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Abstract

Abstract. The fair allocation of resources among agents with individual preferences
is a fundamental problem at the intersection of computer science, social choice theory,
and economics. This dissertation examines scenarios where the resources to be allocated
are a set of indivisible goods. Two primary categories of fairness concepts are considered:
share-based and envy-based criteria. Fach category encompasses desirable notions of
fairness, each with distinct advantages and limitations.

In the first part of the dissertation, we study a share-based fairness notion known as the
maximin share (MMS). Since MMS allocations do not always exist, we study relaxed MMS
allocations and establish positive results in various settings. In particular, we establish
the existence of (3/4 + 3/3836)-MMS allocations for agents with additive valuations,
and (3/13)-MMS allocations for agents with fractionally subadditive (XOS) valuations.
In addition, we consider ordinal approximations of MMS and prove the existence of
1-out-of-4[n/3] MMS allocations in the additive setting.

The second part of the dissertation focuses on envy-based fairness notions. For indi-
visible items, the most prominent envy-based criterion is envy-freeness up to any item
(EFX). Although the existence of EFX allocations remains open in many general settings,
we contribute to this area by proving the existence of EFX allocations for three agents
under minimal constraints on their valuations. Furthermore, we establish the existence
of relaxed forms of EFX, including epistemic EFX, and approximate EFX with charity.

In the third and final part of this thesis, we move beyond single fairness crite-
ria—whether share-based or envy-based—to establish the existence of allocations that
satisfy multiple fairness guarantees. Specifically, we prove the existence of (partial) al-
locations that are 2/3-MMS and EFX simultaneously. This line of research, while less
established, represents a promising direction for future research.



Zusammenfassung. Die faire Aufteilung von Ressourcen zwischen Akteuren mit indi-
viduellen Préferenzen ist ein grundlegendes Problem an der Schnittstelle von Informatik,
Sozialwahltheorie und Wirtschaftswissenschaften. In dieser Dissertation werden Szenarien
untersucht, in denen die zu verteilenden Ressourcen eine Reihe von unteilbaren Giitern
sind. Es werden zwei Hauptkategorien von Fairnesskonzepten betrachtet: anteilsbasierte
und neidbasierte Kriterien. Jede Kategorie umfasst wiinschenswerte Vorstellungen von
Fairness, die jeweils ihre eigenen Vorteile und Grenzen haben.

Im ersten Teil dieser Arbeit untersuchen wir einen anteilsbasierten Fairnessbegriff,
der als Maximin-Share (MMS) bekannt ist. Da MMS-Zuteilungen nicht immer exis-
tieren, untersuchen wir relaxierte MMS-Zuteilungen und zeigen positive Ergebnisse in
verschiedenen Situationen. Insbesondere beweisen wir die Existenz von (3/4 + 3/3836)-
MMS-Zuteilungen fiir Agenten mit additiven Bewertungen und (3/13)-MMS-Zuteilungen
fiir Agenten mit fraktionell subadditiven (XOS) Bewertungen. Zusétzlich betrachten
wir ordinale Approximationen von MMS und beweisen die Existenz von 1l-aus-4[n/3]
MMS-Zuteilungen in dem additiven Fall.

Der zweite Teil der Dissertation befasst sich mit neidbasierten Fairnesskonzepten. Fiir
unteilbare Giiter ist das bekannteste neidbasierte Kriterium die Neidfreiheit bis auf ein
beliebiges Gut (EFX). Obwohl die Existenz von EFX-Zuteilungen in vielen allgemeinen
Kontexten offen bleibt, leisten wir einen Beitrag zu diesem Gebiet, indem wir die Existenz
von EFX-Zuteilungen fiir drei Agenten unter minimalen Beschrénkungen ihrer Bewertun-
gen beweisen. Dariiber hinaus etablieren wir die Existenz von relaxierten Formen von
EFX, einschliefslich epistemischem EFX, und approximiertem EFX mit Spenden.

Im dritten und letzten Teil dieser Arbeit gehen wir iiber einzelne Fairnesskriterien
hinaus — sei es anteilsbasiert oder neidbasiert — und beweisen die Existenz von Zutei-
lungen, die mehrere Fairnessgarantien erfiillen. Insbesondere beweisen wir die Existenz
von (teilweisen) Zuteilungen, die gleichzeitig 2/3-MMS und EFX sind. Dieser Forschungs-
zweig ist zwar weniger etabliert, stellt aber eine vielversprechende Richtung fiir zukiinftige
Forschung dar.
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CHAPTER 1

Introduction

Fair division of resources is a fundamental problem in many disciplines, including computer
science, economics, operations research, and social choice theory. In a classical fair division
problem, the goal is to “fairly” allocate a set of items among a set of agents [64]. Such
problems find very early historical mentions, for instance, in ancient Greek mythology and
the Bible. Even more so today, many real-life scenarios are paradigmatic of the problems
in this domain, e.g., division of family inheritance [60], divorce settlements [18], spectrum
allocation [34], air traffic management [70], course allocation [21], and many more.!

The field of fair division encompasses a broad range of problems, depending on the
properties of the items, the notion of fairness being considered, and the agents’ valuations
of the items.

The items are considered to be “goods” or “chores”. In a very general sense, if the
agents are happy to receive an item, that item is considered to be a good and otherwise
a chore. Hence, in the mixed setting, it could be the case that an item is a good for
some agent and a chore for some other. Moreover, depending on what bundle each agent
currently has, a remaining item could be considered a good or a chore. Furthermore, the
items can be divisible or indivisible. If an item is divisible, then agents could receive a
fraction of that item. In contrast, if an item is indivisible, it should be allocated to at
most one agent.

In this dissertation, we focus on important open problems in discrete fair division,
where a set M of m indivisible goods needs to be allocated to a set N of n agents. From
now on, we use “items” and “goods” interchangeably. Each agent 7 is equipped with a
valuation function v;: 2M — R>o which captures the utility agent ¢ derives from any
bundle that can be allocated to her. One of the most well studied classes of valuations
is the class of additive valuations, i.e., v;(S) = > cqvi({g}) for all S C M. However,
we also study more general classes of valuation functions like submodular, fractionally
subadditive, and general monotone (see Chapter 2 for formal definitions). The goal is
to determine a fair (sub)partition X = (X1, Xo,..., X,) of M where Xj is allocated to
agent 7. Depending on the considered notion of fairness, this setting has several different
problems.

The literature has long examined different notions of fairness, primarily through envy-
based and share-based perspectives. In share-based frameworks, agents are satisfied if
their utility exceeds a certain threshold, independent of others’ bundles. Conversely, envy-
based frameworks involve agents comparing their received bundles to those of others,
where feelings of fairness hinge on these comparisons. Notably, an agent may receive a
substantial utility but still feel dissatisfied if others receive more.

!See www.spliddit.org and www.fairoutcomes.com for a more detailed explanation of fair division
protocols used in day-to-day problems.
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Chapter 1. Introduction

1.1 Share-Based Notion

In share-based notions, an agent finds an allocation fair only through the value she obtains
from her bundle (irrespective of what others receive). For each agent i, if the value ¢
receives is at least some threshold ¢;, then the allocation is said to be fair. Proportionality
is an important share-based notion of fairness that entails an allocation to be fair when
every agent i € N values her bundle at least as much as her proportional share of v;(M)/n
(i.e., t; = v;(M)/n). It is easy to see that proportionality is too strong to be satisfied
in the discrete setting. As a counter-example, consider two agents and one good with a
positive utility to both of the agents. Note that no matter how we allocate this good,
one agent receives 0 utility, which rules out the existence of proportional allocations and
any multiplicative approximation of proportionality. This necessitates studying relaxed
fairness notions when goods are indivisible.

The most prominent relaxation of proportionality, and our focus in the first part
of this dissertation, is mazimin share (MMS), introduced by Budish [20]. MMS is also
preferred by participating agents over other notions, as shown in real-life experiments [43].
The maximin share of an agent is the maximum value she can guarantee to obtain if
she divides the goods into n bundles (one for each agent) and receives a bundle with
the minimum value. Basically, for an agent 7, assuming that all agents have ¢’s valuation
function, the maximum value one can guarantee for all the agents is i’s maximin share,
denoted by MMS;. Formally, for a set S of goods and any positive integer d, let I1;(S)
denote the set of all partitions of .S into d bundles. Then,

d
d — sn s (P
MMS$(S) = Pg_g}((s) IjIl:Hll v (Py).

For all agents i, MMS,; = MMS?(M). An allocation is MMS, if all agents value their
bundles at least as much as their MMS values. Formally, allocation A is MMS; if v;(A;) >
MMS; for all agents i € N.

However, MMS is an unfeasible share guarantee that cannot always be satisfied when
there are more than two agents with additive valuations [37, 52, 62|. Therefore, the MMS
share guarantee needs to be relaxed, and the two natural ways are its multiplicative and
ordinal approximations.

1.1.1 Multiplicative Approximations of MMS

Since we need to lower the share threshold, a natural way is to consider @ < 1 times
the MMS value. Formally, an allocation X = (X,...,X,) is -MMS if for each agent
i, v;(X;) > a - MMS;. When agents have additive valuations, earlier works showed the
existence of 2/3-MMS allocations using several different approaches [6, 13, 41, 52, 62].
Later, in a groundbreaking work, the existence of 3/4-MMS allocations was obtained
through more sophisticated techniques and involved analysis [44].

After Ghodsi et al. [44] proved the existence of 3/4-MMS allocations and gave a PTAS
to compute one, Garg and Taki [42] gave a simple algorithm with complicated analysis
proving the existence of (% + ﬁ)—MMS allocations and also computing a 3/4-MMS
allocation in polynomial time. The approximation factor of 3/44 O(1/n) is tight for this
algorithm [11, 32].

2



1.1. Share-Based Notion

] ‘ Existence ‘ Non-existence ‘
n=3 | 11/12 [36] > 39/10 [37]
n=4 |4/ [44] >1—47%[37]

2/3[6, 41, 53, 62]
2/3(141/3n—1) [13]
n >4 | 3144 >1— 1 [37]
3/a+ /120 |42]

3/4 4+ 3/3836 (Theorem 3.61)

Table 1.1: Summary of the approximate MMS results when agents have additive valua-
tions

The complementary problem is to find upper bounds on the largest « for which a-
MMS allocations exist. Feige, Sapir, and Tauber [37] constructed an example with three
agents and nine goods for which no allocation is better than 39/40-MMS. For n > 4,
their construction gives an example for which no allocation is better than (1 —n~%)-MMS.
Table 1.1 summarizes all these results. We note that most of these existence results can
be easily converted into PTAS for finding such an allocation using the PTAS for finding
the MMS values [71].

In Chapter 3, we study the additive setting. First in Section 3.3, we simplify the
analysis of (a slight modification of) the Garg-Taki [42] algorithm significantly. Then,
by combining novel ideas with existing techniques, in Section 3.4 we prove the existence
of (2 + 52+)-MMS allocations, breaking the 3/4 barrier that existed since the work of
Ghodsi et al. [44].

So far, we only discussed guarantees for the setting in which agents have additive
valuations. Nevertheless, several studies in recent years show approximation guarantees of
maximin-share to all agents for other classes of valuation functions, including submodular,
fractionally subadditive, and subadditive. We refer to Chapter 2 for a formal definition of
these valuation classes. See Table 1.2 for the state-of-the-art guarantees on the maximin-
share. For submodular valuation class, a 10/27-MMS allocation can be computed in
polynomial time. For all other classes of valuation functions mentioned in Table 1.2, the
states-of-the-art are existential results.

‘ Valuation Class ‘ Approximation Guarantee ‘ Upper bound ‘
Additive 3/4+1/(12n) [42] 1—1/n* [37]
3/4 4 3/3836 (Theorem 3.61)
Submodular 10/27(68] 3/4 [44]
Fractionally Subadditive 0.219225 [63] 1/2 [44]
3/13 (Theorem 4.3)
Subadditive 1/(log nloglogn) [63] 1/2 [44]

Table 1.2: A summary of the state-of-the-art results for MMS in different valuation
classes.

Let us revisit the instance with one item and two agents. Suppose that the item has
value 6 for both agents. By definition, the proportional share of each agent is 6/2 = 3,
and since one agent receives no item, satisfying proportionality or any approximation of



Chapter 1. Introduction

it is impossible. On the other hand, we have MMS; = MMSs = 0. Thus, allocating the
item to any agent satisfies maximin-share. Indeed, we can circumvent the non-guaranteed
existence of fair allocation by reducing our expectation of fairness to maximin-share.
However, regardless of how we allocate the item, one agent receives one item, and the
other receives nothing. Therefore, having one agent with zero utility is inevitable for any
deterministic allocation in this example. The question then arises: can we do better?

One way to improve the allocation is to use randomization and obtain a better
guarantee in expectation (ez-ante). A randomized allocation R has a property P (e.g.
proportionality, a-MMS, etc) ex-ante, if P holds in expectation. For example, R is a-
MMS ex-ante, if the expected utility of all agents is at least « times their MMS value.
Furthermore, randomized allocation R has a property P ex-post, if P holds for all the
deterministic allocations in the support of R.

In order to obtain better guarantees in expectation, we can allocate the item to
each agent with probability 1/2. This way, the expected utility of each agent is equal
to 3. In economic terms, this allocation satisfies proportionality ez-ante. Note that one
agent receives no item ez-post (that is, after fixing the outcome); however, it guarantees
proportionality ex-ante to both agents.

Considering random allocations and ex-ante fairness makes the problem much handier.
For instance, assuming there are n items and n agents, allocating each item to each agent
with probability 1/n satisfies proportionality ex-ante. However, this randomized allocation
has no ex-post fairness guarantee: with a non-zero probability, the outcome allocates all
the items to one agent, and the rest of the agents receive no item. It is tempting to find
allocations that simultaneously admit ex-ante and ex-post guarantees. The support of
such an allocation is limited to outcomes with some desirable fairness guarantee. For
example, consider the following random allocation: we choose a random permutation of
these n items and allocate the i*® item in the permutation to agent i. This allocation
satisfies proportionality ex-ante and maximin-share ex-post.

Recently, several studies have investigated randomized allocations with both ex-ante
and ex-post guarantees, also known as best-of-both-worlds guarantees. Some notable
results with the focus on additive valuations are (i) an ex-ante envy-free and ex-post EF1
allocation algorithm [39] and (ii) an ex-ante proportional and ex-post 1/2-MMS allocation
algorithm [12]|. Recently, Feldman et al. [38] studied best-of-both-worlds for subadditive
valuations and gave an allocation algorithm with ex-ante guarantee of 1/2-envy-freeness
and ex-post guarantee of 1/2-EFX and EF1.

In Chapter 4, we explore fair deterministic and randomized allocations for fractionally
subadditive valuation functions. A valuation function v;(-) is fractionally subadditive
(XOS), if there exists a set of several additive valuation functions w;1,u;2,...,u;p :
oM R>o such that for every set S we have v;(S) = maxj<g<su; x(S). Fractionally
subadditive is a super-class of different set functions such as additive, gross substitute,
and submodular. In addition, fractionally subadditive is a subclass of subadditive set
functions.

Indeed, we are looking for allocations that satisfy an approximation of maximin-share
both ex-ante and ex-post for fractionally subadditive valuations. Of course, we expect
our ex-ante guarantee to be stronger than the ex-post one. In Theorem 4.2, we prove the
existence of randomized allocations which are 1/4-MMS ex-ante and 1/8-MMS ex-post.

4



1.2. Envy-Based Notions

Moreover, we improve the ex-post approximation guarantee (deterministically) for this
class of valuations to 3/13 (Theorem 4.3).

1.1.2 Ordinal Approximations of MMS

Another natural way of relaxing MMS is to consider the share value of MMSZ(M) for
d > n for each agent i, which is the maximum value that ¢ can guarantee if she divides the
goods into d bundles and then takes a bundle with the minimum value. This notion was
introduced together with the MMS notion by Budish [20], which also shows the existence
of 1-out-of-(n 4+ 1) MMS after adding excess goods. Unlike a-MMS, this notion is robust
to small perturbations in the values of goods because it only depends on the bundles’
ordinal ranking and is not affected by small perturbations as long as the ordinal ranking
of the bundles does not change.

The a-MMS is very sensitive to agents’ precise cardinal valuations: consider the
example mentioned by Hosseini, Searns, and and Segal-Halevi [47|. Assume n = 3 and
there are four goods g1, g2, g3 and g4 with values 30, 39, 40 and 41 respectively for agent 1.
Assume the goal is to guarantee the 3/4-MMS value of each agent. We have MMS; = 40,
and therefore any non-empty bundle satisfies 3/4-MMS for agent 1. However, if the value
of g3 gets slightly perturbed and becomes 40+ ¢ for any € > 0, then MMS; > 40 and then
3/4-MMS; > 30 and the bundle {g;} does not satisfy agent 1. Thus, the acceptability of
a bundle (in this example, {g;}) might be affected by an arbitrarily small perturbation
in the value of an irrelevant good (i.e., g3). Observe that in this example, whether the
value of g3 is 40 or 40 + ¢ for any € € R, {¢1} is an acceptable 1-out-of-4 MMS bundle
for agent 1.

Another way to interpret 1-out-of-d MMS allocations is giving n/d fraction of agents
their MMS value and nothing to the remaining agents. Note that since we know MMS
allocations do not necessarily exist, meaning that we cannot give all agents their MMS
value, it is a valid question to ask how many of the agents we can indeed satisfy up to
their MMS value. Apart from the theoretical significance of the question, in practice this
scenario can be desirable when we want to favour an under-represented group of agents.
Or when the act of allocating resources is a repetitive action and we can favour the set
of agents who have not receive anything yet, in later rounds.

In the standard setting (i.e., without excess goods), the first non-trivial ordinal ap-
proximation was the existence of l-out-of-(2n — 2) MMS allocations [1], which was
later improved to 1-out-of-[3n/2] [46], and then to the current state-of-the-art 1-out-of-
|3n/2] |47]. On the other hand, the (non-)existence of 1-out-of-(n + 1) MMS allocations
is open to date.

Our result in Chapter 5 shows that 1-out-of-4[n/3] MMS allocations always exist,
thereby improving the state-of-the-art of 1-out-of-d MMS.

1.2 Envy-Based Notions

In the realm of envy-based fairness criteria, envy-freeness is the most prominent standard.
It requires that no agent prefers another agent’s bundle over her own. Like proportionality,
envy-freeness is feasible with divisible resources [18, 66, 67| but not with indivisible ones.
The same example of two agents and one item with positive value to both of them serves
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as a counter example for envy-freeness in the discrete setting as well. The concept of
envy-freeness up to any item (EFX) serves as a practical relaxation of envy-freeness for
indivisible items. Under EFX, any envy an agent ¢ has toward another agent j must be
eliminated if any item is removed from agent j’s bundle [25]. Formally, an allocation X
is EFX if and only if for all agents ¢ and j, v;(X;) > v;(X; \ {g}) for all g € X;. EFX is,
in fact, considered to be the “closest analog of envy-freeness” in discrete fair division [23].
Unfortunately, the existence of EFX allocations is still unresolved despite significant
efforts by several researchers |25, 58| and is considered one of the most important open
problems in fair division [61]. There have been studies on:

e the existence of EFX allocations in restricted settings;
e the existence of relaxations of EFX allocations.

In the second part of this dissertation, we improve our understanding in both of these
settings in a systematic direction towards solving the big problem.

1.2.1 Restricted Settings

Special Valuation. One way of restricting the setting is having restrictive assumptions
on the valuation functions of the agents. Plaut and Roughgarden [59] prove EFX alloca-
tions exist when all agents have identical (monotone) valuations. They also prove EFX
allocations exist and can be computed in polynomial time if all the valuations are additive
and all agents have an identical ordering of goods based on their values. Furthermore,
the existence of EFX allocations are known when agents have binary [10] or bi-valued [4]
valuations.

Small Number of Agents. EFX existence has also been studied when there are a
small number of agents. In particular, Plaut and Roughgarden [59] proved the existence
of EFX allocations for two agents with monotone valuations. For the case of three agents,
the existence of EFX was first shown with additive valuations [27| and then extended to
cancelable valuations [15]. In Chapter 6, we simplify and improve this result by showing the
existence of EFX allocations when two of the agents have general monotone valuations and
one has MMS-feasible valuation (a strict generalization of cancelable valuation functions).
Our approach is significantly simpler than the previous ones, which also avoids using
the standard concepts of envy-graph and champion-graph and may find use in other
fair-division problems.

1.2.2 Relaxations of EFX Allocations

Envy-freeness up to One Item (EF1). A weaker notion of fairness is envy-freeness
up to one item or EF1 which requires that any envy from any agent to another must be
eliminated by the removal of some (instead of any in the definition of EFX) good from
the envied bundle. Formally, allocation X is EF1, if and only if for all agents i, j, either
v;(Xi) > vi(Xj), or there exists a good g € X; such that v;(X;) > v;(X;\ {g}). Although
EF1 is is a relaxation of EFX, it has been introduced before EFX [20]. For additive
valuations, Caragiannis et al. [24] prove that a simple round-robin algorithm outputs
an EF1 allocation. Lipton et al. [55] introduced the technique of envy-cycle elimination
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which by itself outputs EF1 allocations when agents have monotone valuations and is
also used as a subroutine of many subsequent works |7, 15, 30].

Approximate EFX. Similar to MMS, one natural way to relax EFX is to consider
approximations of EFX. Formally, an allocation X is o-EFX if and only if v;(X;) >
a-vi(X;\ {g}) for all g € X;. Setting o = 1, we get the EFX definition and for o < 1,
a-EFX is clearly weaker than EFX itself. While the existence of 1-EFX allocations
remains open, studies has been done to improve the approximation factor « for which
a-EFX allocations exist. Plaut and Roughgarden [59] gave the first such algorithm which
admitted a 1/2-approximation in pseudopolynomial time for subadditive valuations, with
an extension to polynomial time due to Chan et al. [26]. The approximation ratio for
the additive case was further improved by Amanatidis et al. [7] and Farhadi et al. [35]
to ¢ — 1 =~ 0.618 by combining a round-robin and envy-cycle elimination procedure.

EFX with Charity. Caragiannis, Gravin, and Huang [23| introduced the notion of
EFX with charity. Here the goal is to find a fair allocation of a subset of all the goods
also known as partial allocations. The term charity is referring to the set of unallocated
goods. On an extreme end, we can allocate no item to the agents and give everything
to the charity. Then the allocation is envy-free and thus satisfies EFX property and
all relaxations of it. However, clearly this is not a desired allocation. So when having
partial allocations, in addition to EFX, we need to satisfy some other fairness or efficiency
notions to make sure that the allocation is not too wasteful. Caragiannis, Gravin, and
Huang [23] show that there always exists a partial EFX allocation X such that for each
agent i, we have v;(X;) > 1/2 - v;(X}), where X* = (X7, X5,...,X}) is an allocation
with maximum Nash welfare. The Nash welfare of an allocation Y is the geometric mean
of agents’ valuations, (Hie[n} vi(Y;))l/ ". Tt is often considered a direct measure of the
fairness and efficiency of an allocation. Following the same line of work, Chaudhury et al.
[30] showed the existence of a partial EFX allocation X such that v;(X;) > 1/2 - v;(X})
for all agents 7, no agent envies the set of unallocated goods, and the total number of
unallocated goods is at most n — 1.

Approximate EFX with Charity. Chaudhury et al. [28] combined the last two
frameworks and studied approximate EFX with charity. In particular, they showed the
existence of a (1 — €)-EFX allocation with O((n/e)**) charity for any € > 0. While the
last result is not a strict improvement of the result in [30] (since it ensures (1 — ¢)-EFX
instead of exact EFX), it is the best relaxation of EFX that we can compute in polynomial
time, as the algorithm in [30] can only be modified to give (1 —¢)-EFX with n — 1 charity
in polynomial time. Another key aspect of the technique in [28] is the reduction of the
problem of improving the bounds on charity to a purely graph-theoretic problem. In
particular, Chaudhury et al. [28] define the notion of a rainbow cycle number R(d) which
we formally define in Chapter 7. They prove, the smaller the upper bound on R(d), the
lower the number of unallocated goods. They prove R(d) € O(d*) and thus establish
the existence of (1 — ¢)-EFX allocation with O((n/e)*?) charity. An upper bound of
O(d2200glogd)*y wag obtained by Berendsohn, Boyadzhiyska, and Kozma [14], thereby
showing the existence of EFX allocations with O((n/e)%67) charity. In Chapter 7, we
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Chapter 1. Introduction

close this line of improvements by proving an almost tight upper bound on d (matching
the lower bound up to a log factor).

Epistemic EFX (EEFX). A recent work of Caragiannis et al. [22] introduced a
promising relaxation of EFX, called epistemic EFX which adapts the concepts of epistemic
envy-freeness defined by Aziz et al. [9]. We call an allocation X EEFX if for every agent
i € [n], there exists an allocation Y such that Y; = X; and for every bundle Y; € Y, we
have v;(X;) > v;(Y; \ {g}) for every g € Y;. That is, an allocation is EEFX if, for every
agent, it is possible to shuffle the items in the others’ bundles so that she becomes “EFX-
satisfied”. Caragiannis et al. [22] establish existence and polynomial-time computability of
EEFX allocations for an arbitrary number of agents with additive valuations. We improve
this result by proving the existence of EEFX allocations for an arbitrary number of agents
with monotone valuations. See Theorem 8.7. Note that in the setting of fair division of
“goods”, monotonicity is the most general assumption one can have for the valuations.
Furthermore, we prove that even when agents have identical submodular valuations, the
problem of finding EEFX allocations is PLS-hard and requires exponentially many value
queries.

1.3 Simultanious Fairness Guarantees

As discussed ealier, in discrete resource-allocation scenarios, the maximin share (MMS)
and envy-freeness up to any good (EFX) concepts serve as key representatives of these
fairness categories, each addressing distinct fairness aspects. Either of EF1/EFX or MMS
properties does not necessarily imply particularly strong approximation guarantees for
the other(s) [5]. In Section 9.2, we discuss the guarantees EFX/EF1 allocations can
provide for MMS and vice versa. This is in complete contrast to the divisible setting
guarantees, where any envy-free allocation is necessarily proportional as well. Hence, it
becomes compelling to ask for allocations that attain good guarantees with respect to
envy-based and share-based notions of fairness simultaneously. There are few works along
these lines in the literature with the assumption that the valuation functions of the agents
are additive, e.g., Chaudhury et al. [30] develop a pseudo-polynomial time algorithm to
compute a partial allocation that is both 1/2-MMS and EFX. Also, Amanatidis et al. [7]
develop an efficient algorithm to compute a complete allocation that is simultaneously
0.553-MMS and 0.618-EFX.

Following this line of research, in Chapter 9, we study fair division instances with
agents having additive valuations with the aim of pushing our understanding of the
compatibility between two different classes of fairness notions: EFX/EF1 with MMS
guarantees. Our main contribution is developing (simple) algorithms which prove the
existence of

(1) a partial allocation that is both 2/3-MMS and EFX;
(2) a complete allocation that is both 2/3-MMS and EF1.

If we relax 2/3-MMS to (2/3 — ¢)-MMS for any arbitrary constant € > 0, then the
above allocations can be computed in pseudo-polynomial time. If in addition to that, we
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relax EFX/EF1 to (1 —6)-EFX/(1 — §)-EF1 for any constant § > 0, then the allocations
can be computed in polynomial time.

We note that the above results have led to a new approach for finding desired partial
EFX allocations, in particular, where we have a good lower bound on the amount of value
each agent receives. It is known that EFX is not compatible with the economic efficiency
notion of Pareto optimality [59]. Therefore, it may seem that, in order to guarantee EFX,
one might have to sacrifice a lot of utility and agents may not receive bundles with high
valuations. Nevertheless, we prove that we can still guarantee their 2/3-MMS value to
every agent while finding a partial EFX allocation.

This line of inquiry, while consisting of less established results, represents a novel and
promising direction for future research. By investigating allocations that combine both
envy-based and share-based guarantees, we aim to push the boundaries of what can be
achieved in fair division, particularly in complex scenarios where single criteria may be
insufficient.
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CHAPTER 2

Notation and Preliminaries

For any non-negative integer n, let [n] = {1,2,...,n}. A discrete fair division instance
T = (N, M,V) consist of a set N = [n] of n agents, a set M of m indivisible items and
a vector of valuation functions V = (v1,vs, ..., v,) such that for all i € [n], v; : 2M — R

indicates how much agent 7 likes each subset of the items. In this dissertation, we consider
fair division of indivisible goods, and thus have v;(S) > 0 for all S C M. Also in this
case, we either assume M = [m] or M = {g1,92,...,9m}. For ease of notation, for all
g € M, we sometimes use g instead of {g}.

Valuation Functions. A set function f: 2" — R is
additive, if f(S)+ f(T)=f(SUT)+ f(SNT) for all S, C M.
o submodular, if f(S)+ f(T) > f(SUT)+ f(SNT) for all S, T C M.

e fractionally subadditive (XOS), if there exists additive functions fi,..., fo : 2M — R
such that f(S) = max;¢cs f;(S) for all S C M.

o subadditive, if f(S)+ f(T) > f(SUT) for all S,T C M.
e increasingly monotone, if for all S C M and T'C S, f(S) > f(T).
e decreasingly monotone, if for all S C M and T C S, f(S) < f(T).

From now on, for fair division of indivisible goods instead of “increasingly monotone” we
use “monotone”’. Throughout the dissertation, we assume that for all valuation functions
v, v(0) = 0. In each section, we mention what further assumptions we have on the
valuation functions. Let Caqditive be the class of all additive set functions and let Curg
be defined the same way for arg € {submodular, XOS, subadditive, monotone}. The
following proposition shows the relation between the mentioned classes of set functions.

Proposition 2.1. Cadditive C Csubmodular - CXOS C Csubadditive - Cmonotone-

An allocation X = (X1, Xo,...,X,,) is a partition of a subset of M into n bundles,
such that for all i € [n], agent i receives bundle X;. If ;e Xi = M, then X is a
complete allocation and otherwise it is a partial allocation. For a (partial) allocation X,
we denote the set (pool) of unallocated goods by P(X).

The Nash welfare of an allocation is the geometric mean of agents’ utilities under
that allocation. It is often considered a direct measure of the fairness and efficiency of
an allocation.

Definition 2.2 (Nash Welfare). The Nash Welfare of an allocation X is
NW(X) = H vy (X))

i€[n]
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2.1 Share-Based Notions

In share-based class of fairness notions, each agent i has a certain threshold ¢; and
deems an allocation X fair, if and only if v;(X;) > ¢;. An allocation is fair if all agents
find it fair. In fair division of divisible goods, the most celebrated share-based notion is
proportionality.

Definition 2.3 (Proportionality). Given a fair division instance T = ([n], M, V), an
allocation X is proportional, if and only if for all agents i, v;(X;) > v;i(M)/n. We define
m; = vi(M)/n as the proportional share of agent i. Similarly, an allocation X is a-
proportional for a given o > 0, if and only if v;(X;) > o - m;.

In the setting consisting of indivisible items, proportional allocations do not always
exist. A simple counter example consists of two agents with positive value over one item:
T = ([2],{g}, (v1,v2)) such that v;(g) > 0 for i € [2]. Although the proportional share
(vi(g)/2) is positive for both of the agents, one agent receives 0 value in any allocation.

Given the infeasibility of proportionality in the setting consisting of indivisible goods,
relaxation of proportionality has been introduced. One of the most important ones is
mazimin share (MMS) introduced by Budish [20].

For a set S of goods and any positive integers d, let I1;(S) denote the set of all
partitions of S into d bundles. Then,

d
d — i (P
MMSY. (S) := ng_g}({g) Ign:HllUZ(PJ) (2.1)

When clear from the context, we use MMS¢(S) instead of MMS&(S). Setting d = n
and S = M, we obtain the standard MMS notion. For a given instance Z, we abuse the
notation and write MMS; = MMS;(Z) = MMSj, (M).

Observation 2.4. Given an instance I with additive valuations, w; > MMS; for all
agents 1.

Definition 2.5 (a-MMS). For any a > 0, an allocation X is a-MMS, if for all agents
i, vi(X;) > a- MMS;. When o = 1, we say allocation X is an MMS allocation.

Definition 2.6 (1-out-of-d MMS). For any positive integer d, an allocation X is 1-out-
of-d MMS if for all agents i, v;(X;) > MMS4(M). When d = n, the allocation X is an
MMS allocation.

For each agent i, d-MMS partition of i is a partition P = (P,..., P;) of M into d
bundles such that min;l:1 v;(P;) is maximized. Hence, for a d-MMS partition P of agent
i, MMS¢(M) = min?:1 v;(Pj). When d = n, we write MMS partition instead of n-MMS

partition.

Definition 2.7 (a-MMS preserving). Given o > 0, we say a procedure which takes a
fair division instance Z and outputs (possibly) another fair division instance 7 is a-MMS-
preserving, if given any a-MMS allocation X for f, an a-MMS allocation X for T can
be computed in polynomial time.
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1: for i € N do

2 if MMS? = 0 then

5 N« N \{i}

4: else

b Compute agent i’s d-MMS partition P®).

6 Vj € [d], Vg € Pj(ﬂ, let 9;(g) == Ui(g)/vi(Pj(Z)).
7

return (A, M, V).

Algorithm 1: normalize(d, (N, M,V))

Definition 2.8 (d-normalized instance). An instance T = (N, M, V) is d-normalized, if
for all agents i, there exists a partition P() = (Pl(l), . ,Péz)) of M into d bundles such
that for all j € [d], vi(Pj(Z)) =1.

Note that for a d-normalized instance, every agent’s MMS? value is 1. Furthermore,
for each agent ¢ with additive valuation v;, and for every d-MMS partition ) of agent i,
we have v;(Q;) =1 Vj € [d], since each partition has total value of 1 and >,y vi(Q;) =
(M) = e vilP) = d.

Algorithm 1 converts a fair division instance with additive valuations to a d-normalized
instance.

Lemma 2.9. Let (N, M, V) = normalize(d, (N, M, V)) with additive valuations. Then
for any allocation A, v;(A;) > v;(A;) - MMS%Z, (M) for allie N.

Proof. If MMS&, (M) = 0, the claim clearly holds for agent i. Otherwise, let p; =

d (@) =~ _ (4)
MMS;3, (M). For any good g € P;”, vi(g) = vi(g)/vi(P;") < vi(g)/pi- Hence, vi(g)
0i(g) ;. Therefore, by additivity of v, v;(A4;) > U;(A;) ;.

v

Lemma 2.9 implies that normalize(n,.) is a-MMS-preserving (when agents have
a(/i\ditiveAvaluations), since if A is an a-MMS allocation for the n-normalized instance
(N, M, V), then A is also an a-MMS allocation for the original instance (N, M, V).

Definition 2.10 (Ordered instance). An instance Z = (N, M, V) with additive valuations
is ordered if there exists an ordering [g1,. .., gm] of the goods such that for all agents i,

vi(g91) = - .. > vi(gm)-

We will now see how to reduce the problem of finding an a-MMS allocation or a
1-out-of-d MMS allocation to the special case of ordered instances. In fact, Barman and
Krishnamurthy [13] proved that no matter what share-based fairness notion is considered,
it is without loss of generality to assume the instance is ordered.

Definition 2.11. For the fair division instance T := (N, M, V), order(Z) is defined as
the instance (N, [[M|],V), where for each i € N and j € [|[M]], v;(j) is the j* largest
number in the multiset {v;(g) | g € M}.

Theorem 2.12 ([13]). Given a mazimin fair division instance T = ([n], M, V) and
scalars {a; € R}, let ([n],[[M]],V) be the ordered instance of . If there exists an
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allocation A" = (Al ..., Al) that satisfies 0;(A") > «y, for all i € [n], then there exists
an allocation A = (Ay, ..., Ay) in which v;(A4;) > «;, for all i € [n]. Furthermore, given
T and A’, A can be computed in polynomial time.

The proof is based on ideas by Bouveret and Lemaitre [17]).
Note that ordering the instance does not change the MMS? for any agent ¢ and any
integer d. Hence Corollaries 2.13 and 2.14 follow from Theorem 2.12.

Corollary 2.13 (of Theorem 2.12). For instances with additive valuations and any « > 0,
order(.) is a-MMS-preserving.

Corollary 2.14 (of Theorem 2.12). Let I’ be the ordered instance of an instance  with
additive valuations. For all integers d > 0, if a 1-out-of-d MMS allocation exists for T',
then a 1-out-of-d MMS allocation exists for L.

2.2 Envy-Based Notions

In envy-based class of fairness notions, agents determine the fairness through comparing
their bundle with other agents’ bundles.

Definition 2.15 (Envy). Upon receiving bundle A, we say that agent i envies a bundle
B, if vi(A) < viy(B). Given an allocation X, agent i envies agent j, if v;(X;) < v;(Xj).

Definition 2.16 (Envy-Freeness). An allocation X is envy-free or EF, if no agent envies
any other agent. In other words, for all i,j € N, we have v;(X;) > v;i(X;).

Definition 2.17 (Envy-Graph). Given an allocation X, we define the envy-graph of X
as a directed graph Gx = (V, E) where V is a set of n nodes corresponding to agents, and
there exists an edge from (the node corresponding to) agent i to (the node corresponding
to) agent j, if and only if agent i envies agent j, i.e., v;(X;) > vi(X5).

Similar to proportionality, in fair division of indivisible goods, envy-freeness is not a
feasible guarantee. Hence, relaxations of envy-freeness has been introduced.

Definition 2.18 (Strong Envy). Upon receiving bundle A, we say that agent i strongly
envies a bundle B, if there exists an item g € B such that v;(A) < vi(B\ g). Given an
allocation X, agent i strongly envies agent j if there exists an item g € X; such that

vi(X3) < vi(X;\ g).

Definition 2.19 (Envy-Freeness up to any Item (EFX) [25]). An allocation X is EFX if
no agent strongly envies any other agent. In other words, for alli,j € N and all g € X},
we have v;(X;) > vi(X; \ g).

The existence of EFX allocations is one of the biggest open problems in fair divi-
sion [61].

Definition 2.20 (Approximate EFX). For any a > 0, an allocation X is a-EFX, if for
alli,5 € N and all g € X;, we have v;(X;) > a-vi(X; \ g).

Therefore, a 1-EFX allocation is an EFX allocation.
A weaker relaxation of envy-freeness is envy-freeness up to one item.
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Definition 2.21 (Envy-freeness up to One Item (EF1) [20]). An allocation X is EF1,
if for all 3,5 € N, we either have v;(X;) > v;i(X;), or there exists g € X; such that
vi(Xi) > 0i( X5\ g).

Similarly, for any a > 0, an allocation X is a-EF1, if for all 4,7 € N, we either have
v;(X;) > o - v;(Xj) or there exists g € X such that v;(X;) > a-vi(X; \ g).
We now define the concept of most envious agent for a bundle.

Definition 2.22 (Most Envious Agent). Given a bundle B and a (partial) allocation
X, an agent i € N is a most envious agent of bundle B, if there ewists a proper subset
B’ C B such that v;(B'") > v;(X;) and no other agent j € N such that j # i strongly
envies B'.

Observation 2.23. Given a fair division instance with additive valuations, consider a
bundle B and a (partial) allocation X . If there exists an agent i who strongly envies B,
then there exists an agent who is a most envious agent of B, and she can be identified in
polynomial time.

Proof. For all agents j who strongly envy B, let B; C B be an inclusion-wise minimal
subset such that v;(X;) < vj(B). Let j* be such that |Bj«| is minimum. Then no agent
J strongly envies Bj+ and thus j* is a most envious agent of B. The sets B;’s can be
computed in polynomial time for each agent j by greedily removing goods from B as
long as the value of the remaining set exceeds v;(X;). And therefore, agent j* can be
identified in polynomial time as well. O

Definition 2.24 (EFX-Feasibility). Given a partition X = (X1, Xo,...,X,) of M, a
bundle Xy, is EFX-feasible to agent i if and only if vi(Xy) > maz jepnmaz gex;vi(X;) \ g-
Therefore, an allocation X = (X1, Xo,...,X,) is EFX, if for each agent i, X; is EFX-
feasible .

