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1  |   INTRODUCTION

Lens power formulae based on vergence calculations 
with simplification to the paraxial space are widely 
used to determine the power of intraocular lenses (IOL) 
prior to cataract surgery. These formulae are designed 
to be generally valid for all lens designs and materials 
(Aristodemou et  al.,  2011; Langenbucher et  al.,  2022; 
Langenbucher, Szentmáry, Cayless, Müller, et al., 2021), 

biometers and surgical techniques, and are then custom-
ised to specific lens types and environmental conditions 
using formula constants. Optimisation of formula con-
stants requires a representative set of data comprising all 
preoperative biometric measures used in the formula, the 
refractive power of the implanted IOL and the refractive 
outcome in terms of spherical equivalent power after cat-
aract surgery (Langenbucher et al., 2023b). Today, using 
modern lens formulae with well-optimised constants, up 
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Abstract
Purpose: The purpose of this study was to develop a method for evaluating in-
traocular lens (IOL) formula constant uncertainties using two modern statisti-
cal techniques—jackknife and bootstrap resampling.
Methods: Using two datasets (dataset 1: 888 eyes treated with the aberration 
correcting Hoya Vivinex IOL, dataset 2: 821 eyes with the spherical Alcon 
SA60AT/SN60AT IOL), formula constant uncertainties for the SRK/T (Aconst), 
Hoffer-Q (pACD), Holladay 1 (SF), simplified Haigis (a0) with preset a1/a2, 
Haigis (triplet a0/a1/a2), Castrop (triplet C/H/R) and Olsen formula (ACD) were 
evaluated. All input parameters were jackknife and bootstrap (NB = 1000) resa-
mpled, and formula constants for each sample derived using nonlinear iterative 
optimisation techniques.
Results: In single constant formulae where the constant acts directly on the 
effective lens position (Hoffer-Q, Holladay 1, simplified Haigis, Olsen), the for-
mula constant in each case showed a standard deviation (SD) of about 0.01 with 
both jackknife and bootstrap sampling. The SRK/T Aconst showed a SD of 
about 0.018, and the Haigis and Castrop formulae with constant triplets showed 
large variations in the 3 constants (a0/a1/a2 about 0.036/0.005/0.002, C/H/R 
about 0.001/0.011/0.012). Direct formula reversion and solving for the formula 
constant yielded systematically larger SD values (Aconst/pACD,SF/a0/ACD = 0
.586/0.395/0.403/0.324/0.304) with highly skewed distributions.
Conclusion: The distributions of formula constants with relevant benchmarks 
such as SD or confidence intervals can be derived with jackknife and bootstrap 
resampling techniques, offering potential advantages over direct formula re-
version which yields skewed distributions, making central metrics such as the 
formula constant distribution mean unsuitable for constant optimisation.
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to 50%/80% of cases in selected study populations result 
in a refraction within benchmarks of ±0.25/±0.50 diop-
tres (D) in formula prediction error (Savini et al., 2020; 
Wendelstein et al., 2022).

The main challenge in formula constant optimisation 
is that there is no common standard concerning the pa-
rameters and metrics to be used. Although the formula 
prediction error (PE) in terms of spherical equivalent of 
the achieved refraction minus the spherical equivalent 
of the formula predicted refraction is undisputedly the 
most relevant parameter for both the patient and the 
surgeon, there is still much debate as to the best metric 
to be zeroed or minimised (Langenbucher et  al.,  2022; 
Langenbucher, Szentmáry, Cayless, Müller, et al., 2021). 
Some surgeons aim to zero the mean or median prediction 
error, others to minimise the mean or median absolute 
PE, and others to minimise the root-mean-squared PE 
(Langenbucher, Wendelstein, Szentmáry, et al., 2024). In 
ophthalmology formulae having a disclosed architecture 
and a single formula constant, an additional and well-
established option is to reverse the formula and solve for 
the formula constant (Aristodemou et al., 2011). This re-
sults in a ‘perfect’ formula constant for each datapoint in 
the dataset which maps the preoperative biometry and 
the power of the implanted lens exactly to the postop-
erative refraction. However, reverse calculation of the 
constant is only possible for fully disclosed single con-
stant formulae, and the mean or median of these formula 
constants from formula reversal does not minimise any 
of the aforementioned metrics for the PE. In the WEB 
platform IOLCon (https://​iolcon.​org), for all formulae, 
we use an iterative nonlinear optimisation strategy based 
on minimising the root-mean-squared PE. As an alterna-
tive, especially for non-disclosed formulae, some purely 
data-driven techniques adapted from artificial intelli-
gence applications such as particle-swarm optimisation 
(Langenbucher et al., 2023a) or surrogate model optimi-
sation (Langenbucher, Wendelstein, Cayless, et al., 2024) 
can be used even when only a black-box implementation 
of the formula is available.

