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ZUSAMMENFASSUNG

In dieser Dissertation untersuchen wir Modelle zur Entwicklung von Transport-
netzwerken, die von dem paradigmatischen Organismus Physarum polycephalum
inspiriert sind. Neben der Charakterisierung der erzeugten Netzwerke im determi-
nistischen Fall analysieren wir, wie das Hinzufiigen stochastischer Kréfte die topo-
logischen Eigenschaften der entstehenden Netzwerke sowie deren Anpassungsfahig-
keit an sich dynamisch dndernde Umweltbedingungen beeinflusst. Als zentrale
Ergebnisse berichten wir von rauschinduzierten Resonanzen, die die Anpassungs-
fahigkeit an externe Faktoren sowie die Robustheit, Effizienz und Kosten der ge-
nerierten Netzwerke bei endlicher Rauschamplitude optimieren. Dariiber hinaus
beleuchten wir die Rolle des Zusammenspiels von nichtlinearer Dynamik und sto-
chastischen Kréften bei der Entstehung dieser rauschinduzierten Phianomene, was
entscheidende Einblicke in Optimierungsalgorithmen im Allgemeinen bietet. Unsere
Ergebnisse hinterfragen die traditionelle Betrachtung von Rauschen als Storfaktor
und zeigen vielmehr, dass es sogar von Vorteil sein kann.
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ABSTRACT

In this dissertation, we study models for the design of transport networks inspired
by the paradigmatic organism Physarum polycephalum. Beyond characterizing the
networks generated in a deterministic setting, we analyze how adding stochastic
forces influences the topological properties of the emerging networks as well as their
adaptability to dynamically changing environmental conditions. As key results, we
report on noise-induced resonances, optimizing the adaptability to external factors
as well as the robustness, efficiency, and cost of the resulting networks for finite noise
amplitudes. Further, we shed light on the role of the interplay of nonlinear dynamics
and stochastic forces in the emergence of these noise-induced phenomena, providing
crucial insights for optimization algorithms in general. Our results challenge the
traditional notion of noise being detrimental, demonstrating that it can even be
used as a resource.
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INTRODUCTION

I.1 Research context

I.1.1 Complex systems and networks

Over the last decades, the study of complex systems has gained interdisciplinary sig-
nificance. These systems consist of numerous components whose interactions give
rise to collective phenomena that are not manifest in the behavior of the individual
constituents [1-4]. To describe complex systems, networks serve as paradigmatic
models across various fields. For instance, networks are used in the following disci-
plines, with one of several possible applications given as an example for each:

e in social sciences, for mapping interactions among people, where individuals
represent components and their relationships interactions [5-7], facilitating the
analysis of information spread [8];

e in biology, for characterizing food webs, with species corresponding to compo-
nents and predator-prey relations to interactions [9-11], revealing the dynamics
of ecosystems [12];

e in neurosciences, for describing the structure of the human brain, consisting
of neurons (components) that are connected through synapses (interactions)
[13-15], helping to understand diseases [16];

e in physics, for assessing the distribution of galaxies, with the latter as compo-
nents and gravitational forces as interactions [17, 18], unraveling the large-scale
structure of the universe [19];

e in engineering, for designing power grids, where power plants, transformers,
and consumers represent components and transmission lines interactions [20],
enabling the optimization of electricity supply [21].

These examples are vastly different, yet the formation of the networks describing
them is governed by universal principles [22]. For instance, in several situations, the
networks evolve following the preferential attachment rule, which means that new
components are more likely to establish interactions with components that already
interact with many other components [23]. This mechanism leads to the emergence
of common characteristics such as hubs—components interacting with a consider-
ably larger number of other components than on average—and a scale-free degree
distribution, where the number of interactions per component scales as a power law.
Understanding these principles offers insights into the structure of a network, which
sheds light on its function [24] and directly affects characteristics like resilience and
adaptability [25-27]. Moreover, a network’s structure might give rise to collective
phenomena, which further influence these properties. Examples of such phenom-
ena include synchronization [28, 29], like the coordinated flashing of fireflies [30],
symmetry breaking [31, 32], as occurs in ferromagnetic materials [33], and pattern



formation [34, 35], such as the emergence of oscillatory patterns [36]. For instance, in
power grids, oscillations can arise from varying system loads, affecting the stability of
the whole grid and potentially leading to blackouts [37]. This demonstrates how im-
portant careful network design is, especially for transport networks like power grids,
as they form the backbone of the economy and daily life, enabling the distribution
of people, goods, and resources, for example. In such real-world scenarios, a com-
mon objective is to design transport networks that achieve short transit times and
resilience against disruptions while managing resources sustainably to reduce costs
and environmental impact [38]. To address this key challenge, various approaches
have been developed, ranging from agent-based models that simulate interactions
between transported entities [39, 40], to genetic algorithms that iteratively evolve a
network configuration [41, 42], and entropy maximization strategies that align net-
work structure with maximum utility [43-45].

While most of these approaches are deterministic, real-world transport networks
are typically exposed to random fluctuations, referred to as noise in the following.
Noise can significantly impact their function and stability [46, 47]. Traditionally,
it is viewed as detrimental because it often perturbs the flow of entities like infor-
mation, goods, or resources, hindering their distribution. For example, stochastic
fluctuations typically overlay analog signals and thereby lower the effectiveness of
transmission. Yet, recent research indicates that noise can even play a beneficial
role in transport networks, enhancing their efficiency and robustness [48-50]. This
is particularly evident in transport networks formed by biological systems, which
have evolved in noisy environments and are thus naturally optimized to work ef-
ficiently in them [51, 52]. Prominent examples include ant colonies [53-55] and
primitive organisms like Physarum polycephalum, a representative of the true slime
molds [56-58]. The latter is able to construct efficient and resilient networks of
filaments for transporting nutrients with minimal use of resources—a capability ac-
quired through hundreds of millions of years of natural selection [59]. In addition to
that, P. polycephalum is highly adaptive to changing external conditions [60]. These
features render the slime mold an ideal model organism to study the self-organization
of networks in the presence of stochastic fluctuations. In particular, the slime mold’s
remarkable performance in noisy environments raises the more general question of
whether stochastic fluctuations could also be harnessed to optimize non-biological
network formation. Inspired by this, we now shift to a more abstract, algorithmic
perspective and ask: Can adding noise to models for network design enhance topo-
logical properties of the resulting networks, such as robustness and efficiency, as well
as their adaptability?

In this dissertation, we focus on algorithms inspired by P. polycephalum with the
goal of understanding whether and when stochastic fluctuations might lead to more
robust and efficient self-organized network topologies than in the absence of noise.
For this purpose, we analyze the networks generated by these algorithms when they
are applied to so-called multi-commodity transport problems [61]. This analysis also
has broader implications for optimization algorithms in general, addressing the ques-
tion of how noise might be harnessed as a resource to enhance their performance.
To lay the basis for the discussion of the Physarum-inspired algorithms, we first
formalize transport problems, especially those that involve the routing of different
commodities such as goods, passengers, or information through a network. This
requires a mathematical characterization of these networks, which can be achieved
by abstracting them as graphs. Consequently, in Secs.1.1.2 and 1.1.3, we introduce
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Figure 1: (a) Illustration of a real-world network, such as an urban transport system,
a power grid, or a water supply infrastructure. (b) Corresponding graph represen-
tation, where edge weights are denoted as w, ,.

the basic principles of graph theory. In Sec.1.1.4, we then define transport problems
on graphs. Based on that, we discuss multi-commodity flow problems in Sec.1.1.5,
providing the framework for our study of Physarum-inspired models for network
design, which are introduced in Sec.1.1.6.

I.1.2 Graph representation of networks

Any real-world network can be abstracted as a graph [62], which is illustrated in
Fig. 1 with a simple example. Figure 1(a) depicts a generic real-world network, such
as an urban transport system, a power grid, or a water supply infrastructure. Fig-
ure 1(b) displays the graph representation of the network, where junctions and dead
ends (components) of the real-world network correspond to nodes in the graph, and
connections (interactions) between them to edges. In addition to that, edges might
be assigned weights w, , to quantify the relationship between the nodes v and v
in the real-world network. For the examples mentioned above, the weights could
represent transit times, the voltage across transmission lines, or the flow capacity of
water pipes. This abstraction enables the application of the abundant toolbox that
graph theory provides. For instance, using the graph representation of a network,
one can determine its resilience against edge failures [63—-65], identify the shortest
paths between nodes [66], or calculate its total length [67].

In order to perform a solid mapping, it is necessary to first establish key definitions
in graph theory, which we draw from West [68] in the following. We begin with the
difference between undirected and directed graphs, as this distinction influences how
interactions within the network are interpreted. An undirected graph is defined as
a pair G = (V, E), where V is a set of nodes and E C {{u,v} | u,v € V,u # v} a
set of unordered pairs of these nodes, referred to as edges. Since {u,v} = {v,u}, the
edge linking node u to node v is identical to the edge connecting node v to node wu,
implying a bidirectional relation between v and v. In contrast, for a directed graph,
the set of edges is defined as E C {(u,v) | u,v € V,u # v}, containing ordered pairs
of nodes. As (u,v) # (v,u) Yu # v, the edge from u to v and the edge from v to u
are different, indicating that each edge corresponds to a unidirectional connection.
Thus, to model a bidirectional relation between u and v, both edges (u,v) and (v, u)
are required.
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Figure 2: (a) A graph containing three cycles. (b) Spanning tree obtained by re-
moving two edges from the graph.

For a detailed analysis of real-world networks, we need to introduce additional defi-
nitions to further characterize the structure of the underlying graphs. Therefore, we
will discuss central concepts such as paths, cycles, and trees in the following section,
providing important tools for evaluating topological properties like robustness and
efficiency.

I.1.3 Paths, cycles and trees in graphs

In this section, we continue to use definitions from West [68], except where otherwise
noted. First, we introduce a path in a graph as a sequence of edges (e, ..., €,,) that
connect a sequence of nodes (v1, ...,y t1), where edge e; links nodes v; and v;1.
For simplicity, the edge e; is often denoted as v; — v;11 and the path (eq,...,en) as
v] = V2 — ... = Upr1. A path can be open or closed, depending on whether the
first and the last node, vy and v,,41, are distinct or identical. If there is at least one
path that connects any pair of nodes, we refer to the graph as connected.

Another important concept in graph theory is the cycle, which is a closed path
with m > 2, where v; and v, 1 are the only identical nodes. Cycles enhance the
robustness and efficiency of networks by providing alternative paths between nodes
[69], which is particularly relevant for transport systems. This redundancy ensures
that removing an edge within a cycle does not disconnect the network. Figure 2(a)
illustrates this with a graph containing three cycles, represented by the closed paths
1-2—-3—-5—-1,1-5—-6—1,and1 -2 —3—5—6 — 1. Notably, the
latter cycle is a combination of the former two, which leads us to the concept of the
cycle space.

To introduce this concept, we first define a subgraph as a subset of the nodes and
edges of the original graph. The set of all subgraphs where each node is connected
to an even number of edges forms the cycle space of the graph. Let B. = {ci, ..., cx }
be a basis of the cycle space, meaning that any element of the cycle space can be
expressed as a combination of the independent cycles ¢y, ...,ck. The dimension of
the cycle space is then given by

ne = dim(B,)
=k. (0.1)



To determine the dimension n., we need to introduce the concepts of trees and
spanning trees. A tree is defined as an undirected, connected graph with exactly one
path between any pair of nodes, which means that there are no cycles. A spanning
tree of a graph is defined as a subgraph that includes all nodes of the graph and is
a tree. It always contains exactly |V| — 1 edges, where |V| is the number of nodes.
Therefore, in a graph with | F| edges, the number of edges that are not included in a
spanning tree is given by |E|—|V|+1. This is illustrated in Fig. 2(b), which shows a
spanning tree of the graph displayed in Fig.2(a). The spanning tree has |[V|—1 =16
edges, while |E| — |V| 4+ 1 = 2 edges of the graph are not part of it.

Adding any of these remaining edges to the spanning tree creates a fundamental
cycle, which consists of the added edge and the unique path between the nodes
in the spanning tree that it connects. These fundamental cycles are independent,
meaning that they cannot be expressed as a combination of other cycles. As the
set of all fundamental cycles forms a basis of the cycle space, its dimension can be
determined using Eq. (0.1), which yields

ne = |E| — [V]+1. (0.2)

Hence, the graph depicted in Fig.2(a) has the cycle space dimension n. = 2.
Among all possible spanning trees of a graph, a minimum spanning tree (MST) has
the smallest total edge weight, defined as the sum of all edge weights. When edge
weights correspond to lengths, an MST minimizes the total length of the original
graph. This property makes MSTs an important tool in network design, where
minimizing connection costs is often a main objective [70, 71]. Various algorithms
to determine MST's have been developed and are widely used in practical applications
[72, 73].

To further characterize cycles, we define the length of a cycle as the sum of the
lengths L, of its constituent edges,

le= Y Le (0.3)

ec{e1,...em}

In real-world applications, the length is often associated with the cost to construct
or maintain the structure.
To quantify the importance of cycles in a graph, we define the cycle edge fraction

_

€. = Tk (0.4)

where L is the set of edges that are part of at least one cycle. This fraction can be
used as an indicator for the redundancy of connections and, thus, the robustness of
a network.

In the context of network science, cycles are often referred to as loops [62]. However,
in graph theory, a loop denotes an edge that connects a node to itself. To align with
the terminology commonly used in network analysis, we will use the term loops to
refer to cycles in the rest of this dissertation.
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Figure 3: (a) Real-world network connecting four warehouses, labeled A to D, with
transport routes indicated by arrows. Different colors represent distinct goods: red
for electronics, green for furniture, and purple for groceries. (b) Corresponding
transport problem in the graph representation.

I.1.4 Transport problems on graphs

Based on the graph representation of real-world networks and the structural prop-
erties of graphs defined in Secs.1.1.2 and 1.1.3, we next introduce the simplest form
of a transport problem: moving a single type of good, called a commodity, from one
node to another [61, 74, 75]. We refer to the quantity of goods and the pair of nodes
between which they are transported as a demand. However, more realistic scenarios
require the simultaneous routing of multiple types of commodities between different
pairs of nodes. As an example, Fig. 3(a) illustrates such a transport problem within
the real-world network depicted in Fig. 1, assuming that it represents a road net-
work where various goods need to be transported between four warehouses. While
electronics (red) may need to be moved from A to D, furniture (green) may need to
be carried from D to C, and groceries (purple) may need to be shipped from C to
B. Possible transport routes are indicated by colored arrows.

In the graph representation of the network, as shown in Fig. 3(b), each warehouse is
a distinct node, and the transport routes are paths. Importantly, paths along which
different commodities are transported may share edges in the graph, underscor-
ing the need to handle all demands simultaneously as real-world connections have
limited capacity. This leads us to the concept of multi-commodity flow problems,
which are commonly studied in computer science to model and solve such transport
problems [76-78]. We will dedicate the next section to their formal introduction.

1.1.5 Multi-commodity flow problems

In this section, we follow definitions from Bertsekas [79]. The objective of multi-
commodity flow problems is to find the optimal routing of a flow of £ commodities
through a network described as an undirected graph G(V, E). To facilitate the math-
ematical formulation, we assign an arbitrary but fixed orientation to each undirected
edge {u,v} € E, denoting it as (u,v). Each commodity 7 is associated with a source
node siL at which the commodity enters the network and a sink node s* at which it
leaves the network, representing a transport demand I; between these nodes. Fig-
ure 4(a) illustrates these terms using a simple example with & = 2 commodities,
four nodes (colored circles), and six edges (lines connecting the circles).
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Figure 4: (a) Simple example of a multi-commodity flow problem. In a network of
four nodes, two commodities need to be routed. Colored circles represent nodes, and
lines denote edges with capacities indicated by their widths. (b) Possible solution
of the multi-commodity flow problem. Arrows illustrate flow directions, with their
thicknesses indicating flow magnitudes.

For any node u € V', we define the set of all neighbors as
Ny, ={veV | (u,v) € E}. (0.5)

For instance, in the example of Fig. 4(a), the neighbors of s} are Ng = {sl,s2,s2}.
The flow of commodity i through edge (u,v) is denoted as wa € [-I;, I;] and
satisfies

L= Q" (0.6)

U,V v,

Here, wa > 0 indicates flow from u to v and wa < 0 corresponds to flow from v
to u. In addition to that, each edge is assigned a commodity-independent capacity
D, > 0, which is represented by the line width in Fig. 4(a).

The flow configuration {Q, , | (u,v) € E,i € {1,...,k}} solves the problem if it
satisfies the following constraints:

1. Flow conservation constraints
To account for the injection and removal of flow at the source and sink nodes
and flow conservation at any other node, the relation

1;, ifu= si_,
SN Q=5 ifu=s, VYueV, Vie{l,.,k} (0.7)
veNy 0 otherwise,

needs to be satisfied.

2. Capacity constraints
To ensure that the total flow through an edge does not exceed its capacity, it
must hold

k
> 1@ < Dup V(u,v) € E. (0.8)
=1



3. Additional constraints (optional)
By introducing additional constraints such as minimizing a cost function,
which quantifies the cost associated with a flow configuration, an optimal-
ity criterion can be defined. For instance, a common goal is to minimize the
total transport cost

C=Y" Y ..l (0.9)

i=1 (up)eE

where cfw is the cost of transporting a unit flow of commodity ¢ through the

edge (u,v).

Figure 4(b) demonstrates a possible solution for the multi-commodity flow problem
presented in Fig.4(a). The flow I of the first commodity, which is injected at 5},_
and removed at sl | is routed along the path s}k — si — 51 with
1 _ Nl _
Qsivsi = QSi,S£ = Il. (010)
Similarly, the flow I3 of the second commodity from si to s2 is split across the two
paths si — 52 and si — st — 5% with

Qgi 2 =2D/3 and Qii 0 =Qh 2 =D/3. (0.11)

This setup ensures that the flow conservation constraint (0.7) is fulfilled. In Fig. 4(b),
arrows indicate the direction of the flows, with their thicknesses being proportional
to the flow magnitudes. The combined thickness of all arrows along each edge
represents the sum of all flows, which stays within the edge’s capacity indicated by
the width of the respective line. This demonstrates that the capacity constraint
(0.8) is met as well.

I.1.6 Physarum-inspired models for network design

Based on the mathematical framework for multi-commodity transport problems in-
troduced in Sec.1.1.5, we now turn to a class of algorithms for routing optimization
that are inspired by the behavior of Physarum polycephalum. This single-celled
organism grows tubular networks to efficiently transport nutrients absorbed from
food sources. Remarkably, despite lacking a nervous system or any other form of
centralized control, P. polycephalum can find approximate solutions to well-known
optimization problems, including the traveling salesman problem [80] and maze-
solving tasks. The latter were investigated by Tero et al.[56], who demonstrated
that a key principle underlying the slime mold’s behavior is a local feedback mech-
anism that guides global self-organization.

These abilities of P. polycephalum have inspired the development of several algo-
rithms in computer science addressing shortest-path problems [56, 81] and network
design [57, 82-86]. In Sec.1.1.6.1, we discuss the seminal maze-solving experiment
in detail and examine how it provided the basis for the shortest-path finding algo-
rithm introduced in Sec.1.1.6.2. We then demonstrate in Secs.1.1.6.3 and 1.1.6.4 how
P. polycephalum can be harnessed to design efficient and robust transport networks,
and extend the shortest-path finding algorithm to a multi-commodity flow model for
network design. Further, in Sec.1.1.6.5, we discuss why adding noise to Physarum-
inspired algorithms is a promising approach to enhance the resulting networks in
terms of efficiency and robustness.
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Figure 5: Adapted from Ref. [56]. Demonstration of the maze-solving capability of
Physarum polycephalum. (a) Initial distribution of the slime mold (yellow) across
the maze (black). (b) Retraction from dead ends and connection of the two food
sources labeled AG. (c) Final state, where the slime mold converged to the shortest
path between the two food sources. (d) Graph representation of the maze, with
squares and circles indicating nodes and lines denoting edges.

1.1.6.1 Maze-solving capability of the slime mold

In the experiment by Tero et al. [56], the slime mold was initially distributed across
the entire maze, as depicted in Fig.5(a), where the walls of the maze are black and
the organism is yellow. The entrance and the exit of the maze are represented by
black circles. The figure also indicates two sets of alternative paths, a; and o as
well as 51 and (9, between distinct points within the maze, illustrating the choices
the organism has to make to optimize its transport network. Food sources, which
are labeled AG, were then placed at the entrance and the exit of the maze. The
response of the slime mold, shown in Fig. 5(b), involved retracting from dead ends
and concentrating its mass around the food sources. After a few hours, the organism
converged to the shortest path connecting the entrance and the exit of the maze,
thereby identifying the most efficient transport route between the two locations, as
depicted in Fig. 5(c).

At the core of this behavior is a phenomenon known as protoplasmic shuttle stream-
ing, where cytoplasm, the fluid inside the cell, flows rhythmically back and forth
within the organism’s network of tubes [87]. This oscillatory movement with a
period of approximately two minutes [88] is driven by mechanical contractions of
actin-myosin fibers that form the tube walls, occurring throughout the whole or-
ganism and increasing in amplitude at food sources [89]. This process allows the
slime mold to continuously redistribute its mass. Tero et al. [56] identified a feedback
loop that increases the diameter of a tube for large flows, and decreases it for small
flows. Based on these observations, in the same study, they developed a mathemat-
ical model that reproduces the ability of the slime mold to find the shortest path
between two food sources. In their model, they assume that the mechanical contrac-
tions are larger in amplitude at one food source, leading to an effective net flow of
cytoplasm to the other food source. While this is a strong simplification—implying
the injection and removal of cytoplasm at the food sources, which is biologically not
plausible—it is reasonable for modeling purposes because the feedback mechanism
only depends on the magnitude of the flow, not on its direction. Additionally, the
model considers time-averaged flows, which is reasonable given that the oscillations
driving the protoplasmic shuttle streaming have a much shorter period than the
time scale on which the tubes evolve.

In the following section, we formalize the algorithm based on the framework of multi-



commodity flow problems introduced in Sec.1.1.5. However, we set k = 1 to capture
the single-demand scenario of the maze, modeling the effective net flow between the
two food sources.

1.1.6.2 Model for finding the shortest path through a maze

For this purpose, we represent the maze as a graph G(V, '), where junctions, as well
as the entrance and exit, are nodes, and the tubes connecting them are edges. In the
slime mold’s maze-solving process, junctions are decision points for choosing which
path to follow. The graph abstraction is shown in Fig. 5(d), with squares indicating
the entrance and exit nodes, circles representing all other nodes, and lines depicting
the edges. The model by Tero et al. [56] applies the following modifications compared
to the standard multi-commodity flow problems discussed in Sec.I.1.5:

1. Flow is determined by edge capacity and node potentials
The capacity constraint (0.8), which merely provides an upper limit to the
flow through the edge (u,v), is replaced by the relation

Du,v
Lu,v

Qu,v - (pu —p'v)a (012)

rendering the flow proportional to the edge capacity. Here, L, , denotes the
length of the edge and p, the potential at node x with = u,v. Due to the
analogy between fluid flow and electrical current, Eq. (0.12) resembles Ohm’s
law of electrical circuits, with D, /Ly, corresponding to the inverse of the
resistance and (p, —p,) representing the voltage. The potential at each node is
induced by the flow conservation constraints (0.7), which remain unchanged.
Together with Eq. (0.12), they form a linear system of equations for the node
potentials for given edge capacities. The node potentials can then be used to
determine the flows through all edges.

2. Dynamic edge capacity depending on the flow
The model assumes that the edge capacity D, , is a dynamic variable whose
evolution is governed by the set of coupled differential equations

8tDuﬂ) = f(‘QuﬂJD - ’Yu,vDu,v- (013)

Here, the first term describes the nonlinear feedback of the flow through the
edge (u,v) on its capacity, determined by an activation function f that is
strictly monotonously increasing and satisfies f(0) = 0. This process competes
with dissipation at a rate +,,, modeling the reported feedback mechanism
where the edge capacity decreases when the flow through it diminishes and
instead increases as the flow grows.

Figure 6 illustrates the numerical solution of the model given by Egs. (0.7), (0.12) and
(0.13) for the same setup as considered by Tero et al. in their experiment [56]. While
Fig. 6(a) shows the initial setup, where all edges share the same capacity, subfigures
(b—d) demonstrate the final edge configurations for different activation functions.
Figure 6(b) corresponds to the case f(z) = x, in which the model converges to
the shortest path between the source and the sink node, independent of the initial
conditions. In particular, Bonifaci et al. have proven this mathematically by showing
that the system minimizes the total energy dissipation in the network, which is
achieved by routing the flow along the shortest path [81]. However, while the system

10
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Figure 6: Adapted from Tero et al. [56]. Numerical simulation of their maze-solving
experiment using the model given by Egs. (0.7), (0.12) and (0.13). The maze is
represented by the blue area, with edge capacities indicated by the width of the black
lines. (a) Initially, all edges share the same capacity. (b—d) Final configurations for
different activation functions: (b) f(z) = z, (c) f(z) = |z|* with x > 1, and (d)
f(x) = |z|* with p < 1.

may still converge to the shortest path for certain initial conditions when considering
nonlinear activation functions, this is not guaranteed in general [90].

Tero et al. [56] also considered the case f(z) = x*, where the exponent p > 0
controls how the edge capacities react to the flow magnitude. For y > 1, shown in
Fig. 6(c), the system further enhances the positive feedback of large flows on the edge
capacities while small flows have less influence. Consequently, the algorithm prefers
dominant paths that carry most of the flow. In contrast, for 0 < p < 1, illustrated
in Fig.6(d), the effect of large flows is diminished and the impact of small flows is
increased. This leads to a more uniform distribution of the flow across the network,
meaning that loops can form.

This behavior is reminiscent of the phase transition identified by Banavar et al. [91],
who studied transport networks that minimize a global cost function of the form

J=> " 1Qual" (0.14)

At the critical point I'¢ii¢ = 1, these networks switch from tree-like structures (I' < 1)
to structures with loops (I' > 1). As discussed in Sec.1.1.6.2, this corresponds to
a shift in key network characteristics such as robustness and efficiency. For an
extensive characterization of this phase transition, see Ref. [92].

While minimizing a cost function of the form of Eq.(0.14) shares the power-law
scaling of the flow with the algorithm outlined in Egs. (0.7), (0.12) and (0.13), there
are two key differences: First, the Physarum-inspired model dynamically adapts the
edge capacities based on the flow feedback, generating networks that may or may not
minimize J. In contrast, Banavar et al. [91] considered stationary networks achieving
the lowest value of J across all possible topologies. Second, the occurrence of loops
as a function of the exponent is reversed for both approaches. The model by Tero et
al. [56] reinforces large flows for © > 1 as they further increase the edge capacities,
resulting in a single dominant path. Conversely, the cost function J penalizes large
flows for I' > 1, making it cheaper to split the flow across several edges and thus
form loops. Analogous arguments hold for the case y < 1 and ' < 1.

