R-HSA-6806664) 5.570e-03
Fatty acyl-CoA biosynthesis (R-HSA-75105) 5.980e-03

82 10

83 8

84 11 SARS-CoV-1-host interactions (R-HSA-9692914) 4.060e-02

85 6

86 17 Signaling by activated point mutants of FGFR1 (R-HSA-1839122) 3.090e-02

87 9

88 8 Terminal pathway of complement (R-HSA-166665) 9.520e-03

89 9

90 20

91 31

92 11

93 28 WNT 5:FZD7-medjiated leishmania damping (R-HSA-9673324) 6.330e-04
Killing mechanisms (R-HSA-9664420) 1.270e-03
RHO GTPases Activate NADPH Oxidases (R-HSA-5668599) 3.840e-03

94 20 Interleukin receptor SHC signaling (R-HSA-912526) 5.170e-03
Interleukin-3, Interleukin-5 and GM-CSF signaling (R-HSA-512988) 1.060e-02
Interleukin-2 family signaling (R-HSA-451927) 1.300e-02

95 10

96 11

97 5

98 6

99 6

100 30

101 3 RHO GTPases activate PAKs (R-HSA-5627123) 2.370e-02
RHO GTPases Activate ROCKs (R-HSA-5627117) 2.900e-02
RHO GTPases activate CIT (R-HSA-5625900) 5.800e-02

102 16

103 10

104 8
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105 9 Complement cascade (R-HSA-166658) 1.470e-17
Regulation of Complement cascade (R-HSA-977606) 5.910e-15
Activation of C3 and C5 (R-HSA-174577) 5.050e-10

106 11 Butyrophilin (BTN) family interactions (R-HSA-8851680) 4.400e-02

107 28

108 12

109 12

110 7 Platelet Adhesion to exposed collagen (R-HSA-75892) 2.810e-05
Regulation of signaling by CBL (R-HSA-912631) 4.110e-05
GPVI-mediated activation cascade (R-HSA-114604) 1.350e-04

111 15

112 7

13 9 Signaling by NTRK3 (TRKC) (R-HSA-9034015) 5.400e-05
Signaling by NTRK2 (TRKB) (R-HSA-9006115) 9.850e-05
Downstream signal transduction (R-HSA-186763) 1.280e-04

114 7

115 10

116 31 mRNA Splicing (R-HSA-72172) 1.670e-08
mRNA Splicing - Major Pathway (R-HSA-72163) 2.370e-08
Processing of Capped Intron-Containing Pre-mRNA (R-HSA-72203) 1.250e-07

117 65 Formation of the cornified envelope (R-HSA-6809371) 6.020e-36
Keratinization (R-HSA-6805567) 3.250e-30
Developmental Biology (R-HSA-1266738) 1.160e-13

118 20

119 12

120 6

121 13 Incretin synthesis, secretion, and inactivation (R-HSA-400508) 7.830e-04
Glucagon-type ligand receptors (R-HSA-420092) 1.050e-03
GPCR ligand binding (R-HSA-500792) 3.390e-03
Postsynaptic nicotinic acetylcholine receptors (R-HSA-622327) 6.620e-03

122 9 Presynaptic nicotinic acetylcholine receptors (R-HSA-622323) 7.200e-03
Highly calcium permeable nicotinic acetylcholine receptors 7.860e-03
(R-HSA-629597)

123 23

124 25

125 5

126 5 Sensory perception of salty taste (R-HSA-9730628) 3.540e-07
Sensory perception of taste (R-HSA-9717189) 1.430e-04
Stimuli-sensing channels (R-HSA-2672351) 1.130e-03

127 21

128 16

129 16

130 7

131 6
SHOC2 M1731 mutant abolishes MRAS complex function 3.120e-02

132 24 (R-HSA-9726840)
Gain-of-function MRAS complexes activate RAF signaling 4.670e-02
(R-HSA-9726842)
Signaling by MRAS-complex mutants (R-HSA-9660537) 9.350e-02

133 14 Myogenesis (R-HSA-525793) 2.090e-03

134 6

135 12

136 5 XAV939 stabilizes AXIN (R-HSA-5545619) 1.220e-04
Signaling by WNT in cancer (R-HSA-4791275) 3.400e-02

137 53 Neddylation (R-HSA-8951664) 6.540e-08
Macroautophagy (R-HSA-1632852) 1.090e-03
Formation of the cornified envelope (R-HSA-6809371) 1.250e-03

A.1.4 Enriched reactome pathways using pipeline 4
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Table A.13: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the differential network comparing all N samples with
all M samples using pipeline IV.

Cluster  Size Reactome pathways Adjusted P-
value

1 37

5 4 Chemokine receptors bind chemokines (R-HSA-380108) 9.460e-47
Peptide ligand-binding receptors (R-HSA-375276) 4.190e-33
Class A /1 (Rhodopsin-like receptors) (R-HSA-373076) 7.430e-28

3 0 Chemokine receptors bind chemokines (R-HSA-380108) 9.010e-42
Peptide ligand-binding receptors (R-HSA-375276) 3.630e-30
Class A /1 (Rhodopsin-like receptors) (R-HSA-373076) 1.210e-25

4 35

5 o7 CREB phosphorylation (R-HSA-199920) 1.780e-02
Inhibition of DNA recombination at telomere (R-HSA-9670095) 2.020e-02
Cellular Senescence (R-HSA-2559583) 2.120e-02

6 24
Immunoregulatory interactions between a Lymphoid and a non- 4.590e-03

7 39 Lymphoid cell (R-HSA-198933)
Antigen Presentation: Folding, assembly and peptide loading of 3.170e-02
class I MHC (R-HSA-983170)

8 26

9 33

10 23

11 26

12 1 trans-Golgi Network Vesicle Budding (R-HSA-199992) 1.980e-07
Formation of annular gap junctions (R-HSA-196025) 3.380e-07
Gap junction degradation (R-HSA-190873) 3.380e-07

13 20

14 23

15 29

16 25

17 25 Transferrin endocytosis and recycling (R-HSA-917977) 3.690e-07
ROS and RNS production in phagocytes (R-HSA-1222556) 5.440e-07
Insulin receptor recycling (R-HSA-77387) 6.200e-07

18 21 Gastrulation (R-HSA-9758941) 1.890e-06
Developmental Biology (R-HSA-1266738) 8.020e-03
Regulation of beta-cell development (R-HSA-186712) 1.050e-02

19 30 RUNX2 regulates bone development (R-HSA-8941326) 2.560e-02

20 32

2 2 Ovarian tumor domain proteases (R-HSA-5689896) 3.860e-02
Regulation of TNFR1 signaling (R-HSA-5357905) 4.250e-02
Negative regulators of DDX58 /IFIH1 signaling (R-HSA-936440) 5.560e-02

29 14 RAB geranylgeranylation (R-HSA-8873719) 1.350e-06
RAB GEFs exchange GTP for GDP on RABs (R-HSA-8876198) 3.370e-06
Rab regulation of trafficking (R-HSA-9007101) 1.060e-05
Platelet activation, signaling and aggregation (R-HSA-76002) 2.940e-03

23 28 GPVI-mediated activation cascade (R-HSA-114604) 1.840e-02
Anti-inflammatory response favouring Leishmania parasite 1.850e-02
infection (R-HSA-9662851)

24 25

25 1 Tachykinin receptors bind tachykinins (R-HSA-380095) 3.890e-06
Class A/1 (Rhodopsin-like receptors) (R-HSA-373076) 1.810e-05
GPCR ligand binding (R-HSA-500792) 6.720e-05

2% 19 Signaling by CTNNB1 phospho-site mutants (R-HSA-4839743) 1.670e-02
CTNNBI1 S33 mutants aren’t phosphorylated (R-HSA-5358747) 1.810e-02
Platelet sensitization by LDL (R-HSA-432142) 1.870e-02

o7 o7 Infectious disease (R-HSA-5663205) 3.210e-03
Disease (R-HSA-1643685) 3.770e-03
SARS-CoV Infections (R-HSA-9679506) 4.550e-03

28 32 Keratinization (R-HSA-6805567) 2.550e-10
Developmental Biology (R-HSA-1266738) 1.220e-03
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rRNA processing (R-HSA-72312) 5.270e-05

29 21 rRNA processing in the nucleus and cytosol (R-HSA-8868773) 7.800e-05
Nonsense Mediated Decay (NMD) independent of the Exon Junction | 7 150e-04
Complex (EJC) (R-HSA-975956)

30 18

31 20 FGFR3 mutant receptor activation (R-HSA-2033514) 3.730e-02
Signaling by activated point mutants of FGFR3 (R-HSA-1839130) 7.450e-02
Cargo recognition for clathrin-mediated endocytosis 4.440e-02

32 14 (R-HSA-8856825)
Negative regulation of MET activity (R-HSA-6807004) 4.470e-02
Clathrin-mediated endocytosis (R-HSA-8856828) 4.690e-02

33 14

34 20 Telomere Extension By Telomerase (R-HSA-171319) 1.560e-13
Extension of Telomeres (R-HSA-180786) 3.630e-11
Telomere Maintenance (R-HSA-157579) 1.790e-09

35 19

36 13 Class A/1 (Rhodopsin-like receptors) (R-HSA-373076) 6.630e-05
GPCR ligand binding (R-HSA-500792) 2.450e-04
GPCR downstream signalling (R-HSA-388396) 9.550e-04

37 14

38 18

39 10 IL-6-type cytokine receptor ligand interactions (R-HSA-6788467) 1.440e-04
Interleukin-6 family signaling (R-HSA-6783589) 2.140e-04

40 13
Activation of Matrix Metalloproteinases (R-HSA-1592389) 6.830e-04

41 13 Regulation of Insulin-like Growth Factor (IGF) transport and uptake
by Insulin-like Growth Factor Binding Proteins (IGFBPs)
(R-HSA-381426) 7.370e-04
Extracellular matrix organization (R-HSA-1474244) 9.250e-04
DDX58/IFIH1-mediated induction of interferon-alpha/beta 2.230e-08

42 7 (R-HSA-168928)
Interferon alpha/beta signaling (R-HSA-909733) 3.220e-08
Regulation of IFNA /IFNB signaling (R-HSA-912694) 3.550e-08

