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BACKG ROUN D

Ray tracing is a valuable tool for evaluating the imaging 
performance of optical systems.1 A bundle of rays is 
projected onto the first refractive surface and sequentially 
traced through the entire system to derive ray scatter at 
the image plane. Relevant parameters such as the point 
spread function or the modulation transfer function can 
be extracted from the wavefront characteristics in the 

pupillary plane, and the transference of objects (in object 
space) to the corresponding image (in image space) can 
be estimated either by convolution of the object with the 
point spread function or by multiplication of the Fourier 
transformed object and the modulation transfer function.1,2

In raytracing applications, the 3D coordinates of the 
ray-surface intersection and the corresponding normal 
surface have to be calculated for each incident ray. This 
implies that a closed and continuous definition of the 
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Abstract
Purpose: To study the performance of different corneal surface models to be used 
for ray tracing. Models based on geometric surfaces and polynomial fits were com-
pared and the differences discussed.
Methods: For this simulation study, five characteristic generic surface configura-
tions were generated: (A) perfect biconic, (B) decentred biconic with white noise, 
(C) biconic with paracentral hollow simulating the situation after myopic LASIK, (D) 
biconic with random dot irregularities and (E) rotationally symmetric conic with 
mid-peripheral bump simulating the situation of corneal ectasia. A floating best 
fit sphere (BFS), conic (BFC), biconic (BFBC), fringe Zernike on top of a BFS (BFSZ), 
fringe Zernike (BFZ) and Gaussian process surface model (BFGP) were fitted and 
the root-mean-squared fit error was analysed.
Results: Surfaces A and B were well described by BFBC, BFSZ, BFZ and BFGP, but 
not by BFS and BFC. Surface C was not well represented by BFS, BFC and BFBC, but 
reasonably with BFSZ and BFZ and quite well with BFGP. Surfaces D and E were 
poorly represented, especially with BFS, BFC and BFBC, but also with BFSZ and BFZ 
and quite well with BFGP. There was no systematic difference between the two 
Zernike representations BFSZ and BFZ, even for surface B.
Conclusions: Representing corneal point cloud data with a closed surface model 
plays a key role in ray tracing. Simple surface models such as BFS, BFC or BFBC are 
easy to handle but do not fully represent clinical situations with local irregularities 
after corneal refractive surgery or with ectasia.
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surface is required.1,2 However, corneal topographers (or 
tomographers) only measure the corneal front and back 
surfaces at complete or incomplete3 discrete sampling 
points, meaning that the surface is not fully described for 
all possible ray intersection points. All topographers and 
tomographers on the market export surface curvature 
or height data. These are generally provided either in a 
Cartesian grid with lateral X and Y coordinates, surface 
curvature or height in the Z direction, or in a cylindrical 
grid organised in meridians with the distance from the 
axis, meridional angle and surface curvature or height in 
the Z direction.1,4

There is no unique definition of a closed refractive sur-
face based on these grid points. If the measurement data 
were free from noise, then one could apply any interpo-
lation technique between the grid points, including linear 
De Launey triangulation5 or bicubic splines.2 However, in-
terpolation of the grid data is not appropriate where noise 
is present in the data, and therefore, one has to apply ap-
proximation techniques, meaning that the fitted model 
surface would not necessarily pass through all of the grid 
points. There are various options for model surfaces,6,7 in-
cluding (floating) best fit spheres (BFS), second-order conic 
surfaces (BFC) such as ellipsoids, paraboloids or hyperbo-
loids,4,8 biconic surfaces (BFB), wavelet surfaces,9 polyno-
mial surfaces such as Zernike models (BFZ)10–12 or Gaussian 
process surfaces (BFGP).7,13–18

These surfaces are characterised by parameters specific 
to each model. In the case of the generic surfaces, these 
are the radius R and the X/Y/Z coordinates of the apex 
(BFS), R and asphericity (Q) (BFC) or the radii (R1 and R2) 
and asphericity (Q1 and Q2) in the flat and steep meridi-
ans, together with the orientation of the flat meridian (A1) 
(biconic – BFBC). For the Zernike and Gaussian fits, these 
are the Zernike coefficients (BFZ) or weights and biases 
(BFGP). Since Zernike surfaces are defined in the unit cir-
cle only, some normalisation is required.10,11 Additionally, 
since Zernike surfaces are not designed to cover lateral dis-
placement, in many cases they are used on top of a simple 
model surface such as a floating BFS.