Recently, Caragiannis et al. [22] introduced a promising new notion of fairness
— epistemic EFX — by relaxing EFX, that we define next. They proved epistemic EFX
allocations among an arbitrary number of agents with additive valuations can be computed
in polynomial time.

Definition 2.25. For any integer k, agent i € [n] and subset of items S C M, we say that
a bundle A C S is “k-epistemic-EFX” for ¢ with respect to S, if there exists a partitioning
of S\ A into k — 1 bundles C1,Cy,...,Ckx_1, such that for all j € [k — 1], upon receiving
A, i would not strongly envy Cj. We call C = {C1,Ca,...,Cx_1} a “k-certificate” of A
for i under S. Also we define

EEFX¥(S) :={AC S| A is “k-epistemic-EFX”
for agent i with respect to S'}.

Definition 2.26 (EEFX). For a fair division instance, an allocation X = (X1, Xa,..., Xy)
is said to be epistemic EFX or EEFX, if for all agents i, X; € EEFX}(M).
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Note that the set of EFX and EEFX allocations coincide for the case of two agents.

Chaudhury et al. [27] introduced the notion of non-degenerate instances where no
agent values two distinct bundles the same. They showed that to prove the existence of
EFX allocations in the additive setting, it suffices to show the existence of EFX allocations
for all non-degenerate instances (with additive valuations). We adapt their approach and
show that the same claim holds, even when agents have general monotone valuations.

Non-Degenerate Instances [27]. We call an instance Z = ([n], M, V) non-degenerate
if and only if no agent values two different sets equally, i.e., Vi € [n] we have v;(S) # v;(T)
for all S # T. We extend the technique in [27] and show that it suffices to deal with
non-degenerate instances when there are n agents with general valuation functions, i.e.,
if there exists an EFX allocation in all non-degenerate instances, then there exists an
EFX allocation in all instances.

Let M ={g1,92,.-.,9m}. We perturb any instance Z to Z(e) = ([n], M, V(¢)), where
for every v; € V we define v, € V(¢), as

Vi(S) =uvi(S)+e- Y 27 WSCM
g;€5

Lemma 2.27. Let § = min;¢[, Ming 7 4,()£v,(7) |i(S) — vi(T)| and let € > 0 be such
that e - 2™ < §. Then

(1) For any agent i and S,T C M such that v;(S) > v;(T), we have vi(S) > vi(T).

(2) Z(¢) is a non-degenerate instance. Furthermore, if X = (X1,...,Xy) is an EFX
allocation for Z(e), then X is also an EFX allocation for T.

Proof. For the first statement of the lemma, observe that

V(8) = vj(T) = vi(S) —vi(T) +e( Y 27— Y  2)

g;€S\T g;€T\S
>0—c¢ Z 27
g; €T\S
>§—¢e- (2™ 1)

>0 .

For the second statement of the lemma, consider any two sets S, T C M such that
S #T. Now, for any i € [n], if v;(S) # vi(T), we have v}(S) # v}(T) by the first statement
of the lemma. If v;(S) = v;(T'), we have v}(S) — vi(T) = s(ZgjeS\T 2 — ZgjeT\S 29) £ 0
(as S # T). Therefore, Z(¢) is non-degenerate.

For the final claim, let us assume that X is an EFX allocation in Z(¢) and not an
EFX allocation in Z. Then there exist ¢, j, and g € X; such that v;(X; \ g) > v;(X;). In
that case, we have v(X;\ g) > v;(X;) by the first statement of the lemma, implying that
X is not an EFX allocation in Z(e) as well, which is a contradiction. O

MMS-feasible Valuations. We introduce a new class of valuation functions called
MMS-feasible valuations, which are natural extensions of additive valuations in a fair
division setting.

16



2.2. Envy-Based Notions

Definition 2.28. A waluation function v : 2M — R>o s MMS-feasible, if for every
subset of goods S C M and every partitions A = (A1, As) and B = (B1, B2) of S, we
have

max(v(B),v(Bz)) > min(v(Aj),v(As)).

Informally, these are the valuations under which an agent always has a bundle in any
2-partition of any subset of the goods that she values at least as much as her MMS value,
i.e., given an agent ¢ with an MMS-feasible valuation v(-), in any 2-partition of S C M,
say B = (By, Ba), we have maxz(v(By),v(Bz)) > MMS?(S), where MMS2(S) is the MMS
value of agent ¢ on the set S when there are 2 agents. Also, note that if there are two
agents and one of the agents has an MMS-feasible valuation function, then irrespective
of the valuation function of the other agent, MMS allocations always exist: Consider
an instance where agent 1 has an MMS-feasible valuation function and agent 2 has a
general monotone valuation function. Consider agent 2’s MMS partition of the good set
A = (A, Ag). Let agent 1 pick her favourite bundle from A. Basically, agent 2 “cuts” the
resource into two parts maximizing her utility assuming that she receives the bundle with
minimum value, and agent 1 “chooses” her favourite part. Then, agent 1 has a bundle
that she values at least as much as her MMS value (as she has an MMS-feasible valuation
function), and agent 2 has a bundle that she values at least as much as her MMS value
as A is an MMS partition according to agent 2. We believe that in the context of fair
division, MMS-feasible form a natural class of valuation functions since they allow the
basic well-known and broadly-used “cut and choose” protocol to guarantee both agents
their MMS value. We note that the other popular valuation classes like submodular or
subadditive do not capture this property.

Furthermore, MMS-feasible valuations strictly generalize the cancelable valuation
functions introduced by Berger et al. [15]. A valuation function v : 2™ — Rsq is
cancelable if for every S, C M and g € M \ (SUT), we have v(SUg) > v(T'Ug) =
v(S) > v(T'). Cancelable valuations include budget-additive (v(S) = min(}_,cqv(s),c)),
unit demand (v(S) = mazsesv(s)), and multiplicative (v(S) = [[,cqv(s)) valuations [15].

Lemma 2.29. Every cancelable function is MMS-feasible.
We first make an observation about cancelable valuation functions.

Observation 2.30. If v is a cancelable valuation, then for every S, T C M and Z C
M\ (SUT), we have v(SU Z) > v(T' U Z) = v(S) > v(T).

Proof (Lemma 2.29). Let v be a cancelable function. For a subset of goods S C M,
consider any two partitions A = (A1, As2) and B = (B, B2) of S. Without loss of
generality assume v(A; N By) < v(A2 N By). Since (A1 N By) is disjoint from (A; N By) U

(A2 N By), by the contrapositive of Observation 2.30 applied to cancelable valuation v,
we have v((A; N B1) U (A1 N Ba)) < v((A2 N By) U (A1 N By)). Therefore,

min(v(A1),v(A42)) < v(A1)

((A1 N B1)U (A1 N By))
((

(

A2 N Bg) U (Al M B2))
Bo)
ax(v(Bi),v(B2)),

I IA
S

IN
=
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Chapter 2. Notation and Preliminaries

S| {9} {92} {93} {91.92} {g1.93} {92,953} {91.92.95}
v | 1 2 3 10 4 5 13

Table 2.1: valuation function v is MMS-feasible but not cancelable.

which proves the claim. O

To prove that MMS-feasible functions strictly generalize cancelable functions, we
present an example of a valuation function that is MMS-feasible but not cancelable.

Example 2.31. Let M = {g1,92,93}. The value of v(S) is given in Table 2.1 for all
S C M. First note that v(g1 U g2) > v(gs U g2) but v(g1) < v(g3). Therefore, v is not-
cancelable. Now, we prove that v is MMS-feasible. Let S C M and A = (A1, As), B =
(B1, B2) be two partitions of S. Without loss of generality, assume |A1| < |Ag|. If A1 =0,
min(v(Ay),v(A2)) = 0 < max(v(B1),v(B2)). Hence, we assume |A1| > 1 and therefore,
we have |S| > 2. Moreover, if A = B, then max(v(B1),v(B2)) = max(v(A41),v(Az2)) >
min(v(A41),v(A2)). Thus, we also assume A # B. If S = {g,¢'}, the only two different
possible partitioning of S is A = ({g9},{9'}) and B = (0,{g,¢'}). For all 9,4 € M,
v({g,9'}) > max(v(g),v(q’)). Therefore, max(v(Bi),v(B2)) > min(v(41),v(A42)). If S =
{91,92,93}, then |A1| =1 and therefore, min(v(A1),v(As2)) < v(A1) < maxgem(v(g)) =
3. Without loss of generality, let g3 € By. For all T C M such that g3 € T, we have
v(T) > 3. Thus, max(v(By),v(Bg)) > v(By) > 3 > min(v(A;), v(Az)).

The next lemma follows from Lemma 2.29 and Example 2.31.

Lemma 2.32. The class of MMS-feasible valuation functions is a strict superclass of
cancelable valuation functions.

18
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CHAPTER 3
Approximate MMS for Additive Valuations

In this chapter, we study approximate MMS allocations for instances with additive
valuations. After Ghodsi et al. [44] proved the existence of 3/4-MMS allocations and gave
a PTAS to compute one, Garg and Taki [42] gave a simple algorithm with complicated

—)-MMS allocations and also computing a 3/4-

analysis proving the existence of (% +
MMS allocation in polynomial time.

In Section 3.3, we give a simple algorithm (with a simple analysis) that computes
3/4-MMS allocations. Then in Section 3.4, we show the existence of (2 + z2-)-MMS
allocations.

3.1 Notation and Tools

Throughout this section, we assume all the valuation functions are additive and instead
of n-normalized, we use normalized.

Lemma 3.1. Let ([n],[m],V) be an ordered and normalized fair division instance. For
all k € [n] and agent i € [n], if vi(k) +v;(2n—k+1) > 1, then v;(2n —k+1) < 1/3 and
’Ul(k') > 2/3.
Proof. 1t suffices to prove v;(2n — k + 1) < 1/3 and then v;(k) > 2/3 follows. Let
P = (Py,...,P,) be an MMS partition of agent i. For j € [k] and j' € [2n + 1 — K],
v;(7)+vi(3) > vi(k)+vi(2n+1—k) > 1, since the instance is ordered. Furthermore, j and
j' cannot be in the same bundle in P since the instance is normalized. In particular, no
two goods from [k] are in the same bundle in P. Hence, assume without loss of generality
that j € P; for all j € [K].

Forall j € [k] and j' € [2n—k+1],j' & P;. Thus, {k+1,...,2n—k+1} C Py U.. . UP,.
By pigeonhole principle, there exists a bundle B € {Py11,..., P,} that contains at least
3 goods g1,92,93 in {k+1,...,2n — k + 1}. Hence,

1 ,
vi2n—k+1)< min  v(g) <= Z vi(g) < =-.
9€{91,92,93} 3
9€{91,92,93}

3.1.1 Reduction rules

We use a technique called valid reduction, that helps us reduce a fair division instance to
a smaller instance. This technique has been implicitly used in [6, 17, 41, 44, 53, 54| and
explicitly used in [42].

Given any instance Z, a reduction rule R(Z) is a procedure that allocates a subset
S C M of goods to an agent i and outputs the instance Z = (A \ {i}, M\ S, V) where for
all j € N'\ {i}, v; = v;. Thus, we abuse the notation and write Z = (NM\ {i}, M\ S, V).
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—

Definition 3.2 (Valid reductions). Let R be a reduction rule and R(Z) = (N, M, V)
such that {i} = N\ N and S = M\ M. Then R is a valid a-reduction if

(1) v;i(S) > o - MMS} (M), and
(2) for all j € N', MMS? ™} (M) > MMS?(M).

Furthermore, a reduction rule R is a valid reduction for agent j € /T/', ifMMS;“l (M\) >

MMS;‘(M) where N and M are the set of remaining agents and remaining goods respec-
tively after the reduction.

Note that valid a-reductions are a-MMS-preserving, i.e., if A is an a-MMS allocation
of an instance obtained by performing a valid reduction, then we can get an a-MMS
allocation of the original instance by giving goods S to agent i and allocating the remaining
goods as per A. A valid a-reduction, therefore, helps us reduce the problem of computing
an a-MMS allocation to a smaller instance.

Lemma 3.3. Given an instance L = (N, M, V), let S C M be such that v;(S) < MMS;
and |S| < 2. Then allocating S to an arbitrary agent j # i, is a valid reduction for agent
7.

Proof. Let P = (P, P,,...,P,) be an MMS partition of M for agent i. Let ¢g1,92 € S.
In case |S| =1, g1 = go. Without loss of generality, we assume g; € Py. If g5 € P;, then
(Py, ..., P,) is a partition of a subset of M\ S into n — 1 bundles with minimum value at
least MMS?'(M). Therefore, MMS?~!(M\ S) > MMS?(M). In case go ¢ P1, without loss
of generality, let us assume g2 € P5. Then v;(PLUP\S) = v;(P1)+vi(FP2)—v;(S) > MMS}.
Therefore, (PLUP\ S, Ps, ..., P,) is a partition of M\ S into n—1 bundles with minimum
value at least MMS?(M). Hence also in this case, MMS]' (M \ S) > MMS?(M). Thus,
allocating S to an arbitrary agent j # 4, is a valid reduction for agent i. O

Now we define four reduction rules that we use in our algorithm.

Definition 3.4. For an ordered instance T = ([n], M, V) with MMS; = 1 for all agents
it and o > 0, reduction rules R{', RS, RS and Ry are defined as follows.

o RYZ): Ifvi(1) > « for some i € N, allocate {1} to agent i and remove i from N .

e RY(Z): Ifvi({2n—1,2n,2n+1}) > « for some i € N, allocate {2n—1,2n,2n+1}
to agent i and remove i from N.

o RY(Z) : If vi({3n — 2,3n — 1,3n,3n + 1}) > a for some i € N, allocate {3n —
2,3n —1,3n,3n + 1} to agent i and remove i from N.

o RY(Z): Ifvi({1,2n+ 1}) > « for some i € N, allocate {1,2n + 1} to agent i and
remove i from N .

We note that R, RS, RY in addition to one more rule of allocating {n,n + 1} to an
agent is used in [42]. Our algorithm does not use the rule of allocating {n, n+1}. Moreover,
R$ (allocating {3n — 2,3n — 1,3n,3n 4 1}) is used in our work and not elsewhere.
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Definition 3.5 (a-irreducible). Fori € [4] and o > 0, we call an instance R -irreducible,
if R is not applicable. We call an instance T o-irreducible if none of the rules RY, RS,
RS or RY is applicable.

Lemma 3.6. Given any o > 0 and an ordered instance , Ry, RS, and RS are valid
reductions for all the remaining agents.

Proof. For a remaining agent i, let P = (Py,..., P,) be an MMS partition of M for i. It
suffices to prove that after each of these reduction rules, there exists a partition of the
remaining goods for each remaining agent into n — 1 bundles with a minimum value of

MMS}' (M) for agent i.

o RY: Let 1 € P;. Then removing Py from P results in a partition of a subset of
M\ {1} into n — 1 bundles of value at least MMS}' (M) for agent i.

e RJ: By the pigeonhole principle, there exists k such that |P,N{1,2,...,2n+1}| > 3.
Let g1,92,93 € P.N{1,2,...,2n+ 1} and g1 < g2 < g3. Replace ¢g; with 2n — 1,
go with 2n, and g3 with 2n + 1 and remove Py from P. Note that the value of the
remaining bundles can only increase. Thus, the result is a partition of a subset of
M\ {2n —1,2n,2n+ 1} into n — 1 bundles with a minimum MMS}' (M) for agent
i

e RS: The proof is very similar to RS case. By the pigeonhole principle, there exists k&
such that |P,N{1,2,...,3n+1}| > 4. Let g1,92,93,94 € PrN{1,2,...,3n+1} and
g1 < g2 < g3 < g4. Replace g1 with 3n — 2, go with 3n — 1, g3 with 3n, and g4 with
3n+1 and remove Py from P. Note that the value of the remaining bundles can only
increase. Thus, the result is a partition of a subset of M\ {3n—2,3n—1,3n,3n+1}
into n — 1 bundles with a minimum value of MMS} (M) for agent 1.

Proposition 3.7. If 7 = ([n], M, V) is ordered and for a given a > 0 and all j € [3], T
is qu‘-irreducible, then

(1) for allk > 1, vi(k) < o, and
(2) for all k > 2n, vi(k) < «/3, and
(3) for all k > 3n, vi(k) < a/4.
Proof. We prove each case separately.
(1) Since R{ is not applicable, v;(k) < v;(1) < a- MMS; for all agents ¢ and all k£ > 1.

(2) Since R$ is not applicable, 3v;(k) < 3v;(2n+1) < v;(2n—1)+v;(2n) +v;(2n+1) <
a - MMS; for all agents i and all k& > 2n. Therefore, v;(k) < a/3 - MMS;.

(3) Similar to the former case, since R§ is not applicable, 4v;(k) < 4v;(3n + 1) <
v;(3n —2) +v;(3n — 1) + v;(3n) + v;(3n + 1) < a - MMS; for all agents i and all
k > 3n. Therefore, v;(k) < a/4 - MMS,;.

O
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Input: Instance (N, M, V).

Output: Reduced instance Z.

: 7 + order(N, M, V)

: for i € N do
vi(g) < vi(g)/MMS;, Vg € [m]

while R{ or RS or RS or RY is applicable do
T < R}(Z) for smallest possible k

return 7

S TR e

Algorithm 2: reduce,((N, M,V))

Lemma 3.8 was proven in [42]. For completeness, we prove it here as well.

Lemma 3.8 (Lemma 3.1 in [42]). For an ordered instance and for o < 3/4, if the instance
is R{-irreducible and RS -irreducible, then R is a valid o-reduction.

Proof. It suffices to prove for all remaining agents ¢, RY is a valid reduction. By Proposi-
tion 3.7, v;(1) < o and v;(2n 4+ 1) < /3. Hence, v;({1,2n +1}) < 4a/3 < 1. By Lemma
3.3, Ry is a valid reduction for i. O]

Lemma 3.9. If an ordered instance (N, M, V) is Ry(«)-irreducible for any o < 1, then
M| > 2|N].

Proof. Assume |M| < 2|N|. Pick any agent i € N. Let P be an MMS partition of
agent ¢. Then some bundle P; contains a single good {g}. Then v;(g) = v;(P;) > MMS;.
Hence, the instance is not R («)-irreducible for any o < 1. This is a contradiction. Hence,

M| > 2|N]. O

We would like to convert fair division instances into a-irreducible instances. This can
be done using a very simple algorithm, which we call reduce,. It takes a fair division
instance as input, makes it ordered, scales the valuations such that for alli € AN/, MMS; = 1,
and then repeatedly applies the reduction rules R, RS, RS, and R§ until the instance
becomes a-irreducible. The reduction rules can be applied in arbitrary order, except that

9 is only applied when R{ and R$ are inapplicable. See Algorithm 2.

Note that the application of reduction rules changes the number of agents and goods,
which affects subsequent reduction rules. More precisely, the sets {1}, {2n—1,2n,2n+1},
{3n —2,3n — 1,3n,3n + 1}, and {1,2n + 1} (used in Definition 3.4) can change after
applying a reduction rule. So, for example, it is possible that an instance is RS-irreducible,
but after applying R, the resulting instance is RS-reducible.

Definition 3.10 (0-ONI). We call an instance §-ONI if it is ordered, normalized, and
(3/4 + 0)-irreducible. When 6 =0, we simply use ONI.
3.2 Bag-filling Procedure

Throughout this section, let & = 3/4+ ¢ for § > 0 and Z = ([n], [m], V) be a fair division
instance that is ordered, normalized, and a-irreducible (6-ONI). Without loss of generality,
assume that v;(1) > v;(2) > ... > v;(m) for each agent i.
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3.2. Bag-filling Procedure

()
O

By

O
JR

Figure 3.1: Configuration of Bags By, Ba, ..., By

Input: Ordered normalized a-irreducible instance Z = ([n], [m], V) and approximation
factor a.
Output: (Partial) allocation A = (A, ..., Ay).

1: Let (Ay,...,A4,) = (0,...,0)

2: for k € [n] do

3: Let By = {k,2n+ 1 — k}.

4: Let Ug = [m] \ [2n] > unassigned goods
5. Let Uy = [n] > unsatisfied agents
6: Let Up = [n] > unassigned bags
7. while Uy # () and Ug # 0 do

8: if 3i € Uy, 3k € Up, such that v;(Bg) > «a then

9: A; < By,

10: Ug + Ug\{i}

11: Up + Up \ {k‘}

12: else

13: Let g be an arbitrary good in Ug

14: Let k£ be an arbitrary bag in Up

15: By + B U {g}

16: Ug < Ug \ {9}

17: return (A4;,...,A,)

Algorithm 3: bagFill(Z, «)

The bag-filling procedure (bagFill(Z, «v)) was introduced by Garg, McGlaughlin, and
Taki [41]. It creates n bags, where the j'" bag contains goods {j,2n + 1 — j}. See Figure
3.1 for a better intuition. To create bags in this way, there must be at least 2n goods.
This is ensured by Lemma 3.9. It then repeatedly adds a good to an arbitrary bag, and as
soon as some agent ¢ values a bag more than «, that bag is allocated to ¢. The algorithm
terminates when all agents have been allocated a bag or all the goods are allocated. See
Algorithm 3 for a more precise description. bagFill computes a partial allocation, i.e.,
some goods may remain unallocated. But that can be easily fixed by arbitrarily allocating
those goods among the agents.

bagFill(Z, «) allocates a bag By to agent i only if v;(Bj) > «. Hence, to prove that
bagFill(Z, «) returns an a-MMS allocation, it suffices to show that bagFill terminates
successfully, i.e., all the agents receive a bag before the algorithm runs out of unallocated
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goods. In Section 3.3, we prove that for « = 3/4, bagFill(Z, «) returns an a-MMS
allocation. In this section, we prove some properties about bagFill.

For k € [n], let By, := {k,2n+ 1 — k} be the initial contents of the k™ bag and By, be
the k' bag’s contents after bagFill terminates. We consider two groups of agents. Let
N1 be the set of agents who value all the initial bags at most 1. Formally, N'! := {i €
[n] | Vk € [n],vi(Bg) < 1}. Let N2 := [n] \ N = {i € [n] | 3k € [n] : v;(By) > 1} be the
rest of the agents. Let Uy be the set of agents that did not receive a bag when bagFill
terminated. Recall a = 3/4 + 0.

Lemma 3.11. Let i € Uy. For all k € [n] such that v;(By) < 1, we have v;i(By) <
1+445/3.

Proof. The claim trivially holds if Bk = Byj. Now assume By C Ek Let g be the last
good added to By. We have v;(By \ g) < 3/4 + §, otherwise g would not be added to Bj.
Also note that g > 2n and hence v;(g) < 1/4 + 6/3 by Proposition 3.7. Thus, we have

vi(Bg) = vi(Br \ 9) + vi(g)
< <2+5> +(i+§) —1+436.

Lemma 3.12. For § < 1/4 and instance I, if T is 5-ONI, then for all agents i € N*(Z),
vi(2n+1) <1/12+96.

Proof. By the definition of N2, there exist k € [n] such that v;(k) + v;(2n — k + 1) =
vi(By) > 1. Therefore, by Lemma 3.1, v;(k) > 2/3. We have,

O]

3
vi(2n+1) < it d—wv;i(1) (RZ/4+5 is not applicable)

3
< 50— uik) (vi(1) = vi(k))

3 2 1

- 4+d—=-=—+49 (k) > 2
<t 3=13 1% (vi(k) > 5)
which completes the proof. O

Lemma 3.13. For§ < 1/4 and instance I, if T is 6-ONI, then for alli € N*? and k € [n],
’UZ(Bk) > % —29.
Proof. Let t be smallest such that v;(B;) > 1. By Lemma 3.1, v;(¢t) > % Therefore, for
all k <t,
2 1
’Ul(Bk) > ’Ul(k‘) > ’Ui(t) > g > 5 — 20.

Note that v;(t) + v;(2n —t + 1) > 1 and by Proposition 3.7, v;(t) < 3/4 + §. Thus,

vi(2n—t+1) > 1/4— 6. For all k > t, we have

v;(Bg) = vi(k) +vi(2n — k+ 1)

>2-v;(2n —t+1) (vi(k) >vi2n—k+1) >v;(2n—t+1))
1
— — 20.
>3 0
O
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2n |2n—1 2n+1—k+¢ 2n+1-—k n+2|n+1
1 9 k—/¢ k n—1 n

\@/

<1

Figure 3.2: The items [2n] are arranged in a table, where the ™ column is By =

{k,2n 4+ 1 — k}. £ is the smallest shift such that v (k) +ve(2n+1—k+¢) <1 for all k.

From now on, assume that Uq N A? # () and let a be a fixed agent in Uy N N?Z.

Let AT := {k € [n] | va(Bg) > 1}, A= := {k € [n] | va(Br) < 3/4 + &}, and
AY = {k e [n]|3/44 0 < va(By) < 1}. We get upper bounds on v,(By,) for each of the
cases k € AT, k€ A, and k € A°.

Note that n = |AT| + |A~| + |A°| and |AT| > 1 since a € N2

Lemma 3.14. For all k € A=, v,(By) < 5426

Proof. If By, = By, then v,(By) < 3/4+ 6 < 5/6 + 28. Otherwise, let g be the last good
added to By. Note that v, (B \ g) < 3/4+ 9, otherwise the algorithm would assign By \ g
to agent a instead of adding g to it. We have

va(Bk) - Ua(Bk \g) + va(g)

3 N
< (Z +0) +v(2n+1) (va(Bk \ 9) < % + 6 and v,(g) < v,(2n+ 1))
1
< (2 +9)+ (E +6) = g + 20. (va(2n + 1) < 75 + & by Lemma 3.12)
O

Let ¢ be the smallest such that for all k € [( + 1,n], vo(k) +vo(2n —k+1+¢) < 1.
See Figure 3.2 for a better understanding of ¢. Note that ¢ > 1, since a € N2

Lemma 3.15. 30,4+ va(By) < |AT| + £(35 + ).

Proof. Let S € A be the set of min(¢, |A"|) smallest indices in AT and L € AT be the
set of min(¢, |A™"]|) largest indices in AT. Since Vk € AT, By = By, we have

> vaBr) = valk) + > van—Ek+1))+( > walk)+ D> va(2n—k+1)).

keA+ keS keL keAT\S keAT\L

We  upper bound (D> ,cqvalk) 4+ Dpcpva(n — k + 1)) and
(D kear\sValk) + 2 pear\r Va(2n —k+1)) in Claims 3.16 and 3.17 respectively.

Claim 3.16. Y, g va(k) + > ey va(2n — k+1) < £(33 +6).
Proof. Note that v,(k) < 3/4 + 0 by Proposition 3.7 and v,(2n — k+ 1) < 1/3 by
Lemma 3.1. Thus,
3 13

1
Zva(kz)Jera(Zn—k:Jrl) <€(1+5+§) :g(EJﬂs).
keS keL
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Input: Fair division instance Z = (N, M, V) and approximation factor a.
Output: Allocation A = (Ay,...,Ap).
1: Let Z = order(normalize(n, reduce,(Z)))
2: Let A = bagFill(Z, o).
3: Use A to compute an allocation A for Z with the same MMS approximation as A.
(This can be done since order, reduce,, and normalize are a-MMS-preserving.)
4: return A

Algorithm 4: approxMMS(Z, o)

Claim 3.17. Ifg < |A+|, Zk€A+\S 'Ua(k) + Zk6A+\L Ua(2n —k + 1) < |A+’ — /.

Proof. Assume AT = {g1,...,gja+} and g1 < ... < gja+|- Then, AT\ S =
{941,944} and AT\ L = {g1,...,9/a+|—¢}. The idea is to pair the goods gri¢
and 2n — gi + 1 and prove that their value is less than 1 for agent a. Since gi1¢ > gx + ¢,
Va(gk+e) + va(2n — g, + 1) < 1 by the definition of £. We have

Z va(k) + Z va(2n —k+1) = Z (va(g+e) +va(2n — gp +1)) < [AT] - L.
ke AT\S ke At\L ke[|AT|—1]
|
Claim 3.16 and Claim 3.17 together imply Lemma 3.15. O

Lemma 3.18. v,(M \ [2n]) > £(3 — §).

Proof. By the definition of ¢, there exists a k € {/, ..., n} such that v,(k)+v,(2n—k+¢) >
1. Therefore, for all j < k and t <2n—k+ ¢, va(j) + va(t) > 1. Let P = (P4, ..., P,) be
an MMS partition of agent a. For j € [k], let j € P;. Note that for different j, j' € [k],
P; and P} are different since vq(j) 4+ v4(j") > 1 = va(P}). Also note that for every good
g€ 2n—k+{) and j € [k], g ¢ P}, otherwise v,(P;) > 1. Therefore, there are at least ¢
bundles like P; among P, ..., P such that P; N [2n] = {j}. We have

va(MN\ [20)) = D" 0a(P\{5}) = D (va(P)) — valj))

JEK] jel

3 1 o y
> Z <1 - (Z + 5)> = K(Z —9). (va(j) < § + 0 by Proposition 3.7)
Jjeld
O

3.3 3/4-MMS Allocations

We give an algorithm, called approxMMS (see Algorithm 4), that takes as inputs a fair
division instance and an approximation factor . For o« = 3/4, we prove approxMMS
returns an a-MMS allocation. It works in three major steps:

(1) Reduce the problem of finding an a-MMS allocation to the special case where the
instance is ordered, normalized, and a-irreducible.

28



3.3. 3/4-MMS Allocations

(2) Compute an a-MMS allocation for this special case using the bagFill algorithm
(c.f. Algorithm 3).

(3) Convert this allocation for the special case to an allocation for the original fair
division instance.

We describe steps 1 and 3 in Section 3.3.1 and step 2 in Section 3.3.2.

Our algorithm approxMMS is almost the same as the algorithm of Garg and Taki [42].
The only difference is that, unlike them, we ensure that the output of step 1 is normalized.

First, we show how to obtain an ordered normalized 3/4-irreducible instance from
any arbitrary instance such that the transformation is 3/4-MMS preserving. That is,
given an 3/4-MMS allocation for the resulting ordered normalized irreducible instance,
one can obtain a 3/4-MMS allocation for the original instance. In the first phase of the
algorithm, we obtained an ordered normalized 3/4-irreducible (INO) instance 7 and in
the second phase, we compute a 3/4-MMS allocation for 7 by running bagFill(f7 3/4).
Let Z = ([n], [m], V).

To prove that the algorithm’s output is 3/4-MMS, it suffices to prove that we never
run out of goods in the bag-filling phase or, equivalently, all agents receive a bag at some
point during the algorithm. To prove this, we categorize the agents into two groups as
in Section 3.2. Recall N1 = {i e N | Vk € [n] : v;(By) <1} and N2 = N\ N1 = {i €
N | 3k € [n] : v;(Bg) > 1}. We note that the sets A'! and N2 are defined based on the
instance 7 at the beginning of phase 2, and they do not change throughout the algorithm.

Agents in N''.  Proving that all agents in N'! receive a bag is easy. Using the fact that
at the beginning of Phase 2, the instance is ordered, normalized, and 3/4-irreducible, we
prove v;(g) < 1/4 for all i € N and all g € M \ [2n]. This helps to prove that any bag
which is not assigned to an agent i € N'! while i was available has value at most 1 to i.
Therefore, since v;(M) = n, running out of goods is impossible before agent i receives a
bag.

Agents in N2. The main bulk and difficulty of the analysis of Garg and Taki [42] is
to prove that all agents in A/? receive a bag. By normalizing the instance, we managed
to simplify this argument significantly. We prove v;(g) < 1/12 for all i € N2 and all
g € M\ [2n]. This helps to bound the value of the bags that receive some goods in the
bag-filling phase by 5/6 for all available i € N'2. Again, if the number of such bags is high
enough, it is easy to prove that the algorithm does not run out of goods in the bag-filling
phase. The difficult case is when the total value of the bags which are of value more than
1 to some agent i € N2 is large. Roughly speaking, in this case, it seems that the bags
which receive goods in the bag-filling phase and their values are bounded by 5/6 cannot
compensate for the large value of the bags that do not require any goods in the bag-filling
phase. This is where the normalized property of Z simplifies the matter significantly.
Intuitively, there are many goods with a high value that happened to be paired in the
same bag in the bag initialization phase. Since the instance is normalized, we know that
in the MMS partition of ¢, these goods cannot be in the same bag. This implies that
many bags in the MMS partition of ¢ have at most 1 good in common with the goods in
[2n]. This means that the value of the remaining goods (the goods in M \ [2n]) must be
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large since they fill the bags in the MMS partition such that the value of each bag equals
1. Hence, enough goods remain in M \ [2n] to fill the bags.

3.3.1 Obtaining an Ordered Normalized 3/4-Irreducible (ONI) Instance

Lemma 3.19. Let Z be a fair division instance. Let
7 := order(normalize(n, reduces 4(Z))).

Then? is ordered, normalized, and 3/4-irreducible. Furthermore, the transformation of
Ztolis 3/4—MMS—preierUing, i.e., a 3/4-MMS allocation of T can be used to obtain a
3/4-MMS allocation of T.

Proof. Let T := reduces 4 (Z). T is 3 /4-irreducible and ordered, since the application
of reduction rules preserves orderedness.

Let Z(®) := normalize(n,Z(). By Lemma 2.9, normalize does not increase the ratio
of a good’s value to the MMS value. Hence, Tis3 /4-irreducible. 7 is also normalized, since
for each agent, order only changes the identities of the goods, but the (multi-)set of values
of the goods remains the same. Hence, 7is ordered, normalized, and 3/4-irreducible.

Since order, reduces/s, and normalize are 3/4-MMS-preserving operations, their
composition is also 3/4-MMS-preserving. O

The order of operations is important here, since reduce may not preserve normal-
izedness, and normalize may not preserve orderedness.

Garg and Taki [42] transform the instance as reduces/4(order(Z)), since they do not
need the input to be normalized.

3.3.2 3/4-MMS Allocation of ONI Instance

Let ([n], [m], V) be a fair division instance that is ordered, normalized, and 3/4-irreducible
(ONI). Without loss of generality, assume that v;(1) > v;(2) > ... > v;(m) for each agent
i

We run bagFill(Z,3/4). For k € [n], let By := {k,2n+1—k} be the initial contents
of the k™ bag and By, be the kth bag’s contents after bagFill terminates. As defined
in Section 3.2, we consider two groups of agents. Let N'' be the set of agents who value
all the initial bags at most 1. Formally, N! := {i € [n] | Vk € [n],v;(Bg) < 1}. Let
N2 :=[n]\Nt={i€[n]| Ik € [n]:v;(Bxr) > 1} be the rest of the agents. Let Ux be
the set of agents that did not receive a bag when bagFill terminated.

We first show that all agents in A'! receive a bag, i.e., U4 NN' = (). Then we show
that Uy N N? = (). Together, these facts establish that bagFill terminates successfully,

and hence its output is 3/4-MMS.
Lemma 3.20. Uy NN' =0, i.e., every agent in N gets a bag.
Proof. For the sake of contradiction, assume Uy N A ?é (). Hence, 3i € Uy NN, Also,
for some j € [n], the j* bag is unallocated. Hence, v;(B;) < 3/4 and
n=v(M)=vi(B;)+ > vi(Bs) (since M = Upep Br)
ken]\{j}

3 1
<Z+(n—1):n—f

7 (by Lemma 3.11)
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which is a contradiction. Hence, Uy NN = 0. ]
Now we prove that bagFill allocates a bag to all agents in N2, i.e., Us N N? = ().
Lemma 3.21. Uy NN? =0, i.e., every agent in N? gets a bag.

Proof. Assume for the sake of contradiction that Us N A2 # (). Then, as discussed in
Section 3.2, we fix an agent a € Uy N AN? and define AT, A=, A% and /.

ke(n]
= > vaBr)+ Y va(Br) + Y va(By)
ke A~ ke A+t ke AO
4
< g\A*] + (\Aﬂ + 12) + A% (by Lemmas 3.14 and 3.15)
RIS
12 6

Hence, |[A7| < £/2.
Now we show that there are enough goods in [m] \ [2n] to fill the bags in A™.

l
1< va([m] \ [2n]) (by Lemma 3.18)
= ) (va(Br) = va(Br)) (since By = By, C [2n] for k € AT U A?)
keA~
(5 1
<A™ <6 — 2> (by Lemmas 3.14 and 3.13)
1 7 . _
=|A"|--< -, (since |A™| < £/2)
3 6
which is a contradiction. O

By Lemmas 3.20 and 3.21, we get that U4 = (), i.e., every agent gets a bag, and hence,
bagFill’s output is 3/4-MMS.

Theorem 3.22. Given any instance T with additive valuations, approxMMS(Z,3/4) re-
turns a 3/4-MMS allocation.

3.4 (3/4+ 3/3836)-MMS Allocations

We give an algorithm, called mainApproxMMS (see Algorithm 7), that takes as inputs a
fair division instance and an approximation factor a. For oo < 3/4 + 3/3836, we prove
mainApproxMMS returns an a-MMS allocation.

Most algorithms for approximating MMS, especially those with a factor of at least
3/4 [42, 44] and approxMMS(Z, 3/4) discussed in Section 3.3, utilize two simple tools: valid
reductions and bag-filling. Although these tools are easy to use in a candidate algorithm,
the novelty of these works is in the analysis, which is challenging. Like previous works, the
analysis is the most difficult part of our algorithm based on these tools. Unlike previous
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works, we also need to use a new reduction rule and initialize bags differently, which are
counter-intuitive.

There are two main obstacles to generalize approxMMS (Algorithm 4) to obtain a-
MMS allocations when o > 3/4. The first obstacle lies in the first phase of the algorithm.
R{ is a valid a-reduction when o < 3/4 and R{ and R$ are not applicable. This no
longer holds when o > 3/4. In this case, the MMS value of the agents can indeed decrease
after applying RY. When a = 3/4 + O(1/n), Garg and Taki [42] managed to resolve this
issue by adding some dummy goods after each iteration of R§ and proving that the total
value of these dummy goods is negligible. Essentially, since we only need to guarantee
the last agent a value of «, the idea is to divide the excess 1 — a among all agents and
improve the factor. However, this can only improve the factor by O(1/n). If « > 3/4+¢
for a constant £ > 0, the same technique does not work since the value of dummy goods
cannot be reasonably bounded.

We resolve this issue in Section 3.4.1. Unlike the previous works, we allow the MMS
values of the remaining agents to drop. Although the MMS values of the agents can drop,
we show that they do not drop by more than a multiplicative factor of (1 — 4¢) after an

arbitrary number of applications of Rz/ e for k € [4]. Basically, while for o < 3/4, one
can get a-irreduciblity for free (i.e., without losing any approximation factor on MMS),
for « =3/4 + ¢ and € > 0, we lose an approximation factor of (1 — 4e).

The second obstacle is that for goods in M \ [2n], we do not get the neat bound of
vi(g) < 1/4 for i € N. Instead, we get this bound with an additive factor of O(g). This
even complicates the analysis for agents in A'!, which was handled very easily in Section
3.3. Furthermore, a tight example in [11, 32] shows that this algorithm cannot do better
than 3/4+ O(1/n) and all the agents are in A'! in this example. To overcome this hurdle,
we further categorize the agents in A™'. One group consists of the agents who have a
reasonable bound on the value of good 2n + 1, and the other agents, the problematic ones,
do not.

