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ABSTRACT
We prove the uniform convergence of the geometric multigrid V-cycle for hybrid high-order (HHO) and other discontinuous
skeletal methods. Our results generalize previously established results for HDG methods, and our multigrid method uses standard
smoothers and local solvers that are bounded, convergent, and consistent. We use a weak version of elliptic regularity in our proofs.
Numerical experiments confirm our theoretical results.
MSC2020 Classification: 65F10, 65N30, 65N50

1 | Introduction

In the context of fast solvers for linear systems arising from
hybrid discretizations of second-order elliptic equations,
we propose in this work a generalized framework for
the convergence analysis of geometric multigrid methods
[1, 2].

Hybrid discretization methods have been part of the numer-
ical analyst’s toolbox to solve partial differential equations
since the seventies, starting with hybridized versions of mixed
methods such as the Raviart–Thomas (RT-H) [3] and the
Brezzi–Douglas–Marini (BDM-H) [4] methods. They have
gained growing interest in recent years with the outbreak of
modern schemes such as the unifying framework of hybridiz-
able discontinuous Galerkin (HDG) methods [5] and hybrid
high-order (HHO) methods [6–8]. The list also includes, but is
not limited to, compatible discrete operators (CDO) [9], mixed
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and hybrid finite volumes (MHFV) [10–12], Mimetic Finite
Differences (MFD) [13], weak Galerkin [14], local discontin-
uous Galerkin-hybridizable (LDG-H) [15], and discontinuous
Petrov–Galerkin (DPG) [16] methods. Hybrid discretization
methods are characterized by the location of their degrees of
freedom (DOFs), placed both within the mesh cells and on the
faces. In this configuration, the discrete scheme is built so that
the cell DOFs are only locally coupled, leaving the face DOFs in
charge of the global coupling. Algebraically, this feature enables
the local elimination of the cell unknowns from the arising linear
system, resulting in a Schur complement of reduced size, where
only the face unknowns remain. The mechanical engineering
terminology refers to this elimination process as static conden-
sation, and the resulting system is often called the (statically)
condensed system. The terminology trace or skeleton system
is also used. For an extended introduction to hybrid methods
and hybridization, we refer to the preface of [6] and the first
pages of [5].
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This paper addresses the fast solution of the condensed sys-
tems arising from hybrid discretizations of second-order elliptic
equations, focusing on multigrid methods. Various multigrid
solvers and preconditioners have been designed over the past
decade, focusing primarily on HDG [17–22] and HHO [23–26],
but also covering specifically DPG [27, 28] and RT-H/BDM-H
[29]. The above references focus on geometric multigrid methods,
while a fully algebraic multigrid method has been considered
in [30].

The main difficulty in designing a geometric multigrid algorithm
for a trace system resides in the fact that the DOFs are supported
by the mesh skeleton, which makes classical intergrid transfer
operators designed for element-based DOFs unsuitable. While
earlier approaches [17, 29, 31] recast trace functions into bulk
functions to make use of a known efficient solver (typically, a
standard piecewise linear continuous finite element multigrid
solver), the more recent developments seem to converge toward
the so-called notion of homogeneous multigrid, where the hybrid
discretization is conserved at every level of the mesh hierarchy
and “interskeleton” transfer operators are designed to commu-
nicate trace functions from one mesh skeleton to the other. To
this end, multiple skeletal injection operators have already been
proposed [19, 24].

In this paper, we build upon the work of [18, 19, 32, 33] on
HDG methods to propose a generalized demonstration frame-
work for the uniform convergence of homogeneous multigrid
methods with V-cycle. The main motivation behind this gener-
alization is to include the HHO methods in its application scope.
Indeed, recent multigrid solvers for HHO methods [24–26] have
experimentally shown their optimal behavior, but the supporting
theory is still missing.

The main theoretical challenges of devising a multigrid theory
for HHO methods over a multigrid theory for HDG methods lie
in HHO’s more abstract stabilization term, which requires a more
abstract theory. That is, we need to address two main generaliza-
tions to cope with issues that did not come up in [19]. These are
(i) the reduced smoothing property of HHO (assumption (LS1) in
[19] does not hold and needs to be replaced by (HM1) with larger
right-hand side) and (ii) the explicit expression of the HDG sta-
bilizer cannot be used in the proofs resulting in more technical
proofs while several intermediate results to prove multigrid con-
vergence remain true (or very similar results hold). These issues
will be addressed in the first theoretical part. In the second theory
part of this paper, we then prove that the classical HHO method
fulfills the assumptions of this new framework.

The present theory does not assume full elliptic regularity of the
problem, thus allowing complex domains with re-entrant cor-
ners. However, although modern hybrid methods natively handle
polyhedral elements, it is restricted to simplicial meshes since it
relies on a compatibility condition with linear finite elements,
cf. (HM4) in Section 3. The multigrid method is built in a standard
fashion from an abstract injection operator: standard smoothers
are used, and the restriction operator is chosen as the adjoint of
the injection operator. A classical, symmetric V-cycle is used if
the problem exhibits full elliptic regularity. If not, then a variable
V-cycle is used, in which the number of (symmetric) smoothing
steps increases as the level decreases in the hierarchy.

Despite our mesh restrictions, we expect this theory to lay the
foundation for considering polyhedral meshes that can be decom-
posed into simplicial meshes for a vast group of hybrid methods.
This goal has already been achieved for many other methods,
such as mimetic finite differences [34], (non-hybridized) discon-
tinuous Galerkin [35], which do not even require nested mesh
sequences. Schwarz-based preconditioners have been derived
under similar assumptions for the virtual finite elements in [36].
A related future research prospect lies in addressing multigrid
methods on agglomerated meshes as it has been done for other
finite element methods with the ability to cope with polyhedral
meshes, such as discontinuous Galerkin [37] and virtual finite
elements [38]. As this setting presents further challenges in our
case, we leave it to future work. Indeed, since condensed systems
arising from hybrid methods rely on face DOFs, it is required that
faces be coarsened between levels [24, sec. 4.4.3], thus making
suitable coarsening strategies more difficult to design.

The paper is organized as follows. In Section 2, we introduce nota-
tions and the model problem. Section 3 describes the abstract
framework: (i) the hybrid method is described abstractly, in the
form of approximation spaces, local linear operators, stabiliza-
tion term and bilinear form; (ii) the injection operators used in
the multigrid method and its analysis are introduced; (iii) the
properties assumed from the hybrid method (HM1) to (HM8)
and the injection operator (IA1) to (IA2) are listed. Section 4
describes the multigrid method and asserts the associated con-
vergence results, whereas Section 5 carries out the convergence
analysis. In Section 6, we verify our framework’s assumptions for
the standard HHO method, and analyze various injection opera-
tors in Section 7. Finally, Section 8 presents the numerical exper-
iments supporting our theoretical results, realized with the HHO
method on two- and three-dimensional test cases.

2 | Problem Formulation and Notation

Let Ω ⊂ ℝ𝑑 , 𝑑 ≥ 1, be a polytopal bounded Lipschitz domain
with boundary 𝜕Ω. We approximate the unknown 𝑢 ∈ 𝐻1

0 (Ω)
satisfying

− Δ𝑢 = 𝑓 in Ω (2.1)

for some right-hand side 𝑓 . We assume the problem to be regular
in the sense that

||𝑢||1+𝛼 ≤ 𝑐||𝑓 ||𝛼−1 for some 𝛼 ∈ (1
2
, 1] (2.2)

Here, || ⋅ ||𝛼 for 𝛼 ∈ ℝ≥0 denotes the induced norm of the
Sobolev–Slobodeckij space 𝐻𝛼(Ω). By || ⋅ ||−𝛼 and 𝐻−𝛼(Ω) we
denote the dual norm and the dual space of𝐻𝛼

0 (Ω)with respect to
the extension of 𝐿2 duality, respectively. We denote by || ⋅ ||𝑋 and
(⋅, ⋅)𝑋 the 𝐿2-norm and 𝐿2-scalar product with respect to the set
𝑋 ⊂ Ω, respectively. The same notation is also used for the inner
product of [𝐿2(𝑋)]𝑑 (the exact meaning can be inferred from
the context) such that, for all 𝒑, 𝒒 ∈ [𝐿2(𝑋)]𝑑 , (𝑝, 𝑞)𝑋 ∶= ∫

𝑋 𝒑 ⋅ 𝒒,
where ⋅ denotes the dot product. Without loss of generality, we
assume that Ω has diameter 1.

Remark 2.1 (More general boundary conditions). The fol-
lowing approaches directly transfer to non-homogeneous Dirich-
let boundary conditions since those only influence the right-hand
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sides of the numerical schemes. Adaptations are needed for other
types of boundary conditions (e.g., Neumann or mixed).

3 | Discontinuous Skeletal Methods

We will render a general framework for all discontinuous skele-
tal methods covering HDG and HHO methods. To this end, we
start with a family (𝓁)𝓁=0, . . . ,𝐿 of successively refined simplicial
meshes and their corresponding face sets (𝓁)𝓁=0, . . . ,𝐿. For all
level 𝓁, we define ℎ𝓁 = max𝑇∈𝓁 ℎ𝑇 , where ℎ𝑇 denotes the diam-
eter of 𝑇 . The family (𝓁)𝓁=0, . . . ,𝐿 is regular (see [39, Def. 11.2]
for a precise definition), which implies that mesh elements do
not deteriorate, and all of its elements are geometrically conform-
ing, which excludes hanging nodes. Additionally, we assume, for
face𝐹 , either𝐹 ⊂ 𝜕Ω or𝐹 ∩ 𝜕Ω comprises at most one point, and
that refinement does not progress too fast, that is, there is 𝑐ref > 0
such that

ℎ𝓁 ≥ 𝑐refℎ𝓁−1 ∀𝓁 ∈ {1, . . . , 𝐿} (3.1)

Finally, we assume that our mesh is quasi-uniform implying that
there is a constant 𝑐uni such that ℎ𝓁 ≤ 𝑐uni min𝑇∈𝓁 ℎ𝑇 .

Next, we choose a finite-dimensional space 𝑀𝐹 ⊂ 𝐿2(𝐹 ) of func-
tions living on face 𝐹 for all 𝐹 ∈ 𝓁 . In the numerical scheme,
this space will be the test and trial space for the skeletal variable
𝑚𝓁 approximating the trace of the unknown 𝑢 on the skeleton.
Moreover, finite-dimensional approximation spaces 𝑉𝑇 ⊂ 𝐿2(𝑇 )
and 𝑾 𝑇 ⊂ 𝐿2(𝑇 )𝑑 are defined element-wise. The space 𝑉𝑇 is the
local test and trial space for the primary unknown 𝑢, while the
space 𝑾 𝑇 is the local test and trial space for the dual unknown
𝒒 = −∇𝑢. Global spaces are defined by concatenation via

𝑀𝓁 ∶=

{
𝑚 ∈ 𝐿2(𝓁)

||| 𝑚|𝐹 ∈𝑝(𝐹 ) ∀𝐹 ∈ 𝓁

𝑚|𝐹 = 0 ∀𝐹 ⊂ 𝜕Ω

}
(3.2)

𝑉𝓁 ∶=
{
𝑣 ∈ 𝐿2(Ω) ||| 𝑣|𝑇 ∈ 𝑉𝑇 ∀𝑇 ∈ 𝓁

}
(3.3)

𝑾 𝓁 ∶=
{
𝒒 ∈ 𝐿2(Ω;ℝ𝑑) ||| 𝒒|𝑇 ∈ 𝑾 𝑇 ∀𝑇 ∈ 𝓁

}
(3.4)

where 𝑝(𝐹 ) comprises polynomials of degree at most 𝑝 over 𝐹 .
We define element-wise, abstract linear operators

𝑇 ∶ 𝑀𝓁|𝜕𝑇 → 𝑉𝑇 , 𝑚𝓁|𝜕𝑇 ↦ 𝑢𝑇 ,

𝑇 ∶ 𝐿2(𝑇 ) → 𝑉𝑇 , 𝑚𝓁|𝜕𝑇 ↦ 𝑢𝑇 ,

𝑇 ∶ 𝑀𝓁|𝜕𝑇 → 𝑾 𝑇 , 𝑓 ↦ 𝒒𝑇

The choice of these operators, called local solvers, influences the
numerical schemes. Examples for and, which are relevant to
the multigrid method, are provided in Remark 3.1. Global linear
operators are constructed by concatenation of their element-local
analogous:

𝓁 ∶ 𝑀𝓁 → 𝑉𝓁 , 𝓁 ∶ 𝐿2(Ω) → 𝑉𝓁 , 𝓁 ∶ 𝑀𝓁 → 𝑾 𝓁

One can show that 𝑚𝓁 ∈ 𝑀𝓁 approximates the trace of 𝑢 on the
skeleton and that 𝑢 ≈ 𝓁𝑚𝓁 + 𝓁𝑓 in the bulk of Ω if 𝑚𝓁 satisfies

𝑎𝓁(𝑚𝓁 , 𝜇) = ∫Ω
𝑓 𝓁𝜇 for all 𝜇 ∈ 𝑀𝓁 (3.5)

where the elliptic and continuous bilinear form 𝑎𝓁 has the form

𝑎𝓁(𝑚, 𝜇) = ∫Ω
𝓁𝑚 ⋅𝓁𝜇 + 𝑠𝓁(𝑚, 𝜇) (3.6)

The symmetric positive semidefinite 𝑠𝓁 is usually referred to as
(condensed) penalty or stabilizing term.

