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Abstract
Exploring sex-specific differences in astrocytes has emerged as a vital area of neurobiological research. This research 
sheds light on how astrocytes in females and males differ in their contribution to neuronal functionality, overall brain 
health, and various neurological disorders. These cells play a critical role in sustaining homeostasis, providing metabolic 
support, facilitating neurotransmitter recycling and responding to injuries to the central nervous system. Their physiology 
exhibits significant variability, which is influenced by factors such as sex, developmental stage, species differences and 
environmental conditions. This review provides an integrated overview of these factors, addressing key themes including 
developmental dynamics, aging, signalling mechanisms, glial interactions, responses to pathological states and cross-
species comparisons.
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triphosphatase
NF-κB	 �Nuclear factor-kappa B
Nrf2	� Nuclear factor erythroid 2-related factor 

2
PA	� Palmitic acid
PD	�  Parkinson´s disease
Pgc1-α	 �Peroxisome proliferator-activated recep-

tor gamma coactivator 1-alpha
pJNK	� Phosphorylated c-Jun N-terminal kinase
ROS	� Reactive oxygen species
TGF-α	 �Transforming growth factor-alpha
TNFα	 �Tumour necrosis factor-alpha
VEGF	� Vascular endothelial growth factor

Introduction

Astrocytes, which account for 20–40% of all glial cells 
in different regions of the central nervous system (CNS), 
are critical regulators of neuronal homeostasis, synaptic 
modulation, blood-brain barrier (BBB) maintenance, and 
neuro-immune responses [1–3]. Importantly, accumulating 
evidence indicates that astrocyte physiology is not uniform 
across individuals, but instead is modulated by biological 
sex, with significant implications for brain development, 
aging, and disease susceptibility [4, 5].

Sex-specific differences in astrocytic morphology, tran-
scriptomics, and functional outputs, such as Ca2+ signalling 
and cytokine release, have been demonstrated in various 
regions of the CNS [6–10]. These differences are evident 
early in development and are influenced by both organ-
isational effects of sex hormones and direct genetic con-
tributions from sex chromosomes [11–14]. During aging, 
astrocytes exhibit sex-dependent changes in reactivity, 
metabolism, and gene expression that may underlie dis-
tinct susceptibility to neurodegenerative diseases such as 
Alzheimer’s (AD), Parkinson’s (PD) and multiple sclerosis 
(MS) [15, 16].

Genetic and epigenetic mechanisms, including X-chro-
mosome inactivation patterns, hormone receptor expression, 
and sex-biased DNA methylation, further regulate astrocyte 
behaviour over their lifespan [5, 17, 18]. Under stress and 
injury contexts, astrocyte plasticity exhibits notable sex dif-
ferences, influencing glial scar formation, cytokine secre-
tion, and recruitment of peripheral immune cells [19–22]. 
Furthermore, astrocytic signaling pathways are modulated 
by sex hormones and genetic background, which can alter 
neuronal-glial interactions and circuit function [23–26].

Cross-species studies highlight both conserved and diver-
gent aspects of astrocyte biology. While certain sex-specific 
patterns are preserved in rodents and humans, others appear 
species-specific, underscoring the need for comparative 

analyses to improve translational relevance [27, 28]. Inte-
grating data across species, developmental stages, and 
physiological conditions will enhance our understanding of 
astrocyte-mediated mechanisms in brain health and disease.

This review examines how sex shapes astroglia biology 
from development through aging, focusing on genetic and 
epigenetic regulators, responses to injury, as well as intra- 
and intercellular signalling. We also emphasize how spe-
cies differences underscore our understanding of astrocyte 
diversity and the need for sex-aware research in basic and 
translational neuroscience.

Sex-Specific Developmental Influence on Astrocyte 
Functions

Astrocytes exhibit sex-specific differences in number, activ-
ity and development, affecting cognitive functions such as 
memory and susceptibility to neurodegenerative diseases 
[28, 29]. These differences are reflected in the modulation 
of astrocytic receptors and their downstream signalling 
pathways [30]. However, sex differences do not begin with 
the onset or progression of a neurodegenerative disease, but 
rather during brain development, and therefore, the basis for 
age- or disease-related sex differences may be laid already 
during neonatal and postnatal brain development. Under-
standing how sex hormones shape astrocytic development is 
fundamental for comprehending their functional roles later 
in life.