All of these model surfaces used for characterising the 
front and back surface of the cornea have advantages and 
drawbacks in terms of the complexity of the surface fit or 
ray tracing strategy,6 or the degree of customisation to any 
surface data set from a topographer or tomographer.12 As 
an example, fitting a BFS to topographic data and calcu-
lating the ray surface intersection and surface normal with 
a BFS is very simple and straightforward.8 By contrast, a 
surface fit with a BFBC (with five degrees of freedom) or a 
BFGP is much more flexible but requires nonlinear iterative 
optimisation techniques.

The purpose of the present study was to evaluate sev-
eral different corneal surface models to be used for ray 
tracing. The benefits and drawbacks of the different mod-
els are discussed in terms of fit error and tolerance to local 
irregularity or decentration, using selected generic surface 
data as examples.

M ETHO DS

In this simulation study, a number of generic surface height 
data sets were generated and used to simulate corneal to-
pography data. All of these generic surfaces were repre-
sented as a Cartesian grid with a lateral sampling in X and 
Y of 100 × 100 = 10,000 equidistant points within an area 
of 8 × 8 mm and a height Z. Data points with a distance 
(X2 + Y2) of more than 4 mm were discarded, leaving a cir-
cular region having a radius of 4 mm. The following generic 
surface data sets were created:

A	 A biconic surface (A) with radius of 7.8/7.6 mm and 
asphericity of −0.2/−0.4 in the flat/steep meridians, 
respectively. The flat meridian was oriented at 15 
degrees. The surface elevation map in terms of the 
height difference Z minus a best fit floating sphere is 
displayed in Figure 1a, together with the parameters of 
the best fit sphere (apex position in X/Y/Z and radius 
of curvature R).

B	 The biconic surface defined in B, with decentration of 
0.1 mm in X, 0.2 mm in Y and a superposition of ran-
dom white noise in Z with a standard deviation of 2 μm 
(surface B). The random white noise and the resulting 
elevation map of this generic surface are shown in 
Figure 2a.

C	 The biconic surface defined in A, with superposition of a 
Gaussian trough/hollow at X = 0 mm and Y = −0.25 mm. 
The hollow was defined as a 2D Gaussian with a sigma of 
2.4 mm and a central depth of 50 μm (surface C). The hol-
low and the resulting elevation map of the model surface 
are shown in Figure 3a. This generic surface is intended 
to simulate corneal topography after myopic LASIK with 
refractive correction of about 3.5 dioptres and a slightly 
decentred optical zone displaced by 0.25 mm in the infe-
rior direction.

D	 The biconic surface defined in A, with superposition 
of some topographic irregularities randomly spread 
over the entire area of 8 × 8 mm. The height of the 
random dots varied between −3.0 and 3.0 μm and a 

Key points

•	 Ray tracing for corneal modelling requires con-
tinuous differentiable surfaces, but topogra-
phers and tomographers measure the corneal 
surface only at discrete points.

•	 Six methods of fitting continuous surfaces to 
discrete corneal data were evaluated using 
simulated profiles representing typical corneal 
situations.

•	 Zernike models were powerful, but the 
Gaussian process models had the best all-round 
performance.
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bicubic spline grid interpolation was used to smooth 
between the random dots (surface D). The topographic 
irregularities and the resulting elevation map of the 

model surface are displayed in Figure  4a. This generic 
surface is intended to simulate corneal topographic 
irregularities.

F I G U R E  1   (a) Elevation maps of the generic surface A (perfect centred biconic surface, the flat meridian is oriented at 15 degrees) in terms of 
height difference from a best fit floating sphere. The surface is defined on a Cartesian grid within the central 8 mm zone with a lateral sampling of 100 
points in both X and Y (in total 7668 data points). Dimensions for X, Y and Z data are in mm. (b) Fit error (FE) with a best fit floating spherical surface 
model (BFS, upper left graph), a best fit floating conic surface model (BFC, upper middle graph), a best fit floating biconic surface model (BFBC, upper 
right graph), a best fit floating spherical surface (as defined with BFS) with a fringe Zernike surface of radial degree NZ = 12 on top (BFSZ, lower left 
graph), a fringe Zernike surface model of radial degree NZ = 12 (BFZ, lower middle graph) and a custom Gaussian process surface model (BFGP, lower 
right graph) for surface A. The root-mean-squared fit error is shown in a millimetre scale, and the root-mean-squared fit error (RMS) is provided in the 
title of the graph. Note that the colour maps are normalised in each case to the range of values in each plot.
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      |  1273LANGENBUCHER et al.