The choices of the spaces 𝑀𝐹 , 𝑉𝑇 , 𝑾 𝑇 , the local solvers 𝓁 , 𝓁 ,
𝓁 and the stabilizing term 𝑠𝓁 completely define a discontinuous
skeletal method.

Remark 3.1 (Possible choices of hybrid methods).

• For the LDG-H method, we set 𝑀𝐹 = 𝑝(𝐹 ), 𝑉𝑇 = 𝑝(𝑇 ),
𝑾 𝑇 = 𝑑

𝑝 (𝑇 ), and 𝜏𝓁 > 0. The operators𝑇 and𝑇 map𝑚𝜕𝑇

to the element-wise solutions 𝑢𝑇 ∈ 𝑉𝑇 and 𝒒𝑇 ∈ 𝑾 𝑇 of

∫𝑇

𝒒𝑇 ⋅ 𝒑𝑇 − ∫𝑇

𝑢𝑇∇ ⋅ 𝒑𝑇 = −∫𝜕𝑇

𝑚𝜕𝑇𝒑𝑇 ⋅ 𝝂 (3.7a)

∫𝜕𝑇

(𝒒𝑇 ⋅ 𝝂 + 𝜏𝓁𝑢𝑇 )𝑣𝑇 − ∫𝑇

𝒒𝑇 ⋅ ∇𝑣𝑇 = 𝜏𝓁 ∫𝜕𝑇

𝑚𝜕𝑇 𝑣𝑇 (3.7b)

with test functions 𝑣𝑇 ∈ 𝑉𝑇 and 𝒑𝑇 ∈ 𝑾 𝑇 , and 𝝂 the out-
ward normal vector to 𝜕𝑇 . In this sense, 𝑇 ∶ 𝑚𝜕𝑇 ↦ 𝑢𝑇 ,
𝑇 ∶ 𝑚𝜕𝑇 ↦ 𝒒𝑇 for all 𝑇 ∈ 𝓁 .
Finally, the bilinear form 𝑎𝓁 is defined as

𝑎𝓁(𝑚𝓁 , 𝜇)

= ∫Ω
𝓁𝑚𝓁 ⋅𝓁𝜇 +

∑
𝑇∈𝓁

𝜏𝓁 ∫𝜕𝑇

(𝓁𝑚𝓁 − 𝑚𝓁)(𝓁𝜇 − 𝜇)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑠𝓁 (𝑚𝓁 ,𝜇)

for some parameter 𝜏𝓁 > 0.

• For the RT-H and BDM-H methods, one uses the frame-
work of the LDG-H method replacing the local bulk spaces
by the RT-H and BDM-H spaces with 𝜏𝓁 = 0.

• For the HHO method, we set 𝑀𝐹 = 𝑝(𝐹 ), 𝑉𝑇 = 𝑝(𝑇 ),
and 𝑾 𝑇 = ∇𝑝+1(𝑇 ). For (𝑢𝑇 , 𝑚𝜕𝑇 ) ∈ 𝑉𝑇 ×𝑀𝜕𝑇 , we define
𝒒𝑇 (𝑢𝑇 , 𝑚𝜕𝑇 ) as the element-wise solution of

∫𝑇

𝒒𝑇 (𝑢𝑇 , 𝑚𝜕𝑇 ) ⋅ 𝒑𝑇 − ∫𝑇

𝑢𝑇∇ ⋅ 𝒑𝑇 = −∫𝜕𝑇

𝑚𝜕𝑇𝒑𝑇 ⋅ 𝝂

(3.8)
for all 𝒑𝑇 ∈ 𝑾 𝑇 . Note that this relation is the same as (3.7a)
except for the different choice of 𝑾 𝑇 . In HHO terminology,
𝒒𝑇 (𝑢𝑇 , 𝑚𝜕𝑇 ) corresponds to −∇𝜃𝑝+1

𝑇
(𝑢𝑇 , 𝑚𝜕𝑇 ), where 𝜃𝑝+1

𝑇
denotes the so-called local higher order reconstruction oper-
ator, defined by (3.8) and the closure condition

∫𝑇

𝜃𝑝+1
𝑇

(𝑢𝑇 , 𝑚𝜕𝑇 ) = ∫𝜕𝑇

𝑢𝑇 (3.9)

In a second step, given a local bilinear stabilizer
𝑠
𝑇
((𝑢𝑇 , 𝑚𝜕𝑇 ), (𝑣𝑇 , 𝜇)), we introduce the local bilinear form

𝑎
𝑇
((𝑢𝑇 , 𝑚𝜕𝑇 ), (𝑣𝑇 , 𝜇))

= ∫𝑇

𝒒𝑇 (𝑢𝑇 , 𝑚𝜕𝑇 ) ⋅ 𝒒𝑇 (𝑣𝑇 , 𝜇) + 𝑠
𝑇
((𝑢𝑇 , 𝑚𝜕𝑇 ), (𝑣𝑇 , 𝜇)) (3.10)

Consider the following local problems:

3 of 17
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(i) For 𝑚𝜕𝑇 ∈ 𝑀𝜕𝑇 , find 𝑢1
𝑇
∈ 𝑉𝑇 such that

𝑎
𝑇
((𝑢1

𝑇 , 0), (𝑣𝑇 , 0)) = −𝑎
𝑇
((0, 𝑚𝜕𝑇 ), (𝑣𝑇 , 0)) ∀𝑣𝑇 ∈ 𝑉𝑇

(3.11)
(ii) For 𝑓 ∈ 𝐿2(Ω), find 𝑢2

𝑇
∈ 𝑉𝑇 such that

𝑎
𝑇
((𝑢2

𝑇 , 0), (𝑣𝑇 , 0)) = ∫𝑇

𝑓𝑣𝑇 ∀𝑣𝑇 ∈ 𝑉𝑇 (3.12)

We define 𝑇 ∶ 𝑚𝜕𝑇 ↦ 𝑢1
𝑇

solution of (3.11), 𝑇 ∶ 𝑓 ↦ 𝑢2
𝑇

solution of (3.12), and we set element-by-element

𝑇 ∶ 𝑚𝜕𝑇 ↦ 𝒒𝑇 (𝑇 𝑚𝜕𝑇 , 𝑚𝜕𝑇 ) (3.13)

Finally, the global bilinear form is defined as

𝑎𝓁(𝑚𝓁 , 𝜇)

=∶
∑
𝑇∈𝓁

𝑎
𝑇
((𝑇 𝑚𝜕𝑇 , 𝑚𝜕𝑇 ), (𝑇 𝜇, 𝜇))

= ∫Ω
𝓁𝑚𝓁 ⋅𝓁𝜇 +

∑
𝑇∈𝓁

𝑠
𝑇
((𝓁𝑚𝓁 , 𝑚𝓁), (𝓁𝜇, 𝜇))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑠𝓁 (𝑚𝓁 ,𝜇)

(3.14)

3.1 | Operators for the Multigrid Method
and Analysis

For functions 𝜌, 𝜇 ∈ 𝐿2(𝓁), we set

⟨𝜌, 𝜇⟩𝓁 =
∑
𝑇∈

|𝑇 ||𝜕𝑇 | ∫𝜕𝑇

𝜌𝜇

Importantly, ⟨⋅, ⋅⟩𝓁 defines a scalar product on 𝑀𝓁 , and the norm
of this scalar product

|| ⋅ ||𝓁 ∶= ⟨⋅, ⋅⟩ 1
2
𝓁

scales like the 𝐿2-norm in the bulk of the domain. Moreover, the
scalar product can readily be applied to a combination of bulk and
skeleton functions: For example, ⟨𝜇, 𝑣⟩𝓁 can readily be evaluated
for 𝜇 ∈ 𝑀𝓁 and 𝑣 ∈ 𝑉𝓁 with the understanding that the trace of
𝑣 on 𝜕𝑇 is used inside the integral over 𝜕𝑇 . We relate the bilinear
forms 𝑎𝓁 and ⟨⋅, ⋅⟩𝓁 using the operator 𝐴𝓁 , which is defined via

⟨𝐴𝓁𝜌, 𝜇⟩𝓁 ∶= 𝑎𝓁(𝜌, 𝜇) ∀𝜌, 𝜇 ∈ 𝑀𝓁 (3.15)

The injection operator 𝐼𝓁 ∶ 𝑀𝓁−1 → 𝑀𝓁 remains abstract at this
level. Its properties securing our analytical findings are listed in
Section 3.3. Possible realizations of injection operators can be
found in [19]. The multigrid operator 𝐵𝓁 ∶ 𝑀𝓁 → 𝑀𝓁 for precon-
ditioning 𝐴𝓁 will be defined in Section 4.2.

The operators 𝑃 ⟨⋅⟩
𝓁−1 and 𝑃 𝑎

𝓁−1, which are defined via

𝑃 ⟨⋅⟩
𝓁−1 ∶ 𝑀𝓁 → 𝑀𝓁−1, ⟨𝑃 ⟨⋅⟩

𝓁−1𝜌, 𝜇⟩𝓁−1 = ⟨𝜌, 𝐼𝓁𝜇⟩𝓁
∀𝜇 ∈ 𝑀𝓁−1 (3.16)

𝑃 𝑎
𝓁−1 ∶ 𝑀𝓁 → 𝑀𝓁−1, 𝑎𝓁−1(𝑃 𝑎

𝓁−1𝜌, 𝜇) = 𝑎𝓁(𝜌, 𝐼𝓁𝜇)

∀𝜇 ∈ 𝑀𝓁−1 (3.17)

replace the 𝐿2-orthogonal (for short, 𝐿2) and the Ritz projec-
tions of conforming methods, respectively. While the former (or
a discrete variation of it) is relevant for implementing multigrid
methods, the latter is key to the analysis. We also introduce the
𝐿2-projections

Π𝜕
𝓁 ∶𝐻1

0 (Ω) → 𝑀𝓁 , ⟨Π𝜕
𝓁𝑣, 𝜇⟩𝓁 = ⟨𝑣, 𝜇⟩𝓁 ∀𝜇 ∈ 𝑀𝓁 ,

Πd
𝓁 ∶𝐻1(Ω) → 𝑉𝓁 , (Πd

𝓁𝑣,𝑤)Ω = (𝑣,𝑤)Ω ∀𝑤 ∈ 𝑉𝓁

3.2 | Assumptions on Discontinuous Skeletal
Methods

Here and in the following, ≲ means smaller than or equal to, up
to a constant independent of the mesh size ℎ𝓁 and the multigrid
level 𝓁. We also write 𝐴 ≃ 𝐵 as a shortcut for “𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴”.
We assume that the numerical hybrid method, characterized in
Section 3, satisfies the following conditions for any 𝜇 ∈ 𝑀𝓁 :

• The trace of the bulk unknown approximates the skeletal
unknown: ||𝓁𝜇 − 𝜇||𝓁 ≲ ℎ𝓁||𝜇||𝑎𝓁 (HM1)

where || ⋅ ||𝑎𝓁 denotes the norm induced by 𝑎𝓁 on 𝑀𝓁 , that is,

|| ⋅ ||𝑎𝓁 ∶= 𝑎𝓁(⋅, ⋅)
1
2 (3.18)

• The operators 𝓁𝜇 and 𝓁𝜇 are continuous:

||𝓁𝜇||Ω ≲ ℎ−1
𝓁 ||𝜇||𝓁 and ||𝓁𝜇||Ω ≲ ||𝜇||𝓁 (HM2)

• The quantity𝓁𝜇 approximates−∇𝓁𝓁𝜇, where∇𝓁 denotes
the broken gradient:

||𝓁𝜇 + ∇𝓁𝓁𝜇||Ω ≲ ℎ−1
𝓁 ||𝓁𝜇 − 𝜇||𝓁 (HM3)

• Consistency with the standard linear finite element method:
If 𝑤 ∈ 𝑉

c
𝓁 , we have

𝓁𝛾𝓁𝑤 = 𝑤 and 𝓁𝛾𝓁𝑤 = −∇𝑤 (HM4)

where 𝛾𝓁 is the trace operator to the skeleton 𝓁 and

𝑉
c
𝓁 ∶=

{
𝑣 ∈ 𝐻1

0 (Ω)
||| 𝑣|𝑇 ∈ 1(𝑇 ) ∀𝑇 ∈ 𝓁

}
• Convergence of the skeletal unknown to the traces of the

analytical solution. That is, if 𝑚𝓁 is the skeletal function of
the hybrid approximation to 𝑢 ∈ 𝐻1+𝛼(Ω), we have

||𝑚𝓁 − Π𝜕
𝓁𝑢||𝑎𝓁 ≲ ℎ𝛼

𝓁||𝑢||𝛼+1 (HM5)

• The usual bounds on the eigenvalues of the condensed dis-
cretization matrix hold:

||𝜇||2𝓁 ≲ 𝑎𝓁(𝜇, 𝜇) ≲ ℎ−2
𝓁 ||𝜇||2𝓁 (HM6)

• If 𝜌 = 𝛾𝓁𝑤 for 𝑤 ∈ 𝑉
c
𝓁 , the stabilization satisfies

𝑠𝓁(𝜌, 𝜇) = 0 (HM7)
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• The global bilinear form is bounded by an HDG-type norm:

𝑎𝓁(𝜇, 𝜇) ≲ ||𝜇||2Ω +
∑
𝑇∈𝓁

1
ℎ𝑇

|| 𝜇 − 𝜇||2𝜕𝑇 (HM8)

Remark 3.2 (HDG methods). For the LDG-H (with 𝜏𝓁ℎ𝓁 ≲
1), the RT-H, and the BDM-H methods, (HM7) follows directly
from (HM4), and (HM8) follows directly from the definition of
the bilinear form 𝑎𝓁 . Thus, one can use almost identical (but
slightly simpler) assumptions to prove multigrid convergence for
the HDG, BDM-H, and RT-H methods. (HM2) to (HM6) have
been used to prove the convergence of multigrid methods for
HDG, while (HM1), (HM7), and (HM8) are novel assumptions
that allow to generalize the convergence theory to HHO.