In cell culture studies using astrocytes derived from 
female rats and mice, it has been demonstrated that exposure 
to sex steroids significantly affects their morphology and 
function. Specifically, female astrocytes showed enhanced 
responses to estradiol, contributing to their proliferation 
and increasing neuroprotective capabilities against stressors 
such as oxidative damage, lipotoxicity and neuroinflamma-
tion [21, 31].

However, to date, there is no comprehensive understand-
ing of the sex differences in astroglial development (includ-
ing astrogenesis, neurogenesis, synaptogenesis and synapse 
pruning) in mice and humans. A study in adult rats suggests 
that sex differences in the number and complexity of adult 
astrocytes may be influenced by testosterone, and that estra-
diol may also be the basis for developmental differences. 
Males consistently have more astrocytes than females in 
the amygdala and hypothalamus until adulthood, while the 
opposite is true in the hippocampus, indicating interesting 
developmental differences between brain regions [29, 32, 
33]. The number of astrocytes was increased in both sexes 
after testosterone treatment, but the difference was more 
pronounced in males [29]. Studies showed that astrocytes 
partially express estrogen, androgen, and progesterone 
receptors in a sex-specific manner, making them susceptible 
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to direct interference [29, 34]. In addition, recent compre-
hensive data based on meta-analysis in both sexes show 
brain-specific differences, but not yet at the cellular level, 
especially in astrocytes [35]. Transcriptomic analysis of neo-
cortical astrocytes revealed two distinct phenotypes impor-
tant for glio- and synaptogenesis in early development. 
Sex-specific differences in gene expression patterns during 
development peaked at P7 and P14 and appeared to be due 
to males reaching a mature astroglial phenotype earlier than 
females. The earlier maturation in males could be related to 
the influence of sex hormones, particularly estrogen, which 
is known to influence brain development. The perinatal tes-
tosterone surge, after aromatisation (conversion) to estradiol, 
leads to altered gene expression and subsequently to faster 
maturation of astroglia in males. Important targets of these 
changes are the astroglially expressed gonadal hormone 
receptors (estrogen receptor alpha (ERα), ER beta (Erβ), G 
protein-coupled ER), allowing a rapid astroglial response to 
circulating estrogens. The expression of astroglial markers 
such as glial fibrillary acidic protein (GFAP) and glutamine 
synthetase is not affected by perinatal estrogen, whereas 
astroglial maturation markers such as vimentin, aldehyde 
dehydrogenase 1 family, member A1 (Aldh1a1) and iodo-
thyronine deiodinase 2 (Dio2) are. These developmental 
differences between the sexes may influence the assembly 
of neuronal networks and represent interfaces that are sus-
ceptible to disruption and disease [36, 37].

Finally, all the studies that analysed astroglial sex differ-
ences have examined women either at an undisclosed time 
or at a specific time in their menstrual cycle. For example, 
Rurak et al. [36] evaluated women in the metoestrus phase, 
when ovarian hormones are at their lowest and therefore 
closer to the levels typically observed in men. However, 
sex differences at the transcriptomic level may be more pro-
nounced during the proestrus phase, when estrogen levels 
peak. Further research is therefore needed to clarify the sex 
differences in astroglia.

Sex-Dependent Changes in Astrocytic Responses 
with Aging

Astrocyte influences on brain physiology are important not 
only during development but also throughout aging. With 
age, astrocytes become increasingly reactive, often adopt-
ing a pro-inflammatory phenotype. This shift is reflected by 
elevated levels of reactivity markers such as GFAP, which 
increase particularly in females. Aged female mice exhibit 
widespread GFAP upregulation across multiple brain 
regions, indicating global astrocytic activation [38]. While 
male astrocytes also undergo astrogliosis, some astrocytic 
functions, such as glutamate uptake, tend to decline more 
markedly with age in males [3, 39].

