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Weighted Composition Operators on
Hilbert Function Spaces on the Ball
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Abstract. A weighted composition operator on a reproducing kernel
Hilbert space is given by a composition, followed by a multiplication.
We study unitary and co-isometric weighted composition operators on
unitarily invariant spaces on the Euclidean unit ball Bd. We establish a
dichotomy between the spaces Hγ with reproducing kernel (1−〈z, w〉)−γ

for γ > 0, and all other spaces. Whereas the former admit many unitary
weighted composition operators, the latter only admit trivial ones. This
extends results of Mart́ın, Mas and Vukotić from the disc to the ball.
Some of our results continue to hold when d = ∞.
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1. Introduction

Broadly speaking, this article is concerned with symmetries of reproducing
kernel Hilbert spaces (RKHS) of holomorphic functions on the Euclidean open
unit ball Bd in C

d. We study unitarily invariant spaces, which by definition
are RKHS H whose reproducing kernel is of the form

K(z, w) =
∞∑

n=0

an〈z, w〉n (z, w ∈ Bd),

where (an) is a sequence of non-negative real numbers. We also assume that
a0 = 1 (hence 1 ∈ H and ‖1‖ = 1) and a1 > 0 (which implies that H contains
all coordinate functions zj). This class contains many important spaces such
as Hardy, Bergman [28,29], Drury–Arveson [3,14,27] and Dirichlet spaces [9].
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It easily follows from the definition that if f ∈ H and U is a unitary d×d
matrix, then f ◦ U ∈ H and ‖f ◦ U‖ = ‖f‖. Thus, every unitary d × d matrix
induces a unitary composition operator on H; we regard these as symmetries
of the RKHS.

This naturally raises the question: Does H admit other symmetries? Being
a Hilbert space, H admits a large number of unitary operators, but most of
these will not respect the function space structure of H in any reasonable
way. In the the context of RKHS, a natural and frequently studied class of
operators preserving the function space structure are weighted composition
operators (WCO), which are operators of the form

Wδ,φ : H → H, f �→ δ · (f ◦ φ).

Here, δ : Bd → C is a function and φ : Bd → Bd is a mapping. As special cases,
weighted composition operators include composition operators (δ = 1) and
multiplication operators (φ = id). Some of the history of weighted composi-
tion operators is described in the introductions of [19] and [30]. In addition, we
mention that weighted composition operators appear in the study of homoge-
neous operator tuples (see for instance [10,18,21]) and as cyclicity preserving
operators (see for instance [26, Section 5]).

We will characterize unitary and even co-isometric weighted composition
operators on unitarily invariant spaces on Bd. If d = 1, i.e. for spaces on the
disc, this was done by Mart́ın, Mas and Vukotić [20]. Our results generalize
theirs, but our proofs are different. Indeed, in several variables, we cannot rely
on the factorization theory for functions in the Hardy space as in [20].

For γ ∈ (0,∞), let Hγ be the RKHS on Bd with kernel

K(z, w) =
1

(1 − 〈z, w〉)γ
.

These spaces include standard weighted Dirichlet spaces (0 < γ < 1), the
Drury–Arveson space (γ = 1), the Hardy space (γ = d) and standard weighted
Bergman spaces (γ > d), but for instance not the classical Dirichlet space. Just
as Mart́ın, Mas and Vukotić, we observe a dichotomy between the spaces Hγ ,
which admit many unitary WCOs, and all other spaces, which only admit
trivial unitary WCOs.

Let Aut(Bd) denote the group of biholomorphic automorphisms of Bd.
WCOs on the spaces Hγ were already studied by Trieu Le [19], who essentially
proved the following result.

Theorem 1.1 (Le). Let d ∈ N, let γ ∈ (0,∞) and let φ : Bd → Bd and
δ : Bd → C. Then the following are equivalent:
(i) Wδ,φ is a unitary operator on Hγ ;
(ii) Wδ,φ is a co-isometric operator on Hγ ;
(iii) φ ∈ Aut(Bd) and δ(z) = μ K(z,a)

K(a,a)1/2
, where a = φ−1(0) and μ ∈ C with

|μ| = 1.
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This is essentially [19, Corollary 3.6]; see also Section 4 below.
Our main result shows that all other spaces are very rigid in the sense

that they only admit trivial unitary WCOs.