43 7

44 11

45 14

46 14 Germ layer formation at gastrulation (R-HSA-9754189) 4.980e-02
Formation of definitive endoderm (R-HSA-9823730) 5.780e-02
Condensation of Prometaphase Chromosomes (R-HSA-2514853) 6.060e-02

47 16 Nervous system development (R-HSA-9675108) 9.840e-04
Axon guidance (R-HSA-422475) 1.140e-03
RET signaling (R-HSA-8853659) 1.160e-03

48 29 IRE1lalpha activates chaperones (R-HSA-381070) 8.280e-04
XBP1(S) activates chaperone genes (R-HSA-381038) 1.400e-03
Unfolded Protein Response (UPR) (R-HSA-381119) 6.980e-03

49 13

50 15

51 10

52 10

53 6

54 6

55 6

56 6

57 13

58 12 Condensation of Prometaphase Chromosomes (R-HSA-2514853) 4.400e-02
Formation of Senescence-Associated Heterochromatin Foci (SAHF) 4.790e-02
(R-HSA-2559584)

59 18

60 7

61 7
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Lectin pathway of complement activation (R-HSA-166662) 1.150e-02

62 11 Regulation of Insulin-like Growth Factor (IGF) transport and uptake | 2.130e-02
by Insulin-like Growth Factor Binding Proteins (IGFBPs)
(R-HSA-381426)
Complement cascade (R-HSA-166658) 2.900e-02

63 12

64 3 Cilium Assembly (R-HSA-5617833) 5.790e-06
Intraflagellar transport (R-HSA-5620924) 7.560e-06
Organelle biogenesis and maintenance (R-HSA-1852241) 2.570e-05

65 9

66 9 Diseases associated with the TLR signaling cascade (R-HSA-5602358) | 3.320e-04
Diseases of Immune System (R-HSA-5260271) 6.640e-04
Toll-like Receptor Cascades (R-HSA-168898) 3.520e-02

67 7 Prolactin receptor signaling (R-HSA-1170546) 2.320e-02
Growth hormone receptor signaling (R-HSA-982772) 3.220e-02

68 6

69 14

70 13

71 5

72 8

73 9

74 9

75 10

76 7

77 7

78 28

79 11
Postsynaptic nicotinic acetylcholine receptors (R-HSA-622327) 1.540e-05

80 10 Presynaptic nicotinic acetylcholine receptors (R-HSA-622323) 1.550e-05
Highly calcium permeable postsynaptic nicotinic acetylcholine 1.750e-05
receptors (R-HSA-629594)

81 10 Signaling by Hippo (R-HSA-2028269) 2.050e-04

82 6 ADP signalling through P2Y purinoceptor 12 (R-HSA-392170) 5.440e-05
Adrenaline, noradrenaline inhibits insulin secretion (R-HSA-400042) | 5.780e-05
Signal amplification (R-HSA-392518) 5.840e-05

83 6

84 11

85 7 Neutrophil degranulation (R-HSA-6798695) 2.450e-02

86 7

87 11

88 6

89 7 Interleukin-1 processing (R-HSA-448706) 9.180e-03
Signaling by Interleukins (R-HSA-449147) 1.040e-02
Interleukin-1 family signaling (R-HSA-446652) 1.110e-02
RNA Polymerase II Transcription Initiation And Promoter Clearance | 3.040e-02

20 7 (R-HSA-76042)
HIV Transcription Initiation (R-HSA-167161) 3.420e-02
RNA Polymerase II HIV Promoter Escape (R-HSA-167162) 3.910e-02

91 8

92 9

93 8

94 10

95 11
PRC2 methylates histones and DNA (R-HSA-212300) 8.210e-05

96 7 ERCC6 (CSB) and EHMT?2 (G9a) positively regulate rRNA 9.060e-05
expression (R-HSA-427389)
Defective pyroptosis (R-HSA-9710421) 9.380e-05

97 10 Initial triggering of complement (R-HSA-166663) 4.780e-05
Creation of C4 and C2 activators (R-HSA-166786) 4.800e-05
Classical antibody-mediated complement activation (R-HSA-173623) | 6.520e-05

98 5

99 8

100 9 Terminal pathway of complement (R-HSA-166665) 1.220e-02
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101 7

102 6

103 9
Signaling by Overexpressed Wild-Type EGFR in Cancer 1.090e-05

104 12 (R-HSA-5638302)
EGEFR interacts with phospholipase C-gamma (R-HSA-212718) 1.090e-05
GRB2 events in EGFR signaling (R-HSA-179812) 1.280e-05

105 5

106 5 Meiotic synapsis (R-HSA-1221632) 5.160e-04
Meiosis (R-HSA-1500620) 8.690e-04
Reproduction (R-HSA-1474165) 1.770e-03

107 7

108 9

109 6

110 10

11 13 PTEN Regulation (R-HSA-6807070) 3.300e-03
Regulation of PTEN gene transcription (R-HSA-8943724) 8.060e-03
PIP3 activates AKT signaling (R-HSA-1257604) 1.230e-02

112 7

113 6

114 9

115 12

116 8

117 7 Resolution of Sister Chromatid Cohesion (R-HSA-2500257) 2.120e-03
EML4 and NUDC in mitotic spindle formation (R-HSA-9648025) 2.160e-03
Amplification of signal from the kinetochores (R-HSA-141424) 2.200e-03

118 7

119 9

120 7

121 7

122 5
Negative regulation of TCF-dependent signaling by WNT ligand an-

123 ? tag%nists (Rg—;HSA—3772470) P sy ® 4.580e-02

124 6

125 15

126 13

127 9

128 6 DAP12 signaling (R-HSA-2424491) 2.730e-02
Nuclear signaling by ERBB4 (R-HSA-1251985) 2.810e-02
Other semaphorin interactions (R-HSA-416700) 3.110e-02

129 6

130 6

131 9

132 5

133 5 Sensory perception of salty taste (R-HSA-9730628) 3.540e-07
Sensory perception of taste (R-HSA-9717189) 1.430e-04
Stimuli-sensing channels (R-HSA-2672351) 1.130e-03

134 5 Complement cascade (R-HSA-166658) 4.930e-03

135 8

136 5

137 5

138 8 Eukaryotic Translation Initiation (R-HSA-72613) 1.700e-03
Selenoamino acid metabolism (R-HSA-2408522) 1.800e-03
Cap-dependent Translation Initiation (R-HSA-72737) 1.820e-03

139 7

140 8 DNA Damage/Telomere Stress Induced Senescence (R-HSA-2559586) | 1.680e-03
HCMYV Late Events (R-HSA-9610379) 2.580e-03
HDACs deacetylate histones (R-HSA-3214815) 3.360e-03

141 7

142 9

143 5

144 5
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Negative regulation of the PI3K/AKT network (R-HSA-199418) 3.220e-06

145 5 PISP, PP2A and IER3 Regulate PI3K/AKT Signaling 4.790e-06
(R-HSA-6811558)
Estrogen-dependent nuclear events downstream of ESR-membrane 1.190e-05
signaling (R-HSA-9634638)

146 6

147 6

148 8

149 17 eNOS activation (R-HSA-203615) 4.520e-02
Tetrahydrobiopterin (BH4) synthesis, recycling, salvage 7 410e-02
and regulation (R-HSA-1474151)

150 8

151 8

152 5

Table A.14: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the interactions only found in M samples and not in N
samples using pipeline IV.

Adjusted P-

Cluster  Size Reactome pathways
value

Immunoregulatory interactions between a Lymphoid and a non- 4.590e-03

1 39 Lymphoid cell (R-HSA-198933)
Antigen Presentation: Folding, assembly and peptide loading of 3.170e-02
class I MHC (R-HSA-983170)

2 34

3 37 Chemokine receptors bind chemokines (R-HSA-380108) 9.180e-43
Peptide ligand-binding receptors (R-HSA-375276) 1.720e-30
Class A /1 (Rhodopsin-like receptors) (R-HSA-373076) 9.880e-26

4 36

5 5 Transferrin endocytosis and recycling (R-HSA-917977) 3.690e-07
ROS and RNS production in phagocytes (R-HSA-1222556) 5.440e-07
Insulin receptor recycling (R-HSA-77387) 6.200e-07

6 24

7 26

8 35

9 36

10 2 Gastrulation (R-HSA-9758941) 2.580e-06
Regulation of beta-cell development (R-HSA-186712) 1.010e-04
Developmental Biology (R-HSA-1266738) 8.050e-04

11 27

12 23

13 o HCMYV Infection (R-HSA-9609646) 1.070e-02
CREB phosphorylation (R-HSA-199920) 1.170e-02
Generic Transcription Pathway (R-HSA-212436) 1.250e-02

14 21 trans-Golgi Network Vesicle Budding (R-HSA-199992) 1.980e-07
Formation of annular gap junctions (R-HSA-196025) 3.380e-07
Gap junction degradation (R-HSA-190873) 3.380e-07

15 25

16 22

17 34

18 17

19 31 RUNX2 regulates bone development (R-HSA-8941326) 2.840e-02
Infectious disease (R-HSA-5663205) 4.540e-03

20 28 Disease (R-HSA-1643685) 5 7406-03
Antigen activates B Cell Receptor (BCR) leading to generation of 5.780e-03
second messengers (R-HSA-983695)
Platelet activation, signaling and aggregation (R-HSA-76002) 3.670e-03

21 29 GPVI-mediated activation cascade (R-HSA-114604) 2.050e-02
Anti-inflammatory response favouring Leishmania parasite infection | 2 130e-02
(R-HSA-9662851)
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” 18 Signaling by CTNNB1 phospho-site mutants (R-HSA-4839743) 1.490e-02
Metabolism of carbohydrates (R-HSA-71387) 1.580e-02
CTNNB1 S33 mutants aren’t phosphorylated (R-HSA-5358747) 1.620e-02

23 18

24 29 Telomere Extension By Telomerase (R-HSA-171319) 3.430e-13
Extension of Telomeres (R-HSA-180786) 7.950e-11
Chromosome Maintenance (R-HSA-73886) 2.510e-10