This sex-specific pattern of astrocyte aging may be partly 
due to hormonal differences. In postmenopausal women, 
the decline in estrogen correlates with increased levels of 
pro-inflammatory cytokines such as interleukin-6 (IL-6) 
and tumour necrosis factor-alpha (TNFα). This, in turn, may 
contribute to the elevated neuroinflammation and increased 
risk of dementia in women [40]. Animal studies support this 
pattern. For example, aged female rats subjected to focal 
ischemia exhibit higher levels of cytokines and chemokines 
than younger females, indicating enhanced astrocytic acti-
vation [41]. These astrocytes also secrete higher levels of 
macrophage inflammatory protein-1 (MIP-1), suggesting 
an increased ability to recruit immune cells, and reduced 
production of Insulin-like Growth Factor 1 (IGF-1), a tro-
phic factor known to promote neuroprotection and improve 
glutamate transporter activity [41](for review [39]). In con-
trast, male astrocytes maintain similar functional capabili-
ties across age [41] (Fig.  1). These sex-based differences 
in astrocytic responses may affect disease progression after 
brain injury. Clinically, women at postmenopausal age tend 
to experience worse outcomes after stroke than age-matched 
men, including larger infarcts and poorer recovery [42–45]. 
Similarly, middle-aged female rats display more extensive 
brain damage following ischemia compared to both younger 
females and age-matched males [41, 46].

Age-related changes in astrocytic plasticity are further 
complicated by environmental stressors. For example, 
chronic restraint stress induces astrocytic hypertrophy in 
the female prefrontal cortex, a response modulated by ovar-
ian hormones. By contrast, male astrocytes, which are ini-
tially larger, may undergo atrophy not only in response to 
stress but also as a consequence of aging [47–50]. Together, 
these findings suggest that the hormonal shifts associated 
with aging drive female astrocytes toward a more reactive 
and less neuroprotective state [44], reinforcing the need for 
sex-specific approaches in the treatment of age-related brain 
disorders.

Genetic and Epigenetic Modulators of Sex-Specific 
Astrocyte Aging

Beyond hormonal influences, genetic risk factors contribute 
to sex-dependent astrocytic vulnerability. Among the three 
major human alleles of the apolipoprotein E (APOE), the 
APOE4 isoform strongly associated with age-related neuro-
degenerative diseases, has been shown to exacerbate astro-
cytic inflammation. Astrocytes expressing the APOE4 allele, 
particularly in the female population, exhibit increased 
baseline inflammation and express 1.5–2.5 times more IL-6, 
interleukin-1 beta (IL-1β) and TNFα than their male coun-
terparts, therefore highlighting a sex-specific vulnerability 
to inflammation associated with the APOE4 genotype [51].
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Sex chromosomes and epigenetic regulation also contrib-
ute to the divergent aging trajectories in astrocytes. Genes 
on the female X-chromosome can escape inactivation or 
undergo age-dependent expression shifts [53]. Transcrip-
tomic analysis of human astrocytes reveals sex-specific 
differences in gene expression, including chromatin remod-
elling factors [27, 54]. Epigenetic control also differs during 
aging: compared to middle-aged females, younger female 
astrocytes show higher levels of the activating histone 
H3-trimethyl lysine-4 (H3K4me3) mark, which is known to 
promote gene activation. This increase is observed at gene 
loci associated with neuroprotection, such as the vascular 
endothelial growth factor (VEGF) and the micro ribonucleic 
acid-17 ~ 92 (miR-17 ~ 92) [44, 55], supporting increased 
expression of VEGF and miR-20a after stroke. This decline 
in epigenetic support with age diminishes astrocyte-
mediated neuronal protection in females. In males, other 

This interplay of sex and genetic background plays a piv-
otal role in determining individual susceptibility to neurode-
generative disease. In postmenopausal women, particularly 
those carrying the APOE4 allele, astrocyte-driven inflam-
mation may exacerbate AD pathology. Early in life, women 
typically exhibit more effective astrocyte-mediated vascular 
support and tissue repair after stroke [52], but these benefits 
decline after menopause, contributing to poorer outcomes 
[44, 52]. Therapeutic strategies that enhance IGF-1 secretion 
or glutamate clearance have been promising in improving 
recovery in aged female animal models [44]. In males, pres-
ervation of key metabolic functions in astrocytes, including 
glutamate transport and mitochondrial health, may be more 
critical for neuroprotection [39]. Overall, targeting sex-
specific aspects of astrocytic aging holds the potential for 
more effective interventions in neurodegenerative disease 
and recovery from brain injury.