F I G U R E  2   (a) Elevation maps of the generic surface B (the biconic surface from Figure 1a but with decentration of 0.1 mm in X and 0.2 mm in 
Y and a superposition of white random noise (left graph) with a standard deviation of 2 μm) in terms of height difference from a best fit floating 
sphere. The surface is defined on a Cartesian grid within the central 8 mm zone with a lateral sampling of 100 points in both X and Y (in total 7668 data 
points). Dimensions for X, Y and Z data are in mm. (b) Fit error (FE) with a best fit floating spherical surface model (BFS, upper left graph), a best fit 
floating conic surface model (BFC, upper middle graph), a best fit floating biconic surface model (BFBC, upper right graph), a best fit floating spherical 
surface (as defined with BFS) with a fringe Zernike surface of radial degree NZ = 12 on top (BFSZ, lower left graph), a fringe Zernike surface model of 
radial degree NZ = 12 (BFZ, lower middle graph) and a custom Gaussian process surface model (BFGP, lower right graph) for surface B. The root-mean-
squared fit error is shown in a millimetre scale and the root-mean-squared fit error (RMS) is provided in the title of the graph. Note that the colour 
maps are normalised in each case to the range of values in each plot.
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1274  |      SURFACE MODELS FOR CORNEAL TOPOGRAPHY

F I G U R E  3   (a) Elevation maps of the generic surface C in terms of height difference from a best fit floating sphere. Surface C refers to the biconic 
surface from Figure 1a with a superposition of a Gaussian trough/hollow located at X = 0 mm and Y = −0.25 mm. The hollow shown on the left graph 
was defined as a 2D Gaussian with a Sigma of 2.4 mm and a central depth of 50 μm. This surface is intended to simulate corneal topography after 
myopic LASIK with refractive correction of about 3.5 dioptres and a slightly decentred optical zone displaced by 0.25 mm in the inferior direction. The 
surface is defined on a Cartesian grid within the central 8 mm zone with a lateral sampling of 100 points in both X and Y (in total 7668 data points). 
Dimensions for X, Y and Z data are in mm. (b) Fit error (FE) with a best fit floating spherical surface model (BFS, upper left graph), a best fit floating 
conic surface model (BFC, upper middle graph), a best fit floating biconic surface model (BFBC, upper right graph), a best fit floating spherical surface 
(as defined with BFS) with a fringe Zernike surface of radial degree NZ = 12 on top (BFSZ, lower left graph), a fringe Zernike surface model of radial 
degree NZ = 12 (BFZ, lower middle graph) and a custom Gaussian process surface model (BFGP, lower right graph) for surface C. The root-mean-
squared fit error is shown in a millimetre scale and the root-mean-squared fit error (RMS) is provided in the title of the graph. Note that the colour 
maps are normalised in each case to the range of values in each plot.

 14751313, 2025, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/opo.13539 by U

niversitätsbibliothek D
er, W

iley O
nline L

ibrary on [08/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



      |  1275LANGENBUCHER et al.

F I G U R E  4   (a) Elevation maps of the generic surface D in terms of height difference from a best fit floating sphere. Surface D refers to the biconic 
surface from Figure 1a with a superposition of topographic irregularities randomly spread over the entire area of 8 × 8 mm. The height of the random 
dots varied between −3.0 and 3.0 μm, and a bicubic spline grid interpolation was used to interpolate between the random dots. This surface is 
intended to simulate a situation of corneal topographic irregularities. The surface is defined on a Cartesian grid within the central 8 mm zone with 
a lateral sampling of 100 points in both X and Y (in total 7668 data points). Dimensions for X, Y and Z data are in mm. (b) Fit error (FE) with a best fit 
floating spherical surface model (BFS, upper left graph), a best fit floating conic surface model (BFC, upper middle graph), a best fit floating biconic 
surface model (BFBC, upper right graph), a best fit floating spherical surface (as defined with BFS) with a fringe Zernike surface of radial degree NZ = 12 
on top (BFSZ, lower left graph), a fringe Zernike surface model of radial degree NZ = 12 (BFZ, lower middle graph) and a custom Gaussian Process 
surface model (BFGP, lower right graph) for surface D. The root-mean-squared fit error is shown in a millimetre scale and the root-mean-squared fit 
error (RMS) is provided in the title of the graph. Note that the colour maps are normalised in each case to the range of values in each plot.
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E	 A rotationally symmetric conic surface with radius 
R = 7.7 mm and asphericity Q = −0.4, with a superimposed 
bump in the mid-periphery located at X = 1.5 mm and 
Y = −0.6 mm. The bump consists of a 2D Gaussian with 
a sigma of 0.8 mm and a maximum height of 30.0 μm 
(surface E). The rotationally symmetric conic surface 
(upper left graph), the mid-peripheral bump (lower left 
graph) and the resulting elevation map of the model 
surface (right graph) are shown in Figure 5a. This generic 
surface is intended to simulate corneal topography with 
a keratoconic eye, with steepening in the lower temporal 
quadrant (left eye).