Other common choices for f(z), although not shown in Fig.6, include saturating
activation functions [56, 57, 93, 94]. Due to their asymptotic behavior for x — oo,
these functions introduce a maximum edge capacity, representing a more realistic
scenario.
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Figure 7: Adapted from Ref. [57]. Reprinted with permission from AAAS. (a) Trans-
port system formed by the slime mold after food sources were geometrically arranged
to reflect the relative locations of major cities around Tokyo. (b) Graph abstraction
of the Tokyo railway system. (c) Network generated by the model described by

Egs. (0.7), (0.12) and (0.13).

1.1.6.8 Slime mold networks mimicking the Tokyo railway system

In a second, seminal experiment, Tero et al. demonstrated how Physarum poly-
cephalum can be harnessed to solve network design problems [57]. As illustrated in
Fig. 7(a), food sources were distributed to represent urban centers around Tokyo.
While each major city was assigned a single food source, Tokyo itself was indicated
by seven food sources to account for its importance in the region. This setup ef-
fectively simulated a civil engineering challenge, leading the slime mold to create a
transport network that connects these urban centers. To consider geographical con-
straints, certain regions were selectively illuminated, penalizing growth into these
areas as the slime mold minimizes its exposure to light. As a result, the slime
mold formed a transport network that resembled the Tokyo railway system shown
in Fig. 7(b), closely matching its cost, measured by the total length of the network,
and its transport efficiency, quantified by the average length of the shortest paths
connecting the different cities. In addition to that, the transport network generated
by the slime mold exhibited comparable fault tolerance, as indicated by the proba-
bility of disconnecting the network by removing a random single edge.

In the same study [57], Tero et al. were able to reproduce these experimental obser-
vations by extending their shortest-path finding algorithm [56], given by Egs. (0.7),
(0.12) and (0.13), to consider time-varying source and sink pairs. For this purpose,
they assumed a transport demand between any pair of cities. The restriction of the
algorithm to a single demand and, thus, a single source and sink pair, was addressed
by randomly selecting a different pair of cities as the source and sink nodes at each
time step of the simulation. This random selection was performed with a uniform
probability distribution over all pairs of cities. By iterating through multiple source
and sink pairs, the model effectively accounts for multiple transport demands. Us-
ing this algorithm, the system self-organized into a network that closely mirrored
the Tokyo railway system, demonstrating the model’s ability to design robust and
efficient transport networks based on simple local rules.

Figure 7(c) illustrates a network generated using this approach, where the yellow
shaded area represents the available space, the blue dots denote the urban cen-
ters, and the red lines indicate the connections, with their widths corresponding to
the capacity of the edges [57]. Remarkably, topological properties of the emerging
network, such as robustness and efficiency, could be controlled by the flow Iy that
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is injected and removed at the source and sink nodes. For specific choices of Iy,
the generated network exhibited a higher fault-tolerance-to-cost ratio than both the
slime mold network and the Tokyo railway system.

1.1.6.4 Model for multi-commodity transport

Despite the success of the extended shortest-path finding algorithm that we dis-
cussed in Sec.I.1.6.3 in reproducing the Tokyo railway system, this approach has
inherent limitations. While it effectively approximates multi-commodity transport
by iterating through different source and sink pairs, it does not account for all trans-
port demands at once. This constraint demonstrates the need for a generalization
of the single-commodity model defined by Egs. (0.7), (0.12) and (0.13), as real-world
systems typically require the simultaneous transport of various commodities. Such a
generalization is introduced in Chapter 2 of this dissertation. Independently, Lonardi
et al. [84] proposed an algorithm that, while similar to ours, differs in key aspects.
To provide context for the subsequent discussion of our own model, we will briefly
outline their algorithm in the following. Note that we adapt the notation so that it
is consistent with the definitions in Secs.1.1.5 and 1.1.6.2.

In the model by Lonardi et al. [84], the flow conservation constraints (0.7) of the
single-commodity algorithm remain unchanged. While the single-commodity model
assumes a single flow per edge as in Eq. (0.12), the generalized approach considers
independent flows for each commodity i, which are induced by commodity-specific
node potentials:

. D . .
o= T 1) (0.15)
u,v
Here, the edge capacity D, , is the same for all demands. Furthermore, the dynamics
of the edge capacities, as defined in Eq. (0.13) of the single-commodity algorithm,
are modified. Specifically, the first term is scaled with a power of the edge capacity:

8tDu:U = Di;ﬁf(@um) - VU,UD'IL,”LM (016)

where 8 > 0 and f(Quu) = ||Quu|3 is the square of the two-norm of the vector
Quw = (Qh s - Qﬁ’v) containing all commodity flows through the edge (u,v).

Lonardi et al. demonstrated that their model is equivalent to an optimization prob-
lem [84]. Specifically, the stationary solutions of Egs.(0.16) minimize the total

transportation cost

|Qull, (0.17)

J=> Luy

(u0)

with T' = 2(2 — 8)/(3 — 8). Remarkably, in the single-commodity case, Eq. (0.17)
reduces to the cost function (0.14) considered by Banavar et al. [91]. As discussed in
Sec.1.1.6.3, they observed a phase transition between tree-like topologies (I' < 1) and
structures containing loops (I' > 1). In the multi-commodity generalization provided
by Lonardi et al. [84], the same phase transition persists, but loops can emerge even
in regimes where tree-like structures are optimal for single-commodity transport.
This phenomenon arises from the indirect interaction among the commodity-specific
flows, which is a consequence of sharing the same edge capacities. In contrast to
this algorithm, our generalized model aligns more closely with the original single-
commodity algorithm by Tero et al. [56], particularly with respect to modeling the
nonlinear flow feedback. For further details, we refer to Chapter 2.
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Figure 8: Adapted from Ref. [85]. Simulation of passenger flows through the Paris
metro using the multi-commodity algorithm outlined in Egs. (0.7), (0.15) and (0.16),
for $ =0.1(I'~131), =10 ("=1)and g = 1.5 (I' = 0.66). The width and
color of each line represent the total passenger flow through the corresponding edge.
Licensed under CC BY 4.0, https://creativecommons.org/licenses/by/4.0/.

To analyze their generalized model in a real-world context, Lonardi et al. applied it to
optimizing passenger flows through the Paris metro [85]. By modeling the passenger
demands between different stations as multi-commodity flows, they demonstrated
that their algorithm can yield flow distributions allowing for resilient and efficient
transport. Figure 8 shows the resulting passenger flows for various values of the
exponent 3. Here, the fraction of the total passenger flow carried by each edge is
indicated by the width and color of the line representing the edge. As [ increases,
which corresponds to a decreasing I', loops become less prominent. However, even at
the maximum value of § = 1.5 (I" & 0.66), loops are still present. This is consistent
with the earlier observation that loops can persist in multi-commodity settings, even
in regimes where trees are optimal in the single-commodity case, i.e., for I' < 1.
Beyond civil engineering tasks such as determining optimal passenger flows, the
model defined by Egs. (0.7), (0.15) and (0.16) has been applied to other contexts,
including multi-layer transport problems [95] and image processing problems [96].

1.1.6.5 Incorporating stochastic fluctuations

The Physarum-inspired models for network design that we discussed in Secs.1.1.6.2
and 1.1.6.4 provide a deterministic approach for transport optimization both in
single- and multi-commodity scenarios. However, as highlighted in Sec.I.1.1, real-
world systems are naturally exposed to stochastic fluctuations. While Lonardi et
al. [84] did not consider the effect of noise on their multi-commodity model, prior
research has explored its impact on simpler setups. For instance, Meyer et al.[94]
applied the single-commodity model defined by Eqs. (0.7), (0.12) and (0.13) to a sys-
tem of two paths connecting the source and the sink node. These paths have equal
length, which means that the algorithm for shortest-path finding would assign the
same edge capacity to both of them. To analyze adaptability to dynamically chang-
ing environmental conditions, they introduced time-dependent and path-specific dis-
sipation rates, breaking the symmetry of the problem. The response of the system
was measured by the path preference ¢, where ¢ = —1 indicates that the path with
higher average dissipation was selected, and ¢ = 1 indicates that the path with
smaller average dissipation was chosen.
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Figure 9: Adapted from Ref.[94]. The shortest-path finding algorithm given by
Egs. (0.7), (0.12) and (0.13) is applied to a system of two equally long paths but
differing time-dependent dissipation rates. The quantity ¢ measures the path pref-
erence and is displayed as a function of time. Shown are the deterministic solution
cdet and the ensemble average (csiocn) in the presence of stochastic fluctuations. Li-
censed under CC BY 4.0, https://creativecommons.org/licenses/by/4.0/.

Figure 9 shows the time evolution of ¢, with the deterministic value being denoted
as Cqet, and the ensemble average in the stochastic case as (cgoch). Remarkably,
for the chosen initial conditions, the model was only able to reliably select the path
with the smaller average dissipation when stochastic forces were added to the dy-
namics of the edge capacities given by Eq. (0.13). While this study conceptually
demonstrates how stochastic fluctuations can enhance the adaptability of a system,
it remains limited to a fixed frequency of the periodically changing dissipation and
noise amplitude as well as a highly simplified setup.

Motivated by these insights, in this dissertation, we incorporate noise into Physarum-
inspired algorithms to systematically analyze how it might be harnessed for opti-
mizing real-world transport systems. A detailed outline of the dissertation is given
in the following section.

1.2 Outline

This cumulative dissertation comprises four publications, each of which is pre-
sented as an independent chapter. They address several open questions related
to Physarum-inspired models for network design and the impact of noise, focusing
on adaptability enhancement, model generalization, network optimization, and the
interplay of nonlinear dynamics and stochastic forces. The following overview pro-
vides a description of the central research question of each chapter as well as their
interrelation.

Chapter 1 (Ref.[93]): In this chapter, we apply the single-commodity model de-
fined by Egs. (0.7), (0.12) and (0.13) to a system exposed to stochastic fluctuations.
We analyze how varying key parameters such as the noise amplitude influences the
system’s response to periodically changing dissipation, asking the question: Under
which conditions can stochastic fluctuations enhance adaptability to dynamic envi-
ronments?

Chapter 2 (Ref. [82]): This chapter addresses the limitations of applying the single-
commodity algorithm considered in Chapter 1 to multi-commodity transport prob-
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lems. We seek to answer the question: Can Physarum-inspired dynamics be extended
to design multi-commodity transport networks?

Chapter 3 (Ref. [83]): In this chapter, we investigate whether the network topolo-
gies generated by the generalized model introduced in Chapter 2 can be enhanced
by adding stochastic fluctuations. We focus on a simple setup with two transport
demands and pose the question: Can noise optimize the robustness, efficiency, and
cost of transport networks? In addition to that, we study how the stochastic fluc-
tuations influence the convergence speed of the algorithm.

Chapter 4 (Ref.[86]): This chapter is divided into two parts. In the first part,
based on the analysis in Chapter 3, we extend our approach to designing trans-
port networks that connect major cities around Tokyo. We consider various classes
of activation functions and ask the question: How does the interplay of nonlinear
dynamics and stochastic forces influence network topologies? In the second part,
which consists of unpublished results, we analyze the effect of noise on the number
of loops, their lengths, and the fraction of edges that are part of at least one loop.

Outlook: We investigate whether the results presented in this dissertation can
benefit a wider range of applications, especially other well-known optimization al-
gorithms. In particular, we consider the gradient descent method for finding the
global minimum of a cost function as a case study. Using various approaches, we
add nonlinear dynamics and stochastic forces to this algorithm and analyze whether
these modifications can enhance its convergence.

1.3 Contributions of the author

In this section, we detail the aspects of the publications contained in this disserta-
tion to which the author contributed. Note that the co-authors of the publications
have significantly contributed to the respective aspects as well.

Chapter 1:

Interplay of periodic dynamics and noise: insights from a simple adaptive system
Published in: Phys. Rev. E 104, 054215 (2021)

Authors: Frederic Folz, Kurt Mehlhorn, Giovanna Morigi

Contributions of the author:

e Developed the model together with Kurt Mehlhorn (KM) and Giovanna Morigi
(GM).

e Performed the numerical simulations and analytical studies.
e Analyzed the data together with KM and GM.

e Wrote the article together with KM and GM.

Chapter 2:

Physarum-inspired multi-commodity flow dynamics

Published in: Theoretical Computer Science 920 (2022) 1-20

Authors: Vincenzo Bonifaci, Enrico Facca, Frederic Folz, Andreas Karrenbauer,
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Pavel Kolev, Kurt Mehlhorn, Giovanna Morigi, Golnoosh Shahkarami, Quentin Ver-
mande
Contributions of the author:

e Analyzed data together with Kurt Mehlhorn and Giovanna Morigi.
e Created a figure for the publication.
Chapter 3:

Noise-induced network topologies

Published in: Phys. Rev. Lett. 130, 267401 (2023)
Authors: Frederic Folz, Kurt Mehlhorn, Giovanna Morigi
Contributions of the author:

e Developed the model together with Kurt Mehlhorn (KM) and Giovanna Morigi
(GM).

e Performed the numerical simulations and analytical studies.
e Analyzed the data together with KM and GM.
e Wrote the article together with KM and GM.
Chapter 4:
Part 1: Self-organized transport in noisy dynamic networks
Published in: Phys. Rev. E 110, 044310 (2024)

Authors: Frederic Folz, Kurt Mehlhorn, Giovanna Morigi
Contributions of the author:

e Developed the model together with Kurt Mehlhorn (KM) and Giovanna Morigi
(GM).

e Performed the numerical simulations and analytical studies.
e Analyzed the data together with KM and GM.

e Wrote the draft of the article, which was finalized together with KM and GM.

Part 2: Unpublished material
Contributions of the author:

e Developed the model together with Kurt Mehlhorn (KM) and Giovanna Morigi
(GM).

e Performed the numerical simulations and analytical studies.

e Analyzed the data together with KM and GM.
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CHAPTER 1

INTERPLAY OF PERIODIC DYNAMICS AND NOISE:
INSIGHTS FROM A SIMPLE ADAPTIVE SYSTEM

Interplay of periodic dynamics and noise: insights from
a simple adaptive system

Phys. Rev. E 104, 054215 — Published 29 November 2021
(©) 2021 American Physical Society
DOLI: 10.1103/PhysRevE.104.054215

Authors: Frederic Folz!, Kurt Mehlhorn?, Giovanna Morigi'

! Theoretische Physik, Universitit des Saarlandes, 66123 Saarbriicken, Germany
2 Algorithms and Complexity Group, Maz-Planck-Institut fiir Informatik, Saarland Infor-
matics Campus, 66123 Saarbricken, Germany

Abstract:

We study the dynamics of a simple adaptive system in the presence of noise and
periodic damping. The system is composed by two paths connecting a source and a
sink, and the dynamics is governed by equations that usually describe food search
of the paradigmatic Physarum polycephalum. In this work we assume that the two
paths undergo damping whose relative strength is periodically modulated in time,
and we analyze the dynamics in the presence of stochastic forces simulating Gaussian
noise. We identify different responses depending on the modulation frequency and
on the noise amplitude. At frequencies smaller than the mean dissipation rate,
the system tends to switch to the path which minimizes dissipation. Synchronous
switching occurs at an optimal noise amplitude which depends on the modulation
frequency. This behavior disappears at larger frequencies, where the dynamics can
be described by the time-averaged equations. Here we find metastable patterns that
exhibit the features of noise-induced resonances.
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‘We study the dynamics of a simple adaptive system in the presence of noise and periodic damping. The system
is composed by two paths connecting a source and a sink, and the dynamics is governed by equations that usually
describe food search of the paradigmatic Physarum polycephalum. In this work we assume that the two paths
undergo damping whose relative strength is periodically modulated in time, and we analyze the dynamics in
the presence of stochastic forces simulating Gaussian noise. We identify different responses depending on the
modulation frequency and on the noise amplitude. At frequencies smaller than the mean dissipation rate, the
system tends to switch to the path which minimizes dissipation. Synchronous switching occurs at an optimal
noise amplitude which depends on the modulation frequency. This behavior disappears at larger frequencies,
where the dynamics can be described by the time-averaged equations. Here we find metastable patterns that

exhibit the features of noise-induced resonances.

DOI: 10.1103/PhysRevE.104.054215

I. INTRODUCTION

Patterns are ubiquitous in nature; metastable spatiotem-
poral structures are observed from the microscopic to the
astrophysical scale [1-4]. The systematic characterization of
their onset and stability is a formidable challenge of theo-
retical physics. Theoretical descriptions are often based on
coupled nonlinear equations for macroscopic variables, whose
fixed points often capture essential features of the metastable
dynamics; see, for instance, [1,5-8].

A prominent example are the equations modeling the
dynamics of biological systems, such as food search of
Physarum polycephalum, a representative of the so-called true
slime molds [9]. Physarum polycephalum is a single-celled
organism that, despite its lack of any form of nervous sys-
tem, is able to solve complex tasks like finding the shortest
path through a maze [10-12] and creating efficient and fault-
tolerant networks [13,14]. These dynamics are qualitatively
reproduced by the noise-free coupled nonlinear equations of
motion [9], which are a reference model system for optimiza-
tion algorithms and deep learning [15].

Most theoretical descriptions of Physarum are noise-free
and do not include the effect of a thermal bath in which
Physarum is naturally immersed. On the other hand, tasks
such as finding the optimal path in a maze are solved in con-
tact with the external environment [10,13], which shows that
Physarum dynamics is robust and probably even optimized for
a certain level of noise, as typical of adaptive systems [16,17].

Motivated by this question, in this work we consider the
coupled nonlinear equations describing an adaptive system
that can choose between two paths in the presence of Gaussian
noise and that is inspired by the dynamics of P. polycephalum.
We analyze the dynamics when the relative dissipation rate
between the two paths is modulated in time and as a function

2470-0045/2021/104(5)/054215(9)
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of the modulation frequency and of the noise amplitude. We
benchmark our results with the work of Ref. [18], who studied
this model for a fixed value of frequency and noise amplitude.

This paper is organized as follows. In Sec. II A we in-
troduce the physical model, and in Sec. III we discuss the
response as a function of the frequency and noise amplitude
and identify the regime where stochastic resonance charac-
terizes the dynamics. In Sec. IV we then turn to the regime
outside the stochastic resonance condition when the frequency
is sufficiently large and characterize the system dynamics as a
function of the noise amplitude. The conclusions are drawn in
Sec. V. The Appendixes provide details on the model and on
the calculations in Secs. III and IV.

II. TWO PATHS WITH MODULATED DISSIPATION
A. The model

The model we consider is a simplified network, where a
source and a sink are connected through two paths of equal
and constant length L as illustrated in Fig. 1(a) and whose
dynamics is inspired by P. polycephalum. Here the capability
to connect two food sources is modeled with the flow of gel
inside the cell body along the network edges and is quantified
by the conductivity D; of path i = 1, 2 [9,19]. This variable in-
creases monotonically with the gel’s flow and vanishes when
the flow vanishes according to the deterministic equation (i =
1,2)

[0:Dilo = f(Di) = yi(t)D;, )]
where f(x) is the nonlinear force with argument D; =
D;/(D1 + D»):

J@) =T +ex’/(e +27), 2

©2021 American Physical Society
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FIG. 1. (a) Illustration of a system consisting of two different paths connecting a source and a sink. The paths are exposed to a periodically
modulated dissipation. (b, ¢) The periodic function ®;(¢), determining the temporal behavior of the damping rate of path i, over one period T
and for the two examples discussed in this work [symmetric (b) and biased (c) case]. The time is in units of 1/y; the dotted lines are the time

averages over one period.

with € =0.2 and y; is the damping rate of path i [18].
The dissipation is here periodically modulated in time with
period T,

vit) =y + @i(0), 3

with ®;(t) = ®;(t + T') a periodic and positive function; see
Fig. 1. Let = 27 /T denote the angular frequency. Further-
more, we set I' = y in the following. From now on, the time
will be given in units of  ~! unless otherwise stated.

In this work we characterize the system response to the
dynamically changing environment in the presence of the
stochastic force &;():

0, D; = [0:Di]o + @&;(1). 4)

The stochastic force is scaled by the positive parameter & =
ay and describes white noise. It has vanishing expectation
value, (&;(¢t)) = 0, and correlations

(E:)E; (1) = k8 ;8 — 1), &)

where k = y 7" and () is the average taken over a sufficiently
large number of independent realizations of the stochastic
process &;(t) [20,21]. Note that, since this force can take
negative value, we need to regularize the behavior of Eq. (4)
for small values of D; so as to keep D; > 0. This in turn
reflects the physical constraint that D; represents a conductiv-
ity. For this purpose, when D; = 0 and the right-hand side of
Eq. (4) becomes negative, we set it equal to 0. In what follows
we numerically simulate Eq. (4) using the Euler-Maruyama
scheme [22] with a step size At = 0.05y !, unless otherwise
specified.

As in Ref. [18] we quantify the system’s response by means
of the quantity

1

_ Di(t) - D(¥)

Di(t) + Dy(2)’
which we denote by risk function. The risk function varies in
the interval [—1, 1]. The extremal values ¢ = +1 and ¢ = —1
correspond to the system being in the path i =1 and i = 2,

respectively. We note that the function minimizing the risk
takes the form

er(t) = 2{0[@2(1) — @1 ()] - L},

c(r) ©

with 6(x) Heaviside’s function. The corresponding dynamics
follows the path whose instantaneous dissipation is minimal.

B. The biological system

Equation (1) has been proposed in Ref. [9] for simulating
the dynamics of P. polycephalum for a constant dissipation
;. This model was extended in Ref. [18] for the purpose of
analyzing the effect of noise on the adaptivity of P. poly-
cephalum to dynamically varying environmental conditions.
The dynamically varying environment was there modeled by
a periodically modulated dissipation. The latter simulated the
effect of light, which inhibits the growth of P. polycephalum.

In the present work we start from that analysis and extend
it by investigating the dynamics as a function of the noise
strength and of the modulation frequency. This allows us to
identify whether and when there is an optimal noise strength
for which the system optimally adapts to the external environ-
ment.

III. SYMMETRIC CONFIGURATION

In the following we determine the dynamics as a func-
tion of «, the noise strength, and w, the frequency at which
dissipation is modulated. We assume that the two functions
®;(¢) are step functions shifted by half period with respect
to one another: ®(t) = ®,(t + 7 /2). Over one period we
choose ®(1) =y 6(t)0(T /2 —t), with yp = 0.1y. Figure 2
displays the evolution of the conductivity D; for different,
increasing values of «. Among the three examples displayed,
the flow seems to best adapt to the periodic changes of the
external parameters for @ ~ 0.1 (we emphasize that fora = 0
the system does not switch paths).

We quantify the capability of the system to adapt to the
changes of dissipation over the evolution time [0, feng] by
means of the normalized correlation function

2 [l 1
g(r) = 7/ {9[00)] - 7}Cr(t —1)dt, @)

end

which quantifies the overlap between the signal c(¢) and the
function ¢,(t), as a function of the delay r > 0. Perfect cor-
relation (anticorrelation) between dynamics and dissipation

054215-2
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FIG. 2. Time evolution of the risk function ¢ for @ = 1073y and (a) « = 0.051, (b) @ = 0.099, and (c) a = 0.222. The blue line
corresponds to one trajectory, the yellow line is the average over 5000 trajectories, and the red line displays c,(¢). The initial conditions
are DY = 0.5, DY = 1 corresponding to ¢® = —1/3. In Appendix A we report a zoom of panel ().

minimizes (maximizes) the risk and corresponds to g = 1 and
T—>0(t=T/2).

Figure 3(a) displays the color plot of g(0) as a function of
the noise strength o and of the modulation frequency w. For
the full range of angular frequencies @ shown in the figure,
it holds g(0) ~ max.[g(r)]. We observe a region for which
g(0) ~ 1, indicating synchronous behavior at an optimal noise
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FIG. 3. (a) Color plot of the measure g(0), calculated using
Eq. (7), as a function of the noise strength « and of the modulation
frequency w. The dotted line represents the noise strengths at which
we expect stochastic resonance to occur according to the matching
condition of Eq. (8). For the displayed range of angular frequencies
w it holds g(0) ~ max,[g(7)]. (b) Measure g(0) as a function of «
for three values of the frequency w; see legend. We used the initial
conditions D} = 0.5, DY = 1 corresponding to ¢’ = —1/3. The data
were generated by evaluating an ensemble of 5000 trajectories with
simulation time of f.,g = 87 /w and step size At = 107/ w.

strength within a frequency range w < 1072y. In Fig. 3(b)
we display g(t) for three values of @ and as a function of
o: The dynamics exhibits the features of stochastic resonance
[23]; the optimal noise strength where g(t) is maximum can
be found from the relation

®)

where , is the average switching time between the two stable
fixed points ¢ = —1 and ¢ = 1. We estimate the switching
time using a one-dimensional model; the details are reported
in Appendix B. The resulting curve is the dotted line of
Fig. 3(a) and reproduces the position of the resonance in the
«o-w plane, which we find numerically.

The resonance behavior as a function of « broadens as @
increases. For w 2 y there seems to be no correlation between
¢(t) and the temporal modulation of the dissipation. In the
next section we analyze the effect of noise in this regime.

IV. SECULAR REGIME

In this section we analyze the dynamics as a function of
the noise strength at large frequencies, such that w/y > 1.
In this regime we expect that the effect of the time-dependent
dissipation on the dynamics can be replaced by its average. We
choose an asymmetric modulation of dissipation between the
two paths and fix @ = 10y . In order to compare with Ref. [18]
we define

Q1(t) =y = T/2)0(T —1), ©))

P2 (1) = yob(t = 3T/HO(T —1) (10)

for r € [0, T], with yo; = /4 and yp, = 3y /5. According
to this choice we expect a bias towards path 1, since it is
characterized by the minimal (time-averaged) dissipation. We
note that in Ref. [18] the authors considered the specific
noise strength o = 0.05 and simulated the dynamics till time
fend = 2007y 1. In the following we study the dynamics as
a function of . Moreover, we analyze the convergence of
the simulated trajectories by taking different times and by
comparing the results with the stationary state, which we
analytically determine.

Figure 4 displays the evolution of the conductivities D;
by numerically integrating Eq. (4) assuming that initially
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FIG. 4. Evolution of the conductivities D; as a function of time
(in units of 1/y) for @ = 10y and (a) « = 0, (b) « = 0.05. In the
deterministic case, o = 0, the system converges to the fixed point
of the secular equation; see the blue solid circle of Fig. 5(a). In the
presence of noise this fixed point is metastable: the system quickly
converges to the stable fixed point at which the system favors the path
exposed to minimal averaged dissipation. The data shown represent
a single trajectory. The initial conditions are D = 0.5 and D) = 1.

D, > D;. In the deterministic case, for « = 0, the curves
exhibit fast, small-amplitude oscillations at a frequency close
to the modulation frequency w, and their time average over
a period varies over a significantly longer timescale. After
a transient, the conductivity D; reaches a value larger than
D,. The corresponding dynamics in the presence of white
noise is shown in Fig. 4(b): we observe a timescale separation
as in the deterministic case, while the frequency of the fast
oscillations become chaotic. The slow dynamics reaches a
metastable state (corresponding to the asymptotic state of the
noise-free dynamics) where it is trapped for a relatively short
time. It then quickly reaches the steady state, with the value
of the conductivity D approaching unity, while the flow along
the second path is almost suppressed.