Fig. 1  Sex-dependent functional and regulatory differences detected 
in astrocytes. Sex differences in astrocyte function, between females 
(left, pink) and males (right, blue). H3K4me3, H3-trimethyl lysine-4; 

MIP-1, Monocyte chemoattractant protein-1; PA, palmitc acid; ROS, 
reactive oxygen species. Created in https://BioRender.com
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differ in their capacity to remove excess glutamate from the 
synaptic cleft, thereby reducing excitotoxicity. In line with 
this, studies from ovariectomized adult female rats, whose 
estrogen levels drop upon surgical removal of the ovaries, 
revealed decreased sodium–potassium adenosine triphos-
phatase (Na⁺/K⁺-ATPase) activity [62]. Since the activity of 
the Na⁺/K⁺-ATPase is essential for correct ionic homeosta-
sis and glutamate transport [63], the exposure to estrogens 
could cause female astrocytes to become more efficient in 
glutamate uptake and maintaining low extracellular gluta-
mate levels.

More recently, changes in the expression of the astro-
cytic metabotropic glutamate receptor 3 (mGluR3), which 
is particularly abundant in the hippocampal and cortical 
astrocytes, have been shown to affect spatial memory per-
formance in a sex-dependent manner in mice [30]. Specifi-
cally, reduced mGluR3 levels impaired spatial memory in 
female but improved it in male mice, while increases in 
mGluR3 expression enhanced memory in females. More-
over, acute chemogenetic stimulation of Gi/o-coupled or 
Gs-coupled receptors in the hippocampal astrocytes resulted 
in bidirectional and sex-dimorphic effects, suggesting that 
the astrocytic regulation of memory involves a sex-specific 
balance between Gs-coupled and Gi/o-coupled receptor sig-
nalling. These findings raise the possibility that G protein-
coupled receptor signalling in astrocytes may contribute to 
sex-specific differences in the pathophysiology of the CNS.

Estrogens, and in particular estradiol, can stimulate 
astrocytes to produce growth factors such as brain-derived 
neurotrophic factor (BDNF) and IGF-1 [17], making astro-
cytes key regulators of neuronal survival and growth, as 
well as neurotransmitter modulation and neuronal plastic-
ity. In addition, it has been reported that estrogens modu-
late astrocytic Ca2+ signalling, which is a key component 
of astrocytic signalling and activation stage and is crucial 
for gliotransmitter release [64]. This implies that astrocytic 
Ca2+ activity and subsequent gliotransmission, which in 
turn affect neuronal survival and the modulation of neural 
networks, may be under the control of gonadal hormones. 
Indeed, astrocytes, as key components of the BBB, which 
sex hormones can easily cross due to their lipophilic nature 
and small size, likely represent crucial targets of circulating 
gonadal hormones. As a result, sex hormones may represent 
key modulators of astrocytic Ca2+ responses under patho-
physiological conditions affecting the CNS [23].

Next to gliotransmission, the astrocytic metabolism, as 
well as the metabolic coupling between astrocytes and neu-
rons, is coordinated by transient intercellular Ca2+ waves 
[24]. Thus, the existence of sex differences in astrocytic 
Ca2+ signalling may be highly relevant in the context of 
conditions, such as brain injury, in which the astrocytic 
metabolism is essential to maintain neuronal function in 

epigenetic mechanisms - possibly involving androgen-reg-
ulated genes - may be involved but are still less understood.

Sex Differences in Astrocyte Aging Across Species

Investigating astrocytic function across species provides 
valuable insights into the evolutionary mechanisms gov-
erning these glial cells. While foundational research has 
heavily relied on rodent models such as C57BL/6 mice and 
Sprague-Dawley rats, studies on astrocytes in higher pri-
mates, particularly their sex-specific roles, remain limited. 
Emerging evidence from human studies highlights signifi-
cant species-specific variations in astrocyte function and 
regulatory mechanisms. Human astrocytes exhibit greater 
morphological complexity than their rodent counterparts 
[47], featuring more extensive branching and a higher den-
sity of processes, which may enhance their communication 
with neurons. Additionally, specialised astrocyte popula-
tions, such as interlaminar astrocytes in primates, have been 
identified in humans and higher primates but are absent in 
other species [28, 56] (reviewed in [57]). This unique astro-
cyte population likely contributes to the more complex neu-
ral networks and may result in different aging responses. 
In line with this, growing evidence indicates that rodents 
typically show earlier and more extended GFAP upregula-
tion throughout the brain with age [38], whereas primates 
show features of cellular senescence, including increased 
p16INK4a expression in cortical astrocytes, a marker asso-
ciated with neurodegeneration [58]. Spinal cord studies 
reveal that some age-related changes in astrocyte markers 
displaying sex dimorphisms differ across species [27]. For 
example, GFAP increases with age in female primates (e.g. 
mouse lemurs and humans), but not consistently in rodents 
[27]. These species-dependent features highlight the impor-
tance of primate models for translational aging research.