Notably, assumption (HM6) typically requires mesh regularity,
which might limit the method’s flexibility. Moreover, we empha-
size that (HM1) has been weakened compared with our previous
work, complicating the analysis below. Moreover, the more gen-
eral stabilization (when compared with HDG methods) needs
to be controlled in our multigrid analysis, which is realized in
(HM7) and (HM8).

3.3 | Assumptions on Injection Operators

Our analytical findings will rely on the following conditions to
hold on all mesh levels 𝓁:

1. Boundedness:

||𝐼𝓁𝜌||𝓁 ≲ ||𝜌||𝓁−1 ∀𝜌 ∈ 𝑀𝓁−1 (IA1)

2. Conformity with linear finite elements:

𝐼𝓁𝛾𝓁−1𝑤 = 𝛾𝓁𝑤 ∀𝑤 ∈ 𝑉
c
𝓁−1 (IA2)

3. Locality: there is a parameter 𝜎 > 0 such that for any
𝑇 ∈ 𝓁−1

(𝐼𝓁𝜇)|𝜕𝑇 = (𝐼𝓁𝜌)|𝜕𝑇 (IA3)

for all 𝜇, 𝜌 ∈ 𝑀𝓁−1 with 𝜇|𝐵(𝑥𝑇 ,𝜎ℎ𝓁−1) = 𝜌|𝐵(𝑥𝑇 ,𝜎ℎ𝓁−1) and
𝐵(𝑥𝑇 , 𝜎ℎ𝓁−1) denoting the ball with radius 𝜎ℎ𝓁−1 around the
barycenter of 𝑇 called 𝑥𝑇 .

(The second condition can be interpreted as conformity with
overall continuous, piecewise linear finite element spaces, which
are nested.) This way, we do not restrict ourselves to one spe-
cific injection operator. All injection operators in [19] satisfy the
desired properties. An immediate consequence of (HM4) and
(IA2) is

Lemma 3.3 (Quasi-orthogonality). Let (HM4), (HM7), and
(IA2) hold. Then we have, for all 𝜇 ∈ 𝑀𝓁 and all 𝑤 ∈ 𝑉

c
𝓁−1,

(𝓁𝜇 −𝓁−1𝑃
𝑎
𝓁−1𝜇,∇𝑤)Ω = 0

Proof. Let 𝑤 ∈ 𝑉
c
𝓁−1 and set 𝜌 ∶= 𝛾𝓁−1𝑤. We have

𝓁−1𝜌 = 𝓁−1𝛾𝓁−1𝑤
(HM4)
= −∇𝑤

(HM4)
= 𝓁𝛾𝓁𝑤

(IA2)
= 𝓁𝐼𝓁𝛾𝓁−1𝑤 = 𝓁𝐼𝓁𝜌 (3.19)

where we have additionally used the embedding 𝑉
c
𝓁−1 ⊂ 𝑉

c
𝓁 in

the third equality. The definitions of 𝑎𝓁 , 𝑎𝓁−1, and (HM7) yield

𝑎𝓁−1(𝑃 𝑎
𝓁−1𝜇, 𝜌)

= (𝓁−1𝑃
𝑎
𝓁−1𝜇,𝓁−1𝜌)Ω

(3.19)
= −(𝓁−1𝑃

𝑎
𝓁−1𝜇,∇𝑤)Ω,

𝑎𝓁(𝜇, 𝐼𝓁𝜌) = (𝓁𝜇,𝓁𝐼𝓁𝜌)Ω
(3.19)
= −(𝓁𝜇,∇𝑤)Ω

The two lines are equal by definition (3.17) of the projection oper-
ator 𝑃 𝑎

𝓁−1. Thus, taking the difference gives the result. ◽

4 | Multigrid Algorithm and Abstract
Convergence Results

If (2.1) has full elliptic regularity, which means that (2.2) holds for
𝛼 = 1, we use a standard (symmetric) V-cycle multigrid method.
Otherwise, we use a variable V-cycle multigrid method to solve
the system of linear equations arising from (3.5).

We follow the lines of [19] and avoid a discussion about good
smoothing operators. That is, we allow our smoother in smooth-
ing step 𝑖

𝑅𝑖
𝓁 ∶ 𝑀𝓁 → 𝑀𝓁

to fit the criteria of [40], which allow pointwise Jacobi and
Gauss–Seidel methods. Next, we present the multigrid method as
in [41]. Afterwards, we present the abstract convergence results
of [42].

4.1 | Multigrid Algorithm

We recursively define the multigrid operator of the refinement
level 𝓁

𝐵𝓁 ∶ 𝑀𝓁 ∋ 𝜇 ↦ 𝐵𝓁𝜇 ∈ 𝑀𝓁

with 𝑛𝓁 ∈ ℕ ⧵ {0} smoothing steps on level 𝓁: Let 𝐵0 = 𝐴−1
0 be

the exact inverse of 𝐴𝓁 on the coarsest level. For 𝓁 > 0, set 𝑥0 =
0 ∈ 𝑀𝓁 .

1. Perform 𝑛𝓁 smoothing steps

𝑥𝑖 = 𝑥𝑖−1 +𝑅𝑖
𝓁(𝜇 − 𝐴𝓁𝑥

𝑖−1)

2. Perform recursive multigrid step

𝑞 = 𝐵𝓁−1𝑃
⟨⋅⟩

𝓁−1(𝜇 − 𝐴𝓁𝑥
𝑛𝓁 )

and set 𝑦0 = 𝑥𝑛𝓁 + 𝐼𝓁𝑞.

3. Perform 𝑛𝓁 smoothing steps

𝑦𝑖 = 𝑦𝑖−1 +𝑅
𝑖+𝑛𝓁
𝓁 (𝜇 − 𝐴𝓁𝑦

𝑖−1)

4. Set 𝐵𝓁𝜇 = 𝑦𝑛𝓁 .

If 𝑛𝓁 = 𝑛 independent of the level, we obtain the standard V-cycle.
The variable V-cycle is characterized by

𝜌1𝑛𝓁 ≤ 𝑛𝓁−1 ≤ 𝜌2𝑛𝓁 (4.1)

which needs to hold for all 𝓁 ≤ 𝐿 and uniform constants 1 < 𝜌1 ≤
𝜌2, see [41].

5 of 17
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4.2 | Main Convergence Results

We use the results obtained in [41, 42]. These publications
show convergence under three abstract assumptions, which are
assumed to hold for all level 𝓁. To illustrate these assumptions,
let 𝜆𝐴

𝓁 be the largest eigenvalue of 𝐴𝓁 , and set

𝐾𝓁 ∶=
(
1 − (1 −𝑅𝓁𝐴𝓁)(1 −𝑅′

𝓁𝐴𝓁)
)
𝐴−1

𝓁

where 1 is the identity matrix and 𝑅′
𝓁 is the transpose of 𝑅𝓁 . The

aforementioned, abstract assumptions claim existence of con-
stants 𝐶1, 𝐶2, 𝐶3 > 0 independent of the mesh level 𝓁 and of the
function 𝜇 ∈ 𝑀𝓁 satisfying:

• Regularity of approximation:

|𝑎𝓁(𝜇 − 𝐼𝓁𝑃
𝑎
𝓁−1𝜇, 𝜇)| ≤ 𝐶1

(||𝐴𝓁𝜇||2𝓁
𝜆𝐴
𝓁

)𝛼

𝑎𝓁(𝜇, 𝜇)1−𝛼 (A1)

If 𝛼 = 1 in (2.2), (A1) simplifies to

|𝑎𝓁(𝜇 − 𝐼𝓁𝑃
𝑎
𝓁−1𝜇, 𝜇)| ≤ 𝐶1

||𝐴𝓁𝜇||2𝓁
𝜆𝐴
𝓁

(A1′)

• Boundedness of the composition 𝐼𝓁∘𝑃 𝑎
𝓁−1 ∶ 𝑀𝓁 → 𝑀𝓁 of

the injection and Ritz quasi-projection operators:

||𝜇 − 𝐼𝓁𝑃
𝑎
𝓁−1𝜇||𝑎𝓁 ≤ 𝐶2||𝜇||𝑎𝓁 (A2)

• Smoothing hypothesis:

||𝜇||2𝓁
𝜆𝐴
𝓁

≤ 𝐶3⟨𝐾𝓁𝜇, 𝜇⟩𝓁 (A3)

Theorem 4.1. Let (2.2) hold with 𝛼 = 1, as well as (A1′), (A2),
and (A3). Then, for the standard V-cycle, for all 𝓁 ≥ 0, and for all
𝜇 ∈ 𝑀𝓁 |𝑎𝓁(𝜇 − 𝐵𝓁𝐴𝓁𝜇, 𝜇)| ≤ 𝛿𝑎𝓁(𝜇, 𝜇)

where
𝛿 =

𝐶1𝐶3

𝑛 − 𝐶1𝐶3
with 𝑛 > 2𝐶1𝐶3

Proof. This result is [42, Thm. 3.1]. ◽

Theorem 4.2. Let (2.2) hold for 𝛼 ∈
(

1
2
, 1
]
, and further

assume (A1), (A2), (A3), and that (4.1) holds with 𝜌1, 𝜌2 > 1. Then,
for all 𝓁 ≥ 0 and all 𝜇 ∈ 𝑀𝓁 , it holds

𝜂0𝑎𝓁(𝜇, 𝜇) ≤ 𝑎𝓁(𝐵𝓁𝐴𝓁𝜇, 𝜇) ≤ 𝜂1𝑎𝓁(𝜇, 𝜇)

with
𝜂0 ≥ 𝑛𝛼𝓁

𝑀 + 𝑛𝛼𝓁
, 𝜂1 ≤ 𝑀 + 𝑛𝛼𝓁

𝑛𝛼𝓁

where the constant 𝑀 > 0 is independent of 𝓁. Hence, the condition
number of 𝐵𝓁𝐴𝓁 does not depend on 𝓁.

Proof. This result is obtained combining [41, Thm. 6] with the
relation [41, (A.4) ⇔ (3.4)]. ◽

5 | Convergence Analysis

We follow the lines of [19] and extend their results to our more
general framework. Thus, the theorems and lemmas in the fol-
lowing sections will be very similar to the ones in [19]. If Lu et al.
[19] have not used any HDG-specific arguments in their proofs,
we also accept the results to hold in our framework and cite them.
Otherwise, we will redo the respective proofs.

5.1 | Energy Boundedness of the Injection
and Proof of (A2)

In the first half of this section, we prove the energy bounds

||𝐼𝓁𝑃 𝑎
𝓁−1𝜇||2𝑎𝓁 ≲ ||𝑃 𝑎

𝓁−1𝜇||2𝑎𝓁−1
≲ ||𝜇||2𝑎𝓁 ∀𝜇 ∈ 𝑀𝓁

which are the key properties needed to prove (A2) (see (5.14)
in the final proof of this section). The key step is proving that||𝐼𝓁𝜇||𝑎𝓁 ≲ ||𝜇||𝑎𝓁−1

holds for all 𝜇 ∈ 𝑀𝓁−1 (i.e., the first inequality
holds). Proving the second inequality is then a rather straightfor-
ward task and can be done in a few lines, cf. (5.13). Thus, the main
target of this section can be reduced to proving the first inequality,
which is rigorously stated in (5.7).