Where more than one clinical dataset is available, 
or with a large dataset that could be split into subsets, 
the technique of cross-validation can be used to evalu-
ate the precision or robustness of the generated formula 
constants. This involves using one dataset or subset for 
optimisation and subsequently testing the performance 
against a second dataset or independent subset (Lopez 
et  al.,  2023). This enables the standard error or confi-
dence interval of the formula constant to be derived in 
cases where multiple datasets are available. Alternatively, 
for fully disclosed single constant formulae such as the 
SRK/T, Hoffer-Q, Holladay 1 or the simplified Haigis 
formula, the standard deviation or the confidence in-
tervals of the formula constants derived using formula 
reversal on a single dataset could give some insight into 
formula constant robustness, even though formula re-
versed constants do not optimise for any metric of PE 
(Aristodemou et  al.,  2011; Langenbucher et  al.,  2022; 
Langenbucher, Szentmáry, Cayless, Müller, et  al.,  2021; 
Schröder et al., 2016; Zhang et al., 2019). However, mod-
ern statistical techniques involving resampling provide 
a means of estimating the standard error or confidence 

intervals of formula constants using only a single data-
set, and these can be used for disclosed and non-disclosed 
formulae involving single or multiple formula constants. 
Two such techniques explored here are jackknife resam-
pling and bootstrapping. The jackknife works by sequen-
tially eliminating one datapoint from the dataset and then 
calculating the formula constant, and repeating until each 
datapoint has been left out once (Zhou et al., 2015; Zuo 
et al., 2010). It is computationally simpler than bootstrap-
ping and is mostly used to reduce bias and evaluate the 
variance for an estimator such as our formula constant. 
Bootstrapping is the most popular resampling technique 
today and works by sampling with replacement to esti-
mate the distribution of our formula constant. It is mostly 
used to evaluate the variance of the formula constant dis-
tribution (Efron,  1982; Efron & Tibshirani,  1993). Both 
resampling techniques are very powerful, and they are 
widely used in statistics to derive relevant metrics from 
model parameter distributions (Boos & Osborne,  2015; 
Chavance,  1992; Davison & Hinkley,  1997; DiCiccio & 
Efron, 1996; Liu et al., 1997; Rodgers, 1999).

The purpose of this paper is

•	 to present a method for evaluating the precision of for-
mula constants using jackknife and bootstrap resam-
pling techniques,

•	 to apply this method to two large datasets containing 
preoperative biometric measures of cataract patients, 
together with data on the power of the implanted lens 
and the postoperative refraction, and

•	 to estimate the standard error and (nonparametric) 
confidence intervals for the formula constants of the 
SRK/T, Hoffer-Q, Holladay 1, Haigis, Castrop and 
Olsen formulae.