A. Fixed points of the secular dynamics

In order to perform an analytical study, we consider the
secular dynamics, where we average Eq. (4) over a period T
of the oscillations and replace y;(t) with the time-averaged
dissipation coefficients:

v =y + (@7,

T
ob i LI gl
0 0.2 0.4 0.6 0.8 1
D1
(b)
1
1...............,
0.5 050000000, .
zx%bg ‘o 0......”'
6 0/ 057 0¢
1000000000000
0 002 004 006
-1
0 0.1 0.2 0.3
Yo=Yy

FIG. 5. (a) Fixed points (D7}, D}) of the secular equations for
(@) = 0.125 and (P,)7 = 0.15. The arrows indicate the flow. Sta-
ble (unstable) fixed points are represented by solid (hollow) circles.
The green (red) stable fixed point correspond to the system choos-
ing the path with minimal (maximal) average dissipation. (b) Fixed
points ¢* = (D% — D%)/(D* + D%) as a function of y5 — y¢f with
fixed Vfﬂ = 1.125. Full (hollow) circles indicate stable (unstable)
fixed points. The inset zooms into the parameter region of the in-
termediate, metastable fixed point.

with

1 t+T
(Ayr = T/z dtA(T).
According to our parameter choice ¥ < y£T and in the
regime of validity of this secular approximation path 1 is
favored. We then set « = 0 and study the fixed points of the
dynamics D7, fulfilling 9;,Df = 0. We report the details in
Appendix C.

Figure 5(a) displays the fixed points (D7, D3): stable (un-
stable) solutions are represented by solid (hollow) circles.
The vector fields illustrate the flow. The path with average
minimal dissipation corresponds to the green circle. The blue
circle is the metastable path to which the deterministic dy-
namics of Fig. 4(a) converges for the given initial condition.
This solution still characterizes the transient dynamics in the
presence of noise, Fig. 4(b). On longer timescales, however,
the stochastic dynamics brings the system to the path min-
imizing dissipation. Figure 5(b) shows the variable ¢* =
(D} — D3)/(D} + D3) as a function of the average dissipation
ys1, which is varied starting from the symmetric case 5 =
yfff while keeping yfff fixed. The blue solid (red hollow)
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symbols indicate the stable (unstable) solutions. The red hol-
low symbols are the borders of the basins of attraction of the
nearby stable solution for the deterministic dynamics. The two
extremal solutions—where the system settles on one of the
two paths—are independent of yfff. Instead, the solution char-
acterized by finite conductivities along both paths exists solely
below a threshold value y;ftf,l. As yzeff increases from yfff
towards the threshold, this fixed point moves towards positive
values, indicating that the symmetry of the solutions is broken.
Correspondingly, its basin of attraction becomes asymmetric
by increasing 5" and biased towards the region ¢ > 0. At
the threshold, the basin of attraction of ¢* = 1 undergoes a
discontinuous jump and extends to the neighborhood of the
other fixed point ¢* = —1.

Despite the fact that this analysis has been performed using
a secular approximation, we note that the fixed points of
Fig. 5(a) allow us to understand the steady state of Fig. 4 as
well as the metastable dynamics in Fig. 4(b). According to
this picture, one would expect that by increasing « the rate of
convergence to the stable state shall accordingly increase. In
the following section we will show that this is only partly true.

B. Convergence to the stationary state

The analysis of the fixed point of the deterministic dynam-
ics provides some insight into the behavior observed in Fig. 4.
Here metastable fixed points correspond to metastable con-
figurations whose lifetime is limited by noise. Fluctuations,
in general, allow the system to explore a large configuration
space.

In order to characterize the convergence to the steady state
as a function of the noise strength o we first determine the
variable ¢ for sufficiently large integration times fe,q. We
single out the slowly varying value by averaging out the fast
oscillations over a period,

1 Tend
C(fend) = ?/ c()ar’, an
tena—T

where c(¢) in the integrand is the ensemble average over the
individual trajectories. Figure 6 displays ¢(f.nq) as a function
of the noise strength « for different integration times fe,q. The
choice feng = 2007 /y corresponds to the same integration
time of Ref. [18]. Comparison with longer simulation times
shows that at this time and o < 0.07 the dynamics has not
yet converged to the stationary state. For @ < 0.02, moreover,
the system is still trapped in the metastable configuration at
c¢* ~ 0 even for the longest integration time here considered.

The behavior in the interval 0.02 < « < 0.07 is remark-
able, as it exhibits local minima which have the form of
resonances. We note that the lifetime of the metastable con-
figurations at o ~ 0.04 exceeds fong ~ 10°/y.

Figure 7 shows the time evolution of ¢ about these special
values of «. Figure 7(a) displays the time evolution for values
of o < 0.02. Here the system is trapped in the metastable
configuration corresponding to the fixed point at ¢* 2 0: the
residence time visibly decreases as o increases. This trend
is still visible at larger values of « in Fig. 7(b). At longer
timescales, however, the curves in Fig. 7(b) show a metastable
regime close to path 1 where the system remains trapped
and whose lifetime is maximal for o ~ 0.04. This metastable

1
I
I
0.8 i
1
I
5067 i 7 4 5
OGC) i _tend=10 v "\‘\
— 105~ =
0.4 ll = g =107 7
02!l J " tyng =200 7 ~1, averaged 1
cred! tend =200 7 7'1, periodic
0 . ‘ ‘ s
0 0.02 0.04 0.06 0.08 0.1
a

FIG. 6. Average value ¢ at the simulation time f.,q as a function
of the noise strength o for feng = 2007y ~!, 10°y~!, 107y ~!. The
data shown were generated by averaging over a total of 5000 tra-
jectories. The initial conditions are DY = 0.5, D} = 1 corresponding
to ¢ = —1/3. For all values of #,,q we evolve the secular equation.
We also show the result of the full, periodic dynamics (circles) for
tena = 200y ~". Here, to generate comparable data, we use the same
set of random numbers for the trajectories.

configuration is not captured by the fixed point analysis and
seems to crucially depend on the noise strength. It has thus
the form of a noise-induced resonance.

We study these resonances by inspecting the variation Ac
of the curve c(t) at the extremal of the interval of time Z(§) =
[8 - tends tena] With 8 € (0, 1):

1 8+tena
Ac = (cmd -—= / c(z’)dz’)c;nll,
T 8-tena—T

where ceyq is the stationary value for 1 — co. When the sys-
tem dynamics does not change over the interval Z(8), then the
variation Ac = 0. Figure 7(c) shows Ac as a function of « for
8 = 0.6 and different integration times f.,q. Metastable config-
urations appear as resonances. We observe several resonances
for relatively short integration times, while for increasing fenq
the number of metastable states decreases. The small res-
onance at @ ~ 0.04 signals the metastable configuration of
Fig. 7(b). The largest resonance at o ~ 0.02 separates the
regime where the system is still trapped in the metastable fixed
point from the regime where the system has already escaped
this region.

12)

C. Steady state

We complete this study by discussing the steady state of
the dynamics as a function of «. We apply the approach imple-
mented in Ref. [18] and extend it to determine the dependence
on «. We review here the basic steps. The approach consists
in determining the time-averaged dynamics of the single vari-
able ¢, assuming that it undergoes a time-continuous Markov
process in the presence of a drift ;«(¢) and an It diffusion
with amplitude o (¢, t), which are determined by means of an
equation-free analysis; see Appendix D. We verify the validity
of this approximation by comparing the predictions of the
full dynamics at f.ng = 107/y with the one of the stochas-
tic equation for the single variable ¢; see Fig. 8(a). For the
one-dimensional case we take noise strengths & > 0.01 since
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FIG. 7. Time evolution of the average value of c, Eq. (6), for the noise strengths (a) « = 0.011, « = 0.017, « = 0.023, and (b) « = 0.032,
a = 0.044, o = 0.053. In each panel the dotted green (black) lines label the times 0.6 x 2007y~ (0.6 x 10°/y) and t = 2007y ~" (10°y~").

(c) Variation Ac as a function of « for the simulation times f.,q = 2007y

! and feng = 10°y ", For tong = 200y ! the trajectories for

periodic and time-averaged dynamics are shown. To generate comparable data, in both of these cases the same set of random numbers was
used to simulate the trajectories. The integration method, trajectories, and initial conditions are the same as in Fig. 6.

for smaller values the numerical algorithm does not converge
within the simulation times we considered. The corresponding
Fokker-Planck equation for the probability distribution p(¢, t)
takes the form

)
ap(e,t) = —2-J (1), (13)

with the current
10
J@ 0 = u@p@.n =320’ @p@n. (14
¢

We denote the steady state of p(¢,7) by po(¢). The
steady-state distribution p((¢) fulfills o, po(¢) = 0, which cor-
responds to a constant current J and explicitly reads

po(@) = exp [—¢(2)] (15)

o2(e)

with N a normalization coefficient, warranting fjl dé p(é) =

1, and
; € 2u(y)
= - d
¢@ /;1 o2(y)

being the potential associated with the stationary solution. Po-
tential and steady-state probability are shown in Figs. 8(b) and

(16)

(@) (b)
0.12
0.1
0.08
3
0.06
0.2 O 1D, steady state 0.04 §
0
0 002 004 006 008 01 012 -1
« Cc

8(c), respectively, as a function of ¢ and «. For small values
of o the minima and maxima are localized at the fixed points
of the deterministic equation. The position of the minima are
shifted towards the center of the interval as « is increased.
Increasing the noise, moreover, decreases the barrier between
minima: at sufficiently large « the system explores the full
interval of values of ¢ with longer residence times in the
region at ¢ = 1. At large « the effect of noise is to diffuse the
solution across both paths keeping a bias towards ¢ = 1. We
remark that the noise-induced resonances observed in Fig. 6
are not captured by the equilibrium potential calculated from
the one-dimensional Fokker-Planck equation.

V. CONCLUSION

We have analyzed the dynamics of a simple adaptive sys-
tem as a function of the strength of a stochastic force. The
system is composed by two paths connecting a sink and a
source and subject to a periodic modulation of the dissipation
rate between the two paths.

When the dissipation modulation frequency is smaller than
the mean value of the dissipation rate, the system dynam-
ics exhibit stochastic resonance, with the system periodically

log()

5]

-20

FIG. 8. (a) The risk function cnq as a function of the noise strength « for the parameters of Fig. 6. The prediction of the model of Eq. (4)

at feng = 107y ! is compared with the one of the Fokker-Planck equation of Eq. (13) for t — oo. For the Fokker-Planck approach, the value of
Cend 1S given by the average of the steady-state distribution cepg = f_ll &po(¢) d¢. Furthermore, we take only o > 0.01 for the one-dimensional
case as for smaller noise strengths the numerical algorithm does not converge within the considered simulation time. (b) Color plot of the
potential ¢, Eq. (16). The dotted white lines indicate the local maxima, the dotted black lines the local minima. (c) Color plot of the logarithm
of the probability density distribution py, Eq. (15), as a function of « and ¢.
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FIG. 9. Time evolution of the risk function ¢ for @ = 1073y and
o = 0.051. The blue line corresponds to one trajectory, the yellow
line is the average over 5000 trajectories, and the red line displays
c,(t). See Fig. 2(a).

switching to the path minimizing dissipation. At large fre-
quencies, instead, the dynamics is reproduced by the secular
equations, obtained by taking the time average of the damping
coefficient over a period. The steady state is the fixed point
of the secular equations which minimizes dissipation. The
metastable configurations are in general the other fixed points
of the secular equations, and the net effect of noise is to
limit their lifetime. Nevertheless, the dynamics also exhibits
other metastable configurations at certain values of the noise
amplitude that are neither captured by stochastic resonance
nor by the fixed point analysis. They exhibit the features of
noise-induced resonances.

Our study suggests that noise could play a nontrivial role
in both developing and optimizing algorithms for search prob-
lems, network design, and artificial intelligence. In the future
we will extend this investigation to a network such as the
configuration considered in Ref. [19] in the presence of a
dynamically changing environment.
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APPENDIX A: TIME EVOLUTION OF THE
RISK FUNCTION

Figure 2(a) shows a single trajectory of the time evolution
of the risk function ¢ for w = 1073y and & = 0.051. Figure 9
zooms over the behavior during one period.

APPENDIX B: SWITCHING TIME

We determine ,(«, @), Eq. (8), using the first-passage time.
This is the time to reach a metastable point, say, c = —1, when
starting close to the other metastable point, say, c = 1 — €, in
an interval with reflecting boundaries. This corresponds to the
first passage time of the one-dimensional model of Sec. IV C

and takes the form [21,24]

—1 2 y
s\, = dy——— d .
(@ €) -/l—e Y2 (mp() /1 )

We evaluate #,(«r, €) numerically and use it in Eq. (8) in order
to find the stochastic resonance condition.

(BI)

APPENDIX C: FIXED POINTS AND LINEAR
STABILITY ANALYSIS

In the following, we will perform a linear stability analysis
of the system of differential Eq. (4). In the stationary regime,
the conductivities D and D, oscillate with the period T = %‘
of the dissipation around the stationary values (D;) = D} and
(D7) = Dj and it holds

(o=t (7 [ rar)

=0.

(&)

At this point, we remind the reader that we use D; =
D;/(D; + D»). Applying this averaging procedure to Eq. (4)
we obtain

0= (f(D)) — (yi(t)Dy).

We assume that the conductivities D and D, are approxi-
mately constant during the period 7. Thus, in the stationary
regime the following relation holds:

(C2)

1 t+T
(vi(t)D;) = tlglolo (?/ 7:(1"D; dt’)

~ lim
11— 00

1 t+T N
(701 / y(dr') = 7Dy (C3)
t
This leads us to the equation

0= (f(D)) — y"D}.

i

(C4

Performing a Taylor expansion of the first term in this equa-
tion around the stationary values D} and Dj to first order, we
get

af ab;

(D)~ f DD + (Bf)i aD, )‘D,=D‘(,Dz=z)§‘((D1 - b
af ob; .
(Bf),- 8D2) 1),=D;,DZ=D;<(D2 —-Dy). (©5)

We notice that the terms of first order vanish due to {((D; —
D)) = (D;) — D} = 0. Using this expression, Eq. (C4) yields
0= f(D) -y Dy (C6)
In the following, we introduce the deviation y; = D; — D} of
the conductivities from their stationary value. We can cast
Eq. (4) in the form
ay; -
55 =P =y i+ D).
Assuming that the period 7 of the illumination is much
smaller than the timescale on which the network structure

(€7
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changes, we can cast Eq. (C7) in the form

i _

7y A effr *
3 f(Dy) Yi (yHrD,-)

(C8)

Performing a Taylor expansion of the first term in this equa-
tion around the stationary values D} and Dj to first order, we
get
af 8D,~>‘
3D, 9D, D1:D’,‘,D2:D§yl
af aD;
(35,5:)! g
dD; D,/ |p,=Dt.D,=D;
= f(D}) +Aiy1 + By,

FB)~ 1B+ (

(C9)
with
. ( af 3[3,»)\
"7 \aD; aD, /| p,=p;.D,=D3"
- (35 550)
"7 \8D; 8D,/ |p=p;.0r=p5
Combining Eq. (C7) and Eq. (C10) with Eq. (C9) yields

<5 =Av+ By =y i+ DD + v

(C10)

= A1 + By, — vy, (C11)

In order to solve the system of differential Eq. (C11), we
create the ansatz y;(t) = Y;e* with A € C. This yields

A=A 4yt —B ny (0
( s iy) ()=o) ©@

—A,
To find nontrivial solutions, it must hold det(A) = 0, which
gives

A=

0 = det(A)
& 0= (k — A+ yfff)()\ — B + )/zeff) —AyBy,
A+ By — (T + y5™)
> :

+ <A' + B — (" 5"
4

& A=

1/2
= (A = ") (B2~ ") +AzBl) (S
The fixed points (D7}, D3) are given by Eq. (C6). They are
stable if the corresponding values A; are negative. The cor-
responding fixed points ¢* of this quantity can be calculated
from the fixed points (D7}, D3). A fixed point ¢* is considered
stable if (D7}, D) is a stable fixed point. Figure 10 shows the
fixed points for different choices of the average dissipation
along the two paths.

APPENDIX D: FOKKER-PLANCK EQUATION

The variable ¢ is assumed to undergo a time-continuous
Markov process in the presence of a drift w(¢) and a Itd
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FIG. 10. Fixed points (D7, D3) of the secular equations. The
arrows indicate the flow. Stable (unstable) fixed points are repre-
sented by solid (hollow) circles. The green (red) stable fixed points
correspond to the system choosing the path with minimal (maxi-
mal) average dissipation. Panel (a) corresponds to the case of equal,
constant dissipation. In (b) (®;) = 0 and ($,) = 0.6, while in (c)
(®;) = 0.25 and (P,) = 0.6.

diffusion with amplitude o (¢, #):

ac

= u(¢) + o (0)E()

ar ®n
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with & (¢) describing white noise. Drift and the diffusion coef-
ficient are determined by means of equation-free analysis:

o e +8t) —c®)|c(t) =)k
u(@) = 5 ,

(et +81) = c(t) = (@8t let) = &g
ot

D2)

o*(@) = , (D3)

where (-)g indicates a sample average and c(z) is calculated
from Eq. (6) from the values of D;(¢), that are obtained by
numerical integration of Eq. (4). We verify the validity of
this approach by comparing the values of c.,q we obtain by
numerically integrating Eq. (D1) with the ones of Eq. (4);
see Fig. 8(a). The Fokker-Planck equation corresponding to
Eq. (D1) is given in Eq. (13).
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Abstract:

In wet-lab experiments, the slime mold Physarum polycephalum has demonstrated
its ability to tackle a variety of computing tasks, among them the computation of
shortest paths and the design of efficient networks. For the shortest path problem,
a mathematical model for the evolution of the slime is available and it has been
shown in computer experiments and through mathematical analysis that the dy-
namics solves the shortest path problem. In this paper, we generalize the dynamics
to the network design problem. We formulate network design as the problem of con-
structing a network that efficiently supports a multi-commodity flow problem. We
investigate the dynamics in computer simulations and analytically. The simulations
show that the dynamics is able to construct efficient and elegant networks. In the
theoretical part we show that the dynamics minimizes an objective combining the
cost of the network and the cost of routing the demands through the network. We
also give alternative characterizations of the optimum solution.

28



Theoretical Computer Science 920 (2022) 1-20

Theoretical Computer Science

Contents lists available at ScienceDirect

www.elsevier.com/locate/tcs —_—

Physarum-inspired multi-commodity flow dynamics

Vincenzo Bonifaci?, Enrico Facca®, Frederic Folz¢, Andreas Karrenbauer ¢,

Check for
Updates

d

Pavel Kolev ¢, Kurt Mehlhorn %-*, Giovanna Morigi ¢, Golnoosh Shahkarami ¢,

Quentin Vermande

2 Dipartimento di Matematica e Fisica, Universita degli Studi Roma Tre, Roma, Italy

b Scuola Normale Superiore, Pisa, Italy

€ Fachbereich Physik, Universitdt des Saarlandes, Saarbriicken, Germany
d Max Planck Institute for Informatics, Saarbriicken, Germany
€ Max Planck Institute for Informatics and Fachbereich Informatik, Universitit des Saarlandes, Germany

f Ecole Normale Supérieure, Paris, France

ARTICLE INFO

ABSTRACT

Article history:

Received 23 October 2020

Received in revised form 2 February 2022
Accepted 8 February 2022

Available online 17 February 2022
Communicated by C. Blum

Keywords:

Physarum

Network design
Multi-commodity flow
Dynamical system

In wet-lab experiments, the slime mold Physarum polycephalum has demonstrated its
ability to tackle a variety of computing tasks, among them the computation of shortest
paths and the design of efficient networks. For the shortest path problem, a mathematical
model for the evolution of the slime is available and it has been shown in computer
experiments and through mathematical analysis that the dynamics solves the shortest
path problem. In this paper, we generalize the dynamics to the network design problem.
We formulate network design as the problem of constructing a network that efficiently
supports a multi-commodity flow problem. We investigate the dynamics in computer
simulations and analytically. The simulations show that the dynamics is able to construct
efficient and elegant networks. In the theoretical part we show that the dynamics
minimizes an objective combining the cost of the network and the cost of routing the
demands through the network. We also give alternative characterizations of the optimum
solution.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Physarum polycephalum is a slime mold in the Mycetozoa group [11]. Its cells can grow to considerable size and it
can form networks. In wet-lab experiments, the slime mold Physarum polycephalum was applied to a diverse variety of
computing problems: computation of shortest paths in a network [36], computation of minimum risk paths [35], design of
efficient networks [42,4,45,9], computation of Voronoi and Delaunay diagrams [5,37], computing circuits and electronics [24]
and many more. We refer the reader to [7,6] for a survey of the many problems that can be attacked using live Physarum
polycephalum and for which the slime is able to find good or even optimal solutions to instances of limited size. Fig. 1
illustrates the shortest path and the network formation experiments in [36,42].
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Fig. 1. The figure on the left shows the shortest path experiment. It is reprinted from [36]. The edges of a graph were uniformly covered with Physarum
(subfigure (a)) and food in the form of oat-meal was provided at the locations labeled AG in subfigure (b). After a while the slime retracted to the shortest
path connecting the two food source (subfigure (c)). The underlying graph is shown in (d). The figure on the right shows the network design experiment.
It is reprinted from [42]. Food was provided at many places (the larger dots in the picture) and the slime was constrained to live in an area that looks
similar to the greater Tokyo region. The large dot in the center corresponds to Tokyo and the empty region below it corresponds to Tokyo bay. The slime
formed a network connecting the food sources. The two graphs on the right compare the network built by the slime (label C) with the railroad network in
the Tokyo region (label D).

There is also considerable work aimed at understanding the inner workings of Physarum polycephalum, for example,
how global synchronization can result from random peristaltics [1], how information can be transported and a memory can
exist in an organism without a nervous system [2,25], and whether tubes of the mold can transfer electricity [43].

It is important to stress that the plasmodium of Physarum polycephalum is not an automaton.! The papers [30,32] clearly
demonstrate the limits of slime-mold computations even for the shortest path problem and [6,30] argue convincingly that
conventional computing terminology should be applied with great care when discussing biological systems. After all, the
solutions constructed in wet-lab experiments strongly depend on the initial conditions, e.g., how much food is provided
and how the plasmodium is distributed initially, the solutions are not strictly optimal but only approximately optimal, the
outcomes of the experiments are not deterministic and hence hard to reproduce, and the maze in Fig. 1 has fairly narrow
edges and hence guides the slime towards building nearly straight connections. The papers [38,22] discuss more generally
the question what it means for a biological or physical device to compute. According to their definition, to which we
subscribe, Physarum polycephalum does not compute. A comprehensive survey of analog computing models is given in [15]
and [33,34] discuss the differences and commonalities of biology and computing.

The experimental work mentioned above instigated the development of Physarum-inspired algorithms mimicking (parts
of) the behavior of the slime mold. This is akin to algorithms mimicking ant colonies [17], neural networks [8], simulated
annealing [26], and other bio-inspired computing paradigms. Physarum-inspired algorithms have been used to solve a vari-
ety of computational tasks, for example, the design of transportation networks [42,45,46] and supply-chain networks [47].
For the shortest path problem, a mathematical model in the form of a coupled system of differential equations was given
for the evolution of the slime, the biological relevance of the model was argued, and the model was shown to solve short-
est path problems in computer simulations [41]. Mathematical proofs that the model solves (it is explained below what is
meant by solves) shortest path problems can be found in [31,12]. The Physarum dynamics is also able to solve more general
linear programs [39,40,23,27]. It is important to emphasize that the Physarum dynamics is inspired by the behavior of the
mold, it captures - at best - parts of the behavior of the mold.

The paper [41] is the starting point for this work. Tero et al. model the slime network as an electrical network G = (V, E)
with time varying resistors. Each edge e of the network has a fixed positive length c. and a time-varying diameter x,(t). In
this paper, we will refer to c. as the cost of the edge and to x. as the capacity of the edge. The resistance of e at time t is
then rq(t) = ce/Xe(t). Let sp and s; be two fixed vertices in the network; they represent the two food sources. One unit of
electrical current is sent from so to si. Let ge(t) be the current flowing across e. Then the capacity of e evolves according
to the differential equation

d
Xezaxe(t)=|qe|—xe foralle € E, (1)

1 There is a small community of researchers that think differently, see [21] for example.
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i.e., the diameter of an edge grows (shrinks, stays unchanged) if the flow is larger than (smaller than, equal to) the current
diameter. The equations for the different edges are coupled because the flow through an edge e depends on the resistance
of all other edges. As is customary, we write x for the derivative with respect to time and drop the time-argument of x and
q. Tero et al. showed in computer simulations that a discretization of the model converges to the shortest path connecting
the source and the sink in the following sense: x.(c0) =1 for the edges on the shortest path and x.(co) =0 for the other
edges. This assumes that the shortest path is unique. Bonifaci et al. [12] proved that the dynamics converges to the shortest
source-sink path, i.e., that the Physarum dynamics (1) solves the shortest path problem. A related dynamics

Xe = |qe|* —x. foralle € E,

where p is a constant larger than one, may converge to a path different from the shortest path depending on the initial
conditions [32].

In this paper, we generalize the model of Tero et al. [41] to network design. We introduce a simple model, again in the
form of a system of differential equations,

o that for the case of the shortest path problem agrees with the model proposed in Tero et al.,

e that in computer simulations qualitatively reconstructs the behavior observed in the wet-lab network design experi-
ments [36,42], and

e that is amenable to theoretical analysis.

We do not argue biological plausibility and we do not claim any biological relevance. We also do not try to describe a general
model of the Physarum that fits all experimental setups; less ambitiously, we focus on the network design experiments. This
is a paper in algorithm design and analysis.

The shortest path problem can be viewed as a network design problem. Given two vertices in a graph, the goal is to
construct the cheapest network connecting the given vertices. The solution is the shortest path connecting the vertices. The
shortest path problem can also be viewed as a minimum cost flow problem. We want to send one unit of flow between the
given vertices and the cost of sending a certain amount across an edge is equal to the cost of the edge times the amount
sent. The solution is the shortest path connecting the given vertices.

Networks are designed for a particular purpose. For this paper, the purpose is multi-commodity flow. Suppose that we
have many pairs of vertices between which we want to send flow. We want to construct a network that satisfies the many
demands in an economical way. Economical could mean many things: minimum cost of the network (that’s the Steiner tree
problem), shortest realization of each demand (then the network is the union of the shortest paths), or something in the
middle, i.e., some combination of the total cost of the network and the cost of routing the demands in the network. We
assume economies of scale, i.e., that there is some benefit in sharing a connection, i.e., the cost of sending one unit each of
two commodities across an edge is lower than two times the cost of sending one unit of one commodity across the edge. In
Section 5, we give examples of how sharing is encouraged by our model. The principles of our model are simple. As in Tero
et al. each edge has a cost and a capacity. We have demands between pairs of vertices; this could be passengers entering
the network at some station and leaving the network at some other station. The demand i between vertices s,m and 552)
leads to an electrical flow q'. For each edge e, we aggregate the individual flows gi(e) to an overall flow g(e). This flow is
then used in equation (1). For the aggregation we use either the one-norm or the two-norm of the vector (q'(e), g%(e),...)
and find that the two-norm aggregation is to be preferred. We mention that one-norm aggregation is used in [45].