To this end, we use the averaging linear interpolation

𝐼avg
𝓁 ∶ 𝑉𝓁 → 𝑉

c
𝓁

𝐼avg
𝓁𝑢(𝒙𝒂) ∶= { {𝑢}}𝒂 for any internal mesh vertex 𝒂 (5.1)

Here, 𝒙𝒂 is the point that corresponds to vertex 𝒂, and {{𝑢}}𝒂
describes the arithmetic mean of all values that 𝑢 attains in 𝒂. For
𝒙 ∈ 𝜕Ω, we set 𝐼avg

𝓁𝑢(𝒙) ∶= 0.

This averaging operator allows us to go from the coarse mesh
(level 𝓁 − 1) to the fine mesh (level 𝓁) in way that increases the|| ⋅ ||𝑎𝓁 norm in a controllable way. Thus, this (auxiliary) averaging
operator can be used as a stepping stone to prove the bounded-
ndess of the injection operator 𝐼𝓁 . This idea is solidified by the
properties in the following lemma.

Lemma 5.1. Assuming (HM1) and (HM3), we have, for all 𝓁,
that

||∇𝐼avg
𝓁𝓁𝜇||Ω ≲ ||𝜇||𝑎𝓁 , ∀𝜇 ∈ 𝑀𝓁 (5.2)

||𝓁𝜆 − 𝐼avg
𝓁𝓁𝜆||Ω ≲ ℎ𝓁||𝜇||𝑎𝓁 ∀𝜆 ∈ 𝑀𝓁 (5.3)

||𝜇 − 𝛾𝓁𝐼
avg

𝓁𝓁𝜇||𝓁 ≲ ℎ𝓁||𝜇||𝑎𝓁 ∀𝜇 ∈ 𝑀𝓁 (5.4)

Proof. This can be shown analogously to [19, Lem. 5.2 and
Lem. 5.3]. However, their (LS1) needs to be replaced by our ver-
sion of (HM1), which changes the right-hand sides in (5.2) and
(5.3). ◽

Now, we can transport these boundedness arguments to the injec-
tion operator in the below lemma. Notice the similarities between
(5.2) and (5.5), and between (5.3) and (5.6).

Lemma 5.2. Let (IA1), (IA2), (HM1) to (HM4) hold. We have

||𝓁𝐼𝓁𝜇||Ω ≲ ||𝜇||𝑎𝓁−1
(5.5)

||𝓁−1𝜇 −𝓁𝐼𝓁𝜇||Ω ≲ ℎ𝓁−1||𝜇||𝑎𝓁−1
≲ ℎ𝓁||𝜇||𝑎𝓁−1

(5.6)

6 of 17 Numerical Methods for Partial Differential Equations, 2025

 10982426, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.70023 by U
niversitätsbibliothek D

er, W
iley O

nline L
ibrary on [09/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



for all 𝜇 ∈ 𝑀𝓁−1. If, additionally, (HM8) holds, we have

||𝐼𝓁𝜇||𝑎𝓁 ≲ ||𝜇||𝑎𝓁−1
∀𝜇 ∈ 𝑀𝓁−1 (5.7)

||𝑃 𝑎
𝓁−1𝜇||𝑎𝓁−1

≲ ||𝜇||𝑎𝓁 ∀𝜇 ∈ 𝑀𝓁 (5.8)

To prove this lemma, we use another operator to compare with:
the lifting operator 𝑆𝓁 ∶ 𝑀𝓁 → 𝑉disc (with 𝑉disc ⊂ 𝐶(Ω) ∩ 𝐿2(Ω)
being a suitable discrete space). This operator serves as an inter-
mediate: We transport the boundedness properties of the aver-
aging operator to the lifting operator, and use the lifting opera-
tor to deduce boundedness of the injection operator (one might,
loosely speaking, think of a triangle inequality-like argument).
It is inspired by [43]. It is also used in [44, Lem. A.3] for the
two-dimensional case and in [45, Def. 5.46] for three-dimensional
settings. For any 𝜇 ∈ 𝑀𝓁

(𝑆𝓁𝜇, 𝑣)𝑇 = (𝓁𝜇, 𝑣)𝑇 ∀𝑣 ∈ 𝑝(𝑇 ), ∀𝑇 ∈ 𝓁 (5.9a)

⟨𝑆𝓁𝜇, 𝜂⟩𝐹 = ⟨𝜇, 𝜂⟩𝐹 ∀𝜂 ∈ 𝑝+1(𝐹 ), ∀𝐹 ∈ 𝓁 (5.9b)

𝑆𝓁𝜇(𝒂) = {{𝜇}}𝒂 ∀𝒂 vertex in 𝓁 , 𝒂 ∉ 𝜕Ω (5.9c)

𝑆𝓁𝜇(𝒂) = 0 ∀𝒂 vertex in 𝓁 , 𝒂 ∈ 𝜕Ω (5.9d)

in two dimensions. In three spatial dimensions, we add the con-
straints

⟨𝑆𝓁𝜇, 𝜂⟩Γ = ⟨{{𝜇}}Γ, 𝜂⟩Γ ∀𝜂 ∈ 𝑝+2(Γ) (5.9e)

Here, {{𝑚}}Γ is the average taken over all cells adjacent to Γ.
For a precise definition of 𝑉disc and a proof of the fact that
𝑆𝓁 is well-defined, please refer to [44, Lem. A.3] and [45, Def.
5.46]. This construction extends to dimensions higher than three.
Moreover, we have

Lemma 5.3 (Properties of 𝑆𝓁𝜆). Under assumptions
(HM1)–(HM4), we have

||𝑆𝓁𝜇||Ω ≅ ||𝜇||𝓁 ∀𝜆 ∈ 𝑀𝓁 , (norm equivalence)
(5.10)

𝑆𝓁𝛾𝓁𝑤 =𝑤 ∀𝑤 ∈ 𝑉
c
𝓁 , (lifting identity) (5.11)

|𝑆𝓁𝜇|1,Ω ≲ ||𝜇||𝑎𝓁 ∀𝜆 ∈ 𝑀𝓁 , (lifting bound) (5.12)

where | ⋅ |1,Ω denotes the 𝐻1(Ω)-seminorm.

Proof. The proof can be performed similarly to the proof of [19,
Lem. 5.5] with our modified version of (HM1) when compared
with their (LS1). ◽

With all preparations ready, we can now prove Lemma 5.2 with
the key property (5.7):

Proof of Lemma 5.2. Inequalities (5.5) and (5.6) can be
obtained as in [19, Lem. 5.1]. Let us obtain inequality (5.7). To
this end, we observe that

||𝐼𝓁𝜇||2𝑎𝓁 (HM8)
≲ ||𝓁𝐼𝓁𝜇||2Ω +

∑
𝑇∈𝓁

1
ℎ𝑇

||𝓁𝐼𝓁𝜇 −𝓁−1𝜇||2𝜕𝑇
+

∑
𝑇∈𝓁

1
ℎ𝑇

||𝓁−1𝜇 − 𝐼𝓁𝜇||2𝜕𝑇

where (5.5) allows us to bound ||𝓁𝐼𝓁𝜇||2Ω, (5.6) allows us to
bound∑

𝑇∈𝓁
ℎ−1
𝑇 ||𝓁𝐼𝓁𝜇 −𝓁−1𝜇||2𝜕𝑇 ≲ ℎ−2

𝓁 ||𝓁𝐼𝓁𝜇 −𝓁−1𝜇||2Ω
Assumption (IA3) implies that ||𝓁−1𝜇 − 𝐼𝓁𝜇||𝜕𝑇 depends only
on 𝜇|𝐵(𝑥𝑇 ,𝜎ℎ). Thus, we use the face-wise 𝐿2 orthogonal projection
𝜋 ∶ 𝐿2(𝐵̃(𝑥𝑇 , 𝜎ℎ) ∩  ) → 𝑀𝐵̃(𝑥𝑇 ,𝜎ℎ)∩ to define the operator

 ∶ 𝐻1(𝐵̃(𝑥𝑇 , 𝜎ℎ)) ∋ 𝑣 ↦ 𝓁−1𝜋𝑣 − 𝐼𝓁𝜋𝑣 ∈ 𝑀𝓁|𝜕𝑇 ⊂ 𝐿2(𝜕𝑇 )

where 𝐵̃(𝑥𝑇 , 𝜎ℎ) = 𝐵(𝑥𝑇 , 𝜎ℎ) ∩ Ω. Operator  is continuous
(because of (IA1) and (HM2)) and vanishes if 𝑣 is an overall
continuous, element-wise linear polynomial, c.f. (IA2). Thus, the
standard scaling argument, where𝐵(𝑥𝑇 , ℎ) is mapped to the unity
ball 𝐵(0, 1) can be applied. This allows us to deduce that∑

𝑇∈𝓁
1
ℎ𝑇

||𝓁−1𝜋𝑣 − 𝐼𝓁𝜋𝑣||2𝜕𝑇 ≲ |𝑣|2
𝐻1(Ω)

Finally, setting 𝑣 = 𝑆𝓁−1𝜇 with the lifting operator 𝑆𝓁−1 as
defined in (5.9) yields the result (in conjunction with (5.12)).

Relation (5.8) results from

||𝑃 𝑎
𝓁−1𝜇||2𝑎𝓁−1

(3.18)
= 𝑎𝓁−1(𝑃 𝑎

𝓁−1𝜇, 𝑃
𝑎
𝓁−1𝜇)

(3.17)
= 𝑎𝓁(𝜇, 𝐼𝓁𝑃 𝑎

𝓁−1𝜇)

≤ ||𝜇||𝑎𝓁 ||𝐼𝓁𝑃 𝑎
𝓁−1𝜇||𝑎𝓁 (5.7)

≲ ||𝜇||𝑎𝓁 ||𝑃 𝑎
𝓁−1𝜇||𝑎𝓁−1

(5.13)

where we have used the Cauchy–Schwarz inequality to pass to
the second line.

Lemma 5.4. Under the assumptions of Lemma 5.2, (A2) holds.

Proof. Using first the linearity and symmetry of 𝑎𝓁 and then the
definition (3.17) of the Ritz quasi-projector 𝑃 𝑎

𝓁−1, we obtain, for
all 𝜇 ∈ 𝑀𝓁 ,

𝑎𝓁(𝜇 − 𝐼𝓁𝑃
𝑎
𝓁−1𝜇, 𝜇 − 𝐼𝓁𝑃

𝑎
𝓁−1𝜇)

= 𝑎𝓁(𝜇, 𝜇) − 2𝑎𝓁(𝜇, 𝐼𝓁𝑃 𝑎
𝓁−1𝜇) + 𝑎𝓁(𝐼𝓁𝑃 𝑎

𝓁−1𝜇, 𝐼𝓁𝑃
𝑎
𝓁−1𝜇)

≤ ||𝜇||2𝑎𝓁−2𝑎𝓁−1(𝑃 𝑎
𝓁−1𝜇, 𝑃

𝑎
𝓁−1𝜇)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤0

+ ||𝐼𝓁𝑃 𝑎
𝓁−1𝜇||2𝑎𝓁

To conclude, we write for the rightmost term

||𝐼𝓁𝑃 𝑎
𝓁−1𝜇||2𝑎𝓁 (5.7)

≲ ||𝑃 𝑎
𝓁−1𝜇||2𝑎𝓁−1

(5.8)
≲ ||𝜇||2𝑎𝓁 (5.14)

◽

5.2 | Proofs of (A1) and (A1’)

A classical approach for multigrid proofs consists is considering
𝐴𝓁𝜇 (cf. (3.15)) as a function in 𝐿2(Ω) and using it as right-hand
side in an auxiliary problem. However, this is not possible for dis-
continuous skeletal methods, since 𝐴𝓁𝜇 ∈ 𝑀𝓁 is defined only on
the mesh skeleton and not on the whole domain Ω. To this end,
we use the lifting operator 𝑆𝓁 . That is, we define the auxiliary
right-hand side 𝑓𝜇 ∈ 𝑉disc as the unique solution of

(𝑓𝜇, 𝑆𝓁𝜂) = ⟨𝐴𝓁𝜇, 𝜂⟩𝓁 = 𝑎𝓁(𝜇, 𝜂) ∀𝜂 ∈ 𝑀𝓁 (5.15)
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and its perturbed skeletal approximation 𝜇̃ ∈ 𝑀𝓁 with

𝑎𝓁(𝜇̃, 𝜂) = (𝑓𝜇,𝓁𝜂) ∀𝜂 ∈ 𝑀𝓁 (5.16)

Notably, both 𝜇 and 𝜇̃ approximate the solution of the continuous
problem

(∇𝑢̃,∇𝑣) = (𝑓𝜇, 𝑣) ∀𝑣 ∈ 𝐻1
0 (Ω) (5.17)

Thus, they are close to one another, which is formalized in the
following lemma:

Lemma 5.5. Let (HM1) to (HM4) hold. Then we have, for all
𝜇 ∈ 𝑀𝓁 ,

||𝜇 − 𝜇̃||𝑎𝓁 ≲ ℎ𝓁||𝑓𝜇||Ω, and ||𝑓𝜇||Ω ≲ ||𝐴𝓁𝜇||𝓁 (5.18)

The key trick in the proof of (A1′) and (A1) is the observation
that, on one hand, functions from 𝑉

c
𝓁−1 are not changed by the

injection/projection operators or the local solvers (as implied by
the quasi orthogonality in Lemma 3.3), while, on the other hand,
this function space has approximation properties. Thus, we can
introduce an arbitrary 𝑉

c
𝓁−1 in a scalar product resembling that

in Lemma 3.3 and hope to exploit the approximation properties
described in Lemma 5.6, whose right-hand side can be controlled
by the means of Lemma 5.7.

