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ABSTRACT
A charge equilibration method based on real-space Gaussians as charge densities is presented. The implementation is part of the Elec-
trode package available in the Large-scale Atomic/Molecular Massively Parallel Simulator and benefits from its efficient particle-mesh Ewald
approach. A simple strategy required to switch from the previously used Slater-type orbital (STO) shielding to Gaussians is provided by fitting
the Coulomb energy of two Gaussian charge distributions to the repulsion between two STOs. Their widths were optimized for O, Si, and
Ti species, obtaining results consistent with previous studies using STOs in the case of SiO2 polymorphs. In the limit of sufficiently narrow
Gaussians, it is shown that the implementation converges to electronegativity equalization method results for the case of Ti/TiOx interfaces.
The method presented is implemented in a way that is potentially beneficial for the application of modern machine-learning force fields that
include long-range electrostatic interactions.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0255823

INTRODUCTION

Molecular simulations1,2 based on empirical potentials3,4 are
frequently used whenever the system sizes and time scales required
to gain useful information on collective phenomena surpass those
that can be tackled at the quantum mechanical level, e.g., with
density functional theory (DFT) methods.5,6 Although machine-
learned potentials (MLPs)7,8 often reduce the computational burden
of DFT, they generally still require substantially more computing
time than common empirical potentials. Moreover, they become
more complex when (non-local) charge-transfer or polarization
effects are important.9 For example, to simulate batteries10,11 or
supercapacitors,12,13 charge transfer at solid–liquid interfaces is of
crucial importance. These are generic examples of situations in
which interactions are non-local and/or where the concept of mirror

charges cannot be applied in a straightforward fashion. This is due to
complex interface geometries and the dynamic effects of the molec-
ular species at the polarized electrodes. In the latter case, induced
charges must be properly assigned to atoms near the metal surface
to correctly reproduce the polarization-induced repulsion between
near-surface atoms.

One possibility of modeling not only charge transfer but also
the dielectric response of condensed matter is the use of charge-
transfer potentials (CTPs), which allow partial charges of atoms to
be determined on the fly. Mortier and co-authors14,15 pioneered
the most widely used CTPs by defining a potential energy func-
tion containing a second-order polynomial of the partial charge qi,
which gets minimized with respect to all qi for a given configu-
ration. The polynomial consists of a linear coupling to an atom,
reflecting the atomic electronegativity, a quadratic self-interaction,
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penalizing charge accumulation on a given atom and reflecting its
chemical hardness, and a Coulomb interaction between all charges.
This method, which can be loosely interpreted as an attempt to
coarse-grain an electronic structure calculation to atoms, was origi-
nally introduced as the electrostatic equalization method (EEM). It
has experienced various modifications, not only in terms of differ-
ent approximations to the Coulomb interactions16,17 but also with
respect to its generic functional form.18–23

The supposedly first modifications of EEM were proposed by
Rappe and Goddard,16 who replaced the bare Coulomb potential
with a shielded one by introducing radially symmetric ns-STOs of
the form ϕ(r) = Nnrn−1exp(−ζr), with the normalization constant
Nn, the principal quantum number n, and the orbital exponent ζ.
This was done to improve the stability and accuracy of CTPs, of
which both can be compromised when two atoms approach each
other closely, particularly when they carry opposite charges. Rappé
and Goddard called their approach charge equilibration (QEq),
which has become the most commonly used term for CTPs, in
which partial charges are determined by a minimization principle.
We refer to three recent articles4,24,25 for a more in-depth discussion
of QEq.

A beneficial aspect of shielded Coulomb interactions is that the
potential energy remains a convex function of the partial charges
when interatomic distances become small. The QEq approach can
be rightfully criticized for a variety of reasons, the most cen-
tral ones being the following: partial charges are intrinsically ill-
defined,26–28 QEq produces hyperpolarizability19,21,29 including a
diverging dielectric constant in the thermodynamic limit,30,31 frac-
tional charges on isolated fragments,18,32 and, most relevant to
this work, the above-mentioned convexity of the potential energy
in the partial charges is not necessarily established for the right
reason.