2  |   M ATERI A LS A N D M ETHODS

2.1  |  Datasets for formula constant 
optimisation

In this retrospective study, we analysed two clini-
cal datasets from a cataract population from Augen- 
und Laserklinik Castrop-Rauxel, Castrop-Rauxel, 
Germany. These were transferred to us in an an-
onymised fashion, precluding back-tracing of the pa-
tient. Dataset 1 contains measurements from N = 888 
eyes (490 right eyes and 398 left eyes; 495 female and 
392 male) with the insertion of a 1 piece hydrophobic 
aspherical (aberration correcting) monofocal intraocu-
lar lens (Vivinex XC1 or XY1, Hoya Surgical Optics, 
Singapore). The mean age was 71.2 ± 9.1 years (median: 
71 years, range: 47–91 years). Dataset 2 contains meas-
urements from N = 821 eyes (415 right eyes and 407 left 
eyes; 467 female and 345 male) with the insertion of a 1 
piece hydrophobic spherical monofocal intraocular lens 
(SA60AT or SN60AT, Alcon, Fort Worth, USA). The 
mean age was 71.7 ± 8.8 years (median: 72 years, range: 
49–93 years). The local ethics committee (Ärztekammer 
des Saarlandes) provided a waiver for this study (157/21). 
The anonymised data contained complete preoperative 
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biometric records without ‘warning’ or ‘failure’ flags 
derived with the IOLMaster 700 (Carl-Zeiss-Meditec, 
Jena, Germany) including: axial length AL in mm, an-
terior chamber depth ACD in mm measured from the 
corneal front apex to the lens front apex, lens thickness 
LT in mm, and the corneal front surface radius meas-
ured in the flat (R1 in mm) and in the steep meridians 
(R2 in mm). In addition to the refractive power of the in-
serted lens (PIOL), the postoperative refraction (spheri-
cal equivalent SEQ = sphere +0.5·cylinder) 5–12 weeks 
after cataract surgery was measured by an experienced 
optometrist using trial glasses in a trial frame at a re-
fraction lane distance of 6 m and recorded in the data-
set. The dataset included only data with a postoperative 
Snellen decimal visual acuity of 0.8 (20/25 Snellen lines) 
or higher in order to ensure that the postoperative re-
fraction was reliable. The relevant descriptive data on 
biometry, PIOL and postoperative refraction are sum-
marised in Table 1. The Excel data (.xlsx-format) were 
imported into MATLAB (Matlab 2022b, MathWorks, 
Natick, USA) for further processing.

2.2  |  Preprocessing of the data

Custom software was written in Matlab. The patient age 
at the time of surgery was derived from the date of cata-
ract surgery and the date of birth. The corneal radius 
of curvature R12 was calculated as the harmonic mean 
R12 = 0.5·R1·R2/(R1 + R2) (Langenbucher, Wendelstein, 
Szentmáry, et al., 2024), and the mean corneal power K12 
was derived from R1 and R2 as Kmean = 0.5·((nK − 1)/
R1 + (nK − 1)/R2), where nK is the keratometer index, as 
indicated in the formula definition. Seven lens power 
calculation concepts were considered in this paper: the 
SRK/T formula with formula constant Aconst (Retzlaff 
et al., 1990; Sanders et al., 1990), Hoffer-Q formula with 
formula constant pACD (Hoffer, 1993), Holladay 1 for-
mula with formula constant SF (Holladay et al., 1988), 
simplified Haigis formula with formula constant a0 and 
preset constants a1 = 0.4 and a2 = 0.1 (Haigis et al., 2000), 
Haigis formula with formula constant triplet a0/a1/a2 
(Haigis et al., 2000), the Castrop formula with formula 

constant triplet C/H/R (Langenbucher, Szentmáry, 
Cayless, Weisensee, et al., 2021; Wendelstein et al., 2022) 
and the Olsen formula with formula constant ACD 
(Olsen et al., 1995; Olsen & Hoffmann, 2014). For simplic-
ity and without loss of generality, the corneal thickness 
was set to 0.55 mm and the corneal back surface curva-
ture was derived from the corneal front surface curva-
ture (R1 and R2) using a preset ratio of front to back 
surface curvature of 0.84 (Langenbucher, Szentmáry, 
Cayless, Weisensee, et al., 2021). All formulae included 
in this analysis were reorganised and solved for the SEQ 
as a function of preoperative biometrical data and PIOL. 
The difference between the achieved SEQ (from the post-
operative follow-up examination) and the formula pre-
dicted SEQ was taken as the formula prediction error PE 
(Savini et al., 2020; Schröder et al., 2016).