25 13 RAB geranylgeranylation (R-HSA-8873719) 8.710e-07
RAB GEFs exchange GTP for GDP on RABs (R-HSA-8876198) 2.170e-06
Rab regulation of trafficking (R-HSA-9007101) 6.860e-06

26 12

27 12

28 18 Downstream signal transduction (R-HSA-186763) 9.260e-06
Axon guidance (R-HSA-422475) 7.440e-05
Nervous system development (R-HSA-9675108) 7.550e-05

29 29 IRElalpha activates chaperones (R-HSA-381070) 8.280e-04
XBP1(S) activates chaperone genes (R-HSA-381038) 1.400e-03
Unfolded Protein Response (UPR) (R-HSA-381119) 6.980e-03

30 17

31 9

32 14

33 17

34 10

35 10 IL-6-type cytokine receptor ligand interactions (R-HSA-6788467) 1.440e-04
Interleukin-6 family signaling (R-HSA-6783589) 2.140e-04
Activation of Matrix Metalloproteinases (R-HSA-1592389) 6.830e-04

36 13 Regulation of Insulin-like Growth Factor (IGF) transport and uptake | 7.370e-04
by Insulin-like Growth Factor Binding Proteins (IGFBPs)
(R-HSA-381426)
Extracellular matrix organization (R-HSA-1474244) 9.250e-04

37 13

38 7

39 12

40 9

41 10

42 15

43 14

44 6

45 12 Metal sequestration by antimicrobial proteins (R-HSA-6799990) 1.200e-02
IRAK4 deficiency (TLR2/4) (R-HSA-5603041) 4.070e-02
Regulation of TLR by endogenous ligand (R-HSA-5686938) 4.180e-02

46 9

47 9

48 7

49 10

50 12 Condensation of Prometaphase Chromosomes (R-HSA-2514853) 4.400e-02
Formation of Senescence-Associated Heterochromatin Foci (SAHF) 4.790e-02
(R-HSA-2559584)

51 12

52 12

53 10

54 9

55 9 Diseases associated with the TLR signaling cascade (R-HSA-5602358) | 3.320e-04
Diseases of Immune System (R-HSA-5260271) 6.640e-04
Toll-like Receptor Cascades (R-HSA-168898) 3.520e-02

56 11

57 14
DDX58/1FIH1-mediated induction of interferon-alpha/beta 1.430e-06

58 5 (R-HSA-168928)
Interferon alpha/beta signaling (R-HSA-909733) 2.200e-06
SARS-CoV-2 activates/modulates innate and adaptive immune 4.850e-06
responses (R-HSA-9705671)

59 5
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60

61 Lectin pathway of complement activation (R-HSA-166662) 5.350e-03
Complement cascade (R-HSA-166658) 8.550e-03
PRC2 methylates histones and DNA (R-HSA-212300) 8.210e-05

62 7 ERCC6 (CSB) and EHMT2 (GYa) positively regulate rRNA expression | 9.060e-05
(R-HSA-427389)
Defective pyroptosis (R-HSA-9710421) 9.380e-05

63 12
Postsynaptic nicotinic acetylcholine receptors (R-HSA-622327) 1.540e-05

64 10 Presynaptic nicotinic acetylcholine receptors (R-HSA-622323) 1.550e-05
Highly calcium permeable postsynaptic nicotinic acetylcholine 1.750e-05
receptors (R-HSA-629594)

65 10 Signaling by Hippo (R-HSA-2028269) 2.050e-04

66 6 ADP signalling through P2Y purinoceptor 12 (R-HSA-392170) 5.440e-05
Adrenaline, noradrenaline inhibits insulin secretion (R-HSA-400042) | 5.780e-05
Signal amplification (R-HSA-392518) 5.840e-05

67 6

68 7 Complement cascade (R-HSA-166658) 3.310e-07
Regulation of Complement cascade (R-HSA-977606) 3.430e-05
Innate Immune System (R-HSA-168249) 1.420e-04

69 9

70 7 Interleukin-1 processing (R-HSA-448706) 9.180e-03
Signaling by Interleukins (R-HSA-449147) 1.040e-02
Interleukin-1 family signaling (R-HSA-446652) 1.110e-02
RNA Polymerase II Transcription Initiation And Promoter Clearance | 3.040e-02

71 7 (R-HSA-76042)
HIV Transcription Initiation (R-HSA-167161) 3.420e-02
RNA Polymerase II HIV Promoter Escape (R-HSA-167162) 3.910e-02

72 14

73 7

74 8 Formation of the cornified envelope (R-HSA-6809371) 3.390e-02

75 6

76 9 DNA Damage/Telomere Stress Induced Senescence (R-HSA-2559586) | 2.510e-03
HCMV Late Events (R-HSA-9610379) 3.860e-03
HDACsS deacetylate histones (R-HSA-3214815) 5.030e-03

77 14

78 5

79 9

80 9

81 7
Insertion of tail-anchored proteins into the endoplasmic reticulum

82 6 membrane (R-HSA-9609523) 3.110e-02

83 10 RUNX2 regulates osteoblast differentiation (R-HSA-8940973) 3.670e-02
Transcriptional regulation by RUNX2 (R-HSA-8878166) 3.770e-02
Signaling by CSF1 (M-CSF) in myeloid cells (R-HSA-9680350) 3.780e-02
Signaling by Overexpressed Wild-Type EGFR in Cancer 1.090e-05

84 12 (R-HSA-5638302)
EGEFR interacts with phospholipase C-gamma (R-HSA-212718) 1.090e-05
GRB2 events in EGER signaling (R-HSA-179812) 1.280e-05

85 5 Meiotic synapsis (R-HSA-1221632) 5.160e-04
Meiosis (R-HSA-1500620) 8.690e-04
Reproduction (R-HSA-1474165) 1.770e-03

86 5

87 3 Role of phospholipids in phagocytosis (R-HSA-2029485) 2.140e-03
Creation of C4 and C2 activators (R-HSA-166786) 2.380e-03
Initial triggering of complement (R-HSA-166663) 2.410e-03

88 6

89 7

90 7
Negative regulation of the PI3K/AKT network (R-HSA-199418) 3.710e-07

91 9 PISP, PP2A and IER3 Regulate PI3K/AKT Signaling (R-HSA-6811558)| 5100e-07
Diseases of signal transduction by growth factor receptors and 4.620e-06
second messengers (R-HSA-5663202)

92 6
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93 8
94 7
95 6
96 7
97 7
98 7
99 7
100 7
101 25
102 5
103 9
104 5
105 5
106 5
107 7
108 6 Germ layer formation at gastrulation (R-HSA-9754189) 1.240e-02
Formation of definitive endoderm (R-HSA-9823730) 1.910e-02
109 6 Resolution of Sister Chromatid Cohesion (R-HSA-2500257) 2.120e-03
EML4 and NUDC in mitotic spindle formation (R-HSA-9648025) 2.160e-03
Amplification of signal from the kinetochores (R-HSA-141424) 2.200e-03
110 12
111 6
112 6
113 6 ABC transporters in lipid homeostasis (R-HSA-1369062) 2.780e-02
114 6 DAP12 signaling (R-HSA-2424491) 2.730e-02
Nuclear signaling by ERBB4 (R-HSA-1251985) 2.810e-02
Other semaphorin interactions (R-HSA-416700) 3.110e-02
115 6
116 6
117 9
Signaling by ERBB4 (R-HSA-1236394) 3.5400-05
118 11 Defective POMT2 causes MDDGA2, MDDGB2 and MDDGC2 6.680e-04
(R-HSA-5083629)
Defective POMT1 causes MDDGA1, MDDGB1 and MDDGC1 1.000e-03
(R-HSA-5083633)
119 5
120 9
Table A.15: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the interactions only found in N samples and not in M
samples using pipeline IV.
Cluster  Size Reactome pathways el
value
rRNA processing (R-HSA-72312) 5.270e-05
1 21 rRNA processing in the nucleus and cytosol (R-HSA-8868773) 7.800e-05
Nonsense Mediated Decay (NMD) independent of the Exon Junction | 7150e-04
Complex (EJC) (R-HSA-975956)
Chk1/Chk2(Cds1) mediated inactivation of Cyclin B:Cdkl complex | 4310e-09
2 o7 (R-HSA-75035)
Activation of BAD and translocation to mitochondria 5.020e-09
(R-HSA-111447)
SARS-CoV-2 targets host intracellular signalling and regulatory 5.310e-09
pathways (R-HSA-9755779)
3 20
Cargo recognition for clathrin-mediated endocytosis 4.440e-02
4 14 (R-HSA-8856825)
Negative regulation of MET activity (R-HSA-6807004) 4.470e-02
Clathrin-mediated endocytosis (R-HSA-8856828) 4.690e-02
5 21
6 18
7 15
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8 12

9 15 PTEN Regulation (R-HSA-6807070) 6.230e-03
Regulation of PTEN gene transcription (R-HSA-8943724) 1.280e-02
Chromatin organization (R-HSA-4839726) 1.380e-02

10 12 Terminal pathway of complement (R-HSA-166665) 2.240e-02
Parasite infection (R-HSA-9664407) 2.630e-02
Nephrin family interactions (R-HSA-373753) 3.360e-02

11 19

12 23 Keratinization (R-HSA-6805567) 2.330e-06

13 10

14 14

15 18 Keratinization (R-HSA-6805567) 3.700e-05

16 9 Cilium Assembly (R-HSA-5617833) 1.290e-05
Intraflagellar transport (R-HSA-5620924) 1.360e-05
Organelle biogenesis and maintenance (R-HSA-1852241) 5.720e-05

17 12

18 10

19 11

20 7

21 7

22 8 Serotonin receptors (R-HSA-390666) 2.240e-02

23 8

24 9

25 15

26 17 Keratinization (R-HSA-6805567) 1.430e-02

27 6

28 6

29 6

30 6 Sensory perception of salty taste (R-HSA-9730628) 7.080e-07
Sensory perception of taste (R-HSA-9717189) 2.860e-04
Stimuli-sensing channels (R-HSA-2672351) 2.250e-03

31 6 Neutrophil degranulation (R-HSA-6798695) 1.070e-02

32 6

33 6

34 10

35 6

36 6 Prolactin receptor signaling (R-HSA-1170546) 1.660e-02
Growth hormone receptor signaling (R-HSA-982772) 2.300e-02