Theorem 1.2. Let d ∈ N and let φ : Bd → Bd and δ : Bd → C. Let H be a
unitarily invariant space with H 
= Hγ for all γ ∈ (0,∞). Then the following
are equivalent:
(i) Wδ,φ is a unitary operator on H;
(ii) Wδ,φ is a co-isometric operator on H;
(iii) φ is a unitary d × d matrix and δ is a unimodular constant.

This theorem will be proved in Section 5.
We will also study the case d = ∞, where Bd is interpreted as the open

unit ball of �2. Our chief motivation is a theorem of Agler and McCarthy,
which shows that the Drury–Arveson space on B∞ (i.e. H1 in our notation) is
a universal complete Pick space; see [1] and [2, Chapter 8]. When d = ∞, the
function theory becomes more difficult, and so our results are less complete.
Nonetheless, the spaces Hγ are still tractable. The fact that �2 admits non-
unitary isometries implies that not every co-isometric weighted composition
operator on Hγ is unitary when d = ∞. Thus, Theorem 1.1 now splits into
two statements. The equivalence between (i) and (iii) in Theorem 1.1 continues
to hold in case d = ∞. On the other hand, co-isometric weighted composition
operators can incorporate an additional linear isometry on �2, see Section 4
for details.

For non-Hγ spaces, we obtain the following rigidity result.

Theorem 1.3. Let d = ∞ and let H be a unitarily invariant space with H 
= Hγ

for all γ ∈ (0,∞). Let φ : B∞ → B∞ and δ : B∞ → C be such that Wδ,φ is
unitary on H. If either φ ∈ Aut(B∞) or the reproducing kernel of H is bounded,
then φ is a unitary.

This result is a combination of Proposition 5.2 and Proposition 5.3. It
remains open if Theorem 1.3 holds for spaces with unbounded kernel without
the a priori assumption φ ∈ Aut(B∞).

2. Preliminaries

2.1. Reproducing Kernels

A reproducing kernel Hilbert space of functions on a set X is a Hilbert space
H, consisting of functions on X, such that for all x ∈ X, the point evaluation
functional

H → C, f �→ f(x),
is bounded. The reproducing kernel of H is the unique function K : X×X → C

with the property that Kx := K(·, x) ∈ H and

〈f,Kx〉 = f(x)
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for all f ∈ H, x ∈ X. For general background on RKHS, the reader is refered
to [23].

Let K be another reproducing kernel Hilbert space on a set Y with repro-
ducing kernel L. Given φ : Y → X and δ : Y → C, we consider the weighted
composition operator

Wδ,φ : H → K, f �→ δ · (f ◦ φ).

In general, this operator need not be well defined, since the function on the
right need not belong to K. We are interested in the case when it is. In particu-
lar, when we say that Wδ,φ is bounded/co-isometric/unitary, this in particular
includes the assumption that Wδ,φ is well defined. We call δ the multiplication
symbol and φ the composition symbol of Wδ,φ.

The following general result about WCOs in RKHS is well known. For
completeness, and since we do not have a good reference for the precise state-
ment, we provide the short proof.

Lemma 2.1. In the setting above, the following statements hold:
(a) If Wδ,φ : H → K is bounded, then

W ∗
δ,φLy = δ(y)Kφ(y)

for all y ∈ Y .
(b) The operator Wδ,φ : H → K is a co-isometry if and only if

L(y1, y2) = δ(y1)δ(y2)K(φ(y1), φ(y2)) (1)

for all y1, y2 ∈ Y .