Formula constants were optimised for both datasets 
and all formulae using a nonlinear iterative optimisation 
strategy involving minimising the root-mean-squared 
(RMS) PE of the entire dataset. Formula constant 
optimisation was implemented using interior point 
methods (Byrd et  al., 2000), which refer to a family of 
optimisation techniques for solving linear and nonlin-
ear convex optimisations (Boyd & Vandenberghe, 2004; 
Byrd et  al.,  1999; Coleman & Li,  1994; Dikin,  1967; 
Karmarkar, 1984; Waltz et al., 2006). The SEQ prediction 
was back-calculated using the optimised constants for 
each formula, and the prediction error PE was derived.

2.3  |  Jackknife and bootstrap resampling 
implementation and formula reversal

In the first step, N Jackknife samples (with N − 1 da-
tapoints each) were derived from each of the datasets 
by sequentially deleting one datapoint in the data-
set (Chavance,  1992; Efron,  1982). For each of the N 
Jackknife samples, the formula constants for all formu-
lae (indicated with a subscript ‘JACK’) were calculated 
using the nonlinear iterative optimisation strategy as 
described above. These N formula constants were re-
corded for subsequent analysis. In the second step, 
NB = 1000 bootstrap samples were derived from the N 

TA B L E  1   Explorative data from preoperative biometry (axial length AL, anterior chamber depth ACD, lens thickness LT, mean corneal 
radius of curvature R12, mean corneal power K12 derived from corneal curvature using Javal keratometer index, nK = 1.3375), power of the 
implanted lens (PIOL) and postoperative refraction (spherical equivalent SEQ) with mean, standard deviation (SD), median, and the lower 
(CI95lb) and upper (CI95ub) boundary of the 95% confidence interval.

Explorative data AL in mm ACD in mm LT in mm R12 in mm K12 in dpt PIOL in D SEQ in D

Dataset 1: N = 888 
Hoya lenses

Mean 24.0980 3.1864 4.6176 7.7646 43.5180 20.6222 −0.5612

SD 1.4072 0.4081 0.4568 0.2680 1.5006 3.7318 0.9239

Median 23.9026 3.1848 4.5929 7.7628 43.4763 21.0000 −0.2500

CI95lb 21.6757 2.3720 3.7333 7.2686 40.6567 12.0000 −2.5000

CI95ub 27.3514 3.9435 5.5192 8.3012 46.4324 27.5000 0.5000

Dataset 2: N = 821 
Alcon lenses

Mean 23.1459 3.0440 4.6182 7.6984 43.8927 22.7473 −0.4794

SD 1.5090 0.4014 0.4336 0.2648 1.5301 4.5718 0.7137

Median 23.1800 3.0216 4.6100 7.7297 43.6629 22.5000 −0.2500

CI95lb 20.4510 2.3060 3.8200 77.1135 41.2601 13.5000 −2.6250

CI95ub 26.4160 3.8180 5.4200 8.1798 47.4451 33.0000 0.5000
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datapoints using a random resampling strategy with re-
placement (Davison & Hinkley, 1997; Efron, 1982; Liu 
et al., 1997). For each of the NB bootstrapped samples, 
the formula constants for all formulae (indicated with 
a subscript ‘BOOT’) were calculated using the nonlin-
ear iterative optimisation strategy as previously de-
scribed (Boyd & Vandenberghe, 2004; Byrd et al., 1999; 
Coleman & Li,  1994; Dikin,  1967; Karmarkar,  1984; 
Waltz et  al.,  2006). These NB formula constants were 
again recorded for subsequent analysis. Finally, all 
of the single constant formulae (SRK/T, Hoffer-Q, 
Holladay 1, simplified Haigis and Olsen formula) were 
reversed and solved for their respective formula con-
stant, resulting in a ‘perfect’ formula constant for each 
datapoint in the dataset, mapping the preoperative bi-
ometry and the power of the implanted lens exactly to 
the postoperative SEQ. As before, these N formula con-
stants (indicated with a subscript ‘REV’) were recorded 
for subsequent analysis.