Lemma 5.6 (Reconstruction approximation). Let (IA1),
(IA2), and (HM1)–(HM5) hold. Assume further that the model
problem admits the regularity estimate (2.2). Then, for all 𝜇 ∈ 𝑀𝓁 ,
there exists an auxiliary function 𝑢 ∈ 𝑉

c
𝓁−1 such that

||𝓁𝜇 + ∇𝑢||Ω + ||𝓁−1𝑃
𝑎
𝓁−1𝜇 + ∇𝑢||Ω ≲ ℎ𝛼

𝓁||𝑓𝜇||𝛼−1 (5.19)

Proof. This is [19, Lem. 5.8]. ◽

Lemma 5.7. Let (HM1) to (HM4), (HM6), and (HM7) hold.
Then,

||𝑓𝜇||−1 ≲ ||𝜇||𝑎𝓁
Proof. By the definition of negative norms and properties of
sup,

||𝑓𝜇||−1 ≤ sup
𝜓∈𝐻1

0 (Ω)

(𝑓𝜇, 𝜓 − 𝑆𝓁𝛾𝓁Π
c
𝓁𝜓)|𝜓|1,Ω + sup

𝜓∈𝐻1
0 (Ω)

(𝑓𝜇, 𝑆𝓁𝛾𝓁Π
c
𝓁𝜓)|𝜓|1,Ω

(5.20)
Here, Π

c
𝓁 is a (quasi-)interpolator onto 𝑉

c
𝓁 that satisfies

|Πc
𝓁𝑣|1,Ω ≲ |𝑣|1,Ω ∀𝑣 ∈ 𝐻1(Ω) (5.21)

||𝑣 − Π
c
𝓁𝑣||Ω ≲ ℎ1−𝑘+𝛼

𝓁 |𝑣|𝛼+1, ∀𝑣 ∈ 𝐻𝛼+1(Ω), 𝑘 = 0, 1 (5.22)

An example is given in [46]. We continue writing

||𝜓 − 𝑆𝓁𝛾𝓁Π
c
𝓁𝜓||Ω (5.11)

= ||𝜓 − Π
c
𝓁𝜓||Ω (5.21)

≲ ℎ𝓁|𝜓|1,Ω (5.23)

and observe that

(𝑓𝜇, 𝑆𝓁𝛾𝓁Π
c
𝓁𝜓)Ω

(5.15)
= 𝑎𝓁(𝜇, 𝛾𝓁Π

c
𝓁𝜓)

which immediately yields, using a Cauchy–Schwarz inequality,

|(𝑓𝜇, 𝑆𝓁𝛾𝓁Π
c
𝓁𝜓)Ω| ≤ ||𝜇||𝑎𝓁 ||𝛾𝓁Πc

𝓁𝜓||𝑎𝓁
= ||𝜇||𝑎𝓁 |Πc

𝓁𝜓|1,Ω ≲ ||𝜇||𝑎𝓁 |𝜓|1,Ω (5.24)

Applying a Cauchy–Schwarz inequality to the numerator of the
first supremum in (5.20) followed by (5.23) and using (5.24) to
estimate the numerator of the second supremum, we get, after
simplification,

||𝑓𝜇||−1 ≤ ℎ𝓁||𝑓𝜇||Ω + ||𝜇||𝑎𝓁 (5.18)
≲ ℎ𝓁||𝐴𝓁𝜇||𝓁 + ||𝜇||𝑎𝓁 ≲ ||𝜇||𝑎𝓁

where the last inequality is the rightmost inequality of (HM6). ◽

With these preliminary results at hand, we can formulate a gen-
eralization of [18, Theo. 4.1] and [19, Theo. 5.10]:

Theorem 5.8. If (2.2) holds with 𝛼 ∈
(

1
2
, 1
]
, and if the

assumptions (IA1), (IA2), and (HM1)–(HM8) hold, then (A1) is
satisfied.

Remark 5.9 (Full elliptic regularity). Theorem 5.8 implies
(A1′) if 𝛼 = 1.

Proof. We use the definitions (3.6) of 𝑎𝓁 and (3.17) of 𝑃 𝑎
𝓁−1 to

obtain

𝑎𝓁(𝜇 − 𝐼𝓁𝑃
𝑎
𝓁−1𝜇, 𝜇)

= 𝑎𝓁(𝜇, 𝜇) − 𝑎𝓁−1(𝑃 𝑎
𝓁−1𝜇, 𝑃

𝑎
𝓁−1𝜇)

= (𝓁𝜇,𝓁𝜇)Ω − (𝓁−1𝑃
𝑎
𝓁−1𝜇,𝓁−1𝑃

𝑎
𝓁−1𝜇)Ω

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝔗1

+ 𝑠𝓁(𝜇, 𝜇) − 𝑠𝓁−1(𝑃 𝑎
𝓁−1𝜇, 𝑃

𝑎
𝓁−1𝜇),

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝔗2

and analyze the respective contributions 𝔗1 and 𝔗2 separately.

First, binomial factorization yields

𝔗1 = (𝓁𝜇 +𝓁−1𝑃
𝑎
𝓁−1𝜇,𝓁𝜇 −𝓁−1𝑃

𝑎
𝓁−1𝜇)Ω

Let now 𝑤 ∈ 𝑉
c
𝓁−1. Invoking the quasi-orthogonality property

stated in Lemma 3.3 to insert 2∇𝑤 into the first argument of the
𝐿2-product, and adding and subtracting ∇𝑤 to the second argu-
ment, we obtain

𝔗1 =
(
(𝓁𝜇 + ∇𝑤) + (𝓁−1𝑃

𝑎
𝓁−1𝜇 + ∇𝑤), (𝓁𝜇 + ∇𝑤)

− (∇𝑤 +𝓁−1𝑃
𝑎
𝓁−1𝜇)

)
Ω

≤ (||𝓁 + ∇𝑤||Ω + ||𝓁−1𝑃
𝑎
𝓁−1𝜇 + ∇𝑤||Ω)2 (5.19)

≲ ℎ2𝛼
𝓁 ||𝑓𝜇||2𝛼−1 (5.25)

where we have used Cauchy–Schwarz and triangle inequalities
to pass to the second line.

Second, we obtain a similar estimate for 𝔗2. To this end, we detail
the treatment of the first summand of 𝔗2, the second summand
can be treated analogously. For any 𝑤 ∈ 𝑉

c
𝓁 , it holds

𝑠𝓁(𝜇, 𝜇)
(HM7)
= 𝑠𝓁(𝜇 − 𝛾𝓁𝑤, 𝜇 − 𝛾𝓁𝑤) ≤ 𝑎𝓁(𝜇 − 𝛾𝓁𝑤, 𝜇 − 𝛾𝓁𝑤)

= ||𝜇 − 𝛾𝓁𝑤||2𝑎𝓁
8 of 17 Numerical Methods for Partial Differential Equations, 2025
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Using the triangle inequality and Lemma 5.5, we have that

||𝜇 − 𝛾𝓁𝑤||𝑎𝓁 ≤ ||𝜇 − 𝜇̃||𝑎𝓁 + ||𝜇̃ − 𝛾𝓁𝑤||𝑎𝓁
≤ ℎ𝓁||𝑓𝜇||Ω + ||𝜇̃ − 𝛾𝓁𝑤||𝑎𝓁

Defining 𝑤 as the 𝐿2 orthogonal projection of 𝑢̃ into 𝑉
c
𝓁 yields

the result with (HM5) as we can write

||𝜇̃ − 𝛾𝓁𝑤||𝑎𝓁 ≤ ||𝜇̃ − Π𝜕
𝓁 𝑢̃||𝑎𝓁 + ||Π𝜕

𝓁 𝑢̃ − 𝛾𝓁𝑤||𝑎𝓁
where the first summand is bounded via (HM5) and the second
summand can be bounded using (HM6) and standard approxima-
tion properties. Proceeding similarly for the second summand in
𝔗2, we infer

𝔗2 ≲ ℎ2𝛼
𝓁 ||𝑓𝜇||2𝛼−1 (5.26)

Using (5.25) and (5.26) to estimate the right-hand side of (5.26)
and invoking Sobolev interpolation provides us with

|𝑎𝓁(𝜇 − 𝐼𝓁𝑃
𝑎
𝓁−1𝜇, 𝜇)| ≲ ℎ2𝛼

𝓁 ||𝑓𝜇||2𝛼−1 ≲ ℎ2𝛼
𝓁 ||𝑓𝜇||2(1−𝛼)−1 ||𝑓𝜇||2𝛼Ω

and Lemmas 5.5 and 5.7 yield

|𝑎𝓁(𝜇 − 𝐼𝓁𝑃
𝑎
𝓁−1𝜇, 𝜇)| ≲ ℎ2𝛼

𝓁 ||𝐴𝓁𝜇||2𝛼𝓁 ||𝜇||2(1−𝛼)𝑎𝓁

This is the result, since (HM6) implies that 𝜆𝐴
𝓁 ≲ ℎ−2

𝓁 . ◽

6 | Verification of Assumptions for HHO

6.1 | Preliminaries

For all 𝑇 ∈ 𝓁 , we introduce the set 𝑇 collecting the faces of 𝑇
and denote a polynomial space on T by (𝑇 ).

6.1.1 | General Properties of Used Norms
and Function Spaces

Let 𝑇 ∈ 𝓁 , 𝐹 ∈ 𝑇 . We recall the following results:

• The discrete trace inequality (see, e.g., [6, Lem. 1.32]):

||𝑣||𝐹 ≲ ℎ
− 1

2
𝑇

||𝑣||𝑇 ∀𝑣 ∈ (𝑇 ) (6.1)

• The discrete inverse inequality (see, e.g., [6, Lem. 1.28]):

||∇𝑣||𝑇 ≲ ℎ−1
𝑇 ||𝑣||𝑇 ∀𝑣 ∈ (𝑇 ) (6.2)

• The Poincaré–Friedrichs inequality (see, e.g., [39, Lem.
3.30]):

||𝜌||𝑇 ≲ ℎ𝑇 ||∇𝜌||𝑇 + ℎ
1
2
𝑇
||𝜌||𝜕𝑇 ∀𝜌 ∈ 𝐻1(𝑇 ) (6.3)

• The norm equivalence

||𝜇||2𝓁 ≃
∑
𝐹∈𝓁

ℎ𝐹 ||𝜇||2𝐹 ∀𝜇 ∈ 𝑀𝓁 (6.4)

Thus, the square root of the expression in the right-hand side
induces a global norm on 𝑀𝓁 .

6.1.2 | Properties of HHO

In this part, we enlist some properties of HHO that will be used
to show (HM1) to (HM8).

Recalling the hybrid bilinear form 𝑎𝓁 introduced in (3.10), we
consider the hybrid, discrete problem: Find (𝑢𝓁 , 𝑚𝓁) ∈ 𝑉𝓁 ×𝑀𝓁

such that

𝑎𝓁((𝑢𝓁 , 𝑚𝓁), (𝑣, 𝜇)) = ∫Ω
𝑓𝑣 ∀(𝑣, 𝜇) ∈ 𝑉𝓁 ×𝑀𝓁 (6.5)

The pair 𝑢𝓁 ∶= (𝓁𝑚𝓁 + 𝓁𝑓, 𝑚𝓁) ∈ 𝑉𝓁 ×𝑀𝓁 is solution of (6.5)
if and only if 𝑚𝓁 ∈ 𝑀𝓁 is solution of the condensed problem (3.5)
(see [47, Prop. 4]). In particular, 𝓁𝑚𝓁 + 𝓁𝑓 approximates the
exact solution 𝑢 of the continuous problem (2.1).