We break the problem into two cases depending on the number of these problematic
agents. In Section 3.4.3, we consider the case when the number of problematic agents is
not too large. In this case, we work with a slight modification of bagFill (Algorithm
3), and using an involved analysis, we show that it gives a (3/4 + €)-MMS allocation.
Otherwise, we introduce a new reduction rule for the first time that allocates the two
most valuable goods to an agent. In Section 3.4.4, we give another algorithm to handle
the case where the number of problematic agents is too large. In this case, we first apply
the reduction rules (including the new one), and then initialize the bags with three goods,
unlike the previous works. Precisely, we set Cy := {k,2n — k + 1,2n + k} and then do
bag-filling.

To summarize, the structure of the rest of this section is as follows. In Section
3.4.1, given any instance Z = (N, M,V) and ¢ € (0,1/4), for § > 4e/(1 — 4e) we
obtain an ordered normalized (3/4 + §)-irreducible (6-ONI) instance Z = (N, M, V)
such that N’ C N , M C M and all agents in N\ N receive a bag of value at least
(3/4 + £)MMS;(Z). Moreover, we prove from any (3/4 + §)-MMS allocation for Z, one
can obtain a min (3/4 + ¢, (3/4 + §)(1 — 4¢))-MMS allocation for 7.

In Section 3.4.2, we prove a (3/4 + §)-MMS allocation exists for all J-ONI in-
stances for any 0 < 3/956. Therefore, we prove that for 4e/(1 — 4e) < 6 < 3/956, a
min (3/4 +¢,(3/4+ §)(1 — 4¢))-MMS exists for all instances. Setting 6 = 3/956 and
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e =06/(4(6 + 1)) = 3/3836, in Section 3.4.5 we conclude that there always exists a
(3/4 + 3/3836)-MMS allocation.

3.4.1 Reduction to §-ONI instances

In this section, for any € € (0,1/4) and § > 4¢/(1 — 4¢) we show how to obtain a J-
ONI instance 7 from any arbitrary instance Z, such that from any a-MMS allocation
for Z, one can obtain a min (3/4 + ¢, (1 — 4¢)a)-MMS allocation for Z. To obtain such
an allocation, first, we obtain a (3/4 + ¢)-irreducible instance, and we prove that the
MMS value of no remaining agent drops by more than a multiplicative factor of (1 — 4¢).
Then, we normalize and order the resulting instance, giving us a J-ONI instance (for

d > 4e/(1 — 4e)). In the rest of this section, by Ry we mean R,(f/4+€) for k € [4].

We start with reducing the instance using reduces /4 .. l.e., we transform the instance
into an ordered one using the order algorithm. Then, as long as one of the reduction
rules Ry, Ro, R3, or Ry is applicable, we apply Ry for the smallest possible k. Algorithm
2 shows the pseudocode of this procedure.

In this section, we prove the following two theorems.

Theorem 3.23. Given an instance T = (N, M, V) and ¢ > 0, let 7= (./\7, M, 17) =
reduces s -(Z). For all agents i € N, MMS;(Z) > (1 — 4e).

~

Theorem  3.24. Given an instance I and € > 0, let T =

order(normalize(reduces/s.(Z))). Then 7 is ordered, normalized and (3 + 2)-
4e

irreducible (1=5z-ONI). Furthermore, from any a-MMS allocation ofi one can obtain a
min(3/4 + ¢, (1 — 4e)a)-MMS allocation of T.

Note that once R; is not applicable, we have v;(1) < 3/4 + ¢ for all remaining agents
i. Since we never increase the values, R can no longer apply. So reduces/s 1(Z) first
applies R; as long as it is applicable and then applies the rest of the reduction rules.
Since R; is a valid reduction rule for all the remaining agents ¢ by Lemma 3.6, MMS; > 1
after applications of R;. So to prove Theorem 3.23 without loss of generality, we assume
Ry is not applicable on Z = ([n], M, V). Let 7= (./\7, M, V) = reducey;s (). For the
rest of this section, we fix agent ¢ € N. Let P = (P1, Py, ..., P,) be the initial MMS
partition of ¢ (in Z). We construct a partition @ = (Q1, @2, .. ’QI/\7\) of M such that

0i(Q;) > 1 — 4e for all j € [|NV]].

Let Ga, G3, and G4 be the set of goods removed by applications of Re, Rs, and
Ry, respectively. Also, let ro = |G2|/3, r3 = |G3|/4, and r4 = |G4]/2 be the number of
times each rule is applied, respectively. Note that in the end, all that matters is that
we construct a partition @ of M \ (G2 U Gs U Gy) into n — (ro + r3 + r4) bundles of
value at least 1 — 4e for ¢. For this sake, it does not matter in which order the goods
are removed. Therefore, without loss of generality, we assume all the goods in G4 are
removed first, and then the goods in G2 and G5 are removed in their original order. Note
that we are not applying the reduction rules in a different order. We are removing the
same goods that would be removed by applying the reduction rules in their original
order. Only for the sake of our analysis, we remove these goods in a different order. For
better intuition, consider the following example. Assume reduces;,.(Z) first applies Ry
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removing {a1, ag,as}, then Ry removing {b1,be}, then another Ry removing {c1, c2, c3}
and then Rs removing {di, da, d3, ds}. Without loss of generality we can assume that first
{b1,b2} is removed, then {ai, as,as}, then {c1,co,c3} and then {d,ds,ds,ds}.

We know that when there are n agents, removing {2n — 1,2n,2n + 1} (or {3n —
2,3n — 1,3n,3n + 1}) and an agent is a valid reduction for i by Lemma 3.6. With the
same argument, it is not difficult to see that removing {g1, g2, g3} where g1 > 2n — 1,
g2 > 2n and g3 > 2n+ 1 (or {g1, 92, 93,94} where g1 > 3n—2, go > 3n—1, g3 > 3n and
g4 > 3n+1) and an agent is also a valid reduction for 7. For completeness, we prove this
in Lemma 3.25.

Lemma 3.25. Let Z = (N, M, V) be an ordered instance and i € N.

(1) Let g1 > 2n —1, go > 2n and g3 > 2n + 1. Then MMS" (M \ {g1,92,93}) >

(2) Let s > 3n—2, g2 > 3n—1, g3 > 3n and g4 > 3n+ 1. Then MMSZL]l(M\
{91. 92,93, 94}) = MMS} (M).

Proof. (1) By the pigeonhole principle, there exists k such that |P,N{1,2,...,2n+1}| >
3. Let hi,ho,hs € P,N{1,2,...,2n 4+ 1} and hy < ha < hs. Replace hy with g,
ho with g9 and hs with g3 and remove P from P. Note that the value of the
remaining bundles can only increase. Thus, the result is a partition of a subset of
M\ {91, 92,93} into n — 1 bundles with a minimum value of MMS (M) for agent
7.

(2) By the pigeonhole principle, there exists k such that |P, N {1,2,...,3n+ 1}| > 4.
Let hi,ho,hs,hy € P, N{1,2,...,3n+ 1} and hy < he < hg < hy. Replace h; with
g1, he with go, hg with g3 and h4 with g4 and remove P; from P. Note that the
value of the remaining bundles can only increase. Thus, the result is a partition of a
subset of M\ {g1, g2, g3, g4} into n—1 bundles with a minimum value of MMS}" (M)
for agent 1.

O

Observation 3.26. Given an ordered instance T = (N, M, V), let vi(g1) = ... =
vi(gm),Vi € N'. Let T = (N, M, V) be the mstance after removing an agent i and a set
of goods {a,b} from T. Let g € M be the 3" most valuable good in M and the ]’th
valuable good in M. Then j' >4 2.

most

Corollary 3.27 (of Observation 3.26). Given an ordered instance T = (N, M, V), let
(N /Vl V) be the instance after removing an agent i and a set of goods {a,b} from

I Letn = [N| andn’ = |N|=n—1. Let g € M be the j™ most valuable good in M

and the ]’th most valuable good in M. Then,

e for any k, in particular, k € {—1,0,1}, if j > 2n+k, then 7' > 2n' + k, and

e for any k, in particular, k € {—2,—1,0,1}, if j > 3n+ k, then j' > 3n' + k.

Next, assume at a step where the number of agents is n, {g2n—1, 92n, 92n+1}
(or {g3n—2,93n—1, I3n,g3n+1}) is removed with an application of Ry (or Rs3). Corol-
lary 3.27 together with Lemma 3.25 imply that removing {gon—1,92n, gon+1} (or
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{93n—2, 93n—1, 93n, g3n+1}) at a later step where the number of agents is n’ < n is also valid
for agent 7. Therefore, all that remains is to prove that after removing the goods in G4 and
r4 agents, the MMS value of ¢ remains at least 1 —4e. That is, MMS? ™" (M \ G4) > 1—4e.

Lemma 3.28. Let (N, M, V) = reduceg sy (([n], M,V)). Let r4 be the number of times
Ry is applied during reduces s, .(Z) and let G4 be the set of removed goods by applications

of Ry. Then for all agents i € N, MMS7 ™" (M\ Gg) > 1 — 4e.

Proof. Without loss of generality, assume all the goods in G4 are in PLU P, U...U Py for
some k < 2r4. Namely, we have P;N G4 # () for all j € [k] and (P U...UP,) NGy = 0.
If K <ry, then (Pgyq,...,P,) is already a partition of a subset of M \ G4 into at least
n — r4 bundles. Therefore the lemma follows.

So assume k > ry4. In each application of Ry, two goods h and £ are removed. Let h be
the more valuable good. We call h the heavy good and ¢ the light good of this application
of Ry. By Proposition 3.7, for all heavy goods h and light goods ¢ we have, v;(h) < 3/4+¢
and v;(¢) < 1/4+¢/3. Let H be the set of all heavy goods and L be the set of all light
goods removed during these reductions. Hence, G4 = H U L, |H| = |L| = r4.

We prove that we can partition (P; U... Py) \ G4 into k — r4 bundles Q1, ..., Qx—r,,
each of value at least 1 — 4e. Or equivalently 1\/11\/[8111__7”4 (PLU...UP)\ Gy) > 1—4e.
Then, (Q1,. .., Qk—rys Pit1,--.,Ppn) is a partition of M \ G4 into n — r4 bundles, each
of value at least 1 — 4e and the lemma follows. It suffices to prove the following claim.

Claim 3.29. Forr < k < 2r,if|(PLUPU.. UP,)NH| < r and |(PLUPU. . .UP,)NL| < r,
then MMSE " (PyU...UPy) \ G4) > 1—4e for all0 <r < k.

The proof of Claim 3.29 is by induction on k. For k = 2, we have r = 1 and
vi(PLUP)—v;(HUL) > 2—(34¢)— (3 +£) > 1—4¢ and therefore, MMS; (PUP2\G4) >
1 —4e. Now assume that the statement holds for all values of ¥’ < k — 1, and we prove it
for k > 2. First, we prove the claim when at least one of the inequalities is strict. Assume
(PLUP,U...UP,)NH|<rand |[(PLUP,U...UP)NL| <r. The proof of the other
case is symmetric. If (Py U P, U ... U P;) N L # (), without loss of generality assume
PyNL # (. Therefore, |[(PAU...UP,_1)NH|<r—1<k—1and [(PAU...UP,_1)NL]|
<r—1<k-—1. We have,

MMSE"(PLU...UPy) \ Ga) > MMSEF=D=0=D (P U...UP_y) \ Ga)

>1—4e. (by induction assumption)

Now assume [(PLUP,U...UP,)NH|=rand |(PAUP,U...UP,)NL|l=r.

Case 1: There exists j € [k], such that P, N H # 0 and P; N L # (. Without
loss of generality, assume P, N H # () and P, N L # (. In this case [(PLU...UPy_1) N H|
<r—1l<k—1land|[(PLU...UP;_1)NL| <r—1<k—1. Therefore,

MMSE " ((PLU...U P\ Gy) > MMSEFD=0=D((PrU...UP_1) \ Ga)
>1—4e. (by induction assumption)
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Case 2: There exist j,£ € [k], such that |[P;NH| > 2 and |P,NL| > 2. Similar
to the former case, we have

MMSE"(PLU...UPy) \ Ga) > MMSFF=2-0=2 (P U... U Py_s) \ G4)
>1—4e. (by induction assumption)

Case 3: Neither Case 1 nor Case 2 holds. For all j € [k], we have P,NH = ()
or P; N L = (); otherwise, we are in case 1. Let S1 := {j € [k] | P, N L # 0} and
Sy = [k]\S1 = {j € [k] | PN H # 0}. If there exist bundles P; and P, such that
|P;NH|>2and |[P,NL|> 2, we are in case 2. Therefore, for all j € Sy, |[P;NL| =1
or for all j € S, |[P; N H| = 1. Hence, there are r bundles P,..., P, such that either
|P;NH|=1 (and |[P;NL| =0) forall j € [r]or |[P;NL|=1 (and |P; N H| = 0) for all
Jje|r].

Case 3.1: kK > r 4+ 1. Assume |P; N H| = 1 for all j € [r]. (The case where
|P;NL| =1 for all j € [r] is symmetric when & > r + 1.) Let |P, N L| = a. Then
(PLU...UP,UP,)NH|=aand |[(PLU...UP,UP;)N L| = a. Thus by the induction
assumption, we have

MMS{HD=a((PLU...UP, UP)\ Gy4) > 1 — 4e.

7

Moreover, |(Pyy1U...UP,_1)NH|<r—aand |(Pyy1U...UPy_1)NL| <r—a. Thus,
by the induction assumption we have

MMSI()kfafl)*(T‘*a) ((Pa+1 U...U Pkfl) \ G4) > 1 — 4e.

i

So we can partition (P U...U P, U Py) \ G4 into one bundle of value at least 1 — 4e for
i and also we can partition (Py+1 U...U Py_1) \ G4 into k —r — 1 bundles of value at
least 1 — 4¢ for 4. Thus, the lemma holds.

Case 3.2: k=7r+1. Let B=(PiU...UP;)\ G4. We want to show MMS}H(B) >
1 — 4e. Hence it suffices to show v;(B) > 1 — 4e.

vi(B)> Y v (Pj\(HUL))

j€lk—1]

= > (w(P) —vi(Pn(HUL)))

j€lk—1]

> (k—1) <1_ (i+5)) (since |P;N(HUL)| =1, v(P;N(HUL)) <3 +¢)

:“ﬁ4xi—@zl—%. (for k > 4)

It remains to prove the claim when & = 3 and k = 4. If there are two bundles P; and P
such that [PiNL| = |[P2NL| = 1,v(B) > v;(P\L)4+v;(P\L) >2 (1 - (3 + ) > 1—4e.
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Otherwise, for k = 3, there are two bundles P, and P such that |[PiNH| = |P,NH|=1
and |Ps N L| = 2. Then,

vi(B) = v (P \ H) + v (P \ H)+ ’Uz‘(P3 \ L)

>2<1—(Z+e)>+(1-2<i+§))
-

For k =4, we have |PPNH|=|P,NH|=|PsNH|=1and |P;N L| = 3. Then,

1)1<B) :’UZ‘(Pl\H)—FUZ‘(PQ\H)+Ui(P3\H)+U¢(P4\L)
>3<1—(i+e)) + (1—3(i+§)) — 1 4e.

We are ready to prove Theorem 3.23 and Theorem 3.24.

Theorem 3.23. Given an instance T = (N,M,V) and e > 0, let 7= (J\Af, /T/l\, 17) =
reduces/y;.(Z). For all agents i € N, MMS;(Z) > (1 — 4¢).

Proof. Fix an agent i € N. Let T be the instance after all applications of R; and before
any further reduction. By Lemma 3.6, MMS;(Z(1)) > 1. So without loss of generality, let us
assume Z = Z(M Let G9, G3, and G4 be the set of goods removed by applications of Ro, R,
and Ry, respectively. Also, let ro = |Ga|/3, r3 = |G3|/4, and r4 = |G4|/2 be the number
of times each rule is applied, respectively. By Lemma 3.28, MMSy ™" (M \ G4) > 1 — 4e.
For an application of Rs (or R3) at step ¢, let {a1,aq,as} (or {b1,be,bs,bs}) be the set of
goods that are removed. By Lemma 3.25, removing this set at a step ¢’ > ¢ is still a valid
reduction for ¢. Therefore, removing G2 and G3 and ry + r3 agents does not decrease the
MMS value of . Thus, MMS;(Z) > 1 — 4e. O

~

Theorem 3.24. Given an instance I and ¢ > 0, let T =

order(normalize(reduces/sy.(Z))). Then 7 is ordered, normalized and 2+ lig)—
4e

irreducible (1=5z-ONI). Furthermore, from any a-MMS allocation off one can obtain a
min(3/4 + ¢, (1 — 4¢)a)-MMS allocation of T.

Proof. In reduces; ., as long as R; is applicable, we apply it. Once it is not appli-
cable anymore, for all remaining agents i, v;(1) < 3/4 + €. In the rest of procedure
reducez 4., we do not increase the value of any good for any agent. Therefore, R;
remains inapplicable. As long as one of the rules Ry is applicable for k € {2,3,4}, we
apply it. Therefore, reduces s -(Z) is (3/4 + ¢)-irreducible. Let 7" = reduce(Z, ¢). Since
MMS;(Z’) > 1 — 4e (by Theorem 4.1), normalize can increase the value of each good

by a multiplicative factor of at most 1/(1 — 4¢). Therefore, after ordering the instance,
3/4+e _ 3 + 4e

Y 1-4e = 4 1-4e-
T = order(normalize(reduces .(Z))) is a-irreducible for a > 34+ 2= and it is of
course ordered. Since order does not change the multiset of the values of the goods for

each agent, the instance remains normalized.

none of the rules Rj for k € [4] would be applicable for a > Hence,
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~

Now let us assume A is an o-MMS allocation for T =
order(normalize(reduces/s.(Z))). By Corollary 2.13, we can obtain an allocation B
which is a-MMS for normalize(reduces/s;.(Z)). Lemma 2.9 implies that B is a-MMS
for 7/ = (N', M", V') = reducey s .(Z). For all agents i € N, vj(B;) = vi(B;)/MMS;(Z).
Therefore,

Ul(BZ) = U,:(BZ) . MMSl(I)
> o - MMS;(Z") - MMS;(Z) (B is a-MMS for 7")
> a(l — 4¢) - MMS (M). (MMS;(Z") > 1 — 4e by Theorem 3.23)

Thus, B gives all the agents in N7, a(l — 4¢) fraction of their MMS. All agents in
N\ N’ receive (3/4 + ) fraction of their MMS value. Therefore, the final allocation is a
min(3/4 + ¢, (1 — 4e)a)-MMS allocation of Z. O

3.4.2 (3/4+ §)-MMS Allocation for §-ONI Instances

In this section, we prove that for § < 3/956 there exists a (3/4 + §)-MMS allocation if
the input is a J-ONI instance.
We initialize n bags {Bi, ..., B,} with the first 2n goods as follows:

By :={k,2n — k + 1} for k € [n]. (3.1)

See Figure 3.1 for a better intuition. Note that by Lemma 3.9, m > 2n and such bag-
initialization is possible.

Given an instance Z = ([n], [m], V) (with m > 2n), let NY(Z) = {i € [n] | Vk € [n] :
vi(Bg) <1} and N3(Z) = {i € [n] | 3k € [n] : v;(By) > 1}.

We refer to N1(Z) and N?(Z) by N'' and N? respectively when Z is the initial §-
ONI instance. Recall that N1 and N2 do not change over the course of our algorithm.
Let N = {i € N1 | v;(2n +1) > 1/4 — 56} and N3 = N\ M. Depending on the
number of agents in N}, we run one of the approxMMS1(Z,J) or approxMMS2(Z, ) shown
in Algorithms 5 and 6 respectively. Roughly speaking, if the size of i is not too large,
we run Algorithm 5 and prioritize agents in Nj. Otherwise, we run Algorithm 6 giving
priority to agents in N3 U N?. Giving priority to agents in a certain set S means that
we break the tie in favour of agents in S. In other words, when the algorithm is about to
allocate a bag B to an agent, if there is an agent in S who gets satisfied upon receiving
B (i.e., v;(B) > 3/4+ ¢ for some i € S), then the algorithms give B to such an agent
and not to someone outside S.

3.4.3 Case 1: |IN}| < n(i - 5)/(% + g)

In this case we run Algorithm 5 which is similar to the bag-filling procedure discussed in
Section 3.2, with the difference that we always break ties in favour of agents in N{. For
k € [n], let By, and By, D By be the k™ bag at the beginning and end of Algorithm 5,
respectively.

Lemma 3.30. For § < L, given a §-ONI instance with IN{| < n(t —6)/(1 +3), all
agents i € N receive a bag of value at least (3/4 + §) - MMS; at the end of Algorithm 5.
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Input: §-ONI Z = (N, M, V) and factor §
Output: Allocation A = (Ay,...,Ay)

1: Let B; ={i,2n —i+ 1}ie[n}

2: Let B= Uze[n}{Bz}

3: Let a =3/449§

4: while 3i e N, B € B s.t. v;(B) > a do

5: i < an arbitrary agent s.t. v;(B) > a, priority with agents in N}
6: A; B

7: B« B\ {B}

9: M~ M \ B

10: J <~ UpepB

11: for B € B do

12:  while #i € N s.t. v;(B) > o do

13: Let g be an arbitrary good in M \ J

14: B+ BU {g}

15: M — M\ {g}

16: i < an arbitrary agent s.t. v;(B) > a, priority with agents in N}
17: A, B

18 N« N\ {i}

19: M+~ M\ B
20: return (Aj,...,A,)

Algorithm 5: approxMMS1(Z, )

Proof. Tt suffices to prove that all agents i € N} receive a bag at the end of Algorithm 5.
Towards a contradiction, assume that i € Al does not receive any bag.

Claim 3.31. For all bags B not allocated to an agent in N7\, v;(B) < 3/4+ 4.

Claim 3.31 holds since the priority is with agents in M. Let S be the set of bags
allocated to agents in Nj and S be the set of the remaining bags. We have

’UZ(M) = Z ’Ul(Bk) = Z UZ(B) + Z ’Ul(B)

ken] BesS BeS
1 46 (3 ,
< NP1+ 3 + (n— IN}) Yl ) (Lemma 3.11 and Claim 3.31)
<n, (MY < (g —8)/(5+5)

which is a contradiction since v;(M) = n. Thus, all agents i € N receive a bag at the
end of Algorithm 5. O

Remark 3.32. The last inequality in the proof of Lemma 3.30 is tight for |N{| =
L0/ +3)
(3 17T 3)

Lemma 3.33. For § < L, given a §-ONI instance with IN{| < n(t —6)/(3 +3), all
agents i € N} receive a bag of value at least (3/4 + §) - MMS; at the end of Algorithm 5.
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Proof. Tt suffices to prove that all agents i € N} receive a bag at the end of Algorithm 5.
Towards a contradiction, assume that i € N} does not receive any bag.

Claim 3.34. For all k € [n], v;(By) < 1.

Proof. The claim trivially holds if Ek = By. Now assume By C Bk Let g be the last
good added to By,. We have v;(By, \ g) < 3/4+ 8, otherwise g would not be added to Bj.
Also note that g > 2n + 1 and hence v;(g) < v;(2n + 1) < 1/4 — 56 by the definition of
N3 . Therefore, we have

vi(Bg) = vi(By, \ ) + vi(9)
3 1

Thus, the claim holds. |

Since agent ¢ did not receive a bag, there exists an unallocated bag with value less
than 1 for agent . Therefore, v;(M) = 3", o1, vi(Bk) < n which is a contradiction. Thus,
all agents i € Nj receive a bag at the end of Algorithm 5. O

Agents in N 2.

In this section, we prove that all agents in A/? also receive a bag at the end of Algorithm 5.
For the sake of contradiction, assume that agent i € A2 does not receive a bag at the end
of Algorithm 5. Let At :={k € [n] | vi(Bg) > 1} and A~ := {k € [n] | v;(By) < 3/4+6}
be the indices of the bags satisfying the respective constraint. Also, let ¢ be the smallest
such that for all k € [¢ + 1,n], v;(k) + vi(2n — k + 1+ ¢) < 1. See Figure 3.2.

Lemma 3.35. For § < 0.011, given a 6-ONI instance with |N{| < n(3 —6)/( +9), all
agents i € N% receive a bag of value at least (% +0) at the end of Algorithm 5.

Proof. Tt suffices to prove that all agents i € N receive a bag at the end of Algorithm
5. Towards a contradiction, assume that i € N? does not receive any bag. For all
ke N\ (A" UA"), since v;(Bg) > 3/4+ 6 and i has not received a bag, By = By. Thus,
forall k e N\ (A~ UAT)

vi(Bg) = vi(Bg) < 1. (3.2)
We have
n=uv;(M)= Z UZ(Bk) + Z UZ(Bk) + Z UZ(Bk)
ke A— keAt kEN\(A-UAT)

<|A |( + 25)) (]A+| +€( +6)) (n—|A7] =A%)
(Lemma 3.14, Lemma 3.15 and Inequality (3.2))
=n—|A" ](7—26)+€( —|—6)
Therefore, we have

AT] _ 11244
¢ T 1/6-26
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Next, we bound the value of the goods in M \ [2n] and contradict Inequality (3.3). We
have,

5(2 —8) < us(M\ [20)) (Lemma 3.18)
= > (w(By) —ui(BY) (M 2] = Upea- (Bi\ By))
ke A—

< |A™| <(2 +9) — (% - 25)) (Lemma 3.14 and Lemma 3.13)

ey (% 4 39).

Thus,
A= 1/4—6

¢ 13130 (34)

Inequalities (3.3) and (3.4) imply that %(152—22 > 11/34;355, which is a contradiction with

§ < 0.011. Thus, all agents i € N2 receive a bag at the end of Algorithm 5. O

Theorem 3.36. Given any § < 0.011, for all 5-ONI instances where |N}| < n(3 —
5)/(% + %), Algorithm 5 returns a (% + 9)-MMS allocation.

Proof. Since N'= N} UNF UN?, by Lemmas 3.30, 3.33 and 3.35 all agents receive a bag
of value at least (2 + §) - MMS; in Algorithm 5. O

3.4.4 Case 2: |N}| > n(é—l1 — 5)/(% + g)

In this case, we run Algorithm 6. Starting from an ordered normalized (3/44-¢)-irreducible
instance, as long as there is a bag By with value at least 3/4 + § for some agent, we
give By to such an agent. The priority is with agents who initially belonged to N3 UN2.
Therefore, in the remaining instance, all bags are of value less than 3/4 4 § for all the
remaining agents. We introduce one more reduction rule in this section.

o RY :If v;(1) 4+ v;(2) > « for some i € NV, allocate {1,2} to agent ¢ and remove i
from A. The priority is with agents in NV UN?Z.

Starting from an ordered normalized (3/4 + ¢)-irreducible instance, after allocating bags

of value at least 3/44 ¢ to some agents, we run Rg/ 0 as long as it is applicable. For ease
of notation, we write R; instead of R?/ Wiforje [5]. Then, we run Ry and Rj as long as
they are applicable. Afterwards, for all k € [n], we initialize Cy = {k,2n—k+1,2n+ k).
See Figure 3.3 for better intuition. Then, we do bag-filling. Let Cj be the result of

bag-filling on bag C. The pseudocode of this algorithm is shown in Algorithm 6.

Lemma 3.37. For all agents i € N3 UN? and bags B which is allocated to an agent in
N3 UN? during Algorithm 6, v;(B) < 3/2 + 26.
!Note that it is without loss of generality to assume m > 3n. If m < 3n, add dummy goods of value

0 to everyone. The MMS value of the agents remains the same, and any a-MMS allocation in the final
instance is an a-MMS allocation in the original instance after removing the dummy goods.
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OOO
OO
OO

Cl Ck

Figure 3.3: Configuration of Bags C1,Co,...,C)y

Input: §-ONI instance Z = (N, M, V) and factor &
Output: Allocation A = (Aq,...,Ap)
Let B; = {i,2n — i+ 1}1'6[71}
Let B = Uie[n}{Bi}
Let a =3/4+6
while 3i € N, B € B s.t. v;(B) > o do
Let i be an arbitrary agent s.t. v;(B) > «, priority with agents in N3 UN?
B+ B\ {B}
N — N\ {i}
M+~ M\ B
while R¢ () is applicable do
apply R§(a)
: while R or Rf is applicable do
apply R{ for smallest k € {2,3} s.t. R} is applicable
: G+ {i, 2n —1+1,2n + Z}ze[n]
: for k< 1tondo
17: while #i € N s.t. v;(Ck) > « do
18: Let g be an arbitrary good in M \ [3n]
19: Cp <+ CrU {g}
20: M — M\ {g}
21: i < an arbitrary agent s.t v;(Cy) > «, priority with agents in N3 UN?
22: A+ Cy,
23: N« N\ {i}
24: M — M\ Cy,
25: return (Ag,...,A,)

—_ = e
Wy e

—_ = =
S Ot

Algorithm 6: approxMMS2(Z, )

Proof. We prove the lemma by upper bounding the value of the bags allocated at each
step.
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Claim 3.38. For all bags B allocated to an agent before or during Rs, v;(B) < 3/2 4+ 24.

Proof. Since we start with a (3/4 + d)-irreducible instance, by Proposition 3.7, for all
goods g, vi(g) < 3/4+3. Therefore, for all the bags B of size two, we have v;(B) < 3/2+20.
|

Claim 3.39. For all bags B which is allocated to an agent during Ry, v;(B) < 3/2+ 24.

Proof. Note that when we run Ry, Rs is not applicable. Therefore, v;(1) + v;(2) <
3/4+ 0. Hence, v;({2n—1,2n,2n+1}) < v;({1,2}) +v(2n+1) < 2(3/449) = 3/2+ 20.
|

Claim 3.40. For all bags B which is allocated to an agent during Rs, v;(B) < 3/2 4+ 2/.

Proof. Note that when we run Rs3, Rj5 is not applicable. Therefore, v;(1) 4+ v;(2) <
3/4 4 6. Hence, v;({3n — 2,3n — 1,3n,3n + 1}) < 2v;({1,2}) < 3/2 + 20. [ |

Claim 3.41. For all bags B allocated to an agent during the bag-filling phase, v;(B) <
3/2+ 20.

Proof. If B ={k,2n—k+1,2n+k}, similar to the claims above, v;(B) < v;({1,2}) +
vi(2n+ k) < 2(3/4+6) = 3/2 + 20. Otherwise, let g be the last good added to B. We
have v;(B \ ¢g) < 3/4 + §, otherwise g would not be added to B. Therefore, we have
vi(B) =vi(B\ g)+vi(g) <2(3/4+9)=3/2+26. [ |

By Claims 3.38, 3.39, 3.40 and 3.41, all bags that are allocated during Algorithm 6
are of value less than 3/2 4 26. Therefore, the lemma holds. O]

Lemma 3.42. For § < 1/20, given a §-ONI instance with |[N| > n(3 —8)/(% + g), all
agents in N} UN? receive a bag of value at least 3/4 + 6 at the end of Algorithm 6.

Proof. Tt suffices to prove that all agents i € Nj U N? receive a bag at the end of
Algorithm 6. Towards a contradiction, assume that i € N} UN? does not receive any
bag.

Claim 3.43. For all bags B which is either unallocated or is allocated to an agent in N,

Proof. The claim holds since the priority is with agents in Aj UN? and also that
we allocate all the bags of value at least 3/4 + § for some remaining agent. |
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Let S be the set of bags allocated to agents in N U N? and S be the set of the
remaining bags. We have

n=v(M)=> v(B)+ > v(B)

BesS BeS

< (n— N <2 + 25) + [N (i + (5> (Lemma 3.37 and Claim 3.43)

— (3 +9) -t

3 i-0
<n+a@e-129) (W > 0t = 8)/(5 + 5)

173

5 1
= 3n(2=
n( 3 + 4)

This implies that %‘5 + % > % which is a contradiction with 6 < 1/20. Therefore, all
agents i € N UN? receive a bag at the end of Algorithm 6. O

Agents in Nll

Now we prove that all agents in A/ also receive a bag at the end of Algorithm 6. First,
we prove a general lemma that lower bounds the MMS value of an agent after allocating
2k goods to k other agents. This way, we can lower bound the MMS value of agents in
N after the sequence of Rj rules is applied.

Lemma 3.44. Given a set of goods M and a valuation function v, let S C M be such
that |S| = 2k for k < mn and let x > 0 be such that v(g) < MMS} (M)/2+x for allg € S.
Then, MMS?¥(M\ S) > MMS™(M) — 2z.

Proof. We construct a partition of a subset of M \ S into n — k bundles such that the
minimum value of these bundles is at least MMS] (M) — 2z. Let (Pi,...,P,) be an
MMS partition of M according to valuation function v. For all j € [n], let Q; = P; N S.
Without loss of generality, assume |Q1| > ... > |@Qy]. Let ¢ be largest such that for all
L <t, Zje[é] |Q;] > 2¢. This implies that |Q:41| < 1.

Proof. If [Qi1| =1, and 3501y Q5] > 2, then >~ 0,1 [Q5] = 2(t + 1) which is a
contradiction with the definition of ¢. If |Q4+1]| = 0, then ije[t] |Qj| = 2k. If t < k, then
> jep+1) |Qj] = 2k = 2(t + 1) which is again a contradiction with the definition of ¢. So
in this case, t = k and therefore, Zje[t} |Q;] = 2t. Hence, Claim 3.45 holds. [ |
Claim 3.46. QQk—t+1 = @

Proof. 1f Qop—t+1 # 0 then |Qok—y+1| > 1. Therefore,

ool =Y 1+ D> 1@l

jE[2k—t+1] j<t t<j<2k—t+1
>2t+ (2k—2t+1)  (Claim 3.45, and |Q;| > 1 for j <2k —t+1)
>k,
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which is a contradiction. Therefore, Claim 3.46 holds. |

Now we remove the first ¢ bundles (i.e., Pi,..., P;) and merge the next k — ¢ pairs of
bundles after removing S (i.e., (Piy1 \ S) with (P42 \ S) and so on) as follows:

pP= (Pg1 U Py2) \ S, (Piys U Pga) \ S, ..o, (Po—t—1 U Pop— ) \ 'S, Pog—i1, - - -, ).

Claim 3.46 implies that for all j > 2k —t, P; = P; \ S. Therefore, P is a partition of
the goods in (M \ (PLU...UP))\S C M\ S. For all j > 2k —t, we have v;(P;) >
MMSW'(M) > MMSHY! (M) —2z. Also, for all t < j < 2k —t, we have |[P;N S| <1 and
vi(g) < MMV (M)/2 + z for all g € P;. Therefore,

vi(Py\ S) = vi(Py) — (MMSMI(M) /2 + )
> MMSMI(M) /2 — 2.

Thus, for all t < j < 2k—t, v;((PjUP;j4+1)\S) > MMSEY! (M)—2z. Hence, P is a partition
of a subset of M \ S into n — k bundles with minimum value at least MMS;Y! (M) —2z.
Therefore, Lemma 3.44 holds. O

Lemma 3.47. Let i € N} be a remaining agent after no more Rs is applicable. Then,
before applying more reduction rules, MMS; > 1 — 124.

Proof. We start by proving the following claim.
Claim 3.48. Right before applying any R, v;(1) < 1/2+ 60.

Proof. Right before applying any Rs, no bag is of value at least % + § to any agent
and in particular agent i. Therefore, v;(1) + v;(2n + 1) < v;(1) + v;(2n) < 3/4 + . Since
vi(2n+ 1) > 1/4 — 59, by the definition of R5, we have v;(1) < 1/2 4 66. Therefore the
claim holds. |

Consider the step right before applying any Rs. Note that until this step, only some
Bj’s are allocated. Since i € N, v;(B;) <1 for all j € [n] and since |B;| = 2, allocating
Bj’s are valid reductions for agent ¢ by Lemma 3.3. Thus, before applying any Rs,
MMS; > 1. Now let Z = ([n/],./TA\, V) be the instance after applying the sequence of Rj’s.
Claim 3.48 and Lemma 3.44 imply that MMS? (M) > 1 — 126. 0

For the sake of contradiction, assume that agent i € N does not receive a bag at the
end of Algorithm 6. By Lemma 3.47, MMS; > 1 — 12§ after applying the sequence of R5’s.
By Lemma 3.6, Ry and R3 are valid reductions for i and, therefore, MMS; > 1 — 126 at
the beginning of the bag-filling phase. Let us abuse the notation and assume the instance
at this step is ([n], [m], V).

Lemma 3.49. Assuming 6 < 1/212, for all k € [n], if v;(Cy) <1 — 120 for some agent
i, then v;(Cy) <1 —120.
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Proof. If Cr = Cy, the claim follows. Otherwise, let g be the last g90d allocated to Ct.
We have v;(Cy \ g) < 3/4 + §, otherwise g would not be added to Cf. Since g > 3n, by
Proposition 3.7, v;(g) < 3/16 + /4. We have

vi(Cr) = vi(Cr \ 9) + vi(9)

<(Zes)r (240
4 16 ' 4

15 50
= — —<1- . <
T S1o12 (6 <1/212)

O
Lemma 3.50. If § < 1/212, there exists k € [n] such that v;(Cj) > 1 — 126.

Proof. For the sake of contradiction, assume that for all k € [n], v;(Cy) <1 —124. Since
1 did not receive a bag at the end of Algorithm 6, there exists an unallocated bag C} such
that v;(Cy) < 3/4+ 6. We have

viM) = Y 0i(Cr) =D uil(Cr) +0i(Cr)

ke[n] k#t
<(n—1)(1-126) + (Z +9) (Lemma 3.49 and v;(Cy) < 349)
< n(1 - 120), (5 < 1/212)

Note that MMS; > 1 — 126 and thus v;(M) > n(1 — 12§) which is a contradiction and
therefore, Lemma 3.50 holds. ]

Let ¢ be largest s.t. v;(Cy) > 1 — 126.
Observation 3.51. Assuming 6 <1/212, ¢t > 1.

Proof. For the sake of contradiction, assume ¢ = 1. Since 1 — 126 > 3/4 + 4, we have

v;(C1) = vi(C1) = vi(1) + v;(2n) 4+ v;(2n + 1)

1
<vi(1) +vi(2) + (Z + g) (Proposition 3.7)
3 1 4 40 . )
< <4 + 5) + <4 + 3> =1+ 3 (Rs is not applicable)

Also, since no bag is allocated to agent ¢, there must be a bag like Cy with ’Ui(ég) < % +4.

n(1-128) <vi(M) =v(C1)+ > oi(Cr) +ui(Cy)

ke([n]\{1,£})
49 3
<(1+ E) +(n—2)(1—-120) + Y 0 (Lemma 3.49)
< n(l—129), (6 <1/212)
which is a contradiction. Thus, ¢ > 1. O
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Observation 3.52. v;(2n +1¢) > 1/4 — 136.

Proof. We have

1-126 < ’Ui(Ct) = Ui(t) + ’UZ'(QTL —t+ 1) + Ui(2n + t)

< vi(1) + vi(2) + v (2n + t) (t>1land 2n—t+12>2)
< Z + 0+ vi(2n+t). (Rs5 is not applicable)
Therefore, v;(2n +t) > 1/4 — 136. O

Observation 3.53. v;(2n —t+1) > 3/8 — §(12 + 5/6).

Proof. Since Rj is not applicable, v;(1) +v;(2) < 3/44 ¢ and therefore, v;(2) < 3/8+ /2.
We have

1—-125 <v(Cy) =vi(t) +vi(2n—t+ 1) +v;(2n+1t) (Cr={t,2n—t+1,2n+1t})

1 4
gm@)+m@n—t+n+wz+§)
(t > 2 by Observation 3.51 and v;(2n +t) < 1 + % by Proposition 3.7)
3 9 1 4
<CE+)+u2n—t+1)+(=+2) (vi(2) < 2 +9)
8 2 4 3
5 50
— o —t+1)+ 2+ 2
vi(2n—t+1)+ st %
Therefore, v;(2n —t+1) > 3/8 — 6(12+5/6). O

Now let £ be largest such that v;(2n + ¢) > §(26 + 2/3).
Observation 3.54. If § < 3/476, then ¢ > t.