The generation of the generic surfaces and the subse-
quent surface fit using various surface models was imple-
mented in MATLAB (Matlab version 2022b, mathw​orks.​
com). The following surface models were fitted to the ge-
neric surfaces described above (A–E):

BFS: A floating best fit sphere with three degrees of free-
dom (apex offset in X/Y/Z and radius R8).

BFC: A floating best fit rotationally symmetric conoid 
with four degrees of freedom (apex offset in X/Y/Z and ra-
dius R8).

BFBC: A floating best fit biconic surface with eight de-
grees of freedom (apex offset in X/Y/Z, radii in the flat and 
steep meridian R1 and R2, respectively, asphericity in the 
flat and steep meridian Q1 and Q2, respectively, and orien-
tation of the flat axis A1).8

BFSZ: A floating best fit sphere (as described in BFS) 
with a superimposed fringe Zernike polynomial sur-
face of radial degree NZ = 12 (as described in detail in 
Langenbucher et al.11) with a reference diameter of 4 mm 
(= unit circle), having four degrees of freedom for the BFS 
fit and 36 Zernike polynomials for the fringe Zernike fit 
(Z1 to Z36).

BFZ: A best fringe Zernike polynomial surface of radial 
degree NZ = 12 (as described in detail in Langenbucher 
et  al.11) with a reference diameter of 4 mm (= unit circle) 
without centring, with 36 Zernike polynomials for the 
fringe Zernike fit (Z1–Z36).

BFGP: Best fit Gaussian process surface with adaptive 
sigma and kernel size. A squared exponential design was 
used for the covariance function. The parameters of the 
Gaussian process model were estimated on a random sub-
set of 2000 data points. A Quasi-Newton algorithm was 
used for optimisation.19 Since the BFGP surface is fully cus-
tomised without symmetry conditions, there was no need 
to extract the apex position.7,13–17,20–22

An iterative nonlinear optimisation technique (trust-
region-reflective23,24) was used to extract the parameters 
for all models except the BFGP. The selected optimisa-
tion metric was minimisation of the root-mean-squared 
model error, defined as the unweighted difference be-
tween the surface data (surfaces A–E) and the fitted 
model data at the 7668 data points within a radius of 
X2 + Y2 ≤ 4 mm.

Output data and quality metrics

For all five generic surfaces and six surface-fitted models, 
the surface parameters were documented for BFS, BFC, 
BFBC, BFSZ, BFZ and the fit error (FE), defined as the differ-
ence between the surface height Z and the height of the 
fitted model surfaces, together with the unweighted root-
mean-squared (RMS) value of the FE.19,23–26

R ESULTS

The characteristics of the six surface models, as fitted to each 
of the generic surfaces A–E, are listed in Table  1 together 
with the corresponding root-mean-square fit error (RMS FE).

Figure  1b shows the FE derived with various surface 
models as fitted to the perfect biconic generic surface (sur-
face A). The FE for the BFS surface in the upper left graph 
shows that the fitted surface model was perfectly centred, 
but cannot represent the astigmatism and the aspheric-
ity of the generic surface A. The FE for the BFC indicated 
that the fitted surface model was able to follow the overall 
asphericity of surface A, but not in both cardinal meridians. 
Furthermore, it cannot represent the astigmatism. The FE 
for the BFBC surface shows the best fit of all of the surface 
models, giving a good fit to the radius of curvature and 
asphericity in both cardinal meridians, as well as the orien-
tation of the flat meridian of curvature as indicated by FEs 
of the order of 10−11 mm. Even though the BFBC graph vi-
sually resembles the surface elevation shown in Figure 1a, 
suggesting some correlation between the elevation and 
FE, the scales are very different: at 8.5 10−9, the RMS FE was 
very small, close to the numerical precision of the fitted al-
gorithm. The FE for the BFSZ with an underlying BFS and 
for the BFZ surface model, as shown in the lower left and 
lower middle graphs, are quite similar. Both surface models 
provide good fits to the astigmatism and the asphericity of 
surface A, with FEs of the order of 10−7 mm. These two plots 
show patterning in the same orientation as the variations 
in the original surface elevation, although these should 
again be taken in the context of the much smaller scale. At 
10−6 mm in the centre, the FE for the BFGP surface model 
fit error was slightly worse than the FE with BFSZ and BFZ, 
although it appears azimuthally symmetric, with no cor-
relation to the original surface elevation.