As in [6, 2.1.2 (2.7), 2.2.2 (2.35)], we define

|(𝑣, 𝜇)|21,𝓁 ∶=
∑
𝑇∈𝓁

|(𝑣, 𝜇)|21,𝑇 =
∑
𝑇∈𝓁

∑
𝐹∈𝑇

ℎ−1
𝐹 ||𝑣 − 𝜇||2𝐹 (6.6a)

||(𝑣, 𝜇)||21,𝓁 ∶=
∑
𝑇∈𝓁

||(𝑣, 𝜇)||21,𝑇 =
∑
𝑇∈𝓁

(||∇𝑣||2𝑇 + |(𝑣, 𝜇)|21,𝑇 ) (6.6b)

as the 𝐻1-like seminorm on the hybrid space 𝑉𝓁 ×𝑀𝓁 . Moreover,
we assume that the properties of [6, Assumption 2.4] for the sta-
bilization bilinear form 𝑠

𝑇
hold true. Then, we have:

• (Boundedness and stability of 𝑎
𝑇

[48, Lem. 2.6])

||(𝑣, 𝜇)||21,𝑇 ≲ 𝑎
𝑇
((𝑣, 𝜇), (𝑣, 𝜇)) ≲ ||(𝑣, 𝜇)||21,𝑇 (6.7)

• (Energy error estimate [48, Lem. 2.8, Lem. 2.9])

||𝒒𝑢𝓁 − 𝒒(Πd
𝓁𝑢,Π

𝜕
𝓁𝑢)||𝑎𝓁 ≲ ℎ𝛼

𝓁||𝑢||𝛼+1 (6.8)

where 𝛼 > 1
2

and || ⋅ ||𝑎𝓁 is the norm induced by the bilinear
form 𝑎𝓁 .

• (Cell unknown 𝐿2-error estimate [48, Lem. 2.11])
If 𝑝 ≥ 1, 𝛼 > 1

2
, then

||𝓁𝑚𝓁 + 𝓁𝑓 − Πd
𝓁𝑢||Ω ≲ ℎ𝛼+𝛿

𝓁 ||𝑢||𝛼+1 (6.9)

where 𝛿 ∶= min{𝛼, 1}.

• (Face unknown 𝐿2-error estimate [48, Lem. 2.9])
If 𝑝 ≥ 1, then

||𝑚𝓁 − Π𝜕
𝓁𝑢||𝓁 ≲ ℎ𝛼+1

𝓁 ||𝑢||𝛼+1 (6.10)

Now, let us introduce the seminorms || ⋅ ||1,𝓁 and | ⋅ |1,𝓁 on the
skeletal space 𝑀𝓁 , which are based on the seminorms || ⋅ ||1,𝓁 and| ⋅ |1,𝓁 defined in (6.6):

||𝜇||1,𝓁 ∶= ||(𝓁𝜇, 𝜇)||1,𝓁 and |𝜇|1,𝓁 ∶= |(𝓁𝜇, 𝜇)|1,𝓁
(6.11)

Similarly, the condensed bilinear form 𝑎𝓁 introduced in (3.14) is
built from the hybrid bilinear form 𝑎𝓁 (3.10), in which the generic
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cell unknown variable is also recovered from the skeletal variable
through 𝓁 , that is,

𝑎𝓁(𝑚, 𝜇) = 𝑎𝓁((𝓁𝑚,𝑚), (𝓁𝜇, 𝜇))

In the same fashion, we also have

𝑠𝓁(𝑚, 𝜇) = 𝑠𝓁((𝓁𝑚,𝑚), (𝓁𝜇, 𝜇))

Thus, useful properties of 𝑎𝓁 and 𝑠𝓁 derive in a natural way from
those of 𝑎𝓁 and 𝑠𝓁 . In particular, we shall use in this work the
following results:

• (Boundedness and stability of 𝑎𝓁)

||𝜇||21,𝓁 ≲ 𝑎𝓁(𝜇, 𝜇) ≲ ||𝜇||21,𝓁 (6.12)

• Since 𝑠𝓁 is symmetric positive semidefinite [6, Assumption
2.4], so is 𝑠𝓁 .

Lemma 6.1. The norm || ⋅ ||𝓁 is weaker than || ⋅ ||1,𝓁 , that is,

||𝜇||𝓁 ≲ ||𝜇||1,𝓁 ∀𝜇 ∈ 𝑀𝓁 (6.13)

Proof. Starting from (6.4), the triangle inequality is used via the
insertion of 0 =  𝜇 − 𝜇 into the norms in the sum, yielding

||𝜇||2𝓁 ≲
∑
𝐹∈

ℎ𝐹

(||𝓁𝜇 − 𝜇||2𝐹 + ||𝓁𝜇||2𝐹 )
6.1
≲

∑
𝐹∈

ℎ𝐹 ||𝓁𝜇 − 𝜇||2𝐹 +
∑
𝑇∈𝓁

||𝓁𝜇||2𝑇
≲

∑
𝐹∈

ℎ𝐹 ||𝓁𝜇 − 𝜇||2𝐹 + ||(𝓁𝜇, 𝜇)||21,𝓁 (6.14)

where the last passage follows from the discrete Poincaré inequal-
ity [6, Lem. 2.15] applied to (𝓁𝜇, 𝜇) (notice that 𝜇 vanishes on
𝜕Ω). Hence, recalling (6.11),

||𝜇||2𝓁 ≲
∑
𝐹∈

ℎ𝐹 ||𝓁𝜇 − 𝜇||2𝐹 + ||∇𝓁𝓁𝜇||2Ω + |𝜇|21,𝓁 (6.15)

The fact that ℎ𝐹 ≲ ℎ−1
𝐹

is a consequence of the fact that we
assumed that Ω has diameter 1 without loss of generality so that
ℎ𝐹 ≲ 1. Hence, we can go on writing

||𝜇||2𝓁 ≲ ||∇𝓁𝓁𝜇||2Ω + |𝜇|21,𝓁 = ||𝜇||21,𝓁
and the result follows by taking the square root. ◽

6.2 | Verification of (HM1)

We write

||𝓁𝜇 − 𝜇||2𝓁
≲

∑
𝑇∈𝓁

∑
𝐹∈𝑇

ℎ𝐹 ||𝓁𝜇 − 𝜇||2𝐹
≤ ℎ2

𝓁

∑
𝑇∈𝓁

∑
𝐹∈𝑇

ℎ−1
𝐹 ||𝓁𝜇 − 𝜇||2𝐹

(6.6b)≤ ℎ2
𝓁||(𝓁𝜇, 𝜇)||21,ℎ (6.7)

≲ ℎ2
𝓁||(𝓁𝜇, 𝜇)||2𝑎𝓁 (3.18)

= ℎ2
𝓁||𝜇||2𝑎𝓁

where the first inequality follows from mesh regularity implying
ℎ𝑇 ≲ ℎ𝐹 . Taking the square root of the above inequality proves
(HM1).

6.3 | Verification of (HM2)

Let us start with the second inequality in (HM2) on an arbitrary
element 𝑇 ∈ 𝓁 . Recalling the definition (3.11) of 𝓁 and choos-
ing 𝑣𝑇 = 𝑢1

𝑇
= 𝑇 𝜇 and 𝑚𝜕𝑇 = 𝜇, we have, denoting by || ⋅ ||𝑎

𝑇
the

seminorm induced by 𝑎
𝑇

,

||(𝑇 𝜇, 0)||2𝑎𝑇 = 𝑎𝑇 ((𝑇 𝜇, 0), (𝑇 𝜇, 0))

(3.11)
= −𝑎𝑇 ((0, 𝜇), (𝑇 𝜇, 0)) ≤ ||(0, 𝜇)||𝑎𝑇 ||(𝑇 𝜇, 0)||𝑎𝑇

where the conclusion follows from the Cauchy–Schwarz inequal-
ity. Hence, ||(𝑇 𝜇, 0)||𝑎

𝑇
≤ ||(0, 𝜇)||𝑎

𝑇
(6.16)

We write

||(𝑇 𝜇, 0)||21,𝑇 (6.7)
≲ ||(𝑇 𝜇, 0)||2𝑎

𝑇

(6.16)≤ ||(0, 𝜇)||2𝑎
𝑇

(6.7)
≲ ||(0, 𝜇)||21,𝑇 ≲ ℎ−1

𝑇 ||𝜇||2𝜕𝑇 (6.17)

where the last inequality follows recalling the definition (6.6b) of|| ⋅ ||1,𝑇 and noticing that ℎ−1
𝐹

≲ ℎ−1
𝑇

for all 𝐹 ∈ 𝑇 by mesh reg-
ularity. Next, using the Poincaré–Friedrichs inequality (6.3) and
definition (6.6b) of the ||(⋅, ⋅)||1,𝑇 -norm along with the fact that
ℎ−1
𝑇

≲ ℎ−1
𝐹

for all 𝐹 ∈ 𝑇 by mesh regularity, we have

||𝑇 𝜇||2𝑇 ≲ ℎ2
𝑇 ||∇(𝑇 𝜇)||2𝑇 + ℎ𝑇 ||𝑇 𝜇||2𝜕𝑇 ≲ ℎ2

𝑇 ||(𝑇 𝜇, 0)||21,𝑇
(6.17)
≲ ℎ𝑇 ||𝜇||2𝜕𝑇 (6.18)

The second inequality in (HM2) is derived by using (6.18) and
summing over all elements.

Second, consider the first inequality on an arbitrary element
𝑇 ∈ 𝓁 . Recalling the definition (3.8) of 𝒒𝑇 (⋅, ⋅) with (𝑢𝑇 , 𝑚𝜕𝑇 ) =
(𝑇 𝜇, 𝜇) and choosing 𝒑𝑇 = 𝒒𝑇 (𝑇 𝜇, 𝜇)

(3.13)
= 𝑇 𝜇, 𝑢𝑇 = 𝑇 𝜇,

and 𝑚𝜕𝑇 = 𝜇, we have

∫𝑇

𝑇 𝜇 ⋅𝑇 𝜇 = ∫𝑇

𝑇 𝜇 (∇ ⋅ 𝑇 𝜇) − ∫𝜕𝑇

𝜇 (𝑇 𝜇 ⋅ 𝝂)

Estimating the right-hand side of the above expression with
Cauchy–Schwarz inequalities followed by the discrete inverse
inequality (6.2) for the first term, the discrete trace inequality
(6.1) for the second term, we have after simplifying and raising
to the square,

||𝑇 𝜇||2𝑇 ≲ ℎ−2
𝑇 ||𝑇 𝜇||2𝑇 + ℎ−1

𝑇 ||𝜇||2𝜕𝑇 (6.18)≤ ℎ−1
𝑇 ||𝜇||2𝜕𝑇 (6.19)

Finally, the first inequality in (HM2) is derived by
using (6.19), summing over all elements, and using the
mesh quasi-uniformity assumption to write ||𝓁𝜇||Ω ≲
ℎ−1
𝓁 ||𝜇||𝓁 .
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6.4 | Verification of (HM3)

Plugging the definition (3.13) of 𝑇 into (3.8) we have,

∫𝑇
𝑇 𝜇 ⋅ 𝒑𝑇 − ∫𝑇

𝑇 𝜇 (∇ ⋅ 𝒑𝑇 ) = −∫𝜕𝑇
𝜇 (𝒑𝑇 ⋅ 𝝂) ∀𝒑𝑇 ∈ 𝑾 𝑇

Then, we integrate by parts the second term of the left-hand side
and rearrange to infer

∫𝑇

(𝑇 𝜇 + ∇𝑇 𝜇) ⋅ 𝒑𝑇 = ∫𝜕𝑇

(𝑇 𝜇 − 𝜇)𝒑𝑇 ⋅ 𝝂 ∀𝒑𝑇 ∈ 𝑾 𝑇

Now, after noticing that ∇𝑇 𝜇 ∈ ∇𝑝(𝑇 ) ⊂ ∇𝑝+1(𝑇 ) = 𝑾 𝑇 , we
can specify this relation for 𝒑𝑇 = 𝑇 𝜇 + ∇𝑇 𝜇, which gives

||𝑇 𝜇 + ∇𝑇 𝜇||2𝑇 = ∫𝜕𝑇

(𝑇 𝜇 − 𝜇) (𝑇 𝜇 + ∇𝑇 𝜇) ⋅ 𝝂

Using the Cauchy–Schwarz inequality on the right-hand side,
we have

||𝑇 𝜇 + ∇𝑇 𝜇||𝑇 ≤ ||𝑇 𝜇 − 𝜇||𝜕𝑇 ||𝑇 𝜇 + ∇𝑇 𝜇||𝜕𝑇
At this point, we refer to the discrete trace inequality (6.1), which
we use component by component to bound the last term and
obtain

||𝑇 𝜇 + ∇𝑇 𝜇||𝑇 ≲ ℎ
− 1

2
𝑇

||𝑇 𝜇 − 𝜇||𝜕𝑇 ||𝑇 𝜇 + ∇𝑇 𝜇||𝑇
Simplifying and squaring, we get

||𝑇 𝜇 + ∇𝑇 𝜇||2𝑇 ≲ ℎ−1
𝑇 ||𝑇 𝜇 − 𝜇||2𝜕𝑇

Summing over all elements and using mesh quasi-uniformity
yields

||𝑇 𝜇 + ∇𝑇 𝜇||2Ω
≲

∑
𝑇∈𝓁

ℎ−1
𝑇 ||𝑇 𝜇 − 𝜇||2𝜕𝑇 ≲

∑
𝑇∈𝓁

ℎ−2
𝑇

∑
𝐹∈𝑇

ℎ𝐹 ||𝑇 𝜇 − 𝜇||2𝐹
≲ ℎ−2

𝓁

∑
𝑇∈𝓁

∑
𝐹∈𝑇

ℎ𝐹 ||𝑇 𝜇 − 𝜇||2𝐹 ≲ ℎ−1
𝓁 ||𝑇 𝜇 − 𝜇||2𝓁

where we have used the fact that ℎ−1
𝑇
ℎ𝐹 ≲ 1 for all 𝑇 ∈ 𝓁 and

all 𝐹 ∈ 𝑇 by mesh regularity in the second inequality, the
mesh quasi-uniformity assumption to writeℎ−2

𝑇
≲ ℎ−2

𝓁 in the third
inequality, and (6.4) to conclude

6.5 | Verification of (HM4)

We show (HM4) for a generic element 𝑇 ∈ 𝓁 . If the identities
hold there, they will hold on all elements. We must show that
HHO reproduces the 𝑤 ∈ 𝑉

c
𝓁 . We take 𝑤𝜕𝑇 = 𝛾𝓁𝑤.