2.4  |  Statistical evaluation

Explorative data are shown in terms of arithmetic mean, 
standard deviation (SD), median and 95% confidence 
intervals (CI95, 2.5% quantile as the lower boundary 
(CI95lb) and 97.5% quantile as the upper boundary 
(CI95ub)). The mean, SD, median and the CI95 of the 
respective distributions were recorded in each case for 
the jackknife and bootstrapped resampled formula 
constants and for the constants derived from formula 
reversal. It should be noted that when calculating the 
SD and the CI95 for the jackknife resampled formula 
constants, a correction factor of 

√

N − 1 was applied 
(Boos & Osborne,  2015; Liu et  al.,  1997) to account 
for the loss of degrees of freedom when one datapoint 
was sequentially deleted from the dataset. In addition, 
the cumulative distribution function (CDF) was gen-
erated for the jackknife resampled formula constants 
(without correction factor 

√

N − 1), for the bootstrap 
resampled formula constants and also for the formula 
constants calculated from formula reversal. For clar-
ity when showing the distributions for all formulae on 
a single plot, the CDF for the formula constants have 
been shifted in terms of zeroing the mean of the distri-
butions, with the corresponding mean values provided 
in the figure legends.

3  |   RESU LTS

Table 1 shows the explorative data of the most relevant 
input parameters for the datasets 1 and 2 in terms of 
AL, ACD, LT, R12, K12, PIOL and SEQ. Table 2 relates 
to dataset 1 and lists the formula constants calculated 
using the iterative nonlinear optimisation together with 
the formula constant mean, SD, median and CI95 val-
ues for the jackknife samples, the bootstrap samples and 
the formula reversal. Table 3 relates to dataset 2 and lists 
the respective formula constants calculated using the 
iterative nonlinear optimisation together with the for-
mula constant mean, SD, median and CI95 values for the 

jackknife samples, the bootstrap samples and the for-
mula reversal. From both tables, it can be seen that the 
mean formula constants from the jackknife resampling 
match the formula constants derived from the original 
dataset. The variation in the formula constants from for-
mula reversal is systematically larger as compared to the 
variations in the formula constants derived from jack-
knife and bootstrap sampling, respectively.

Figure 1 relates to dataset 1 with N = 888 Hoya lenses 
and displays the CDF graphs for the formula constant 
distributions derived from jackknife resampling (subfig-
ure a), bootstrap resampling (subfigure b) and formula 
reversal (subfigure c). In general, the variation in the lens 
constants is systematically lower for jackknife resam-
pling (subfigure a) than for bootstrap resampling (sub-
figure b). From subfigures a and b, it can be seen that the 
CDF values for those single constant formulae having a 
constant that directly shifts the mean effective lens posi-
tion (Hoffer-Q, Holladay 1, simplified Haigis and Olsen) 
are very similar, whereas the SRK/T formula (which 
internally downscales the Aconst with a factor 0.62467 
for the conversion to the effective lens position) accord-
ingly shows a larger variation. For the Haigis formula, 
the variation in the a2 constant is lowest followed by the 
variation in the a1 constant. This is a consequence of the 
internal formula architecture in which the effective lens 
position is derived from a linear superposition of an in-
tercept a0 and a1/a2 upscaled by ACD/AL. Subfigure c, 
which displays the CDF for the formula constant derived 
from a direct formula reversal, shows that the formula 
constant distributions are very broad and asymmetric 
with respect to the mean, which is indicated by the verti-
cal dashed black line.

Figure 2 relates to dataset 2 with N = 821 Alcon lenses 
and displays the CDF graphs for the formula constant 
distributions derived from jackknife resampling (subfig-
ure a), bootstrap resampling (subfigure b) and formula 
reversal (subfigure c). Again, the variation in the lens 
constants is systematically lower for jackknife resam-
pling (subfigure a) than for bootstrap resampling (sub-
figure b). And we again see very similar CDF values for 
those single constant formulae having a constant directly 
that shifts the mean effective lens position (Hoffer-Q, 
Holladay 1, simplified Haigis and Olsen), whereas the 
SRK/T formula shows a larger variation by around 
1/0.62467. And again, for the Haigis formula, the varia-
tion in the a2 constant is lowest followed by the variation 
in the a1 constant. This is a consequence of the internal 
formula architecture where the effective lens position 
is derived from a linear superposition of an intercept 
a0 and a1/a2 upscaled by ACD/AL. Subfigure c, which 
displays the CDF for the formula constant derived from 
a direct formula reversal, shows that the formula con-
stant distributions are very broad and asymmetric with 
respect to the mean, which is indicated by the vertical 
dashed black line.