This paper is organized as follows. In Section 2 we introduce our model and in Section 3 we review our results. In
Section 4 we discuss related work. In Section 5, we report about paper-and-pencil and computer experiments. The analytical
part starts with Section 6. We review basic facts about electrical flows. In subsequent sections, we prove the existence of
a solution defined for t € [0, 00), characterize the fixed points, introduce a Lyapunov function £ for the dynamics, derive
further properties of the Lyapunov minimum, show convergence to the Lyapunov minimum, and finally make a connection
to mirror descent. Section 13 offers conclusions.

2. The model

Before presenting our model we want to fix some notations. Given a matrix M € R™™, we will denote with M;, M,
and M; ; its it"_row, its j™-column, and its entry i, j, respectively. Moreover, we denote with Tr(M) = Z?:l M;; the trace
of a square matrix M € R™",

Our model for the multi-commodity network design problem is inspired by the Physarum model for the shortest path
problem and its generalization to linear programming. Let A € R™™ be an arbitrary real matrix and let b! to b* in R" be
k right-hand sides such that each of the linear systems Af = b' is solvable.

The reader may want to think of A as the node-arc incidence matrix of a connected undirected graph G with n nodes
and m edges, i.e., for each e = (u, v) € E, the column (AT), has an entry +1 in position u and entry —1 in position v; the
orientation of the edge is arbitrary, but fixed. We have k different source-sink pairs (sfl), sfz)), 1<i<k. Let b' € R" be the

vector with entry +1 in position sf]) and entry —1 in position sgz). All other entries of b! are zero. Since G is assumed to be

connected, the linear system Af =b' admits solutions for all i. We refer to this setting as the multi-commodity flow setting.
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Now, for any non-negative vectors x € R™ and c € R™, we define the following matrices
X =diag(x) C=diag(c) L(x)=AXC'AT. (2)
Given a solution f of Af =b!, we use

> e Ce/Xe fE if supp f € suppx,
o0

Ex(f)= { if supp f ,(Z suppx,

to denote the energy of f with respect to x. Let q'(x) € R™, or simply g, be the minimum energy solution i.e.,

qi:argmin{EX(f) :Af:bi}. 3)
feRm

The optimal solution of the optimization problem (3) (see Section 6 for details) is given by

g =xc1ATpx), i=1,...,k, (4)
where pi(x), or simply pi, is defined as any solution to

Lx)pi=b', i=1,... k.

In the multi-commodity flow setting, the minimal energy solution g’ is simply the electrical flow realizing the demand b
and p' are the corresponding node potentials. The node potentials are not unique; they can be made unique by defining a
particular node as ground, i.e., giving it potential zero. The electrical flow is induced by the potential drops AT p! multiplied
by the conductivity XC~1. If we now define the matrix B € R™¥ by

B:<B1,...,B’<) ::(b1,...,b"),

we can express the potentials, the potential drops per unit cost, and the fluxes corresponding to the different commodities
in the following matrix form

P:(Pl,...,Pk) ::(pl,...,p"> with L(x)P = B
A:(A’,...,A") ::(A’,...,Ak) —C1ATP (5)
Q=(Q1,...,Q") :=(q1,...,q’<) — XA.

Note that we use P! and p' interchangeably and similarly for A and Q.

We are now ready to define our model. We let the vector Q. of values Q. ; for any edge e determine the capacity of an
edge and study different ways of combining the individual solutions, in particular, one-norm and two-norm.? This leads to
the following dynamics:

fo = —xe+ 3 1Qeil = (—1 + Z'%%"') — % (—1 +Z|Ae,i|> = %e(lAel = 1), (6)

N2
}.(e:_Xe'f' ZQ(EJ:XE‘ Zi(%;”) -1 :Xe(\lZiAg,i_]):Xe(”AE||2_1)~ (7)

In (6), we form the one-norm | A.|; of the different normalized potential drops across any edge e, and in (7), we form the
two-norm ||Ae|2. For k=1, the one-norm and the two-norm dynamics coincide. The results of this paper suggest that the
two-norm dynamics is the appropriate generalization to larger k.

The following generalized Physarum dynamics introduced in [13] subsumes the two-norm dynamics as a special case. For
each e € E, let g, be a non-negative, increasing and differentiable function with g.(1) =1:

Xe =Xe (8e ([Aell2) = 1). (8)

2 In the multi-commodity flow setting, the g;'s are flows in the network G. The fact that flows from different demand pairs on the same edge do not
cancel each other (not even partially) seems a bit strange at the microscopic level. After all, physically, only the cytoplasm is being transported. How does
an edge “distinguish” between the cytoplasm of pair i and the cytoplasm of pair i’? For this reason, we do not claim biological plausibility for our model.
When k =1, clearly this was not an issue.
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The two-norm dynamics is a special case with g.(z) =1+ (z—1). Other examples are ge(z) =1+de (z— 1) and ge(2) =
1+de (22 - 1) where d, > 0 is the “reactivity” [27] of edge e, g.(z) = z*¢ for some [, > 0 or g.(z) = (1+e)ze /(14 aezt*e)
for some e, e > 0.

The right hand sides of (6) to (8) are defined for any

XeQ= {x € ]Rgo :3P e R solving L(x)P = B } .
3. Our results

In the analytical part of the paper, we ask and answer the following questions for the generalized Physarum dynamics.
We have little to say about the one-norm dynamics.

e Do the dynamics have a solution x(t) with t € [0, 00)?

e Do the dynamics converge?

e What are the fixed points and the limit points of the dynamics?
e What do the dynamics optimize?

e How can we characterize the limit points?

In the experimental part of the paper, we perform computer and pencil-and-paper simulations of the dynamics and address
the following questions:

e How strong are the sharing effects of the dynamics? How far deviate individual flows from their shortest realization in
order to benefit from sharing edges with other flows?

e Do the dynamics construct “nice” networks? Does it qualitatively reconstruct the wet-lab experiments in [42]?

Our first result concerns the existence of solutions with domain [0, co) for the generalized Physarum dynamics.
Theorem 1. Let x(0) € R”,. The generalized Physarum dynamics has a solution t — x(t) € RT for t € [0, 00).
The cost of a capacity vector x is defined as
C(x) = cTx= Z CeXe.
e
The energy dissipation for a single demand b induced by a capacity vector x is defined as
[min Ex(f) = Y re/xedz =b"p=p"LX)p,
YT e

where ¢ is the minimum energy solution of Af =b with respect to x and p is the corresponding node potential. We will
show the second equality in Section 6. The last equality follows from L(x)p = b. The energy dissipation £(x) for a set of k
demands b, ..., b¥ is the sum of the energy dissipations for the individual demands, i.e.,

EX =) Ex@)=) ) p'=Te(PTLR)P),

where p' is the node potential with respect to the minimum energy solution q' to the i-th demand.
The fixed points of a dynamics are the points x with x, =0 for all e. We use 7 and F; to denote the fixed points (also
called equilibrium points) of the one-norm and the generalized dynamics.

Lemma 1 (The fixed points of the one-norm dynamics). x € F7 iff for all e either x = 0 or || A|l1 = 1. The latter condition is equivalent
to | Qell1 = xe as well as to [|[(AT)e Pl|1 = ce.

The fixed points of the generalized dynamics have a remarkable property. For a fixed point x € Fyg, the cost C(x) equals the
dissipated energy £(x).

Lemma 2 (The fixed points of the generalized Physarum dynamics). x € Fy iff for all e either x. = 0 or | A¢ |2 = 1. The latter condition
can be expressed equivalently by ||(AT), P||z = c. and also by X, = || Qe||2. Further, for every x € Fg wehavex>0,AQ =B, and

Tr(BTP) =&E(x) =C(x) = x,

i.e., for fixed points of the generalized Physarum dynamics the cost equals the energy dissipation.

5
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The beauty goes further. The dynamics follows a path along which the sum of cost and energy dissipation decreases and, under
mild additional assumptions, minimizes the sum in the limit of t — oo. Let

1 1 . .
L0 =5C0 +E0) =S (x+ Y ) ph

be one-half of the sum of the cost and the energy dissipation of the network. We show in Section 9 that the function £ is
a Lyapunov function for the generalized Physarum dynamics, in particular, £(x(t)) is a non-negative decreasing function of t.
Formally, the conditions for a Lyapunov function are: £(x) > 0 for x € , %E(x(t)) =(VL,x) <0 for all t. In the case k=1,
L is also a Lyapunov function for the one-norm dynamics as shown in [27]. Let

V={x:(VL,x)=0}

be the set of points in which the dynamics does not decrease the Lyapunov function any further. It follows from general
theorems about dynamical systems that the dynamics converges to the set V. We show that V is equal to the set of fixed
points Fg, and that under mild additional assumptions, the dynamics converges to the minimizer of the Lyapunov function.

Theorem 2. 7, =V and the generalized Physarum dynamics converges to V. Moreover, if the set Fy is finite and any two points in
Fg have distinct values of L, the dynamics x(t) converges to x* = argminXERrg0 L(x).

The minimum of the Lyapunov function can also be characterized in alternative ways.

Theorem 3. The following quantities MinQ, MaxP, and MinL are equal.

MmQ=Qg]§rInlxk{;CeIQeHz:AQ=B}, (9)

MaxP = max {Tr(BTP) APz < Ce foralle } R (10)
PeRnmxk

MinL = min L(x). (11)
xe]R’z"O

Moreover, there are optimizers Q *, R* and x* such that

X, =1Q;l2 foralle,
L(x*)P* =B,
Q* — X*C—lATP*

It is instructive to interpret the theorem for the case k = 1, A the node-arc incidence matrix of a directed
graph, and b a vector with one entry +1 and one entry —1 and all other entries equal to zero. Then MinQ =
mingeRrm {ZE Celqel : Aq=b} is the minimum cost of a flow realizing b in the underlying undirected network and
MaxP = maxpcRn {pr :|pv — pul <ce for all e = (u, v)} is the maximum distance between the two nodes designated
by b for any distance function on the nodes satisfying the cost constraints imposed by c. Both values are equal to the
cost of the minimum cost path connecting the two designated nodes and hence MinQ = MaxP. The third characteriza-
tion via MinL = minyso £(x) is non-standard. Note that £(x) = (c"x 4 bTp)/2, where p are node potentials driving a
current of 1 between the nodes designated by b in the network with edge resistances c/x.. Then bTp is the potential
difference between the two designated nodes which, since the driven current is one, is the effective resistance between
the two designated nodes. In Lemma 10, we will show 3878[1()() = %(1 - ||Ae||§), i.e., the minimizer x* of £(x) must
satisfy xj # 0= |(AT)ep*| = ce, where p* are node potentials corresponding to x*. Note that for an edge e = (u,v),
[(ATYep*| = Ipy — pyl is the potential drop on e. Orient all edges such that potential drops are positive and consider
any path W (W for Weg) in supp(x*) connecting the two designated nodes. Then

bTp* =Y (ANep* =) ce,
eeW ecW

since the potential difference between the two designated nodes is the sum of the potential drops along W. Thus any two
paths in supp(x*) connecting the two designated nodes must have the same cost and hence (assuming that any two such
paths have distinct cost) supp(x*) contains a single path connecting the two designated nodes. In fact, supp(x*) is equal to
such a path. Now D",y CeXe + Y oy Ce/Xe = D ey (CeXe +Ce/X.) is minimized for x, =1 for all e € W and then is equal to

6
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twice the cost of W. Of course, the cost of W is minimized for the shortest undirected path connecting the two designated
nodes.

We turn to the result of our computer experiments. We performed three case studies, two small and the third inspired
by the wet-lab experiment by [42]. The first example (Section 5.1) can be treated analytically, we consider a ring with three
nodes with a demand of one between any pair of nodes. We will see that a solution using all three edges is superior to
a solution using only two edges. Also, we see confirmed that for fixed points of the two-norm dynamics the cost of the
network and the total energy dissipation is the same. The second example (Section 5.2) concerns flow in the Bow-Tie graph
shown in Fig. 3. We will investigate the incentive for sharing links. In this example, the demands can share a link at the
cost of increasing the distance between the terminals. We will see that sharing pays off. The third Example 5.3 is based on
the example in [42]. We will see that the dynamics forms nice networks similar to the networks in [42].

4. Related work

This paper is inspired by [41], [45], and [42]. We already explained the connection to these papers in detail in the
previous sections.

Shortly after this work was posted on arXiv, a closely related paper [28] was posted. It considers the multi-commodity
transportation problem in graphs. Let A be the node-arc incidence matrix of a directed graph and vectors by to by with
17h; = 0 for all i be k supply-demand vectors. Each arc of the graph has a fixed cost c, and a capacity x.. This is what
we called the multi-commodity flow setting in Section 2. They model the interaction between the different commodities in
exactly the same way as we do, i.e., for each i, a minimum energy solution g; is a minimum energy solution with respect
to the resistances c./x. of the system Aq = b;. The different flows on each edge e are combined by forming their two-norm.
The difference lies in the dynamics. The paper considers the dynamics

e = XL 1A} — xe, (12)

where B € (0, 2) is a parameter. For 8 =1, this dynamics is a special case of our generalized dynamics obtained by setting
(@) =1+ -1).

The paper investigates the dynamics analytically and experimentally. For the experimental evaluation, the paper uses the
Paris metro. In the analytical part, the paper shows that the fixed points satisfy x?_ﬂ = Qe”% and that the solution to the
optimization problem

¢ _
minimize Z X—e Qe |3 subject to Zcexi P —Kand AQ =B,
e € e

where K is a positive constant, satisfies xg_ﬁ =C- HQeH%, where C is a constant, i.e., fixed points and optimal solutions to

the optimization problem exhibit the same relation between x, and Q.. The paper also contains an extensive discussion of
the simulation of the dynamics and of the numerical solution of the optimization problem above.

Convergence of the dynamics is not shown. However, a slight modification of the Lyapunov function used in this paper
also works for their dynamics. Assume 8 € (0, 2) and define

k
1( 1 R
L)==|—T*P+Y 0)HTp ).
(25
Lemma 3 (Gradient of L). Foralle € E,
0 Ce  1—
a0 =5 0 P 1Aeld). (13)

0
0Xe

1-p

Proof. The derivative K (b)Tp! is computed in Lemma 10 and &CTXZ*ﬁ =2 —-PB)cexe ¥. O

Theorem 4. The function £ : Q@ +— R is a Lyapunov function for the dynamics (12), i.e., %ﬁ(x(t)) <O0forallt. Let

V={xeQ:(VL(x),x)=0}.
Then V is equal to the fixed points of (12).

Proof. Since %ﬁ(x(t)) = (VL(x), X), we obtain

d o _ C _
L) =370 — 1Ael) - (1Al — xe) == 3 Sk — 1 Aell2)? <0,
e

e

We have equality if and only if for all e either x, =0 or HAE\@ = ngﬂ. Thus x € V if and only if x is a fixed point of (12). O

7
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Lemma 4. For fixed points x of (12), 3, cexz_ﬁ =3,)HTp;.
Proof.

SO P =YY L =3 ) Cera) =Y cexellAeli =Y el . O
e | ‘¢ e ‘¢ e e

1

We mentioned in the result section that our generalized Physarum dynamics converges to a solution for which the cost
> e CeXe is equal to the dissipated energy Zi(b')Tpi. The dynamics (12) allows a wider choice of equilibrium points.

5. Case studies
5.1. Multi-commodity flow in a ring

Consider a graph consisting of three vertices a, b, and ¢ and three edges connecting them into a 3-cycle. All edges have
cost one and we have a demand of one between any pair of nodes. An equilibrium uses either two edges or three edges.

5.1.1. Two edge solution

We will see below that, for each of the dynamics, the solution is symmetric, i.e., both edges have the same capacity in
equilibrium, say z. The flow across both edges is two. For each demand, the potential drop on each edge is 1/z. So the total
energy spent is £ =2/z+2-1/z=4/z (one demand uses two edges for a energy dissipation of 2/z and two demands use
one edge for a energy dissipation of 1/z each) and the total cost C =2z. Thus C + £ =4/z+ 2z.

One-norm dynamics: The current across each edge is 2 and hence z =2 for each of the existing edges. Thus C = cTz=4,
E=Y;b"YTp'=4/z=2,and C+E =6.

Two-norm dynamics The current across each edge is 1+ 1 and hence z=+/2. Thus C=c"z=2v2, £ =3 ,(b)7Tp' =
4/3/2=2+/2 and C 4 £ = 4+/2. Note that C = 24/2 = £. This is not a coincidence as we show in Lemma 9.

Optimum: We have C + € = 4/z + 2z. The optimum is attained for z = +/2. Note that this corresponds to the equilibrium of
the two-norm. This is not a coincidence as we show in Theorem 5.

5.1.2. Three edge solution

We will see below that, for each of the dynamics, the solution is symmetric, i.e., all edges have the same capacity in
equilibrium, say z, and hence the same resistance 1/z. Then C = 3z. Each demand is routed partly the short way and partly
the long way. Since the long way has twice the resistance, the amount routed the short way is twice the amount routed
the long way, i.e., 2/3 of each demand is routed the short way and 1/3 is routed the long way.

For each demand, let A be the potential drop between source and sink. The total energy spent is 3A. The potential
drop A must be such that it can drive a current of 2/3 across a wire of conductance z. Thus A = 2/(3z). We obtain
C+E=3z+2/z.

One-norm dynamics: z is equal to the total current flowing across an edge and hence z=2/3+2-1/3=4/3 and A =1/2.
SoC=cTz=4,E=Y,;b")Tp' =3/2, and C + € = 11/2. This is better than for the two-edge equilibrium.

Two-norm dynamics For each edge, we have one flow of value 2/3 and two flows of value 1/3 and hence z2 =4/9 +2 -
1/9=6/9. Thus z= /2/3. A must be such that it can drive a current of 2/3 across a wire of conductance /2/3 and hence
A =23

Hence C=c"z=3-2/3=+/6and £ =3 ;(b")Tp' =3 - /2/3 = V/6. Note that again we have the same value for the
cost C and the total energy spent . For the sum, we obtain C + £ = 2+/6. This is better than the two-edge equilibrium.

Optimum: For a general value of z, we have C + £ =3z + 2/z. This is minimized for z = /2/3, i.e,, the equilibrium of the
two-norm is equal to the minimum combined cost solution.

5.1.3. Computer simulations
Table 1 shows the results of a typical simulation. For the simulation we discretized the differential equation and applied
an Euler forward scheme.

5.2. The Bow-Tie Graph

Consider the graph shown in Fig. 2; we refer to this graph as a bow-tie. The edge costs are as shown and we are sending
one unit each between nodes 0 and 1 and nodes 4 and 5, i.e., bp = (1, —1,0,0,0,0) and b; = (0,0, 0,0, 1, —1). For each pair
the direct path connecting the pair has length 10, the path using the middle edge has length L + 2 and the path using the
edge connecting the other pair has length 14. Figs. 3 and 4 show the results of a simulation. Initial x-values were chosen
randomly in the interval [1, 10]. We observe:
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Table 1

The initial z-values were chosen randomly between
1/1000 and 1. In all cases, the system converged to the
3-edge equilibrium. Note that 0.82 ~ /2/3 and 1.33 ~
4/3.

the final z-values of the
three edges
two-norm dynamics  0.8160  0.8167  0.8166
one-norm dynamics 1331 1.327 1.342

10

10

Fig. 2. The top and the bottom horizontal edge have cost 10, the middle horizontal edge has cost L, and all other edges have cost 1. We are sending one
unit between nodes 0 and 1 and one unit between nodes 4 and 5.

two-norm one-norm two-norm one-norm

—q o —x X,

—_— (1 —_ o e
a g - o @ =l

8 8.5 9 9.5 10
L

Fig. 3. Simulation of the Bow-Tie Graph: The plot depicts the quantities q{]l’, qs,}), and qil) (= the split-up of the flow from node 0 to node 1 across the three

horizontal edges bottom, middle, and top) and xp, (= the capacity of the middle edge) as a function of L in the range [8, 10.3]. For L < 8, the quantifies are

as for L =8, and for L > 10.3, the quantities are as for L = 10.3. For ¢‘® the flow across the middle edge is the same and the flow across the other edges is

reversed. For all L, q,(J” +q,(,}) +q§” =1. (1) The image on the left shows q;’” and q}”. (2) The image on the right shows the capacity x, and the flow q,(,}’

across the middle edge. We have x,, = ,/2(q,‘,})) = \f}q,(,}) in the case of the two-norm and x,;, = Zq},}) in the case of the one-norm. (For interpretation of
the colors in the figure(s), the reader is referred to the web version of this article.)

e For L <8, both dynamics generate essentially the same solution. All flow is essentially routed through the middle edge.

e For the two-norm dynamics: For L < 8.5, the sharing effect is strong and basically all flow is routed through the middle
edge. Note that for L > 8, the path through the middle edge is not the shortest path for either demand. Starting at
L = 8.5, the top and the bottom edge are also used. For L > 10, only the top and the bottom edge are used and this
may give the impression that there is no sharing effect for large L. This is not the case. The solution for L = oo is easily
computed analytically. Because of symmetry, a fraction a of each flow is routed the short way (length 10) and a fraction
1 —a is routed the long way (length 14). So through each edge, we have a flow of value a and a flow of value 1 —a
and hence all edges will have the same capacity in equilibrium; call it x. Therefore the flows must be in the same ratio
as the costs, i.e., a/(1 —a) = 10/14. This solves to a = 7/12. Then x = /a2 + (1 —a)? = ~/74/12 ~ 8.6023. The cost of
the network is then 24 - /74/12 = 24/74 ~ 17.2 and the dissipated energy is the same. Assume now that we delete
the vertical edges. Then each demand is routed separately and the bottom and the top edge will have a capacity of one
each. The cost of the network will be 20 and the dissipated energy will also be 20. This is considerably more than the
cost of the network constructed by our dynamics.

e For the one-norm dynamics: Starting at L = 8.05, the top and the bottom edge are also used. For L > 10.3, only the top
and the bottom edge are used.
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L 6.5 6.8 7.1 7.4 7.7 8.0 8.3 8.6 8.9 9.2 9.5 9.8
C | 132 | 136 | 140 | 145 149 | 153 15.7 16.1 164 | 166 | 16.7 | 16.7
£ 132 | 136 | 140 | 145 149 | 153 15.7 16.1 164 | 166 | 16.7 16.7

Fig. 4. Simulation results for the two-norm dynamics for the bow-tie graph. The cost C = cTx and the energy £ = Zi(bi)Tpi for the limit states for different
values of L. Note that C = £ always.

NN e
NN SEA

NN e e
B =S e

Fig. 5. The polygonal region on the left is a digitization of the Greater Tokyo Region. The red dots indicate major cities. We set up 140 demands. For each
red city, we created a demand of one unit to any other red city within a certain distance threshold. The threshold is about 1/2 the distance between the
topmost and the bottommost red point. The region on the right is approximately the right lower quadrant of the region on the left. For the placement
of the terminals we tried to copy the placement shown in Fig. 1. We set up 282 demands, again between cities below a certain distance threshold. The
demands are one, except if one of the terminals corresponds to Tokyo. Then the demand is seven; this is as in [42].

e For the two-norm dynamics, the cost C and the dissipated energy £ are equal in the limit; see Fig. 4.

5.3. A case study inspired by [42]

In [42] the slime molds ability to construct elegant networks in investigated. The slime is allowed to grow in a region
that is shaped according to the greater Tokyo region and food is provided at many different places. Fig. 1 shows the results
of the wet-lab experiment and compares a network constructed by the slime to the railroad network around Tokyo. The
paper also reports about a computer experiment. Repeatedly a pair of food sources was chosen at random and a step of the
shortest path dynamics was executed. Figure 4 in [42] shows the results of the computer experiment. No details are given
in the paper and also the positions of the food sources are not given in detail.

We tried to repeat the experiment with the two-norm dynamics. For this purpose, we digitized the boundary of the
Greater Tokyo region in the form of a polygonal region and overlayed a regular grid in which each node is connected to
its up to eight neighbors (north, northwest, west, southwest, south, southeast, east, northeast) inside the region. The edge
lengths are 1 for the horizontal and vertical edges and 1.41 for the diagonal edges. We perturbed the edge lengths slightly
by adding r - 0.05 for a random integer r € [—3, 3] so as to avoid many equal length path. We chose the terminals in two
different ways.

First choice: We chose the largest 25 cities in Greater Tokyo region according to Wikipedia and generated 140 demands.
Each city was connected to all other cities whose distance is below a certain threshold. For the threshold we chose
about 1/2 times the diameter of the region. The left side of Fig. 5 shows the input and Fig. 6 shows the output of
a computer simulation.

Second choice: We mimicked the choice of sites used in [42]. We generated 282 demands again between any pair of sites
whose distance is below a certain threshold. The demands are 1, except if one of the terminals corresponds to
Tokyo. Then the demand is seven; this is as in [42]. The right side of Fig. 5 shows the input and Fig. 7 shows the
output of a computer simulation.

6. Preliminaries

We recall the definition of energy dissipation and cost. For a capacity vector x € RT; and a vector f € R™ with
supp(f) C supp(x), we use

10
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70N
A AKX
XXIXIXIXIXIXIXIXIN

Fig. 6. An output of a simulation of the two-norm dynamics on the left instance in Fig. 5. The graph in the upper left corner shows the initial graph. Each
node is connected to its up to 8 neighbors. The length of the horizontal and vertical edges is approximately 1, the length of the diagonals is approximately
1.41. All capacities are 0.5 initially and the capacity of an edge is indicated by its thickness. The following figures show the state after 1950 and 4875
iterations. For the situation after 4875 iterations, we also show the reduced graph where we iteratively removed nodes of degree one (which are not
terminals). The numbers inside the nodes are unique identifiers; they have no meaning beyond this.

Yoe(ce/xe) 2 if supp f < suppx,
00 if supp f ¢ suppx,

to denote the energy dissipation of f with respect to x. Strictly speaking we should sum only over the e in suppx. We use
the convention 0%/0 =0 to justify summing over all edges e. Further, we use

C(f)=) celfel =cT|f]

Ex(f) = {

to denote the cost of f. Note that
Ex() =) (Ce/Xe)X; = ) _ CeXe =C(X).
e e

We use R to denote the diagonal matrix with entries c./x.. Energy-minimizing solutions are induced by node potentials
p € R" according to the following equations:

g=R1ATp, (15)
AR 1ATp=b. (16)
11
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SO
XXX XX XXX
PR EAXIEXPDAN,
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Fig. 7. An output of a simulation of the two-norm dynamics on the right instance in Fig. 5. The graph in the upper left corner shows the initial graph. Each
node is connected to its up to 8 neighbors. The length of the horizontal and vertical edges is approximately 1, the length of the diagonals is approximately
1.41. All capacities are 0.5 initially and the capacity of an edge is indicated by its thickness. The figure on the right show the state after 16000 iterations
where we iteratively removed nodes of degree one.