Some issues related to the original treatment of shielded
Coulomb interactions appear to have survived to this date. For
example, the Streitz and Mintmire17 potential in LAMMPS treats
long-range interactions properly for the electrostatic interaction
energies and forces of 1s-STOs, i.e., in pair coul/streitz,
but it does not include these interactions for the partial charge
calculations in the corresponding fix qeq/slater. Moreover, we
have found that a follow-up33 to the original QEq work16 only
appeared to be reproducible when shielding was used for the charge
assignment but forces and energies were calculated using Coulomb
interactions between point charges. In addition, the combination
rule introduced in Ref. 33 for the orbital exponent, ζ−1

ij = (ζi/ni
+ ζj/nj), where ni and ni are the principle quantum numbers of the
valence electrons of atom i and j, respectively, lacks rigorous moti-
vation and appears problematic when ni ≠ 2. In general, using STO
shielding is prone to errors due to the analytical complexity. In fact,
in quantum chemistry, it is quite common to replace STOs with
Gaussian-type orbitals34,35 as a basis set.

In this work, we explore the possibility to remedy many of the
aforementioned issues by using Gaussian charge densities instead
of ns-STOs, which also leads to quantitatively correct and convex
Coulomb potentials. This is done in the context of QEq, because
even the original QEq, despite all criticism, has benefits. It improves
the accuracy of simulations compared to fixed-charge potentials, it
can still be seen as appropriate for the simulation of conducting
materials, e.g., electrodes, and last but not least, our work addresses

merely the Coulomb interaction between atoms so that our results
apply to any post-QEq method fixing the hyperpolarizability and
related shortcomings of the original work. As such, the progress
reported herein can also benefit any machine-learned potential9,36,37

that is augmented with a post-QEq method. However, while the
method presented is presumably not suitable for facilitating the
training of such machine-learning force fields, it could provide an
avenue for their efficient application. For the former, one could, for
example, follow the strategy presented in Loche et al.,38 which is
based on PyTorch and JAX and relies on a framework for treating
long-range many-body interactions in Huguenin-Dumittan et al.,39

or, more generally, the strategy presented for HDNNPs in Tokita
and Behler40 It should be noted that, in principle, Gaussian charge
densities, also in combination with QEq, can already be used in
the Electrode implementation13 in LAMMPS, and since this QEq
implementation is based on that package, it benefits from a higher
efficiency of the underlying particle-mesh implementation.41 We
note that others37,42 also use a particle-mesh solver for very sim-
ilar approaches. In an attempt to simplify QEq and make it more
straightforward to use, while maintaining compatibility with previ-
ous QEq approaches, our method will be briefly introduced in the
following.

THEORY AND METHODS
Charge equilibration

The total potential energy U can be divided into two parts,
U = U0 +Uq. Therein, U0 encompasses all potential energy contri-
butions that are not explicitly related to atomic partial charges. In
turn, Uq = UQEq +Ucoul includes all contributions associated with
the N atomic charges q1, . . . , qN and can be further decomposed into
the Coulomb energy Ucoul and an energy term UQEq, which reflects
the chemical potential of the individual atoms. In QEq methods, the
redox energy of each atom i is written as a Taylor series of at least
second-order. Indeed, a second-order expansion of the redox energy
as functions of the atomic charges is the most commonly applied
approach,14,15

UQEq({qN
}) ≈

N

∑
i
(χiqi +

1
2

J0
i q2

i ), (1)

where the QEq coefficients χi and J0
i are interpreted as the elec-

tronegativity and chemical hardness of the individual atomic species,
respectively. The most commonly used approach to assessing the
QEq coefficients relies on reproducing the ionization energy and
electron affinity of the isolated atom.43 While the chemical moti-
vation of this choice is particularly obvious for describing metal-
lic systems, the modeling of ionic systems may call for adapting
the QEq coefficients to the underlying oxidation states.44 To this
end, one may also parameterize the overall interaction potential
including the QEq coefficients in a concerted fit to best reproduce
DFT benchmarks.45,46 Returning to the derivation of the Coulomb
energy, point charges would be a natural choice, as used in EEM, but
this leads to issues such as infinite charge separation44 (or polariza-
tion catastrophe47), resulting in non-physically high partial charges.
To solve these problems, ns-STOs have been used.16 As known from
quantum mechanics, the use of ns-STOs as charge distributions
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poses some challenges for the analytical and also numerical
calculation of the Coulomb integral.48 Thus, other more recent QEq
implementations rely purely on Gaussians,9,36,37 which have some
advantages for evaluating overlap or Coulomb integrals and for use
in efficient Ewald summation methods. Here, we describe all charges
by Gaussians, which are normalized to the corresponding atomic
partial charge qi with the following expression:

ρi(r) = qi(
η2

i

π
)