Proof. (a) For all f ∈ H, we have

〈f,W ∗
δ,φLy〉 = 〈δ(f ◦ φ), Ly〉 = δ(y)f(φ(y)) = 〈f, δ(y)Kφ(y)〉,

which gives (a).
(b) Assume that Wδ,φ is a co-isometry. Then using part (a) in the third

step,

L(y1, y2) = 〈Ly2 , Ly1〉 = 〈W ∗
δ,φLy2 ,W

∗
δ,φLy1〉 = δ(y1)δ(y2)〈Kφ(y2),Kφ(y1)〉

= δ(y1)δ(y2)K(φ(y1), φ(y2)),

hence (1) holds.
Conversely, if (1) holds, then the computation above shows that

〈Ly2 , Ly1〉 = 〈δ(y2)Kφ(y2), δ(y1)Kφ(y1)〉
for all y1, y2 ∈ Y . Since the linear span of the reproducing kernels is dense in
K, there exists a unique linear isometry V : K → H such that

V Ly = δ(y)Kφ(y)

for all y ∈ Y . A computation as in (a) then yields that

V ∗f = δ(f ◦ φ)
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for all f ∈ H; whence Wδ,φ : H → K is a (well-defined) co-isometry. �
If Wδ1,φ1 : H1 → H2 and Wδ2,φ2 : H2 → H3 are two bounded weighted

composition operators, then for all f ∈ H1, we have

Wδ2,φ2Wδ1,φ1f = δ2(δ1 ◦ φ2)(f ◦ φ1 ◦ φ2), (2)

hence the product Wδ2,φ2Wδ1,φ1 is another weighted composition operator,
with multiplication symbol δ2(δ1 ◦ φ2) and composition symbol φ1 ◦ φ2.

As mentioned in the introduction, we will consider reproducing kernel
Hilbert spaces on the Euclidean unit ball Bd in C

d with reproducing kernel of
the form

K(z, w) =
∞∑

n=0

an〈z, w〉n,

where a0 = 1, a1 > 0 and an ≥ 0 for all n ≥ 2. We also allow d = ∞, in
which case C

∞ is understood as �2. While do not require this, another useful
description is that the set of monomials

{zα : a|α| 
= 0}
forms an orthogonal basis of H with

‖zα‖2 =
α!

a|α||α|!
Here, α is a multi-index with finitely many non-zero entries. See for instance
[11, Proposition 4.1].

2.2. Holomorphic Functions

Since we will also consider the case d = ∞, we briefly have to discuss infinite
dimensional holomorphy. Fortunately, we only require elementary parts of the
theory. More background information can for instance be found in [5,8,22].
Let E and F be Hilbert spaces and let U ⊂ E be open. We say that a function
f : U → F is holomorphic if f is locally bounded and for all z ∈ U, ξ ∈ E and
η ∈ F , the function of one complex variable

λ �→ 〈f(z + λξ), η〉
is holomorphic in a neighborhood of 0; see for instance [8, Chapter 2], [22,
Section II.8] or [5, Chapter 14] for how this definition is equivalent to various
other ones. In the finite dimensional setting, this reduces to the usual notion
from several complex variables.

Proposition 2.2. Let d ∈ N ∪ {∞} and let H be a unitarily invariant space on
Bd. Then every f ∈ H is holomorphic on Bd.

Proof. If f ∈ H and r ∈ [0, 1), then by the Cauchy–Schwarz inequality,

|f(z)| ≤ ‖f‖K(z, z)1/2 ≤ ‖f‖K(re1, re1)1/2 for all z ∈ rBd. (3)

Hence f is locally bounded. Moreover, K(·, w) is holomorphic for each w ∈
Bd. Inequality (3) also shows that convergence in H implies locally uniform
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convergence on Bd. Since the linear span of the kernel functions is dense in H,
it follows that each f ∈ H is holomorphic. �

If f : Bd → F is holomorphic, then there exists a bounded linear operator
Df(0) : Cd → F such that for all ξ ∈ C

d and η ∈ F , we have

d

dλ
〈f(λξ), η〉

∣∣∣
λ=0

= 〈Df(0)ξ, η〉.
The operator Df(0) is the Fréchet derivative of f at 0, which always exists
for holomorphic functions; see for instance [22, Theorem 13.16] or [5, Theorem
14.13].

We require the following version of the Schwarz lemma.

Theorem 2.3. Let f : Bd → Bd′ be holomorphic with f(0) = 0. Then Df(0)
has operator norm at most 1. If Df(0) is an isometry, then f(z) = Df(0)z
for all z ∈ Bd.