We give a short justification why the equations above characterize the energy minimizing solution to the linear system.
The energy minimizing solution g minimizes the quadratic function Ze(ce/xe)qg subject to the constraints Aq =b and
supp(q) < supp(x). The KKT conditions (see [16, Subsection 5.5]) state that at the optimum, the gradient of the objective is
a linear combination of the gradients of the constraints, i.e.,

2(Ce/Xe)qe = Z p"A,',e for all e € supp(x)
i

for some vector p € R" and g, = 0 for e ¢ supp(x). Absorbing the factor 2 into p yields equation (15). Substitution of (15)
into (14) gives (16). The energy-minimizing solution is unique. It exists if and only if b € ImA. Node potentials p are not
unique, but the values of b p and pTL(x)p are equal for all solutions of (16).

Lemma 5. Assume x > 0. Then KerL(x) = KerA” and ImL(x) = ImA. The values b” p, pT L(x)p and q = XC~' AT p do not depend on
the particular solution of L(x)p = b.

Proof. Clearly, KerAT C KerL(x). So assume z € KerL(x). Then L(x)z =0 and hence z"L(x)z = 0. Let D'/2 be the diagonal
matrix with entries /X, /ce. Then

0=2z"L(x)z=2z"ADV2DV2ATz = |DV/2AT 7|
and hence D'/2ATz =0 and further 0= ATz. So z € KerAT.
Clearly, ImL(x) € ImA. So assume b ¢ ImL(x). Then the rank of the matrix obtained by augmenting L(x) by the column
b is larger than the rank of L(x) (Rouché-Capelli theorem) and hence there is a vector r such that r'b 0 and r"L(x) = 0.
Since L(x) is symmetric, L(x)r =0 and hence r € KerL(x) = KerAT. So 0= ATr = (rT A)T. Thus r also proves b ¢ ImA.
Let p and p be node potentials. Then L(x)p =b = L(x)p and hence p — p € KerL(x). Then
b'p=b"p+b"(p—p)=b"p+p" L0 B-p)=b"p+p LX)B-p)=bp
and
XCTIATp=XC'ATp+ XCT'AT(p —p) = XC1ATp.
Finally, T p = pTL(x)p. O

For the arc-node incidence matrix A of a connected graph, the kernel KerAT consists of the all-ones vector in R". We
can make the node potential unique by requiring p, =0 for some fixed node v, i.e., by grounding node v.

Lemma 6. Let ¢ be the dimension of KerAT and let K € R™*¢ be a matrix whose columns form a basis of KerAT. Let V' C [n] with
|V’| = ¢ be such that the submatrix of K with rows selected by V' is nonsingular. Then the solution p to L(x)p = b with p, = 0 for all

v € V' is unique, i.e. “grounding all nodes in V' makes the potential unique”.

12
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Proof. Observe first that such a solution exists. Let p be an arbitrary solution to L(x)p = b. Then there is a vector A € R¢
such that (KA), = py for all v € V' and hence p — K2 is the desired node potential. Assume now that we have two solutions
p and p’ with p, = p/, for all ve V'. Then p — p’ € KerL(x) = KerAT and (p — p’), =0 for all v € V. Since p — p’ € KerAT
there is a » € R¢ such that p— p’ = KA. Then (KA), =0 for all v € V’. Since the columns of K are independent, this implies
A=0and hence p=p’. O

The next Lemma gives alternative expressions for the energy Ex(q) of the minimum energy solution.
Lemma 7. Ex(q) = Y_,(ce/Xe)q2 =b" p = pT L(x)p, where p is any solution of (16).
Proof. This holds since
Ex(@=q"Rg=p"AR"'RR™'ATp=p"ART'ATp=p"Lp=p"b. O

Finally, we recapitulate a bound on the components of q established in [40] and slightly improved form in [10, Lemma
3.3].

Lemma 8. Let D be the maximum absolute value of a square submatrix of A. Then |qe| < D|b||1 for every e € [m].
7. Existence of a solution

We prove Theorem 1. The right-hand side (8) is locally Lipschitz-continuous in x. The function g, is locally Lipschitz by
assumption, the g’s are infinitely often differentiable rational functions in the x, and hence locally Lipschitz. Furthermore,
locally Lipschitz-continuous functions are closed under additions and multiplications. Thus x(t) is defined and unique for
t € [0, tp) for some to.

Since g, is non-negative, we have X, > —x and thus x, > x.(0)e~t. Hence, x(t) > 0 for all t. By assumption b’ € ImA for
all i, and hence whenever x(t) > 0, we have solutions q' with supp(q’) C supp(x).

In Section 9, we will show that £ is a Lyapunov function for the dynamics (8). Thus

cTx < £(x) < L(x(0))

and hence x stays in a bounded domain.
It now follows from general results about the solutions of ordinary differential equations [20, Corollary 3.2] that ty = co.

8. Fixed points

A point x is a fixed point iff X =0. We use F; for the set of fixed points of (8).

Lemma 9 (The fixed points of the generalized Physarum dynamics). x € Fy iff for all e either x. = 0 or | A¢ |2 = 1. The latter condition
is equivalent to xe = | Qell2 or [ (AT)e P2 = ce. For x € Fg, C(x) =EX).

Proof. We have % = 0 iff we have x, =0 or g.(| A¢2) =1 for all e. Since g, is increasing and g.(1) =1, the latter condition

is tantamount to || Al = 1 which expands to 3;((AT), P)? = c2. Multiplying both sides by (xe/c.)? yields x2 = 3;(Qe.i)%.
For x € Fg, we have

E0 =YD Q=) =) e =C0. D

9. Lyapunov function

Let

k
L(x) = % (ch + Z(bf)Tpf) )
i=1

We will show that £ is a Lyapunov function for the dynamics (8). The function £ was introduced in [19]. For k =1, [18]
shows that £ is a Lyapunov function for the one-norm dynamics and [27] shows that this holds true also for the generalized
Physarum dynamics. The calculations below generalize the calculations in these papers. They are similar to the calculations
in [14, Lemma 2.6].

13
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Lemma 10 (Gradient of L). Foralle € E,

d _Ce . 2
KE(X)_ZO lAell3)- (17)

Proof. Recall L(x) = AXC™1AT. Let e € [m] be arbitrary. Then %L(x) = C]—eAe(AT)E. From L(x)p =b and %b =0, we obtain

0= "1 L()+L()
0%, x)p = 3xe p
and thus
0 1
L(x)a—p =——A%AT),p.
Xe Ce

Hence, we have

<AT>ep>2

0 1
—pr bT pTL<x>—p=——pTA9<AT)ep:—ce( .
e

0Xe Xe 0Xe Ce

and more generally,

N\ 2
P i X (AT i
So 2P =—c } (%) = —Cel| Aell5-
e . e
1

i

The claim follows. O

Theorem 5. The function L : Q — R is a Lyapunov function for the dynamics (8), i.e., L(x) > 0 for all x € Q, and %ﬁ(x(t)) <0 for
allt. Let

V={xeQ:(VL(x),x)=0}.
ThenV = Fj.

Proof. E(x) >0 for all x € Q is obvious.
Since dtﬁ(x(t)) = (VL(x), x), we obtain

C
Ez:o«(t)) =2 5 (= lAel3)  Xe(ge(lAell) = 1) <0,
e
where the inequality holds since ge(||A¢l2) — 1 and |[A¢|2 — 1 have the same sign, as g is a non-negative and increasing
function with g.(1) =1.
We have equality if and only if for all e either X =0 or Ae =1. Thus xe V if and only if xe Fg. O

10. Further properties of the Lyapunov minimum

We give two alternative characterizations for the minimum of the Lyapunov function. This extends [18, Proposition 2]
from k =1 to arbitrary k.

Theorem 6. The following quantities MinQ, MaxP, and MinL are equal.

MinQ = min o :AQ =B}, 18

Q QeRmxk{Z elQell2 : AQ } (18)

MaxP = max {TrB Pl:|(A )eP||2<ceforalle} (19)
PeRmx

MinL = min L(x). (20)
XER'Z"O

Moreover, there are optimizers Q *, P* and x* such that

X, =[Qgl2 foralle,
L(x*)P*=B
Q* — X*C_]ATP*.

14
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Lemma 11. Let Q * be a minimizer of (18) and let x* be defined by x; = ||Q/ |2 for all e. Then x* € Fg. Moreover, there is a potential
matrix P € R"™* such that L(x*)P = B and Q = X*C~'ATP, 3", cellQell2 = Tr[BT P]1 = L(x*), and ||(AT)¢ P2 < c. for all e. The
objective values of (18) to (20) satisfy MinL < MinQ < MaxP.

Proof. We start by slightly reformulating the minimization problem (18). This is necessary since the function Q. > [|Qel2
is not differentiable for Q. = 0 and hence the KKT-conditions cannot be applied. We formulate equivalently:

mianexe subjectto AQ = B, xg > Qe ||§, Xe > 0foralle,
e
with variables Q € R™* and x € R™. Let Q* and x* be an optimal solution. Then clearly Xy = [QFl for all e. Using

the Lagrange multipliers P € R™¥ for the equations AQ = B, and « € RT, and g € RT, for the inequalities, the KKT
conditions [16, Subsection 5.5] become

Ce — 20teX — B =0 foralle, (21)
PT(AT)e +20,Q} =0 foralle, (22)
e ((X)? — Q215 =0 foralle, (23)

Bexi=0 foralle. (24)

Here the first two conditions state that at the optimum, the gradient of the objective with respect to the variables x, and
Qe,; must be linear combinations of the gradients of the active constraints and the last two conditions are complementary
slackness (= a Lagrange multiplier can only be non-zero if the constraint is tight). We also have the feasibility constraints

AQ* =B, (25)
xi>0andx} > ||Qc|2 foralle. (26)

Separating the two terms in (22), squaring and summing over i, and using (22) and (21), we obtain

IAT)PI5 =D (P Aei)® =402 Q115 = 4o (x})* = (ce — Be)* <3,
i

where the last inequality uses Se = 0 if x; > 0 by (24) and Be = c. if x; =0 by (21).
If Q) #0, then x} # 0 and hence B =0 and ce = 2aex; or 2ae = Ce/X;. In particular, e 7 0 and hence (22) implies

1 x5
* __ e AT
Q. = —zae Ev PyAye= —Ce A P. (27)

This equation also holds if Q=0 and hence x} = 0. Multiplying by (AT), from the left and summing over e yields
B=AQ*=AXC'ATP. (28)

Thus P! is a potential for the i-th problem with respect to x* and, by (27) (Q*) is the corresponding electrical flow. Thus
x* € Fy by Lemma 2. Moreover,

1 1

= Z Pv,iAv,eQ;,'

i,v.e
Z Pv,iAv,eQ;i
i,v.e, Qe#0
Qi Qi
= 2 Ceom.
Qell2

ie, Qe#0
> el Qg
e

Here the fourth equality comes from (27) and x} # 0 if Q. # 0; note that

*

C Q).
AvePyi=(A1)oPi= 2Q* =co—t .
ij vePui = (AN)ePi = Q¢ = Cepps -

15
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We conclude that P is a feasible solution to (19). Thus MaxP > MinQ.
Since x* € Fg, L(x*) =cTx* =Tr[PTL(x*)P]. Also, x} = [ Q|> by definition of x*. Thus

Y cellQgllz =cTx* = LK)
e
and hence MinL <MinQ. O
Lemma 12. MaxP < MinL.
Proof. The constraint |[(AT).P|2 <ce in (19) can be equivalently written as
Ce 1 7 2
—(I—(A")eP5—1]) <0O.
> (Ilce( JePl3 <

Then the Lagrange dual with non-negative multipliers x. is an upper bound for MaxP, i.e.,

; : XeC, 1
MaxP < inf bHTpi— e 1—@aDeP2-1).
ax _;rzlosgplZ( ) Z 5 ”ce( JePll3

e

The inner supremum can be reformulated as
. | . o1
sup Y ()P — =Y (PHTL(x)P 4+ =cTx, (29)
DAUEWGTS

since (Xe/e) Y j((AT)eP1)? = 3 ;(P)T A¢(x /ce)(AT)e P'. Only the first two terms in (29) depend on P. We want to deter-
mine the maximizer®> P(x). Taking partial derivatives with respect to the vectors P! leads to the system
AXC71A.Pi(x)=b' foralli,

i.e. Pi(x) is a solution to L(x)Pi(x) =b' for each i. Since

> () P =TrBTPX)] =T P LX) P ()] =Y (P () LXP (%)
substituting into (29) yields

<Tr[BTP(x)] + ch) —L(x). D

1 . 1 1
sup Y (B0 P = 5 (P L P+ oclx=
i i

Lemma 13. Let x* € R, be a minimizer of L(x). Then x* € Fg. Let P be a solution to L(x*)P = B and let Q = X*C~1ATP. Then
Y e CellQell2 = L(x*) and hence MinQ < MinL.

Proof. Since L(x(t)) is a Lyapunov function of the generalized Physarum dynamics we have x* € V. Since V = Fg, x* is a

fixed point and hence for all e, either x; =0 or ||A.[l = 1. Since x* is a fixed point, we have L(x*) = cTx* =Tr[PTL(x*)P]
and x} = [|Qell2 for all e. Thus
D el Qellz =c"x* = £(x*)
e
and hence MinQ < MinL. O

11. Convergence to the Lyapunov minimizer

We show that the dynamics converges to the minimizer x* of the Lyapunov function under the assumption that the set
of fixed points of the dynamics is a discrete set.

Assumption 1 (Discrete Set of Fixed Points). Fg is a finite set of points. For any two points in Fg, the values of £ are distinct.

Theorem 7. Let x* = argmin, o £(x). Under the additional Assumption 1, the generalized Physarum dynamics x(t) converges to x*.

3 In the proof of Lemma 5, we have seen that L(x) = AD"/2D'/2AT and hence b] P! — (P")TL[x]P! =b] P! — | D'/2AT P{||3. Thus the maximizer is a finite
point.
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Proof. Since L£(x(t)) is non-increasing and non-negative, the dynamics x(t) converges to the set V. By Theorem 5, V = Fj.
Since Fg is assumed to be a finite set and any two fixed points have distinct values of £, there is a fixed point X =
lim;_, o, X(t). Assume for the sake of a contradiction, £(X) > L£(x*). Let P(t) be the node potential corresponding to x(t) and
let P be the potential corresponding to X; recall that node potentials are unique. Since P(t) is a continuous function of x(t),

P(t) —> P as t — co. Let £ = {e : \IAZf’llz <ce } C E and consider the following chain of inequalities:

ng{TﬂBTP]WVanzscemraHeeE};zTﬂBTﬁ]
=L{)
> L(x*)
:HEX{THBTPLHAszgcebraHeeE},
where the first inequality follows by the definition of E, the first equality follows from Lemma 2, the strict inequality holds

by assumption and the last equality follows from Theorem 6. We conclude that Eisa proper subset of E.
Let e € E\E be arbitrary. Then [|[(AT)¢P|2 > c. and hence there are ty > 0 and & > 0 such that for every t >ty we have

AT P(t
HM@M=MJTQE>Hﬁ

[

Since g, is an increasing function with g.(1) =1, there is an « > 0 such that for all t > t¢

e (lAe®)l2) = 8e(1+e)=1+a.
Then, for the generalized dynamics we have

Xe(t) =Xe () - (ge(I1Ae(O)]12) = 1) = Xe(£) - (ge(1 +8) — 1) > axe(t).
Further, by Gronwall's Lemma, it follows that

Xe(t) > Xe(to) - €%,
and thus

Re = lim Xe(t) > Xe(tg) - lim €% = 4o00.

t—o0 t—o0

This is a contradiction to the fact that X, is bounded.
Finally, if £(x(t)) converges to miny>o £(x) and the minimizer x* of £ is unique, then x(t) must converge to x*. O

We conjecture that x(t) always converges to some minimizer of L. If there are several minimizers of £, the limit depends
on the initial configuration and the function g. Consider the following simple example. We have a network with two nodes
connected by two links of the same cost, k =1 and the goal is to send one unit between the two nodes. Let x; and x; be
the capacities of the two links, respectively. For g(z) = z, any combination (x1, x) with x; +x, =1 is a fixed point.

12. A connection to mirror descent

We show that the mirror descent dynamics on the Lyapunov function £ is equal to a variant of the non-uniform squared
Physarum dynamics.

Lemma 14. The dynamics

d Ce 2
() = Sxe(0) (I1Ael3 — 1)

is equivalent to the mirror descent dynamics on the Lyapunov function L.

Proof. By Lemma 10, we have for every index e € E that
d Ce 2
—Lx)=—0—|A . 30

% ) 2( [ Aell3) (30)

On the other hand, the mirror descent dynamics on the Lyapunov function £ is given by

(30) Ce

=2«mmm@4ym

d d
Exe (£) = —xe(t) a—xeﬁ(xe ®)

17

45



V. Bonifaci, E. Facca, E Folz et al. Theoretical Computer Science 920 (2022) 1-20

As is [14], we can use the connection to mirror descent to estimate the speed of convergence of the Physarum dynamics
to the Lyapunov minimum; [14] builds up on [3,44].

For a differentiable function f in m variables, the Bregman divergence Dy is a function in 2m variables defined by the
equation

Dix,)=fX)—f¥)—(Vf.x—y),

i.e,, as the difference of the function value at x and the value at x of the tangent plane to f at y. Clearly, if f is convex, D
is non-negative.

Lemma 15. Leth : R’go — R be defined by
h(x) = er Inx, — er.
e e

Then h is convex on R, Dy, is non-negative, and

Dp(x,y) = er Inxe — er Inye — er +Z}’es
e e e e

Proof. The function h is convex in x, (partial derivative Inx, and second partial derivative 1/x.). For its Bregman divergence
Dy, we compute

Dp(x,y) =h(x) —h(y) — (Vh(y),x — y)

:erlnxe - er - (ZYe Inye _ZYe) _Z(Xe —Ye)Inye
e e e e e

:erlnxe - er Inye —er—i—Zye.
e e e e

So Dy, is the relative entropy function. O

Fact 1. [14, Lemma 2.2] L is convex.

Theorem 8. Let x* be the global minimizer of L(x). For the dynamics X, = (Ce/2) - Xe (|| Ae H% — 1), we have
L(x(1) < L&) + %Dh(x*’ x(0)),

forallt > 0. In particular,
t1—1>n(;lo LX) = L(X*).

Proof. According to (30) we have

il C .
g £00 =5 (1= 18elB) and ke = e (o1l ~1).

The time derivative of Dy (x*, x(t)) is given by
d d & d d d
EDh(x*’x) = ;x;‘; Inx} — p Xezxg Inx, — o Xe:X: +o Xe:XE
m
1 d d
= ZX: (_Z . EXe) + Z aXe
e=1 e
C
=D (e =X (A3 = 1)
e
= —((x —x%), VL((1))).
We now consider the function
H(t) = Dp(x*, X(t)) +t [L(x(1)) — L]
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Since %L(x) <0, by Lemma 5, and D, (x*, x) > 0 for all x, we obtain

%’H(t) =— (Vﬁ(x(t)), x(t) — x*) + L(x(t)) — L(x*) +t- %ﬁ(x(t))
< —[£@*) — L&®) — (VL x* = x(O)]
=—Do(x",x(t)
<0.
Hence H(t) < H(0) for all t > 0 and therefore

Dp(x*, x(6)) +t [L(x(t) — LK) ] < Dp(x*, X(0)) + 0 [L(x(0)) — L],

and further (using Dy (x*, x(t)) > 0)

L) < L&) + %Dh<x*,x<0>). o

13. Conclusions

We proposed a variant of the Physarum dynamics suitable for network design. We exhibited a Lyapunov function for the
dynamics, proved convergence of the dynamics, and gave alternative characterizations for the minimum of the Lyapunov
function. In the experimental part, we showed that the dynamics captures the positive effect of sharing links and is able to
construct nice networks.

Many questions remain open. We do not claim any biological plausibility for our proposal and we have studied one
particular form of the dynamics, namely X, = |ge| — X.. Other dynamics have been studied for the shortest path problem,
e.g., Xe = |qe|* — Xxe with ;> 1 or X, = aeli—eic‘m — Xe [32,29]. The latter paper also studies the influence of noise on the
dynamics. An extension to network design would be interesting.

The papers mentioned in the preceding paragraph are theory papers that investigate variants of the basic dynamics (1).
A different line of research aims at a deeper understanding of the inner workings of Physarum polycephalum, for example,
how global synchronization can result from random peristaltics [1], how information can be transported and a memory can
exist in an organism without a nervous system [2,25], and whether tubes of the mold can transfer electricity [43]. There
seems to be little connection between these lines of research.

We used an Euler discretization of the dynamics for the experiments in Section 5. The resulting algorithm is quite slow.
The Lyapunov function £ is a convex function and hence the tool box of convex optimization is available for computing its
minimum. Does this lead to a practical algorithm for network design? [45] also uses an Euler discretization of the dynamics
for their computer experiments. They speed-up the computation by considering only a random subset of the demands
instead of all demands in each iteration. If the random subset is not too small, the dynamics seem to converge to the same
solution. Is this true generally?
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Abstract:

We analyze transport on a graph with multiple constraints and where the weight
of the edges connecting the nodes is a dynamical variable. The network dynamics
results from the interplay between a nonlinear function of the flow, dissipation, and
Gaussian, additive noise. For a given set of parameters and finite noise amplitudes,
the network self-organizes into one of several metastable configurations, according to
a probability distribution that depends on the noise amplitude . At a finite value «,
we find a resonantlike behavior for which one network topology is the most probable
stationary state. This specific topology maximizes the robustness and transport
efficiency, it is reached with the maximal convergence rate, and it is not found by
the noiseless dynamics. We argue that this behavior is a manifestation of noise-
induced resonances in network self-organization. Our findings show that stochastic
dynamics can boost transport on a nonlinear network and, further, suggest a change
of paradigm about the role of noise in optimization algorithms.
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function of the flow, dissipation, and Gaussian, additive noise. For a given set of parameters and finite noise
amplitudes, the network self-organizes into one of several metastable configurations, according to a
probability distribution that depends on the noise amplitude a. At a finite value @, we find a resonantlike
behavior for which one network topology is the most probable stationary state. This specific topology
maximizes the robustness and transport efficiency, it is reached with the maximal convergence rate, and it is
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resonances in network self-organization. Our findings show that stochastic dynamics can boost transport on
a nonlinear network and, further, suggest a change of paradigm about the role of noise in optimization
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The ability to extract information from large databases
has become essential to modern science and technologies.
This quest is central to foundational studies, such as in
astronomy, for shedding light on the constitution of
our Universe [1], and in particle physics, for efficiently
identifying relevant events in high-energy physics experi-
ments [2], as well as to applications, such as the design of
efficient power grids [3] and the sustainable exploitation of
water supplies [4]. A question lying at the core of these
efforts is, what are the key ingredients and dynamics at the
basis of an efficient search in a generic database? This
question encompasses a large number of physically rel-
evant situations, including the determination of the ground
state of a quantum many-body problem [5-7], the transport
of excitons [8,9] and cells [10,11], and the search for food
by living organisms [12,13]. The latter is a precious source
of insights because of organisms’ capability to extract
information from and adapt to a dynamically changing
environment [12,14]. One example is the food search of
Physarum polycephalum and of ant colonies, that have
inspired optimization algorithms successfully applied to
real-world optimization problems [12,13,15-17].

One relevant aspect of biological systems is the
capability to efficiently extract relevant information for
their survival in a noisy environment, where parameters
fluctuate and the amount and location of food sources can
change over time. For instance, models simulating excit-
able systems, such as forest fires [18] and neurons [19],
show that noise can lead to qualitatively different effects.
These include phenomena such as stochastic and coher-
ence resonance [19-21], synchronization [22,23], and

0031-9007/23/130(26)/267401(6)

267401-1

noise-induced phase transitions [24,25]. A systematic
understanding of the role of noise in a search problem
would shed light on its role in cooperative dynamics,
including neural networks, and might initiate novel
applications to optimization problems.

In this work, we analyze the self-organization dynamics
of a network in the presence of additive noise and with
multiple constraints to be satisfied. The constraints are two
pairs of source and sink nodes, as illustrated in Fig. 1(a), at
which a constant flow is injected and extracted, respec-
tively. In computer science, it is a multicommodity prob-
lem: each pair of source and sink is a demand to be satisfied
and the path satisfying the demand is a flow of commodity
[26,27]. Examples are a city transport network, where each
commodity is the passengers traveling between two sta-
tions, or an electrical circuit, where the commodity is the
electrical current satisfying a given potential difference
between two nodes. The optimal path is a network topology
obtained by integrating a set of equations for the graph’s
nodes and edges, where the strength of the edges, deter-
mining the edge capacity [26], is a dynamical variable
subject to the competition between dissipation and an
activation force depending on the total flow across the
edge [12,15,26,27]. In the absence of noise, the dynamics
tends to identify the optimal path satisfying the constraints
according to a rule that promotes transport along shared
routes and instead inhibits it when the flow along one edge
is below a chosen threshold. Differing from the typical
settings, in this work, we assume that the edge capacity can
also fluctuate due to a Langevin force [28]. We show that
the introduction of stochasticity has a dramatic impact on

© 2023 American Physical Society
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FIG. 1.

(@)

0 X 30

(a) Network self-organization is simulated on a grid of 31 x 31 nodes with two demands. The demands are indicated by the

pairs of red and yellow nodes, the sources are labeled by s, the sinks by s; the inset shows that the nodes are connected by horizontal,
vertical, and diagonal edges. The network design results from the dynamics of the edges, which are modeled by time-varying
conductivity D, , on an electrical network and in the presence of additive noise according to Egs. (1) and (2). Panels (b) and (c) display
the networks reached after a sufficiently long integration time in the noiseless case (@ = 0) and for a = 0.002, respectively. The widths
of the edges are proportional to the corresponding amplitude of D, ,.. Panel (d) displays the multiscale backbone extracted from (c) using
a filtering procedure (see text). See Fig. 2 for details on the numerical simulations.

the convergence to the optimal path. Among several
noteworthy features, the solutions follow a multistable
distribution that undergoes discontinuous transitions as a
function of the noise amplitude. Remarkably, the distri-
bution exhibits a resonant type of behavior as a function of
the noise strength. In fact, for a finite range of noise
amplitudes the network self-organizes into a topology that
maximizes its robustness and that is not found by the
noiseless dynamics.