∫𝑇

𝒒𝑇 (𝑤,𝑤𝜕𝑇 ) ⋅ 𝒑𝑇 = ∫𝑇

𝑤∇ ⋅ 𝒑𝑇 −
∑
𝐹∈𝑇

∫𝐹

𝑤𝜕𝑇𝒑𝑇 ⋅ 𝝂

Integrating by parts the first term on the right-hand side, it
holds that

∫𝑇

𝑤∇ ⋅ 𝒑𝑇 = −∫𝑇

∇𝑤 ⋅ 𝑝𝑇 + ∫𝜕𝑇

𝑤𝜕𝑇𝒑𝑇 ⋅ 𝝂

Plugging that yields

∫𝑇

𝒒𝑇 (𝑤,𝑤𝜕𝑇 ) ⋅ 𝒑𝑇 = −∫𝑇

∇𝑤 ⋅ 𝑝𝑇 ∀𝒑𝑇 ∈ 𝑾 𝑇

which shows that
𝒒𝑇 (𝑤,𝑤𝜕𝑇 ) = −∇𝑤 (6.20)

Given the definition (3.11) of 𝑇 , we need to show that

𝑎
𝑇
((𝑤,𝑤𝜕𝑇 ), (𝑣𝑇 , 0)) = 0 ∀𝑣𝑇 ∈ 𝑉𝑇

We have

𝑎
𝑇
(𝑤,𝑤𝜕𝑇 , (𝑣𝑇 , 0))

= ∫𝑇

𝒒𝑇 (𝑤,𝑤𝜕𝑇 ) ⋅ 𝒒𝑇 (𝑣𝑇 , 0) + 𝑠
𝑇
((𝑤,𝑤𝜕𝑇 ), (𝑣𝑇 , 0))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
0

= −∫𝑇

∇𝑤 ⋅ 𝒒𝑇 (𝑣𝑇 , 0)

where the stabilization term vanishes due to the polynomial con-
sistency of 𝑠

𝑇
[6, Assumption 2.4 (S3)], and we have used (6.20)

for the last equality. For the remaining term, (3.8) gives

∫𝑇

𝒒𝑇 (𝑣𝑇 , 0) ⋅ 𝒑𝑇 − ∫𝑇

𝑣𝑇∇ ⋅ 𝒑𝑇 = 0 ∀𝒑𝑇 ∈ 𝑾 𝑇

which we specialize to 𝒑𝑇 = −∇𝑤 to infer

−∫𝑇

𝒒𝑇 (𝑣𝑇 , 0) ⋅ ∇𝑤 + ∫𝑇

𝑣𝑇Δ𝑤 = 0

As 𝑤 ∈ 𝑉
c
𝓁 , Δ𝑤 = 0, which concludes the proof of  𝛾𝓁𝑤 = 𝑤.

Remark 6.2 (Generalization to 𝑝 = 0). Equation (HM4)
is one reason why we assume that 𝑝 ≥ 1 throughout this
manuscript. However, this assumption can be relaxed by insert-
ing the 𝐿2-orthogonal projector at several locations in the above
argument. This observation motivates that our multigrid frame-
work can be extended to the case 𝑝 = 0 if one can find ways to
make the following criterion work, which might work only under
additional constraints, cf. Remark 8.1.

6.6 | Verification of (HM5)

This is an extension of Theorem 2.27 in [48] by Sobolev inter-
polation. Following Lemma 2.9, the left-hand side of (HM5) is
bounded by the consistency error estimates. The (HM5) is derived
using Theorem 2.10 in [48].

6.7 | Verification of (HM6)

Combining some preliminary results, we have that

||𝜇||2𝓁 (6.13)
≲ ||𝜇||21,𝓁 (6.12)

≲ 𝑎𝓁(𝜇, 𝜇)
(6.12)
≲ ||𝜇||21,𝓁

Thus, we only need to prove that

||𝜇||1,𝓁 ≲ ℎ−1
𝓁 ||𝜇||𝓁 (6.21)
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Inserting 0 = 𝓁𝜇 −𝓁𝜇 into the gradient term of (6.11) and
using the triangle inequality gives

||𝜇||21,𝓁 ≲ ||∇𝓁𝓁𝜇 +𝓁𝜇||2Ω + ||𝓁𝜇||2Ω + |𝜇|1,𝓁
(HM3)
≲ ℎ−2

𝓁 ||𝓁𝜇 − 𝜇||2𝓁 + ||𝓁𝜇||2Ω + |𝜇|1,𝓁 (6.22)

To make || ⋅ ||𝓁 appear in |𝜇|1,𝓁 , we observe that, by mesh
quasi-uniformity,

|𝜇|1,𝓁 ≃ ℎ−2
𝓁

∑
𝑇∈𝓁

∑
𝐹∈𝑇

ℎ𝓁||𝓁𝜇 − 𝜇||2𝐹 (6.4)
≃ ℎ−2

𝓁 ||𝓁𝜇 − 𝜇||2𝓁 (6.23)

Plugging (6.23) into (6.22) gives

||𝜇||21,𝓁 ≲ ℎ−2
𝓁 ||𝓁𝜇 − 𝜇||2𝓁 + ||𝓁𝜇||2Ω (HM1)

≲ ||𝜇||2𝑎𝓁 (6.24)

Finally, (6.21) follows from (HM2).

6.8 | Verification of (HM7)

This equality corresponds to [6, Assumption 2.4 (S3)].

6.9 | Verification of (HM8)

This is relation (6.12).

7 | Injection Operators for HHO

Consider two successive levels 𝓁 (fine) and 𝓁 − 1 (coarse). Given
the coarse faces 𝓁−1, the mesh nestedness allows us to decom-
pose 𝓁 as the disjoint union ̂𝓁 ∪ ̊𝓁 , where

̂𝓁 ∶= {𝐹 ∈ 𝓁|∃𝐹𝓁−1 ∈ 𝓁−1 s.t. 𝐹 ⊂ 𝐹𝓁−1}, ̊𝓁 ∶= 𝓁 ⧵ ̂𝓁

In the following, we introduce three injection operators used in
[24], denoted by 𝐼𝑖

𝓁 , 𝑖 ∈ {1, 2, 3}. The first one is defined as

(𝐼1
𝓁𝜇)|𝐹 ∶=

{
𝜇|𝐹 if 𝐹 ∈ ̂𝓁 ,

(𝓁−1𝜇)|𝐹 otherwise
(7.1)

This first operator exploits the nestedness of the meshes to
straightforwardly transfer values from coarse faces to their
embedded fine faces. Regarding the fine faces that are not geo-
metrically included in the coarse skeleton (i.e., ̊𝓁), we make
use of the local solver: 𝓁−1 builds a bulk function in the coarse
cells, whose traces provide admissible approximations on the fine
faces.

Instead of the straight injection for the embedded faces, an alter-
native is to also use the bulk functions reconstructed from the
local solver. As 𝓁−1 yields a discontinuous polynomial, and the
faces of ̂𝓁 are located at the interface of two coarse cells, we pro-
pose to take the average of the respective traces, that is,

(𝐼2
𝓁𝜇)|𝐹 ∶= {{𝓁−1𝜇}}𝐹 (7.2)

Remark that this formula also holds for 𝐹 ∈ ̊𝓁 , as the average
trace of a continuous bulk function on both sides of a face reduces

to its regular trace. This injection operator comes with advan-
tages. First, it allows the mesh nestedness condition to be relaxed,
paving the way to generalized multigrid methods on non-nested
meshes, as developed in [25]. Additionally, a more complex for-
mula can handle difficulties occurring at cell interfaces. Typically,
using an adequate weighted average formula can yield robust
convergence in the presence of large jumps in the diffusion coef-
ficient; see [24].

Finally, the third injection operator leverages the higher order
reconstruction operator, a salient feature of the HHO methods:

(𝐼3
𝓁𝜇)|𝐹 ∶= 𝜋𝑝

𝓁{{𝜃
𝑝+1
𝓁−1(𝓁−1𝜇, 𝜇)}}𝐹 (7.3)

where 𝜋𝑝
𝓁 ∶ 𝐿2(𝓁) → 𝑀𝓁 denotes the 𝐿2-orthogonal projector

onto the skeletal polynomial space of degree 𝑝. 𝐼3
𝓁 is based on

the same principle of the averaged trace as 𝐼2
𝓁 , except that the

higher order reconstruction operator 𝜃𝑝+1
𝓁−1 enables the gain of one

extra polynomial degree in the approximation of the coarse error.
Then, after computing the average trace, the polynomial degree is
lowered back to its original value by applying the 𝐿2-orthogonal
projector onto the lower order space.

While the first injection operator is local with respect to each
coarse element, the later injection operators use information
from their neighboring elements, increasing their domain of
dependence. Thus, the first injection operator can be imple-
mented more efficiently than the latter ones. On the contrary, the
evaluation of the HHO reconstruction produces negligible cost
(solving a local system of equations per cell) if the degree of par-
allelization is high.

To fit these injection operators into the framework, we demon-
strate

Lemma 7.1. Under the assumptions (HM2) and (HM4), the
injection operators 𝐼𝑖

𝓁 , 𝑖 ∈ {1, 2, 3} verify (IA1)–(IA2).

Proof. Regarding 𝐼1
𝓁 , we refer to [19, Lem. 3.2], as they investi-

gate the same injection operator: 𝐼1
𝓁 is their third operator.

Let us consider 𝐼2
𝓁 : condition (IA2) follows directly from (HM4)

recalling that we assume here 𝑝 ≥ 1 (cf. Remark 8.1 below). The
discrete trace inequality (6.1) along with mesh regularity, that is,|𝑇 ||𝜕𝑇 | ||𝜇||2𝜕𝑇 ≲ ||𝜇||2

𝑇
for all 𝑇 ∈ 𝓁 , gives

||𝓁−1𝜇||𝓁 ≲ ||𝓁−1𝜇||Ω ≲ ||𝜇||𝓁−1

where the second inequality is (HM2). (IA1) now follows from
the triangle inequality ||{{𝓁−1𝜇}}𝐹 ||𝓁 ≤ ||𝓁−1𝜇||𝓁 .

Let us consider (IA2) for 𝐼3
𝓁 . On one hand, (HM4) says that

−𝓁−1𝛾𝓁−1𝑤 = ∇𝓁𝜃
𝑝+1
𝓁−1(𝓁−1𝛾𝓁−1𝑤, 𝛾𝓁−1𝑤) = ∇𝑤

for 𝑤 ∈ 𝑉
c
. This, in turn, implies that

𝜃𝑝+1
𝓁−1(𝓁−1𝛾𝓁−1𝑤, 𝛾𝓁−1𝑤) = 𝑤 + 𝑐

for some constant 𝑐 ∈ ℝ. On the other hand, the high-order
reconstruction guarantees (cf. (3.9)) that the mean value of

12 of 17 Numerical Methods for Partial Differential Equations, 2025
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𝜃𝑝+1
𝓁−1(𝓁−1𝛾𝓁−1𝑤, 𝛾𝓁−1𝑤) equals the mean values of 𝓁−1𝛾𝓁−1𝑤 =

𝑤 (through (HM4)), which implies that 𝑐 = 0.

Next, we prove (IA1) for 𝐼3
𝓁 : let us consider a coarse element 𝑇 .