3/2

exp (−η2
i ∣ri − r∣2), (2)

where ηi is a parameter that defines the width of the charge den-
sity. The Coulomb energy of such interacting Gaussians is calculated
using a modified Ewald summation49 for periodic systems,

Ucoul =
1
2∑i,j

qiqj∑
′

n

erfc(α∣rij + n∣) − erfc(ηij ∣rij + n∣)
∣rij + n∣

+
2π
V ∑i,j

qiqj∑
k≠0

eik⋅rij 1
∣k∣2

exp(−
∣k∣2

4α2 )

−
α
√

π∑i
q2

i +
1
√

2π
∑

i
ηiq2

i , (3)

with V being the volume of the simulation box (assuming the usual
tinfoil conditions for isotropic conducting systems50). Equation (3)
is given in Gaussian units, as chosen in the remainder of this work.
ηij is calculated using the combination rule as follows:

ηij =
ηiηj

√

η2
i + η2

j

. (4)

This combination rule results from the interaction of two Gaussian
charge densities of width ηi and ηj in the Ewald summation and is
adopted from the theoretical framework of the MetalWalls pack-
age.51 In the Ewald approach, α is used to damp the Coulomb poten-
tial such that cutoff effects are reduced in the real-space summation.
Accordingly, small α implies large real-space cutoff delimiters and
vice versa. The first term in Eq. (3) describes hence the Coulomb
energy of the auxiliary charges of width α and the correction of intro-
ducing the real-space Gaussian charge densities of width ηi as part of
the model. The primed sum indicates that n = 0 is skipped for i = j,
i.e., the charges do not contribute to their own potential in the unit
cell. The third term in Eq. (3) looks like a self-interaction, but this
merely compensates for errors introduced in the Ewald summation
from the reciprocal space in the second term, where interactions for
i = j are included for the auxiliary charges. The last term is the self-
interaction of the real-space Gaussians. Using Eq. (3) to describe the
Coulomb energy implies η2

i /2 > α2,49 defining a lower limit for the
choice of ηi.

Merging the QEq and Coulomb sums, we can now write

Uq = UQEq +Ucoul =∑
i

χiqi +
1
2∑i,j

Jijqiqj (5)

as a matrix product with the vector (q1, . . . , qN)
T . We define an

effective hardness parameter,

Jeff
ii = J0

i +

√
2
π

ηi, (6)

as a diagonal element of the matrix J in the limiting case of
non-interacting, infinitely separated particles [cf. Eq. (8) of Von-
drák et al.36] The effective hardness Jeff

ii is, therefore, greater than
the chemical hardness J0

i , which must be adjusted according to the
choice of ηi. A common choice for this is to set Jeff

ii =
√

2/π ηi,
i.e., J0

i = 0.52,53 Note that the choice of ηi has a significant impact
on the partial charges. In applications of the QEq for ML force
fields, the hardness is often written as a sum of non-classical
(e.g., exchange–correlation) contribution and a classical electrostatic
term.9,36,54 In this terminology,

√
2/πηi is the classical term, i.e.,

the self-interaction, and the non-classical term can be positive or is
simply set to zero.54

Finally, to obtain the equilibrium atomic charges, the electro-
static energy must be minimized with respect to the charges qi and
one arrives at an expression that is very similar to that found in
Electrode,41

∂Uq

∂qi
= χi +∑

j
Jijqj = 0, (7)

while the total system charge is constrained to a constant qtot = ∑i qi
and is typically zero. The constraint could be enforced using the
method of Lagrange multipliers16 or by employing a projection
matrix.55,56 The set of linear equations defined by Eq. (7) along with
the constraint is here solved for the charges using the conjugate
gradient (CG) method.

Choice of hardness and Gaussian width

A prerequisite for QEq is that the energy as a function of
charges has a minimum. This is the case if the matrix of Coulomb
interactions J is positive-definite. However, depending on the choice
of the hardness and the screening parameters between atoms, this
might not be the case. If J is not positive-definite, algorithms for the
minimization may yield a saddle point or not converge at all. This
issue is well known in QEq and especially relevant for small atom
distances.24,44,47 Here, we illuminate the cause of the issue and show
how it can be avoided for a system of Gaussian-shaped charges.