Model.—In the following, we will refer to the multi-
commodity problem in terms of currents in an electrical
circuit, keeping in mind that this is just one possible
example. The edge capacity is determined by the conduc-
tivity, which is a dynamical variable. The circuit consists of
a spatial grid composed of 31 x 31 nodes. Each node,
labeled u, can connect to a number of nearest and next-
nearest neighbors, described by the set E,, [see the inset of
Fig. 1(a)]. The emerging networks need to serve two
demands i = 1, 2, each represented by a source node s*.
and a sink node s’, where a current is injected (+1;) and
extracted (—1;), respectively. Each demand generates a flow
across the network: The flow of the demand i is composed
of the contributions Qf , at the edge connecting nodes
(u, v). The flow of each demand is conserved at each node
U, Y ek, Q!,, = 0 (Kirchhoff’s law) except for the source

and sink where ZveEﬁ Qi’:.v = +1I;. The flow of the

demand i along the edge (u, v) is proportional to the edge
conductivity D, ,(r) and to the difference between the
potentials of the two nodes pi(¢) and pi(t):

Dll‘l) (t)

(1) =
u.L() L

[P (1) = p(1)]. )

u,v

where L, , is the edge length and is constant. The edge
dynamics is described by the coupled dynamical variables
p, and D, ,. The potential pi, is determined for each
demand i as a function of D, () by solving the linear set
of equations in Eq. (1) with Kirchhoff’s law, as detailed in

Ref. [26] and in the Supplemental Material (SM) [29].
The conductivity D, ,(f) obeys the stochastic nonlinear
equation [30,31]:

atDu.r = f(Qub) - yDu.v + \/Z—Vaéu,t*(t)' (2)
Here, f(x) is the activation function with sigmoidal form:
f(x) = x"/(k" + x") withn > 0 (in what follows we choose
n = 1.2), the argument is the total flow along the edge,
Quv=>:10i,], and f saturates when Q, , exceeds the
threshold k. Hence, f(x) gives rise to an effective interaction
between demands that favors the sharing of transport routes
between commodities. The activation is counteracted by
dissipation at rate y. Fluctuations in the conductivity are
simulated by the stochastic force £(f), whose amplitude is
scaled by the parameter a. The force is statistically defined by
the average over an ensemble of trajectories: it has no net
drift, (£,,(r)) =0, and simulates Gaussian white noise,
<§u,v(t)§u’.r’(ﬂ)> = éu,u/év.l/é(t - t,) [28532]

Our model shares analogies with resistor networks [33]
but is essentially different in that the edge conductivities
(the metric) are dynamical variables. Equations (1) and (2),
in the absence of noise, were used in Ref. [15] for modeling
the structures built by a unicellular organism for food
search in a maze [34] and on a graph simulating the Tokyo
railroad system [35]. These equations set the basis for
optimization algorithms [12] and have been applied to
multicommodity problems [26,27] using other classes of
activation functions than the sigmoidal functions. The
studies of Refs. [26,27] showed that the dynamics con-
verges toward networks optimizing between the sharing of
transport routes, favored by the activation function, and the
total cost of the network (here given by the total length of
the edges of the closed paths) that is controlled by
dissipation. In Refs. [30,31], stochastic forces were added
to the model for one single demand connected by two paths
of the same length but different, periodically varying,
dissipation rates. In Ref. [31], the resulting flow was
analyzed as a function of the frequency of the dissipation
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FIG. 2. Network topologies for increasing values of the noise amplitude a (from a@ = 0 to a = 0.005). (A) is the noiseless case,
(B)—(G) are the typical backbones for a > 0; the probability of their occurrence depends on « and is shown in Fig. 3 [for (D) and (E) we
report one of the two symmetric configurations]. The networks are the result of the time evolution of Egs. (1) and (2) for a time
t = 250y~! imposing /; = I, = 0.45 and x = 1. Initially, we set D, , = 0.5 on all edges. The integration of Eq. (2) is performed using
the Euler-Maruyama scheme [37] with step size At = 0.1y~". In the SM movies are reported which show how the dynamics at different

noise amplitudes leads to each of the topologies [29].

rates and amplitude of the noise, manifesting the character-
istic features of stochastic resonance and noise-induced
limit cycles. In this work, we analyze, for the first time, a
multicommodity problem in the presence of noise. The
relatively simple geometry of our problem allows us to
single out the essential features and visualize the manifold
of topologies as a function of the noise amplitude.

Results.—We integrate Eqs. (1) and (2) with the static
boundary conditions of Fig. 1(a) after initializing the
conductivities on all edges to the same value (see also
SM [29]). The system evolution thus initially consists of
redirecting the flow along edges by modifying the con-
ductivities. For @ =0, the dynamics is noiseless and
converges to the configuration of Fig. 1(b): the flow
satisfying both demands is routed along the vertical
connection. The system tends to generate parallel routes.
In fact, the transport along one edge is bound to a maximal
value due to the saturation of the sigmoidal function.
For a > 0, we integrate stochastic differential equations.
Figure 1(c) displays a network configuration obtained by
integrating the stochastic dynamics for one trajectory and
after a sufficiently long simulation time. It is evident that
noise leads to a fluctuating distribution of weak connec-
tions. In order to be able to perform a classification, we
apply a filter mechanism to each trajectory as follows. We
level out the fluctuations by taking the time average of the
configurations in the regime where the simulation has
converged. We then account for the statistical relevance
of the links by means of the disparity filter of Ref. [36]
(see SM [29]). Figure 1(d) displays the network topology
extracted from Fig. 1(c) after applying the disparity filter to
the time-averaged configuration. For each value of a, we
evaluate 5000 trajectories.

Figure 2 shows the typical network topologies ordered by
increasing noise amplitude, starting from the noiseless case
(A). Eachis unique in terms of connectivity of the hubs and is
characterized by a different set of values of the measures we
apply, as we detail later. The networks (B) and (C) are found
for small @ > 0 and are similar to the noiseless case with
the tendency to decrease the shared routes. In addition,
(C) decreases the number of connections. Configurations
(B)~(E) are multistable and generally break the point

symmetry of the configuration. For larger values of «a, the
topologies converge to one of the two configurations (F) and
(G), with a bistable region about a ~ 3 x 1073, Topologies
(F) and (G) are point symmetric but qualitatively different
from (A). Note that (A)—(G) are fixed points of the noiseless
dynamics. Noise dramatically modifies the respective basin
of attraction as visible by analyzing the network measures as
a function of a.

The network measures are determined on the backbone
of each trajectory. (i) The robustness r provides information
on the quality of the connections: it increases by adding
paths connecting two nodes, which in turn makes the
network more robust against edge failures. It is defined by
r=1/(32,R;/2), withR; = (pii — pi.)/1; as the effec-
tive resistance between the source node s, and the sink
node s_ of each demand i; see Ref. [38] and the SM [29].
(ii) The transport efficiency o is given by 1/6 = >"2 | d;/2,
where d; is the length of the shortest path connecting ;"
and s; [35]. (iii) Finally, the cost of the network c is the
total length, found by summing over the ensemble &£ of
segments L, , of the backbone where the conductivity is
nonzero [35], ¢ = 37, ,)ee Lu.,- The measures (r, o, c) are
displayed in Figs. 3(a)-3(c) as a function of the noise
amplitude a. The white lines indicate their mean values.
The slope of the mean robustness and cost at a = 0 is
negative, showing that—on average—for small noise
amplitudes the dynamics converges to topologies with
worse robustness and lower cost than for the noiseless
case. After this transient, they all reach a maximum for an
interval of noise amplitudes centered about a ~ 2 x 1073
that is qualitatively above the noiseless value. For each
value of « the distribution of x = r, &, ¢ about the mean is
encoded in the color scale. The distribution is clustered
about the topologies of Fig. 2 with probabilities depending
on a. One striking feature is that (A) disappears for a > 0,
indicating that it is unstable against fluctuations. As « is
increased, the system jumps to different configurations,
undergoing discontinuous, noise-induced transitions. The
topologies (B)—(E) occur at low, nonvanishing values of a
and are generally multistable. Remarkably, for a nonzero
interval of values a (in the range 0.001-0.003) the
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x1073

FIG. 3.

%1073

Network measures as a function of the noise amplitude a: (a) robustness r, (b) transport efficiency o, and (c) network cost c.

Each measure is in units of the respective value r(, oy, and ¢, for a = 0 (dashed line in the plot). The white solid line is the mean value
taken over 5000 trajectories at each value of a, the color scale gives the fraction of trajectories for each value of r, o, ¢: dark blue is
statistically irrelevant, dark red corresponds to 60%. The distribution clusters about a set of the topologies (the labels follow the legend of
Fig. 2) and undergoes discontinuous transitions as « is varied. For a € [0.001-0.003], it narrows about a single topology (F) with

optimal robustness and transport efficiency.

distribution narrows and becomes single peaked and the
dynamics converges to (F). This topology optimizes both
robustness and transport efficiency, with a qualitative
improvement over (A). At even larger amplitudes a, first
(F) coexists with (G), then (G) becomes the most probable
configuration. Network (G) has the same robustness as (A).

FIG. 4. (a) Average convergence rate y, as a function of the
noise amplitude & (in units of the respective value y{ for the
noiseless case). y, is the inverse of the time that a trajectory needs
to reach a stationary value of the cost (blue), of the robustness
(red), and of joint cost and robustness (yellow); see SM for the
definition [29]. Panel (b) displays the corresponding variance o,
(in units of ?). The averages are taken over an ensemble of 5000
trajectories. About a ~ 0.002, the dynamics converges to (F).

Its worse transport efficiency and lower cost are due to
noise: the number of statistically relevant edges decreases
with a. The distribution about (G) is broader according to
the common expectation that noise increases the variance.
Instead, the narrowing at a € [0.001 — 0.003] about the
topology (F) contradicts this intuition.

The trajectories converge relatively fast toward one of
the topologies of Fig. 2. Figure 4(a) displays the average
convergence rates to a stationary value of r, o, ¢ as a
function of a. The rates are not monotonous functions of
and exhibit a local maximum corresponding to the network
topology (F). In this regime the corresponding variances,
Fig. 4(b), are minimal. This behavior provides further
evidence that noise substantially modifies the basin of
attraction of the individual topologies. The faster conver-
gence rate to the topology (F) at a € [0.001-0.003],
together with the corresponding narrowing of the distribu-
tion of trajectories visible in Fig. 3, supports the conjecture
that network self-organization into the topology (F) is a
noise-induced resonance [19]. We have verified that this
behavior also occurs (i) for a relatively wide range of the
input and output flows, (ii) for different exponents n of the
activation function, and (iii) for a substantially larger
number of demands. In general, increasing the flow leads
to a larger number of redundant connections. Instead,
increasing the value of the exponent n in the activation
function f enforces the use of shortest-path connections.
Interestingly, we find noise-induced phenomena for all
considered values of these parameters. This also holds true
when analyzing larger networks, with respect to both the
grid size and the pairs of source and sink nodes, i.e., of
demands (see SM [29]). An extensive characterization will
be reported in Ref. [39].

Discussion.—The noiseless equations at the basis of this
study were developed in Ref. [15] for describing the food
search of a slime mold [40,41]. From the biological point of
view, this model is oversimplified (it discards key features
such as the oscillatory flow through the tubes [42,43]),
yet it qualitatively reproduces the patterns observed in
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Refs. [34,35]. Moreover, it provides a powerful framework
for network design and optimization algorithms [12,16]. Our
work shows that the addition of noise to this model provides a
qualitative improvement of the algorithmic efficiency by
means of noise-induced resonances. This is a change of
paradigm with regard to simulated annealing and random-
ized algorithms [44,45] and calls for a theoretical framework
for stochastic nonlinear network dynamics [46,47].
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I. PARAMETERS AND NUMERICAL
SIMULATIONS

In the model we set the length L, , of the edge u,v
equal to unity when the nodes are nearest neighbors and
equal to v/2 when they are connected by a diagonal. We
take the exponent of the activation function n = 1.2 and
set Kk =y = 1. We impose I; = 0.45 for all demands i.
For reference, we set the potential at the node u neighbor-
ing the source node of demand 1 to the right to p, = 0.
The initial state of the simulations has the conductivities
of all edges equal to the value Dg)u = 0.5. The conduc-
tivities are calculated by numerically integrating Eq. (2),
together with Eq. (1). The calculation of the potential p,
at node u and for the demand i is performed by solving
a set of linear equations. Let ¢ be the number of network
nodes and b be the vector determining the constraint,
such that it has a value of I; at the source node si, —1I; at
the sink s’ , and 0 otherwise. The vector p* = (pi,...p})
containing all node potentials associated to demand 7 is
found by solving the linear system of equations [1, 2]

Mp' =", (1)

where M is a ¢ x ¢ matrix, M = ADL 'AT with:
(i) D = diag(De,, ..., De,,) the m x m diagonal matrix
whose diagonal elements are the edge conductivities, (ii)
L = diag(Le,, ..., L., ) the m x m diagonal matrix whose
eigenvalues are the edge length, and (iii) A the ¢ x m
node-arc incidence matrix of the network. In particular,
the column (A7), has a value of 1 in position u and a
value of -1 in position v for all edges e = (u,v).

The integration of Eq. (2) is performed using stochas-
tic differential equations that are implemented using the
Euler-Maruyama scheme with a step size of At = 0.1y71,
as outlined in Ref. [3]. The evolution time tenqa = 250/7 is
chosen after testing that each trajectory, namely, each in-
dividual evolution of the network, has reached a (meta)-
stable configuration. Figures S1(a) and (b) display few
trajectories at a fixed value of a.

II. STEADY STATE AND CONVERGENCE
RATE

The reported topologies are obtained for fixed initial
conditions and finite integration times, and thus, we can-
not claim that they are the steady state. The steady
state, in fact, is the solution of a multi-dimensional and
nonlinear Fokker-Planck equation, which is not amenable
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FIG. S1. The time evolution of the cost (a) and robustness
(b) for three trajectories, represented by different colors. The
trajectories have been determined using o« = 0.002. The insets
show a zoom in the dynamics around the convergence time
t5, see text.

of analytical treatment [4]. Nevertheless, over the consid-
ered time, the integrated trajectories converge relatively
fast towards one of the topologies of Fig. 2 in the main
text. In order to decide whether the dynamics has con-
verged to a (meta)stable configuration, we extend the
definition of robustness and cost to a time dependent
variable, which we determine on the instantaneous net-
work’s backbone, and monitor their dynamics. We iden-
tify the steady state as the configuration of the system
for which the mean value is constant and the fluctuations
are given by the variance set by the noise. To quantify
the convergence speed, we introduce the quantity =, for
x = ¢, r, which has the dimensions of a rate and is defined



FIG. S2. Subplot (a) displays an example of a network
reached after a sufficiently long integration time in the pres-
ence of noise (o = 0.002), subplot (b) is the corresponding
time average over the time interval [249 : 250] /7 at the end of
the simulation. The widths of the edges are graphically scaled
proportionally to the corresponding conductivities. Subplot
(c) displays the multi-scale backbone extracted from (b) us-
ing a filtering procedure (see text). Details on the numerical
simulations are reported in the caption of Fig. 2 in the main
text.

as

(2)

with (-) the ensemble average over the convergence time
t3.  The latter is defined as t§ = max({¢t;|z(t') —
x(tend)| < 0 x(tend) Vit e [tztend]}) with § > 0. In
the following, we set 6 = 0.05, unless otherwise stated.
The rates 7, quantify the average convergence rate of the
costs and the robustness to the steady state. Further-
more, we define the quantity v} = (max(t§,5)), which
accounts for the combined convergence time of the costs
and the robustness. We calculate ~y, for different values
of the noise strength o by numerically solving the model
given by Egs. (1)-(2). Hereby, we average over 5000 sim-
ulation runs for each value of . In Figs. 4(a) and (b) in
the main text the average convergence rates 7y, and the
standard deviations o, are shown as a function of the
noise strength a.

vt = (),

III. DISPARITY FILTER

Extracting the network topology requires filtering the
connection above a certain threshold. A possible ansatz
consists of choosing a constant threshold for all edges.
However, this approach does not account for the statis-
tical importance that certain links of a node have over
others: even if all values of the conductivities might be
below threshold, some links can be statistically relevant.

In order to avoid this problem, we apply the follow-
ing procedure. For each realization (trajectory) we first
average the conductivities D, , over the time interval
[tena — dt, tend], with d; = 1/v corresponding to 10 time
steps. The time d; is fixed by requiring that over this time
the average distribution solely due to noise is stationary
and is verified integrating Eq. (2) after setting f = 0.
After the averaging, the effect of fluctuations is leveled
to a background value as visible by comparing Fig. S2(a)

with Fig. S2(b), where the time averaging was performed.
We then introduce a global offset D, , — D, , 4 0.05 for
all edges (u,v) and apply the disparity filter of Ref. [5]
using the significance level 5 = 0.3. The procedure of
Ref. [5] is implemented as follows. We determine the
strength of each node u: s, = ZveEu D, and then
normalize the conductivities of the edges that connect a
node with its nearest neighbors by p, = D, /s, such
that >, cp Po = 1. We remove all edges whose con-
ductivities are not statistically significant, i.e. are purely
random. As a null hypothesis, it is assumed that the edge
conductivities of a certain node of degree k (which can be
either 8, or 5, or 3, here depending on the node location
within the grid) are produced by a random assignment
from a uniform distribution. In order to find the null
hypothesis we use the method of induction. For k = 2
edges we have p; + p2 = 1 and p; = = where « is a ran-
dom number in the interval [0, 1]. We divide the interval
into infinitesimal steps dx and introduce the probability
density p(z) such that p; = p(z)dz. For k = 2, then
p(z) = 1. For k > 2, we find p(z) by solving the nested
integral p(x)dx = dxkfol_z dry ... j;)l_z’“’2 dzxy_3, which
gives [5]

plz)dr = (k — 1)(1 — 2)*2dz. (3)
The probability f,, that the edge (u,v) is compatible
with the null hypothesis is given by

Do
Buw=1—(k— 1)/ (1 —z)"2da. (4)
0

The disparity filter removes all edges for which it holds
Buw > B with a significance level 5 € [0,1] as these edges
are not statistically relevant. We note that the filter fails
at sufficiently large values of the noise amplitude «, which
we do not consider here. These large values correspond
to the physical situation where disorder prevails over the
order imposed by the nonlinear force.

IV. ROBUSTNESS OF THE NETWORK

In order to determine the robustness, we count the
number of links of the filtered network. For this pur-
pose, we assign the same conductivity to all edges of the
network’s backbone. We remark that various approaches
to define a measure of robustness are discussed in liter-
ature. In the work of Ref. [6], the fault-tolerance of a
network was measured by counting the number of edges
that can be removed without separating the network into
two parts. Here, we chose the inverse of the total effec-
tive resistance of the network as the measure of robust-
ness, see [7]. This approach takes into account both the
number of different paths that can be used to fulfill a de-
mand and the paths length. Before calculating the total
effective resistance, we normalize all edge conductivities
D, ., > 0 as we intend to focus on the length as the
quality criterion for a path for simplicity. Extending the
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FIG. S3. (a) Network self-organization is simulated on a grid
of 31 x 31 nodes, whereby source and sink nodes are placed
such that they represent the relative location of major cities
around Tokyo and are labelled red. We assume that there
is a demand between each pair of cities which gives rise to a
total of 528 demands. The network design results from the
dynamics of the edges, which are modelled by time-varying
conductivity on an electrical network and in the presence of
additive noise according to Eq. (1) and (2). The difference
in robustness between the stochastic case and the determin-
istic case as a function of the noise and the flow Iy which is
the same for all demands is shown in (b). The difference in
robustness is given as a color code: red means that the robust-
ness in the stochastic case is larger than in the deterministic
case and blue means the opposite. The solid white lines in-
dicate that the robustness in the stochastic case is the same
as in the deterministic case. The difference in robustness was
calculated by averaging over 50 simulation runs for each pair
of Iy and a.

analysis to a measure of robustness that also takes into
account the amplitude of the edge conductivities could
be an interesting future consideration.

V. DEPENDENCE ON THE INJECTION
CURRENT AND FOR A LARGER NUMBER OF
DEMANDS

We consider a grid with a larger number of demands
in the following. In Fig. S3(a), a grid of 31 x 31 nodes
is shown, whereby source and sink nodes are placed such
that they represent the relative location of major cities
around Tokyo [6] and are labelled red. We assume that
there is a demand between each pair of cities, which gives
rise to a total of 528 demands. Figure S3(b) displays
the difference in robustness between the noiseless case
and the stochastic case as a function of the noise ampli-
tude a and of the flow Iy (which is the same for all de-
mands) for n = 1.6. The difference in robustness is given
as a color code: red means that the robustness in the
stochastic case is larger than in the deterministic case,
blue means the opposite. The solid white lines indicate
that the robustness in the stochastic case is the same as
in the deterministic case. The difference in robustness
was calculated by averaging over 50 trajectories for each
pair of Iy and a.

In general, the noise-induced resonances appear for all
values of the injection current we considered. We note

that they also occur when considering different values of
I; for different demands. We note that the dependence
on the injected current introduces additional features,
which are due to discontinuous transitions and which we
will discuss elsewhere.

VI. MOVIES OF THE DYNAMICS

As part of the Supplemental Material, we provide
movies of the dynamics leading to the networks (A)-(G)
shown in Fig. 2 of the main text:

- Network  (A):  https://www.uni-saarland.
de/fileadmin/upload/lehrstuhl/morigi/
noise-induced-network-topologies/network_
A.gif

Network  (B):  https://www.uni-saarland.
de/fileadmin/upload/lehrstuhl/morigi/
noise-induced-network-topologies/network_
B.gif

Network  (C):  https://www.uni-saarland.
de/fileadmin/upload/lehrstuhl/morigi/
noise-induced-network-topologies/network_
C.gif

Network  (D):  https://www.uni-saarland.
de/fileadmin/upload/lehrstuhl/morigi/
noise-induced-network-topologies/network_
D.gif

Network ~ (E):  https://www.uni-saarland.
de/fileadmin/upload/lehrstuhl/morigi/
noise-induced-network-topologies/network_
E.gif

- Network  (F):  https://www.uni-saarland.
de/fileadmin/upload/lehrstuhl/morigi/
noise-induced-network-topologies/network_
F.gif

Network  (G):  https://www.uni-saarland.
de/fileadmin/upload/lehrstuhl/morigi/
noise-induced-network-topologies/network_
G.gif

The movies cover the first 20 % of the total simulation
time. For the networks (B, C), we used a noise amplitude
of a = 0.0001, for the network (D), we used o = 0.0008,
for the networks (E, F), we used @ = 0.001 and for the
network (G), we used o = 0.005. All other parameter
values are chosen the same as described in the caption of
Fig. 2 of the main text.
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CHAPTER 1V

PART 1: SELF-ORGANIZED TRANSPORT IN NOISY
DYNAMIC NETWORKS

Self-organized transport in noisy dynamic networks
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Abstract:

We present a numerical study of multicommodity transport in a noisy, nonlinear
network. The nonlinearity determines the dynamics of the edge capacities, which
can be amplified or suppressed depending on the local current flowing across an edge.
We consider network self-organization for three different nonlinear functions: For all
three we identify parameter regimes where noise leads to self-organization into more
robust topologies, that are not found by the sole noiseless dynamics. Moreover, the
interplay between noise and specific functional behavior of the nonlinearity gives
rise to different features, such as (i) continuous or discontinuous responses to the
demand strength and (ii) either single or multistable solutions. Our study shows
the crucial role of the activation function on noise-assisted phenomena.
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We present a numerical study of multicommodity transport in a noisy, nonlinear network. The nonlinearity
determines the dynamics of the edge capacities, which can be amplified or suppressed depending on the local

current flowing across an edge. We consider network self-organization for three different nonlinear functions:
For all three we identify parameter regimes where noise leads to self-organization into more robust topologies,
that are not found by the sole noiseless dynamics. Moreover, the interplay between noise and specific functional
behavior of the nonlinearity gives rise to different features, such as (i) continuous or discontinuous responses
to the demand strength and (ii) either single or multistable solutions. Our study shows the crucial role of the

activation function on noise-assisted phenomena.

DOI: 10.1103/PhysRevE.110.044310

I. INTRODUCTION

Networks are a commonly used concept in many disci-
plines and powerful models for transport. Efficient routing
of commodities such as water, power, or information from
sources to sinks can be described as a problem of connecting
nodes on a graph for given constraints and requirements [1-3].
There are different approaches to network design. Some con-
sist of solving differential equations, which are derived from
an appropriately identified cost function [4,5]. The chosen rule
determines the dynamics of the edges connecting the nodes,
whose stable fixed point is a target topology. Extensive studies
show how, for a given class of power-law functions determin-
ing the equations of motion, a variation of the exponent can
give rise to phase transitions in the network structure, from
spanning trees that minimize the cost to loops that maximize
the robustness [5-7].

Another approach is based on bioinspired algorithms.
Prominent examples are algorithms inspired by the structures
formed by ant colonies [8] or by the filaments of Physarum
polycephalum, a single-celled organism that is also known
as true slime mold [9]. Despite its lack of any form of a
nervous system, Physarum polycephalum is able to find good
solutions to small instances of popular optimization problems,
such as finding the shortest path through a maze [10,11],
creating efficient and fault-tolerant networks [12], and solving
the traveling salesman problem [13]. Algorithms inspired by
Physarum polycephalum have been implemented for various
optimization problems, including network design for multi-
commodity flows [14-16].

Bioinspired algorithms find successful applications for
multicommodity flow problems [6,12,17,18]. A prominent
example is a city transportation network: Each commodity
models the passengers traveling between two given stations.
Physarum-inspired algorithms for solving multicommodity
flow problems typically tend to identify a network satisfying
the constraints according to a rule that promotes transport
along shared routes and inhibits it when the flow along one

2470-0045/2024/110(4)/044310(10)
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edge is below a chosen threshold [17]. In Ref. [7], such
an algorithm was used to find the optimal routing of pas-
senger flows through the network of the Paris metro. This
study includes a comparative assessment of different acti-
vation functions governing the edge dynamics: When the
activation functions are power laws of the flow, the exponent
of the power law determines the topological properties of the
emerging networks, and the network topologies undergo a
phase transition between treelike and loopy topologies [5].

In the present study, we analyze the influence of noise on
multicommodity flow problems, where the edge capacity is a
variable that depends on the current flowing across the edge
through a nonlinear (activation) function [19]. We assume
that the edge capacity can undergo stochastic fluctuations and
examine the emerging network topologies for three different
functional behaviors of the activation function. In particular,
we determine the characteristics of the emerging networks as
a function of the noise amplitude and analyze their robustness,
transport efficiency, and cost. For our analysis, we choose
the same case study as in Refs. [12,17], where the graph has
a number of demands geometrically arranged to mimic the
relative locations of the major cities around Tokyo. The graph
and the demands are illustrated in Fig. 1(a). Examples of the
emerging networks are provided in Figs. 1(b) and 1(c).

Our study extends recent work on optimization of trans-
port in simple systems, consisting of either a single or two
commodities, and in the presence of Gaussian white noise
[18,20,21]. These works showed that, for a finite range of
noise amplitudes, the interplay between noise and a sig-
moidal activation function can lead to the most robust solution
in a relatively short convergence time. The phenomenology
is reminiscent of noise-induced coherent effects, found in
models simulating forest fires [22] and neurons [23], and in-
clude phenomena such as stochastic and coherence resonance
[23-25], synchronization [26,27], and noise-induced phase
transitions [28,29].