Figure  2b displays the FE derived with various surface 
models as fitted to the perfect biconic surface A with de-
centration and superposition of white noise (surface B). 
The FE graphs for the BFS, BFC and BFBC indicate that all 
three fitted surface models were able to represent fully the 
surface decentration (apex position), even with noisy data. 
The model characteristics listed in Table 1, such as radii and 
asphericity (compared with the perfect biconic surface A) 
are also well represented by these models. The surface 
models BFBC, BFSZ, BFZ and BFGP, which are, in principle, 
suitable to represent biconic surfaces, provide an RMS FE 
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F I G U R E  5   (a) Elevation maps of the generic surface E in terms of height difference from a best fit floating sphere. Surface E refers to a rotationally 
symmetric conic surface (upper left graph), with a Gaussian-shaped bump superimposed in the mid-periphery located at X = 1.5 mm and Y = −0.6 mm 
(sigma: 0.8 mm, maximum height: 30.0 μm, lower left graph). The resulting surface is shown on the right graph. This surface is intended to simulate 
a situation of corneal topography with keratoconus, with steepening in the lower temporal quadrant (left eye). The surface is defined on a Cartesian 
grid within the central 8 mm zone with a lateral sampling of 100 points in both X and Y (in total 7668 data points). Dimensions for X, Y and Z data are in 
mm. (b) Fit error (FE) with a best fit floating spherical surface model (BFS, upper left graph), a best fit floating conic surface model (BFC, upper middle 
graph), a best fit floating biconic surface model (BFBC, upper right graph), a best fit floating spherical surface (as defined with BFS) with a fringe 
Zernike surface of radial degree NZ = 12 on top (BFSZ, lower left graph), a fringe Zernike surface model of radial degree NZ = 12 (BFZ, lower middle 
graph) and a custom Gaussian process surface model (BFGP, lower right graph) for surface E. The root-mean-squared fit error is shown in a millimetre 
scale and the root-mean-squared fit error (RMS) is provided in the title of the graph. Note that the colour maps are normalised in each case to the 
range of values in each plot.
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which matches the standard deviation of the white noise, 
as shown in Figure 2a. The Zernike model BFZ provides no 
option for dealing with the decentration of a surface and 
interpreted the surface decentration in X and Y mostly in 
terms of surface tilt as shown in Table 1. Surprisingly, this 
model showed similar performance to the BFSZ surface 
model, where the surface decentration was covered by the 
underlying BFS surface.

Figure  3b plots the FE derived with various surface 
models as compared with the perfect biconic surface A, 
with superposition of a Gaussian shaped hollow slightly 
decentred in the inferior direction (surface C). The graphs 
show that the BFS model surface (upper left graph) ex-
hibits very poor performance, with an RMS FE >8 μm, fol-
lowed by the BFC (upper middle graph) at 4.1 μm and the 
BFBC (upper right graph) at 2.0 μm. In contrast, the BFSZ 
and BFZ Zernike surface models show good performance, 
each having an RMS FE around 0.008 μm. The BFGP model 
surface performed best with an RMS FE of about 0.001 μm. 
Interestingly, both of the Zernike representations and 
the Gaussian Process representation display some radial 
oscillations in the FE profile.

Figure  4b shows the FE derived with various surface 
models as fitted to the perfect biconic surface A, with 
superposition of multiple random dots representing 

topographic surface irregularities (surface D). Again, 
the graphs show that the BFS surface model (upper left 
graph) exhibits very poor performance, with an RMS FE of 
about 4 μm, followed by the BFC (upper middle graph) at 
3.5 μm and the BFBC (upper right graph) at 0.9 μm. In the 
FE plot for the BFS and BFC, the basic surface elevation 
is still visible, but in the FE plot for the BFBC, the biconic 
configuration is almost recovered and the random dots 
are dominant. Interestingly, both Zernike model surfaces 
BFSZ (lower left graph) and BFZ (lower middle graph) 
mostly recover the biconic shape, but cannot follow the 
surface irregularity in terms of the random dots. As a re-
sult, the RMS FE for both Zernike surface models is about 
0.5 μm, which is significantly poorer than their perfor-
mance on the first three surfaces. In contrast, the Gaussian 
process surface model BFGP (lower right graph) shows a 
very good performance in modelling local irregularities, 
with an RMS FE in the range of 0.003 μm.

The graphs shown in Figure 5b are based on a rotation-
ally symmetric centred conoid surface with superposition 
of a Gaussian shaped bump in the mid-periphery repre-
senting a ‘corneal ectasia’ (surface E). Again, the BFS surface 
model in the upper left graph exhibits very poor perfor-
mance, producing an RMS FE of 5.2 μm. This is followed 
by the BFC (upper middle graph) at 4.9 μm and the BFBC 

T A B L E  1   Fit results for the various surface models as fitted to the generic surfaces (A)–(E).