37 10

38 10

39 9

40 13

41 5

42 9

43 13

44 11

45 7 Cell Cycle, Mitotic (R-HSA-69278) 5.030e-04
Cell Cycle (R-HSA-1640170) 7.740e-04
Cell Cycle Checkpoints (R-HSA-69620) 8.420e-04

46 8 Influenza Infection (R-HSA-168255) 5.300e-04
Eukaryotic Translation Initiation (R-HSA-72613) 1.510e-03
Selenoamino acid metabolism (R-HSA-2408522) 1.580e-03

47 12 FGFR3 mutant receptor activation (R-HSA-2033514) 1.440e-02
Signaling by activated point mutants of FGFR3 (R-HSA-1839130) 2.880e-02
Signaling by FGFR3 in disease (R-HSA-5655332) 3.620e-02

48 9 FGFR3 mutant receptor activation (R-HSA-2033514) 7.860e-03
Signaling by activated point mutants of FGFR3 (R-HSA-1839130) 1.570e-02
Signaling by FGFR3 in disease (R-HSA-5655332) 1.980e-02

49 11

50 5 Common Pathway of Fibrin Clot Formation (R-HSA-140875) 2.800e-02
Formation of Fibrin Clot (Clotting Cascade) (R-HSA-140877) 4.490e-02

51 5

52 5
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53 6

54 6

55 8

56 5

57 6
Regulation of Insulin-like Growth Factor (IGF) transport and uptake

58 5 by Insulin-like Growth Factor Binding Proteins (IGFBPs) (R-HSA- | 5.440e-03
381426)

59 6

60 6

61 5

A.1.5 Enriched reactome pathways using pipeline 5

Table A.16: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the differential network comparing all N samples with
all M samples using pipeline V.

Gene expression (Transcription) (R-HSA-74160) 1.660e-05

1 40 Generic Transcription Pathway (R-HSA-212436) 1.6406-03
Formation of WDR5-containing histone-modifying complexes 1.670e-03
(R-HSA-9772755)

2 40

3 50 RAB geranylgeranylation (R-HSA-8873719) 4.760e-17
Neutrophil degranulation (R-HSA-6798695) 8.880e-17
Rab regulation of trafficking (R-HSA-9007101) 2.430e-10

4 40

5 29

6 36 Chemokine receptors bind chemokines (R-HSA-380108) 1.850e-46
Peptide ligand-binding receptors (R-HSA-375276) 1.720e-33
Class A /1 (Rhodopsin-like receptors) (R-HSA-373076) 1.780e-28

7 o7 Integrin cell surface interactions (R-HSA-216083) 1.940e-04
Laminin interactions (R-HSA-3000157) 1.030e-02
Extracellular matrix organization (R-HSA-1474244) 3.280e-02

8 23

9 30

10 21

11 18

12 31 Hemostasis (R-HSA-109582) 1.260e-02
Estrogen-stimulated signaling through PRKCZ (R-HSA-9634635) 1.880e-02
Platelet activation, signaling and aggregation (R-HSA-76002) 2.070e-02

13 31
FCGR3A-mediated IL10 synthesis (R-HSA-9664323) 1.480e-06

14 40 Anti-inflammatory response favouring Leishmania parasite infection | 1.660e-06
(R-HSA-9662851)
Leishmania parasite growth and survival (R-HSA-9664433) 1.870e-06

15 18

16 34

17 40

18 23 MET activates PI3K/AKT signaling (R-HSA-8851907) 8.490e-03
MET promotes cell motility (R-HSA-8875878) 1.140e-02
MET activates PTPN11 (R-HSA-8865999) 1.530e-02

19 35

20 11

21 28

22 19

23 19

24 33

25 9 Interleukin-2 signaling (R-HSA-9020558) 2.240e-02
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2% 1 GPCR ligand binding (R-HSA-500792) 7.380e-08
GPCR downstream signalling (R-HSA-388396) 4.050e-07
Signaling by GPCR (R-HSA-372790) 6.460e-07
27 6
28 32
29 17
Lectin pathway of complement activation (R-HSA-166662) 8.600e-09
30 13 Ficolins bind to repetitive carbohydrate structures on the target cell 1.010e-06
surface (R-HSA-2855086)
Complement cascade (R-HSA-166658) 6.580e-06
31 19
Mitotic Prometaphase (R-HSA-68877) 1.190e-07
32 36 Anchoring of the basal body to the plasma membrane 3.690e-07
(R-HSA-5620912)
Loss of Nlp from mitotic centrosomes (R-HSA-380259) 1.200e-06
33 12
34 13 Metabolism of amine-derived hormones (R-HSA-209776) 4.110e-04
Serotonin and melatonin biosynthesis (R-HSA-209931) 4.730e-03
Viral mRNA Translation (R-HSA-192823) 1.100e-27
35 40 SRP-dependent cotranslational protein targeting to membrane 1.300e-27
(R-HSA-1799339)
Selenocysteine synthesis (R-HSA-2408557) 1.480e-27
36 40
Clathrin-mediated endocytosis (R-HSA-8856828) 8.140e-03
37 34 Signaling by EGFR (R-HSA-177929) 3.180e-02
Signaling by NOTCH1 t(7;9)(NOTCH1:M1580_K2555) 3.350e-02
Translocation Mutant (R-HSA-2660825)
38 10
39 14
Highly calcium permeable nicotinic acetylcholine receptors 1.030e-09
40 28 (R-HSA-629597)
Highly calcium permeable postsynaptic nicotinic acetylcholine 1.890e-09
receptors (R-HSA-629594)
Presynaptic nicotinic acetylcholine receptors (R-HSA-622323) 2.150e-09
4 14 Signaling by CTNNB1 phospho-site mutants (R-HSA-4839743) 9.630e-03
CTNNBI1 S33 mutants aren’t phosphorylated (R-HSA-5358747) 1.050e-02
Platelet sensitization by LDL (R-HSA-432142) 1.070e-02
4 3 VEGFR2 mediated cell proliferation (R-HSA-5218921) 2.040e-02
Ethanol oxidation (R-HSA-71384) 2.240e-02
RHO GTPases Activate NADPH Oxidases (R-HSA-5668599) 3.120e-02
Sensing of DNA Double Strand Breaks (R-HSA-5693548) 6.560e-03
43 9 HDR through MME]J (alt-NHEJ) (R-HSA-5685939) 1.4400-02
Defective HDR through Homologous Recombination Repair (HRR) 1.720e-02
due to PALB2 loss of BRCA1 binding function (R-HSA-9704331)
44 9
45 5 Interleukin-12 family signaling (R-HSA-447115) 1.600e-10
Interleukin-23 signaling (R-HSA-9020933) 2.170e-10
Interleukin-4 and Interleukin-13 signaling (R-HSA-6785807) 3.420e-06
Deactivation of the beta-catenin transactivating complex 7.800e-04
46 71 (R-HSA-3769402)
Defects in biotin (Btn) metabolism (R-HSA-3323169) 1.340e-03
Formation of the beta-catenin:TCF transactivating complex 1.460e-03
(R-HSA-201722)
47 12 Retinoid cycle disease events (R-HSA-2453864) 2.080e-02
Diseases of the neuronal system (R-HSA-9675143) 3.120e-02
Diseases associated with visual transduction (R-HSA-2474795) 6.230e-02
48 14
49 16
Long-term potentiation (R-HSA-9620244) 2.510e-02
50 10 Synaptic adhesion-like molecules (R-HSA-8849932) 2.860e-02
CREB1 phosphorylation through NMDA receptor-mediated 3.180e-02

activation of RAS signaling (R-HSA-442742)
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51 10 Intraflagellar transport (R-HSA-5620924) 2.260e-05
Cilium Assembly (R-HSA-5617833) 2.570e-05
Organelle biogenesis and maintenance (R-HSA-1852241) 1.130e-04

52 16

53 13

54 16 Interferon alpha/beta signaling (R-HSA-909733) 2.020e-10
Interferon Signaling (R-HSA-913531) 1.040e-07
Regulation of IFNA /IFNB signaling (R-HSA-912694) 1.830e-06

55 32

56 8

57 37

58 10

59 0 HATSs acetylate histones (R-HSA-3214847) 8.870e-19
Chromatin organization (R-HSA-4839726) 1.160e-14
Chromatin modifying enzymes (R-HSA-3247509) 1.740e-14

60 39 Generic Transcription Pathway (R-HSA-212436) 4.610e-04
RNA Polymerase II Transcription (R-HSA-73857) 6.960e-04
Gene expression (Transcription) (R-HSA-74160) 1.710e-03

61 5 CREB3 factors activate genes (R-HSA-8874211) 4.370e-03

62 5

63 15
Signal amplification (R-HSA-392518) 2.160e-16

64 16 Thromboxane signalling through TP receptor (R-HSA-428930) 9.170e-15
Thrombin signalling through proteinase activated receptors (PARs) 4.630e-14
(R-HSA-456926)

65 10

66 5

67 30

68 13 Complement cascade (R-HSA-166658) 9.870e-06
Activation of C3 and C5 (R-HSA-174577) 1.770e-05
Initial triggering of complement (R-HSA-166663) 1.610e-04

69 7

70 6

71 29 ERBB2 Regulates Cell Motility (R-HSA-6785631) 4.230e-02
EGRB2 events in ERBB2 signaling (R-HSA-1963640) 4.760e-02
GRB2 events in EGFR signaling (R-HSA-179812) 5.380e-02

7 1 WNT ligand biogenesis and trafficking (R-HSA-3238698) 2.530e-09
Class B/2 (Secretin family receptors) (R-HSA-373080) 9.820e-07
Signaling by WNT (R-HSA-195721) 2.190e-04

73 9

74 33 Defective CFTR causes cystic fibrosis (R-HSA-5678895) 2.540e-05
Hedgehog ligand biogenesis (R-HSA-5358346) 2.830e-05
Hh mutants abrogate ligand secretion (R-HSA-5387390) 2.850e-05