In order to illustrate the issue, we consider a system of two
atoms at a distance r12 without periodic boundary conditions. In this
case, the symmetric matrix J ∈ R2×2 is positive-definite if

J2
12 < J11J22. (8)

If described as point charges, the non-diagonal element of J is
J12 = r−1

12 . This interaction diverges for small distances, and thus, the
hardnesses have to be chosen such that Eq. (8) is fulfilled for all
distances that may occur during a simulation. The situation is dif-
ferent for two Gaussian charges. Here, the non-diagonal element is
J12 = erf(η12r12)/r12 and does not diverge but has a maximum at
zero: limr12→0J12(r12) = 2η12/

√
π. In the constant potential method

(CPM), the diagonal elements are set to the self-interaction of Gaus-
sians in Eq. (3), which is the limit for rij → 0 with ηi = ηj. This choice
ensures that Eq. (8) is true for all values r12 > 0, i.e., the matrix is
positive-definite by design in the CPM. If the self-interactions on
the diagonal are replaced by hardness parameters, a choice of

ηi ≤

√π
2

Jii (9)
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will ensure that the matrix is positive definite and vice versa for this
simple system. For a given screening parameter ηi, a hardness can be
set, which fulfills this equation. This simple example with two atoms
shows that the hardness and screening parameters for QEq have to
be chosen with care, either by fulfilling Eq. (9) or by ensuring that
distances during a simulation are large, resulting in small interac-
tions relative to the hardnesses. For more than two atoms, Eq. (8) is
a necessary but not a sufficient criterion for the positive definiteness
of J. One can check whether the smallest eigenvalue of J is larger than
zero, to ensure it is positive-definite.56

Charge equilibration parameters

First, to demonstrate the behavior of our QEq implementation
in the limit of EEM, the results are compared with the previously
published data of a Ti/TiOx system.58 Second, SiO2 polymorphs such
as α-quartz, stishovite, and amorphous silica have previously been
successfully described by a combination of QEq and a Morse poten-
tial,33 making this potential an ideal test candidate against which to
further compare our method.

While the QEq parameters for SiO2 are physically motivated
and discussed in more detail in the underlying publication by Rappé
and Goddard,16 empirically derived parameters are often used for
more complex molecular simulations. This is the case for Ti/TiOx,
where the EEM parameters were obtained by Schneider and Ciac-
chi57 such that the partial charges are proportional to the Bader
charges and consistent with the Matsui and Akaogi59 charges and
biomolecular force fields.

The form of the short-range potential for SiO2 is defined in
Ref. 33 as

Uij = D0[e−2γ(rij−r0) − 2e−γ(rij−r0)], (10)

where D0 is the bond strength, r0 is the bond length at equilibrium,
and γ is an inverse length parameter that defines how sharp the
potential is around the equilibrium bond distance. The parameters
for Si–O, O–O, and Si–Si have not been modified and can be found
in the original publication of Demiralp et al.33 Electronegativities χ
and atomic hardnesses Jeff used here for Si and O are summarized in
Table I. Similarly to the original work, the Morse interaction is trun-
cated at 9 Å. Coulomb interactions for SiO2 were calculated using
the above introduced Ewald summation, which explicitly includes
the interaction between real-space Gaussians, with a real-space cut-
off of 12 Å and an accuracy setting of 10−6. Since Gaussians with
a width of η are used instead of ns-STOs, a simple strategy is pro-
vided to convert them, described later in the text, and the resulting
values are given in Table I. The integration time step for the numer-
ical solution of Newton’s equation of motion has been set to 1 fs in
all molecular dynamics (MD) simulations, unless otherwise noted.
Standard couplings of 100 time steps were used for the thermostat
in both the NVT and NpT simulations, and a coupling of 1000 time
steps was used in the case of the barostat.

The stishovite structure contained 3840 atoms and was created
from a 8 × 8 × 10 repeated unit cell with cell dimensions of a = b
= 4.18 Å and c = 2.67 Å, which corresponds to a density of
4.28 g/cm3. α-quartz has been obtained from a 3 × 3 × 3 repeated
orthorhombic cell of dimensions a = 9.83 Å, b = 8.51 Å, and
c = 10.80 Å containing totally 1944 atoms, which corresponds
to a density of 2.65 g/cm3. Amorphous silica was produced by

TABLE I. QEq parameters for SiO2 and Ti/TiOx. χ and Jeff parameters for Ti/TiOx
were taken from Schneider and Ciacchi57 and for SiO2 from Demiralp et al.,33 respec-
tively. η is obtained from a fit to the Coulomb energies shown in Fig. 3 and explained
in the main text.