Proof. The proof in Rudin’s book in the finite dimensional setting [25, Chapter
8] carries over almost verbatim. See also [12], [8, Theorem 4.3] or [5, Theorem
13.13] for more general versions of the Schwarz lemma in the infinite dimen-
sional setting. �

We also need some basic facts about automorphisms of Bd. A treatment
in the finite dimensional setting can be found in Rudin’s book [25, Chapter 2];
the facts we need carry over to d = ∞, see also [16] for d = ∞.

A biholomorphic automorphism of Bd is a bijective holomorphic map
φ : Bd → Bd such that the inverse φ−1 is also holomorphic. We write Aut(Bd)
for the group of biholomorphic automorphisms of Bd. Every unitary on C

d

yields an element of Aut(Bd). Moreover, for each a ∈ Bd, there is an involution
ϕa ∈ Aut(Bd) mapping 0 to a. If Pa denotes the orthogonal projection onto
the linear span of a, Qa = I − Pa and sa = (1 − ‖a‖2)1/2, then ϕa is given by

ϕa(z) =
a − Paz − saQaz

1 − 〈z, a〉 .

With these definitions, we have the following well-known description of
Aut(Bd). Indeed, with the automorphisms ϕa in hand, this can be deduced
from the Schwarz lemma (Theorem 2.3).

Theorem 2.4. Let d ∈ N ∪ {∞}. Then
Aut(Bd) = {U ◦ ϕa : U unitary , a ∈ Bd}.

Remark 2.5. If V is an isometry, then a computation shows that

V ϕa = ϕV aV. (4)

Thus, we also have the reverse description

Aut(Bd) = {ϕa ◦ U : U unitary , a ∈ Bd}.
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However, if we consider not necessarily surjective maps in case d = ∞, then
the order matters. From (4), we see that

{ϕa ◦ V : V isometry, a ∈ Bd} ⊃ {V ◦ ϕa : V isometry , a ∈ Bd},

but the inclusion is strict if d = ∞. Indeed, the range of every map on the
right contains 0, but if a does not belong to the range of V , then 0 does not
belong to the range of ϕa ◦ V .

For our purposes, the larger set will be relevant, and this set can alter-
natively be described as

{ϕa ◦ V : V isometry, a ∈ Bd} = {φ ◦ V : V isometry, φ ∈ Aut(Bd)}.

3. Weighted Composition Operators on the Ball

In this section, we specialize some of the general results for weighted com-
position operators to unitarily invariant spaces on the ball. Throughout, let
d ∈ N ∪ {∞} and let H be a unitarily invariant space on Bd with reproducing
kernel K.

Lemma 3.1. Let φ : Bd → Bd and δ : Bd → C be mappings such that Wδ,φ is
co-isometric on H. Let a = φ(0). Then:
(a) K(φ(·), a) does not vanish and there exists μ in C with |μ| = 1 such that

δ(z) = μ
K(a, a)1/2

K(φ(z), a)
for all z ∈ Bd;

(b)

K(z, w) =
K(φ(z), φ(w))K(a, a)
K(φ(z), a)K(a, φ(w))

for all z, w ∈ Bd;

(c) δ and φ are holomorphic;
(d) φ is injective.

Proof. (a) and (b) Lemma 2.1 implies that that

K(z, w) = δ(z)δ(w)K(φ(z), φ(w)) for all z, w ∈ Bd. (5)

Setting w = 0, we obtain

1 = δ(z)δ(0)K(φ(z), a).

Hence K(φ(·), a) does not vanish. Setting z = 0 gives |δ(0)|2K(a, a) = 1, so
we obtain (a). Substitung this formula for δ in (5) gives (b).

(c) We have
H � Wδ,φ1 = δ,

hence δ is holomorphic by Proposition 2.2. Let η ∈ C
d. The assumption that

the first coefficient of the kernel satsfies a1 > 0 implies that 〈·, η〉 ∈ H. Hence

H ∈ Wδ,φ〈·, η〉 = δ〈φ(·), η〉.
Since δ does not vanish, this implies that φ is holomorphic as well.
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(d) Let φ(z) = φ(w). Then the formula in (b) shows that K(x, z) =
K(x,w) for all x ∈ Bd, which implies z = w since H contains 〈·, η〉 for all
η ∈ C

d and hence separates the points of Bd. �

The Schwarz lemma implies the following result.