75 32

76 5

77 14

78 14

79 17 MET activates RAS signaling (R-HSA-8851805) 4.610e-02

80 16

81 17

82 16

83 22

84 18

85 6
WNT 5A-dependent internalization of FZD4 (R-HSA-5099900) 5.560e-07

86 17 WNT 5A-dependent internalization of FZD2, FZD5 and ROR2 5.830e-07
(R-HSA-5140745)
trans-Golgi Network Vesicle Budding (R-HSA-199992) 2.330e-06

87 31

88 10

89 15
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GABA receptor activation (R-HSA-977443) 1.740e-05
90 10 Signaling by ERBB4 (R-HSA-1236394) 5 260e-05
Neurotransmitter receptors and postsynaptic signal transmission 1.400e-03
(R-HSA-112314)
91 14 Innate Immune System (R-HSA-168249) 1.550e-05
Interleukin-1 family signaling (R-HSA-446652) 3.130e-05
Immune System (R-HSA-168256) 3.610e-05
92 12
MHOC class II antigen presentation (R-HSA-2132295) 1.130e-06
93 10 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the 3.140e-06
presence of ligand (R-HSA-3371497)
COPI-independent Golgi-to-ER retrograde traffic (R-HSA-6811436) 3.500e-06
04 7 mRNA decay by 5" to 3" exoribonuclease (R-HSA-430039) 2.670e-02
mRNA Splicing (R-HSA-72172) 3.140e-02
mRNA Splicing - Major Pathway (R-HSA-72163) 4.190e-02
95 7
% 1 Creation of C4 and C2 activators (R-HSA-166786) 1.250e-07
Role of LAT2/NTAL/LAB on calcium mobilization (R-HSA-2730905) | 1.310e-07
FCGR activation (R-HSA-2029481) 1.530e-07
97 6
98 17
99 11
100 24
Interferon alpha/beta signaling (R-HSA-909733) 3.050e-05
101 8 SARS-CoV-2 activates/modulates innate and adaptive immune 6.690e-05
responses (R-HSA-9705671)
Regulation of IFNA /IFNB signaling (R-HSA-912694) 8.750e-05
102 13
Factors involved in megakaryocyte development and platelet produc-
103 2 tion (R-HSA-983231) 6-580e-03
104 9 Nuclear Receptor transcription pathway (R-HSA-383280) 1.570e-03
105 9
106 17 Platelet Adhesion to exposed collagen (R-HSA-75892) 5.440e-04
Dectin-2 family (R-HSA-5621480) 2.170e-03
GPVI-mediated activation cascade (R-HSA-114604) 2.580e-03
107 28 SARS-CoV-2 modulates autophagy (R-HSA-9754560) 9.500e-04
Anchoring of the basal body to the plasma membrane 1.130e-02
108 24 (R-HSA-5620912)
Recruitment of mitotic centrosome proteins and complexes 3.970e-02
(R-HSA-380270)
Cilium Assembly (R-HSA-5617833) 4.060e-02
Factors involved in megakaryocyte development and platelet produc-
109 15 tion (R-HSA-983231) 1.100e-02
110 35
111 9
112 20 Elevation of cytosolic Ca2+ levels (R-HSA-139853) 3.010e-06
Platelet calcium homeostasis (R-HSA-418360) 1.680e-05
Role of second messengers in netrin-1 signaling (R-HSA-418890) 8.040e-05
113 33
114 11
115 8
116 18 Complement cascade (R-HSA-166658) 1.560e-06
Regulation of Complement cascade (R-HSA-977606) 4.140e-05
Laminin interactions (R-HSA-3000157) 1.440e-03
117 6
TNFs bind their physiological receptors (R-HSA-5669034) 4.150e-05
118 21 TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling 3.350e-04
(R-HSA-975110)
TNFR2 non-canonical NF-kB pathway (R-HSA-5668541) 2.330e-03
Highly calcium permeable nicotinic acetylcholine receptors 2.590e-07
119 21 (R-HSA-629597)
Highly calcium permeable postsynaptic nicotinic acetylcholine 3.380e-07
receptors (R-HSA-629594)
Presynaptic nicotinic acetylcholine receptors (R-HSA-622323) 3.380e-07
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Fertilization (R-HSA-1187000) 1.380e-09

120 10 Interaction With Cumulus Cells And The Zona Pellucida 1.190e-08
(R-HSA-2534343)
Reproduction (R-HSA-1474165) 1.480e-06

121 13

122 % Ovarian tumor domain proteases (R-HSA-5689896) 2.040e-02
Regulation of TNFR1 signaling (R-HSA-5357905) 2.250e-02
TNF signaling (R-HSA-75893) 2.890e-02

123 18

124 7 Phase 0 - rapid depolarisation (R-HSA-5576892) 4.310e-07
Cardiac conduction (R-HSA-5576891) 6.740e-05
Muscle contraction (R-HSA-397014) 2.750e-04

125 28

126 10

127 13

128 16

129 o7 Neurotoxicity of clostridium toxins (R-HSA-168799) 1.260e-06
Toxicity of botulinum toxin type C (botC) (R-HSA-5250971) 2.590e-06
Uptake and actions of bacterial toxins (R-HSA-5339562) 2.500e-05
Antigen activates B Cell Receptor (BCR) leading to generation of 2.050e-06

130 24 second messengers (R-HSA-983695)
Signaling by the B Cell Receptor (BCR) (R-HSA-983705) 4.290e-05
CD22 mediated BCR regulation (R-HSA-5690714) 6.670e-04

131 11 Nuclear Receptor transcription pathway (R-HSA-383280) 7.250e-06

132 7
Highly calcium permeable nicotinic acetylcholine receptors 2.140e-08

133 12 (R-HSA-629597)
Highly calcium permeable postsynaptic nicotinic acetylcholine 2.800e-08
receptors (R-HSA-629594)
Presynaptic nicotinic acetylcholine receptors (R-HSA-622323) 2.800e-08

134 40 M Phase (R-HSA-68886) 5.890e-03
DNA Double Strand Break Response (R-HSA-5693606) 7.570e-03
Cell Cycle Checkpoints (R-HSA-69620) 8.170e-03

135 6

136 6

137 29 Chromatin organization (R-HSA-4839726) 3.510e-04
Heme signaling (R-HSA-9707616) 4.020e-04
HATS acetylate histones (R-HSA-3214847) 4.160e-04
CREBI1 phosphorylation through the activation of Adenylate 2.640e-04

138 18 Cyclase (R-HSA-442720)
PKA activation (R-HSA-163615) 3.250e-04
PKA-mediated phosphorylation of CREB (R-HSA-111931) 3.400e-04

139 7

140 12 Metal sequestration by antimicrobial proteins (R-HSA-6799990) 1.200e-02

141 22

142 12

143 13

144 18 Gastrulation (R-HSA-9758941) 6.250e-05
Developmental Biology (R-HSA-1266738) 2.530e-02
Formation of intermediate mesoderm (R-HSA-9761174) 2.590e-02

145 6

146 10

147 26

148 11

149 11

150 9

151 11

152 10

153 21

154 7

155 13
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Table A.17: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the interactions only found in M samples and not in N
samples using pipeline V.

Viral mRNA Translation (R-HSA-192823) 2.750e-30

1 39 SRP-dependent cotranslational protein targeting to membrane 3.690e-30
(R-HSA-1799339)
Selenocysteine synthesis (R-HSA-2408557) 3.910e-30

2 51 Formation of the cornified envelope (R-HSA-6809371) 1.780e-06
Keratinization (R-HSA-6805567) 5.360e-05

3 33

4 40 Oxidative Stress Induced Senescence (R-HSA-2559580) 1.130e-03
Cellular Senescence (R-HSA-2559583) 1.780e-03
PRC2 methylates histones and DNA (R-HSA-212300) 3.540e-02
Anchoring of the basal body to the plasma membrane 3.020e-07

5 32 (R-HSA-5620912)
Loss of Nlp from mitotic centrosomes (R-HSA-380259) 5.640e-07
AURKA Activation by TPX2 (R-HSA-8854518) 5.890e-07

6 29 Integrin cell surface interactions (R-HSA-216083) 2.840e-04
Laminin interactions (R-HSA-3000157) 1.280e-02
Extracellular matrix organization (R-HSA-1474244) 4.710e-02
Clathrin-mediated endocytosis (R-HSA-8856828) 8.140e-03

7 34 Signaling by EGFR (R-HSA-177929) 3.180e-02
Signaling by NOTCH1 t(7;9) (NOTCH1:M1580_K2555) 3.350e-02
Translocation Mutant (R-HSA-2660825)

8 25

9 36

10 30 Chemokine receptors bind chemokines (R-HSA-380108) 1.030e-45
Peptide ligand-binding receptors (R-HSA-375276) 2.020e-33
Class A /1 (Rhodopsin-like receptors) (R-HSA-373076) 1.210e-28

11 40

12 21

13 45

14 34 Translation (R-HSA-72766) 1.990e-02

15 32

16 40

17 25

18 30 Creation of C4 and C2 activators (R-HSA-166786) 3.400e-07
Role of LAT2/NTAL/LAB on calcium mobilization (R-HSA-2730905) | 3.470e-07
FCGR activation (R-HSA-2029481) 3.990e-07

19 23 MET activates PI3K/AKT signaling (R-HSA-8851907) 8.490e-03
MET promotes cell motility (R-HSA-8875878) 1.140e-02
MET activates PTPN11 (R-HSA-8865999) 1.530e-02

20 35

2 28 Hemostasis (R-HSA-109582) 1.570e-02
Platelet activation, signaling and aggregation (R-HSA-76002) 2.050e-02
Estrogen-stimulated signaling through PRKCZ (R-HSA-9634635) 2.290e-02

22 19

23 20

24 32

25 13

2% 18 Gastrulation (R-HSA-9758941) 6.250e-05
Developmental Biology (R-HSA-1266738) 3.010e-03
Regulation of beta-cell development (R-HSA-186712) 4.320e-03
Signal amplification (R-HSA-392518) 1.650e-23

27 22 Thromboxane signalling through TP receptor (R-HSA-428930) 2.680e-19
Thrombin signalling through proteinase activated receptors (PARs) 2.750e-18
(R-HSA-456926)