Proof. By Observation 3.52, v;(2n +t) > 1/4 —136. For § < 3/476, we have 1/4 — 13§ >
5(26 + 2/3). Thus, ¢ > t. O

Lemma 3.55. If § < 3/956, for all k < min(¢,n), v;(Cy) > 3/4 + 0.
Proof. By Observation 3.54, we have £ > t. For all k£ <t we have

vi(Cx) = vi(k) +v;(2n —k+ 1) + v;(2n + k) (Cr ={k,2n—k+1,2n+k})
>vi(2n—t+1) 4 2v;(2n + t)
(k<2n—t+land2n—k+1<2n+k <2n+t)

1
> <z —o(12+ 2)) +2 <4 — 135) (Observation 3.52 and 3.53)
7 5
L5 o
3 (38 + 6)
>2 44 (6 < 3/956)
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Therefore, no good would be added to C} for k < t¢. Now assume t < k < £. We have

vi(Cr) = vi(k) +vi(2n — k+ 1) + v;(2n + k) (Cr={k,2n—k+1,2n+k})
>2v;(2n—t+1) +v;(2n+¢)
(k<2n—k+1<2n—t+1land2n+k <2n+/Y)

2
> 2 (: —o(12 + 2)) + (26 + g) (Observation 3.53 and the definition of )

3
=—+4.
4+

O

Note that since ¢ does not receive a bag by the end of Algorithm 6, there must be
a remaining bag C} such that v;(Cy) < 3/4 + §. Thus, Lemma 3.55 implies that £ < n
when ¢ < 3/956.

Corollary 3.56 (of Lemma 3.55). If § < 3/956, for all k < ¢, C}, = C}.
Observation 3.57. v;(M\ {1,2,...,2n+(}) > (n—£)(1/4 — 130).

Proof. Consider the set of goods {1,2,...,2n+/¢} in the MMS partition of agent i. There
exists n— ¢ bags in the MMS partition which have at most 2(n—¥¢) goods in {1,2,...,2n+
¢} in total. Let P be the set of these bags. Let G = Ugcp BN {1,2,...,2n + {}. Since
Rs is not applicable, v;({a,b}) < 3/4+ ¢ for all distinct items a and b. Hence,

vi(G) < [IG/21(3/4 +9)

<
< (n—=0)(3/449). (IG] <2(n—10))

Therefore,

v (MN\{L,2,. ... 20+ 0}) > vi(UpepB \ {1,2,...,2n + £})
(n— ) (1 —126) — (n — £)(3/4 + 6)

= (n = £)(1/4 - 139).

>
>

Lemma 3.58. If § < 3/796, for all k > ¢, v;(Cy, \ {k,2n — k+1}) < 1/4 — 130.

Proof. Since 1/4 — 138 > §(53 4 1/3) for § < 3/796, it suffices to prove v;(Cy \ {k,2n —
k+1}) < (53 +1/3). Note that for all & > £, v;(2n + k) < (26 + 2/3) by definition.
Therefore, if Cy, = Cy, = {k,2n — k+ 1,2n + k}, the lemma holds. Moreover, we have

vil{k,2n — k+1}) > 2v;(2n —t 4+ 1) (k<2n—k+1<2n-t+1)
> 2 (2 —0(12 + 2)) (Observation 3.53)
3 2
=-—4(25+2). .
7 05 +3) (3.5)
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If C), # Cp, let g be the last good added to Cp. Since g > 3n+1 > 2n + ¢, vi(g) <
5(26 + 2/3). We have v;(Cy \ g) < 3/4 + ¢ otherwise g would not be added to C%. We
have

vi(Cr) = vi(Ck \ g) + vi(g)

3 2

e 2 Z
< <4+5>+5( 6+3)
3 2
_Z+5(27+§)'

Hence,

% +0(27 + §> > 0;(Cy)
d({k,2n — k4 1}) + 0 (Cp, \ {k, 2n — k +1})

<

> — — (25 + %) +0i(Cp \ {k,2n — k4 1}). (Inequality (3.5))

=~

Thus,

i (Co\ (k2 — &+ 1}) < (53 + %).

We are ready to prove Lemma 3.59.

Lemma 3.59. For § < 3/956, given a 6-ONI instance with [N} > n(3 —6)/(3 + g), all
agents in N receive a bag of value at least 3/4 + & at the end of Algorithm 6.

Proof. Tt suffices to prove that all agents i € N receive a bag at the end of Algorithm
6. Towards a contradiction, assume that i € A} does not receive any bag. By Lemma
3.50, there exists a k € [n] such that v;(Cy) > 1 — 12§. Recall that ¢ is largest such that
vi(2n 4+ £) > 0(26 4+ 2/3). We have

(n— K)(% —139) <v;(M\{1,2,...,2n+(}) (Observation 3.57)
= 0i(Cp \ {k,2n — k+1})
k>¢ R
(C = Cy, for k € [¢] by Corollary 3.56)
1
<(n-— 6)(1 —134), (Lemma 3.58)
which is a contradiction. d

Theorem 3.60. Given any § < 3/956, for all §-ONI instances where |[N{| > n(3 —
5)/(% + %), Algorithm 6 returns a (% +6)-MMS allocation.

Proof. For all other agents i, if i € Nj UN?, by Lemma 3.42, i receives a bag of value at
least 2 +4 and if i € NV}, by Lemma 3.59 i receives such a bag. Since N' = N UNF UNZ,
the theorem follows. O
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Input: Instance Z = (M, M, V) and approximation factor a > 3/4
Output: Allocation A = (Ay,...,Ay)

1: Let § = 3/956

2: 7 < order(normalize(reduce, (7))

3: Let N ={i€[n]|Vj€[n]:v(B;)<1andv;(2n+1)>1/4—55}

4 if [N <n(t—6)/(3+9) then

5: return aprroxMMS1(Z, ) > Algorithm 5 in Section 3.4.3
6: else

7: return aprroxMMS2(Z, 9) > Algorithm 6 in Section 3.4.4
8:

return (Aj,..., A,)

Algorithm 7: mainApproxMMS(Z, a)

3.4.5 (3/4 4+ €)-MMS allocations

In this section, we give the complete algorithm mainApproxMMS(Z, «) that achieves an
a-MMS allocation for any instance Z with additive valuations and o = 3/4 + ¢ for any
e < 3/3836. To this end, first we obtain a §J-ONI instance for 0 = 4¢/(1 — 4¢) by running
order(normalize(reduces/;.(Z))). Then depending on whether |V} | < n(%—&)/(%%—%)
or IV >n(3—68)/(3+ g), we run approxMMS1 or approxMMS2. The pseudocode of our

algorithm mainApproxMMS(Z, «v) is shown in Algorithm 7.

Theorem 3.61. Given any instance T = (N, M, V) where agents have additive valuations
and any o < % + ﬁ, mainApproxMMS(Z, «) returns an a-MMS allocation for T.

Proof. Lete =a—3/4and T = order(normalize(reduces/s;.(Z))). Then by Theorem

3.24, 7 is ordered, normalized and (% + 1flg)—ilrlreducible (1iE—ONI). Since ¢ < ﬁ,

1515 < ﬁ?’G = ¢. Thus, 7 is 6-ONL Furthermore, from any S-MMS allocation of 7 one
can obtain a min(3 + ¢, (1 — 4¢)8)-MMS allocation of Z.

By Theorem 3.36, given any § < 3/956, for all -ONI instances where |N}| < n(; —
§)/(%+ g), approxMMS1 returns a (2 4 §)-MMS allocation. Also, by Theorem 3.60, for
all 6-ONI instances where |N]| > n(: —68)/(3 + g), approxMMS2 returns a (3 + §)-
MMS allocation. Therefore, mainApproxMMS(Z, o) returns a min(3 + ¢, (1 — 4¢)(3 + 4))-
MMS allocation of Z. We have

3 3 .,3 3
1-4e)(248) > (1— 2 )2+ 2
(=493 79 = (1= 5553 * 556
3.3
4 3836
> § t+e=«
—_— 4 - *
Thus, mainApproxMMS(Z, ) returns an a-MMS allocation of Z. O
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CHAPTER 4
Approximate MMS for XOS Valuations

In this chapter, we provide improved approximation guarantees for the maximin-share
in the fractionally subadditive setting. We investigate randomized and deterministic
allocation algorithms. Recall that in the XOS setting, for all agents i, there exists a
family of additive valuation functions w;1,u;2,..., Uiz : oM R>0, such that v;(S) =
maxi<p<e uik(S) for all subset of goods S.

Randomized Allocations

A randomized allocation is a distribution over deterministic allocations. A randomized
allocation R has a property P ex-ante, if P holds on expectation. On the other hand, R
has a property P ex-post, if all the allocations in the support of R have property P. While
having ex-ante guarantees might be easy in so many cases (i.e., being fair on average), the
best-of-both-worlds idea is to have both ex-post and ex-ante guarantees simultaneously
so that no matter which allocation in the support of R is realized, some fairness criterion
is satisfied. For randomized allocations, we take one step toward extending the best-of-
both-worlds idea for valuations more general than additive.

For the additive setting, [12] proved the existence of randomized allocations that are
proportional ex-ante and 1/2-MMS ex-post. However, as we show in Section 4.2, though
guaranteeing proportionality ex-ante is easy, for valuations such as submodular, XOS,
and subadditive, this notion is not always a proper choice as a fairness criterion. In fact,
for some instances, proportionality can be as small as O(1/n) of the MMS value, which is
highly undesirable. Therefore, here we focus on guaranteeing MMS approximations both
ex-ante and ex-post. More precisely, we are looking for randomized allocations that are
a-MMS ex-ante and S-MMS ex-post, where 0 < 8 < a.

In contrast to the additive setting, guaranteeing MMS ex-ante for XOS valuations is
not easy. Note that in the additive setting, a fractional allocation that allocates a fraction
1/n of each item to each agent is proportional and consequently MMS. However, for some
XOS instances this allocation is O(1/n)-MMS (Observation 4.15). Indeed, we show that
there are instances for which guaranteeing MMS ex-ante is not possible. More precisely,
we show that there are instances such that no randomized allocation can guarantee a
factor better than 3/4 of her maximin-share to each agent (Lemma 4.16).

On the positive side, we propose an algorithm that finds a randomized allocation
which is 1/4-MMS ex-ante.

Theorem 4.1. For any instance with XOS valuations, there exists a randomized allocation
that is 1/4-MMS ez-ante.

Furthermore, by leveraging additional ideas, we extend this result to encompass both
ex-ante and ex-post guarantees. Qur proof for the approximation guarantee of our allo-
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cation is inspired by the work of [44]. In fact, we show that the fractional allocation F
which is obtained from the following program is 1/4-MMS:

maximize E U;

1<i<n
subject to Z fij =1 v
1<i<n
fij >0 Vi
o1
U; = mln(§, m]?XZuiyk(gj)fij). Vl (41)
J

Intuitively, Program 4.1 defines an alternative valuation function v;(-) for each agent i and
then finds an allocation that maximizes social welfare with respect to these valuations.
For every 4, v;(-) is the same as v;(-), except that for bundles X with v;(X) > 1/2 we have
0;(X) = 1/2. From an economical standpoint, one can see the answer of this program as
an interesting trade-off between fairness and social welfare.

We can then convert the fractional allocation F into a randomized one (Theorem
4.13 and Lemma 4.9). However, there is no non-trivial guarantee on the fairness of the
ex-post allocation. To resolve this issue, we add one additional step to our algorithm
(namely allocating single large items), and also add another constraint to the optimization
program. Before solving the optimization problem, we check if a single item can satisfy
an agent. The main goal of this step is to make sure that the value of each remaining
item for the remaining agents is small enough so that we can use Theorem 4.13 to convert
the fractional allocation into a randomized one with an ex-post guarantee.

We also add another constraint to the optimization problem to obtain the following
half-integral optimization program:

maximize E U;

1<i<n
subject to Z fij =1 V;
1<i<n
fij S {0, 1/2, 1} Vz‘,j
1
u; = min(g, mgxzui,k(gj)fij)- Vi (42)
J

Despite this additional step and constraint, we prove that the answer of Program 4.2
also gives the 1/4-MMS ex-ante approximation guarantee. However, note that the upper
bound on the value of items obtained from the additional step combined with Theorem
4.13 still gives no approximation guarantee better than 0 for the ex-post allocation,
because there might be some items with value close to 1/4 in the bundle of agents. To
prove the ex-post guarantee, we provide a more intricate analysis of the method that is
used in Theorem 4.1 and show that our allocation is 1/8-MMS ex-post. The fact that the
allocation is half-integral plays a key role in the proof. The pseudocode of our approach
is shown in Algorithm 8.
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Theorem 4.2. For any instance with XOS valuations, Algorithm 8 returns a randomized
allocation that is 1/4-MMS ex-ante and 1/8-MMS ex-post.

Deterministic Allocations

Since the impossibility result on MMS by [62], there has been considerable work of estab-
lishing approximate MMS guarantees for various classes of valuation functions |13, 42, 44,
53, 63]. The best previous deterministic guarantee for XOS valuations was 0.2192235 [63].
We improve the guarantee to 3/13 ~ 0.2307. In order to do so, like in our randomized
algorithm, we first allocate large items. However, in addition to allocating single large
items, here we also allocate pairs and triples of items if they satisfy some agent up to
3/13 factor of their MMS value. This way, we get a stronger upper bound on the value
of most of the remaining items.

In the last step, we output an allocation which maximizes the social welfare with
respect to valuations ¥;(-) = min{-}, v;(-)} for the remaining agents and items. Note that
this last step is also in correspondence with the last step of the randomized algorithm.
Here we cap the value of the bundles with 6/13 (instead of 1/2) and we output an integral
allocation (instead of a half-integral allocation) with maximum social welfare. Moreover,
here we need to do a more careful analysis to show that the output is indeed a 3/13-MMS
allocation. The pseudocode of our approach is shown in Algorithm 9.

Theorem 4.3. For any instance with XOS valuations, Algorithm 9 returns a 3/13-MMS
allocation.

4.1 Notations and Tools

Recall the definition of fractionally subadditive (XOS) valuations.

Definition 4.4 (XOS). A valuation function v;(-) is fractionally subadditive (XOS), if
there exists a family of additive valuation functions w;1,u;2, ..., ;e : oM R>o such
that for every set S we have
(S) = i k(9).
vi(S) = max, u;(5)
Given an allocation A, we denote by w; ;/, an additive function of v; that defines v;(A;),
ie., vi(A;) = u;i(Ai). Another term we frequently use in this chapter is contribution;
which is defined as the marginal value of one set to another.

Definition 4.5 (Contribution). For every sets S, T of items such that S C T, we define
the marginal contribution of S to T with respect to valuation function v, denoted by CI(S),
as follows:

Cy (8) =o(T) —v(T\ S)
i.e., the marginal contribution of S to T is the value decrease when S is removed from T'.

Example 4.6. Consider 5 items g1,92,...,95, and an identical valuation v for all
the agents. Suppose that v is a fractionally subadditive function consisting of two ad-
ditive function uy; = [2,8,4,5,1] and us = [5,1,9,4,5] (the j element is the value
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for g;). For set S = {g1,92,...,95} we have ui(S) = 20 and uz(S) = 24. Hence,
v(S) = max(u1(S),u2(S)) = 24. Also, the marginal contribution of item gs to set S
is C5({g3}) = v(S) —v(S \ {g3}) = 24 — 16 = 8, which is smaller than uz(g3) = 9.

With abuse of notation, for an allocation A of items to agents with valuation vector
V = (v1,...,v,) and every set S of items, we define the contribution of S to A with
respect to V, denoted by C{;‘(S ) as follows:

CH(S) = ) Cai(AnS). (4.3)

1<i<n

However, since an XOS valuation function might include many additive functions,
definition (4.3) is not always practical. Therefore, we use Observation 4.7 to bound
CH(S). Since u; i (A;) = uiir(A; \ S) + uiw(A; N S) and we have v;(A;) — v;(A; \ S) <
wi i (Ai) — wi o (Ai \ S) = 17 (A; N S). Summing over ¢ yields the following observation.

Observation 4.7. For every allocation A of items to agents with valuation vector V and
every set S of items, we have

CHS) < 3w (AinS),

1<i<n
for every i such that v(A;) = u; i (A;).

For brevity, in the rest of the chapter, we assume that the valuations are scaled so
that for every agent i, we have MMS,; = 1.

Randomized allocation. We also consider randomized allocations. A randomized
allocation is a distribution over a set of deterministic allocations. For a randomized
allocation R, we denote by D(R) the set of allocations in the support of R. For a
randomized allocation R, the expected welfare of agent i is defined as

vi(R) = Z vi(Ai) - pa,

AeD(R)

where p 4 is the probability of allocation A in R.

Fractional allocation. En route to proving our results, we leverage another relaxed
form of allocation called fractional allocation. In a fractional allocation, we ignore the
indivisibility assumption and treat each item as a divisible one. Formally, a fractional
allocation F is a set of nm variables f;; indicating the fraction of item g; allocated to
agent i. Therefore, a fractional allocation F satisfies the following constraints:

V; Z fij <1 (we have one unit of each item)
1<i<n
Vi 0< fij (each agent receives a non-negative share of each item)
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A fractional allocation is complete if ), fi; = 1 for all items g;, i.e., all items are completely
allocated. Given a fractional allocation F, we define the utility of agent ¢ for F in the
same way as we calculate it for integral allocations:

vi(F) = max Z u; k(95) fig-
1<5<m

Complete fractional allocations give rise to randomized allocations in the standard way;,
i.e., the probability p4 of an allocation A is defined as

pa= ] II #s (4.4)

1<i<n g;€A;

Then ) 4 pa = 1. Indeed, one can view an integral allocation A as a mapping 7 from [m)]

to [n]: w(j) = @ iff gj € Ai. Then 3° 4 pa = 24 11i [yen, fii = 2ncpyem 11 Frii)s =
[1;(32; fij) = 11;1 = 1. Also, we prove in the next lemma the probability that a particular
agent ¢ receives a particular set S is [];cq fij [1;25(1 = fij)-

Lemma 4.8. Let F be a complete fractional allocation and let randomized allocation R

be defined by (4.4). Then for all sets S C M and agents 1,
PlA =8 =] 5 ] - £i5)-
JjeS  jé¢s
Proof.

PlA;=S)= ) pa
A;A; =S

= > 1 17

A A, =5 1<t<n jEA,

=117 > 1111 4

JES A A =S b£1 jEA,

ZHfinZfej

JES  jgS i
= H fij H(l — fij)-
€S gs
L]

Next, we prove that all the agents value the randomized allocation R obtained by
the fractional allocation F, at least as much as F. The intuition is as follows. For all
agents ¢, in order to compute v;(F) we select the best function w; ; for the fractional set
which contains a fraction fj; of item g; for each j. In v;(R) on the other hand, we form
a weighted sum over integral sets (the weight of a set S is [[ ¢4 fij Hj¢5(1 — fij)) and
choose the best function for each set.

Lemma 4.9. Let F be a complete fractional allocation and let randomized allocation R
be defined by (4.4). Then for XOS valuation functions v;,

vi(R) > vi(F)

forall1l <i<n.
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Proof. For each 4, let i’ be such that u; i (F) = maxy, u; 1 (F).

R) =Y. > wilSpa

S A;A;=S
_ ZW(S) H fij H(l — fij) (Lemma 4.8)
5 jes  jgs
> wie(S) [ £ [T = £ip)
S JES j¢s
—Z Yo uiw ()| T] £ T~ £is)
jes jes  jés

:Zum fz] Z H fz]H fzﬂ
J

SijESLESHA] 1S

= Zui,z‘/(j)fij [(fie+1— fie)

1]

—Zuzz fz]

= ’UZ(./_")
0

We also need to define contribution for fractional allocations and fractional bundles.
Suppose that F is a fractional allocation and S is a fractional set of items. Since items are
fractionally allocated, the term contribution must be defined more precisely. For example,
suppose that set S consists of a fraction 0.4 of item g;, and in allocation F, 0.2 of g;
belongs to agent i1, 0.5 of g; belongs to agent i3, and 0.3 of g; belongs to agent i3. We
need to define exactly how the 0.4 fraction of item g; in S is distributed over the agents.
One reasonable strategy is to choose the share of each agent in a way that after removal
of S from F we have the smallest possible decrease in the social welfare. Based on this
strategy, assuming that s; is the fraction of item g; in .S, we define the contribution of S
to F, denoted by CY; (S) as the value of the following optimization program:

minimize Z vi(F) — v (F))

1<i<n
subject to Z fij — fi'j = 5; v
1<i<n
0<fi; < fij Vi (4.5)

Generally, it is hard to deal with the above optimization program. Here, we use an
important property of Cy; (+) to obtain our results.

Lemma 4.10. Let F be an arbitrary fractional allocation and assume that for every agent
i, vi(+) is XOS. Then, for every partition of the items into fractional sets S1,Sa,...,St,

we have
DS < Y uilF);

1<k<t 1<i<n
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i.e, the sum of the contributions cannot exceed the total value of F.

Proof. For every agent i, let i = arg maxy, u; (F). By definition, we have

vi(F) = Z uiir(95) - fij-

1<j<m

We will define for each set Si an allocation F*) by reducing the allocation F pro-
portionally, i.e., we will replace f;; by (1 — s ;) fij, where s, ; is the fraction of item j
belonging to set Sj. Note that since Sy, Sa,...,S; is a partition of items, ), sp; = 1.

Forevery 1 <k <t,1<i<mn,and 1< j<m, define variable fllj(k) as follows:

= (1= si)) - fi

Denote by F'*) the partial allocation defined by the variables fl,j(k) Since for every j, we

have
Z (fij — f) = Z Sk,j fij

1<i<n 1<i<n

= Sk,j>

F'(k) is a feasible solution to Program (4.5). Therefore, we have

YY) < D ) (wiF) —wi(F®))

1<k<t 1<k<t 1<i<n

S > walg) (- £

1<k<t 1<i<n 1<j<m

= Y Y wiwlgi)skifi

1<i<n 1<j<m 1<k<t

= Z Z u; i (95) fij

1<i<n 1<j<m

= ) vilF).

1<i<n

IN

4.1.1 Ex-ante and Ex-post Fairness Guarantees.

For a randomized allocation, we define two types of fairness guarantees, namely ez-ante
and ez-post as in Definitions 4.11 and 4.12.

Definition 4.11 (ex-ante). Given a randomized allocation R, we say R is a-MMS ex-
ante, if for every agent i, we have v;(R) > « - MMS;. Similarly, R is a-proportional, if
for every agent i, v;(R) > « - m;.

Definition 4.12 (ex-post). An allocation R is a-MMS ex-post, if every allocation A €
D(R) is a-MMS. Similarly, we say R is a-proportional ex-post if every allocation A €
D(R) is a-proportional.
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Chapter 4. Approximate MMS for XOS Valuations

Babaioff, Ezra, and Feige [12] obtain how to convert a fractional allocation into a
faithful randomized allocation.

Theorem 4.13 ([12]). Assume that the valuations are additive and let F be a fractional
allocation. Then there exists a randomized allocation R such that the ex-ante utility of
the agents for R is the same as the utility of the agents in F, and for every allocation A
in the support of R the following holds:

Vi v (A;) > v (R)— max  v(g;).
(A0 2 0(R) = vi(g)

We will use a more delicate analysis of the method used in Theorem 4.13 to convert
fractional allocations into randomized ones. This helps us improve our ex-post approxi-
mation guarantee.

4.2 Ex-ante Guarantees

In this section, our goal is to design randomized allocations that is a-MMS ex-ante or
a-proportional ex-ante. Note that, in contrast to the additive case, for XOS valuations
there is no meaningful correspondence between proportionality and maximin-share; the
proportional share can be larger or smaller than the maximin-share. Recall that for the
additive case, we always have 7; > MMS; (Observation 2.4) and therefore, maximin-share
is implied by proportionality. However, for fractionally subadditive valuations, 7; can be
as small as MMS; /n.

For the additive setting, a simple fractional allocation that allocates a fraction 1/n
of each item to each agent guarantees proportionality and consequently maximin-share.
Using Theorem 4.13 one can convert this allocation to a randomized allocation that is
proportional ex-ante. In Observation 4.14 we show that proportionality can be guaranteed
ex-ante for XOS valuations.!

Observation 4.14. FEvery randomized allocation that allocates each item with probability
1/n to each agent is proportional ex-ante.

Proof. Let R be a randomized allocation such that the probability that item g; is allocated
to agent ¢ is 1/n. Also, let u; # be the additive valuation function that defines v;(M), i.e.,

'Note that for now, we are not concerned about the ex-post guarantee of our allocation.
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4.2. Ex-ante Guarantees

v;(M) = u; (M), and let p4 be the probability that allocation A is chosen in R. We
have

Z pAa - Uz

AED(R)

Z pbA - uzz )

AED(R)

Z pA Z u;i(95)

AeD(R) g;€A;

= Z Z wi,ir(95) - PA

1<j<mi:g;€A;

= Z i (95)/m

1<j<m

= v;(M)/n.

O

In contrast to the additive setting, finding a randomized allocation that guarantees
the maximin-share ex-ante is not trivial. Indeed, the simple fractional allocation that
guarantees proportionality in Observation 4.14 can be as bad as O(1/n)-MMS.

Observation 4.15. Let F be a fractional allocation that allocates a fraction 1/n of each
item to each agent. Then, there exists an instance such that the approximate mazrimin-
share guarantee of F is 1/n.

Proof. Consider the following instance. There are n? items. The valuation of agent i is
an XOS set function consisting of n additive valuation functions as follows: partition the
items into n bundles each with n items. For each additive function w; j, the value of each
item in the &' bundle is 1/n and the value of the rest of the items is 0. It is easy to
observe that for this instance, the MMS value of each agent is 1, and the value of each
agent for her bundle in F is 1/n. O

Generally, there are two main challenges in the process of designing a randomized
allocation that guarantees an approximation of the maximin-share. In contrast to the
additive setting, finding a fractional or randomized allocation that approximates maximin-
share is not easy. Also, transforming a fractional allocation into a randomized one is not
straightforward. Indeed, as we show in Lemma 4.16, neither fractional allocations nor
randomized allocations can guarantee MMS. We prove an upper bound on the best
approximation guarantee of each one of these allocation types.

Lemma 4.16. For XOS waluations, the best approximate MMS guarantee for fractional
allocations and the best ex-ante approrimate MMS guarantee for randomized allocation
is upper bounded by 3/4.
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Chapter 4. Approximate MMS for XOS Valuations

Proof. Consider the following instance: there are two agents and four items. The fraction-
ally subadditive valuation of each agent consists of 2 additive functions. The valuations
are as follows:

ur1({g1}) = wi,1({g2}) = Lur1({g3}) = u1,1({94}) = 0,
ur2({g1}) = wi2({92}) = 0,u12({g3}) = u1,2({94}) = 1,
uz,1({g1}) = u2,1({94}) = Liuz1({92}) = u21({g3}) = 0,
uz2({g1}) = u2,2({94}) = 0,u22({g2}) = u22({g3}) = 1.

It is easy to check that for the above instance, the maximin-share of each agent is equal to
2, and no fractional allocation can guarantee more than 1.5 to both agents. Also, we can
guarantee a value of 1.5 to both agents by giving the first and the third item respectively
to agents 1 and 2, and giving half of the remaining items to each agent.

Now, we show that the same upper bound also holds for the ex-ante guarantee of
randomized allocations. Assume that R is the randomized allocation that maximizes the
maximin-share guarantee for this instance. Since there are two agents, we know that R
maximizes the following objective:

a=min [ Y PS)i(S), > P(S)va(M\S) |,

SCM SCM

where P(S) is the probability that set S is allocated to agent 1. Since for all integers y, z
we have min(y, z) < (y + 2z)/2, we obtain

a< | D PSS+ Y P(S)va(M\ S) | /2

SCM SEM
= Z P(S) (v1(5) + va(M\ 5)) /2.
SCM

One can easily check that for every set S, the value of v1(S)+wva(M\ S) is upper bounded
by 3. Therefore, we have

a< 3 (3/2B(5)

SCM
< 3/2.

Hence, the best possible approximation guarantee for MMS in this instance is at most
1.5/2 = 3/4. Note that one can guarantee a value of 1.5 ex-ante to both agents by giving
the first and the third item respectively to agents 1 and 2, and giving the other two items
items with a probability of 1/2 to each of the agents. O

Before we prove our lower bound on the maximin-share guarantee for randomized
allocations, we note that another challenge about XOS valuations is that in sharp contrast
to additive valuations, transforming a fractional allocation to a randomized one is not
easy. Indeed, we can show that for a fractional allocation F there might be randomized
allocations R and R’ with different utility guarantees for the agents, such that in both R
and R’ the probability that each item g; is allocated to agent 7 is equal to f;;. Example
4.17 gives more insight into this challenge.
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Example 4.17. Consider the instance described in the proof of Observation 4.15 and
define allocations R and R’ as follows:

e Allocation R allocates each item to each agent with probability 1/n.

e Allocation R’ considers a random permutation of the bundles in the optimal MMS-
partitioning of the agents and allocates the i bundle in the permutation to agent
- 2

i.

It is easy to check that in both of these allocations, each item is allocated to each agent with
probability 1/n. However, the approximate mazimin-share guarantee of R is O(logn/n).
To show this, one can arque that using Chernoff bound the probability that more than
3logn items from the same bundle in the optimal partition are allocated to agent i is
O(1/n?). Hence, the expected value of agent i for her share is at most

1.i+310gn_n2;1 < 4logn'

n2 n n n

On the other hand, allocation R’ guarantees value 1 to all the agents.

Despite these hurdles, in Theorem 4.1 we show that there exists a randomized allo-
cation that is 1/4-MMS ex-ante. To prove Theorem 4.1, we first show that a fractional
allocation exists that is 1/4-MMS. Next, we convert it to a randomized allocation. Theo-
rem 4.1 along with Lemma 4.16 leave a gap of [1/4,3/4) between the best upper bound
and the best lower-bound for the approximate maximin-share guarantee of randomized
allocations in the XOS setting.

Theorem 4.1. For any instance with XOS valuations, there exists a randomized allocation
that is 1/4-MMS ez-ante.

Proof Idea: Let F be a (fractional) allocation maximizing social welfare and assume
that there is an agent i* whose bundle has value less than 1/4 to her. Now consider the
MMS-partition of agent ¢*. Each bundle in this partition has value at least 1 to ¢*. We
can split each bundle into two so that each sub-bundle has value at least 1/2 to ¢*. Let B
be one of these 2n sub-bundles. Imagine that we reassign the items in B. We take away
the items in B from their current owners and give them to ¢*. Then ¢* would gain more
than 1/4, but the other agents would lose. The loss is bounded by Cr(B). Why should
this quantity be less than 1/4 for one of the 2n sub-bundles?

Lemma 4.10 comes to the rescue. We have

ST oclBy< Y wF),

1<j<2n 1<i<n

where B; to Bs, are the sub-bundles. If the right hand side is strictly less than n/2,
the desired sub-bundle exists. We can achieve this by replacing our valuations v; by
valuations v; that assign no set a value more than 1/2.

ZNote that in the instance described in Observation 4.15 the optimal MMS-partitioning of all the
agents are the same.
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Chapter 4. Approximate MMS for XOS Valuations

Proof. For a fractional allocation, we define the truncated value of agent ¢, denoted by
v;, of a fractional set S as follows:

(5) = min (e 3 wielar)s ) (16)

1<j<m

where u; 1, is the kM additive function of v; and s;j is the fraction of item g; that belongs
to set S. If the valuation v;(-) is XOS, then v;(+) is also XOS [44]. Let V = (v, ..., Un).
Now let F be the complete fractional allocation that maximizes

Z=> wuF). (4.7)

1<i<n

We know Z < n/2 since for any fractional bundle S and every agent i, we have
v;(S) < 1/2. We claim that F allocates each agent a bundle with a value of at least 1/4.
For the sake of a contradiction, assume that this is not true and let agent i* be an agent
whose share is worth less than 1/4 to her. Then Z < n/2 — 1/4.

Claim 4.18. For all agents i, since the maximin-share of © is at least 1, she can divide
the items in M into 2n fractional bundles, each with value at least 1/2 to her.

Proof. Consider the optimal maximin-share partition of agent ¢, and for each bundle
in this partition divide that bundle into two fractional sub-bundles with a value of at
least 1/2. Since the valuation of agent i is XOS, such a division is always possible: just
take a fractional sub-bundle with a value of exactly 1/2 from each bundle. The remaining
(fractional) items in that bundle also form a sub-bundle with a value of at least 1/2. W

Let Bi, Ba, ..., Ba, be these 2n bundles. By applying Lemma 4.10 we have

Y ciB)< ) wF) =2

1<5<2n 1<i<n

Note that here C’g refers to the contribution with respect to (o1,...,7,). Therefore, at
least one of the bundles contributes less than Z/(2n) < 1/4 to Z. Let By be one such
bundle, i.e., C%:(Bk) < 1/4. Let by; be the fraction of item g; belonging to bundle By,
and let F’ be the allocation that defines the contribution of bundle Bj, to allocation F
(see Program 4.5). Then ), f/, = >, fij — bg; for all j and

Z vi(F) — Z v(F') = Cg(Bk,) < 1/4,
1<i<n 1<i<n

which means

> wlF)>z-

1<i<n

We now assign the items in By, to agent i*, i.e., we consider the fractional allocation F”
equal to F’, except that for agent i*, we have

1o = fiej + bij for all j € [1...m]
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Since the value of bundle By to agent i* is at least 1/2, we have v;(F") — v;(F') > 1/4,
and further

<

S wF) > Y wF) + > (2ot =7 =

1<i<n 1<i<n 1<i<n

i(F). (4.8)

However, Inequality (4.8) contradicts the fact that allocation F maximizes the social
welfare. Hence, F guarantees at least 1/4 to all the agents.

Finally, let R be the randomized allocation obtained from F through (4.4). Then
vi(R) > vi(F) > v;(F) > 1/4 by Lemma 4.9. Thus, R is 1/4-MMS ex-ante. This
completes the proof. ]

We remark that though we constructed an ex-ante 1/4-MMS allocation, we have no
guarantee on the ex-post fairness of our allocation. In the next section, our goal is to
improve this allocation to also guarantee a fraction of maximin-share ex-post.

4.3 Ex-ante and Ex-post Guarantees

Unfortunately, the randomized allocation obtained by Theorem 4.1 has no ex-post fairness
guarantee. The issue is that we use Theorem 4.13 to convert the fractional allocation into
a randomized one. However, Theorem 4.13 only guarantees that the ex-post value of each
agent is at least the value of her fractional allocation minus the value of the heaviest item
which is partially (and not fully) allocated to her in the fractional allocation. However,
currently, we have no upper bound on the value of the allocated items, and therefore,
the ex-post value of an agent might be close to 0. To resolve this, we perform two
improvements on our allocation.

First, we allocate valuable items beforehand to keep the value of the remaining items
as small as possible. We start by using a simple and very practical fact that is frequently
used in previous studies |7, 13, 44, 63|: allocating one item to one agent and removing
them from the instance does not decrease the maximin-share value of the remaining
agents for the remaining items.

Lemma 4.19. Removing one item and one agent from the instance does mot decrease
the maximin-share value of the remaining agents for the remaining items.

Given that our goal is to construct a randomized allocation which is 1/4-MMS ex-
ante, by Lemma 4.19 we can assume without loss of generality that the value of each
item to each agent is less than 1/4; otherwise, we can reduce the problem using Lemma
4.19. However, a combination of this assumption and Theorem 4.1 still gives no ex-post
guarantee: the ex-ante guarantee obtained by Theorem 4.1 is 1/4-MMS and assuming that
the value of each item to each agent is less than 1/4 implies no lower-bound better than 0
on the ex-post MMS guarantee. To improve the ex-post guarantee, we revisit the proof of
Theorem 4.13 and show that for our setting, a stronger guarantee can be achieved using
the matching method for converting a fractional allocation into a randomized one. Indeed,
we show that we can find a fractional allocation with a special structure that makes the
transformation step more efficient. These ideas together help us achieve a randomized
allocation with 1/4-MMS guarantee ex-ante and 1/8-MMS guarantee ex-post.
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Chapter 4. Approximate MMS for XOS Valuations

Input: Instance (N, M, V).
Output: Randomized allocation R.
1: while there exists g; € M and i € N s.t. v;(g;) > 1/4 do > Step (1)
2 R; < {g;}
3 M M\ {g;}
4 N — N\ {3}
5: Let 0;(-) = min(1/2, v;(+))
6: Let II be the set of all half-integral allocations of M to A/
7: Let F = argmaxpery ZiEN Q_}Z(Fz) > Step (2)
8: Let R be the randomized allocation obtained from F by Lemma 4.21. > Step (3)
9: Return R

Algorithm 8: ExPostExAnteMMS(N, M, V)

Theorem 4.2. For any instance with XOS valuations, Algorithm 8 returns a randomized
allocation that is 1/4-MMS ex-ante and 1/8-MMS ex-post.

In the rest of this section, we prove Theorem 4.2. Algorithm 8 is as follows:

(1) While there exists an item g; with value at least 1/4 to an agent i, allocate g; to
agent ¢ and remove i and g; respectively from N and M.

(2) Assuming N’ and M’ are the set of the remaining agents and items respectively,
let F be an optimal solution of the following linear program.

maximize g Uj

ieN!
subject to Z fij=1 for all g; € M’
ieN’
fi; € {0,1/2,1} for all i € N' and g; € M’
- .
u; = m1n(§, m]?xZuiyk(gj)fij). for alli e N7 (4.9)
j

(3) Convert F into a randomized allocation using Lemma 4.21.

See Algorithm 8 for the pseudocode. Recall that by Lemma 4.19, after Step (1), the
maximin-share value of the remaining agents for the remaining items is at least 1. For
simplicity, we scale the valuations after the first step so that the MMS value of each
remaining agent after the first step is exactly equal to 1. All agents ¢ who are allocated
an item g; in Step (1), are also allocated g; in the fractional allocation. Thus, 1/4-MMS
is guaranteed for ¢ in the final randomized allocation both ex-ante and ex-post.

An equivalent description for Step (2) is the following. For every agent i € N, define
v; as follows:

VS C M 5;(S) = min(1/2,v(S)).

Let V = (¥1,...,0,) and return a half-integral allocation F that maximizes social welfare
with respect to V, i.e., F = argmaxacn p_ ;e Ui(Ai) where II is the set of all half-
integral allocations of M’ to N’. The goal in Step (2) is to find a fractional allocation
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that is 1/4-MMS. However, we want this allocation to have a special structure that
facilitates constructing the randomized allocation. Therefore, instead of directly choosing
the allocation that maximizes social welfare, we consider v; as the valuation function of
agent i and return a half-integral allocation. First we prove that F is 1/4-MMS. Otherwise,
let i* be an agent that has a value less than 1/4 for her share. By Claim 4.18, we know
that agent ¢* can distribute all the items (that have remained after Step (1)) into 2n
bundles each with value at least 1/2 to her. Here, we construct these 2n bundles more
carefully.

Indeed, for every bundle in the optimal partitioning of agent ¢*, we construct two
bundles with a value of at least 1/2 as follows: we divide each item into two half-unit
items and put each half-unit into one bundle. That way, for all items g;, there are two
bundles each of which contains one half of g;.

Using the same deduction as we used in the proof of Theorem 4.2, we can say that
since the number of remaining agents after Step (1) is n, the value of one agent for her
bundle is less than 1/4, and the value of the rest of the agents for their bundles is at
most 1/2, the social welfare of the allocation is less than n/2. Therefore, at least one of
these 2n bundles, say By contributes less than 1/4 to social welfare. Now we take back
these items from other agents and allocate them to agent ¢*. The reallocation increases
social welfare as shown in the proof of Theorem 4.1. Note that also in this new allocation
for every agent i and item g;, we have f;; € {0,1/2,1} which is a contradiction with the
choice of F.