Lemma 3.2. Let φ : Bd → Bd be holomorphic. If

K(φ(z), φ(w)) = K(z, w) for all z ∈ Bd,

then there exists a linear isometry V such that

φ(z) = V z for all z ∈ Bd.

Proof. Let

K(z, w) =
∞∑

n=0

an〈z, w〉n.

The assumption implies in particular that K(φ(0), φ(0)) = K(0, 0) = 1, so
since a1 > 0, this forces φ(0) = 0. Let V = Dφ(0). We show that V is an
isometry; the result then follows from Theorem 2.3, the variant of the Schwarz
lemma.

To see that V is an isometry, fix z, w ∈ Bd. Then for all λ, μ ∈ D, we have

K(φ(λz), φ(μw)) = K(λz, μw).

Differentiating both sides with respect to λ and evaluating at λ = 0, we find
that

a1〈Dφ(0)z, φ(μw)〉 = a1〈z, μw〉.
Since a1 > 0, this implies

〈φ(μw),Dφ(0)z〉 = 〈μw, z〉.
Taking the derivative with respect to μ at the origin yields

〈Dφ(0)w,Dφ(0)z〉 = 〈w, z〉,
so that V = Dφ(0) is an isometry, as desired. �

We also need the following simple observation.

Lemma 3.3. Let V be a linear isometry and let μ ∈ C with |μ| = 1. Then Wμ,V

is a co-isometry. Moreover, Wμ,V is unitary if and only if V is unitary.

Proof. It is immediate from Lemma 2.1 that Wμ,V is a co-isometry. If V is
unitary, then Wμ,V is invertible with inverse Wμ,V ∗ , hence Wμ,V is unitary.

Conversely, assume that Wμ,V is unitary and let z ∈ Bd with V ∗z = 0.
Then

Wμ,V Kz = μKz ◦ V = μKV ∗z = μ.

Since Wμ,V is an isometry, it follows that 1 = ‖Kz‖2 = K(z, z). Since the
first coefficient of K satisfies a1 > 0, this implies z = 0, showing that V ∗ is
injective, i.e. V is unitary. �
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4. Hγ Spaces

In this section, we study the spaces Hγ with reproducing kernel

K(z, w) =
1

(1 − 〈z, w〉)γ
,

and generalize Le’s theorem to infinite dimensions. As mentioned in the intro-
duction, co-isometric weighted composition operators need not be unitary in
infinite dimensions, so Le’s theorem splits into two parts. We first consider the
co-isometric case.

Theorem 4.1. Let d ∈ N ∪ {∞}, let γ ∈ (0,∞) and let φ : Bd → Bd and
δ : Bd → C. The following are equivalent:
(i) Wδ,φ is a co-isometry on Hγ ;
(ii) there exist a ∈ Bd and an isometry V on C

d such that φ = ϕaV and
δ(z) = μ K(V z,a)

K(a,a)1/2
for some μ ∈ C with |μ| = 1.

Proof. (ii) ⇒ (i) This proof proceeds essentially as Le’s proof in the finite
dimensional setting; see [19, Proposition 3.1]. The key point is the formula

1 − 〈ϕa(z), ϕa(w)〉 =
(1 − ‖a‖2)(1 − 〈z, w〉)
(1 − 〈z, a〉)(1 − 〈a,w〉) ; (6)

see [25, Theorem 2.2.2]. From this formula, it follows that

K(z, w) =
K(z, a)K(a,w)

K(a, a)
K(ϕa(z), ϕa(w)).

(Some care must be taken when raising (6) to the power of γ. But each factor
appearing in (6) has positive real part, and the identity (λμ)γ = λγμγ holds
for complex numbers λ, μ with positive real part, so this operation is valid
after we arrange (6) to have two complex factors on each side.) Replacing z
with V z and w with V w, we find that

K(z, w) =
K(V z, a)K(a, V w)

K(a, a)
K(ϕa(V z), ϕa(V w)). (7)

Recalling the definition of δ and φ in the statement of the theorem, Lemma
2.1 then shows that Wδ,φ is a co-isometry.