4  |   DISCUSSION

Formula constants and model parameters are highly 
relevant in the field of cataract surgery to adjust the 
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F I G U R E  1   Cumulative distribution plots (CDF) showing the precision or robustness of the formula constants centred to their mean value 
(indicated in the figure legends) for dataset 1 with N = 888 Hoya lenses. The graphs include the Aconst for the SRK/T formula, the pACD for 
the Hoffer-Q formula, the SF for the Holladay 1 formula, the a0 for the simplified Haigis formula, the a0/a1/a2 triplet for the Haigis formula, 
the C/H/R triplet for the Castrop formula and the ACD for the Olsen formula. All formula constants were retrieved using an iterative nonlinear 
optimisation technique to minimise for the root-mean-squared formula prediction error. Subfigure a shows the CDF for the N = 888 jackknife 
resampled formula constants; subfigure b shows the CDF for the NB = 1000 bootstrap resampled formula constants; and subfigure c displays 
the CDF for the formula constants derived from the formula reversion (only for single constant formulae). The distributions in subfigure b 
are broader compared with subfigure b as a consequence of the resampling techniques, and the distributions in subfigure c is much broader 
compared with subfigures a and b and also somewhat asymmetric with respect to their distribution mean.
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lens power formula for the best refractive outcome 
(Aristodemou et  al.,  2011; Langenbucher et  al.,  2022; 
Langenbucher, Szentmáry, Cayless, Müller, et al., 2021; 
Savini et al., 2020). In general, it is mandatory to report 
appropriate metrics on the precision and robustness 
of model parameters (DiCiccio & Efron,  1996; Lopez 
et al., 2023). In fully disclosed single constant lens formu-
lae, where a direct back calculation of the formula con-
stant for each datapoint is possible, statistical metrics 
such as the mean, standard deviation, median and confi-
dence interval could give some insight into the precision 
of the formula constant, even though these metrics do 
not properly represent the respective metrics from tradi-
tional methods with cross-validation or multiple repeti-
tions of the experiment.

Modern subsampling techniques such as jackknife 
or bootstrap resampling are widely used in statistics 
where metrics for precision or robustness of model pa-
rameters are required and only one dataset is available 
(Efron,  1982). Resampling is a way of reusing data to 
generate hypothetical samples (or resamples) that are 
representative for the underlying population. Currently, 
bootstrapping, which involves sampling with replace-
ment (Davison & Hinkley,  1997), is the most popular 
resampling technique. Bootstrapping has the ability to 
estimate the sampling distribution of formula constants 
for all types of formulae, including those with single or 
multiple constants, and it can be used with both disclosed 
and black-box formulae. The main focus here is to eval-
uate the variance of the formula constants (DiCiccio & 
Efron, 1996; Lopez et al., 2023). However, bootstrapping 
is also a perfect tool to estimate the standard deviation, 

standard error, confidence intervals for normally or non-
normally distributed formula constant data (Davison & 
Hinkley, 1997). By contrast, jackknife works by sequen-
tially deleting one datapoint in the dataset and com-
puting the formula constants with each of the resulting 
datasets containing N − 1 datapoints (Chavance, 1992). 
Computation is much simpler than bootstrapping, and 
the process results in exactly N jackknife samples that 
do not depend on any random sequence generator. Since 
only one datapoint is left out for each calculation, the 
distribution of the resulting formula constants is sys-
tematically narrower. For this purpose, the distributions 
are corrected by a scaling factor of 

√

N − 1, which has 
already been taken into account in the descriptive data 
shown in Tables  2 and 3. The main focus of jackknife 
resampling in our context is to elaborate and reduce the 
model bias and to evaluate the variance of the formula 
constants (Liu et al., 1997). However, jackknife is also a 
suitable tool for estimating the standard deviation, stan-
dard error and confidence intervals for formula constant 
data, and has the great advantage that the mean of all 
jackknife resampled formula constants fully matches 
the formula constants derived from the original data-
set, which is not necessarily the case with bootstrapping 
(Davison & Hinkley, 1997; Efron, 1982).