Observation 4.20. Let F be the allocation after Step (2). Then, for every agent i we
have v;(F) > 1/4. Furthermore, for every item g;, we have f;; € {0,1/2,1}.

Proof. Towards a contradiction assume v;«(F) < 1/4 for some agent *. Let
Bi, B, ..., Bsy, be the result of halving the bundles in the optimal partitioning of agent
1*, i.e., dividing each item into two half-unit items and putting each half-unit into one
bundle. Let by; be the fraction of item g; belonging to bundle By and let F' be the
allocation (see Program 4.5) that defines the contribution of bundle By to allocation F.
Then -, ff; = 32, fij —brj forall j and 3=, o;,, 6i(F) = X1 <y, Bi(F') = CF (By) < 1/4.
We now assign the items in By, to agent i*, i.e., we consider the fractional allocation F”
equal to F’, except that for agent i*, we have

Vi<j<m fit; = Fiej + big.

Since the value of bundle By, to agent i* is at least 1/2, we have v;«(F") — v« (F') > 1/4,
and hence 3, ;o Di(F") > > <, Vi(F). Since for every agent i and item g;, we have
1 €10,1/2,1} and hence a contradiction to the optimality of F. O

Now, we show how to convert F into a randomized allocation. Recall that the result of
Theorem 4.13 does not provide us with an ex-post guarantee better than 0. Here, we give
a more accurate analysis to prove that the outcome of our algorithm is 1/8-MMS. Our
construction is based on the Birkhoff—von Neumann theorem [16, 69]: Every fractional
perfect matching can be written as a linear combination of integral perfect matchings.
We adopt the construction to our setting and, in particular, exploit the fact that all f;;
are half-integral.
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Lemma 4.21. Assume that the valuations are additive and let F be a complete fractional
allocation with fi; € {0,1/2,1} for all i and j. Then there is a randomized allocation R
with D(R) = {A', A%}, such that

o [or every agent i we have v;(R) = v;(F).

e For every agent © we have

mln{vz(Azl),vz(.Alz)} > ’Uz(R) o max{vz(QJ)Q‘ ij — 1/2}

Proof. For each agent i, let f; = Zj fij. Since Y. f; = m, the number of agents with
non-integral f; is even. We pair the agents with non-integral f; arbitrarily. For each pair,
we create a new dummy item with a value of zero for all the agents and assign one-half
of the dummy item to each agent in the pair. In this way, for every agent ¢, f; becomes
an integer. Therefore, for the rest of the proof we assume that for every agent i, f; is an
integer.

We now construct allocations A' and A% such that fi; is equal to the fraction of
allocations in R that allocate item g; to i, i.e., if f;; = 1 we allocate g; to ¢ in both
allocations, if f;; = 0, we allocate g; to ¢ in neither allocations, and if f;; = 1/2 we
allocate g; to i in exactly one of the two allocations. For brevity, we define M5 and
N/ as follows:

Mo ={g;|3i: fij = 1/2}.
N1/2 = {i]EIgj D fig = 1/2}.

Consider a bipartite graph G(X,Y) with parts X and Y as follows: for every item
gj € My there is a vertex y; in Y corresponding to item g;. For every agent i € /\/1/2,
we have vertices z}, :L‘?, ol

;. in X, where ?; is half the number of items g; such that
fij = 1/2, that is

A ng|fij = 1/2}|
T 2 .

Also, we add the following edges to G. For every i € N; /2, order the items g; with
fi; = 1/2 in decreasing order of their value to agent i. Then we connect le to the first
two items, m? to the items with ranks three and four, and so on. In this way, all vertices
in X and Y have degree two. Hence, G decomposes into vertex disjoint cycles. Each cycle
decomposes into two matchings (note that since the graph is bipartite, all the cycles have
even length), and thus G decomposes into two perfect matchings, say M' and M?2. We
define allocations A! and A? as follows: for every item g;, agent i, and r € {1,2}, we
allocate item g; to agent i in A", if and only if either fj; = 1, or M"(y;) = z¥ for some
1 < k < t;, where M"(y;) refers to the vertex matched with y; in M". Define R as a
randomized allocation that selects A' or A2, each with probability 1/2.

It is easy to check that for every agent i, v;(R) = v;(F). Here, we focus on the ex-post
guarantee of R. Fix an agent ¢ and Let g1, g2, ..., ga; be the items half-owned by 7 in
order of decreasing value for agent i. Then, by the way we construct M*' and M?, for all

66



4.4. 3/13-MMS Allocation

1 < /¢ <t gor_1 and gyy are allocated to ¢ in different allocations. Hence, the value of
the i*® bundle in either allocation A" satisfies

vi( A7) > vi(g2) + vi(ga) + - -+ vilgar,) + D vilgy)-

Jifij=1
We can now bound v;(F) — v;(A}) from above.
” 1
vi(F) —vilAf) < 5 > wilge) | = D vilgar)
1<0<2t; 1<0<t;
_ vig1) vi(g2e) +vi(g2e11) vi(gat;)
i)y (e wlg) ) + 22 (g,
1<e<t;

< vilg)
-2

Now we are ready to prove Theorem 4.2.

Theorem 4.2. For any instance with XOS valuations, Algorithm 8 returns a randomized
allocation that is 1/4-MMS ez-ante and 1/8-MMS ex-post.

Proof. The ex-ante guarantee follows from Observation 4.20 and Lemma 4.4.

Let A' and A? be the integral allocations obtained by Lemma 4.21. Consider any
agent i, and let u; # be such that v;(R) = Zj fijuii(g;). Then, by Lemma 4.21 for
r € {1,2} we have

_ maX{Ui,z" (9i) | fis = 1/2}
5 .

Since by Lemma 4.19 we know the value of each item for each agent is less than 1/4, we
have

i i (A7) > u; 0 (RY)

max; v; (gj) 1 1 1
2 4 8 8
Hence, the ex-post guarantee holds as well. O

vi(Af) > vi(R;) —

4.4 3/13-MMS Allocation

In this section, we improve the best approximation guarantee of MMS for deterministic
allocations in the fractionally subadditive setting. We show that a factor 3/13 ~ 0.230769
of the maximin-share of every agent is possible. Before this work, the best approximation
guarantee for maximin-share in the XOS setting was 0.2192235-MMS [63].

Our algorithm for improving the ex-post guarantee is based on our previous algorithms
plus two additional steps and a more in-depth analysis. In this algorithm, before finding
the allocation that maximizes social welfare, we strengthen our upper bound on the value
of items. For this, we add two more steps to our algorithm in which we satisfy some of the
agents with two items and three items. In contrast to the first step (i.e., allocating single
items to agents), these steps might decrease the maximin-share value of the remaining
agents for the remaining items. Let ¢ = 6/13. The goal is to find a ¢/2-MMS allocation.
Our allocation algorithm is as follows:
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Input: Instance (N, M, V).
Output: Allocation A.

1
2
3
4
5:
6
7
8
9

. Let ¢ = 6/13
: while there exists g; € M and i € N s.t. v;(g;) > t/2 do > Step 1

AM—{QJ'}
M M\ {g;}
N «— N\ {i}

: while there exists gj, gx € M and i € N s.t. v;({gj,9x}) > t/2 do > Step 2

Ai {95, 91}
M — M\ {gj, g}
N N\ {i)

10: while there exists g;, gr, gs € M and i € N s.t. v;({gj, gk, gs}) > t/2do > Step 3

11:
12:
13:

Ai {95, k> 95}
M — M \ {gjagkvgs}
N+~ N\ {i}

14: Let NV =N, M' = M and 4;(-) = min(t, v;(+))

15: Let II be the set of all allocations of M’ to N/

16: Let A = argmaxaerr ) ;cp Vi(As) > Step 4
17: Return A

(1)

(2)

(3)

Algorithm 9: approxMMS(N, M, V)

While there exists an item g; with value at least t/2 to an agent ¢, allocate g; to
agent ¢ and remove ¢ and g; respectively from N and M.

While there exists a pair of items g;, g with total value of at least ¢/2 to some
agent ¢, allocate {g;, gx} to agent i, remove both goods from M, and remove agent
i from N.

While there exists a triple of items g;, gk, gs with total value of at least ¢/2 to some
agent 4, allocate {g;, gk, gs} to agent i, remove all three goods from M, and remove
agent ¢ from N

For the remaining agents N’ and items M’, proceed as follows: for every agent 1,
define 7; as follows:

VS C M 5;(S) = min(t, v;(5)).

Let V = (91,...,7,) and return an allocation A that maximizes social welfare with

respect to v, i.e., A = argmaxaerr ) _;cnv Ui (A;) where I is the set of all allocations
of M’ to N”.

In the rest of this section, we analyze the above algorithm. See Algorithm 9 for the
pseudocode. By Lemma 4.19, after Step (1), the MMS value of all the agents is at least
1. Let n be the number of the remaining agents after Step (1). We denote by n; and
ng, the number of agents that are satisfied in Steps (2) and (3) respectively and let
n' =n —ny —ng = |N’| be the number of remaining agents after Step (3). In contrast to
the first step, Step (2) and (3) might decrease the maximin-share value of the remaining
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agents for the remaining items. However, we prove that the remaining items satisfy certain
special structural properties.

Observation 4.22. Since no item can satisfy any remaining agent after Step (1), for
every agent i and every item g;, we have v;(g;) < t/2.

Also, by the method that we allocate the items in Step (3), after this step the following
observation holds.

Observation 4.23. Since after Step (3), no triple of items can satisfy an agent, for
every different items gj, g, gs and every agent i we have v;({g;, gk, gs}) < t/2.

Note that since the valuations are XOS, Observation 4.23 implies no upper bound
better than ¢/2 on the value of a single item to an agent. For example, consider the
following extreme scenario: for a small constant € > 0, the value of every non-empty
subset of items to agent i is equal to t/2 — . It is easy to check that this valuation
function is XOS. For this case, the value of every triple of items is also equal to t/2 — ¢,
but this implies no upper bound better than ¢/2 on the value of a single item.

Lemma 4.24. Fiz a remaining agent v and consider the n bundles with value at least
1 in an MMS partition of agent i after Step (1). Put these bundles into 4 different sets
By, B1, Ba, B>3, where for 0 < £ < 2, set By contains bundles that lose exactly £ items in
Steps (2) and (3), and B>3 contains bundles that lose at least three items in these steps.
After Step (3), the following inequality holds:

2 1
"< |B —|B1| + =|Ba.
w < |Bol + 3|B1l + 5|By|
Proof. Since each satisfied agent in step k receives k items, we have:
2n1 + 3ng > ’Bﬂ + 2‘32‘ + 3‘323‘.

Thus,

2 1 2

n1+n22§n1+n22§|Bl|+§|BQ|+|B23|, (4.10)

and therefore,

n’:nfnlfng

1 2
<n-— 5\31\ — §|Bg| — |B>3| (Inequality 4.10)
2 1
= |Bo| + 3|Bi] + 5[ Ba|. (n = |Bo| +[B1] + |Ba| + [B>3|)
O

Finally, in Step (4), we find the integral allocation .4 that maximizes social welfare
with respect to v for the remaining agents. Let

7 = Z @Z(AZ)
ieN’
Since for each remaining agent i, 9;(A;) is upper-bounded by ¢, we have Z < n't. If

for every agent ¢, v;(A;) > t/2 holds, then A is ¢t/2-MMS, and we are done. Therefore,
for the rest of this section, assume that for an agent i*, we have v;« (A=) < t/2.
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Lemma 4.25. For all sets S C M, C’{—j‘(S) > 0+ (S) — = (Aj+).

Proof. Let allocation A’ be as following. For all agents ¢, A, = A; \ S. Basically, A" is
allocation A after removing all the items in S from the bundles they belong to. We have

D (A =D mi(A) — CH(S). (4.11)
ieN ieN
Now let A” be allocation A’ after allocating S to agent i*. L.e., for all agents ¢ # i*,
Al = Al and A, = Al. US. We have

Z 0i(A;) > Z v;(A)) (A=argmax ey ;cpn Ui(4i))
ieN =

= > Bi(A) +0m (AL US)
ieNM\{i*}

= (Z v;i(A) — C{—;‘(S) — Uy (.A;)) + 0+ (A» US)  (Inequality (4.11))
ieN
> 0i(A) = CH(S) = B (Afx) + 05 (S). (05+ (A} U S) 2 5 (5))
ieN
Therefore, C{—j‘(S) > 0= (S) — U= (Agx). O

Let By, B1, and By be the sets defined for agent ¢* in Lemma 4.24. In Lemmas 4.26,
4.27 and 4.28, we give lower bounds on the contribution of the bundles in By, By and Bo
to A respectively.

Lemma 4.26. After Step (3), for all bundles X € By, there exists a partition of X into
X1 and X9 such that C{—;‘(Xl) + C{—j(Xg) > ¢

Proof. The idea is to partition the set X into two bundles X; and X5 each with value at
least t to agent ¢*. Then using Lemma 4.25, we prove the contribution of each of these
bundles to A is at least ¢/2 and thus the total contribution is at least t.

For a fixed bundle X € By, let j be such that u; j(X) = v;+(X) > 1. Let g; and ¢
be two most valuable items in X with respect to u j, i.e., for all items g € X \ {g1, 92},
wix i (g1) > i j(g2) > uix j(g). Let X7 be a minimal subset of X such that {g1,¢92} C X3
and ug j(X1) > t. Let X9 = X'\ X;. Since X; is minimal, for all g € X1, us j(X1\{g}) < t.
Also, by Observation 4.23, for all g € X1\{g1, 92}, wi= ; ({91, 92, 9}) < vi=({91,92,9}) < t/2
and thus, u;+ j(g) < t/6. Therefore, for all g € X1\ {g1,92},

u j(X2) > 1 —up j(X1) (up (X1 U X2) > 1)
=1 — (uir (X1 \ {g}) + ui j(9)) (by additivity of u;- ;)
T
> 6
- (t = 6/13)

Hence, we have v;=(X1) > up j(X1) > t and v (X2) > us+ ;j(X2) > t. Now by Lemma
4.25, we have

CHX1) + CH(Xa) > (T (X1) — Tpe (A=) + (T3 (X2) — Ti (Aix))

1
> 2(t— =t) =t.
(t—51)
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O

Lemma 4.27. After Step (3), for all bundles X € By, there exists a partition of X into
X1 and Xy such that C{—j‘(Xl) + C{—;‘(Xg) > 2t

Proof. Fix a bundle X € By. By Lemma 4.19, the MMS value of agent ¢* is at least 1
after Step (1). By Observation 4.22, v;=(g) < t/2 for all remaining items g after Step (1).
Since X is a bundle in an MMS partition of agent ¢* after Step (1) and after the removal
of one item g, we have

vie (X) > 1—t/2. (4.12)

Let j be such that u; ;(X) = v;«(X). Let g1 and g2 be two most valuable items in X
with respect to u;= j, i.e., for all items g € X \ {g1, 92}, wi=;(g1) > wi;(g2) > wix;(g).
Let X be a minimal subset of X such that {g1,g2} C X1 and w;« ;(X1) > 2t/3. Let
Xo = X \ Xj. Since X is minimal, for all g € Xy, u (X1 \ {g}) < 2t/3. Also, by
Observation 4.23, for all g € X1\ {91,092}, wi= ({91, 92, 9}) < vi=({91,92,9}) < t/2 and
thus, u+ j(g) < t/6. Therefore,

wp j(X1) = wix (X1 \ {g}) +ui= 5 (9) (by additivity of u« ;)
<Ly
3 6 6

Therefore, for all g € X1\ {91, 92}, we have

C2H(X1) + CL(Xa) > (0+(X1) — O (Ai)) + (T3 ( 2) — Ti= (A=) (Lemma 4.25)
= (min(t, v+ (X1)) — U= (A=) + (min(¢, v (Xa)) — U= (A=)

1 1
> <min(t,ui* -5 > + (mln (t,uix j(X2)) — 2t>
> u j(X1) +min(t, 1 — 5 —up;(X1)) =t (u=5(X1) < 5t/6)
> min(u;- j(X1),1 — gt)
2
> 2
- 3

Lemma 4.28. After Step (3), for all bundles X € Ba, C'A( ) > 3t.

Proof. Fix a bundle X € By. By Lemma 4.19, the MMS value of agent ¢* is at least 1
after Step (1). By Observation 4.22, v;=(g) < t/2 for all remaining items g after Step (1).
Since X is a bundle in an MMS partition of agent ¢* after Step (1) and after the removal
of two items like g, we have v;«(X) > 1 — ¢ > t. Therefore, v;+(X) = min(¢, v (X)) = t.
Now by Lemma 4.25,

CA(X) > 0 (X) — 03 (A7) > £ — %t _ %t.
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Theorem 4.3. For any instance with XOS valuations, Algorithm 9 returns a 3/13-MMS
allocation.

Proof. Let A be the output of Algorithm 9. Towards a contradiction, assume for agent
i*, v« (Ai+) < 3/13 = t/2. For all agents ¢ which are removed during the first three steps,
we have v;(A;) > t/2 = 3/13. Therefore, i* € N'. For all X € By, let X; and X3 be as
defined in Lemmas 4.26 and 4.27. We have

, 1

tn' - 3) > > (A (for all i € N, 53(A;) < t and 0= (A ) < t/2)
ieN?
> D (CHX) + CH (X)) + D (CH(X) + CA (X)) + Y CH(X)
X€eBy XeB, XeBsy
(Lemma 4.10)
> 1| Byl + §t|Bl| + %t\Bg| (Lemmas 4.26, 4.27 and 4.28)
> tn/, (Lemma 4.24)

which is a contradiction. Therefore, such an agent i* does not exist and A is a 3/13-
MMS allocation. O
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CHAPTER 5
Ordinal MMS Approximation

In the ordinal approximation, the goal is to show the existence of 1-out-of-d MMS al-
locations (for the smallest possible d > n). A series of works led to the state-of-the-art
factor of d = |3n/2] for additive valuations [47]. We show that 1-out-of-4[n/3] MMS
allocations always exist when agents have additive valuation functions, thereby improving
the state-of-the-art of ordinal MMS approximation.

While maybe counter-intuitive at first sight, there is no meaningful relation known
between the multiplicative approximations and ordinal approximations of MMS. Consider
the following examples.

(1) m=mn and v;(g) =1 for all i € N and g € M. Then for all i € N/, MMS}(M) =1
while MMS%(M) = 0 for all d > n. Therefore, any allocations is a l1-out-of-(n + 1)
MMS allocation, while it might not guarantee a-MMS property for any a > 0.

(2) m = 2n — 1 and v;(g) = 1 for all i € N and ¢ € M. Then MMS}(M) =
MMS?" (M) = 1 for all i € V. Therefore, any allocation that satisfies 1-out-of-
(2n — 1) MMS also guarantees MMS.

This also explains the discrepancy known between the previously best known a-MMS
guarantee (o = 3/4), and l-out-of-(n/B) MMS guarantee (8 = 2/3). It goes without
saying that the (3/4 + 3/3836)-MMS result in Chapter 3 does not imply the existence of
1-out-of-4 [n/3] MMS allocations, which we prove in this chapter—mnor does the latter
imply the former.

5.1 Notations and Tools

In this chapter, we assume all agents have additive valuation functions. We prove the
existence of 1-out-of-(4n/3) MMS assuming that n is a multiple of 3. This implies the
existence of 1-out-of-4 [n/3] MMS for all n. When n is not a multiple of 3, we can copy
one of the agents 1 or 2 times (depending on n mod 3) so that the new instance has
n' := 3 [n/3] agents. Since we prove the existence of 1-out-of-(4n’/3) MMS for the new
instance, we prove the existence of an allocation that gives all the agents 7 in the original
instance their MMS?”I/ 3(/\/1) = MMS?M/ 31 (M) value. Hence, the existence of 1-out-of-
4[n/3] MMS allocations follows. Recall that for a given instance Z and integer d, for
each agent i, P() = (Pl(i), e ,Py)) is a d-MMS partition of agent 1.

Similar to Chapter 3 where the goal was to find an a-MMS allocation, when the goal
is to find a l-out-of-d MMS allocation, it is without loss of generality to assume the
instance is ordered and d-normalized. We prove it formally in Lemma 5.1.

Lemma 5.1. For anyd € N, if 1-out-of-d MMS allocations exist for d-normalized ordered
instances, then 1-out-of-d MMS' allocations exist for all instances.
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Cy Cr Cyq By Bnp,

(a) For all k € [d], Cy, :={k,2d—k+1}. (b) For all k € [n], By := {k,2n—k+1}.

Figure 5.1: Bag Initialization

Proof. Let T be an arbitrary instance. We create a d-normalized ordered instance Z =
(N, M, V") such that from any l-out-of-d MMS allocation for Z”, one can obtain a
1-out-of-d MMS allocation for the original instance Z.

First of all, we can ignore all agents ¢ with MMS? = 0 since no good needs to be

allocated to them. For all i € N and g € M, we define v; , = vi(g)/vi(Pj(l)) where j

is such that g € PJ(Z) Now for all i € N, let v} : 2" — Rsq be defined as an additive

furécti}(l)n such that v;(S) = > cgv; ;. Note that v , < v;(g)/MMSE¢(M) for all g € M
and thus,

v;(S) > vi(S) - MMSE(M). (5.1)

Since vg(Pj(Z)) =1forallie N and j € [d], ' = (N, M,V’) is a d-normalized instance.
If a 1-out-of-d MMS allocation exists for Z, let X be one such allocation. By Inequality
(5.1), v;(X;) > v}(X;)-MMS4(M) > MMSZ(M). Thus, every allocation that is 1-out-of-d
MMS for Z' is 1-out-of-d MMS for Z as well. For all agents i and g € [m], let v}/, be the

g"™® number in the multi-set of {v;(1),...,v;(m)}. Let v/ : 2 — R>q be defined as an
additive function such that v} (S) = >° cqv/ . Let Z” = (N, M,V"). Note that " is

ordered and d-normalized. By Corollary 2.14, from any 1-out-of-d MMS allocation in Z”,
one can obtain a 1-out-of-d MMS allocation in Z’ and as already shown before, it gives a
1-out-of-d MMS allocation for Z. O

Proposition 5.2. Given a d-normalized instance for all i € N and k € [d], we have
(1) v(P) =1, and
(2) 'Uz(./\/l) =d.

We note that it is without loss of generality to assume m > 2d. Otherwise, we can add
2d — m dummy goods with a value of 0 for all the agents. The normalized and ordered
properties of the instance would be preserved. For the rest of this chapter, we assume
the instance is ordered and d-normalized and m > 2d.

Consider the bag setting with d bags as follow.

Cr :={k,2d — k+ 1} for k € [d] (5.2)

See Figure 5.1(a) for more intuition. Next, we show some important properties of the
values of the goods in Cj’s.
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Proposition 5.3. For all agents i € N, we have
(1) vi(1) <1,
(2) vi(Cq) <1, and
(3) vi(d+1) < 3.

Proof. For the first part, fix an agent i. Let 1 € Pl(i). By Proposition 5.2, v;(1) < vi(Pl(i)) =
1.

For the second part, by the pigeonhole principle, there exists a bundle P,il) and two
goods 7,7 € {1,2,...,d+ 1} such that {j,j'} C P]gz). Without loss of generality, assume
j < j'. We have

UZ'(Cd) = Ul(d) + Ui(d + 1) (Cd = {d, d+ 1})
< vi(5) + vi(5) (j<dandj <d+1)
<u(P?) = 1. ({5} € P

For the third part, we have
1> v;(Cq) = vi(d) +vi(d+ 1) > 2v;(d + 1).
Thus, v;(d + 1) < 1. O
Lemma 5.4. For alli € N and k € [d], Y9_, vi(Cj) <d —k+1.

Proof. For the sake of contradiction, assume the claim does not hold for some agent %
and let £ > 1 be the largest index for which we have E?:z v;(C}) > d— £+ 1. Proposition
5.3((2)) implies that £ < d. We have

vi®) + vi(2d — €+ 1) = 0;(Cy)
d d
= uil(C)) — ) wilCy)
g=t j=t+1
Sd—t+1)—(d—(L+1)+1)
(Z?:k v;(Cj) <d—k+1 for k> ()
=1.

For all j, 5" < £, v;(j) + vi(j') > vi(€) + v;(2d — £ + 1) > 1. Therefore, j and j’ cannot be
in the same bundle in any d-MMS partition of 7. For j < £, let j € Pj(l). For all j < ¢
and £ < j' <2d — (€ +1,

vi(j) + vi(§') > vi(0) + vi(2d — £+ 1)
=v;(Cy) > 1.
Therefore, j' ¢ P;. Also, since Z?:g v;(Cj) > d — £ + 1, there are at least t > d — £ + 2

different bundles Q1, . .., Q¢ in P such that Q;N{¢, ..., 2d—¢+1} # (. It is a contradiction

since these t > d — £ + 2 bundles must be different from Pl(i), . Pg(i)l. O
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Input: Ordered 4 [n/3]-normalized instance Z = (N, M, V).
Output: Allocation B = (By,..., By).

1: for k € [n] do > Initialization
2: Bk:{k,Qn—kH—l}

3 j+—2n+1

4: for k € [n] do > Bag-filling
5: while ig’b e N s.t. ’I)Z(Bk) >1do

6: By + B U {j}

7 jej+1

8: if j > m then

9: Terminate

10: Let i € N s.t. UZ(Bk) >1

11: él +— By

122 N« N\ {i}
13: B, = B, U (M\ [j])
14: return B

Algorithm 10: 1-out-of-4 [n/3] MMS

5.2 Technical Overview

For a-MMS problem, the algorithms for a > 3/4 [42, 44| and Algorithm 7 utilize the
two-phase approach: valid reductions and bag-filling. In a valid reduction, the instance
is reduced by removing an agent a and a subset of goods S such that v,(S) > «, and
the MMS values of the remaining agents do not decrease. The valid reduction phase is
crucial for the bag-filling to work in the analysis of these algorithms. However, it is not
clear how to define valid reductions in the case of 1-out-of-d MMS because d is not the
same as the number of agents n. Therefore, we only use (a variation of) bag-filling in
our algorithm, which makes its analysis quite involved and entirely different from the
a-MMS algorithms.

Our algorithm is very simple, described in Algorithm 10. Given an ordered d-
normalized instance, we initialize n bags (one for each agent) with the first 2n (highest
valued) goods as follows.

By :={k,2n — k+ 1} for k € [n]. (5.3)

See Figure 5.1(b) for a better intuition. Then, we do a slight variation of bag-filling.
That is, in each round j, we keep adding goods of decreasing values to the bag B; until
some agent with no assigned bag values it at least 1 (recall that 1-out-of-d MMS value
of each agent is 1 in a d-normalized instance). Then, we allocate it to an arbitrary such
agent. We note that in contrast to [42] and Section 3.2, here we do not add arbitrary
goods to arbitrary bags, but we add the goods in the decreasing order of their values
to the bags in the increasing order order of their index. For the rest of the chapter, we
simply use “bag-filling” to refer to this procedure.

To prove that the output of Algorithm 10 is 1-out-of-d MMS; it is sufficient to prove
that we never run out of goods in any round or, equivalently, each agent receives a bag in
some round. Towards contradiction, assume that agent ¢* does not receive a bag, and the
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algorithm terminates. It can be easily argued that agent ¢*’s value for at least one of the
initial bags {Bi,..., By} must be strictly less than 1. Let £* be the smallest such that
vi=(By«) < 1. We consider two cases based on the value of v« (2n — £*). In Section 5.3.1,
we reach a contradiction assuming v;=(2n — £*) > 1/3 and in Section 5.3.2, we reach a
contradiction assuming v;«(2n — %) < 1/3.

Let Bj denote the j-th bag at the end of the algorithm. The overall idea is to categorize
the bags into different groups and prove an upper bound on the value of each bag (E]) for
agent ¢* depending on which group it belongs to. Since v;=(M) = d due to the instance
being d-normalized, we get upper and lower bounds on the size of the groups. For example,
if we know that for all bags Bj in a certain group v; (B]) < 1, we get the trivial upper
bound of n — 1 on the size of this group since n = vi=(M) = 32, vir (B;).

Unfortunately, upper bounding the value of the bags is not enough to reach a contra-
diction in all cases. However, for these cases, we have upper and lower bounds on the size
of each group, and in general, we show several additional properties to make it work. For
example, we obtain non-trivial upper bounds on the values of certain subsets of goods
using the fact that all bundles in a d-MMS partition of agent i* have value 1 (see Lemmas
5.18 and 5.33).

Note that while we prove certain bounds on the value of the Cj bags for the agents
in Section 5.1, these bounds do not carry over to the value of By, bags. The reason is that
we assume the instance is d-normalized, but we have n different By bags (in contrast to d
different Cy bags). Thus, the difficulty of the analysis is due to translating bounds from
C]JS to Bk’S.

5.3 1-out-of-4[n /3| MMS

Algorithm 10 consists of two phases of initialization and bag-filling. As discussed in
Section 5.1, we can assume without loss of generality that | M| > 2n. The algorithm first
initialize n bags as in (5.3). (See Figure 5.1(b).) Then, in each round j of bag-filling, we
keep adding goods of decreasing values to the bag B; until some agent with no assigned
bag values it at least 1. Then, we allocate it to an arbitrary such agent. In the rest of
this section, we prove the following theorem, showing the correctness of the algorithm.

Theorem 5.5. Given any ordered 4 [n/3]-normalized instance, Algorithm 10 returns a
1-out-of-4 [n/3] MMS allocation.

To prove Theorem 5.5, it suffices to prove that we never run out of goods in bag-filling.
Towards contradiction, assume that the algorithm stops before all agents receive a bundle.
Let 7* be an agent with no bundle. Let B; be the 4™ bundle after bag-filling.

Observation 5.6. For all j, k such that j <k <n, vi=(B;) <1+ v;=(2n —k +1).

Proof. Let g be the good with the largest index in Bj. Ifg=2n—j+1, v (BJ \{g}) =
vi=(7) < 1 by Proposition 5.3((1)). If g > 2n — j + 1, meaning that g was added to
Ej during bag-filling, then v;« (B] \ {g}) < 1. Otherwise, g would not be added to Bj.
Therefore,

v (Bj) = vis (B \ {g}) + vi=(9)
<1+wvp2n—k+1). (vi-(B; \ {g}) <l and g >2n —k +1)
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U
Observation 5.7. For all j,k such that k < j < n, vi(B;) < max(1 + vi(2n — k +
1), 20 (k).

Proof. First, assume B; # B; and g be the last good added to B;. We have v;+ (B;\{g}) <
1. Otherwise, g would not be added to B;. Therefore,

vi(Bj) = v (B \ {g}) + vi- (9)
<1l4wvi=(2n—k+1). (vi«(Bj \{g}) <land g > 2n — k + 1)

Now assume B; = B;. We have

vi=(Bj) = vi+(B;)
= v+ (§) +vi=(2n — 5 + 1)
< 20, (). @n—j+1>j>k)

Hence, v« (B;) < max(1 4 v (2n — k + 1), 20+ (k)). O

Observation 5.8. There ezists a bag Bj, such that vi-(Bj) < 1.

Proof. Otherwise, the algorithm would allocate the remaining bag with the smallest index
to agent i*. O

Let £* be the smallest such that v;«(Byg«41) < 1. That is, By+41 is the leftmost bag in
Figure 5.1(b) with a value less than 1 to agent *. In Section 5.3.1, we reach a contradiction
assuming v« (2n — £*) > 1/3 and prove Theorem 5.9.

Theorem 5.9. If Algorithm 10 does not allocate a bag to some agent i, then v;(2n—£*) <
1/3 where £* is smallest such that v;(Be«4+1) < 1.

In Section 5.3.2, we reach a contradiction assuming v;«(2n — ¢*) < 1/3 and prove
Theorem 5.10.

Theorem 5.10. If Algorithm 10 does not allocate a bag to some agent i, then v;(2n—~£*) >
1/3 where £* is the smallest index such that v;(Bgy1) < 1.

By Theorems 5.10 and 5.9, agent ¢ who receives no bundle by the end of Algorithm
10 does not exist, and Theorem 5.5 follows.

5.3.1 Case: vi«(2n — £*) > 1/3

In this section we assume v(2n — £*) = 1/3 + z for z > 0. We define A" =
{Bi1, Ba,...,B}; see Figure 5.2.

Observation 5.11. For all B; € A*, B; = B;.

Proof. For all Bj € A", v;«(B;) > 1. Since ¢* did not receive any bundle, B; must have
been assigned to some other agent, and no good needed to be added to B; in bag-filling
since there is an agent (namely ¢*) with no bag who values B; at least 1. O
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B Byx By Bs B,
At {Bg# 140, Bs JCALUA? {Bs41,...,Bn }CA?

Figure 5.2: An illustration of which group each bag belongs to.

Observation 5.12. For all j > 2n — 0*, vi=(j) < 1/2.

Proof. Since vi«(Bp«y1) = vi= (0" + 1) + v+ (2n — £*) < 1 and vi=(2n — £*) < v« (£* + 1),
v (2n — %) < 1/2. Also for all j > 2n — 0*, v;-(j) < v=(2n — £*) < 1/2. O

Corollary 5.13 (of Observation 5.12). = < 1/6.

Let s be the smallest such that either the algorithm stops at step s + 1 or Bs41 gets
more than one good in bag-filling.

Observation 5.14. s > (*.
Proof. For all j < £*, vy (Bj+1) > 1. Since ¢* did not receive any bundle, Bj;1, must

have been assigned to another agent. Therefore, the algorithm does not stop at step j+ 1.
Also, by Observation 5.11, Bj1 gets no good in bag-filling. O

Let A' be the set of bags in {By 1, ..., Bs} which receive exactly one good in bag-
filling. Formally, A! = {B;|¢* < j < s and |B;| = 3}. Let A2 = {By, Bs,...,Bp}\ (ATU
Ab).

Lemma 5.15. For all Bj € A%, vi(Bj) < 4/3 — 2x.

Proof. We have

1
1> v (Bpry1) =0 (F+ 1)+ 0 (2n — ) = v (5 + 1) + = + .

3
Hence, v (¢* +1) < 2/3 — z. Also, for B; € A%, we have
v (Bj) = vi= (j) + v+ (2n — j + 1)
< 2up (0 4+ 1) (2n—j+1>j > ¢*+ 1 since B; € A?)
4
< - —2z.
g~

So if B’j = Bj, the inequality holds. Now assume B’j # Bj. This implies that j > s +1
and the algorithm did not stop at step j before adding a good to B;. Therefore it did
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not stop at step s+ 1 before adding a good to Bs41 either. Let g be the first good added
to Bsi1. Since Bgy1 requires more than one good,

1> v (Bs41U{g}) = vix(s+ 1) + vi=(n — s) + v3=(g)
> 2vu+(2n — %) 4 vi=(g) (s+1<n—s<2n—10%

2
=3 + 22 + vi=(g).

Therefore, vi=(g) < 1/3 — 2x. Now let h be the last good added to bag B;. We have

vir (Bj) = i (B \ {h}) + vix (h)

<1+vn(g) (v (B; \ {h}) < 1 and vi- () < v3-(g)
< % — 2.
O

Lemma 5.16. For all B; € AT U A', vy (B;) < 4/3 + x.

Proof. First assume B; € AT. We have j < ¢*. Also,

vi+(Bj) = vi+ (By) (B; = B;)
= v (j) + v (2n — j + 1)
< 1+wv=(2n—0%) (vi«(j) <land 2n—j+ 1 > 2n — ¢*)
4
=3 + .

Now assume B; € Al. Let g be the good added to bag Bj in bag-filling. We have,

vir(Bj) = vir (Bj) + v (g)
<14 wvx(2n —0%) (v (Bj) < 1 and v+ (g) < vi=(2n 4+ 1) < v=(2n — 7))
4

O

Let |A'| =2n/3 +£. Then |A%| =n — 0" — (2n/3 +0) =n/3 — (£ +£*). If £+ ¢* <0,
then |A%| > n/3 and hence, by the end of the algorithm, there are at least n/3 bags with
value less than 4/3 — 2z (by Lemma 5.15) and at most 2n/3 bags with value at most
4/3 4+ x (by Lemma 5.16). Thus,

vpM) < =(5 —22)+ (5 +2)=—,

which is a contradiction since v;« (M) = 4n/3. Therefore, £+ ¢* > 0. Also, note that since
|A?2| =n/3 — (L+ %), L+ <n/3.

Observation 5.17. 0 < ¢+ (* <n/3.
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Figure 5.3: The first 20 + t + 20* — 2n/3 goods are marked with red, and the goods
considered in Lemma 5.18 are marked with blue.

Limit the goods in a 1-out-of-4n/3 MMS partition P = (Pl(i*), e ,PAL(:L*/)?)) of agent
i* to {1,...,8n/3+ ¢} and let Q be the set of bags in P(") containing goods {1,...,¢*}.
Formally, @ = {Pj(z*) Nn{1,...,8n/3+¢}: ]Pj(z*) N{1,...,¢*}| > 1}. Let t be the number
of bags of size 1 in Q.

Lemma 5.18. Let t be the number of bags of size 1 in Q = {P](Z) N{l,...8n/3 + ¢} :
[P A {1, 00} > 1), Then,

vi«({8n/3—20—t—20"+1,...,8n/3 + (}
U{t+1,...,0"}
U{2n -0+ 1,....2n—t}) <20 +{ — 1.

We prove Lemma 5.18 in the end of this section. For now assume that it holds. The
goods considered in Lemma 5.18 are marked with blue in Figure 5.3. First, we prove that
the goods mentioned in Lemma 5.18 are distinct. To that end, it suffices to prove that
8n/3 —20 —t—20*+1 > 2n —t. It follows from the fact that ¢ + ¢* < n/3 (Observation
5.17).

Note that since there are n/3 — £ — ¢* bags with value less than 4/3 — 2z (namely the
bags in A?), in order to reach a contradiction, it suffices to prove that there exists 3(£4£*)
other bags with total value of at most 4(¢+ £*). Since the remaining 2n/3 — 2¢ — 2¢* bags
are of value at most 4/3 4+ = (by Lemma 5.16), we get

v (M) < (2 =0 0)(5 —2) + (2 2 - 2e*)(§ ba) A 0) = 4?” (5.4)

which is a contradiction since v (M) = 4n/3.
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Now consider B = {Bl,...,BQHHQZ*,%/&BHL e ,34*} U Al where A! is the
set of bags in A' after bag-filling. B consists of 3(¢ + £*) bags. Now we prove that
”i*(UBjeB Bj) < 4(£+ £*). We have

ve( | By) <we( | By)
BJ‘EB B]'GAl
+oi=({1,...,20 +t+ 20" — 2n/3})
+ui«({8n/3 —20 —t — 20" +1,...,8n/3 + (}
U{t+1,...,0°%}
U{2n — 0 +1,...,2n —t}).
We bound the value of the goods marked with different colors in different inequalities.
Observation 5.19. For all B; € Al, v;«(B;) < 1.
Since |AY| = 2n/3 + ¢,
v | Bj) <2n/3+L.
BjeAl
Also, since all goods are of value at most 1 to agent i*,
v ({1,. .., 20+t +20* — 2n/3}) < 204t + 20* — 2n/3.
By Lemma 5.18,
vi-({8n/3 =20 —t —20" +1,...,8n/3 4+ (}

u{t+1,...,0°}
U{2n—0"+1,...,2n—t}) < 20" + 0 —t.

By adding all the inequalities, we get
vir( | Bj) <4(L+17).
BjGB

Hence, Inequality (5.4) holds, which is a contradiction. So the case of v;«(2n — ¢*) > 1/3
cannot arise.