(i) ⇒ (ii) While Le’s proof can be generalized to infinite dimensions, we
argue slightly differently. We first consider the case when φ(0) = 0. Lemma
3.1 shows that δ is a unimodular constant, φ is holomorphic, and

K(z, w) = K(φ(z), φ(w)) for all z, w ∈ Bd.

Lemma 3.2 now yields an isometry V with φ = V . This completes the proof
in case φ(0) = 0.

Next, let φ : Bd → Bd be an arbitrary mapping. Let a = φ(0) and
ψ(z) = K(z, a)K(a, a)−1/2. By the already established implication, Wψ,ϕa

is a co-isometry, hence so is the product Wδ,φWψ,ϕa
. By Equation (2), this
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product is a weighted composition operator with composition symbol ϕa ◦ φ.
Since (ϕa ◦ φ)(0) = 0, we may apply the already established case a = 0 to this
weighted composition operator to obtain an isometry V and a unimodular
constant μ with ϕa ◦ φ = V and

δ(ψ ◦ φ) = μ.

Since ϕa is an involution, φ = ϕaV . Moreover,

δ(z) =
μ

ψ(φ(z))
= μ

K(a, a)1/2

K(ϕa(V z), a)
= μ

K(V z, a)
K(a, a)1/2

,

where in the last step, we have used (7) with w = 0. �

The case of unitary weighted composition operators is covered in the
following result.

Corollary 4.2. Let d ∈ N ∪ {∞}, let γ ∈ (0,∞) and let φ : Bd → Bd and
δ : Bd → C. The following are equivalent:
(i) Wδ,φ is a unitary on Hγ ;
(ii) φ ∈ Aut(Bd) and δ(z) = μ K(z,a)

K(a,a)1/2
, where a = φ−1(0) and μ ∈ C with

|μ| = 1.

Proof. (ii) ⇒ (i) By Theorem 2.4, there exists a unitary U such that φ = Uϕa,
where necessarily a = φ−1(0). By Theorem 4.1, Wδ,ϕa

is a co-isometry. The
operator Wδ,ϕa

is injective since δ does not vanish and ϕa is surjective. Hence
Wδ,ϕa

is unitary. It is clear that W1,U is unitary, hence so is Wδ,φ = Wδ,φa
W1,U .

(i) ⇒ (ii) By Theorem 4.1, there exist b ∈ Bd and an isometry V such
that φ = ϕbV and δ(z) = μ K(V z,b)

K(b,b)1/2
, where |μ| = 1. We will show that V is

unitary.
If b = 0, Lemma 3.3 shows that V is unitary. If b is arbitary, as in the

proof of Theorem 4.1, we use the operator Wψ,ϕb
, where ψ(z) = K(z,b)

K(b,b)1/2
. This

operator is unitary by the already established implication, so Wδ,φWψ,ϕb
is a

unitary weighted composition operator with composition symbol ϕb ◦ φ = V .
By the preceding paragraph, V is unitary.

Since V is unitary, φ = ϕbV ∈ Aut(Bd). Let a = V ∗b = φ−1(0). Then

δ(z) = μ
K(V z, b)
K(b, b)1/2

= μ
K(z, a)

K(a, a)1/2
,

as desired. �

5. Non-Hγ Spaces

In this section, we consider unitarily invariant spaces that are not one of the
spaces Hγ . Our goal is to show that these spaces only admit trivial co-isometric
weighted composition operators. In particular, this will establish the dichotomy
between the spaces Hγ and all other spaces.
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We first study weighted composition operators whose composition symbol
is an automorphism. In this setting, we will make use of the fact that the
unitary group is a maximal subsemigroup of Aut(Bd).

Proposition 5.1. Let d ∈ N∪{∞} and let S ⊂ Aut(Bd) be a subsemigroup that
properly contains the unitary group. Then S = Aut(Bd).

Proof. This is [13, Proposition 9.9], where the result was proved using the disc
trick of Davidson, Ramsey and Shalit [7]. While the result in [13] is stated for
d < ∞, the proof extends essentially verbatim to d = ∞. Indeed, the proof in
[13] proceeds by a reduction to the one dimensional case with the help of the
description of Aut(Bd) of Theorem 2.4. (The disc trick is also directly available
if d = ∞; see [15, Section 4.2].)