28 28 Chromatin organization (R-HSA-4839726) 2.790e-04
HATSs acetylate histones (R-HSA-3214847) 3.430e-04
Heme signaling (R-HSA-9707616) 3.450e-04
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Lectin pathway of complement activation (R-HSA-166662) 1.640e-08
29 15 Ficolins bind to repetitive carbohydrate structures on the target cell 1.610e-06
surface (R-HSA-2855086)
Complement cascade (R-HSA-166658) 1.520e-05
Immunoregulatory interactions between a Lymphoid and a non-
30 17 Lymphotd cell (R-HSA-198933) e 4.520e-02
31 9 Interleukin-2 signaling (R-HSA-9020558) 2.240e-02
30 12 HATSs acetylate histones (R-HSA-3214847) 5.510e-13
Chromatin organization (R-HSA-4839726) 1.160e-10
Chromatin modifying enzymes (R-HSA-3247509) 1.730e-10
33 21
34 19
TNFs bind their physiological receptors (R-HSA-5669034) 6.130e-05
35 23 TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling 4.450e-04
(R-HSA-975110)
Cytokine Signaling in Immune system (R-HSA-1280215) 5.330e-04
36 2 Neurotoxicity of clostridium toxins (R-HSA-168799) 5.260e-07
Toxicity of botulinum toxin type C (botC) (R-HSA-5250971) 1.360e-06
Uptake and actions of bacterial toxins (R-HSA-5339562) 1.050e-05
37 20
Highly calcium permeable nicotinic acetylcholine receptors 6.450e-07
38 26 (R-HSA-629597)
Highly calcium permeable postsynaptic nicotinic acetylcholine 8.430e-07
receptors (R-HSA-629594)
Presynaptic nicotinic acetylcholine receptors (R-HSA-622323) 8.430e-07
39 16 Interferon alpha/beta signaling (R-HSA-909733) 4.140e-08
Interferon Signaling (R-HSA-913531) 7.630e-06
Cytokine Signaling in Immune system (R-HSA-1280215) 3.280e-04
40 39
41 13 Metabolism of amine-derived hormones (R-HSA-209776) 4.110e-04
Serotonin and melatonin biosynthesis (R-HSA-209931) 4.730e-03
42 14
43 9
Sensing of DNA Double Strand Breaks (R-HSA-5693548) 6.560e-03
44 9 HDR through MME] (alt-NHE]) (R-HSA-5685939) 1.440e-02
Defective HDR through Homologous Recombination Repair (HRR) 1.720e-02
due to PALB2 loss of BRCA1 binding function (R-HSA-9704331)
45 15
46 15 Signaling by CTNNB1 phospho-site mutants (R-HSA-4839743) 1.110e-02
CTNNBI S33 mutants aren’t phosphorylated (R-HSA-5358747) 1.210e-02
Platelet sensitization by LDL (R-HSA-432142) 1.230e-02
rRNA processing in the nucleus and cytosol (R-HSA-8868773) 1.990e-10
47 31 rRNA processing (R-HSA-72312) 2210e-10
Major pathway of rRNA processing in the nucleolus and cytosol 2.330e-10
(R-HSA-6791226)
48 27
49 6
50 58 Keratinization (R-HSA-6805567) 1.990e-03
51 19 tRNA modification in the nucleus and cytosol (R-HSA-6782315) 1.930e-02
52 15
53 38
Fertilization (R-HSA-1187000) 2.530e-09
54 11 Interaction With Cumulus Cells And The Zona Pellucida 1.870e-08
(R-HSA-2534343)
Reproduction (R-HSA-1474165) 2.700e-06
55 13 Collagen biosynthesis and modifying enzymes (R-HSA-1650814) 2.370e-02
Collagen formation (R-HSA-1474290) 2.790e-02
56 14 Creation of C4 and C2 activators (R-HSA-166786) 2.820e-09
Role of LAT2/NTAL/LAB on calcium mobilization (R-HSA-2730905) | 2.880e-09
FCGR activation (R-HSA-2029481) 3.310e-09
57 12 Innate Immune System (R-HSA-168249) 2.500e-05
Toll Like Receptor 4 (TLR4) Cascade (R-HSA-166016) 2.950e-05
Toll-like Receptor Cascades (R-HSA-168898) 3.030e-05
58 8
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59 9

60 10 Creation of C4 and C2 activators (R-HSA-166786) 6.830e-08
Role of LAT2/NTAL/LAB on calcium mobilization (R-HSA-2730905) | 7.160e-08
FCGR activation (R-HSA-2029481) 8.360e-08
WNT 5A-dependent internalization of FZD4 (R-HSA-5099900) 9.040e-07

61 19 WNT 5A-dependent internalization of FZD2, FZD5 and ROR2 9.480e-07
(R-HSA-5140745)
trans-Golgi Network Vesicle Budding (R-HSA-199992) 4.360e-06
GABA receptor activation (R-HSA-977443) 2.730e-05

62 11 Signaling by ERBB4 (R-HSA-1236394) 3.5400-05
Neurotransmitter receptors and postsynaptic signal transmission 2.180e-03
(R-HSA-112314)

63 13

64 25

65 14 Signaling by Hippo (R-HSA-2028269) 6.200e-04

66 31

67 15
MHC class II antigen presentation (R-HSA-2132295) 9.920e-09

68 11 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the 1.460e-08
presence of ligand (R-HSA-3371497)
COPI-independent Golgi-to-ER retrograde traffic (R-HSA-6811436) 1.500e-08

69 12

70 17

71 14

72 16 rRNA processing (R-HSA-72312) 1.310e-02
Eukaryotic Translation Initiation (R-HSA-72613) 1.390e-02
Selenoamino acid metabolism (R-HSA-2408522) 1.440e-02

73 7 mRNA decay by 5" to 3" exoribonuclease (R-HSA-430039) 2.670e-02
mRNA Splicing (R-HSA-72172) 3.140e-02
mRNA Splicing - Major Pathway (R-HSA-72163) 4.190e-02

74 9

75 16

76 16

77 8

78 14

79 9

80 18

81 19

82 8

83 7

84 15 Nervous system development (R-HSA-9675108) 9.840e-04
Axon guidance (R-HSA-422475) 1.140e-03
RET signaling (R-HSA-8853659) 1.160e-03

85 10
Downregulation of ERBB4 signaling (R-HSA-1253288) 3.600e-05

86 14 Signaling by ERBB4 (R-HSA-1236394) 5.340e-05
Defective POMT2 causes MDDGA2, MDDGB2 and MDDGC2 8.290e-04
(R-HSA-5083629)

87 34 SARS-CoV-2 modulates autophagy (R-HSA-9754560) 1.580e-03

88 5 CREB3 factors activate genes (R-HSA-8874211) 4.370e-03
Retinoid cycle disease events (R-HSA-2453864) 1.730e-02

89 11 Diseases of the neuronal system (R-HSA-9675143) 2.600e-02
The canonical retinoid cycle in rods (twilight vision) 4.200e-02
(R-HSA-2453902)

90 1 RAB geranylgeranylation (R-HSA-8873719) 3.140e-07
RAB GEFs exchange GTP for GDP on RABs (R-HSA-8876198) 7.850e-07
Rab regulation of trafficking (R-HSA-9007101) 2.490e-06
STING mediated induction of host immune responses 4.150e-05