Theorem 5.9. If Algorithm 10 does not allocate a bag to some agent i, then v;(2n—£*) <
1/3 where £* is smallest such that v;(Bg4+1) < 1.
Proof of Lemma 5.18

To prove Lemma 5.18, we partition the goods considered in this lemma into two parts.
These parts are colored red and blue in Figure 5.4. We bound the value of red goods in
Lemma 5.22, i.e.,

Yoo we()+ 3 vie () < 0 — 1,

2n—0*<j<2n—t 8n/3—20—t—20* <j<8n/3—20—2t—f*
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Figure 5.4: The goods considered in in Lemma 5.22 are marked with red and the goods
in Lemma 5.23 are marked with blue.

and the value of the blue goods in Lemma 5.23, i.e.,
> we(i) + > v (j) < 0+ ¢.
t<j<er 8n/3—20—2t—£*<j<8n/3+¢
Thereafter, we have
vi=({8n/3 —20 —t—20"+1,...,8n/3 + (}
U{t+1,...,0°}
U{2n—0"+1,...,2n—t})

= Z Vi (]) + Z (% (])

2n—0*<j<2n—t 8n/3—20—t—20* <j<8n/3—20—2t—*
+ > ve(d) + > v (5)

t<j<e* 8n/3—20—2t—0*<j<8n/3+L
< —=t)y+ "+ 20 (Lemma 5.22 and 5.23)
=20" + 4 —t,

and Lemma 5.18 follows.

It suffices to prove Lemmas 5.22 and 5.23. In the rest of this section, we prove
these two lemmas. Limit the goods in a l-out-of-4n/3 MMS partition of agent i* to
{1,...,8n/3 + £} and let R be the set of the resulting bags. Formally, for all j € [4n/3],

R; = Pj(i*) N{l,...,8n/3 + (¢} and R = {Ry,..., Ry,/3}. Without loss of generality,
assume |Rq| > [Ra| > ... > [Ryy/3|. Recall that t is the number of bags of size 1 in R.

Lemma 5.20. If there exist t bags of size at most 1 in R, then

> IRl =3(t+0).

1<j<t+e

Proof. Since R;’s are sorted in decreasing order of their size,

Z [Rj| = (t+ €)[Ryyel-
1<j<t+e
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Hence, if [Ryyo| > 3, then 30y iy iy [Rj] = 3(t 4 £). So assume |Ryyg| < 2.

8n
5 ti= > IRyl

1<j<An/3
= > IR+ D IR+ D] R,
1<j<t+e t+0<j<dn/3—t An/3—t<j<dn/3
an
< > IR+ (3 =2t = 0)|Ree| +11
1<5<t+¢

4n
< § Ri|+2(— — 2t —
< ) |]|+(3 t—f0)+t
1<5<t+L

Therefore,

> R = 3(t+0).

JE[t+4]

Observation 5.21. {+ ¢* +¢ < 4n/3.

Proof. By Observation 5.17, £* +¢ < mn/3. Also, t < ¢* <n. Hence {+¢*+t < 4n/3. O

Lemma 5.22.

Z v« (4) + Z v (j) < 0F —t.

2n—0*<j<2n—t 8n/3—20—t—20*<j<8n/3—20—2t—(*

Proof. Let B = {2n—0*+1,...,2n—t}U{8n/3—20—t—20*+1,...,8n/3 —20—2t —(*}.
|B'| = 2(¢* —t) and by Observation 5.12 for all goods g € B, v;=(g) < 1/2. Therefore,
Vi (B,) < 0* —t. O

Lemma 5.23.

> weld)+ > vin(j) S L5+ L.

t<j<t* 8n,/3—20—2t—0* <j<8n/3+L

Proof. Recall that {R1,..., Ry, 3} is the set of bags in the 1-out-of-4n/3 MMS partition
of agent ¢* after removing goods {8n/3 + ¢+ 1,...,m}. Moreover, we know exactly t of
these bags have size 1. If there is a bag R; = {g} for g > ¢, there must be a good ¢’ € [{]
such that ¢’ € Rj» and |Rj| > 1. Swap the goods g and ¢’ between R; and R; as long
as such good g exists. Note that v (R;/) can only decrease and v;<(R;) = v (g') < 1.
Therefore, in the end of this process for all j € [4n/3], v;+(R;) < 1 and we can assume
bags containing goods 1,...,t are of size 1 and bags containing goods t 4+ 1,...,¢* are
of a size more than 1. Recall that |Ri| > ... > |Ry, 3|. Let T; be the bag that contains

good j.
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Consider the bags B = {R1,..., Rese} U{T+1,..., T« }. If |B| < £* + ¢, keep adding
a bag with the largest number of goods to B until there are exactly £* 4+ ¢ bags in B.
First we show that B contains at least 3¢ 4+ 2¢* 4+ ¢ goods. Namely,

> S| =30+ 20% 4 1.
SeB

By Lemma 5.20, >0 iy [Rj| > 3(t + £). If all the remaining ¢* — ¢ bags in B \
{R1,..., Ry} are of size 2, then Y ¢ p|S| > 3(t + ) +2(0* —t) = 30+ 20" + .
Otherwise, there is a bag in B of size at most 1; hence, all bags outside B are also of size

at most 1. So we have
——M_ SIS+ 1S

SeB SgEB
=D I FRCaa
SeB
Therefore,
> IS| = 4n/3+ 20+ £
SeB
> 30+ 20" + t. (Observation 5.21)
Note that the goods {t+1,...,¢*} are contained in B and moreover, B contains at least

304 20* +t — (£* —t) = 30 + 2t + ¢* other goods. Therefore,

040> e (S)

SeB
> > ve(h) + > vir (4)-
t<j<e* 8n/3—20—2t—0*<j<8n/3+L

The last inequality follows because we used the 3¢ 4 2t + £* lowest valued goods in
[8n/3 + {]. O

5.3.2 Case: vi«(2n — £*) < 1/3

Let r* be largest such that v;«(B,+) < 1. That is, By, is the rightmost bag in Figure
5.1(b) with a value less than 1 to agent i*.

Lemma 5.24. Ifv;«(2n —r* +1) < 1/3, then r* < 2n/3.

Proof. Let © = 1/3 — v;=(2n — £*). Since 1 > v« (Bpx) = vix(r*) + vi=(2n — r* + 1), we
have v;+(r*) < 2/3 + 2. By Observation 5.6, for all j < r*, v;(B;) < 4/3 — z. Also, by
Observation 5.7, for all j > r*, v;«(Bj) < 4/3 + 2. Hence, we have

3 = ;= (M)
Z B + Z vz
J<r* Jj>r*
4
<r( —x)+(n—r)(§+2x)
Z%n—HIZ(Qn—?n“ )
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Therefore, r* < 2n/3. O

Lemma 5.25. vi=(2n —r*+1) > 1/3.

Proof. Towards contradiction, assume v;«(2n —r* +1) = 1/3 — x for x > 0. By Lemma
5.24, r* < 2n/3.

Claim 5.26. .. v+ (B;) < 190 —r* 4 222,

Proof. Note that by the definition of r*, for all j > r*, Ej = Bj. By Lemma 5.4,
vi=({2n/3 +r* +1,...,2n — r*}) < 2n/3 — r*. Also since v« (r*) < 2/3 + x, v ({r* +
1,...,2n/34+r*}) < 22(2 4+ ). In total, we get

> v (By) =Y vi(By)

Jj>r* Jj>r*
=v({r"+1,....2n/3+7"}) +v=({2n/3+r" +1,...,2n —1"})
< 2n(2 ba)+ 2n .
—(s+a)+——r
33 3
10n . . 2nx
=——7r"+ —.
9 3
Therefore, Claim 5.26 holds. |
We have
4n
? = U;* (M)
= > v (B + Y vir(By)
j<r* g>r*
4 10 2
< r*(g —z)+ 771 —r*+ % (Observation 5.6 and Claim 5.26)
1 10n  2nx
— Rl on At
3Tt T
Thus,
2n ol 2n
I
2n 1
< ?” 3 (r* < 2n/3 by Lemma 5.24)
which is a contradiction. Hence, v;«(2n — r* + 1) > 1/3. O

Recall that £* is the smallest such that v« (Byp«11) < 1,1.e., By« 1 is the leftmost bag in
Figure 5.1(b) with value less than 1 to agent i*. Let ¢ be largest such that v+ (By) < 1 and
vi=(2n — £+ 1) < 1/3. Since v (Byp=41) < 1 and v=(2n — %) < 1/3, such an index exists
and ¢ > ¢* + 1. Also, let r be smallest such that v;«(Br4+1) < 1 and v«(2n —7r) > 1/3.
Again, since v;+(Bp+) < 1 and v=(2n — r* 4+ 1) > 1/3, such an index exists. We set
x:=1/3—v;=(2n — €+ 1) and y := v+ (2n — r) — 1/3. See Figure 5.5.

Observation 5.27. Forall ¢ < j <7, 1 < v (E]) <l+z+y.
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OIS I S S
OO O O

B By Bry1 B
vi(Bj)§4/37:17 1 <7f7j(];’j) <l+z+y Ui(Ej) < max(4/3 — x,4/3 — 2y)
by Corollary 5.28 by Observation 5.27 by Corollary 5.29

Figure 5.5: vi=(2n — 4+ 1) =1/3 —x and v;+(2n —7r) = 1/3 + y.

Proof. Note that by definition of ¢ and r, for all £ < j < r, v(B;) > 1. Therefore,
Bj = Bj. AISO,

v (Bj) = v (j) + v (2n — j + 1)

< v (0) + vi=(2n — 1) (l<jand2n—r<2n—j+1)
2 1
< (g +z)+ (g +v) (vi=(By) < 1 and v« (Bry1) < 1)
=14+x+y.
O

Corollary 5.28 (of Observation 5.6). For all j </, vi=(Bj) < 4/3 —x.

Corollary 5.29 (of Observation 5.7). For all j > r, v (B;) < max(4/3 — x,4/3 — 2y).

Observation 5.30. = < 1/3.

Proof. Towards a contradiction, assume x = 1/3. Therefore, v;«(2n — ¢ + 1) = 0. Let
k < 2n — ¢+ 1 be the number of goods with a value larger than 0 to agent ¢*. Consider

(Pink],..., P4(ri:/)3 N [k]). There are at least ¢ many indices j such that, |P](Z*) N[k = 1.
Since Z is 4n/3-normalized, v;(1) = ... = v;=({) = 1 which is a contradiction with
v (Bypeq1) < 1 since £* +1 < L. O

Observation 5.31. y < 1/6.

Proof. We have 1/3 +y = v;+(2n —r) < v;«(By)/2 < 1/2. Thus, y < 1/6. O

Lemma 5.32. » —{ > 2n/3.

Proof. If x +y < 1/3, then by Corollaries 5.28 and 5.29 and Observation 5.27, for all
t € [n] we have v+(B;) < 4/3 and for at least one bag this value is less than 1 by
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Figure 5.6: The goods considered in Lemma 5.33 are marked with blue.

Observation 5.8. Therefore, v;« (M) < 4n/3, which is a contradiction. Thus, x +y > 1/3.
We have

4
5 = M)
= sz*(BJ) + Z vi(Bj) + Zvi*(Bj)
j<t t<j<r j>r
4 4 4
Sﬁ(g—aﬁ)+(r—€)(1+x+y)+(n—r)max(g —x,§—2y)
(Corollaries 5.28 and 5.29 and Observation 5.27)
4 4
< (r—f)(l—i—x—}—y)—l—(n—r—}—ﬁ)max(g—x,g—Zy)
4 1
= g +(r—0(x+y— g) — (n — 7+ ¢) min(z, 2y).

Therefore, (r — £)(x +y —1/3) > (n — r 4+ £) min(z, 2y). By Observation 5.30, x < 1/3
and thus, we have z +y — 1/3 < y. Also, since y < 1/6 (by Observation 5.31), we have
x+y—1/3<x—1/6 <x/2. Thus, z+y—1/3 < min(z,2y)/2. Hence,r—¢ > 2(n—r+/{)

and therefore, r — ¢ > 2n/3. O
Let 7 — ¢ = 2n/3 + 5. Recall that PU) = (P{"),...,P{)) is an (4n/3)-MMS
partition of M for agent i*. Since i* is fixed, we use P = (P4, .., Py, 3) instead for ease

of notation. For all j € [4n/3], let g; be the good with the smallest index (and hence the
largest value) in P;. Without loss of generality, assume g1 < g2 < ... < g4p/3. Observe
that {1,...,7} C Ugepy Pi- Let " be the set of goods in {r +1,...,2n — £} that appear
in the first ~ bags in P. Formally, S’ = {g € {r +1,...,2n — £} | g € Ujc;1P;}. Let
s :=min(|5’], s).

Lemma 5.33. v=({r —s'+1,...,r}U{2n — € —3s+ 25 +1,...,2n —£}) < s.

We prove Lemma 5.33 in the end of this section. For now assume that it holds.
The goods considered in Lemma 5.33 are marked with blue in Figure 5.6. Since
vi=(0) <1 —wv=(2n—L+1) =2/3 + x, we have

2 2
vi*({ﬁ—i—l,...,r—s'})<(?n+s—s')(§+x). (5.5)
Also, since v+ (2n —r+1) =1/3 4y,
, 2n |
vie({2n—r+1,...,2n =0 — 35+ 25'}) < (?—28+25)(§+y). (5.6)
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Therefore,

Z Ui*(Bj) = Z v (Bj) =vi=({€+1,...,r}U{2n —r+1,...,2n — {})
£<j<r £<j<r
=vp({f+1,...,7r—5"})
+op({r—s+1,...,r}U{2n—€—3s+25 +1,...,2n — £})
+ops({2n—r+1,...,2n — € —3s +25'})
2n N2 2n 1
<@g+s—sﬂ§+@+w+%§h—%+ﬁsﬂg+m
(Inequalities (5.5) and (5.6) and Lemma 5.33)
2n

:§(1+x+y)+(s—sl)(x—2y)+s.

4n . . A
= (M) = Y v (By) 3 wie(By) + Y v (By)
J<L L<j<r i>r
4 4 2
< (€+n—r)max(§ —x,f—2y)+fn

; Sty + (s — )@ —2) +5

(Corollaries 5.28 and 5.29)
4 4 2
= (g —s)max(g — 3 —2y)+?n(1+x+y) + (s = §')(z —2y) + s.
If x < 2y, then by replacing max(4/3 — z,4/3 — 2y) with 4/3 — z in the above inequality,
we get

4?”< %—s)(%—x)+2§n(1+$+y)+(s—s’)(x—2y)+s
Sg(g—m)+2§n(1+x+y)+(s—s')(:c—2y) (4/3—x>1)
<y e+ (s = )& —20) < 0)
< 4?”, (x <1/3 and y < 1/6)

which is a contradiction. If 2y < z, by replacing max(4/3 — z,4/3 — 2y) with 4/3 — 2y,
we get

4 4 2
—n<(ﬁ—s)(f—2y)+£(1+x+y)+(s—s’)(m—2y)+s
3 3 3 3

n 10 1

= (1) —s(z—x)—s(z—2

L 4 20) — s(3 —a) — (o~ 2)

10

g%(§+2x) (x <1/3 and = > 2y)

4

<= (x < 1/3)

which is again a contradiction. Therefore, it is not possible that v;«(2n — ¢*) < 1/3. Thus,
Theorem 5.10 follows.

Theorem 5.10. If Algorithm 10 does not allocate a bag to some agent i, then v;(2n—~£*) >
1/3 where £* is the smallest index such that vi(Bg=y1) < 1.
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Proof of Lemma 5.33

The main idea of the proof is as follows. Recall that s’ = min(|S’|, s). We consider two
cases for §'. If s = s, then in order to prove Lemma 5.33, we must prove

vie({r—s' +1,...,r}u{2n—0 -5 +1,...,2n - (}) < ¢,
which is what we do in Claim 5.35. In case s’ = |S’|, we prove
vir({r — s +1,...,1}) +v=(8") < &
in Claim 5.36 and
vis({2n — 0 —3s+25' +1,....2n —£}) —v;=(S") < s —§

in Claim 5.37. Adding the two sides of the inequalities implies Lemma 5.33.
Note that {1,...,r} US'CPiU...UP.. Forje[r],let Q; =P;N({L,...,r}Us).
We begin with proving the following claim.

Claim 5.34. There are s' many sets like Qj,,...,Qj,, such that | Upcisn Qj, | > 28" and
‘ Ukze[s/] ij N {1, .. .,T}‘ > s’

Proof. If s = 0, the claim trivially holds. Thus, assume s’ > 1. By induction, we prove
that for any ¢ < &', there are t many sets like Qj,, ..., Qj, such that | Upcy Qj,] > 2t
and | Upep @j, NA{L, ..., 7} >t

Induction basis: t = 1. If there exists Q such that |Qx N {1,... .7} > 2, let j; = k.
Otherwise, for all k € [r], we have |Qr N {1,...,7}| = 1. Since s’ > 1, there must be an
index k such that |Qr N S’| > 1. Let j1 = k.

Induction assumption: There are ¢ many sets like Q;,, ..., (), such that ’Uke[t} Q.| >
2t and | Uke[y) ij N {1, . ,7“}| >t.
Now for t +1 < ', we prove that there are t + 1 many sets like Q;,...,Qj,,, such

that | Uke[t+1) ij| > 2t + 2 and | Uke[t+1] Qj, N {1,....r} >t+ 1.

Case 1: | Ugepy Qjp, | = 2t + 2t If [Upepyy Q5 N{L, ..., 7} > ¢+ 1, set jip1 = k for an
arbitrary k € [r] \ {Jj1,...,jt}. Otherwise, set ji4+1 = k for an index k € [r] \ {j1,...,j¢}
such that |[Qx N {1,...,7} > 1.

Case 2: | Uy Qj,| = 2t + 1: If there exists k € [r] \ {j1,..., i}, such that
|Qr N [r]| > 1, set jiy1 = k. Otherwise, set j.y1 = k for any k& € [r] \ {j1,...,J¢} such
that |Qx| > 1. Since | U Q5] > 7+ 8" > 2t + 1, such k exists.

Case 3. | Ugepy Qji| = 2t and | Uy Qi N {1, ..o s} 2t + 1t [ Uk (1)
Qj.| > r+ s —2t > r —t. Therefore, by pigeonhole principle, there exists an index
ke [r]\{Jj1,-..,jt} such that |Q| > 2. Set jip1 = k.
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Case 4. | Ugeyg Qjp. | = 2t and | Upepy Qj, N {1,...,7}| = t: If there exists k €
["I\{71,---,Jt},such that |QrN[r]| > 2, set jir1 = k. Otherwise, for all k € [r]\{j1,...,jt},
|Qr N [r]| = 1 since | Upey Qj, N{L,..., 7} =t and | Ugepy Qj, N {1, ..., 7} = 7. Set
Jer1 = kforany k € [r]\{j1, ..., ji},such that [Q;NS’| > 1. Since |U;¢,1Q;NS'| > 8" > ¢,
such k exists. O

Now we prove Claim 5.35.
Claim 5.35. v«({r —s'+1,...,r}U{2n—¢—s'+1,...,2n — (}) < 5.

Proof. Let Q' be the set of s’ most valuable goods in Urels @y and let Q? be the
set of s least valuable goods in Upcpy1@Qy, . Since | Upers Q)| > 25, QI NQ? = 0.
Also, | Ugers) @jp N{1,...,r} > &' Thus, v=(Q') > v({r — s +1,...,r}). Moreover,
v (Q?) > vi»({2n — € — s’ +1,...,2n — £}). Hence,

§'=) vi(P)

kels’]
> Z v (Qjy,)

kels']
>ovp({r—§+1,...,rJu{2n -0 -5 +1,...,2n—(}).

O]

Note that in case s’ = s, Claim 5.35 implies Lemma 5.33. Therefore, from now on,
we assume s’ = |S'] < s.

Claim 5.36. v« ({r — s+ 1,...,r}) +v;=(S") < §'.

Proof. The proof is similar to the proof of Claim 5.35. Let Q' be the set of s’ most
valuable goods in Upe(s@;, and let Q? be the set of s’ least valuable goods in Uke[s1 @ -
Since | Ugee] @il > 25, @' N Q% = 0. Also, | Ugepy Qj, N {1,...,7} > . Thus,
v+ (QY) > v ({r — 8"+ 1,...,7}). Moreover, v;(Q?) > v;+(5) since s’ = |S’|. Hence,

$'=)" v (Py)

kels’]
> Z Ui*(ij)
kels’]
Z U,L‘*({T‘—S/—Fl,...,T}US/>
= ’UZ‘*({’F — 8/ + 17 e ,7"}) + 'UZ'*(S/).

Claim 5.37. v;«({2n — € —3s+ 28"+ 1,...,2n —£}) —v;=(S") < s — ¢,

Proof. Note that by definition of S/, the 2n — ¢ —r — s’ = 8n/3 — 2r + s — s’ goods
in {r+1,...,2n = £} \ §" are in P41 U...U Py, /3. Now for j € [4n/3 —r], let R; =
Pi, N{r+1,...,2n =} \ S". Assume |Rj,| > ... > |R; |. We prove

4n/3—r

> Rl =3(s— ). (5.7)

k<s—s’
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If \R'S_S,+1| > 3, Inequality (5.7) holds. Otherwise, we have
8n ,
?_2T+8_8: Z ‘Rjk|
kel[dn/3—r)
- Z |Rj | + Z IR;, |
k<s—s’ 5—5'<k§4n/3—r
In
§k<zs:SI|Rjk|+2(3—r—s+s’). (|R;,| <2 for k> s5—5')

Thus, 3 pers—g [, | = 3(s — 7). We have

s—s = Z U (Pjp4r)
ke[s—s']
> > vie(Ry)
ke[s—s']
>vp({2n — € —3s+ 28 +1,...,2n — £}) — v (5').
(|Unefs—s Bg | = 3(s — §') and |S'| = ¢)

O
Claims 5.36 and 5.37 imply Lemma 5.33.

Recap of Section 5.3: To show that a 1-out-of-4n/3 MMS allocation exists, it suf-
fices to prove that we never run out of goods for bag-filling in Algorithm 10. Towards
contradiction, we assumed that the algorithm stops before agent i* receives a bundle.
By Observation 5.8, a bag with a value less than 1 for agent * exists. Let ¢* be the
smallest such that v;«(By«11) < 1. In Section 5.3.2, we reached a contradiction assuming
vi=(2n —£*) < 1/3 and proved Theorem 5.10. In Section 5.3.1, we reached a contradiction
assuming v;« (2n — £*) > 1/3 and proved Theorem 5.9. Therefore, no such agent i* exists,
and all agents receive a bag by the end of Algorithm 10. Theorem 5.5 follows.
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CHAPTER 6
EFX for Three Agents

Plaut and Roughgarden [59] first showed the existence of EFX allocations when there
are two agents, using the cut and choose protocol. The existence of EFX allocations gets
notoriously difficult with three or more agents. The existence of EFX allocations for
three agents with additive valuations was shown by Chaudhury et al. [27]. After that,
Berger et al. [15] showed the existence of EFX allocations with three agents when agents
have cancelable valuation functions — a class that subsumes additive, budget-additive,
unit demand, and multiplicative valuation functions. However, this technique does not
extend, as soon as one of the agents has a general monotone valuation function. Despite
its fundamentality and ongoing efforts, the existence of EFX allocations with three agents
under general valuation functions remains elusive. Plaut and Roughgarden [59] remarked:
“We suspect that at least for general valuations, there exist instances where no EFX
allocation exists, and it may be easier to find a counterexample in that setting”. In this
chapter, we make progress on this problem. We show the existence of EFX allocations,
when two agents have general monotone valuation functions.

Theorem 6.1. EFX allocations exist with three agents as long as at least one agent has
an additive valuation function (the other two agents have general monotone valuation
functions).

In fact, our proof gives a stronger version of Theorem 6.1: we can show the existence
of EFX allocations when two agents have general monotone valuation functions and one
of the agents has an MMS-feasible valuation function — a valuation class that strictly
generalizes cancelable valuation functions — definitions and properties are described in
Section 2.2. Thus, we strictly generalize the result in [15].

Theorem 6.2. EFX allocations exist with three agents as long as at least one agent has
an MMS-feasible valuation function.

We briefly remark on our technique to prove Theorem 6.2 and how it crucially differs
from the existing techniques in [15, 27, 56]. The algorithms in [15, 27, 56] move in the space
of partial EFX allocations (where not all goods are allocated) iteratively improving the
vector (v1(X1),va(X2),v3(X3)) lexicographically, where v;(+) is the valuation function of
agent i. However, 28] exhibits an instance with four agents and a partial EFX allocation
X, such that in any complete EFX allocation X', v1(X7) < v1(X1), i.e., agent 1 (which is
the highest priority agent) is better off in X than in any complete EFX allocation. This
implies that if the algorithm starts with allocation X or reaches X at some point, it cannot
output a complete EFX allocation. This necessitates the study of a different approach
for the existence of EFX allocations. Our algorithm moves in the space of complete
allocations (instead of partial allocations), iteratively improving a certain potential as
long as the current allocation is not EFX. Furthermore, this proof turns out to be simpler
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and significantly shorter than the ones in [15, 27|, as it does not use the notions of
champions, champion-graphs, half-bundles, and even the envy-graph.

6.1 Notations and Tools
Recall the definition of MMS-feasible valuations.

Definition 6.3. A valuation function v : 2M — R>o is MMS-feasible if for every subset
of goods S C M and every partitions A = (A1, A2) and B = (B, B2) of S, we have

max(v(B1),v(B2)) > min(v(A1), v(Az2)).

By Lemma 2.32, we know the class of MMS-feasible valuation functions is a strict
superclass of cancelable valuation functions.

Without loss of generality (by Lemma 2.27), in this chapter we assume the instance
is non-degenerate.

6.2 EFX Existence beyond Additivity

In this section, we present an algorithmic proof for the existence of EFX allocations when
there are three agents with valuations more general than additive. The main takeaway
of our algorithm is that it does not require the sophisticated concepts introduced by the
techniques in [27, 29| that rely on improving a potential function while moving in the
space of partial EFX allocations. In fact, our algorithm does not even require the concept
of envy-graph, which is a very fundamental concept used by the algorithms in [27, 29|
and also in [55, 59| to prove the existence of weaker relaxations of envy-freeness (like
1/2-EFX and EF1).

First, we sketch our algorithm. The crucial idea in our technique is to move in the space
of partitions (of the goods set), improving a certain potential as long as we cannot find
an EFX allocation from the current partition, i.e., we cannot find a complete allocation
of the bundles in the partition such that the EFX property is satisfied. In particular, we
always maintain a partition X = (X1, X2, X3) such that (i) agent 1 finds X; and X»
EFX-feasible and (ii) at least one of agent 2 and agent 3 finds X3 EFX-feasible. Note that
such allocations always exist: Agent 1 can determine a partition such that all bundles are
EFX-feasible for her (such a partition is possible as agent 1 can run the algorithm in [59]
to find an EFX allocation assuming all three agents have agent 1’s valuation function,
thereby making all bundles EFX-feasible for her). We call agent 2’s favorite bundle in
the partition X3 (which is obviously EFX-feasible for her) and the remaining bundles X
and Xy arbitrarily. Then, we have a partition that satisfies the invariant.

Note that if any one of agent 2 or 3 finds one of X; or Xo EFX-feasible, then we
easily get an EFX allocation. Indeed, assume without loss of generality that agent 2 finds
X3 EFX-feasible. Now, if

e agent 3 finds Xy EFX-feasible, then we have an EFX allocation where agent 1 gets
X1, agent 2 gets X3, and agent 3 gets X3. We can give a symmetric argument when
agent 3 finds X; EFX-feasible.

96



6.2. EFX Existence beyond Additivity

e Similarly, if agent 2 finds X9 EFX-feasible, then we can let agent 3 pick her favorite
bundle in the partition (which is obviously EFX-feasible for her) and still give
agents 1 and 2 an EFX-feasible bundle. We can give a symmetric argument when
agent 2 finds X; EFX-feasible.

Therefore, we only need to consider the scenario where only X3 is EFX-feasible for
agents 2 and 3. Essentially, in this scenario, X3 is “too valuable” to agents 2 and 3, as
they do not find any of the remaining bundles EFX-feasible. A natural attempt would be
to remove some good(s) from Xs and allocate it to Xy or Xo, i.e., we can increase the
valuation of agent 1 for her EFX-feasible bundle(s) by removing the excess goods allocated
to the only EFX-feasible bundle of agents 2 and 3. This brings us to our potential function:
d(X) = min(v1(X1),v1(X2)). Now, the non-triviality lies in determining the set of goods
to be removed from X3 and then allocating them to X7 and X5 such that we maintain
our invariants. Although non-trivial, this turns out to be significantly simpler than the
procedure used in |27] and also holds when agents 1 and 2 have general monotone valuation
functions and agent 3 has an MMS-feasible valuation function.

Before getting into the technicality of the new algorithm, we give the reader a quick
recap of the Plaut and Roughgarden (PR) algorithm [59] that determines an EFX alloca-
tion when all agents have the same valuation function, v(-) (the only assumption on v(-)
is that it is monotone). The algorithm starts with any arbitrary allocation X (which may
not be EFX). It makes minor reallocations to improve the valuation of the agent who has
the lowest value, i.e., it modifies X to X' such that min;c,v(X]) > mincp,v(X;). We
now elaborate on the reallocation procedure: Let £ be the agent with the lowest valuation
in X. If X is not EFX, then there exists agents ¢ and j such that v(X;) < v(X; \ 9)
for some g € X;. Since v(Xy) < v(Xj;), we also have v(X;) < v(Xj \ g). The algorithm
removes the good g from j’s bundle and allocates it to £. Observe that v(Xy) > v(X,) for
all k #  as we assume non-degeneracy. Also, we have v(X,Ug) and v(X}\ g) greater than
v(Xpy). Therefore, the valuation of every new bundle is strictly larger than the valuation
of Xy. Thus, the valuation of the agent with the lowest valuation improves. This implies
that the reallocation procedure will never revisit a particular allocation. As a result, this
process will eventually converge to an EFX allocation Y with v(Y;) > v(X,) for all i € [n].
Formally,

Lemma 6.4 ([59]). Let X = (X1,...,X,) be an arbitrary n-partition. Running the PR
algorithm with any monotone valuation v results in an EFX-partition X' = (X1,..., X))
with

min(v(X1),...,v(Xy,)) < min(v(X]),...,v(X})).

We have equality only if the input is already EFX for v.

We now elaborate on our algorithm. We give the proof here assuming only monotonic-
ity for the valuation functions of agents 1 and 2 and assuming MMS-feasibility for the
valuation of agent 3, i.e., v1(-) and va(-) are general monotone valuation functions and
v3(-) is MMS-feasible. We maintain a partition (X7, X2, X3) of the good set such that

e X; and X, are EFX-feasible for agent 1.

e X3 is EFX-feasible for at least one of agents 2 and 3.
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X X X3
V’ l
1 2 3

Figure 6.1: The nodes correspond to agents and an edge from agent 7 to a bundle X
means that X; is EFX-feasible for ¢. In this example, X; and X; are EFX-feasible for
agent 1, and X3 is EFX-feasible for agent 3. Therefore, the invariants hold.

See Figure 6.1 for better intuition.

One can show the existence of allocations satisfying the above invariants by running
the PR algorithm and initializing: Agent 1 runs the PR algorithm with v = v; to
determine a partition (X7, X9, X3) such that all the three bundles are EFX-feasible for
her. Then, agent 3 picks her favorite bundle out of the three, say Xj3. Clearly, X3 is
EFX-feasible for agent 3, and X; and Xs are EFX-feasible for agent 1. Thus, X satisfies
the invariants.

We define our potential function as ¢(X) = min(v;(X1), v1(X2)). We now elaborate
on how to modify X and improve the potential when we cannot determine an EFX
allocation from the partition X, i.e., we cannot determine an allocation of the bundles
in X to the agents that satisfy the EFX property.

6.2.1 Reallocation When We Cannot Get an EFX Allocation from X

Let X = (X1, X2, X3) be a partition satisfying the invariants. Without loss of generality,
let us assume that agent 2 finds X3 EFX-feasible. Observe that if any one of agents 2 or 3
finds bundles X7 or Xo EFX-feasible, then we are done: If agent 3 finds one of X7 or Xs
EFX-feasible, then we can allocate agent 3’s EFX-feasible bundle to her, X3 to agent 2
and the remaining bundle of X; and X5 to agent 1 and get an EFX allocation. Similarly,
if agent 2 finds X; or X9 EFX-feasible, we ask agent 3 to pick her favorite bundle out of
X1, X9, and X3. Now, note that no matter which bundle agent 3 picks, there is always a
way to allocate agents 1 and 2 their EFX-feasible bundles as agent 1 finds X; and X5
EFX-feasible and agent 2 finds X3 and at least one of X; or X9 EFX-feasible. If agent 3
picks X1, allocate X5 to agent 1 and X3 to agent 2. If agent 3 picks X, allocate X to
agent 1 and X3 to agent 2. Finally, if she picks X3, allocate the bundle among X7 and
X5, which is EFX-feasible for agent 2 and the remaining bundle to agent 1. Therefore,
from here on we assume that neither agent 2 nor agent 3 finds X; or Xy EFX-feasible.
Let g; be the good in X3 such that v;(X3\ ¢g;) > v;(X3\ h) for all h € X3, i.e.,, X3\ g; is
the most valued proper subset of X3 for agent 1.

Observation 6.5. Fori € {2,3}, we have v;(X3 \ ;) > maz(v;(X1), vi(X2)).

Proof. We prove for ¢ = 2. The proof for ¢ = 3 is identical. Let us assume otherwise and say
without loss of generality va(X1) > v2(X3\g2). Then, the only reason why X is not EFX-
feasible for agent 2 is if va(X1) < va(X2 \ ¢) for some g € Xo. But, in that case, we have
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X1 U g X2 X3\ 92
l r/o
1 2 3

Figure 6.2: Assuming that va(X3 \ g2) > va(X1 U g2), the edge between agent 2 and
X3\ g2 exists. Also, the edge between agent 1 and X; U go exists.

v2(X2) > v2(X1) > v2(X3\ g2). Therefore, we have va(X2) > maz ez mazpex,va(Xe\h),
implying that X5 is EF X-feasible for agent 2, which is a contradiction. O

Without loss of generality, assume that v(X;) < v1(X2), implying that ¢(X) =
v1(X7). We now distinguish two cases depending on how valuable the bundle X7 Ug; is to
agent i for ¢ € {2,3} and give the appropriate reallocations in both cases. In particular,
we first look into the case where X3\ g; is still more valuable to agent ¢ than Xy U g; for
at least one i € {2,3}.

Case: v2(X3 \ g2) > v2(X71 Ugs) or v3(Xs \ g3) > v3(X71Ugs), i.e.,, X3\ g; is
the favourite bundle for agent ¢ in the partition X; U g;, X2 and X3 \ g; for
at least one 7 € {2, 3}.

We provide the reallocation rules assuming that vy (X3 \ g2) > v2(X1 U g2). The rules
for the case v3(X3 \ g3) > v3(X1 U g3) is symmetric. Now, consider the partition (X; U
92, X2, X3\ g2) (see Figure 6.2).

By Observation 6.5, v3(X3\g2) > v2(X2) and by our current case va( X3\ g2) > vo( XU
g2), implying that X3 \ g2 is an EFX-feasible bundle for agent 2. Let X{ be a minimal
subset of X1 Ugs with respect to set inclusion that agent 1 values more than X, i.e., agent
1 values X; more than any proper subset of X| and v1(X]) > v1(X1). Let X} = X5 and
X5 = (X3\g2)U((X1Ug2)\ X]). We define the partition X’ = (X1, X5, X5). Observe
that ¢(X') > ¢(X) as v1(X5) = v1(X2) > v1(X1) (by assumption) and v1(X]) > v1(X1)
(by definition). Also, note that X3 is EFX-feasible for agent 2 as it is the most valuable
bundle in X’ for agent 2. Now, if X{ and X/ are EFX-feasible for agent 1, all invariants
are maintained, and we are done. So now we look into the case when at least one of X7
and X} is not EFX-feasible for agent 1 in X'.

We first make an observation on agent 1’s valuation on the bundles X| and X.

Observation 6.6. We have v1(X]) > v1(X5\ g) for all g € X4 and vi(X5) > vi1(X]\ h)
for all h € X1.

Proof. Note that v1(X]) > v1(X1) by definition of X and v1(X;) > v1(X2 \ g) for all
g € X9 as X; was EFX-feasible for agent 1 in X. Since X} = Xy, we have v1(X]) >
v1(X4\ g) for all g € XJ.

Similarly, vi(X2) > v1(X1) by assumption. Furthermore v1(X1) > v1(X] \ h) for all
h € X{ by the definition of X/. Since X} = Xo, we have v1(X}) > v1(X] \ h) for all
h e Xj. O
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X1 Ugo Xo X3\ g2 X1 Ugs X2 X3\ g3
l\ ° J\
1 2 3 1 2 3

Figure 6.3: Assuming that va(X3 \ ¢g2) < v2(X1 U g2) and v3(X3 \ g3) < v3(X1 U g3),
the edge between agent ¢ and X; U g; exists in addition to the edge between agent 1 and
X1 Ug;.

By Observation 6.6, if X{ and X} are not EFX-feasible for agent 1 in X', then
v1(X4\ g) > min(vi(X]),v1(X%)) for some g € X§. However, in that case, we run the
PR algorithm on the partition X’ with agent 1’s valuation. Let Y = (Y7, Y3,Y3) be the
final partition at the end of the PR algorithm. We have,

min(v1 (Y1), v1(Y2),v1(Y3)) > min(vi(X7),v1(X35), v1(X3)) (by Lemma 6.4)
= min(n (X1, 0 (X3)
— 5(x")
> ¢(X).

The equality holds because v1(X5) > min(v1(X]),v1(X5)). We then let agent 2 pick
her favourite bundle out of Y7,Ys, and Y3. Let us assume without loss of generality

that she chooses Y3. Then, allocation Y satisfies the invariants and we have ¢(Y) =
min(v1(Y1),v1(Y2)) > min(v1(Y1),v1(Y2), v1(Y3)) > ¢(X). Thus, we are done.

Remark: Note that we have not used the MMS-feasibility of v3(-) yet. All the arguments,
in this case, hold when all three valuation functions are general monotone. We use MMS-
feasibility crucially in the upcoming case.

Case: v2(X3 \ g2) < v2(X1Ug2) and v3(X3\ g3) < v3(X1Ugs), i.e., X1 Ug; is
the favourite bundle in the partition X; U g;, X2 and X3 \ g; for all i € {2, 3}

(see Figure 6.3). From Observation 6.5, we have X3\ g; >; Xs for ¢ € {2,3}. Therefore,
we have,

’U2(X2) < ’U2(X3 \gg) < UQ(Xl Ugg) and

Ug(Xg) < U3(X3 \ gg) < U3(X1 Ugg).

By MMS-feasibility of valuation function v3(-), we conclude that v3(X2) < maxz(vs(Z),vs3(Z’))
where (Z, Z') is any 2-partition of the good set X7 U X3, as MMS-feasibility implies that
maz(v3(Z),v3(Z")) > min(vs(X1Ugs), v3(Xs\ g3)) > v3(X2). We run the PR algorithm
on the 2-partition (X U g2, X3 \ g2) with agent 2’s valuation va(-). Note that this time,
we run the PR algorithm with n = 2 instead of the usual n = 3 in the prior cases. Let
(Y2,Y3) be the output of the PR algorithm. We let agent 3 choose her favourite among Y5
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and Y3. Assume without loss of generality, she chooses Y3. Now, consider the allocation
X'
agent 1: Xo agent 2: Yo agent 3: Yi.

We now analyze the strong envy in the allocation. To this end, we first observe that
agents 2 and 3 do not strongly envy anyone.

Observation 6.7. Ys is EFX-feasible for agent 2 and Ys is EFX-feasible for agent 3 in
X'.

Proof. Since (Y2,Y3) is the output of the PR algorithm run on (X U go, X3\ g2) with
agent 2’s valuation function, (i) v2(Y2) > ve(Y3 \ h) for all h € Y3, and (ii) ve(Ya) >
min(va(X1Ug2),v2(X3\ g2)) > v2(X2), where the first inequality follows from Lemma 6.4
and the second inequality follows from the fact that ve(X; U g2) > va(X3 \ g2) > v2(X2).
Therefore Ys is EFX-feasible for agent 2.

