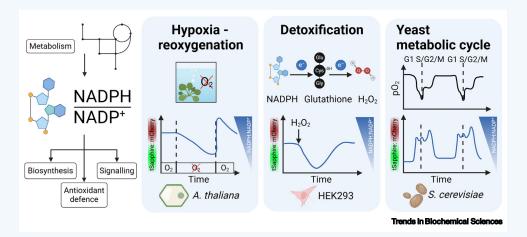

## **Trends in Biochemical Sciences | Technology of the Month**

# Monitoring subcellular NADP redox state with NAPstar biosensors


Jan-Ole Niemeier<sup>1</sup>, Leticia Prates Roma<sup>2</sup>, Jan Riemer<sup>3,\*</sup>, Markus Schwarzländer<sup>1,\*</sup>, and Bruce Morgan <sup>6,4,\*</sup>

<sup>1</sup>Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany

<sup>&</sup>lt;sup>3</sup>Redox Metabolism, Institute for Biochemistry and Cologne Excellence Cluster for Aging and Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany <sup>4</sup>Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, 66123 Saarbrücken, Germany



NADP is a crucial coenzyme in all living organisms, fulfilling important and distinct functions in different subcellular compartments. The NADP redox state is intimately coupled to anabolic metabolism, antioxidative defence, and signalling. However, reliable and specific monitoring of subcellular NADP redox state dynamics has proven remarkably challenging. The NAPstar family of genetically encoded fluorescent NADP redox state probes overcomes key limitations of previous approaches.



NAPstar measurements indicate an unexpectedly oxidized cytosolic NADP redox state in different eukaryotic species with important implications for our understanding of NADP function *in vivo*. For example, NAPstars reveal robust maintenance of cytosolic NADP redox state under acute oxidative challenge, facilitated by primary metabolism. Additionally, they uncover dynamic fluctuations in NADP redox state associated with physiological situations including hypoxia-reoxygenation and cell division.

### ADVANTAGES:

NAPstars allow specific monitoring of dynamic changes in the cytosolic NADP redox state (i.e., the NADPH:NADP+ ratio) in live cells.

Eight current NAPstar variants allow measurements across a broad range of NADPH:NADP+ ratios, from 0.001 to 5.

High suitability to fluorescence lifetime imaging microscopy (FLIM) due to a large response range in fluorescence lifetime.

A very limited pH-sensitivity in comparison to many other sensors.

Self-contained design, functioning independently of expression levels, unlike dimerization-dependent sensors.

NAPstars work in different species; validated in yeast, plants, and mammalian cells.

Reveal NADP redox changes in physiologically relevant contexts including light-dark cycle in plants, cell division, and hypoxia-reoxygenation.

## CHALLENGES:

NAPstars can in principle be used for absolute quantification of the NADP redox state, though appropriate calibration regimes remain to be developed.

NAPstars monitor dynamic changes in steady state and are not suitable for measuring electron flux through the NADP pool *in vivo*.

Measurements are limited to soluble NADPH/NADP+; protein-bound NADP cannot be detected, which may be biologically important.

\*Correspondence: jan.riemer@uni-koeln.de (J. Riemer), markus.schwarzlander@uni-muenster.de (M. Schwarzländer), and bruce.morgan@uni-saarland.de (B. Morgan).





<sup>&</sup>lt;sup>2</sup>Department of Biophysics, Center for Human and Molecular Biology (ZHMB), Saarland University, 66421 Homburg, Germany

## **Trends in Biochemical Sciences | Technology of the Month**

## **Acknowledgments**

B.M. and L.P.R. gratefully acknowledge funding in the context of the Saarland University NanoBioMed Method Development Seed Funding, B.M. is grateful for funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through grants MO 2774/6-1 project number 505680640 and MO 2774/7-1 project number 508372800. J.R. gratefully acknowledges funding from the DFG in the context of grants RI2150/5-1 project number 435235019, RI2150/2-2 project number 251546152, RTG2550/1 project number 411422114, and CRC1218 project number 269925409. M.S. thanks the DFG for funding through the infrastructure grant INST211/903-1 FUGG, and the grants SCHW1719/9-1 project number 508398975, SCHW1719/10-1 project number 507704013 and SCHW1719/11-1 project number 507704013. L.P.R. thanks the DFG for funding in the framework of SFB219 project number 322900939. The structure of the NAPstar sensor was predicted by Robetta (RoseTTAFold; Baek et al. 2021). Figures were created with the help of BioRender; https://BioRender.com.

The in vivo model system to be studied needs to be amenable to genetic modification to permit NAPstar measurements.

Targeting NAPstars to other organelles such as mitochondria and plastids has yet to be established.

#### **Declaration of interests**

No interests are declared

#### Literature

- Warburg, O. and Walter, C. (1932) Über ein neues Oxydationsferment und sein Absorptionsspektrum. Biochem. Z. 254,
- Warburg, O. and Walter, C. (1934) Co-Fermentproblem. Biochem. Z. 274, 112-116
- Hung, Y.P. et al. (2011) Imaging cytosolic NADH-NAD+ redox state with a genetically encoded fluorescent biosensor. Cell Metab. 14, 545-554
- Lim, S.L. et al. (2024) In planta imaging of pyridine nucleotides using second-generation fluorescent protein biosensors. Plant J. 119, 1643-1658
- Molinari, P.E. et al. (2023) NERNST: a genetically-encoded ratiometric non-destructive sensing tool to estimate NADP(H) redox status in bacterial, plant and animal systems. Nat. Commun. 14, 3277
- Scherschel, M. et al. (2024) A family of NADPH/NADP+ biosensors reveals in vivo dynamics of central redox metabolism across eukaryotes. Nat. Commun. 15, 10704
- 7. Smith, E.N. et al. (2021) Shining a light on NAD- and NADP-based metabolism in plants. Trends Plant Sci. 26, 1072-1086
- Steinbeck, J. et al. (2020) In vivo NADH/NAD+ biosensing reveals the dynamics of cytosolic redox metabolism in plants. Plant Cell 32, 3324-3345
- Tao, R. et al. (2017) Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism. Nat. Methods 14, 720-728