Surface fit Surface A Surface B Surface C Surface D Surface E

BFS Apex position X/Y/Z 0.000/0.000/0.004 0.098/0.299/0.004 0.000/−0.005/−0.029 −0.002/0.001/0.004 −0.008/0.003/0.012

R in mm 7.862 7.868 7.624 7.867 7.969

RMS FE in μm 4.114 4.622 8.231 3.976 5.220

BFC Apex position X/Y/Z 0.000/0.000/0.000 0.099/0.302/0.000 0.000/−0.006/−0.045 −0.002/0.001/0.000 −0.008/0.003/0.008

R in mm/Q 7.699/−0.302 7.702/−0.297 7.021 7.696/−0.317 7.810/−0.300

RMS FE in μm 3.685 4.134 4.131 3.487 4.926

BFBC Apex position X/Y/Z 0.000/0.000/0.000 0.100/0.300/0.000 0.000/−0.006/−0.045 −0.002/0.001/0.000 −0.008/0.003/0.008

R1 in mm/Q1/A1 in° 7.800/−0.200/15.0 7.796/−0.211/15.0 7.105/−0.9991/15.4 7.793/−0.211/12.6 7.970/0.004/68.2

R2 in mm/Q2 7.600/−0.400 7.6001/−0.4001 6.9399/−1.1301 7.6001–0.4196 7.6660–0.6058

RMS FE in μm 8.4958 10−9 1.995 2.032 0.933 4.422

BFSZ Z2/Z3 in μm 0.0000/0.000 0.000/0.000 0.000/0.000 0.000/0.001 0.000/0.000

Z4/Z5/Z6 in μm −0.000/−0.001/0.002 −0.000/−0.001 0.002 −0.000 −0.001 0.002 −0.000/−0.001/0.002 −0.005/−0.001/−0.001

Z9 in μm −0.001 −0.001 −0.004 −0.001 −0.003

RMS FE in μm 1.68 10−4 1.988 0.008 0.528 0.692

BFZ Z2/Z3 in μm 0.000/0.000 −0.014/−0.042 0.000/0.001 0.000/−0.000 0.001–0.000

Z4/Z5/Z6 in μm 0.137/−0.001/0.002 0.136/−0.001/0.002 0.141/−0.001/0.002 0.136/−0.001/0.002 0.130/−0.001/−0.001

Z9 in μm 0.002 −0.001 −0.000 0.002 0.001

RMS FE in μm 1.66 10−4 1.993 0.008 0.529 0.693

BFGP RMS FE in μm 2.49 10−4 1.995 8.90 10−4 0.003 0.003

Note: For the BFSZ and BFZ models, from the 36 fringe Zernike coefficients, only the two tilt components Z2 and Z3, the defocus and astigmatism components Z4, Z5 and 
Z6 and the spherical aberration component Z9 are listed. RMS FE refers to the root-mean-squared fit error of the surface models for generic surfaces (A)–(E), respectively. 
Apex position refers to the X, Y and Z coordinates of the highest surface point, R to the overall surface radius, R1 and R2 to the radii in the flat and steep meridians, 
Q to the overall surface asphericity, Q1 and Q2 to the surface asphericity in the flat and steep meridians.
Abbreviations: BFBC, floating best fit biconic surface; BFC, floating best fit rotationally symmetric conoid; BFGP, custom Gaussian process model surface; BFS, floating 
best fit sphere; BFSZ, best fit floating sphere (respective apex position and R as shown for BFS) and a fringe Zernike surface with radial degree NZ = 12 on top; BFZ, fringe 
Zernike surface fit with radial degree NZ = 12.
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(upper right graph) at 4.4 μm. The BFS, BFC and BFBC sur-
face models appear unsuitable to represent such a bump 
in the mid-periphery. However, even the two Zernike rep-
resentations BFSZ and BFZ (lower left and middle graphs) 
cannot model such an ectatic surface configuration very 
closely, yielding an RMS FE of about 0.7 μm. In contrast, the 
BFGP surface performed surprisingly well, with an RMS FE 
of about 0.003 μm, even though the bump is still visible in 
the FE graph.