Our research question, the role of the specific activation
function on network self-organization, is also motivated by

©2024 American Physical Society
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FIG. 1. Network self-organization for a multicommodity flow problem in the presence of stochastic fluctuations. The sources and sinks
simulate the metro stations of Tokyo railroad on a grid of 31 x 31 nodes with 528 demands, as illustrated in (a). The red dots represent the
relative locations of the major cities around Tokyo; Tokyo itself is indicated by the green dot. The network design results from the dynamics
of the edges, which are modeled by time-varying edge capacities [Eq. (10)]. The emerging network topology is shown in (b) for the noiseless
case (¢ = 0). Subplot (c) displays a single trajectory in the presence of noise (¢« = 0.002) and for a specific choice of the activation function
(sigmoidal with exponent n = 1.6). The widths of the edges are proportional to the corresponding capacities. The backbone of the network in
(c) is extracted using a filtering procedure, the filtered network is shown in (d). In all simulations, we initially set all edge capacities equal to
the value D% | = 0.5. Furthermore, for each commodity i, we fix the potential p. = 0 at the node indicated by the yellow cross as a reference.
Further details on the numerical simulations are reported in the main text.

the observation that, in deep learning, the choice of the acti-
vation function determines the network expressivity [30,31].
Within a different, yet connected, framework, here we study
how noise-induced network self-organization depends on the
choice of one of three representative functionals, which have
been considered in the literature of multicommodity transport.

This paper is organized as follows. In Sec. II, we introduce
the model and define the measures used to evaluate the emerg-
ing network topologies for a graph with demands mimicking
the Tokyo railroad transport problem. We then determine the
network measures as a function of the demand strength for the
three different activation functions with no noise. Section III
is devoted to the numerical methods and the algorithms used
to extract the network topology from the stochastic dynamics.
The network measures as a function of the noise amplitude
are presented in Sec. IV. Conclusions and outlook are drawn
in Sec. V.

II. NOISELESS TRANSPORT ON A GRID

In this section, we introduce the model, define the network
measures used for evaluating the topologies and apply the
multicommodity flow problem to routing transport demands
with the geometry of the greater area of Tokyo. We focus
on noiseless transport and study the network topologies for
different activation functions.

A. The model

The multicommodity flow problem is represented by a
set of k transport demands on a graph that discretizes the
space and is composed of N nodes. Each node, labeled u =
1,..., N, is connected to a number of other nodes, described
by the set E,. We denote the edge-connecting nodes u and the
neighbor v € E, by the pair (u, v). The edge length is given
by L, . _

Each demand is formed by a pair of a source node s,
where a flow is injected (41'), and a sink node (s’ ), where

it is extracted (—I‘). The demand i is realized by a flow I'
across the edges of the network. The flow through the edge-
connecting nodes u and v is denoted as @/, ,. At the sources
and sinks, it obeys the constraints

Yo, = 0
vEE;
+
At the other nodes, instead, the flow is conserved:
Y Q=0 @

vek,

For an electrical circuit, this is Kirchhoff’s law and Q
is the electrical current. In the dynamics of network self-
organization, these nodes are decision points. The flow of
commodity i is directed along the edges (u, v) with nonva-
nishing edge capacity D, ,(¢) and obeys the equation

Du,v t)
Lu,u

() = (Pu(®) = P (0)), (3)
where p' is a potential (or pressure) at the node u for commod-
ity i. In an electrical circuit, which is the example we will refer
to throughout this paper, Eq. (3) is Ohm’s law and D, ,(¢) is a
dynamical conductivity. The dynamics of the variables p’ and
D, , determine the resulting network.

B. The potential

The potential p/, is determined for each demand i as a
function of D, , () by solving the linear set of equations in
Eq. (3), subject to the boundary conditions at the source and
sink nodes given by Eq. (1), and Kirchhoff’s law at any other
node, Eq. (2). We fix the potential p. = 0 at the node indicated
by the yellow cross in Fig. 1(a) as a reference. Let N be
the number of network nodes and b’ € RV the vector repre-
senting the constraints, such that it has a value of +/ i at the
source node s, and —I' at the sink st Otherwise, the entry is
zero. Then, the vector p' = (p|, ..., py) containing all node
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TABLE 1. Three classes of activation functions. Here, Q, , denotes the total flow along the edge, which is determined as Q,,, = Zi |0,

(i) |

u,v

(one norm). For the Hill function, we consider n = 1.6 and n = 2. In the definition of the ReLU function, 6 (x) is Heaviside’s function [0 (x) = 1

for x > 0 and 6(x) = 0 otherwise].

Activation function Functional form Threshold
Two-norm FAQDD = (@) + ...+ (@) -
Hill/sigmoidal FAODY = (Quw)"/ (k" + (Qu)") k=
ReLU FHODLY) = (Quw — €)0(Quy — &) k =0.01

potentials associated to demand i is determined by the linear
system of equations [7,17]

(C)]
where M is a N x N matrix,

M =ADL™'AT, %)

with: (i) D = diag(D,,, ..., D,, ) the m x m diagonal matrix
whose diagonal elements are the edge capacities (conductiv-
ities), (ii) L = diag(L,,, ..., L., ) the m x m diagonal matrix
whose eigenvalues are the edge lengths, and (iii) A the N x m
node-arc incidence matrix of the network, i.e., the column
(AT), has a value of 1 in position u and a value of —1 in
position v for all edges e = (u, v).

C. The edge capacity (conductivity)

The edge capacity (conductivity) D, ,(¢) obeys the nonlin-
ear differential equation [20,21]

0:Dyy = f({QZ,,)v}) — ¥Du, (6)

where f({Q{,}) is the activation function modeling the feed-
back of the flows associated to the commodities j = 1, ...,k
on the evolution of the edge conductivity. The edge capac-
ities are damped with rate y and hence edges with little
flow on them (in particular, flow below a fixed threshold) are
suppressed.

The network topology is determined by the resulting edge
capacities D, ,. They are found by integrating Eq. (6) using
Eq. (3), where the potential is found from Egs. (4) and (5).

D. The activation function

We consider three different classes of activation functions:
the two-norm, the Hill (or sigmoidal) function, and the ReLU
function. Each of them depends on the total flow across an
edge, as shown in Table I. As a consequence, sharing of edges
between different commodities is rewarded. The different
functional forms of the activation functions leads to different
behavior as we discuss next.

Of the three activation functions, only the two-norm func-
tion is a homogeneous function of the flow. Specifically, it is
a homogeneous function with degree 1. As a consequence,
the dynamics is independent of the demand strength Iy. In
fact, equations (6) and (3) are invariant after rescaling the
conductivity and the flow by /.

The ReLU function is not a homogeneous function (even
though it tends to behave as if it were a homogeneous function
for demand strengths much larger than the threshold, Iy > «).

In this work, we consider values of Iy < «, i.e., smaller than
the threshold, where the response depends on the choice of .

The sigmoidal function saturates: This limits the flow that
can be transported through the edge. As the flow between
two nodes approaches the maximum capacity of the edge,
the dynamics tends to construct multiple connections between
them. In the following, we consider two different powers n for
the Hill function and analyze the regime where the dynamics
is sensitive to small gradients as the demand strength Iy in-
creases above threshold.

The dynamics governed by the two-norm function has
been extensively studied in Ref. [17]. In that work, a
Lyapunov function was determined, the limit of the dynamics
was formally characterized, and it was shown that the limit
optimizes a mixture of transport efficiency and network cost.
No Lyapunov functions for the Hill and the ReL U function are
known. Moreover, since the sigmoidal and the ReLU function
are nonlinear and nonhomogeneous functions of the flow, it is
generally difficult to systematically choose the parameters in
order to compare the network topologies for different activa-
tion functions. For this reason, we fix the parameters using
a phenomenological approach that takes as a reference the
robustness of the network when the activation function is the
two-norm function. We then choose the threshold « of the
Hill and the ReLU function and identify the interval of values
of the demand strength I, that give a comparable network
robustness.

E. Performance measures of networks

In what follows, we characterize the resulting network as a
function of Iy. For this purpose, we introduce measures for (i)
the robustness, (ii) the transport efficiency, and (iii) the cost of
the network.

The robustness is measured by the inverse of the average
effective resistance of the network [32]:

k

T v
i=1

where
R = (, — )1

is the effective resistance between the source node st and
the sink node s° of demand i. The quantity R’ takes into
account both the number of connections between sg_ and s'
as well as their lengths. The measure r is an indicator of
robustness against edge failure. In fact, adding edges and/or
reducing the length of connections increases the measure [33].
This is a different, nevertheless similar approach to existing
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FIG. 2. Network measures for the noiseless dynamics and as a function of the demand strength . The subplot display (a) the robustness
r, (b) the transport efficiency o, and (c) the cost c. They are extracted from the network obtained by integrating the coupled equations (3)—(6)

for a time of 1000 y

using a different activation function in each case, see legend and Table I. The measures of the networks are calculated

after applying the disparity filter, which we detail in Sec. III B. In the rest of this work, we will focus on the range of I indicated by the shaded

regions.

measures, where the fault-tolerance of a network is measured
by counting the number of edges that can be removed without
separating the network into two parts, for example [12]. Note
that we set all nonvanishing edge conductivities to the same
value (here, D, , = 0.5) before calculating r, corresponding
to a fixed resistance per length.

The transport efficiency o of the network is defined as the
average over all demands of the length of the shortest path d'
connecting the source and the sink node si_ and s' . It reads

k
o=—"
Y d

The cost of the network c is the total length, found by
summing over the segments L, , where the conductivity is

nonzero:
c= E Lu,vw
(u,v)eE

®

®

with E the set of all edges with D, ,, > 0.

These quantities are displayed in Fig. 2 as a function of the
demand strength /y; the colors represent the different activa-
tion functions from Table 1.

For the two-norm function, the performance of the net-
works is, as expected, independent of [j. For the sigmoidal
and the ReLU functions, the measures increase in a step-
like fashion, indicating a discontinuous transition to different
topologies of increasing robustness, transport efficiency, and
cost. Each topology exists for a certain range of the demand
strength . For the ReLU function, the measures reach a
constant value for Iy > «, whereas for the sigmoidal function,
they keep increasing with [y due to the saturating character
of the activation function that limits the maximum edge ca-
pacity. The measures can locally decrease for increasing Iy,
which may be an artifact of our filtering procedure (see next
section and Appendix).

F. Application to the Tokyo transport problem

We apply the model introduced in this section to the mul-
ticommodity flow problem represented by the distribution of
sources and sinks illustrated by the red circles in Fig. 1(a). We
use the same setup as in Refs. [12,17], where the sources and

sinks are geometrically arranged to mimic the relative loca-
tions of the major cities around Tokyo. A transport demand
between each pair of cities is assumed, which means that the
emerging network has to satisfy k = 528 demands.

We consider a grid of N =31 x 31 nodes, of which 33
are the cities. Each node, labeled u = 1, ..., N, is connected
to a number of nearest and next-nearest neighbors. The edge
length L, , is set to unity when the nodes « and v are nearest
neighbors and to +/2 when the nodes are connected by a
diagonal.

We choose I = I for all demands i except for those that
involve the node at the relative location of Tokyo: For these
demands, as in Ref. [12], we set I’ = 7 I, to reflect the impor-
tance of Tokyo as the center of the region.

III. MODEL AND NUMERICAL METHODS
FOR THE STOCHASTIC DYNAMICS

We finally come to the core of the paper, the study of the
networks emerging from the interplay of stochastic dynamics
and the nonlinear activation functions. The conductivity now
evolves according to the equation

3Dy = F({OD)) = ¥Du + VVekun@®),  (10)

with the stochastic force &, ,(¢), whose amplitude is scaled
by the parameter . The force is statistically defined by the
average over an ensemble of trajectories: it has no net drift,
(£40(t)) =0, and simulates Gaussian white noise with no
spatial correlations, (£, ,(#)&y v (1)) = 8y 8y.v8(t — 1) [34].
The network dynamics results from integrating the coupled
equations (3), (4), (5), and (10).

In what follows, we first introduce the numerical methods
used to integrate the stochastic differential equations. Since
the Langevin force &, , gives rise to fluctuations of the edge
conductivities, the stationary values of the measures have a
finite variance. In order to eliminate the background noise,
we apply the filter of Ref. [18] that allows us to identify the
statistically relevant edges. In the Appendix, we benchmark it
with other filtering procedures.
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A. Numerical methods

The integration of Eq. (10) is performed using the Euler-
Maruyama scheme, as outlined in Ref. [35]. We have analyzed
convergence for different step sizes: For the parameter val-
ues considered here, we set the step size At =0.05y~'.
We then set the evolution time as fe,q = 1000, In fact,
extensive tests over a statistically relevant ensemble of tra-
jectories (namely, individual network evolutions) show that
each trajectory has reached a (meta-)stable configuration. In
all simulations, the conductivities of all edges are initially
equal to the value DSYU = 0.5. For each commodity i, we fix
the potential p!. = 0 at the node indicated by the yellow cross
in Fig. 1(a) as a reference.

Figure 1(c) displays a typical network obtained at time Zepq.
Edges with a nonzero conductivity D, , > 0 are drawn with
blue lines, whose width is proportional to D, ,. Noise leads
to a fluctuating distribution of weak connections as well as
to statistically relevant links, that are otherwise absent in the
noiseless dynamics.

We remark that, as the reported topologies are obtained
for finite integration times, we cannot claim that they are the
steady state. The dynamics, in fact, is described by a multidi-
mensional and nonlinear Fokker-Planck equation [36], and it
is not even guaranteed that a steady state exists. Nevertheless,
over the considered time, the integrated trajectories converge
relatively fast towards a certain cost, robustness, and transport
efficiency and then remain stably trapped about these values,
performing fluctuations of the order of the noise amplitude.
To these configurations, we then apply the filtering procedure,
which we describe in what follows.

B. Filtering procedures

For each simulation run, we apply a filtering procedure to
the final conductivities D, , to retrieve the backbone of the
network. In order to identify the statistically relevant edges,
we use the filter of Ref. [18]. This filter extends the method of
Ref. [37] to noisy networks. We discuss alternative filters in
the Appendix. These other filters lead to similar results giving
evidence to the appropriateness of our filtering approach.

At the end of our simulations, we average the conductivity
over the time interval Z, = [feng — d;, tend], Where fepg is the
total integration time and d, = 1/y. The averaging levels out
the fluctuations. We verified that the interval is long enough
for averaging; in particular, changing d; by a factor of 5 does
not change the results. We denote the time-averaged conduc-
tivities by (D, ,):

(Dun) = / deD, (1), (11
A

d;
We then define s, = ZUGE’, (Dy,y) as the strength of node
u and normalize the conductivities of the incident edges as
Py = Dyy/susuchthaty" . P, = 1. Hereby, E, denotes the
set of edges that are connected to node u, and v denotes the
neighboring nodes.

All edges whose conductivities are purely random are
statistically not significant. Assume that (D, ,) of an edge
incident to node u of degree k is sampled from a random
uniform distribution. To find the corresponding probability
density p(x), we use the method of induction. For k =2

edges, it holds P} + P, = 1. We set P; = x with a random
number x in the interval [0, 1] and define the probability
density p(x) such that P; = p(x)dx. It follows that p(x) = 1.
For k > 2, it holds

1—x 1—x¢—n
p(x)dx = dx(k — 1) / dxi ... / dx_3,
0 0

yielding [37]

p(x)dx = (k — 1)(1 — x)*2dx. (12)

The probability that the edge (i, v) is compatible with the null
hypothesis, i.e., is purely random, is given by [37]

Duy

Buw=1—(k— 1)/ (1 —x)*dx. (13)
0

This value shall be compared with a threshold g, the signif-

icance level, which we choose in the interval 8 € [0, 1]. For

Buv = B, the edge is statistically not significant and filtered

out.

The choice of the significance level has a certain arbi-
trariness (see, e.g., the discussion in Ref. [37]). We reduce
this arbitrariness by benchmarking our results with the results
of other filtering procedures, as shown in Appendix. In the
following, we use 8 = 0.12 for the two-norm function and
B = 0.3 for all other activation functions, yielding compara-
ble values of the network measures.

The significance level limits the range of noise amplitudes
for which the filter is useful. In fact, for sufficiently large
values of «, the stochastic dynamics becomes dominant so
that it fails to extract the backbone of the network. We thus
limit our analysis to noise amplitudes for which the filter can
be successfully applied.

IV. NETWORK TOPOLOGIES IN THE PRESENCE
OF NOISE

In this section, we present the network topologies emerging
from the interplay of noise and nonlinear dynamics for each
of the three classes of activation functions. We investigate the
(filtered) networks as a function of the demand strength I
and the noise amplitude «. For each fixed pair of « and Iy,
we evaluate an ensemble of 250 trajectories and determine
the robustness, the transport efficiency, and the cost of the
backbone of each individual trajectory as defined in Sec. II E.

A. Two-norm function

We first discuss the networks generated using the two-norm
function for Gaussian white noise. The white solid line in
Fig. 3 displays (a) the mean robustness, (b) the mean transport
efficiency, and (c) the mean cost of the network as a function
of Iy € [1.5 x 1072, 5.5 x 1072] and for a fixed noise am-
plitude o = 0.001. The mean is taken over 250 trajectories
and shows that noise tends to spread out the flow across the
network. The trajectory distribution for each I, is indicated by
the color scale: the measures of each trajectory cluster about
the mean value.

We note that the topology depends on Ij. This is in striking
contrast with the noiseless behavior (magenta curves), where
all measures are independent of the demand strength /. The
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FIG. 3. Network measures as a function of the demand strength [, for the two-norm function and in the presence of Gaussian noise
(o« = 0.001). The panel displays (a) the robustness r, (b) the transport efficiency o, and (c) the cost c¢. The color scale at a given value of
Iy indicates the percentage IT of 250 trajectories at the corresponding value of the measure (dark blue is statistically irrelevant, dark red
corresponds to more than 20%). The solid white line indicates the average for each value of /. The solid purple line shows the deterministic
value (¢ = 0) for comparison. The network measures are calculated after applying the disparity filter (see text). Details on the numerical

simulations are reported in Sec. IIT A.

average robustness, transport efficiency, and cost are generally
increasing as a function for Iy. For small Iy (Iy ~ 1.5 x 1072),
the mean values of the robustness, transport efficiency, and
cost are lower than in the noiseless case. For larger values of I
(I ~ 5.5 x 1072), the mean value of robustness and transport
efficiency slightly exceed the corresponding noiseless mea-
sures [see Figs. 3(a) and 3(b)], whereas the average cost is
smaller. At values of I, outside the interval, these measures
all saturate to their values in the noiseless case. Remarkably,
there is a regime where the dynamics converges to more effi-
cient network designs, namely, networks that are more robust
and efficient, and at the same time less costly.

In order to identify the regimes where noise leads to more
efficient topologies, we analyze the difference between the
measures with and without noise over a broad range of de-
mand strengths /y and noise amplitudes «. Figure 4 displays
the differences Ay = (y) — yo of the mean values over the
noisy trajectories (y) from the noiseless measure y, for (a)
robustness y = r, (b) transport efficiency y = o, and (c) cost
y = c. The differences are displayed as color plots in the /-
plane. We first note that the contours of the equipotential lines
follow an underlying linear behavior Iy o «. In fact, in the

@ 102 Ar x102 (b) 102

presence of noise, Eq. (10) regains the invariance by I, when
rescaling @ — «ly. The plot indicates that all measures tend
to the noiseless case for Iy > o when the stochastic term
becomes an infinitesimally small perturbation to the dynamics
governed by Eq. (10).

It is tempting to assume that noise will lead to inferior
networks. This is true for large enough noise. However, small
noise can be beneficial. In the dark red part of the diagram the
noisy solutions are more robust and efficient than the noiseless
networks and the network topologies reach the largest values
of r and o. A cut of the plot at a fixed Iy, Fig. 5(a), indicates
a resonancelike behavior as a function of the noise amplitude
o. Remarkably, in this region, the standard deviation of the
robustness decreases, see Fig. 5(b). This behavior challenges
the conventional expectation that the size of the fluctuations
increase with or.

Following the criterion introduced in Ref. [18], we de-
note the region of increased robustness and efficiency as a
noise-induced resonance. This terminology is borrowed from
nonlinear dynamics, where noise-induced coherent effects
have been reported in models simulating forest fires [22]
and neurons [23]. As in stochastic resonance [21,23-25], we

Ao

(e} %1073

FIG. 4. Color plot of the difference between the measures of the stochastic and the noiseless networks as a function of I and « for the
two-norm activation function. The measures of the networks are evaluated after applying the disparity filter. Hot colors mean that the measure
takes a larger value in the presence of noise, cold colors the opposite. Subplot (a) displays the difference Ar = (r) — ry between the ensemble
average (r) of the robustness and the value ry of the noiseless dynamics, (b) Ao = (o) — oy for the transport efficiency, and (c) Ac = (¢) — ¢o
for the cost. The mean value of the stochastic dynamics is calculated over 50 trajectories for each value of I, and «. The solid black lines
indicate the value where the difference exactly vanishes, the fluctuations are attributed to the relatively small number of trajectories.
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FIG. 5. (a) The solid line indicates the difference Ar = (r) — ry
between the ensemble average (r) of the robustness and the value r,
of the noiseless dynamics as a function of the noise amplitude « for
Iy = 4.5 x 1072, Each data point represents the average value over
250 simulation runs. The red dots indicate the difference Ar after
applying the deterministic filter to the noisy networks for a time t =
2000y ~'. (b) The standard deviation of the robustness distribution
shown in Fig. 4 as a function of the demand strength I, and the noise
amplitude o.

observe an optimal range of noise amplitudes at which noise
increases the efficiency of the algorithm leading to more ro-
bust network topology than in the noiseless case. We note that
these solutions are not fixed points of the noiseless dynamics,
as we verify by taking them as initial conditions and determine
the evolution according to Eq. (6). This procedure, which we
refer to as the deterministic filter and detail in Appendix,
shows that for sufficiently long integration times, Ar — 0, as
demonstrated by the red dots in Fig. 5(a). This suggests that
the topologies obtained using the noisy dynamics are novel
solutions, which are absent in the noiseless case.

B. Sigmoidal and ReLU functions

We now turn to the sigmoidal (Hill) and the ReLU function.
Figure 6 displays the network measures as a function of I
and for fixed, nonvanishing noise amplitude o for three cases:
in row (a) we report the network measures for the sigmoidal
function with exponent n = 1.6, in row (b) for the sigmoidal
function with exponent n = 2, and in row (c) for the ReLU
function.

The behavior of the mean value as a function of the de-
mand strength (white solid line) indicates that the measures
generally increase with Iy. The comparison with the noiseless
measures (magenta curves) indicates the existence of multiple
intervals of I, where noise leads to more robust networks.
These networks simultaneously optimize transport, at the

expense of larger cost. At each Iy, the trajectories are clustered
about the fixed points of the noiseless case: The effect of
noise is to increase the range of stability of certain topologies,
extending the plateaus to lower values of ) (compare with
Fig. 2).

The contour plots in Fig. 7 show the regions in the /-«
plane where noise leads to network topologies with larger
robustness, transport efficiency, and cost (see dark red colored
regions). For the sigmoidal function with n = 2 and the ReLU
function, the size of these regions increases monotonously
with «. Figure 8 illustrates the standard deviation of the
corresponding robustness distribution: the variance does not
seem to depend on «. A more detailed analysis actually shows
that the standard deviation narrows in correspondence of the
regions where noise leads to more robust networks. This indi-
cates a resonancelike response to noise. We verified that the
topologies found by the noisy dynamics do not depend on
the filtering procedure we apply, including the deterministic
filter. This shows that they are also solutions of the noiseless
dynamics. Noise, in this case, modifies the landscape of local
minima by favoring the more robust solutions.

In summary, we find that also for the sigmoidal and ReLU
functions, noise can be used for optimizing robustness and ef-
ficiency of the emerging network topologies. This underscores
the generality of our results, indicating that noise can enhance
optimization algorithms for different classes of nonlinearities.

V. CONCLUSIONS

We have investigated the network topologies for a mul-
ticommodity flow problem and compared the robustness,
transport efficiency, and cost of the emerging network topolo-
gies in the presence and in the absence of stochastic
fluctuations. The networks have been calculated on a graph
with a geometry of demands representing the relative loca-
tions of the major cities around Tokyo. The equations used
for determining the topology consist of evolving the edge
capacity according to Eq. (10). The growth of the edge
capacity depends nonlinearly on the flow along the edge ac-
cording to an activation function. Moreover, we have assumed
that the edge capacity can additionally experience stochastic
fluctuations.

We have analyzed different nonlinear functions of the flow
and determined the behavior of the measures of the resulting
self-organized networks as a function of the demand strength
and the noise amplitude. The response to noise is different, yet
for all the considered activation functions, we can identify pa-
rameter regimes where the interplay of noise and the nonlinear
activation function gives rise to a resonancelike convergence
to a more robust network topology. For the specific case of the
two-norm function, the noisy dynamics converges to solutions
that are otherwise unstable in the absence of noise. For the
sigmoidal and the ReLU, instead, noise favors the most robust
solutions of the deterministic dynamics. These results support
and complement previous insights obtained with a simplified
multicommodity flow problem consisting of two demands
[18] and demonstrates their generality. It indicates that noise
can be a resource for optimization algorithms.

Interestingly, the features of the noise-induced resonances
can change dramatically depending on the activation function.
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FIG. 6. Network measures as a function of the demand strength / and for « = 0.001. The panels in row (a) are obtained using the sigmoidal
function with n = 1.6, in row (b) using the sigmoidal function with n = 2, and in row (c) using the ReLU function. The panels display (left)
the robustness r, (central) the transport efficiency o, and (right) the cost c. The color scale at a given value of [ indicates the percentage IT of
250 trajectories at the corresponding value of r (dark blue is statistically irrelevant, dark red corresponds to more than 20%). The solid white
line indicates the average for each value of /. The solid purple line shows the noiseless value and is plotted for comparison. The results of the
noisy dynamics are invariant under the filtering procedure we apply. Details on the numerical simulations are reported in Sec. IIT A.