In this paper, we have used jackknife and bootstrap 
resampling techniques to evaluate the precision or ro-
bustness of the formula constants. In contrast to a previ-
ous paper where we bootstrapped the formula prediction 
error PE and added this bootstrapped PE to the formula 
predicted spherical equivalent refraction (Langenbucher 
et  al.,  2023b), in this paper we bootstrapped the entire 

F I G U R E  1    (Continued)
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e430  |      LANGENBUCHER et al.

F I G U R E  2   Cumulative distribution plots (CDF) showing the precision or robustness of the formula constants centred to their mean value 
(indicated in the figure legends) for dataset 2 with N = 821 Alcon lenses. The graphs include the Aconst for the SRK/T formula, the pACD for 
the Hoffer-Q formula, the SF for the Holladay 1 formula, the a0 for the simplified Haigis formula, the a0/a1/a2 triplet for the Haigis formula, 
the C/H/R triplet for the Castrop formula and the ACD for the Olsen formula. All formula constants were retrieved using a iterative nonlinear 
optimisation technique to minimise for the root-mean-squared formula prediction error. Subfigure a shows the CDF for the N = 888 jackknife 
resampled formula constants; subfigure b shows the CDF for the NB = 1000 bootstrap resampled formula constants; and subfigure c displays 
the CDF for the formula constants derived from the formula reversion (only for single constant formulae). The distributions in subfigure b 
are broader compared with subfigure b as a consequence of the resampling techniques, and the distributions in subfigure c much broader 
compared with subfigures a and b and also somewhat asymmetric with respect to their distribution mean.
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dataset (with all input parameters) to create a level play-
ing field with jackknife resampling. As shown by Gatinel 
et al., an overestimation or underestimation in any of the 
formula constants which directly affect the effective lens 
position causes a PE of about minus or plus 1.35 diop-
tres (0.0006·(PIOL2 + 2·K12·PIOL)) (Gatinel et al., 2024). 
Since the Aconst of the SRK/T formula is translated to 
a shift in the effective lens position of Aconst/0.62467, an 
overestimation or underestimation in the Aconst value 
causes a PE of about minus or plus 0.86 dioptres.

The main findings are that both the jackknife and 
bootstrap resampling techniques are suitable for gener-
ating relevant metrics such as the mean, SD, median and 
CI95 of the formula constants. We could confirm that 
the mean formula constants from jackknife resampling 
correspond exactly to the formula constant derived from 
the original dataset, whereas the mean formula constant 
from bootstrap resampling shows a slight offset, at least 
when using a reasonable value for NB. In Tables 2 and 
3 the formula constants derived from the original data-
set are listed together with the metrics for the formula 
constants derived from jackknife and bootstrap resa-
mpling and from formula reversion. For dataset 1 with 
the aspherical aberration correcting Hoya lens, the stan-
dard deviations for the lens constants of the Hoffer-Q, 
Holladay 1, simplified Haigis and Olsen formula range 
between 0.009 and 0.011 for both resampling techniques 
and for the SRK/T formula, the range is about 0.018. For 
the lens formulae with constant triplets, the situation is 
completely different and depends on the internal archi-
tecture of the formula: With the Haigis formula where the 
effective lens position is given by a linear superposition 