D ISCUSSIO N

The majority of topographers or tomographers gener-
ate map data in terms of surface curvature, elevation 
or height. Surfaces are typically represented with thou-
sands of measurement points organised in a Cartesian 
or cylindrical grid. In general, the measurement data 
could also be organised as a scattered grid. While these 
are purely mathematical descriptions, in practice one 
would normally wish to assess the cornea for clinically 
relevant effects such as asphericity or toricity, or for 
nonuniformity associated with ectasia (for example). 
For these applications, a continuous surface model fit-
ted to the data grid can be useful. In the context of the 
current study, one may also wish to use ray tracing to 
assess image quality. However, such data grids are not 
sufficient for applications such as ray tracing, as informa-
tion about the surface and the normal to the surface in 
the interspaces between the data points is not available. 
In general, a proper surface model is fundamental for all 
ray tracing applications when working with point cloud 
data.3,13,14 Regardless of the accuracy of the measured 
data points, there is no information as to the appearance 
of the surface between the sampling points.4 Making 
the real-world assumption that the data are subject to 
a certain level of noise, it is typically necessary to use 
approximation strategies to counterbalance the FE and 
surface smoothness. Spherical or second-order surfaces 
such as conoids1,4,8 have the advantage that the ray sur-
face intersection and the surface normal can easily be 
derived algebraically, reducing the mathematical com-
plexity of ray tracing. However, more complex surfaces 
which offer more flexibility in following surface configu-
rations with local irregularities require iterative nonlin-
ear strategies to derive the ray-surface intersections. 
In these cases, calculation of the normal to the surface 
could be achieved by applying numerical methods such 
as the vector product of the two surface gradients with 
respect to X and Y.2,7,10,11

Surface models fitted to the data grid could also be 
used for research into customised intraocular lenses. For 
example, the complete imaging path of the eye could be 
ray traced, starting with a customised corneal model in 
which both corneal surfaces are characterised in terms of a 
BFGP, BFSZ or BFZ fitted surface. This would be followed by 
an aperture stop (representing the pupil) and a standard 

intraocular lens (either spherical or aspheric). Ray tracing 
could then be used to evaluate the resulting wavefront 
error in terms of optical path length differences. It would 
be possible to iteratively refine one (or both) intraocular 
lens surfaces using a Gaussian process surface model, re-
ducing the wavefront error and predicting the resulting 
retinal image performance. This iteration process would be 
continued until a satisfactory image quality is obtained.

Other applications of surface modelling include the 
generation of corneal ablation profiles for excimer laser 
treatment. Current corneal tomographers consider the 
cornea either as a monolayer with two surfaces (front and 
back surface) or as a duolayer with three surfaces (front, 
back and the epithelium–stroma interface). These two- or 
three-surface models could be used to generate custom-
ised ablation profiles characterised in terms of Gaussian 
process models iteratively enhanced to optimise the im-
aging performance of the cornea. In the present study, 
five characteristic generic corneal surface data sets were 
used to assess the performance of various surface fitting 
representations. The representations evaluated included 
classical BFS, BFC and BFBC models, as well as more ad-
vanced models such as fringe Zernike polynomials10–12 and 
a Gaussian Process surface commonly used in machine 
learning applications.9,13–18,20–22,27,28 The results for surface 
A are not surprising. Since the biconic surface has eight de-
grees of freedom, the BFS model (with only four degrees 
of freedom) was not capable of retrieving the astigmatism 
and asphericity. The BFC surface was capable of retrieving 
the mean asphericity but not the astigmatism. However, 
for clinical applications with ray tracing, the BFBC, BFSZ, 
BFZ and BFGP models performed quite well.

It was surprising that decentration of this biconic sur-
face (B) and the superposition of white noise did not affect 
the performance of the models significantly. The BFS, BFC 
and BFBC models were all capable of retrieving the surface 
decentration fully, as well as the surface parameters such as 
radius and asphericity, which seemed to be unaffected by 
the decentration and white noise.

The third configuration (C) modified the biconic surface 
by subtracting a Gaussian shaped profile paracentrally to 
simulate the situation after myopic LASIK with a central ab-
lation of 50 μm. The classical surface models BFS, BFC and 
BFBC appear overwhelmed in such situations, resulting in 
a large FE. However, even though the Zernike represen-
tations BFSZ and BFZ and the Gaussian Process represen-
tation BFGP performed much better, they still could not 
follow the paracentral hollow fully. Here, the BFGP model 
showed the best performance. Although the Zernike mod-
els appeared unaffected by small levels of decentration, 
they did so by interpreting decentration in terms of tilt. 
Since the BFGP model can account for decentration di-
rectly, it is expected that the superiority of the BFGP model 
in this respect would become more apparent at larger 
decentrations.

The greater flexibility of the BFGP model was also 
seen clearly in surface D, where random dots were 
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superimposed onto the biconic surface to test the robust-
ness of the surface fit to local corneal irregularities. Again, 
it is not surprising that the classical surface models BFS, 
BFC or BFBC did not perform well, being able to model 
the basic shape only, but not the irregularities. However, it 
was somewhat surprising that the fringe Zernike models 
of radial degree NZ = 12, either on top of a BFS (BFSZ) or 
with a direct decomposition (BFZ) also did not perform 
well. This means that Zernike surfaces are not suitable 
models for ray tracing in cases with local irregularities. 
For both Zernike models, the FE ranged between −2 and 
+2 μm, and the RMS FE was 0.5 μm even with the random 
dots of maximum height of ±3 μm. In contrast, the BFGP 
model seems to be more flexible in adapting to local ir-
regularities, especially with the selection of a suitable 
Kernel function and size. Although some surface rough-
ness is still visible in the FE profile, the RMS FE was very 
low at only 0.003 μm with this surface model.