Sex-Specific Regulation of Astrocytic Signalling 
Pathways and Ca2+ Dynamics

The response to different neurotransmitters also shows 
sex differences between male and female astrocytes. Most 
strikingly, in vitro and in vivo rat models have revealed 
sex-dimorphic responses to glutamate for male and female 
astrocytes [59, 60] as well as differences in glutamate uptake 
[25]. In particular, estrogen exposure results in the upregula-
tion of the excitatory amino acid transporter 2 (EAAT2) via 
nuclear factor-kappa B (NF-κB) and cyclic AMP-respon-
sive element-binding protein (CREB) signaling pathways 
and enhances the expression of both excitatory amino acid 
transporter 1 and 2 (EAAT1 and EAAT2) through a trans-
forming growth factor-alpha (TGF-α) mediated pathway 
[61]. This suggests that male and female astrocytes may 
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progressive MS lesions [76, 77]. In contrast, Hjaresen et al. 
[78] reported lower MIF levels in female patients during 
the early phase of the disease and did not observe signifi-
cant sex differences during the progressive stage. Notably, 
MIF levels positively correlate with disease severity and 
the extent of neuronal loss [79]. Supporting these clinical 
observations, female mice with experimental autoimmune 
encephalomyelitis (EAE) exhibit lower levels of MIF [80].

Beyond autoimmune diseases, a stronger inflammatory 
response was observed in male mice after lipopolysaccha-
ride (LPS) stimulation. For example, primary astrocytes 
derived from male neonatal mice exhibit a more pronounced 
increase in IL-6, TNFα, and IL-1β levels upon exposure to 
LPS compared to female astrocytes, which exhibit increased 
interferon-gamma induced protein 10 kD (IP10, Fig.  2) 
[21]. The authors suggest that perinatal exposure to testos-
terone may prime male astrocytes to respond differently to 
inflammatory stimuli [21]. Additionally, sex hormones such 
as estrogen and progesterone have been shown to reduce 
LPS-induced TNFα and IL-18 expression in midbrain astro-
cytes, indicating that sex steroids modulate neuroinflamma-
tory processes and may exert protective effects in female 
astrocytes [81].

Astrocytes from males (right, blue) and females (left, 
pink) respond differently to inflammatory stimuli, which 
in turn influence surrounding cells. In both sexes, TNFα 
produced by astrocytes promotes reactive microgliosis, 
decreases OPC survival, and contributes to BBB dysfunc-
tion. IL-1β release exacerbates neuronal injury and impairs 
remyelination. Additionally, astrocyte-derived chemokines 
and cytokines such as IP-10, MIF, and MCP-1 modulate the 
recruitment of peripheral immune cells. These sex-depen-
dent astrocyte interactions shape the local inflammatory 
environment, ultimately influencing remyelination effi-
ciency and the extent of neuronal damage. BBB, blood-brain 
barrier; IL-1β, Interleukin-1 beta; IP10, interferon-gamma 
induced protein 10 Kd; MCP-1, monocyte chemoattractant 
protein-1; MIF, macrophage inhibitory factor; OPC, oligo-
dendrocyte progenitor cell; blood-brain barrier (BBB). Cre-
ated in https://BioRender.com.

Astrocytes also contribute to the sexually dimorphic 
response to metabolic challenges [82]. For instance, in male 
rats, neonatal overnutrition leads to increased astrocyte 
number and elevated TNFα levels in late adulthood, which 
are associated with overweight and a greater susceptibil-
ity to obesity-related pathologies [68]. In parallel to that, 
male and female astrocytes respond differently to specific 
metabolic insults such as palmitic acid (PA), which is a key 
component of high-fat diets known to affect brain metabo-
lism. Exposure to PA slows down the Krebs cycle and the 
glutamate-glutamine cycle while inducing higher levels of 
IL-6, IL-1β and GFAP in male hypothalamic astrocytes [83, 

the damaged tissue. For instance, following middle cerebral 
artery occlusion in adult mice, astrocytes in the ipsilateral 
hemisphere of female mice display more frequent Ca2+ 
elevations compared to males [65], possibly contributing to 
the sex differences observed in the incidence and severity 
of stroke events in humans. Similarly, in neonatal hypoxia-
ischemia, female astrocytes exhibit enhanced mitochondrial 
metabolism compared to males [66], a metabolic advantage 
that may contribute to sex differences in neuronal vulner-
ability, as neuronal metabolic activity is closely dependent 
on astrocyte metabolic support [66, 67]. In addition, male 
and female astrocytes in the hypothalamus respond differ-
ently to systemic metabolic challenges and show different 
gliosis levels as well as inflammatory response [68].