If we assume that S is a closed subgroup of Aut(Bd), then the result also
follows from an earlier and very general theorem of Kaup and Upmeier [17];
see also [4, Theorem 1.2]. �

The result regarding weighted composition operators whose composition
symbol is an automorphism is the following.

Proposition 5.2. Let d ∈ N ∪ {∞} and let H be a unitarily invariant space on
Bd that is not one of the spaces Hγ . If φ ∈ Aut(Bd) and δ : Bd → C are such
that Wδ,φ is co-isometric on H, then φ is unitary.

Proof. Suppose that φ is not given by a unitary. We will show that H = Hγ

for some γ ∈ (0,∞). To this end, let

S = {ψ ∈ Aut(Bd) : ∃τ such that Wτ,ψ is co-isometric}.

Since H is unitarily invariant, S contains all unitaries. Equation (2) shows that
S is a subsemigroup of Aut(Bd). By assumption, φ ∈ S, and φ is not a unitary.
Hence S = Aut(Bd) by Proposition 5.1.

Now, Lemma 3.1 shows that

K(z, w) =
K(φ(z), φ(w))K(φ(0), φ(0))
K(φ(z), φ(0))K(φ(0), φ(w))

for all z, w ∈ Bd and all φ ∈ Aut(Bd), and the denominator does not vanish.
Replacing z with φ(z), w with φ(w) and φ with φ−1, we find that

K(φ(z), φ(w)) =
K(z, w)K(a, a)
K(z, a)K(a,w)

for all z, w ∈ Bd and φ ∈ Aut(Bd), where a = φ−1(0). This is precisely the
setting of [13, Proposition 4.3], which implies that H = Hγ for some γ ∈ (0,∞).

�
Proposition 5.2 shows that non-Hγ spaces do not admit any non-trivial

co-isometric weighted composition operators, provided we assume a priori that
the composition symbol is an automorphism. To remove this a priori assump-
tion, similar to Mart́ın, Mas and Vukotić [20], we distinguish two cases, namely



  180 Page 12 of 16 M. Hartz and M. Tornes Results Math

that of a bounded reproducing kernel and that of an unbounded reproducing
kernel. Observe that the Hγ spaces fall into the second category.

We first consider the case of bounded kernel. The following result gener-
alizes [20, Theorem 4] from the disc to the unit ball, allowing d = ∞. The basic
idea of the proof is the same, but the details differ slightly since we cannot use
Hardy space theory such as the existence of radial limits.

Proposition 5.3. Let d ∈ N ∪ {∞} and let H be a unitarily invariant space
with reproducing kernel K. Assume that supz∈Bd

K(z, z) < ∞. If φ : Bd → Bd

and δ : Bd → C are such that Wδ,φ is co-isometric on H, then φ is a linear
isometry. If Wδ,φ is a unitary on H, then φ is a unitary on C

d.

Proof. Let M = supz∈Bd
K(z, z) =

∑∞
n=0 an. Since M < ∞, the series defining

K converges uniformly on Bd×Bd and defines a jointly (norm) continuous func-
tion there. Thus, the elements of H all extend to (norm) continuous functions
on the closed ball Bd. In particular, this is true for δ = Wδ,φ1 ∈ H.

Assume that Wδ,φ is co-isometric. Lemma 2.1 shows that

K(z, w) = δ(z)δ(w)K(φ(z), φ(w)) for all z, w ∈ Bd. (8)

Taking z = w, we find that

|δ(z)|2 =
K(z, z)

K(φ(z), φ(z))
≥ K(z, z)

M
for all z ∈ Bd.

From this formula, we deduce three things. First, |δ|2 ≥ 1
M in Bd, second

|δ| ≥ 1 on ∂Bd, and third |δ(0)| ≤ 1. Since δ is holomorphic by Lemma 3.1,
we may apply the maximumum modulus principle to 1

δ on each disc Dζ for
ζ ∈ ∂Bd to conclude that δ is a unimodular constant.