91 9 (R-HSA-1834941)
IRF3-mediated induction of type I IFN (R-HSA-3270619) 4.240e-05
Regulation of lipid metabolism by PPARalpha (R-HSA-400206) 7.330e-05
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STING mediated induction of host immune responses 4.150e-05
92 6 (R-HSA-1834941)
IRF3-mediated induction of type I IFN (R-HSA-3270619) 4.240e-05
Regulation of lipid metabolism by PPARalpha (R-HSA-400206) 7.330e-05
93 34 Unfolded Protein Response (UPR) (R-HSA-381119) 4.020e-02
Metabolism of proteins (R-HSA-392499) 4.140e-02
94 11
95 10 IENG signaling activates MAPKs (R-HSA-9732724) 1.530e-02
Regulation of IFNG signaling (R-HSA-877312) 1.800e-02
Potential therapeutics for SARS (R-HSA-9679191) 4.310e-02
96 46 Keratinization (R-HSA-6805567) 1.020e-05
97 8
Post-translational modification: synthesis of GPI-anchored proteins
98 10 (R HSA-163125) 4 p 2.610e-02
99 5
100 14
101 14
102 20 Condensation of Prometaphase Chromosomes (R-HSA-2514853) 3.310e-04
Cell Cycle (R-HSA-1640170) 3.220e-02
Factors involved in megakaryocyte development and platelet produc-
103 6 tion (RHSA8323D) © Y ¥ pEeer 2.250e-02
104 8
105 17
Neurotransmitter receptors and postsynaptic signal transmission 3.620e-02
106 19 (R-HSA-112314)
RNA Polymerase II Transcription (R-HSA-73857) 4.310e-02
CREB phosphorylation (R-HSA-199920) 4.350e-02
107 36
108 20
109 23 Transferrin endocytosis and recycling (R-HSA-917977) 2.340e-07
ROS and RNS production in phagocytes (R-HSA-1222556) 3.450e-07
Insulin receptor recycling (R-HSA-77387) 3.930e-07
110 0 TGF-beta receptor signaling activates SMADs (R-HSA-2173789) 2.980e-02
Molecules associated with elastic fibres (R-HSA-2129379)
Lysosomal oligosaccharide catabolism (R-HSA-8853383) 3.290e-02
3.610e-02
111 5
112 11
113 9 IFNG signaling activates MAPKSs (R-HSA-9732724) 1.220e-02
Regulation of IFNG signaling (R-HSA-877312) 1.440e-02
114 8
115 6
116 10
117 10 Defective ABCC9 causes CMD10, ATFB12 and Cantu syndrome 5.470e-04
(R-HSA-5678420)
ATP sensitive Potassium channels (R-HSA-1296025) 1.640e-03
118 13 Telomere C-strand synthesis initiation (R-HSA-174430) 1.750e-07
Removal of the Flap Intermediate from the C-strand (R-HSA-174437) | 2.910e-07
Processive synthesis on the C-strand of the telomere (R-HSA-174414) | 3.160e-07
119 5 VEGFR2 mediated cell proliferation (R-HSA-5218921) 1.460e-02
RHO GTPases Activate NADPH Oxidases (R-HSA-5668599) 1.670e-02
120 5 Elevation of cytosolic Ca2+ levels (R-HSA-139853) 9.900e-06
Platelet calcium homeostasis (R-HSA-418360) 2.890e-05
Platelet homeostasis (R-HSA-418346) 6.000e-04
121 16
122 10
PRC2 methylates histones and DNA (R-HSA-212300) 4.560e-04
123 12 ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA 5.090e-04
expression (R-HSA-427389)
Defective pyroptosis (R-HSA-9710421) 5.130e-04
124 9
125 7
126 8
127 30
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128 15 Telomere C-strand synthesis initiation (R-HSA-174430) 1.840e-04
Processive synthesis on the C-strand of the telomere (R-HSA-174414) | 2.070e-04
Removal of the Flap Intermediate from the C-strand (R-HSA-174437) | 2.180e-04
129 11
130 21 Cell Cycle, Mitotic (R-HSA-69278) 2.440e-02
Mitotic Prometaphase (R-HSA-68877) 3.820e-02
Cell Cycle (R-HSA-1640170) 4.390e-02
131 30 Ovarian tumor domain proteases (R-HSA-5689896) 3.170e-02
Regulation of TNFR1 signaling (R-HSA-5357905) 3.490e-02
TNF signaling (R-HSA-75893) 4.480e-02
132 6 Defective AMN causes MGA1 (R-HSA-3359462) 2.730e-04
Defective CUBN causes MGA1 (R-HSA-3359463) 5.470e-04
Uptake of dietary cobalamins into enterocytes (R-HSA-9758881) 2.730e-03
CREB1 phosphorylation through the activation of Adenylate 8.210e-07
133 21 Cyclase (R-HSA-442720)
PKA activation (R-HSA-163615) 1.690e-06
PKA activation in glucagon signalling (R-HSA-164378) 1.970e-06
134 37
135 12
136 10
137 9
Signaling by Receptor Tyrosine Kinases (R-HSA-9006934) 4.470e-10
138 25 Diseases of signal transduction by growth factor receptors and 9.410e-10
second messengers (R-HSA-5663202)
Insulin receptor signalling cascade (R-HSA-74751) 8.510e-09
139 8 Response of EIF2AK1 (HRI) to heme deficiency (R-HSA-9648895) 3.560e-02
140 19 SARS-CoV-1 Infection (R-HSA-9678108) 9.710e-03
Viral Infection Pathways (R-HSA-9824446) 9.810e-03
Infectious disease (R-HSA-5663205) 1.370e-02
141 9
142 10
143 13
Interleukin-12 family signaling (R-HSA-447115) 3.730e-02
144 5 Interleukin-12 signaling (R-HSA-9020591) 3.7606-02
Gene and protein expression by JAK-STAT signaling after 4.840e-02
Interleukin-12 stimulation (R-HSA-8950505)
145 9
146 7
Table A.18: Listed are the significant reactome pathways enriched in clusters pre-
dicted by ClusterONE from the interactions only found in N samples and not in M
samples using pipeline V.
Activation of the mRNA upon binding of the cap-binding complex 4.820e-07
1 40 and elFs, and subsequent binding to 43S (R-HSA-72662)
Defective CFTR causes cystic fibrosis (R-HSA-5678895) 5.420e-07
Translation initiation complex formation (R-HSA-72649) 5.580e-07
2 35
3 44
4 39
5 35
NGF-stimulated transcription (R-HSA-9031628) 9.790e-04
6 32 Nuclear Events (kinase and transcription factor activation) 3.030e-03
(R-HSA-198725)
Signaling by NTRK1 (TRKA) (R-HSA-187037) 2.280e-02
7 23
8 39 HATSs acetylate histones (R-HSA-3214847) 1.020e-09
Chromatin organization (R-HSA-4839726) 4.260e-07
Chromatin modifying enzymes (R-HSA-3247509) 6.390e-07
9 39




164

N-glycan antennae elongation in the medial/trans-Golgi 1.200e-04
10 29 (R-HSA-975576)
Glycosaminoglycan metabolism (R-HSA-1630316) 3.300e-02
Signaling by RNF43 mutants (R-HSA-5340588) 3.440e-02
11 31
12 32
13 41
Antigen processing: Ubiquitination & Proteasome degradation 4.380e-04
14 18 (R-HSA-983168)
Class I MHC mediated antigen processing & presentation 7.760e-04
(R-HSA-983169)
Immune System (R-HSA-168256) 1.830e-02
Smooth Muscle Contraction (R-HSA-445355)
15 29 Regulation of Insulin-like Growth Factor (IGF) transport and uptake 2;58&85
by Insulin-like Growth Factor Binding Proteins (IGFBPs) osle
(R-HSA-381426)
16 31 CRMPs in Sema3A signaling (R-HSA-399956) 1.940e-05
Semaphorin interactions (R-HSA-373755) 5.080e-05
17 32
Factors involved in megakaryocyte development and platelet produc-
18 21 tion (RHSA8323D) © Y ¥ P 4.650e-02
19 26
20 24 Transport of small molecules (R-HSA-382551) 1.510e-04
ABC-family proteins mediated transport (R-HSA-382556) 7.200e-03
21 11
22 21
23 22
rRNA processing (R-HSA-72312) 2.410e-05
24 33 rRNA processing in the nucleus and cytosol (R-HSA-8868773) 2 550e-05
Major pathway of rRNA processing in the nucleolus and cytosol 3.530e-05
(R-HSA-6791226)
25 13
26 28
27 17
28 13
29 20
30 12
31 10 Interferon alpha/beta signaling (R-HSA-909733) 3.830e-07
Interferon Signaling (R-HSA-913531) 2.630e-05
Regulation of IFNA /IFNB signaling (R-HSA-912694) 1.250e-04
32 26
33 19
34 12 Maturation of spike protein (R-HSA-9694548) 2.990e-03
Translation of Structural Proteins (R-HSA-9694635) 5.600e-03
Late SARS-CoV-2 Infection Events (R-HSA-9772573) 6.950e-03
35 14
36 8
37 14
38 9
39 11
40 2 Signaling by KIT in disease (R-HSA-9669938) 1.190e-02
PI-3K cascade:FGFR2 (R-HSA-5654695) 1.210e-02
PI-3K cascade:FGFR4 (R-HSA-5654720) 1.230e-02
41 9
42 9
Signaling by Rho GTPases, Miro GTPases and RHOBTB3 4.910e-04
43 16 (R-HSA-9716542)
Signaling by Rho GTPases (R-HSA-194315) 8.450e-04
Striated Muscle Contraction (R-HSA-390522) 2.320e-03
44 14
Folding of actin by CCT/TriC (R-HSA-390450) 6.310e-11
45 15 Prefoldin mediated transfer of substrate to CCT/TriC(R-HSA-389957) | § 140e-09
Formation of tubulin folding intermediates by CCT/TriC 8.180e-09

(R-HSA-389960)
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46 14

47 14

48 14

49 10

50 8
Response of EIF2AK4 (GCN2) to amino acid deficiency 1.900e-05

51 22 (R-HSA-9633012)
Signaling by ROBO receptors (R-HSA-376176) 2.080e-05
Nonsense Mediated Decay (NMD) independent of the Exon Junction | 2 100e-05
Complex (EJC) (R-HSA-975956)

52 13

53 9

54 9 Cilium Assembly (R-HSA-5617833) 1.290e-05
Intraflagellar transport (R-HSA-5620924) 1.360e-05
Organelle biogenesis and maintenance (R-HSA-1852241) 5.720e-05

55 17

56 8 Terminal pathway of complement (R-HSA-166665) 9.520e-03

57 8

58 32

59 31

60 16

61 5

62 5 COPII-mediated vesicle transport (R-HSA-204005) 8.830e-04
RAB GEFs exchange GTP for GDP on RABs (R-HSA-8876198) 9.990e-04
Rab regulation of trafficking (R-HSA-9007101) 1.680e-03

63 14 Terminal pathway of complement (R-HSA-166665) 3.090e-02
Parasite infection (R-HSA-9664407) 4.320e-02
Fcgamma receptor (FCGR) dependent phagocytosis (R-HSA-2029480) | 4.510e-02

64 7

65 33

66 10

67 6

68 6

69 6

70 17 MET activates RAS signaling (R-HSA-8851805) 4.610e-02
Processive synthesis on the C-strand of the telomere (R-HSA-174414) | 1 450e-02

71 7 Base-Excision Repair, AP Site Formation (R-HSA-73929) 1.490e-02
Recognition and association of DNA glycosylase with site containing | 1.510e-02
an affected purine (R-HSA-110330)

72 7

73 14

74 12

75 32

76 17
Long-term potentiation (R-HSA-9620244) 3.070e-02

77 11 Unblocking of NMDA receptors, glutamate binding and activation 3.490e-02
(R-HSA-438066)
CREB1 phosphorylation through NMDA receptor-mediated 3.880e-02
activation of RAS signaling (R-HSA-442742)

78 6 GPCR ligand binding (R-HSA-500792) 9.490e-03
Incretin synthesis, secretion, and inactivation (R-HSA-400508) 1.250e-02
GPCR downstream signalling (R-HSA-388396) 1.570e-02

79 6

80 22

81 5

82 3 Defective AVP does not bind AVPR1A, B and causes 1.020e-03
neurohypophyseal diabetes insipidus (NDI) (R-HSA-5619099)
Vasopressin-like receptors (R-HSA-388479) 2.550e-03

83 1 WNT 5:FZD7-mediated leishmania damping (R-HSA-9673324) 3.200e-05
Killing mechanisms (R-HSA-9664420) 6.410e-05
RHO GTPases Activate NADPH Oxidases (R-HSA-5668599) 1.960e-04