Now, we consider agent 3. Note that Y35 = max(v3(Y2),v3(Y3)) as agent 3 picks her
favourite among Y5 and Y3. Therefore, v3(Y3) > v3(Y2) where the strict inequality follows
due to non-degeneracy. Furthermore, due to the MMS-feasibility of v3(-) and the fact that
(Y2,Y3) is a 2-partition of the good set X1 U X3, we have v3(Y3) = maz(v3(Y2), v3(Y3)) >
v3(X2). Therefore, v3(Y3) > maz(v3(Y2),v3(X2)) and thus Y3 is an EFX-feasible bundle
for agent 3. O

Therefore, the only possible strong envy is from agent 1. We now enlist the possible
strong envy that may arise from agent 1 and show corresponding reallocations.

e Agent 1 does not strongly envy Y5 and Y3: Then we are done as X’ is an EFX
allocation.

e Agent 1 strongly envies both Y2 and Y3: In this case, we have v1(Y2) > v1(X2)
and v1(Y3) > v1(X2). We run the PR algorithm on the partition (Xs, Y2, Y3) with
agent 1’s valuation function v (-) and let agent 2 pick her favourite bundle from
the final partition X” returned by the PR algorithm. Then, we have a partition
that satisfies the invariants and ¢(X") > ¢(X) as min(vy (X)), v1(XY), v1(XY)) >
min(vi(X2),v1(Y2),v1(Y3)) = v1(X2) > v1(X1) = ¢(X), where the first inequality

follows from Lemma 6.4.

e Agent 1 strongly envies one of Y5 and Y3: Let us assume without loss of generality
that agent 1 strongly envies Ys. Let Y5 be the minimal subset of Y5 with respect
to set inclusion that agent 1 values more than X5. Then, consider the partition
X" = (X1, XY, XY) where X| = X, X}/ =Y and X} = Y3U (Y2 \ Y2). First note
that X% is EFX-feasible for agent 3 as X4 = Y3 was EFX-feasible in allocation X’
and now the bundle X{ remains the same, the bundle X} has been compressed
further in X”, and X4 C X¥. Also note that ¢(X”) = min(vi (X)), 0 (XY)) =
min (v (X2),v1(Y2)) = v1(X2) > v1(X1) = ¢(X). If X} and XY are EFX-feasible
for agent 1, then partition X” satisfies the invariants and ¢(X”) > ¢(X) and
we are done. So now consider the case when at least one of X{ and X/ is not
EFX-feasible for agent 1. Note that v1(X{) > v1 (X5 \ h) for all h € X} and
v1(XY) > v1(X]) by the fact that X{ = X5 and by the definition of X} = Ys.
Thus, if one of X{ or X/ is not EFX-feasible for agent 1, then we must have
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v (X5 \ B') > min(vi (X7),v1(XY)) for some b’ € X7. In this case, we run the PR
algorithm on the partition (X7, X, X{) with agent 1’s valuation function v;(-) and
let agent 2 pick her favourite bundle from the final partition Z returned by the PR
algorithm. Then Z satisfies the invariants and

¢(Z) > min(vi(Z1),v1(Z2),v1(Z3))
> min(vi(XY),v1(X3),v1(X3))
= v1(X2)
> v1(X1)

= ¢(X).
So we are done.

This brings us to the main result of this section.

Theorem 6.2. EFX allocations exist with three agents as long as at least one agent has
an MMS-feasible valuation function.
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CHAPTER 7
Approximate EFX with Bounded Charity

Caragiannis et al. [23| introduced the notion of EFX with charity. The goal here is to find
“good” partial EFX allocations, i.e., partial EFX allocations where the set of unallocated
goods is not very valuable. Following the same line of work, Chaudhury et al. [29] showed
the existence of a partial EFX allocation X such that no agent envies the set of unallocated
goods and the total number of unallocated goods is at most n — 1. Later, Chaudhury
et al. [28] gave a polynomial time algorithm to compute a (1 — €)-EFX allocation with
O((n/e)*?) charity for any € > 0. One key aspect of the technique in [28] is the reduction
of the problem of improving the bounds on charity to a purely graph-theoretic problem.
In particular, [28] defines the notion of a rainbow cycle number: Given an integer d > 0,
the rainbow cycle number R(d) is the largest k such that there exists a k-partite graph
G=WViuVaU-- UV, E) such that

e cach part has at least 1 and at most d vertices, i.e., 1 <|V;| <d, and

e every vertex in G has exactly one incoming edge from every part in G except the
part containing it, and

e there exists no cycle C' in G that visits each part at most once. That is, every cycle
C in G must have |V(C) N V;| > 1 for some V;,i € [k], where V(C) is the set of
vertices of cycle C.

Let h~1(d) denote the smallest integer ¢ such that h(¢) = £ - R(f) > d. Then there
always exist an (1 — ¢)-EFX allocation with (’)(Eh_fw) charity. So, the smaller the
upper bound on A({), the lower the number of unallocated goods. [28] shows that
R(d) € O(d*) and thus establish the existence of (1 —&)-EFX allocation with O((n/e)**)
charity. An upper bound of O(d22(°g108)?) was obtained by [14], thereby showing the
existence of EFX allocations with O((n/e)"¢7) charity. In this paper, we close this line of
improvements by proving an almost tight upper bound on d (matching the lower bound up
to a log factor). We note that our technique (and analysis) is simpler than the ones used
for upper-bounding rainbow cycle number in [14, 28, 49]. Although the core argument is
based on the probabilistic method, we also derandomize the approach to construct such
an allocation in deterministic polynomial time.

Theorem 7.1. Given any integer d > 0, the rainbow cycle number R(d) € O(dlogd).

For any allocation X, let us denote the Nash welfare of X by NW (X). As a conse-
quence of the improved bound in Theorem 7.1, we obtain:

Theorem 7.2. There exists a deterministic polynomaial time algorithm that determines
a partial (1 — €)-EFX allocation X such that no agent envies the set of unallocated
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goods and the total number of unallocated goods is O((n/e)Y/?)'. Purthermore, NW (X) >
1/(2e'°) - NW(X*) where X* is the allocation with mazimum Nash welfare.

Rainbow Cycle and Zero-sum Combinatorics. We believe that investigating
tighter bounds on R(d) is interesting in its own right. [14] showed intriguing connec-
tions between rainbow cycle number and zero-sum problems in extremal combinatorics.
Zero-sum problems in graphs ask questions of the following flavor: Given an edge/vertex
weighted graph, whether there exists a certain substructure (for example, cliques, cycles,
paths, etc.) with a zero-sum (modulo some integer). In particular, [14] shows that the
rainbow cycle number is a natural generalization of the zero-sum problems studied by [2]
and [57]. Both papers |2, 57| aim to upper bound the maximum number of vertices of a
complete bidirected graph with integer edge labels, avoiding a zero-sum cycle (modulo
d). |14] shows through a simple argument that this is upper bounded by the permutation
rainbow cycle number Ry,(d), which is defined by introducing an additional constraint in
the definition of R(d) that for all i, j, each vertex in V; has exactly one outgoing edge
to some vertex in V; (in addition to exactly one incoming edge from some vertex in V}).
In Section 7.2.2, we show through a simple argument that R,(d) < 2d — 2, thereby also
improving the upper bounds of O(dlog(d)) in [2] and 8d — 1 in [57].

Lemma 7.3. For d > 1, we have Ry(d) < 2d — 2. This yields an alternate proof for the
key lemma in [14] that the mazimum number of vertices of a complete bidirected graph
with integer edge labels avoiding a zero-sum cycle (modulo d) is at most 2d — 2.

Independent Work.

Independently and concurrently to our work, [49] also investigated upper bounds on the
rainbow cycle number, and they also showed R(d) € O(dlog(d)). Unlike our approach that
utilizes probabilistic methods, [49] introduced another problem in extremal combinatorics
called rainbow path degree. They showed a relation between rainbow path degree H (¢)
and rainbow cycle number R(d). Then by proving H(¢) = Q(¢?/log¥), they showed
R(d) = O(dlogd). We would like to emphasize that our techniques are entirely different
and our proof is significantly shorter and simpler.

In another independent work, [14] established the connections between rainbow cycle
number and problems in zero sum extremal combinatorics and obtained the same upper
bound of 2d — 2 for R,(d). This bound was later improved to 2d — 4 for large enough d
by [49].

7.1 Notations and Tools

[28] reduced the problem of finding approximate EFX allocations with sublinear charity
to a problem in extremal graph theory. In particular, they introduced the notion of a
rainbow cycle number.

Definition 7.4. Given an integer d > 0, the rainbow cycle number R(d) is the largest k
such that there exists a k-partite directed graph G = (Vi UVa U ---U Vi, E) such that

'O ignores logarithmic factors.
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e cach part has at least 1 and at most d vertices, i.e., 1 < |V;| <d, and

e cvery verter has exactly one incoming edge from every part other than the one
containing >, and

e there exists no cycle C in G that visits each part at most once. That is, every cycle
C in G must have |V(C)NV;| > 1 for some V;,i € [k]|, where V(C) is the set of

vertices of cycle C.
We also refer to cycles that visit each part at most once as “rainbow” cycles.

They show that any finite upper bound on R(d) implies the existence of approximate
EFX allocations with sublinear charity. Better upper bounds on R(d) give better bounds
on the charity. In particular, they prove the following theorem.

Theorem 7.5 ([28]). Let G = (Vi UV U... Vi, E) be a k-partite digraph such that (i)
each part has at most d vertices and (ii) each vertex in G has an incoming edge from every
part other than the one containing it. Furthermore, let T'(d) be such that k > T'(d) > R(d).
If there exists a polynomial time algorithm that can find a cycle visiting each part at most
once in G, then there exists a polynomial time algorithm that determines a partial EFX
allocation X such that

e the total number of unallocated goods is in O(nfe - h=1(n/e)) where h=1(d) is the
smallest integer £ such that h(£) =¢-T(¢) > d.

o NW(X) > 1/(2¢"/°) - NW(X*), where X* is the allocation with mazimum Nash
welfare.

7.2 Bounds on Rainbow Cycle Number

In this section, we improve the upper bounds on the rainbow cycle number introduced
in [28], thereby implying the existence of approximate EFX allocations with O((n/e)"/?)
charity. [28] gave an upper bound of R(d) € O(d*) and they showed it results in the
existence of a (1 — ¢)-EFX allocation with O((n/e)**) charity. In the same paper, [28]
shows a lower bound of d on R(d). In this section, we show improved bounds on R(d).
In particular, in Section 7.2.1, we show that R(d) € O(dlogd) (making the upper bound
almost tight), thereby implying the existence of (1 — ¢)-EFX allocations with O((n/e)"/?)
charity.

Our technique to achieve the improved bound involves the probabilistic method. It
is significantly simpler and yields better guarantees. We briefly sketch our algorithmic
proof. Let there be k parts in G = (V4 U Vo U ... Vi, E). Note that each part has at
most d vertices, and each vertex has exactly one incoming edge from every part. We
pick one vertex v; from each part V; uniformly and independently at random. Now,
it suffices to show that with non-zero probability, the induced graph on the vertices
V1,02, ..., vk is cyclic for some k € O(dlogd). Note that if every vertex in Glvy, .. ., vg]

%In the original definition of the rainbow cycle number R(d) in [28], every vertex can have more than
one incoming edge from a part. However, by reducing the number of edges, we can only increase the
upper bound on R(d).
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has an incoming edge, then GJv; ...vx] is cyclic. So we need to show a non-zero lower
bound on the probability of each vertex having at least one incoming edge or equivalently
show an upper bound on the probability that each vertex has no incoming edge in
G[v1 ... vg). To this end, let E,, denote the event that vertex v; has no incoming edge
in G[vy ...vg). Note that P[E,,] < (1 — 1/d)¥~!: v; has at least one incoming edge from
each part, and therefore, the probability that there is no incoming edge from v; to v; is
at most (1 —1/d) for all j. Since all v;’s are independently chosen, the probability that
v; has no incoming edge from any part is at most (1 — 1/d)*=1. Then, by union bound,
PUicn Bo] < Yicpn PlBw] < k(1-1/d)*~ 1. Therefore, the probability that G[v; . . . v]
is cyclic is at least 1 — k(1 — 1/d)*~1) which is strictly positive for k € O(dlogd).

In Section 7.2.2, we show an upper bound of 2d — 2 assuming that every vertex v € V;
has exactly one incoming edge from any other part V; # V; and exactly one outgoing
edge to some vertex in V;. We call this number R,(d). We remark that the lower bound
of d in [28] also holds for R,(d). The upper bound of 2d — 2 immediately improves the
upper bound on the zero-sum extremal problem studied in |2, 57].

7.2.1 Almost Tight Upper Bound on R(d)

Recall that R(d) is the largest k such that there exists a k-partite digraph G with k
classes of vertices V; so that each part V; has at most d vertices for all distinct ¢, 7 each
vertex in V; has an incoming edge from some vertex in Vj}, and there exists no (directed)
rainbow cycle, namely, a cycle in GG that contains at most one vertex of each V. In this
section, we prove the following improved bound which is tight up to the logarithmic
factor.

Theorem 7.6. If
k(1—1a)k 1 <1 (7.1)

then R(d) < k. Therefore, R(d) = O(dlogd).

Proof. Suppose k(1 —1/d)*~1 < 1. Let S be a random set of k vertices of G obtained by
picking a single vertex v; in each V;, randomly and uniformly among all vertices of V;,
where all choices are independent. For each vertex v, let F, be the event that S contains
v and contains no other vertex u so that uv is a directed edge. We claim that if v € V;
then the probability of F, is at most

1
Vil

(1o,

Indeed, the probability that v € S is 1/|V;|. Conditioning on that, since for every j # i
there is some u; € V; so that u;v is a directed edge, and the probability that u; is in S
is 1/|Vj| > 1/d, the probability that v has no in-neighbor in Vj is at most 1 —1/d. As
the choices are independent, the claim follows. By the union bound, the probability that
there is a vertex v so that the event E, occurs is at most

k
1 _ _
D Wil =1/ = k(1 =1/ <.
i=1 v
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Therefore, with positive probability, every vertex in the induced subgraph of G on S has
an in-neighbor. Hence, there is such an S and in this induced subgraph, there is a cycle,
which contains at most one vertex from each V;. Thus R(d) < k.

Setting k = 2dInd + 1, we have

k(1 — é)k_l < ke~ ak=D) (14 2 < e” for all real x)
= ke 2Ind (k=2dInd + 1)
= (2dInd + 1)(2)2
<1 (for large enough d)
Therefore, R(d) = O(dlogd). O

Theorem 7.5 and Theorem 7.6 then imply Theorem 7.2.

Remark. The proof above can be derandomized using the method of conditional ex-
pectations (cf., e.g., [3], Chapter 16), giving the following.

Proposition 7.7. Let G be a k-partite digraph with classes of vertices V;, each having
at most d vertices. Suppose that for all distinct i, j, each vertexr in V; has an incoming
edge from some vertex in V; and vice versa, and suppose that (7.1) holds. Then a rainbow
cycle in G can be found by a deterministic polynomial time algorithm.

Proof. We apply the method of conditional expectations to produce a set S = {s1, 2, ..., Sk}
of vertices of GG, where s; € V;, so that every indegree in the induced subgraph of G on
S is positive. This is done by choosing the vertices s; one by one in order, maintaining a
potential function ¢ whose value is the conditional expectation of the number of events
FE, that hold, given the choices of the vertices s; made so far.

In the beginning, there are no choices made, and the value of ¢ is the sum

k
S Vil (1= 1)1 = k(1 = 1/d)*1 < 1.
=
Assuming s1, $o, ..., $;—1 have already been chosen, and the above conditional expectation
is still smaller than 1, choose s; € V; as the vertex that minimizes the updated value of the
conditional expectation. As the expectation is the average over all possible choices of s;,
this minimum stays below 1. The computation of the required conditional expectations
for each of the possible |V;| < d choices of s; € V; can be done efficiently. At the end of
the process, the value of the potential function is exactly the number of events F, that
hold, and since this number is below 1, none of them holds. This supplies the required
set S. Starting in any vertex of S and moving repeatedly to an in-neighbor of it in S
until we reach a vertex we have already visited supplies the desired rainbow cycle. [

7.2.2 A Linear Upper Bound on R,(d)

In this section, we assume graph G satisfies all the properties in Definition 7.4 and also
for all different parts V; and Vj, each vertex in V; has exactly one outgoing edge to a
vertex in Vj. We call these graphs permutation graphs since the set of edges from any
part to any other part defines a permutation.
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Definition 7.8. Given an integer d > 0, the permutation rainbow cycle number Ry,(d) is
the largest k such that there exists a k-partite directed graph G = (ViU Vo U ---U Vi, E)
such that

e cach part has exactly d vertices, i.e., |V;| = d, and

e cvery verter has exactly one incoming edge from every part other than the one
containing it, and

e cvery vertex has exactly one outgoing edge to every part other than the one containing
it, and

e there exists no cycle C' in G that visits each part at most once. That is, every cycle
C in G must have |V (C)NV;| > 1 for some V;,i € k]|, where V(C) is the set of
vertices of cycle C'.

Theorem 7.9. For all integers d > 1, Rp(d) < 2d — 1.

In the rest of this section, we prove Theorem 7.9. The proof is by induction.

Basis: For the base case, consider d = 2. For the sake of contradiction assume R(2) > 3
and let Vi = {a1,a2}, Vo = {b1,b2} and V5 = {¢1, ca} be three different parts. Without
loss of generality, we can assume there is an edge from a; to b; and one from by to ¢;.
Assuming there is no cycle in this graph, a directed edge from c¢; to a1 cannot exist,
and therefore, a directed edge from ¢y to aq exists. Thus, no edge from a; to co exists,
implying an edge from a; to ¢;1. Also, since there is an edge from by to c;, there must be
an edge from ¢; to by (since there can be none to b1). Now if there is an edge from b;
to a1, the cycle (a1,b;) exists, and if there is an edge from by to a1, the cycle (a1, c1,b2)
exists which is a contradiction. Therefore, R(2) < 3.

Moreover, we prove that R,(1) = 1. Towards a contradiction assume R,(1) > 2 and
there are two different parts Vi = {a} and Vo = {b}. Then, there exists an edge from a
to b and one from b to a, forming a cycle.

Induction step: For d > 2, we assume for all 1 < d’' < d, R,(d') < 2d’ — 1 and prove
R,(d) < 2d — 1. In particular, since Rpy(1) =1, for all 1 < d’ < d we have

Ry(d') <2d —1. (7.2)

First, we define i-restricted paths, which are the paths that use each part at most once,
and except for the last vertex, all vertices are in the first ¢ parts.

Definition 7.10. We call path P = vi — vo — - -+ — v, an i-restricted path if
o v,...,u0u1 €EVIUVU---UV,, and
e P wisits each part at most once.

Note that for all j > 4, every i-restricted path is also a j-restricted path. Now we
prove the following lemma.
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Vi Voic1 Vou=W Voip1=U

Figure 7.1: W’ has an outgoing edge to U

Lemma 7.11. If for all 1 < d' < d, R,(d') < 2d' — 1, then the following holds. For
all k > 2d — 1 and for every vertex v, there is a way of reindexing the parts such that
v € Vi and for all i € [d], there are i nodes in Va;—1 which are reachable from v via
(21 — 2)-restricted paths.

Proof. The proof of the claim is also by induction. Let v be a fixed vertex. For the base
case, let i = 1. If v € U, set V7 = U, and the claim follows.

For the induction step from i to i 4 1, we assume Vi, Vs, ..., Vo;_1 are already defined
and for all j € [i], there is a (2¢i — 2)-restricted path from v to v; € Va;—1. For all
parts Z ¢ {Vi,Va,...,Vai_1} and all j € [i], let v; — z; be the outgoing edge from
v; to Z. Since each node in V2,1 has exactly one outgoing edge to Z and each node
in Z has exactly one incoming edge from V5;_1, the nodes z1,z9,...,2; are distinct.
Therefore, for all parts Z ¢ {V1,Va,...,Va;_1}, at least i nodes in Z are reachable from
v via (2i — 1)-restricted paths. For all parts Z ¢ {V1,Va, ..., Vai_1}, let Z' C Z be the
vertices that are reachable from v via (2i — 1)-restricted paths and let Z = Z \ Z’. If
there exists a part U ¢ {V1,Va,...,Va;_1} such that |U’'| > i+ 1, we set Vo; = W for
some W ¢ {V1,Va,...,Va;_1,U} and set Va;y1 = U and the claim follows. Otherwise,
for all parts Z ¢ {V4,Va,...,Va;_1}, we have |Z'| = i and |Z| = d — i. If there exist
UW ¢ {Vi,Va,...,Vai_1} such that w € W’ has an outgoing edge to u € U, then
we set Vo; = W and Vo;41 = U. Note that all nodes in U’ are reachable from v using
(2i — 1)-restricted paths, and u is reachable via a (2i)-restricted path. Therefore, in total
i+ 1 vertices in U = V&4 are reachable from v via (2i)-restricted paths (see Figure 7.1
for an illustration).

Let V(G) =ViUVaU---U Va1 UUL UUy U -+ UUg_9;41. The only remaining case
is that for all j € [k —2i + 1], |[U;| = d — ¢ and for all j,¢ € [k — 2i + 1], there is no
edge from U ]’ to Uy. This means that all the d — i incoming edges of Uy come from U,.
Hence all the d — i outgoing edges of Uj go to Uy. Therefore, the induced subgraph on
U1UUU---UUg 9441, forms a permutation graph (see Figure 7.2). By the assumption
of the lemma, we know R,(d —i) < 2d —2i{ — 1 and hence, k —2i+1 < 2d — 2i — 1. This
contradicts the assumption of the claim, which requires k& > 2d — 1. Therefore, this case
cannot occur. O

Back to the assumption step, we want to prove R, (d) < 2d—1. Towards a contradiction,
assume Ry,(d) > 2d — 1 and consider a graph G with |R,(d)| parts satisfying properties
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Figure 7.2: k' > k —2i — 1 and for all j,¢ € [k'], there exists no edge between U} and
Uy.

of Definition 7.8. Now, pick an arbitrary vertex v. By setting k = d in Lemma 7.11, there
exists a reindexing of the parts such that all d nodes in part V541 are reachable from v
using (2d — 2)-restricted paths. Let u € Voq_1 be the vertex with an outgoing edge to v.
Then a (2d — 2)-restricted path from v to u followed by the edge u — v forms a rainbow
cycle. Hence, Ry(d) < 2d — 1.
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CHAPTER 8
Epistemic EFX for Monotone Valuations

A recent work of Caragiannis et al. [22] introduced a promising relaxation of EFX, called
epistemic EFX (which adapts the concepts of epistemic envy-freeness defined by [9]). We
call an allocation X EEFX if for every agent i € [n], there exists an allocation Y such
that Y; = X; and for every bundle Y; € Y, we have v;(X;) > v;(Y; \ {g}) for every g € Y.
That is, an allocation is EEFX if, for every agent, it is possible to shuffle the items in
the remaining bundles so that she becomes “EFX-satisfied”. See Example 8.1 for a better
intuition.

Example 8.1. Consider a fair division instance consisting of 7 items and 3 agents
with additive valuations as described in Table 8.1. Now consider the allocation X where
X1=A{91,92,94}, Xo = {93, 95,96}, and X3 = {g7}. Note that X is envy-free, and hence,
EFX and EEFX. Now assume that agent 1 and 2 exchange the items g3 and g4. Formally,
let Y = ({91,92,93}, {94, 95,96}, {g7}). Fori e {1,2}, have v;(Y;) = 300 > 201 = v;(X;),
and v3(Ys) = v3(X3). Therefore, intuitively it seems that'Y is a better allocation compared
to X since agents 1 and 2 are strictly better off and agent 3 is as happy as before (i.e.,
Y Pareto dominates X ). However, note that while allocation Y is still EEFX, it is not
EFX. Namely, agent 3 strongly envies agent 1: v3(Y1 \ {g1}) = 100 > 55 = v3(Y3).

Caragiannis et al. [22] establish existence and polynomial-time computability of EEFX
allocations for an arbitrary number of agents with a restricted class of additive valuations.
Thus, the following question naturally arises:

Do EEFX allocations exist for an arbitrary number of agents with general monotone
valuations?

We answer the above question affirmatively and establish computational hardness
and information-theoretic lower bounds for finding EEFX allocations:

(1) EEFX allocations are guaranteed to exist for any fair division instance with an
arbitrary number of agents having general monotone valuations; see Theorem 8.7.

g1 92 g3 94 95 96 g7

v1 | 100 100 100 1 1 1 1
vy | 1 1 1 100 100 100 1
vy | 1 50 50 1 1 1 55

Table 8.1: The additive valuation functions of 3 agents for 7 goods.
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(2) An exponential number of valuation queries is required by any deterministic algo-
rithm to compute an EEFX allocation for fair division instances with an arbitrary
number of agents with identical submodular valuations; see Theorem 8.14.

(3) The problem of computing EEFX allocations for fair division instances with an
arbitrary number of agents having identical submodular valuations is PLS-hard; see
Theorem 8.15.

It is relevant to note that, with the above results, the notion of epsitemic-EFX becomes
the second known relaxation of EFX (besides EF1), that admits such strong existential
guarantees. Along with its hardness results, the notion of EEFX for discrete settings
seems to enjoy results of similar flavor as that of envy-freeness for cake division [31, 65,
66].

Similar computational hardness and information-theoretic lower bounds are known
for computing an EFX allocation between agents with identical submodular valuations,
even when n = 2; see [59] and [45]. Observe that, the set of EEFX and EFX allocations
are identical for two agents. Hence, the computational hardness and information-theoretic
lower bounds known for computing EFX allocations between two agents carry forward
to EEFX allocations as well, but only for two agents. At first sight, it might seem trivial
that finding an EEFX allocation can only get harder when the number of agents grows.
However, note that when the number of agents grows, more bundles become “EEFX-
feasible” for each agent, and hence, finding an EEFX allocation may be done faster.
Nevertheless, in this chapter, we prove similar lower bounds for EEFX by reducing the
problem of computing an EEFX allocation among an arbitrary number of agents with
identical submodular valuations from the problem of computing an EFX allocation among
two agents with identical submodular valuations.

We use a similar reduction that was previously used to reduce the problem of finding
an EFX allocation for n > 2 agents to finding an EFX allocation for 2 agents [45]: take
an instance with two identical agents and construct an instance with identical n > 2
agents by introducing n — 2 large items. In any EFX allocation, these large items must
be allocated to n — 2 different agents who are not allocated any other item. Hence the
problem reduces to finding an EFX allocation of the original items to two agents with
identical submodular valuations (the original hard instance).

Unlike EFX, in EEFX allocations it is not necessary for n — 2 agents to receive only
one large item. Consider the following example. M = {g1, g2, ..., gn+1} and for all agents
i, vi(g1) = vi(g2) = vi(g3) = 1 and for all j > 3, v;(g;) = 100. In any EFX allocation,
two of g1, g2, g3 are allocated to one agent, the remaining item among these three to
another agent, and each of the remaining items is allocated to a distinct remaining agent.
However, the allocation ({g1},{g2},---,{9n-1},{9n, gn+1}}) which allocates all the first
n — 1 items to n — 1 different agents and the last two items (with total value 200) to the
last agent is EEFX. Therefore, the set of all EFX allocations is a strict subset of the set of
all EEFX allocations in some instance with identical additive (therefore also submodular)
valuations that could be generated in this reduction. Also, as shown in the example,
by introducing n — 2 large items, it is not necessary that the original items would be
allocated to only two agents. This shows that the hardness of finding EEFX allocations
for n agents with identical submodular valuations is not an immediate corollary of the
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hardness of finding EFX (or EEFX) allocations for n (respectively two) agents with
identical submodular valuations. However, we use very similar ideas to prove the former.

See Section 8.1 for further discussion on the PLS class [50].

Although similar computational hardness and information-theoretic bounds hold true
for finding EFX and EEFX allocations, our work has proved guaranteed existence of
EEFX allocations for an arbitrary number of agents with monotone valuations, whereas
existence of EFX allocations for more than three agents even with additive valuations
remains a major open problem.

8.0.1 Our Techniques

Consider a fair division instance Z = (N, M, V) and a desirable property P of a bundle
B C M for an agent i € N. For example, in this chapter, we consider the fairness
property of whether B is n-epistemic-EFX for an agent ¢ (see Definition 2.25). We say
B is desirable to ¢ when B satisfies the property P for agent i. The goal is to find an
allocation A = (Ay,...,A,) such that A; is desirable to each agent i € N'; we call such
an allocation desirable.

For any partitioning of the items into n bundles X1, Xo,..., X, let us consider
a bipartite graph G(X) with one side representing the n agents and the other side
representing the n bundles. There exists an edge (i, j) between (the node corresponding
to) agent ¢ and (the node corresponding to) bundle Xj, if and only if, bundle X; is
desirable to agent i. For any subset of the nodes S C N, let us write N(S) to denote the
set of all neighbours of S in G(X).

Note that, if G(X) has a perfect matching, then this matching translates to a desirable
allocation in Z. Therefore, let us assume that G(X) does not admit a perfect matching and
hence admits a Hall’s violator set. That is, there exists a subset of agents {a1, ..., a1} for
which N({a1,...,a;11}) <t. But also, there exists a subset of bundles {Xj,,..., X}, . }
for which N({Xj,,..., X}, }) < k. Let us assume that {Xj;,,..., X}, } is minimal. If
k > 1, this means that we can find a matching of ((i1, Xj;,), ..., (ix, X}, )) such that there
exists no edge between agent i € N'\ {iy,...,i;} and bundles X; ,..., Xj, . In other
words, for all ¢ € [k], X, is desirable to iy and is not desirable to any ¢ ¢ {i1,...,4x}.

After finding such a matching, it is intuitive to allocate X, to i, for all £ € [k] and
then recursively find a desired allocation of the remaining goods to the remaining agents.
In order to do so, we need to ensure two important conditions.

(1) We can find a non-empty matching ((i1, Xj,), ..., (ix, Xj,)) in each step.

(2) After removing {X;,,..., X, } from M, we can still find desirable bundles (with
respect to the original instance) for the remaining agents.

Whether ensuring these conditions is possible or not, depends on the property P. In
this chapter, we prove this approach works when the property P is n-epistemic-EFX, and
thereby proving the existence of EEFX allocations for monotone valuations.

Although these two conditions might seem inconsequential, we prove that a stronger
condition can simultaneously imply both of them. Namely, we only need to prove that
at each step with n’ remaining agents, for any remaining agent ¢, we can partition the
remaining items into n’ many bundles X1, ..., X, such that X; is desirable to i for all
j € [n/]. This way, at each step, we can ask one of the remaining agents to partition the
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Chapter 8. Epistemic EFX for Monotone Valuations

remaining goods into n’ many desirable bundles with respect to her own valuation. Then,
we either find a perfect matching, or we find a non-empty matching and reduce the size
of the instance.

This technique works when the desirable property is, for instance, proportionality
(moving-knife procedure [33]) or approximate mazimin share |1, 4, 48, 51, 64]. In this
chapter, we show that EEFX allocations under monotone valuations are also compatible
with the above technique. Recently, [19] proved this technique also works for finding
PROP1! allocations among agents with additive valuations in a comparison-based model.
Here, two bundles are presented to an agent and she responds by telling which bundle
she prefers.

8.1 Notations and Tools

For all i € N, we assume v; is monotone; i.e., for alli € N, g € M and S C M,
vi(SUg) = vi(9).

For a fair division instance Z = (N, M, V) with monotone valuations, we consider
the valuations to be accessed via an oracle. Note that, monotone valuations are the most
general class of valuations when the set of items consists of only goods or only chores.

Next, we define a notion of EEFX-graph that plays a crucial role in proving the
existence of EEFX allocations.

Definition 8.2. For a fair division instance, consider a partition of M into n bundles
Yi,...,Y,. We define the EEFX-graph as an undirected bipartite graph G = (V, E), where
V' has one part consisting of n nodes corresponding to the agents and another part with
n nodes corresponding to the bundles Yi,...,Y,. There exists an edge (i,7) between (the
node corresponding to) agent i and (the node corresponding to) bundle Y; if and only if
Y; € EEFX}'(M).

We abuse the notation and refer to the “nodes corresponding to agents” as “agents”

and also refer to the “nodes corresponding to bundles” as “bundles”. For any subsets V'
of nodes, N (V) is the set of all neighbours of the nodes in V. For a matching M, V(M)
is the set of vertices of M.

8.1.1 Polynomial Local Search (PLS)

The following description of the complexity class PLS is taken from Section 7.2 in [§].

“The class PLS (Polynomial Local Search) was defined by |50| to capture the com-
plexity of finding local optima of optimization problems. Here, a generic instance Z of
an optimization problem has a corresponding finite set of solutions S(Z) and a potential
c(s) associated with each solution s € S(Z). The objective is to find a solution that
maximizes (or minimizes) this potential. In the local search version of the problem, each
solution s € S(Z) additionally has a well-defined neighborhood N(s) € 29%) and the
objective is to find a local optimum, i.e., a solution s € S(Z) such that no solution in its
neighborhood N (s) has a higher potential.

'PROP1 is another relaxation of proportionality which requires that all agents receive their propor-
tional share after adding some good that is not yet allocated to them.
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8.2. Existence of Epistemic EFX Allocations

Definition 8.3 (PLS). Consider an optimization problem X, and for all input instances
T of X let S(Z) denote the finite set of feasible solutions for this instance, N(s) be the
neighborhood of a solution s € S(Z), and c(s) be the potential of solution s. The desired
output is a local optimum with respect to the potential function.

Specifically, X is a polynomial local search problem (i.e., X € PLS) if all solutions
are bounded in the size of the input T and there exists polynomial-time algorithms Ay,
As, and As such that:

(1) Aj tests whether the input T is a legitimate instance of X and if yes, outputs a
solution Sinitia1 € S(Z).

(2) Ay takes as input instance T and candidate solution s, tests if s € S(Z) and if yes,
computes c(s).

(3) As takes as input instance T and candidate solution s, tests if s is a local optimum
and if not, outputs s' € N(s) such that c(s') > c(s) (the inequality is reversed for
the minimization version).

Each PLS problem comes with an associated local search algorithm that is implicitly
described by the three algorithms mentioned above. The first algorithm is used to find
an initial solution to the problem and the third algorithm is iteratively used to find a
potential-improving neighbor until a local optimum is reached.”

8.2 Existence of Epistemic EFX Allocations

In this section, we prove the existence of EEFX allocations for any fair division instance
with n agents having monotone valuations. We start by proving an important structural
property (in Lemma 8.4) that enables us to reduce an instance to one with lower number
of agents.

Lemma 8.4. For a fair division instance, consider a partial allocation (Xgy1, Xgt2,- -, Xn)
to agents in the set [n] \ [k] such that for all agents j € [n] \ [k] and all i € [k], we
have X; € EEFX} (M), X; ¢ EEFX}(M). If (X1,...,X}) is an EEFX allocation of
M\ Ugepy Xe for agents in [k], then (X1, Xa, ..., Xy) is an EEFX allocation for agents
in [n].

Proof. Since for all agents j € [n] \ [k] we have X; € EEFX’ (M), it suffices to prove
X; € EEFX} (M) for all i € [k]. For all i € [k], there exists a k-certificate of X; for i under
M\Uze[k] Xy, wecallit C = {C1,...,Ck_1}. Without loss of generality, assume v;(X,,) >

.2 Ui(Xk+1). If Ui(Xn) > Ui(XZ'), then (Cl, ey O, Xy Xgg1,y - - - 7XTL—1) is an n-
certificate of X, for ¢ under M. This is a contradiction with X,, ¢ EEFX} (M). Therefore,
0i(X5) > vi(Xp) > vi(Xy) for all £ € [n] \ [k]. Hence (Cy,...,Ck_1, Xpt1,...,Xp) is an
n-certificate of X; for ¢ under M and thus, X; € EEFX}'(M). O

We will now give a high-level overview of our constructive proof for establishing the
existence of EEFX allocation among arbitrary number of agents with monotone valuations
using ALG (see Algorithm 11). For a fair division instance Z = (N, M, V), our algorithm
ALG, starts by considering an EFX allocation (X7i,...,X,) of M among n agents with
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Input: A fair division instance Z = (N, M, V) where agent i € N’ = [n] has monotone
valuation v; over the set of items M.
Output: An allocation X = (X1, Xo,..., X,).

1. if =0 then

2: return (;

3 n < ‘N’

4: (X1,...,Xp) < an EFX allocation of M among n agents with valuation v,,;

5. G < EEFX-graph of {X1,...,X,};

6: Let M = {(k+ 1, Xk+1),...,(n,X;)} be a matching of size at least 1 such that

N Xpsts oo s X)) = {E+1,... 0}
7. N+ [k],

8 M +— M \ Uée[n]\[k] Xo;

9: V' + (Vl,...,Vk);

10: (Xl, R ,Xk) — EEFX(N/,MI,V/);
11: return (Xp, Xo, ..., X,);

Algorithm 11: ALG = EEFX(Z)

le Xjk Xjk+1 X;
s s R .
NS) T %] e
11 ik i

Figure 8.1: If G(X) does not admit a perfect matching, then there exists a minimal
subset S = {Xj,,..., X}, .} of bundles such that [N(S)| < k4 1. Then, for all agent
i € N(S) and all £ € [k + 1], no edge between X, and 7 exists. In other words, no such
red dashed edges can exist.

valuation v,,. We know such an allocation exists by the work of [59]. Next, we construct
the EEFX-graph G between the bundles X1, ..., X,, and the agents. Lemma 8.5 proves
that there will always exist a non-trivial matching M = {(k + 1, Xg11), ..., (n, X,)}?
such that N({Xx11,...,Xn}) ={k+1,...,n}. That is, for every j € [n] \ [k], bundle
X; € EEFX}(M).

Next, ALG reduces the instance by removing the agents {k + 1,k + 2,...,n} from
N with their bundles Xy 1, Xgio,..., X, safely. Note that, no agent i € [k] has any
edge in G to any bundle X; for j € [n] \ [k]. Finally, this also implies that finding
an EEFX allocation (X7, Xa,..., X)) in the reduced instance and combining it with
(Xk+1, Xg+2,-..,Xn) leads to an overall EEFX allocation in the original instance. That
is, our technique enables us to reduce our instance, find an EEFX allocation in the
reduced instance, and combine it in such a way that we produce an EEFX allocation for
the original instance.

We begin by proving Lemma 8.5.

2Without loss of generality, we can rename the bundles and agents in the matching M
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Lemma 8.5. For any fair division instance, consider an agenti € N, let (X1,...,X,) be
an EFX allocation for an instance consisting of n agents with identical valuations v;. Let
G be the EEFX-graph with n agents andn bundles X1, ..., X,. Then there always ezists a
matching M = {(i1, Xj,), ..., (ix, X, )} of size at least 1, such that N({Xj,,..., X, }) =
{i1, ... i}

Proof. To begin with, if G has a perfect matching M = {(i1, X},), ..., (in, Xj,)}, then
the lemma trivially holds true.

Therefore, let us assume that no perfect matching exists in G. This implies that
the Hall’s condition is not satisfied, i.e., there exists a subset S = {Xj,..., X}, . } of
bundles such that |[N({X},,..., X}, })| < k+ 1. See Figure 8.1 for a better intuition.
We assume that the subset S = {Xj,,..., X}, } is minimal. That is, for all S' C S,
we have N(S’) > |S’|. Now consider T' = {Xj,...,X;,} € S. By minimality of S,
we know that Hall’s condition holds for T, i.e., there exists a perfect matching, say
M = {(i1,X},), ..., (ix, X, )} between the nodes in 7" and N(T'). Since |[N(S)| < k+1
and {i1,...,it} C N(T) C N(S), it follows that N(S) = N(T) = {i1,...,ix}.