However, the largest challenge for these surface mod-
els was the situation of a very simple centred conoid sur-
face with a Gaussian-shaped bump superimposed in the 
mid periphery (generic surface example E). This was used 
to simulate the situation of a corneal ectasia typically lo-
cated in the lower temporal quadrant. Again, it is not sur-
prising that classical surface models such as the BFS, BFC or 
BFBC were overwhelmed by such topographic situations. 
However, it was rather surprising that the Zernike models 
also struggled. Even with the 36 Zernike polynomial terms, 
either on top of a BFS (BFSZ) or fitted directly to the surface 
height data of surface (E), the residual FE was in the range 
of 0.7 μm, which is disappointing. The bump is clearly vis-
ible in the FE graphs with BFSZ and BFZ and surrounded 
by some rings of waviness. Furthermore, even the BFGP 
surface model could not fully retrieve surface (E) and the 
bump is also clearly visible in this example. However, the FE 
with the BFGP surface model was in the range of ±0.02 μm 
(RMS FE = 0.003 μm) which was quite good.

It was surprising to not find any clinically relevant dif-
ference between the two Zernike representations. Since 
Zernike polynomials all follow some symmetry, it might 
be anticipated that the subtraction of a floating BFS from 
the height data before performing the Zernike fit might be 
a good option for coping with surface decentration (e.g., 
surface B). However, it was actually found that the Zernike 
fit interpreted decentration in terms of either tilt (as shown 
in Table 1) or coma (not listed in the Table), and the overall 
performance of the fit seemed to be unaffected, at least for 
small values of decentration.11

In this respect and with regard to surface irregularities, 
the BFGP model showed the greatest flexibility because 
the wavelets were simply shifted and not subject to any 
symmetry conditions. BFGP accounts for decentration in-
trinsically and was able to cope with local isolated defects.

However, this study has some limitations: First, the anal-
ysis was restricted to some (characteristic, but selected) 
generic test surfaces and selected surface models for the 
fit. This does not allow for general statements about the 

robustness of any surface model in characterising individ-
ual corneal surface data. The literature shows that classical 
BFS, BFC, BFBC or Zernike surfaces, as evaluated here, have 
been used widely in the past to characterise topographic 
data. However, there are many other surface models which 
were not considered here. Second, the study was restricted 
to fitting the test surfaces with model surfaces. In subse-
quent papers, we plan to investigate how these simplified 
surface models impact image quality using ray tracing. 
This further analysis, in terms of image quality, was not 
pursued here to avoid confusing several effects. And third, 
the trust region reflective algorithm23,24 was used as the 
nonlinear iterative optimisation technique (for BFS, BFC, 
BFBC, BFSZ and BFZ) and the quasi-Newton algorithm for 
optimisation19 of the BFGP. It was felt that other iterative 
nonlinear optimisation strategies such as the Levenberg–
Marquardt algorithm or the interior point algorithm would 
show similar performance, and that all iterative nonlinear 
algorithms24–26 may outperform the classical least squares 
set-up often adopted to derive Zernike polynomials using 
the Penrose–Moore pseudoinverse, although there is no 
proof for this assumption.

In conclusion, this paper addresses the problem of defin-
ing a closed surface model from point cloud data derived 
from surface topographers or tomographers used for ray 
tracing. Since surface maps from tomographers are typically 
provided as grid data, one must find a trade-off between 
noise and the reliability of the data points, and this was 
achieved through approximation of a surface model to the 
point cloud data. From the results with characteristic test 
surfaces, it was found that classical surfaces such as best fit 
spheres or best fit conoids might be a satisfactory and easy-
to-use option for very smooth topographies, that is, best fit 
biconic surfaces could best represent smooth topographies 
with astigmatism and asphericity. However, Zernike surfaces 
with or without an underlying best fit sphere offer much 
more flexibility, for example, to represent situations after 
corneal refractive surgery. Finally, Gaussian process surfaces 
show surprisingly good performance and greater flexibility 
in coping with decentration and adapting to local irregulari-
ties or ectatic corneas, making these a compelling all-round 
option. Future studies will investigate the Gaussian process 
surface model for characterising surfaces of customised in-
traocular lenses and applications in the field of custom sur-
face ablations with the excimer laser.
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