84 27
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Postsynaptic nicotinic acetylcholine receptors (R-HSA-622327) 6.620e-03
85 9 Presynaptic nicotinic acetylcholine receptors (R-HSA-622323) 7.200e-03
Highly calcium permeable nicotinic acetylcholine receptors 7 .860e-03
(R-HSA-629597)
86 6
87 8
88 11
89 5 Signaling by FGFR2 in disease (R-HSA-5655253) 4.260e-02
FGFR2 mutant receptor activation (R-HSA-1839126) 5.270e-02
90 5
91 5 WNT ligand biogenesis and trafficking (R-HSA-3238698) 4.600e-05
Class B/2 (Secretin family receptors) (R-HSA-373080) 1.140e-03
Signaling by WNT (R-HSA-195721) 2.470e-02
92 5
93 5 Complement cascade (R-HSA-166658) 1.590e-08
Activation of C3 and C5 (R-HSA-174577) 3.100e-07
Initial triggering of complement (R-HSA-166663) 1.160e-06
94 5
95 5
96 12
97 6 Sensory perception of salty taste (R-HSA-9730628) 7.080e-07
Sensory perception of taste (R-HSA-9717189) 2.860e-04
Stimuli-sensing channels (R-HSA-2672351) 2.250e-03
98 6
Cooperation of Prefoldin and TriC/CCT in actin and tubulin 3.370e-04
99 7 folding (R-HSA-389958)
Protein folding (R-HSA-391251) 3.000e-03
Chaperonin-mediated protein folding (R-HSA-390466) 3.720e-03
100 14
Uptake and function of diphtheria toxin (R-HSA-5336415) 2.550e-03
101 8 HSP90 chaperone cycle for steroid hormone receptors (SHR) in the 2.870e-03
presence of ligand (R-HSA-3371497)
HSF1 activation (R-HSA-3371511) 7.470e-03
102 8 Metal sequestration by antimicrobial proteins (R-HSA-6799990) 5.100e-03
103 9
104 9
105 1 Downstream signal transduction (R-HSA-186763) 1.690e-06
Signaling by PDGF (R-HSA-186797) 1.770e-05
Signaling by NTRK3 (TRKC) (R-HSA-9034015) 3.530e-05
106 7 Phase 0 - rapid depolarisation (R-HSA-5576892) 4.310e-07
Cardiac conduction (R-HSA-5576891) 6.740e-05
Muscle contraction (R-HSA-397014) 2.750e-04
107 6 Butyrophilin (BTN) family interactions (R-HSA-8851680) 1.200e-02
108 6
Folding of actin by CCT/TriC (R-HSA-390450) 2.790e-07
109 21 Prefoldin mediated transfer of substrate to CCT/TriC 8.970e-06
(R-HSA-389957)
Formation of tubulin folding intermediates by CCT/TriC 9.840e-06
(R-HSA-389960)
110 11
111 12
112 15
113 8
114 8
115 9
116 20
117 8 Attenuation phase (R-HSA-3371568) 3.600e-05
HSF1-dependent transactivation (R-HSA-3371571) 9.990e-05
Drug resistance in ERBB2 TMD/JMD mutants (R-HSA-9665737) 1.570e-04
118 45
119 16 Formation of the cornified envelope (R-HSA-6809371) 9.500e-05
Keratinization (R-HSA-6805567) 6.350e-04
Developmental Biology (R-HSA-1266738) 1.010e-02
120 10
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121 7

122 14

123 12

124 10
Activation of BAD and translocation to mitochondria 1.940e-04

125 19 (R-HSA-111447)
Chk1/Chk2(Cdsl) mediated inactivation of Cyclin B:Cdk1 2.440e-04
complex (R-HSA-75035)
SARS-CoV-1 targets host intracellular signalling and regulatory 2.580e-04
pathways (R-HSA-9735871)

126 16

127 7 Integrin cell surface interactions (R-HSA-216083) 5.830e-03
IRAK4 deficiency (TLR2/4) (R-HSA-5603041) 7.790e-03
MyD88 deficiency (TLR2/4) (R-HSA-5602498) 8.650e-03

128 7

129 11

130 8
Long-term potentiation (R-HSA-9620244) 8.140e-05

131 10 Unblocking of NMDA receptors, glutamate binding and activation 9.380e-05
(R-HSA-438066)
CREBI1 phosphorylation through NMDA receptor-mediated 1.240e-04
activation of RAS signaling (R-HSA-442742)

132 14 WNT 5:FZD7-mediated leishmania damping (R-HSA-9673324) 5.550e-05
Killing mechanisms (R-HSA-9664420) 1.110e-04
RHO GTPases Activate NADPH Oxidases (R-HSA-5668599) 3.390e-04

133 8

134 33

135 13

136 18 rRNA processing (R-HSA-72312) 8.810e-04
rRNA processing in the nucleus and cytosol (R-HSA-8868773) 1.370e-03
Metabolism of RNA (R-HSA-8953854) 1.300e-02




Appendix B

Supplementary Material for chapter 5

The objective is to attempt to replicate dimer, trimer structures with both interfaces and doughnut-
shaped decameric structures of TSA1 and TSA2 of Saccharomyces cerevisiae and PrxA of Arabidopsis thaliana
using corresponding monomers and dimers as input with the HADDOCK method. Subsequently, the
results of the predicted structures were aligned with the deposited experimental structures, and the
root-mean-square deviation (RMSD) was estimated. The formula for estimating the RMSD value is as
follows:

RMSD — | =T~ Te)
n

where z. represents the experimental structure position values, x, represents the observed structure
position values and n represnts the number of equivalent atoms.

The hypothesis of hetero-dimerisation and hetero-trimerisation was tested using monomers
and dimers derived from TSA1 and TSA2. The resulting predicted structure was then compared with
the experimental structures of TSA1 and TSA2, and root-mean-square deviation (RMSD) values were
estimated to test for similarity. Additionally, the hypothesis of cross-species dimerisation was tested with
monomers from Saccharomyces cerevisiae and Arabidopsis thaliana at A-type and B-type interfaces. The degree
of similarity was evaluated by calculating the root-mean-square deviation (RMSD) values through the
alignment with the experimental structures.
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B.1 Results from HADDOCK

B.1.1 Cross species hetero-dimerisation at B-type interface

Figure B.1: The figure illustrates the eight predicted cross species hetero dimer
structures of TSA1 and PrxA (coloured blue and green) and the experimental
B-type homo dimer structures of TSA1 (coloured yellow and pink) of cluster 1
(a), cluster 5 (b). Cluster 2 (c), Cluster 7 (d), Cluster 4 (e), Cluster 6 (f), Cluster
3 (g), and Cluster 8 (h).
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Figure B.2: The figure illustrates the eight predicted cross species hetero dimer
structures of TSA1 and PrxA (coloured blue and green) and the experimental
B-type homo dimer structures of PrxA (coloured yellow and pink) of cluster 1
(a), cluster 5 (b). Cluster 2 (c), Cluster 7 (d), Cluster 4 (e), Cluster 6 (f), Cluster
3 (g), and Cluster 8 (h).
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Figure B.3: The figure illustrates the seven predicted cross species hetero dimer
structures of TSA2 and PrxA (coloured blue and green) and the experimental
B-type homo dimer structures of TSA2 (coloured yellow and pink) of cluster
3 (a), cluster 4 (b). Cluster 2 (c), Cluster 7 (d), Cluster 5 (e), Cluster 1 (f), and
Cluster 6 (g).
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Figure B.4: The figure illustrates the eight predicted cross species hetero dimer
structures of TSA2 and PrxA (coloured blue and green) and the experimental
B-type homo dimer structures of PrxA (coloured yellow and pink) of cluster
3 (a), cluster 4 (b). Cluster 2 (c), Cluster 7 (d), Cluster 5 (e), Cluster 1 (f), and
Cluster 6 (g).
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B.1.2 Cross species hetero-dimerisation at A-type interface

Figure B.5: The figure illustrates the six predicted cross species hetero dimer
structures of TSA1 and PrxA (coloured blue and green) and the experimental
A-type homo dimer structures of TSA1 (coloured yellow and pink) of cluster 1
(a), cluster 2 (b). Cluster 6 (c), Cluster 3 (d), Cluster 4 (e), and Cluster 5 (f).



B.1. RESULTS FROM HADDOCK 174

Figure B.6: The figure illustrates the six predicted cross species hetero dimer
structures of TSA1 and PrxA (coloured blue and green) and the experimental
A-type homo dimer structures of PrxA (coloured yellow and pink) of cluster 1
(a), cluster 2 (b). Cluster 6 (c), Cluster 3 (d), Cluster 4 (e), and Cluster 5 (f).
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Figure B.7: The figure illustrates the ten predicted cross species hetero dimer
structures of TSA2 and PrxA (coloured blue and green) and the experimental
A-type homo dimer structures of TSA2 (coloured yellow and pink) of cluster 1
(a), cluster 2 (b). Cluster 6 (c), Cluster 5 (d), Cluster 4 (e), Cluster 9 (f), Cluster
3 (g), Cluster 8 (h), Cluster 7 (i) and Cluster 10 (j).
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Figure B.8: The figure illustrates the eight predicted cross species hetero dimer
structures of TSA2 and PrxA (coloured blue and green) and the experimental
A-type homo dimer structures of PrxA (coloured yellow and pink) of cluster 1
(a), cluster 2 (b). Cluster 6 (c), Cluster 5 (d), Cluster 4 (e), Cluster 9 (f), Cluster
3 (g), Cluster 8 (h), Cluster 7 (i) and Cluster 10 (j).
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B.2 Results from AlphaFold

B.2.1 Decamers of TSA1 from Saccharomyces cerevisiae

Figure B.9: The figure illustrates overlap of the five predicted decameric struc-
tures of TSA1 (coloured orange) and the experimental decameric structures of
TSA1 (coloured blue) of Predicted structure 1 (a), structure 2 (b). structure 3
(¢), structure 4 (d), and structure 5 (e).
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B.2.2 Decamers of TSA2 from Saccharomyces cerevisiae

Figure B.10: The figure illustrates overlap of the five predicted decameric struc-
tures of TSA2 (coloured orange) and the experimental decameric structures of
TSA2 (coloured blue) of Predicted structure 1 (a), structure 2 (b). structure 3
(¢), structure 4 (d), and structure 5 (e).
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B.2.3 Decamers of PrxA from Arabidopsis thaliana

Figure B.11: The figure illustrates overlap of the five predicted decameric struc-
tures of PrxA (coloured orange) and the experimental decameric structures of
PrxA (coloured blue) of Predicted structure 1 (a), structure 2 (b). structure 3
(¢), structure 4 (d), and structure 5 (e).
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