Feeding this information into (8), we obtain K(z, w) = K(φ(z), φ(w))
for all z, w ∈ Bd. Since φ is holomorphic (again by Lemma 3.1), Lemma 3.2
implies that φ is a linear isometry.

If Wδ,φ is in addition unitary, then Lemma 3.3 implies that φ is unitary.

�
The case of an unbounded kernel calls for a different argument. Since we

know that the Hγ spaces admit non-trivial co-isometric weighted composition
operators, the conclusion also cannot be that the composition symbol is linear.
It is here where we have to assume that d < ∞.

The following result generalizes [20, Theorem 5] from the disc to the ball.
The argument of Mart́ın, Mas and Vukotić in one variable uses results such
as the inner/outer factorization in the Hardy space, wich are not available in
several variables. Our argument is entirely different, and perhaps also simpler
in one variable.

Lemma 5.4. Let d ∈ N and let H be a unitarily invariant space with repro-
ducing kernel K. Assume that supz∈Bd

K(z, z) = ∞. If φ : Bd → Bd and
δ : Bd → C are such that Wδ,φ is co-isometric on H, then φ ∈ Aut(Bd).
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Proof. Let a = φ(0). Lemma 3.1 shows that φ is holomorphic, injective, and

K(z, z) =
K(φ(z), φ(z))K(a, a)
K(φ(z), a)K(a, φ(z))

for all z ∈ Bd.

By continuity, the right-hand side is bounded on any compact subset of Bd.
Since lim‖z‖→1 K(z, z) = ∞, this implies that lim‖z‖→1 ‖φ(z)‖ = 1, i.e. that
φ is proper. In particular, φ is a closed map, so φ(Bd) is relatively closed in
Bd. Since φ is a holomorphic injection, φ(Bd) is open and φ : Bd → φ(Bd)
is a biholomorphism; see for instance [24, Theorem I.2.14]. By connectedness,
φ(Bd) = Bd; thus φ ∈ Aut(Bd). �

We can now prove Theorem 1.2.

Proof of Theorem 1.2. (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii) If Wδ,φ is a co-isometry, then Lemma 5.4 and Proposition

5.2 imply that φ is unitary. It then follows from Lemma 3.1 (a) that δ is a
unimodular constant.

(iii) ⇒ (i) If φ is unitary and δ is a unimodular constant, then Lemma
2.1 implies that Wδ,φ is unitary. �

We do not know if the natural analogue of Lemma 5.4 continues to hold
if d = ∞, so we state this as a question.

Question 5.5. Let d = ∞ and let H be a unitarily invariant space with repro-
ducing kernel K with supz∈B∞ K(z, z) = ∞. Let φ : Bd → Bd and δ : Bd → C

be such that Wδ,φ is co-isometric on H. Does it follow that φ = ϕaV for some
a ∈ Bd and some linear isometry V ?

Note that this question has a positive answer for the spaces Hγ (by
Theorem 4.1). It also has a positive answer if φ(0) = 0 (by combining Lemmas
3.1 and 3.2).

Remark 5.6. If d = ∞, then proof strategy of Lemma 5.4 fails since there
are injective holomorphic maps φ : B∞ → B∞ satisfying lim‖z‖→1 ‖φ(z)‖ = 1
that are not the composition of an automorphism and a linear isometry. This
is closely related to the existence of non-linear proper holomorphic injections
φ : Bd → Bd′ satisfying φ(0) = 0, where d′ > d; see for instance [6]. To give a
concrete example, let

ψ : �2 → �2 ⊕ (�2 ⊗ �2), z �→ 1√
2
(z, z ⊗ z),

let U : �2 ⊕ (�2 ⊗ �2) → �2 be a unitary, and set φ = Uψ. Then φ is a
holomorphic injection satisfying ‖φ(z)‖2 = 1

2 (‖z‖2 + ‖z‖4), so φ takes B∞ to
B∞ and lim‖z‖→1 ‖φ(z)‖ = 1. But φ(0) = 0 and φ is not linear, so φ is not of
the form φ = ϕaV for some linear isometry V .

However, note that since φ(0) = 0, the map φ cannot implement a co-
isometric weighted composition operator on a unitarily invariant space by the
remarks above.
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