of an intercept a0 and two regression terms a1·ACD and 
a2·AL, any variation in a1 or a2 directly affects the inter-
cept a0. Since a1 is scaled by the ACD (with a mean value 
of 3.19 mm in dataset 1) and a2 is scaled by the AL (with a 
mean value of 24.10 mm in dataset 1), the SD in a0 (about 
0.036) is consequently larger compared with the SD in a1 
(about0.006) or a2 (about 0.002) or to the respective SD 
of a0 in the simplified Haigis formula or the Hoffer-Q, 
Holladay 1 or Olsen formulae. This does not, however, 
affect the accuracy of the predicted effective lens posi-
tion, as all constants in the constant triplet act together 
to define the effective lens position and subsequently 
the formula predicted refraction. The situation for the 
Castrop formula is rather different as only C scales with 
the LT (with a mean value of 4.62 mm in dataset 1) and 
H affects the effective lens position, whereas R acts as 
an offset value for the refraction. This explains why the 
SD in C, which is upscaled with LT, is systematically 
smaller compared with the SD in H. For dataset 2 with 
the spherical Alcon lens, the standard deviations for the 
lens constants of the SRK/T, Hoffer-Q, Holladay 1, sim-
plified Haigis and Olsen formula with both resampling 
techniques are slightly larger, but they are still in the 
same range compared with dataset 1. For the lens for-
mulae with constant triplets, SD for the Haigis formula 
constants a0/a1/a2 is about 0.037/0.006/0.002 and for the 
Castrop formula SD for C/H/R is about 0.004/0.023/0.013 
with jackknife resampling or 0.003/0.015/0.010 with boot-
strap resampling. However, the most important finding 
is that formula constants derived from direct formula 
reversal perform poorly for all formulae. For dataset 
1 with the Hoya lens, the SD for the SRK/T formula is 

F I G U R E  2    (Continued)
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0.57 and for the Hoffer-Q/Holladay 1/simplified Haigis/
Olsen formulae it is 0.38/0.38/0.32/0.32. Looking at the 
distributions shown in the CDF plots in Figure 1c cen-
tred to their distribution mean value, it can be clearly 
seen that the distributions of the formula constants are 
skewed. Also, comparing the formula constant mean or 
median values listed in Table 2 to the formula constant 
derived from the entire dataset with nonlinear optimi-
sation shows a systematic offset. As an example, with 
the Hoffer-Q formula, the mean/median value reads 
5.810/5.755 compared with 5.736. Similar findings are ob-
tained with dataset 2 with the Alcon lens: The SD for the 
SRK/T formula is 0.57, and for the Hoffer-Q/Holladay 1/
simplified Haigis/Olsen formula, it is 0.38/0.38/0.32/0.32. 
The distributions shown in the CDF plots in Figure 2c 
centred to their distribution mean value again show 
some skewness, and comparison of the formula constant 
mean or median values listed in Table 3 to the formula 
constant derived from the entire dataset with nonlinear 
optimisation again reveals a systematic offset. As an 
example, with the Hoffer-Q formula, the mean/median 
value reads 5.479/5.431 compared with 5.409.

However, there are some limitations in the present 
study: Firstly, our analysis was restricted to two clini-
cal datasets containing N = 888 and N = 821 datapoints. 
Our mathematical strategy for evaluating the precision 
or robustness of formula constants should be applied to 
more clinical datasets, preferably from various centres 
for validation. Secondly, we used a nonlinear iterative 
optimisation strategy to optimise the formula constants 
for the entire datasets and for all jackknife and bootstrap 
samples. This optimisation is well-established and min-
imises the root-mean-squared PE. Using other optimis-
ation metrics may result in somewhat different findings 
(Langenbucher et  al.,  2022; Langenbucher, Szentmáry, 
Cayless, Müller, et al., 2021). And thirdly, in our study, 
we restricted the resampling to NB = 1000 bootstrap sam-
ples, as we had to run a nonlinear iterative optimisation 
cycle for each bootstrap and jackknife sample for both 
datasets and each formula. We argue that with a much 
larger number of bootstraps, the mean formula con-
stants derived from bootstrap samples might be even 
closer to the respective formula constants derived from 
the entire dataset.

In conclusion, this study describes two resampling-
based strategies to estimate the precision or robustness 
of formula constants in terms of standard deviation and 
confidence intervals for single and multiple constant dis-
closed or black-box formulae. The jackknife resampling is 
computationally simpler than the bootstrap resampling, 
and with our clinical datasets, both techniques yielded 
similar values for the standard deviations and confi-
dence intervals of the formula constants. Optimising 
formula constants for disclosed single constant formulae 
using formula reversion cannot be recommended, as this 
can result in large variations in the constants and asym-
metric distributions, making statistical metrics such as 
the arithmetic mean unreliable.
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