We have that

∑
𝑇∈𝓁−1

𝑇⊂𝑇∑
𝑇∈𝓁

√√√√ |𝑇 ||𝜕𝑇 | ||𝜋𝑝
𝓁𝜃

𝑝+1
𝓁−1(𝓁−1𝜇|𝑇 , 𝜇|𝜕𝑇 )||𝜕𝑇

≲
∑

𝑇∈𝓁−1

||𝜃𝑝+1
𝓁−1(𝓁−1𝜇|𝑇 , 𝜇|𝜕𝑇 )||𝑇

≤ ∑
𝑇∈𝓁−1

||𝜃𝑝+1
𝓁−1(𝓁−1𝜇|𝑇 , 𝜇|𝜕𝑇 ) −𝓁−1𝜇|𝑇 ||𝑇 + ||𝓁−1𝜇|𝑇 ||Ω

≲
∑

𝑇∈𝓁−1

ℎ𝑇 ||∇𝜃𝑝+1
𝓁−1(𝓁−1𝜇|𝑇 , 𝜇|𝜕𝑇 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=−𝜇

− ∇𝓁−1𝜇|𝑇 ||𝑇 + ||𝓁−1𝜇|𝑇 ||Ω
≲ ℎ𝑇 ||𝜇||𝑎𝓁−1

+ ||𝓁−1𝜇|𝑇 ||Ω ≲ ||𝜇||𝓁−1

Here, the first inequality uses the boundedness of the
𝐿2-orthogonal projector along with discrete trace inequali-
ties. The second passage follows inserting ±𝓁−1𝜇 into the norm
and using a triangle inequality. The third inequality is obtained
using a local Poincaré–Wirtinger inequality. The fourth passage
is obtained using (HM3) and (HM1). The last inequality uses
(HM6) and (HM2). ◽

8 | Numerical Experiments

8.1 | Experimental Setup

The numerical tests reported in this section are performed on the
Poisson problem (2.1), on two- and three-dimensional domains.
Namely, the fully elliptic problem shall be tested on the unit
square and cube, and the low-regularity problem shall be tested
on an L-shaped domain. The problem is discretized using the
standard HHO method as described in Section 3, with the clas-
sical stabilizing term [6, Ex. 2.7 (2.22)]. Tests will span the poly-
nomial degrees 𝑝 = 1, 2, 3. Modal polynomial bases are used in
cells and on faces to assemble the method (specifically, we use
𝐿2-orthogonal Legendre bases).

Remark 8.1 (The lowest order case). The HHO method with
𝑝 = 0 is not considered in the numerical tests as it does not ver-
ify the error estimates (6.9) and (6.10). Consequently, (HM5) does
not hold and the multigrid method might not be uniformly con-
vergent. This limitation does not appear to be just theoretical: it
has been observed in practice in [24, 25], where suboptimal con-
vergence is reported for 𝑝 = 0 while the method exhibits optimal
convergence for the higher orders, with no variation in any other
parameter.

The multigrid method is constructed as described in Section 4.1.
Section 7 describes the injection operators we consider. The
V-cycle is carried out using pointwise Gauss–Seidel smoothing
iterations, arranged so that both the smoothing step and the
multigrid iteration remain symmetric. Specifically, for V(1,1),
the pre-smoothing iteration is performed in the forward order

and the post-smoothing iteration in the backward order. For
V(2,2), the pre- and post-smoothing procedures involve a single
forward iteration followed by a single backward iteration. The
grid hierarchy is built by successive refinements of an initial
simplicial mesh, and the condensed problem is assembled at
every level. The coarsest system is solved with the Cholesky
factorization. The stopping criterion relies on the backward error||r||2∕||b||2, where r denotes the residual of the algebraic system,
b the right-hand side, and || ⋅ ||2 the standard Euclidean norm
applied to the vector space of coordinates. In all experiments,
convergence is considered to be reached once ||r||2∕||b||2 < 10−6

is satisfied.

8.2 | Numerical Tests

8.2.1 | Full Regularity: The Unit Square

The Poisson problem is set up for the manufactured solution
𝑢 ∶ (𝑥, 𝑦) ↦ sin(4𝜋𝑥) sin(4𝜋𝑦). The unit square is discretized by
a hierarchy of 7 structured triangular meshes. For each problem
solved on this hierarchy, the number of face unknowns is given
in Table 1. The largest problem size we consider involves three
million unknowns. Considering the injection operator 𝐼1

𝓁 , we
notice that the V(1,1) cycle diverges regardless of the value of 𝑝.
Increasing the number of smoothing steps restores convergence.
With the V(2,2) cycle, the method converges for 𝑝 ∈ {1, 2} and
still diverges for 𝑝 = 3. The numbers of iterations are reported in
Table 2 (the symbol ∞ indicating divergence or a number of iter-
ations > 100). Their mild increase as the number of levels grows
indicates asymptotic optimality. Table 3 now considers the injec-
tion operator 𝐼2

𝓁 . In V(1,1), contrary to the same cycle with 𝐼1
𝓁 , the

method now converges for 𝑝 ∈ {1, 2}, indicating better robust-
ness of 𝐼2

𝓁 compared with 𝐼1
𝓁 . The number of iterations of the

V(2,2) cycle illustrates the uniform convergence of the method for
all values of 𝑝. Finally, using the injection operator 𝐼3

𝓁 , the results
of Table 4 show that the method converges uniformly with both
cycles and for all values of 𝑝, making this injection operator the
most robust amongst those considered here.

Remark 8.2 (Preconditioning). For the cases where the
multigrid solver diverges, good performance may nonetheless be

TABLE 1 | For the square domain, number of face unknowns at each
level and for each value of 𝑝.

Levels 3 4 5 6 7

𝑝 = 1 6016 24,320 97,792 392,192 1,570,816
𝑝 = 2 9024 36,480 146,688 588,288 2,356,224
𝑝 = 3 12,032 48,640 195,584 784,384 3,141,632

TABLE 2 | In the square domain, number of V(2,2) iterations with the
injection operator 𝐼1

𝓁 .

Levels 3 4 5 6 7

𝑝 = 1 13 14 14 15 15
𝑝 = 2 36 38 38 39 39
𝑝 = 3 ∞ ∞ ∞ ∞ ∞
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TABLE 3 | In the square domain, number of iterations with the injec-
tion operator 𝐼2

𝓁 .

V(1,1) V(2,2)

Levels 3 4 5 6 7 3 4 5 6 7

𝑝 = 1 24 25 25 26 26 13 13 14 14 14
𝑝 = 2 20 22 25 26 27 10 10 11 11 11
𝑝 = 3 ∞ ∞ ∞ ∞ ∞ 13 13 13 14 14

TABLE 4 | In the square domain, number of iterations with the injec-
tion operator 𝐼3

𝓁 .

V(1,1) V(2,2)

Levels 3 4 5 6 7 3 4 5 6 7

𝑝 = 1 18 18 19 19 20 10 10 11 11 11
𝑝 = 2 17 17 17 17 18 9 10 10 10 10
𝑝 = 3 20 21 21 21 21 11 11 11 11 11

TABLE 5 | In the square domain, number conjugate gradient itera-
tions, preconditioned with one V(1,1) multigrid cycle, using the injection
operator 𝐼1

𝓁 .

Levels 3 4 5 6 7

𝑝 = 1 18 19 20 21 21
𝑝 = 2 20 22 24 25 26
𝑝 = 3 21 23 25 26 27

achieved if it is used as a preconditioner. For instance, consider
the multigrid solver with V(1,1) cycle and the injection opera-
tor 𝐼1

𝓁 . When used as a solver, the method diverges for all values
of 𝑝. On the other hand, used as a preconditioner for the conju-
gate gradient, the method only exhibits a mild dependency on the
number of unknowns, as shown in Table 5.

8.2.2 | Low Regularity: The L-Shaped Domain

The computational domain is now the L-shaped domain Ω =
(−1, 1)2 ⧵ ([0, 1] × [0,−1]). The source function of the Poisson
problem is set to zero. The Dirichlet boundary condition follows
the manufactured exact solution 𝑢 ∶ (𝑟, 𝜑) ↦ 𝑟2∕3 sin( 2

3
𝜑), where

(𝑟, 𝜑) represent polar coordinates of domain points. An unstruc-
tured Delaunay triangulation builds the coarsest mesh, and a
classical refinement technique by edge bisection is used to build
finer meshes successively. Although the theory would require the
variable cycle, fixed cycles exhibit uniform convergence in prac-
tice. Therefore, the test results presented here are obtained with
classical V(1,1) and V(2,2) cycles. Similarly to the preceding test
case, the problem sizes are indicated in Table 6. The results, pre-
sented in Tables 7, 8, and 9 are also qualitatively similar. With the
least robust injection operator, 𝐼1

𝓁 , the V(1,1) cycle diverges for all
values of 𝑝, and the V(2,2) cycle is uniformly convergent only for
𝑝 = 1 (cf. Table 7). With 𝐼2

𝓁 , V(1,1) provides a uniformly conver-
gent solver up to 𝑝 = 2, while V(2,2) converges uniformly for all

TABLE 6 | For the L-shaped domain, number of face unknowns at
each level and for each value of 𝑝.

Levels 3 4 5 6 7

𝑝 = 1 4480 18,176 73,216 293,888 1,177,600
𝑝 = 2 6720 27,264 109,824 440,832 1,766,400
𝑝 = 3 8960 36,352 146,432 587,776 2,355,200

TABLE 7 | In the L-shaped domain, number of V(2,2) iterations with
the injection operator 𝐼1

𝓁 .

Levels 3 4 5 6 7

𝑝 = 1 15 12 14 15 15
𝑝 = 2 ∞ ∞ ∞ ∞ ∞
𝑝 = 3 ∞ ∞ ∞ ∞ ∞

TABLE 8 | In the L-shaped domain, number of iterations with the
injection operator 𝐼2

𝓁 .

V(1,1) V(2,2)

Levels 3 4 5 6 7 3 4 5 6 7

𝑝 = 1 20 20 20 20 20 11 11 11 11 11
𝑝 = 2 17 17 17 17 17 9 9 9 9 9
𝑝 = 3 ∞ ∞ ∞ ∞ ∞ 11 11 11 11 11

𝑝 ∈ {1, 2, 3} (cf. Table 8). Finally, using 𝐼3
𝓁 , Table 9 shows that the

convergence is optimal for both cycles and all values of 𝑝. Based
on these experiments, one can conclude that the convergence of
the multigrid solver does not seem to suffer from the lower regu-
larity of the solution. However, if we compare the number of iter-
ations obtained with 𝐼2

𝓁 to those obtained with 𝐼3
𝓁 , we remark that,

robustness aside, 𝐼3
𝓁 does not generally yield a faster convergence

(see especially V(2,2)). Recall that 𝐼3
𝓁 is obtained from 𝐼2

𝓁 by insert-
ing the higher order reconstruction operator. Since it is known
that sufficient regularity is required for higher orders to have ben-
eficial effects, the low regularity of the solution might explain this
lack of noticeable improvement. Looking back at the fully regular
problem on the square, one sees that the higher order reconstruc-
tion did improve convergence in that case (Table 3 vs. Table 4).

8.2.3 | 3D Test Case: The Cubic Domain

The unit cube is discretized by a Cartesian grid, where each ele-
ment is decomposed into six geometrically similar tetrahedra,
following [49, fig. 9]. Repeating the same procedure on succes-
sive levels of embedded Cartesian grids ensures that the subse-
quent tetrahedral grids are also embedded. Five levels are built,
and the considered problem sizes are given in Table 10. The
manufactured solution is 𝑢 ∶ (𝑥, 𝑦) ↦ sin(4𝜋𝑥) sin(4𝜋𝑦) sin(4𝜋𝑧).
This problem is more challenging, so we restrict ourselves to the
most efficient injection operator 𝐼3

𝓁 and the V(2,2) cycle (V(1,1)
diverges). The convergence results presented in Table 11, while
still exhibiting asymptotically optimal convergence, also show
higher numbers of iterations than in 2D. More numerical tests

14 of 17 Numerical Methods for Partial Differential Equations, 2025
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TABLE 9 | In the L-shaped domain, number of iterations with the
injection operator 𝐼3

𝓁 .

V(1,1) V(2,2)

Levels 3 4 5 6 7 3 4 5 6 7

𝑝 = 1 16 16 16 16 16 9 9 10 11 11
𝑝 = 2 17 17 17 17 17 8 9 9 9 9
𝑝 = 3 20 20 20 20 20 10 10 10 10 10

TABLE 10 | For the cubic domain, number of face unknowns at each
level and for each value of 𝑝.

Levels 3 4 5

𝑝 = 1 17,280 142,848 1,161,216
𝑝 = 2 34,560 285,696 2,322,432
𝑝 = 3 57,600 476,160 3,870,720

TABLE 11 | In the cubic domain, number of V(2,2) iterations with the
injection operator 𝐼3

𝓁 .

Levels 3 4 5

𝑝 = 1 18 23 25
𝑝 = 2 23 24 22
𝑝 = 3 22 23 23

are available in [24], where it is shown that better convergence
can be achieved for comparable cost through simple parame-
ter tunings such as the use of cycles with post-smoothing only,
non-alternating directions in the Gauss–Seidel sweeps, or block-
wise Gauss–Seidel smoothers.

8.3 | Conclusions

We have constructed and rigorously analyzed a homogeneous
multigrid method for HHO methods, which does not internally
change the discretization scheme. To this end, we generalized
the homogeneous multigrid framework for HDG methods and
verified the resulting, more general assumptions for HHO meth-
ods. We verified our analytical findings numerically using several
injection operators.

There are three important generalizations to our approach that
we would like to address in future work: First, we would like to
extend our theory to polyhedral meshes. Second, we would like
to extend our multigrid framework to work as a preconditioner.
Third, we want to extend this work to piece-wise constant approx-
imations as detailed in Remark 6.2.
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