In parallel to that, several studies have reported sex-
dimorphic gene expression in astrocytes following systemic 
inflammation [19–21], oxidative stress [69, 70], as well as 
in vivo cortical brain injuries [22]. Estradiol also regulates 
astrocytic proliferation, which increases following brain 
injury to form the glial scar and restore tissue homeosta-
sis [71]. Studies in primary mouse cortical astrocytes have 
shown that the regulation of astrocyte proliferation by estra-
diol is different in male and female astrocytes and depends 
on the activation of the extracellular signal-regulated 
kinases (ERK) signalling in female, but not in male [72, 73].

Sex Differences in Regulation of Reactive 
Astrogliosis and Immune Cell Recruitment After 
Injury

Sexual dimorphism significantly influences how glial cells 
respond to CNS injury, particularly in shaping astrocytic 
reactivity [74]. These variations in astrocyte behaviour may, 
in turn, alter their communication with neurons, microglia, 
oligodendrocytes and infiltrating immune cells. For exam-
ple, male mice exhibit a more pronounced and sustained 
inflammatory response during the chronic phase of stroke, 
characterized by a higher infiltration of T cells [75]. Consis-
tently, Acaz-Fonseca et al. [22] reported in males a higher 
percentage of astrocytes expressing monocyte chemoat-
tractant protein-1 (MCP-1), also referred to as chemokine 
(C-C motif) ligand 2 (CCL2), a chemokine involved in the 
recruitment of immune cells and the regulation of gliosis 
(Fig. 2). This correlates with a higher density of ionized cal-
cium–binding adaptor molecule 1 (IBA1)-immunoreactive 
cells in the area close to the lesion.

Similar sex-dependent patterns in astrocytic behaviour 
have been observed in chronic neuroinflammatory condi-
tions such as MS. Elevated levels of macrophage inhibitory 
factor (MIF, Fig. 2), a proinflammatory cytokine involved 
in astrocyte-mediated responses to injury and inflamma-
tion, have been detected in the serum of male patients with 
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highlighting the essential role of ERα in mediating these 
sex-specific protective mechanisms [84].

Further evidence of sex-specific astrocytic responses has 
emerged from studies on short-chain fatty acids deriving 
from gut microbiota. Spichak et al. [85] showed that butyr-
ate increases Bdnf and Peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha (Pgc1-α) expression 
in females. In contrast, acetate specifically increases aryl-
hydrocarbon receptor (Ahr) and Gfap expression in males, 
while propionate is linked to increased IL-22 in males 
but not in females. These findings suggest that microbial 
metabolites can modulate astrocytic gene expression in a 
sex-dependent manner.

In summary, astrocytic responses to injury, inflamma-
tion, and metabolic stress are strongly influenced by sex, 
with implications for disease susceptibility, progression, 
and therapeutic strategies. These differences are mediated 
by both intrinsic programming and hormonal modulation, 

84]. Moreover, PA triggers greater cytotoxicity in male cor-
tical astrocytes associated with an increase in reactive oxy-
gen species (ROS) production(Fig. 1), which might promote 
a state of chronic inflammation [34]. Conversely, female 
astrocytes showed an antioxidant response characterised by 
elevated mitochondrial superoxide ion (O2⋅‒) levels (Fig. 1) 
and upregulation of proteins such as catalase, glutathione 
peroxidase-1 (Gpx-1) and nuclear factor erythroid 2-related 
factor 2 (Nrf2), providing protective signals to surrounding 
cells [34]. Building on this, other evidence suggests that 
sex hormones such as estradiol exert protection against PA-
induced damage. In males, estradiol reduces the activation 
of inflammatory markers, including phosphorylated c-Jun 
N-terminal kinase (pJNK), TNFα and caspase-3, whereas in 
females, it decreases apoptotic cell death without affecting 
these inflammatory pathways [31]. Supporting this, deletion 
of ERα abolishes the anti-inflammatory effects of estradiol, 
leading to increased PA-induced inflammation, thereby 

Fig. 2  Sex-specific astrocyte-mediated crosstalk in neuroinflammation and remyelination
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