Note that since (Xi,...,X,) is an EFX allocation for an instance with identical
valuations v;, we know that ¢ € N(S), thus & > 1. Hence, M = {(i1, X;,), ..., (i, Xj,)}
is a matching of size k > 1, such that N({X},,..., X;. }) = {41, ..., ix}. The stated claim
stands proven. 0

Theorem 8.6 ([59]). When agents have identical monotone valuations, there always
exists an EFX allocation.

We are now ready to discuss our main result that constructively establishes the
existence of EEFX allocation among arbitrary number of agents with monotone valuations
using ALG.

Theorem 8.7. EEFX allocations exist for any fair division instance with monotone
valuations. In particular, ALG returns an EEFX allocation.

Proof. We begin by proving that Algorithm 11 terminates. By Theorem 8.6 and Lemma
8.5, a matching M = {(i1,X;,),..., (i, X;,)} of size at least 1 exists such that
N({Xi,,...,Xi,}) = {i1,...,i}. Note that we can rename the bundles and the agents
and without loss of generality assume that the considered matching is M = {(k +
1, Xk41),- .., (n, X,)}. Therefore, after removing {k + 1,...,n} from N, the size of N
decreases. Hence, the depth of the recursion is bounded by n (the initial number of
agents).

We prove the correctness of ALG by using induction on the number of the agents. If
N =0, then 0 is an EEFX allocation. We assume that ALG returns an EEFX allocation
for any fair division instance with n’ < n agents with monotone valuations. Consider the
matching M described in ALG. We will show the output allocation of ALG for n agents
is EEFX as well. For all j € [n] \ [k] and all ¢ € [k], the matching M ensures that we
have X; € EEFX} (M), and X; ¢ EEFX}' (M) (see Figure 8.1). By induction hypothesis,
(X1,...,Xg) is an EEFX allocation of M\ Uée[k} X, for agents in [k]. Thus, by Lemma
8.4, (X1, X2,...,Xy) is an EEFX allocation for agents in [n]. O
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8.3 Hardness Results

In this section, we complement our existential result of EEFX allocations for monotone
valuations by proving computational and information-theoretic lower bounds for finding
an EEFX allocation. When agents have submodular valuation functions, the way to
compute the value v(S) for a subset S of the items is through making value queries. [59]
proved that exponentially many value queries are required to compute an EFX allocation
even for two agents with identical submodular valuations. Formally, they proved the
following information-theoretic lower bounds.

Theorem 8.8 ([59]). The query complexity of finding an EFX allocation with |M| = 2k+1

many items is Q(%(%ljl)), even for two agents with identical submodular valuations.

Moreover, [45] proved the following computational hardness for EFX allocations.

Theorem 8.9 (|45]). The problem of computing an EFX allocation for two agents with
identical submodular valuations is PLS-complete.

Now we define the computational problems corresponding to finding EFX and EEFX
allocations.

Definition 8.10. (ID-EFX) Given a fair division instance T = ([2], M, (v, v)) with two
agents having identical submodular valuations v, find an EFX allocation.

Definition 8.11. (ID-EEFX) Given a fair division instance Z = ([n], M, (v,...,v)) with
n agents having identical submodular valuations v, find an EEFX allocation.

We reduce the problem of finding an EFX allocation for two agents with identical
submodular valuations (ID-EFX) to finding an EEFX allocation for an arbitrary number

of agents with identical submodular valuations (ID-EEFX), thereby establishing similar
hardness results for the latter.

Our Reduction: Consider an arbitrary instance Z = ([2], M, (v, v)) of ID-EFX with two
agents having identical submodular valuations v. Let Z' = ([n], M, (¢v/,...,v")}) be an
instance of ID-EEFX with n agents having identical valuations v’ over the set of items
M = MU{hy,...,hp—2}. We define the valuation v’ as follows.

e For all S C M, v/(S) = v(9).

e Forall j € [n—2], /(hj) = 20(M) + 1.

e Forall je[n—2]and S C M\ {h;}, v (SU{h;}) = v(S) + v(h;).

We call items hy, ..., h,_o heavy items. Note that we can compute Z’ from Z in polynomial
time.

Lemma 8.12. If v is a submodular function, then v’ is a submodular function as well.
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Proof. We need to prove that for all S,7 C M, v'(S) + ' (T) > ' (SUT)+(SNT).
Let Hg and Hr be the set of all heavy items in S and T respectively. We have

v'(S) +'(T)
='(S\ Hg) + v (Hs) + (T \ Hr) +v'(Hr)
= (v(S\ Hs) +v(T\ Hr)) +v'(Hs) +v'(Hr))
> v((S\ Hg) U(T'\ Hr)) +v((S\ Hg) N (T'\ Hr))
+'(Hg) + v'(Hr) (submodularity of v)
=v((SUT)\ (Hs U Hr)) +v'((SNT)\ (Hs N Hr))
+'(Hg) + v'(Hr)
=v((SUT)\ (Hs U Hr)) +v'((SNT)\ (Hs N Hr))
+v'(Hg U Hy) +v'(Hg N Hy) (additivity of v on heavy items)
= (SUT)+'(SNT).

@

O]

Lemma 8.13. Given any EEFX allocation A in Z', we can create an EFX allocation in
T in polynomial time, where T and I’ are as defined above.

Proof. Let us assume that A = (Ay,...,A,) is an EEFX allocation in instance Z’. To
begin with, note that there are n—2 heavy items in Z’, and hence, by pigeonhole principle,
there exists at least two agents, say 4, j € N’ such that they receive no heavy item under
A. Without loss of generality, let us assume that ¢ = 1 and j = 2, and hence we have
Aq, Ay C M. This implies that we have

v'(Ar) = v(Ar), v'(A2) = v(42),
and, v(A71),v(As) < 20(M) +1 (8.1)

Without loss of generality, let us assume v(Aa) > v(Ay).

We will prove (A;, M \ A;) forms an EFX allocation in Z. Note that valuations v
and v’ coincide for the bundles A; and M \ A;. Since A is EEFX in Z’, let us denote the
n-certificate for agent 1 with respect to A; by C = (Cs,Cs, ..., Cy). First, we prove that
no bundle C} with a heavy item can have any other item as well. Assume otherwise. Let
{g,h;} C Cj for some k € {2,...,n} and some j € [n — 2] and g # hj. Then, we have

V(Cr\ g) 2 ' (hy) = 20(M) +1 > '(4)

where, the last inequality uses equation (8.1). This implies that agent 1 strongly envies
bundle C} which is a contradiction to our assumption that C forms an n-certificate for
bundle A; in instance I’. Therefore, the n — 1 bundles in the n-certificate must look
like {Ca,...,Cp} = {{h1},..., {hn—2}, M\ A1}. First, note that, agent 1 with bundle
A1 must not strongly envy bundle M \ A; since C is an n-certificate. And since, we
already have v(As) > v(A4;) and Ay C M\ Ay, the allocation (A;, M \ A;) forms an
EFX allocation in Z. O

Theorem 8.14. The query complemty of the EEFX allocation problem with |M| =
2k +n — 1 many items is Q( (%H)), for arbitrary number of agents n with identical
submodular valuations.
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Proof. Consider any arbitrary instance Z = ([2], M, (v,v)) with two agents having identi-
cal submodular valuations v and |[M| = 2k + 1 items. Create the instance 7" as described
above. Using Lemma 8.12, 7’ consists of n agents with identical submodular valuations.
By Lemma 8.13, given any EEFX allocation A, we can obtain an EFX allocation for
Z in polynomial time. Finally, using Theorem 8.8, we know that the query complexity
of finding an EFX allocation in Z is Q(% (Zk,:r 1)) Hence, the query complexity of EEFX
for n agents with identical submodular valuations admits the same lower bound. This
establishes the stated claim. O

Finally, our next result follows using Lemma 8.13 and Theorem 8.9.

Theorem 8.15. The problem of computing an EEFX allocation for arbitrary number of
agents with identical submodular valuations is PLS-hard.

Since our reduction work even for three agents, Theorems 8.14 and 8.15 hold true
for the problem of computing EEFX allocations even for three agents with identical
submodular valuations. Note that the set of EFX and EEFX allocations coincide for the
case of two agents and hence it inherits the same computational hardness guarantees as
that of EFX here.
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Simultaneous Fairness Guarantees



122



CHAPTER 9

Achieving MMS and EFX/EF1 Guarantees
Simultaneously

We study fair division instances with agents having additive valuations over a set of
indivisible items. The aim of this work is to push our understanding of the compatibility
between two different classes of fairness notions: EFX/EF1 with MMS guarantees. Our
main contribution is developing (simple) algorithms for achieving EFX/EF1 and MMS
guarantees simultaneously.

Main Theorem: For any fair division instance, we show that there exists

(1) a partial allocation that is both 2/3-MMS and EFX [see Theorem 9.10 and Algo-
rithm 13].

(2) a complete allocation that is both 2/3-MMS and EF1 [see Theorem 9.16 and
Algorithm 15].

We note that the latter is an immediate corollary of the former using known techniques
[55]. For completeness, in Section 9.4 we provide the full proof.

If we relax 2/3-MMS to (2/3 — ¢)-MMS for any arbitrary constant € > 0, then the
above allocations can be computed in pseudo-polynomial time. If in addition to that, we
relax EFX/EF1 to (1 — §)-EFX/(1 — 0)-EF1, then the allocations can be computed in
polynomial time.

We use Algorithm 12 developed by [4] to compute 2/3-MMS allocations as a starting
point to have share-based guarantee. Here, as soon as an agent receives a bundle, she is
taken out of consideration. This feature of the algorithm is incompatible with achieving
any envy-based guarantees.! We overcome this barrier and develop a novel algorithm
(Algorithm 13) that removes the myopic nature of Algorithm 12 and also looks into the
future and modifies the already-allocated bundles if needed. Interestingly enough, the
share-based guarantee that we maintain for a subset of agents (whose size keep growing)
throughout the execution of Algorithm 13 helps us to prove envy-based guarantees as
well.

Our first result improves the guarantees shown by [30] where they develop a pseudo-
polynomial time algorithm to compute a partial allocation that is both 1/2-MMS and
EFX. Also, [7] develop an efficient algorithm to compute a complete allocation that
is simultaneously 0.553-MMS and 0.618-EFX; note that, this is incomparable to the
guarantees that we develop in this work. On the other hand, the best known approximation
factors, prior to our work, for simultaneous guarantees on MMS and EF1 was by [7] where
they efficiently find allocations that are 4/7-MMS and EF1.

'We note that this feature is common to many other algorithms achieving share-based guarantees in
the fair division literature. See “valid reductions” in Chapter 3.



Chapter 9. Achieving MMS and EFX/EF1 Guarantees Simultaneously

9.1 Notations and Tools

Proposition 9.1 ([71]). Gien any fair division instance with additive valuations, there
exists a PTAS to compute an MMS-partition of any agent i € N, and hence her MMS;
value as well.

We define two graphs inspired by share-based and envy-based fairness notions, that
will prove useful in our algorithms.

Definition 9.2 (Threshold-Graph). Given a partition Y = (Y1,...,Y,) of M into n
bundles and given a vector t = (t1,...,t,) € RY,, we define the threshold-graph as an
undirected bipartite graph Tiy sy = (V,E), where V has one part consisting of n nodes
corresponding to the agents and another part with n nodes corresponding to the bundles
Yi,...,Y,. There exists an edge (i,j) between (the node corresponding to) agent i and
(the node corresponding to) bundle Y; if and only if v;(Y;) > t;. For alli € [n], we call t;,
the threshold share value of agent i.

For a subset S of the nodes, we write N(S) to denote the set of neighbours of the
nodes in S in the threshold graph.

Recall from Definition 2.17 that Gx is the envy-graph of allocation X.

In this chapter, without loss of generality, by scaling the value of each item for each
agent ¢ by a factor of 1/MMS;, we assume that the MMS values of all the agents are
1. Note that the scaling the valuations does not change the EFX, EF1, and a-MMS
properties of an allocation.

9.2 Relations Between EFX/EF1 and MMS

In this section, we briefly discuss the guarantees EFX/EF1 allocations can provide for
MMS and vice versa. [5] gave a comprehensive comparison between these notions of
fairness. Here we mention a few. In particular, they proved that while a complete EFX
allocation implies 4/7-MMS guarantee, there exists complete EFX allocations which are
as bad as 0.5914-MMS. Nevertheless, these guarantees become relevant only when a
complete EFX allocation exists which, in itself, is a big open problem.

Proposition 9.3 ([5]). For arbitrary n > 1, any EFX allocation is also a 4/7-MMS
allocation. On the other hand, an EFX allocation is not necessarily an a-MMS allocation
for a > 0.5914 and large enough n.

Proposition 9.4 (|5]). An EF1 allocation is not necessarily an a-MMS allocation for
any o> 1/n.

Proof. Consider the instance Z with n agents with identical valuation v over 2n — 1
items. Assume v(g;) = 1 for all ¢ € [n — 1] and v(g;) = 1/n for all i € [2n — 1]\ [n — 1].
Consider the following partition of M into n bundles. For i € [n — 1] : A; = {g¢;} and
Ap ={9gns---,92n-1}. v(4;) =1 for all ¢ € [n] and thus the MMS value of all agents is 1.
Now consider the following allocation. X; = {g;, gnti—1} fori € [n—1] and X,, = {gon—1}-
For all i € [n — 1], v(X;) = 1+ 1/n and v(X,) = 1/n. The allocation X is EF1 since
v(Xp) > v(X;\{g:}) for all i € [n — 1]. However, X is 1/n-MMS. O
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Proposition 9.5. Forn > 3 and any o > 0, an a-MMS allocation is not necessarily
B-EF1 for any g > 0.

Proof. Consider the instance Z with n > 3 agents with identical valuation v over 2
items with v(g1) = v(g2) = 1. Clearly the MMS value of all the agents is 0 and thus all
allocations are a-MMS for any o > 0. Now consider the allocation X with X, = {g1,¢92}
and X; =( for alli € [n—1]. For alli € [n—1] and 8 > 0, v(X;) < Bv(X, \ {g1}). Thus,
X is not B-EF1. O

Therefore, we can conclude that, by guaranteeing one of approximate MMS or ap-
proximate EFX/EF1, one cannot obtain a good guarantee for the other notion of fairness
for free.

9.3 %-MMS Together with EFX

First we describe and analyze the algorithm developed by Procaccia et al. [53, 62| and
Amanatidis et al. [4] to compute 2/3-MMS allocations for fair division instances with
additive valuations. We rewrite it and analyze it in our own words (in Algorithm 12)
since we use it to develop our main algorithm (Algorithm 13) to compute allocations
that are both 2/3-MMS and EFX.

Surprisingly, Algorithm 12 does not rely on the two most commonly used tools for
computing approximate MMS allocations, namely ordered instances and valid reductions
(see Section 2.1).

Unfortunately, these tools cannot be used when dealing with envy-based notions
of fairness. And hence, most of the previous works that achieve approximate MMS
guarantees do not obtain any envy-based criteria results. On the other hand, most of
the previous work that achieve simultaneous guarantees for MMS and EFX/EF1 are
obtained by manipulating algorithms that provide EFX/EF1 guarantees so that some
approximation for MMS can also be achieved |7, 30]. However, so far, the envy-based
algorithmic techniques have not been strong enough to also attain 2/3-MMS guarantee.
Overview of Algorithm 12: Algorithm 12 successively allocates a bundle of items
to some selected agents in each step and removes them from consideration. In par-
ticular, in each round of Algorithm 12 with n’ remaining agents, we ask a remaining
agent 7 to divide the remaining items into n’ bundles X7, ..., X, each of value at least
2/3 - MMS? (M) to her. We prove, in Lemma 9.7, that the above is always possible at
every step of the algorithm. Without loss of generality assume [n'] is the set of remain-
ing agents. Then, we consider the threshold graph T\ x; with X = (Xj,..., X;/) and
t =2/3(MMS}(M),...,MMS},(M)) and find a matching between the bundles and the
agents such that (i) every matched agent j has a value of at least 2/3 - MMS7 (M) for
the bundle matched to her and (ii) every unmatched agent j values any of the matched
bundles at less than 2/3-MMS} (M). We allocate according to this matching, and remove
the matched agents with their matched bundles. As long as there is any remaining agent,
we repeat the above process. See Algorithm 12 for the pseudo-code of this algorithm. A
similar technique is also used in [1, 48, 51, 64| and Chapter 8.

Theorem 9.6 ([4]). For fair division instances with additive valuations, Algorithm 12
returns a %—MMS allocation.
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Input: A fair division instance Z = (N, M, V) with additive valuations.
Output: An allocation X.

1: Let MMS; = MMS} (M) for all i € [n]

2: while N # () do

3: n < |/\/”

4 LetieN

5: Let (Xi,...,X,) be a partition of M such that v;(X;) > ZMMS;

6: Let Tix4 be the threshold-graph with X = (Xi,...,X,) and t =
2(MMS;y, ..., MMS,,) for agents in [n]

7: Let M ={(k+1,Xks1),...,(n,X,)} be a matching of size at least 1 such that
N({Xe1, o Xa}) = Lkt 1,
8: N [k],

return (X1, Xo,..., X,);

Algorithm 12: 2/3-approxMMS(Z)

First we prove the following lemmas.

Lemma 9.7. Fiz an agent i € N and some k < n. Consider k disjoint bundles
Ai, ... Ay € M such that for all j € [k], we have v;(A;) < % - MMS}(M). Then,
there exists a partition (Bi,..., By k) of M\ Ujed; into n — k bundles such that
vi(Bj) = 2 - MMS} (M) for all j € [n — k.

Proof idea. We first give an overview of our idea before formally proving Lemma 9.7.
Let us begin by fixing an MMS-partition of agent ¢ in the given instance. Then, given the
k bundles Ay, ..., Ay C M with the property as stated in Lemma 9.7, we categorize the
bundles of this MMS-partition depending on how much value these bundles have after
the removal of the items in A1 U...U Ag. All the bundles with remaining value of at least
2/3 are in the set C” and all the bundles with remaining value at least 1/3 and at most
2/3 are in the set C'!. By pairing the bundles in C'! and merging the items in this pair,
we manage to create {lCTl‘J—many bundles of value at least 2/3. Moreover, all the bundles
in C are of value at least 2/3. Therefore, it is sufficient to prove |C°] + L@J >n—k.
We show it by upper-bounding the value of the removed items for agent i.

Proof. For a given fair division instance Z and an agent i € N/, let (C1,...,C),) be an
MMS-partition of i. Let A = A U...U Ay and write D; = C; N A and C; = C; \ A
for all j € [n]. We define C°, C!, and C? as follows, depending on the amount of value
removed from each C; after the removal of the items in A.

o CV={je[n]|u(Dy) <3}
o C'={jen|L<u(Dy) <2}
o C?={jen]|2<u(D))}

Let ng = |C°|, n1 = |C!, and ny = |C?. Note that n = ng + ny + ng. Without
loss of generality, we assume that C° = {1,...,no}, C* = {ng +1,...,n0 + n1}, and
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C? ={ng+n1+1,...,n}. We aim to create n — k many bundles By, ..., B,_ C M\ A4,
each of value at least 2/3 to agent i. To begin with, we set B; = CJ’. for all j € [ng]. Next,
we pair the bundles with indices in C' and unite the sets in each pair. Formally, for all
J € [l%5]], we set Brgij = Cyi9i 1 UG, 1o

First, note that, for all j € C9 v;(B;) = vi(C’J’-) > % Also, since for all j € C1,
v (C}) > %, for all £ € [ng + [%t]], vi(B;) > 2. Therefore, to complete our proof, it
suffices to establish that ng + [ %] > n — k. We have,

2
3 k> > vi(4y) (vi(Aj) < 2/3 for all j € [k])
Jelk]
= Z vi(CjNA) = Z vi(Dy)
Jj€ln] Jj€ln]
= > wDj)+ Y. wD)+ > vi(D;)
J€[no] jE€M1+no]\[no] j€[na+ni+no]\[n1+no]
12
= 3n1 3712

That is, k > % + ng, or equivalently, n — k < n — (%5 + n2) = ng + 5. Therefore, we
have ng + [%-] > n — k, as desired. O

Given a set of nodes S in a threshold graph T', N(S) is the set of all neighbors of the
nodes in S.

Lemma 9.8. For a given partition X = (X1,...,X,) of M and a threshold vector t =
(t1,..-,tn), assume for all j € [n], there exists an agenti such that vi(X;) > t;. Then T x 4
has a non-empty matching M = {(i1, Xj,), ..., (ix, Xj,)} such that N({X;,,...,X;,.}) =
{i1,...,ik}. Moreover, M can be computed in polynomial time.

Proof. First we compute a maximum matching M* in T(x 4 (which can be done in
polynomial time). If M* is a perfect matching between [n] and (X7, ..., X,,), then clearly
the lemma holds. Otherwise, there must exists a Hall’s violator set S C {Xi,..., Xy}
with |[N(S)| < |S|. A minimal such set S can be computed in polynomial time [40].
Note that for all X; € S, there exists an agent ¢ such that vi(Xj) > t; and hence,
|S| > 2. By minimality of S, the Hall’s condition holds for any proper subset of S. Let
T C S and |T| = |S| — 1. We have |S| —1 = |T| < |[N(T)| < |[N(S)| < |S|. Hence
|IN(T)| = N(S) = |S| — 1. Since the Halls’ condition holds for T', there exists a matching
M covering N(T). Since N(T') C N(S) and [N(T')| = |N(S)|, we have that M is covering
N(S). Therefore, there exists no edge between the agents outside M and the bundles
inside M. O

Proof of Theorem 9.6 Now we are ready to prove 9.6. To begin with, note that, if
Algorithm 12 terminates, each agent i € [n] is matched to (and allocated) say, bundle
X; in some threshold-graph with the threshold of agent ¢ being 2/3 - MMS} (M), i.e.,
vi(Xy > 2/3 - MMS}(M). Thus, if the algorithm terminates, it must return a 2-MMS
allocation.
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Now, in order to prove the termination of Algorithm 12, we prove that in each iteration
of the while-loop, the set-size |N| of the remaining agents strictly decreases. Therefore,
the while-loop can iterate for at most n many times and hence Algorithm 12 terminates.

Consider an arbitrary iteration of the while-loop in Algorithm 12. Let N' and M
be the initial set of agents and items respectively and let N7 = [n’] and M’ be the
set of remaining agents and items respectively in the beginning of this iteration of the
while-loop. If N/ = (), then the algorithm obviously terminates.

Let us now consider some agent i € N, First, we prove that there exists a partition
(X1,...,Xp) of M" such that v;(X;) > 2/3 - MMS}(M) for all j € [n/]. We write
Xpat,---, X, to denote the bundles that are matched to agents n’ + 1,...,n in the
previous iterations of the while-loop. Furthermore, by the choice of matching M in Step 7
of Algorithm 12, agent i did not have an edge (in the then threshold graphs) to any of these
bundles X1, ..., X,. That is, v;(X;) < 2/3-MMS} (M) for all j € [n]\ [n/]. By Lemma
9.7, there exists a partitioning (X1, ..., X,) of M’ such that v;(X;) > 2/3 - MMS}' (M)
for all j € [n/].

By Lemma 9.8, there exists a matching M with no edge between the agents outside
M and the bundles inside M. Now without loss of generality, by renaming the agents
and bundles, assume M = {(k+ 1, X;11),...,(n’, X;»v))}. Since we know M # 0, k < n’
and thus the number of remaining agents decreases in the end of this iteration of the
while-loop. O

Using Proposition 9.1, it is easy to see that there exists a PTAS to compute the
partition (By,..., B,_k) in Lemma 9.7. Formally, the following lemma holds.

Lemma 9.9. Fiz an agent 1 € N and some k < n. Consider k bundles Ay, ..., A, C M
such that for all j € [k], we have vi(A;) < 3 - MMS}(M) for agent i. Then, a partition
(B1, ..., Bn_k) of the remaining items in M\ U A; into n—k bundles can be computed
in polynomial time such that vi(B;) > (3 — &) - MMS}(M) for all j € [n — k] and all
constant € > 0.

Proof. In the proof of Lemma 9.7, if an MMS-partition of ¢ is given, computing the
bundles in C7 for all j € {0,1,2} and consequently obtaining (Bi,...,B,_x) can be
done in polynomial time. Fix a constant € > 0 and an agent 7. By Proposition 9.1, a
(1 —¢/2)-MMS partition of i can be computed in polynomial time and following the same
arguments, a partition (By,..., B,_) of the remaining items into n — k bundles can be
computed in polynomial time such that v;(B;) > (3 — ) - MMS}(M). O

In the rest of this section, we modify Algorithm 12 such that the output is a (partial)
allocation which is still 2/3-MMS and now becomes EFX as well. Note that, in Algorithm
12 and generally in the algorithmic technique of [4], once an agent receives a bundle X,
X; becomes her bundle in the final output allocation. So, once agent ¢ receives the bundle
X, she is out of the consideration. This guarantees that agent ¢ will have the same utility
v;(X;) in the end of the algorithm but it does not guarantee anything about how much ¢
values other bundles formed once she is removed from consideration. And, therefore, it
cannot not guarantee EFX (or even EF1) property.

We overcome this barrier by developing Algorithm 13 in this section. Here, we again
allocate a bundle of items to some selected agents in each step, but we modify them
carefully in a later stage. As we will describe next, this feature of our algorithm removes
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the myopic nature of Algorithm 12 and lets us achieve envy-based fairness guarantees,
while maintaining 2/3-MMS guarantees.

Overview of Algorithm 13: In each round of Algorithm 13 with n’ < n remaining
agents, we ask a remaining agent ¢ to partition the remaining goods into n’ bundles
X1,..., X,y of value at least 2/3 - MMS? (M). We prove, in Lemma 9.7, that it is always
feasible to perform the above process at every step of the algorithm. We then shrink
these bundles to guarantee that every remaining agent values each strict subset of these
bundles less than 2/3 fraction of their MMS value. For simplicity, we rename the shrinked
bundles again as Xi,..., X,.

Now, let us assume that, after the process of shrinking, we still have an agent j who
was allocated a bundle in previous iterations and who strongly envies one of Xy,..., X/,
say, for instance, X;. Let us denote a* to be a most envious agent of X;. We allocate, to
a*, a subset of X; which a* envies but no agent strongly envies. In this way, we guarantee
two things at each point during the algorithm, the current (partial) allocation among
the agents who received a bundle so far is (a) EFX and (b) all these agents receive 2/3
fraction of their (original) MMS value. See Algorithm 13 for the pseudocode.

To the best of our knowledge, none of the previous algorithms computing an EFX
allocation allocates a bundle to some of the agents and nothing to the rest in an inter-
mediate step. It might also seem counter-intuitive to do so, since we need to guarantee
that there are enough items left to satisfy the agents who have received nothing so far.
We are able to make it possible in Algorithm 13, since we know that all the remaining
agents (who have not yet received anything) value all the already allocated bundles less
than 2/3 fraction of their MMS value. Interestingly enough, the share-based guarantee
that we are maintaining helps us to prove envy-based guarantees as well.

Theorem 9.10. For any fair division instance with additive valuations, Algorithm 13
returns a (partial) allocation that is both EFX and 2/3-MMS.

Proof. We will begin by proving the correctness of Algorithm 13, and then prove that it
always terminates.

Consider any arbitrary iteration of the while-loop during the execution of Algorithm 13.
Let us assume there are n’ remaining agents at the start of this iteration. Without loss of
generality, we can rename these remaining agents as 1,2,...,n/. This means that every
agent ¢ € [n] \ [n], has been assigned some bundle, say X;. We begin by proving that
v;(X;) > 2/3-MMS} (M) and that agent ¢ does not strongly envy any agent j € [n]\ [n].
Moreover, for all £ € [n], v(X;) < 2/3 - MMS}(M).

We establish the above claim by induction. Since, initially no agent is assigned any
bundle, the claim holds. Now, as the induction hypothesis, we assume that agents in
[n] \ [n/] are already assigned a bundle and the (partial) allocation restricted to them is
2/3-MMS and EFX. Any change in the bundles as a result of the current while-loop can
be examined by the following two cases: either the if-condition in Line 9 is satisfied, and
hence, only the bundle of agent a¢* changes in this iteration, or the if-condition in Line 9
is not satisfied.

e Case 1: The if-condition in Line 9 is satisfied. First, note that, only the bundle of
agent a* changes in this case. Let X,» and X/. be the bundle of agent a* before
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Input: A fair division instance Z = (N, M, V) with additive valuations.
Output: An allocation X.

—_ =
= o

12:
13:
14:
15:

16:

17:
18:

Let MMS; = MMS} (M) for all i € [n]

:N'<—[n]

while N7 # () do
n « |N'|
Let i € N/
Let (X1,...,X,) be a partition of M such that v;(X;) > %MMSZ-
for j € [n/] do
X < minimal subset of X} C X such that 3i' € [n'] with vy (X}) >
if 3a € [n]\ [n/] such that a strongly envies X; then
Let a* € [n] \ [n/] be a most envious agent of X;
Let Xi C X; be minimal such that ve«(X}) > vg+(Xo») and no agent
strongly envies X
M= MU X\ X
Xa* — X;
Go to Line 3
Let Tixy be the threshold-graph with X = (Xi,...,X,) and t =
2(MMSy, ..., MMS,,) for agents in [n/]
Let M ={(k+1,Xks1),...,(n', X,»)} be a matching of size at least 1 such that
N{Xk+1,---, Xn}) ={k+1,...,n} and X; is matched to j for all j € [n]\ [k];
N« [k];
M = MA Uregupy Xes
return (X1, Xo,..., X,);

ZMMS;/
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Algorithm 13: approxMMSandEFX(Z)

and after this iteration of the while-loop respectively. By Line 11, we know that
Va+ (X}+) > vq= (Xor) > 2MMS,+, and hence, the allocation restricted to [n] \ [n/]
is still 2/3-MMS. Moreover, by the choice of X!. in Line 10, no agent in [n] \ [n/]
strongly envies X!.. Since a* did not strongly envy anyone while owning X,-, she
still does not strongly envy anyone while owning X/.. Hence, the allocation re-
stricted to the set of agents in [n] \ [#/] is EFX and 2/3-MMS. Moreover, since X.
is a strict subset of a minimal subset that was of value at least 2/3 - MMS} (M) to
any ¢ € [n'], v(X].) < 2/3 - MMS}(M).

e Case 2: The if-condition in Line 9 is not satisfied. Using Lemma 9.8, we know that

the threshold-graph considered in Line 15 contains a matching M of size at least
one, such that, no unmatched agent has an edge to a matched bundle.

Now, without loss of generality, we rename the agents and bundles such that M =
{(k+1,Xks1),...,(n', X)) }. Therefore, agents in the set [n] \ [k] hold some non-
empty bundle. Note that, by induction hypothesis and by the definition of the
threshold-graph, we know that for all agents i € [n]\ [k], we have v;(X;) > 2MMS;.

Therefore, it remains to prove that the allocation restricted to agents in [n] \ [k] is
EFX as well. We split these agents into the set [n] \ [#/] and [n/] \ [£]. By induction
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hypothesis, we already know the allocation restricted to [n] \ [n'] is EFX. Next,
since the if-condition in Line 9 is not satisfied, no agent in [n] \ [n/] strongly envies
any agent in [n'] \ [k]. For all ¢ € [n/] \ [k], we have v;(X;) > 2/3 - MMS} (M)
and v;(X;) < 2/3 - MMS} (M) for all j € [n] \ [n]. Hence, no agent in [n'] \ [k]
envies any agent in [n] \ [n]. Also, for all i,5 € [n'] \ [k] and all X} C X, we have
vi(X}) < 2/3- MMS} (M) (see Line 8). Since v;(X;) > 2/3 - MMS]' (M), i does not
strongly envy j.

Finally, we will now prove that Algorithm 13 terminates and allocates a non-empty bundle
to all agents. Let us write A to denote the set of agents who are allocated a non-empty
bundle at any point during the execution of Algorithm 13. We will prove that after each
iteration of the while-loop, the vector (3, 4 vi(X;), |A]) increases lexicographically, and
hence, the algorithm must terminate. In Case 1, the utility of a* increases while the
utility of all other agents in A does not change and also |A| does not change. On the
other hand, in Case 2, since the matching M found in Line 16 is of size at least one, at
least one more agent is added to the set A and thus |A| increases. Since, all agents who
were previously in A, remain in A and their utilities do not change, the claim follows. [J

Note that, the vector (D_,.4 vi(X;), |A]) can take pseudo-polynomially many values,
and the only steps in Algorithm 13 that cannot be executed in polynomial time are
related to computing the exact MMS values of agents and the construction of the bundles
X = (X1,...,X,) such that v;(X;) > (2/3)MMS; in Line 6 of the while-loop. However,
by Proposition 9.1 and Lemma 9.9, if we replace the MMS bound 2/3 with 2/3 — ¢ for
any constant € > 0, these steps can be executed in polynomial time. Therefore, we obtain
the following result.

Theorem 9.11. For fair division instances with additive valuations and any constant
e > 0, a (partial) allocation that is both EFX and (2/3 — ¢)-MMS can be computed in
pseudo-polynomial time.

The only reason why the algorithm runs pseudo-polynomial time and not polynomial
time, is that ) . 4 vi(X;) in (3_;c 4 vi(X;), |A]) can take pseudo-polynomially many values.
By relaxing the notion of exact EFX to (1 — §)-EFX for any constant §, we make sure
that v;(X;) can improve log; 4 _g)(vi(M)) many times which bounds the total number
of rounds polynomially.

Theorem 9.12. For fair division instances with additive valuations and any constant
d >0 and e >0, a (partial) allocation that is both (1 — 6)-EFX and (2/3 — ¢)-MMS can
be computed in polynomial time.

9.3.1 2/3-MMS and EFX with bounded Charity

In this section, we show that we can bound the number and the value of items that go
unallocated in Algorithm 13. We do so by using the algorithm EFXwithCharity developed
by [30] which takes a partial allocation Y as input and outputs a (partial) EFX allocation
X with the properties mentioned in Theorem 9.13. Recall that for a partial allocation X,
P(X) is the set of unallocated goods.
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Theorem 9.13. [30] Given a (partial) EFX allocation Y, there exists a (partial) EFX
allocation X = (X1,...,Xn), such that for all i € [n]

(1) X is W—MMS, and

(2) vi(X;) > v(Y;), and
(3) vi(X;) > vi(P(X)), and
(4) [P(X)] <s,

where s is the number of sources in the envy-graph of X.

Therefore, if we run EFXwithCharity on the output of Algorithm 13 (which is EFX
and 2/3-MMS), we end up with a (partial) EFX allocation which is still 2/3-MMS but
also has all the properties that EFXwithCharity guarantees.

Theorem 9.14. For any fair division instance with additive valuations, there exists a

(partial) EFX allocation X = (X1,...,X,) such that

(1) X is max(2/3,m)-MMS, and

(2) for alli € [n], vi(X;) > vi(P(X)), and
(3) |P(X)| <,
where s is the number of sources in the envy-graph of X.

Proof. Using Theorem 9.10, we know that there exist a (partial) EFX allocation Y which
2/3-MMS. Then, we can use Theorem 9.13 to obtain a (partial) allocation X with all
the stated properties. ]

9.4 2-MMS Together with EF1

In this section, we show that we can compute a complete allocation that is both 2/3-MMS
and EF1. Starting from the output of Algorithm 13, we run the well-known envy-cycle
elimination procedure [55] on the remaining items to obtain an EF1 allocation which is
2/3-MMS as well; see Algorithm 15. We note that our result improves upon the previously
best known approximation factor by [7] where they efficiently find allocations that are
4/7-MMS and EF1.

The procedure of envy-cycle elimination was first introduced by [55] that computes
an EF1 allocation among agents having monotone valuation; see Algorithm 14 for pseu-
docode. The idea is to start from an empty allocation and allocate the items one by
one such that the partial allocation remains EF1 in each round. In order to do so, one
needs to look at the envy-graph of the allocation at each step of the algorithm. If it
contains a cycle, by shifting the bundles along that cycle, the utility of all agents on
that cycle improves, the allocation remains EF1 and also the number of the edges in
the envy-graph decreases. After removing all the cycles, the envy-graph must contain at
least one source i.e., an agent whom no one envies. By allocating a remaining item to a
source, the allocation remains EF1. While originally, the algorithm starts with an empty
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Input: A fair division instance Z = (N, M,V) and a partial allocation X =
(X1,...,Xn, P).
Output: A complete allocation X = (X1, Xo,...,X,).
1: while P # () do
2 while there exists a cycle i1 — i9 — ... > iy — i1 in Gx do
3 A+ Xil
4 for j < 1tok—1do
5: Xi]- — X'Z'H_1
6 Xik +— A
7 Let s be a source in Gx
8 Let g be a good in P
9 X+ XsU{g}

10: P+ P\{g}
return (X, Xo,..., X,)

Algorithm 14: envyCycleElimination(Z, X)

Input: A fair division instance Z = (N, M, V).
Output: A complete allocation X.

1: X < approxMMSandEFX(Z)

2: X < envyCycleElimination(Z, X) return X

Algorithm 15: approxMMSandEF1(7)

allocation, one can also give a partial allocation as an input to the algorithm and perform
the envy-cycle elimination procedure on the input allocation with remaining items. If the
input allocation is EF1, then the output allocation will be EF1 as well. See Algorithm
14 for the pseudo-code of our algorithm.

The following lemma follows from the work of [55].

Lemma 9.15. Given an instance I, if X is a partial EF1 allocation, then
envyCycleElimination(Z, X) returns a complete EF1 allocation Y in polynomial time
such that v;(Y;) > vi(X;) for alli € [n].

Proof. [55] showed that envyCycleElimination(Z, X) returns a complete EF1 allocation
in polynomial time. Fix an agent i. In order to prove that v;(Y;) > v;(X;), it suffices to
prove that the value of agent ¢ never decreases throughout the algorithm. Initially, agent
i owns X;. The bundle of agent ¢ only alters if we eliminate a cycle including agent ¢
which in that case agent i receives a bundle which she envied before. Hence her utility
increases. Another case is when agent ¢ is the source to whom we allocate a new good.
Also in this case the utility of ¢ cannot decrease. Hence, in the end v;(Y;) > v;(X;). O

We now prove our next result that deals with the compatibility of EF1 allocations
with MMS guarantees.

Theorem 9.16. For fair division instances with additive valuations, Algorithm 15 returns
a complete allocation which is EF1 and 2/3-MMS.
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Proof. For a given fair division instance, Algorithm 15 begins by running Algorithm 13
as a subroutine. By Theorem 9.10, we know that approxMMSandEFX(Z) returns a par-
tial allocation X which is 2/3-MMS and EFX and thus EF1. Then, it runs envy-
cycle elimination with the remaining items. And, by Lemma 9.15, we know that
envyCycleElimination(Z, X) returns a complete allocation Y which is EF1. Moreover,
Lemma 9.15 shows that v;(Y;) > v;(X;) for all agents ¢. Since X is a 2/3-MMS allocation,
Y continues to be a 2/3-MMS allocation as well. This completes our proof. ]

Note that, the envy-cycle elimination procedure runs in polynomial time. For any
constant € > 0 and 0 > 0, by Theorem 9.11, we can compute a complete a (2/3 — ¢)-
MMS and EF1 allocation in pseudo-polynomial and by Theorem 9.12, we can compute
a (2/3 —¢)-MMS and (1 — 9)-EF1 allocation in polynomial time.

Theorem 9.17. For fair division instances with additive valuations and any constants
e >0 and 6 > 0, a complete allocation that is both EF1 and (2/3 — ¢)-MMS can be
computed in pseudo-polynomial time and a complete allocation that is both (1 — §)-EF1
and (2/3 — €)-MMS can be computed in polynomial time.
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