This observation suggests a different strategy for optimiza-
tion, such that for a given noise and demand strength, one
could identify a class of activation functions that maximizes
the robustness and the transport efficiency of the network.
Remarkably, the activation functions of this dynamics play
a similar role in neural networks, where it is key for the
expressivity [31]. In general, this study puts forward the need
of identifying an adequate functional that permits one to sys-
tematically shed light on the interplay of nonlinearity and
stochastic dynamics for optimization.
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APPENDIX: TESTING THE DISPARITY FILTER

We benchmark the disparity filter using two different
procedures. In all cases, we first divide the time-averaged
conductivity by the maximal edge conductivity Dy =

max (D, ,), where Ej is the set of all edges:
(u,v)€Ey

Du,v - D, = <Dll<U>/Dm‘dX'

u,v

Disparity filter. We first apply a constant offset §;, such that
Dy = D, + 31

We then apply the disparity filter as described in Sec. III B.
The offset is introduced in order to level out fluctuations left
after the time average. It is necessary to avoid that the filtering
procedure artificially amplifies fluctuations due to noise. For
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FIG. 7. Comparison between the measures of the stochastic and the noiseless networks as a function of 1, and & when the activation function
is [row (a)] the Hill function with n = 1.6, [row (b)] the Hill function with n = 2, and [row (c)] the ReLU function. The panels display (left) the
robustness difference Ar = (r) — ry, (central) the transport efficiency difference Ao = (o) — 0y, and (right) the cost difference Ac = (c) — ¢
between the corresponding ensemble averages (r), (o), (c) of the stochastic case and the values ry, 0, ¢y of the deterministic case. The mean
value of the stochastic dynamics is calculated over 50 trajectories for each value of ; and «. The solid black lines indicate the value where the
difference exactly vanishes. The fluctuations in these lines are attributed to the relatively small number of trajectories.

the given choice of d; and for the considered values of «, we
take §; = 0.05.

Cutoff filter. We consider the threshold §, = 0.05 and set to
zero all conductivities with D], , < &,. The resulting network
is composed of all nonvanishing edges.

“Deterministic” filter. We take D),  as initial conditions of
a numerical integration according to the noiseless evolution
of Eq. (6) and then verify whether it converges to the filtered
network over the same integration time fe;q.

10.0

a
( ) ><’|O_3 Hl” n=1.6 n ><103 ><’|O_3 H|” n=2 n ><103 )><O’|O'3

B2

—> 75
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In all cases, we remove any dead ends after the fil-
ter was applied. We show the comparative assessment
for the robustness using the Hill function with n = 1.6.
Figure 9 displays the robustness r as a function of the
demand strength [, for the three different filtering pro-
cedures. We note that the qualitative behavior is the
same for all filtering procedures, indicating that our re-
sults are independent of the specific choice of the filtering
procedure.

RelU

n %1073

><10'3

FIG. 8. The standard deviations of the robustness distributions shown in Fig. 7 as a function of the demand strength I, and the noise
amplitude «. The subplots correspond to the different activation functions: (a) the sigmoidal with n = 1.6, (b) the sigmoidal with n = 2, and

(c) the ReLU.
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FIG. 9. The robustness r as a function of the demand strength I, for the case of using the filtering procedure based on (a) the disparity filter,
(b) a cutoff filter with threshold d = 0.05, and (c) the deterministic filter, applied for a time ¢ = 1000 y ~!. For each value of I, a total of 250
simulation runs were performed. The solid white line represents the ensemble average, and the color code indicates the probability distribution:
dark blue is statistically irrelevant, and dark red corresponds to more than 20 % of the simulation runs, yielding a network topology with the
respective robustness. For all simulations, we chose @ = 1073, Details on the filtering procedures are given in the main text.
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PART 2: UNPUBLISHED MATERIAL

In Part 1 of this chapter, we applied the Physarum-inspired model defined by
Egs. (4.4), (4.5) and (4.10) to the transport problem of routing multi-commodity
flows through the greater region of Tokyo. We analyzed how the interplay of
nonlinear dynamics and stochastic forces influences the resulting network topolo-
gies and studied their robustness, efficiency, and cost. However, key topological
properties—such as the occurrence of loops, which are strongly linked to the ro-
bustness, efficiency and cost—remain to be investigated. Specifically, an essential
question arises: How do the noise amplitude o and the demand strength Iy influence
the formation and characteristics of loops, and how are these changes related to the
trends in robustness, efficiency, and cost? To address this, based on the same model
and activation functions introduced in Part 1, we next examine the number of loops
ne, their length [, and the cycle edge fraction e, as defined in Sec.1.1.3.

4.1 Two-norm function

Let us first consider the two-norm as the activation function. Figure 10 shows (a)
the number of loops n., (b) their length I., and (c) the cycle edge fraction e. as a
function of the demand strength Iy. In the noiseless case, all three measures remain
constant. This is a consequence of the fact that the two-norm is a homogeneous
function of the flow with degree 1. In striking contrast, for the stochastic case with
a fixed noise amplitude o« = 0.001, the measures change as a function of Iy: on
average, the number of loops n. and the cycle edge fraction e. increase with I
whereas the length of the loops [. decreases. These trends are consistent with the
analysis in Part 1, which showed that robustness and efficiency increase with Iy. As
discussed in Sec.I.1.3, loops inherently enhance network robustness and efficiency
as they provide redundant paths between nodes. Therefore, the observed increase
in the number of loops is directly related to the rise in robustness and efficiency.
Interestingly, in the range of Iy that we consider, the average values of the number
of loops n. and the fraction e, are below the corresponding noiseless case. Con-
versely, the average value of the length of the loops [, surpasses the deterministic
one, indicating that noise tends to establish fewer but larger loops. However, for
sufficiently large Iy, the averages of all measures converge to the noiseless values,
demonstrating that the deterministic behavior dominates the effect of noise in the
limit Iy/a — oo. This behavior occurs because the two-norm is a non-saturating
function: in Eq. (4.10), which models the dynamics of the edge capacities, the mag-
nitudes of the deterministic terms grow without bound as Iy increases, while the
noise term remains independent of Iy. These results also explain the lowered net-
work cost in the stochastic case reported in Part 1, particularly for small Iy. This
cost reduction is mainly caused by the significant decrease in the number of loops,
which corresponds to a removal of redundant connections that is only marginally
compensated by the slightly enhanced loop length. A similar argument holds for the
fraction e., which is almost identical for the stochastic and the deterministic case
but exhibits slightly larger noiseless values for small demand strengths.

To shed light on the role of the noise amplitude, we analyze the combined influence
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Figure 10: Loops of noisy networks generated with the two-norm activation function
for a = 0.001, displayed as a function of the demand strength Iy. The subplots
display (a) the number of loops n., (b) their length [, and (c) the fraction of edges
e that are part of at least one loop. The color scale at a given value of Iy indicates
the fraction II of trajectories at the corresponding value: dark blue is statistically
irrelevant, and dark red corresponds to more than 20% (see colorbar). The solid
white line indicates the average over 250 simulation runs for each value of Iy and
the solid purple line indicates the deterministic values.

of Iy and « on the loop-based network measures. Specifically, we quantify the dif-
ference Ay = (y) — yo between the average (y) over the noisy trajectories and the
deterministic value g, as introduced in Part 1. Figure 11 shows Ay as a function of
Iy and « for the number of loops n., their length /. and the fraction e.. The previ-
ously observed trends for a fixed value of a = 0.001 are confirmed across the whole
range of noise amplitudes: n. and e. increase with Iy, whereas [. decreases. Further,
the number of loops n. and the fraction e. decrease with the noise amplitude o, while
the loop length [. increases. As the relative change in n. is larger compared to I,
these results suggest that stronger stochastic forces reduce the number of redundant
edges in the network, consistent with the drop in robustness, efficiency, and cost for
large o discussed in Part 1.

Interestingly, the equipotential lines in Fig. 11, represented by contours of equal
color, follow the linear relation Iy o< «, mirroring the scaling of the robustness,
transport efficiency, and cost discussed in Part 1. Further, for Iy/a > 1, which
corresponds to equipotential lines with a large slope, the differences between the
stochastic and the deterministic values disappear, as the fluctuations become less
and less relevant. Analogous to the case of a fixed noise amplitude o = 0.001, this
behavior arises from the deterministic terms in Eq. (4.10) dominating the stochastic
term.

For small noise amplitudes, the number of loops n. and their length [. exhibit sev-
eral less pronounced local maxima and minima, respectively, which resemble noise-
induced resonances. These resonances indicate that certain noise amplitudes locally
optimize specific topological properties of the network. For moderate to large «, the
presence of stochastic forces consistently tends to establish fewer but larger loops
compared to the noiseless case, which is consistent with the behavior observed for
a = 0.001.
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Figure 11: (a) The difference Ay = (y) — yo between the average (y) over the noisy
trajectories and the deterministic value gy as a function of the demand strength I,
and the noise amplitude « for (a) the number of loops n., (b) their length /. and
(c) the fraction e.. For the stochastic case, we considered 50 simulation runs for
each value of Iy and a. We use the two-norm as the activation function and display
Ay as a color code. Hereby, dark blue corresponds to a reduction of the measures
due to the presence of noise, whereas dark red indicates a significant increase (see
colorbar). The solid black lines represent Ay = 0, indicating that the average of the
stochastic case and the deterministic value are equivalent. The fluctuations of the
solid black lines are attributed to the relatively small number of trajectories.

4.2 Sigmoidal and ReLU functions

We now consider the dynamics when the activation function is the sigmoidal (Hill)
with n = 1.6 or n = 2 or the ReLU. Figure 12 shows the number of loops n., their
length [. and the cycle edge fraction e, as a function of the demand strength . In the
noiseless case, all measures exhibit a steplike behavior, unlike the two-norm, where
the measures are independent of Iy. This behavior arises from the non-homogeneity
of the sigmoidal and the ReLU functions. In general, the number of loops n. and
the fraction e, tend to increase with Iy. The loop length [., however, shows a more
intricate behavior as a function of Iy, which strongly depends on the activation
function: for the sigmoidal, it tends to decrease when n = 1.6, while it increases
when n = 2. For the ReLU, instead, [, reaches a global minimum in the center of
the considered interval of Iy. In the stochastic case with a fixed noise amplitude
a = 0.001, the steplike behavior of the noiseless case disappears due to averaging
over an ensemble of trajectories with varying topological properties. Despite this,
general trends for the number of loops n. and the fraction e, persist, which continue
to increase with Iy. However, the behavior of the loop length I. differs for certain
activation functions compared to the noiseless case. For the sigmoidal function with
n = 1.6, it decreases with Iy, whereas for n = 2, it stays approximately constant.
For the ReLLU function, loops tend to be shorter for smaller Iy and longer for larger
Iy, although the loop length [. varies only slightly overall.

Remarkably, for all measures, there are regions where the averages over the noisy
trajectories exceed the corresponding noiseless values. This behavior arises from
stochastic forces broadening the stability range of fixed points of the noiseless dy-
namics, which is also reported for the robustness, efficiency, and cost in Part 1. This
effect is particularly evident for the measure e., where the plateaus observed in the
deterministic case are considerably extended towards smaller values of Ij.

To examine the influence of the noise amplitude, Fig. 13 displays the differences Ay

73



5.0 7.5 10.0

100 125 150 100 125 150 100 125 150
I, x1073 I, x10°

0.2 I
0.1

35 40 45 50
I, x1073

3.5 4.0 4.5 5.0
IO %1073

Figure 12: The number of loops n. (left), their length I. (central), and the cycle
edge fraction e. (right) as a function of the demand strength Iy for o = 0.001 and
(a) the Hill function with n = 1.6, (b) the Hill function with n = 2, and (c) the
ReLU function as the activation function. The color scale at a given value of I
indicates the fraction II of trajectories at the corresponding value of r: dark blue is
statistically irrelevant, and dark red corresponds to more than 20% (see colorbar).
The solid white line indicates the average over 250 simulation runs for each value of
Iy and the solid purple line the deterministic values.

as a function of Iy and «, where y represents the number of loops n., their length
. and the fraction e.. These differences exhibit a steplike behavior as a function of
Iy, which is inherited from the noiseless dynamics. In the red regions, the averages
over the noisy trajectories exceed the corresponding noiseless values. These regions
extend across a wide range of noise amplitudes, starting at small «, and arise from
the broadening of the deterministic plateaus towards lower Iy. Specifically, for the
sigmoidal function with n = 2, the number of loops n. displays pronounced red
regions that widen as the noise amplitude « increases. Similarly, for the ReLU func-
tion, the fraction e. exhibits an increasingly large range of Iy, where the stochastic
averages exceed the noiseless values. These regimes take the form of noise-induced
resonances, demonstrating that finite noise amplitudes can maximize loop number
and length, for example.

Remarkably, the relationship between the number of loops and their length varies
significantly depending on the activation function and the demand strength Iy. For
the sigmoidal function with n = 1.6, regions with more loops are associated with
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Figure 13: The difference Ay = (y) — yo between the average (y) over the noisy
trajectories and the deterministic value yy as a function of the demand strength
Iy and the noise amplitude « for (a) the Hill function with n = 1.6, (b) the Hill
function with n = 2 and (c) the ReLU as the activation function. The panels show
the difference in the number of loops n. (left), their length . (central), and the cycle
edge fraction e. (right). For the stochastic case, we considered 50 simulation runs
for each value of Iy and «. The differences Ay are displayed as a color code, whereby
dark blue corresponds to decreased values and dark red indicates increased values
(see colorbar). The solid black lines represent Ay = 0, indicating that the average
of the stochastic case and the deterministic value are equivalent. The fluctuations
of the solid black lines are attributed to the relatively small number of trajectories.

shorter loops at small Iy. In contrast, for large Iy, regions with more loops exhibit
longer loops. The fraction e. of edges that are involved in at least one loop consis-
tently exceeds the deterministic value, as noise increases either the number of loops
or their length. For the sigmoidal function with n = 2, regions with a larger number
of loops coincide with longer loops across the whole range of Iy, which also leads to
an increased cycle edge fraction e.. For the ReLLU function, regions with more loops
generally exhibit shorter loops. Interestingly, the most significant gain in loop length
occurs in a region where the number of loops n. in the stochastic and deterministic
cases is almost identical. At large Iy, noise has a minimal effect on the number of
loops n., but reduces their length [., limiting the increase in the fraction e..

These results suggest that, under certain conditions, noise can promote the forma-
tion of loops and their length selectively. Overall, the qualitative behavior of the
differences Ay in the loop-based measures is reminiscent of the trends reported for
robustness, efficiency, and cost in Part 1. However, deviations arise because these
properties are influenced by the intricate interplay of the number of loops, their
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length, and the cycle edge fraction, which may be independent of each other or not,
depending on the activation function and the demand strength.

76



CONCLUSION AND OUTLOOK

C.1 Summary

In this dissertation, we have presented studies on network self-organization. Span-
ning four interrelated publications, the dissertation progresses from analyzing a
biologically-inspired model for finding shortest paths to generalizing it to multi-
commodity flow settings. As a key result, we found that moderate noise can dra-
matically increase the efficiency of the algorithm. Specifically, we reported that the
adaptability of the emerging networks to periodically changing environmental condi-
tions is maximized in the presence of noise due to stochastic resonance. Further, we
found self-organization into networks with optimal robustness, efficiency, and cost at
finite noise amplitudes, where the convergence speed of the algorithm is maximized
as well. This peak in system performance at optimal noise levels, accompanied by
a narrowing of the distributions of the stochastic trajectories, is characteristic of
noise-induced resonances. Moreover, we analyzed how the interplay between non-
linear dynamics and stochastic forces drives the emergence of these resonances. We
demonstrated that they strongly depend on the algorithm’s nonlinearity while re-
maining observable across all considered classes of activation functions.

In general, our results challenge the traditional view of noise as being detrimental;
instead, they suggest that it can even be harnessed as a resource. This offers new
opportunities for real-world applications, especially for the design of transport net-
works. By leveraging noise-induced effects, one might be able to tailor specific topo-
logical properties, such as efficiency and robustness, by promoting shortest-path-like
connections or loops, respectively. Consequently, noise emerges as a parameter to
optimize network performance. Based on these insights, the following section pro-
poses further research directions for network design.

C.2 Future directions in network design

For instance, future work could introduce edge-specific dissipation rates in the
Physarum-inspired model for network design, simulating geographical constraints,
for example. As a consequence, the algorithm would reduce the usage of edges with
larger dissipation. In addition to that, time-dependent dissipation rates could be
explored to model dynamically changing constraints, similar to the setup discussed
in Chapter 1 for a single commodity. Another promising direction is to consider
time-varying demand strengths to reflect variations in traffic loads—an approach
recently explored by Lonardi et al. [97].

These extensions would broaden the applicability of the algorithm considerably and
allow for a detailed study of the effect of stochasticity in more complex settings.
We expect that noise could also prove beneficial in such scenarios, potentially en-
hancing the minimization of dissipation and the adaptability to time-dependent
constraints. In addition to these promising research directions in the context of
Physarum-inspired algorithms, the idea of harnessing noise and nonlinear dynam-
ics extends beyond network design. For this reason, the following section discusses
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how stochastic fluctuations might be leveraged in other, well-known optimization
problems.

C.3 Adding noise and nonlinear dynamics to established
optimization algorithms

The Phyarum-inspired approaches considered in this dissertation can be regarded
as reference models for optimization algorithms, which play a crucial role in var-
ious disciplines. Given that adding noise enhances the emerging networks in the
Physarum-inspired model, an intriguing question arises: Can the combination of
stochasticity and nonlinearity also benefit well-known optimization algorithms, such
as gradient-based approaches? These algorithms, widely used in fields like machine
learning [98-100], often face challenges such as slow convergence or getting trapped
in local minima, particularly for high-dimensional optimization problems. In fact,
noise is already used in several optimization strategies to improve performance. For
instance, simulated annealing [101, 102] leverages stochasticity to navigate through
intricate optimization landscapes. Similarly, Eisert et al. [103] demonstrated that
adding noise to the standard gradient descent method significantly improves its con-
vergence in the context of quantum computing. However, while they focus solely on
noise, the modifications proposed in this dissertation include both nonlinear dynam-
ics and stochastic forces, which may further enhance the performance of optimization
algorithms. To explore this approach, we analyze several use cases based on the stan-
dard gradient descent algorithm. The following section provides a summary of our
ansatz and preliminary findings.

C.3.1 Standard gradient descent

In this section, we investigate how adding nonlinear dynamics and noise to the
standard gradient descent method [104], a commonly used approach to minimize a
cost function C(x1, ..., x), influences its ability to reach the global minimum of C.
In its original form, the algorithm starts at the initial values (29, ..., 2)) and updates
each variable x; according to the rule

i i 9C 1 i
xj'H —xj—naxj<x1,...,a:k), (5.1)

with j € {1,...,k}, the iteration i and the learning rate 7. For sufficiently small 7,
Eq. (5.1) converges to the system of differential equations

(91’]‘ oC
- _ ) 5.2
8t 6xj ( )
Its steady state is given by
oC
— =0 5.3

which is a necessary condition for x; to be at a local minimum of the cost function.
Since x; is updated along the negative gradient of C, the algorithm guarantees
convergence to a local minimum, but not necessarily to the global minimum.

As an example, let us consider the one-dimensional cost function

C(x) = (x —1)* +sin(10z), (5.4)
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Figure 14: Cost function C(z) given by Eq. (5.4). The red dot marks the initial value
Co = C(zp), with the dotted line indicating zp. The standard gradient descent
method as defined by Eq.(5.1) was applied for a fixed number of m = 10,000
iterations using the learning rate n = 0.01. The algorithm converged to the nearest
local minimum, marked by the yellow dot. The global minimum is labeled by the
green dot.

which has an intricate landscape with multiple local minima due to the sinusoidal
term. Its global minimum is located at xpi, ~ 1.099, corresponding to a cost of
Chin & —0.99. Starting from an initial value zg, the algorithm defined by Eq. (5.1)
follows the steepest descent path. However, as illustrated in Fig. 14, it converges
to the nearest local minimum rather than the global minimum, demonstrating a
common limitation of gradient-based methods.

To address this issue, we propose several variants of the approach given by Eq. (5.1),
incorporating nonlinear dynamics and stochastic forces. While we use Eq. (5.4) for
benchmarking these modifications, the algorithms are formulated for the general
case of a k-dimensional cost function.

C.3.1.1 Nonlinear gradient descent with fized noise amplitude
In a first attempt, we modify the gradient descent method by adjusting the update
rule to

x§+1 - x; — 1sgn (ggi (wll, ,x%)) f(‘g:g(xﬁ, ,CCZ) D + oz\/ﬁ§; (5.5)

Here, sgn(x) is the sign function, f(z) is a positive, nonlinear activation function,
and 5;- is Gaussian white noise, with « capturing the amplitude of the stochastic
fluctuations. The sign function guarantees that, in the noiseless case (« = 0),
the updates to x; decrease the value of the cost function. However, due to the
component-wise application of the activation function f(z), the trajectories do not
necessarily follow the steepest descent anymore. The noise enables the system to
escape from local minima by deviating from the deterministic descent path. For
n < 1, Eq. (5.5) converges to the system of stochastic differential equations

Oz oC oC
= (55) (]) + e -

The steady state of its deterministic part is given by
oC
— | =0. 5.7
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Figure 15: Convergence behavior of different algorithms as a function of the noise
amplitude o. The top panel shows the average final cost (C'r) and the bottom panel
displays its standard deviation o(CY), both determined for a total of 100,000 simu-
lation runs with a learning rate of n = 0.01. The subfigures employ different update
rules: (a) Eq. (5.5), with fixed noise amplitude, (b) Eq. (5.5), with a noise amplitude
that linearly decreases over time, as described by Eq. (5.9), and (c¢) Eq. (5.13). The
dotted lines indicate the smallest noise amplitude at which (Cy) reaches its mini-
mum.

To ensure that the necessary condition for a local minimum, Eq. (5.3), is satisfied,
we impose the requirement

f(x) =0
& =0 (5.8)

on the activation function. In the following, we use f(x) = y/z, which enhances up-
date steps for small magnitudes of the gradient while reducing them for larger ones
(note that z = [9,,C| > 0). This choice improves the algorithm’s ability to navi-
gate through flat landscapes and prevents overshooting. Figure 15(a) displays the
convergence of the algorithm for varying noise amplitudes «. For small noise ampli-
tudes, the average final cost (C'y) first increases slightly before decreasing sharply. It
reaches a minimum value of (Cy) ~ —0.5 at o ~ 0.5, which is marked by the dotted
line. Although this minimum is lower than the final cost achieved by the standard
gradient descent method, it remains significantly higher than the global minimum of
Chin = —0.99. As the noise amplitude increases further, (Cy) rises again, indicating
the presence of a noise-induced resonance at which the algorithm’s performance is
maximized. This notion is further strengthened by the standard deviation o(Cj)
reaching a local minimum at this optimal noise level.

To sum up, the approach given by Eq. (5.5) enhances the convergence of the algo-
rithm to the global minimum, but it remains suboptimal. While stochastic fluctu-
ations enable the system to escape from local minima, they also hinder settling to
the global minimum. To address this, the following section introduces a dynamic
noise amplitude.
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C.3.1.2 Nonlinear gradient descent with linearly decreasing noise amplitude
Optimization algorithms inspired by simulated annealing [101, 102] typically employ
stochastic fluctuations with an amplitude that decreases over time, representing
a lowering of the temperature of the system. While this cooling procedure still
facilitates the escape from local minima during the initial iterations, it also enhances
convergence to the global minimum as the system stabilizes. Based on this concept,
we further modify our approach by considering a noise amplitude that decreases
linearly over time. Specifically, in Eq. (5.6), we replace

a—ao=(m—i)/ma, (5.9)

where m is the total number of iterations. While the actual noise level o depends on
the current iteration ¢, we refer to the constant parameter « as the noise amplitude
in the following. Figure 15(b) illustrates the results of this modification. In contrast
to the approach outlined in Eq. (5.6), both (Ct) and o(C}) remain constant for
small noise amplitudes. For larger «, the average final cost decreases, whereas the
standard deviation increases. At o =~ 0.7, both (Cf) and o(Cy) reach a minimum,
which extends over a wide range of noise amplitudes. This minimum, (Cy) ~ —0.7,
is significantly lower than the minimum achieved using the update rule defined by
Eq. (5.5), which employs a fixed noise level. For values of « larger than the considered
range, we expect both (Cy) and o(Cy) to rise again.

While a linearly decreasing noise amplitude enables the algorithm to converge to
values closer to the global minimum on average, the relatively large variance in the
final value Cy indicates that the system frequently gets stuck in local minima. To
mitigate this issue, the following section implements additional modifications to the
update rule.

C.3.1.3 Nonlinear gradient descent with adaptive noise control

We attempt to further enhance the convergence of the optimization algorithm to the
global minimum of the cost function by introducing adaptive noise control. We use
an approach inspired by the Metropolis algorithm [105], a widely used Monte Carlo
method. Specifically, we modify the algorithm so that it probabilistically switches
between deterministic and stochastic update steps based on the local behavior of
the cost function. In particular, we explicitly allow intermediate update steps that
increase the value of the cost function to facilitate the escape from local minima.
To adapt this concept for a gradient descent method, we define a candidate for the
updated value of the next step

:E;(oz) = :v; - nsgn((gg (9311, ,x%)) f(‘gfj (m’l, ,mﬁg) D + \/?]5; (5.10)
and the probability
p= e A0 (5.11)
to realize this step, with the difference in the cost function
AC = C(F(a), ..., T4 () — C(a}, ..., 2h). (5.12)

Note that in Eq. (5.10), the value of « is fixed, whereas in Eq. (5.11), we consider
a linearly decreasing noise amplitude as given by Eq. (5.9). We modify the update
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rule given by (5.5) to

(5.13)

J (0) ,else

St {:i‘;(a) ,if ¢* < min(1, p*)
T

with a uniformly distributed random number ¢¢ € [0,1]. Figure 15(c) shows the
convergence of this algorithm. For small values of a, both the average final cost (C)
and the standard deviation o(Cy) are constant. For larger noise amplitudes, (C)
sharply decreases to an intermediate plateau before reducing further to a minimum
of (Cy) = —0.99, which extends over a wide range of noise amplitudes. Remarkably,
this is the global minimum Ci,;, of the cost function, demonstrating the superiority
of this algorithm over the previously considered approaches, including the standard
gradient descent method. Correspondingly, the standard deviation first increases
significantly, reaches a maximum, and then decreases again. For values of a at
which (C) reaches the global minimum of the cost function, the standard deviation
vanishes, indicating that all trajectories converge to Chin-

Overall, the approach defined by Egs. (5.10) - (5.13), which effectively combines
deterministic and stochastic updates, enables consistent convergence to the global
minimum.
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C.3.2 Concluding remarks

To conclude, these preliminary studies suggest that the performance of well-known
optimization algorithms, such as the standard gradient descent method, can be
enhanced by adding nonlinear dynamics and stochastic forces. In particular, the
modifications introduced in Sec.C.3.1.3 enable the algorithm to navigate through
intricate landscapes more effectively, avoid getting trapped in local minima, and
reach the global minimum of a cost function with greater reliability.

These preliminary findings hold significant potential for fields where optimization is
central, such as machine learning and quantum computing. For instance, the Vari-
ational Quantum Eigensolver [106, 107] often faces the problem of barren plateaus
[108], where the landscape of the cost function becomes extremely flat, posing a ma-
jor challenge to optimization. While introducing nonlinearity and noise alone may
not overcome this issue, these modifications could potentially complement other
strategies to mitigate such problems.

Future research could examine how the proposed modifications influence the con-
vergence speed of the algorithms, with the results discussed in previous chapters
suggesting an intricate dependency. Overall, this proof of concept demonstrates
that the insights gained in this dissertation are not limited to the design of trans-
port networks but hold broader applicability to general optimization challenges.
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