QEq/electrode parameters for SiO2

χ (V) Jeff (V/e) η (Å−1
)

Si 4.168 6.974 0.474
O 8.741 13.364 0.834

QEq/electrode parameters for Ti/TiOx

χ (V) Jeff (V/e)

Ti 0.0 12.864
O 8.729 17.197

a melt-quenching process explained in more detail later in the
corresponding chapter.

The Ti/TiOx slab in Schneider and Ciacchi57 was generated
by the incorporation of O2 molecules into a periodically repeated
(2
√

3 × 3) surface supercell consisting of five Ti(0001) layers of
atoms in the xy plane. It has also been extended in the z-direction
by a mirroring operation (cf. Fig. 1), as only one side was oxidized.
Further details on how the oxidized interface was obtained can be
found in the corresponding papers.57,58 The system used here is a
2 × 2 repeated cell of the original oxidized slab in the plane direc-
tion. For Ti/TiOx, a 10 Å cutoff is used for the real-space part of the
electrostatic interactions. QEq parameters for Ti/TiOx are summa-
rized in Table I. For Ti/TiOx, we do not provide η because we will
show that if we choose a sufficiently large η, i.e., sufficiently narrow
Gaussians, we converge to the EEM results.

RESULTS
Oxidized titanium surface

We begin with the analysis of the Ti/TiOx slab, as this is
an interesting test case to study the QEq approach in the point
charge limit. The given parameters for Ti and O were optimized by
Schneider and Ciacchi57 to reproduce the Matsui and Akaogi59 fixed
charges of bulk rutile. It has been shown that these EEM parameters
give reasonable charges for partially oxidized Ti atoms in the slab
and are in good agreement with their ab initio results.

Parameters mentioned in Table I are used for the here per-
formed QEq calculations with varying Gaussian widths. Note that
only zero step calculations were performed to obtain just the partial
charges and atoms did not move, i.e., no MD steps were performed.
In principle, one should obtain the EEM partial charges by using
large values for ηi, i.e., very narrow Gaussians. Conversely, this
means that in this case, electrostatic interactions are described purely
by point charge interactions. While erfc(ηij∣rij − n∣) in Eq. (3) goes
to zero for very narrow Gaussians and is otherwise skipped in the
sum for the case of i = j and n = 0, the self-interaction term from
the interaction between real-space Gaussians Uself = (2π)−1/2

∑i ηiq2
i

goes to infinity. To avoid this problematic self-interaction of the
Gaussians, this interaction is implicitly included in the hardness,
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FIG. 1. Charges, q, for Ti/TiOx obtained with EEM (d) and charge differences, Δq = qEEM − qQEq, from EEM and QEq, respectively, using different Gaussian widths (a)–(c).
Ti atoms are represented with a larger sphere than O atoms.

cf. Eq. (6), and Jeff
ii is the user-defined constant hardness parameter.

In Fig. 2, the minimum eigenvalues of the matrix J are plotted as
a function of η. The smallest eigenvalues using different hardness
settings all converge for η > 1.60 Å−1. In Figs. 1(a)–1(c), the charge
differences Δq between QEq and EEM are shown for η = 1.0, 1.6,
and 10.0 Å−1. The maximum charge difference is between 0.025 and
−0.030 e already for η = 10 Å and is found close to the surface. This
nicely illustrates that if the Gaussians are small enough, the EEM
charges are, indeed, obtained with negligible differences.

Silicon dioxide polymorphs

There have been several attempts to model SiO2 polymorphs,
including silicon and silica interfaces, with QEq approaches.33,60–62

However, it is often unclear whether the long-range electrostatic
interactions are calculated and treated consistently in the various
steps, i.e., the derivation of the partial charges and the subsequent
Ewald summation, or whether some parts are tapered to avoid costly

FIG. 2. Minimum eigenvalues of the matrix J with different η and different hard-
nesses Jeff. The black curve corresponds to the QEq parameters for Ti and O
given in Table I with the effective hardness equal to J0

Ti and J0
O, respectively. The

blue, red, and gray curves correspond to arbitrarily decreasing values of the effec-
tive hardnesses. The black dashed line indicates the point where the minimum
eigenvalue approximately converges for all hardness settings.

computations. While it is not entirely clear whether long-range
interactions were treated consistently in the partial charge calcu-
lation as well as in the final electrostatic calculations in Demiralp
et al.33 and van Duin et al.,60 it appears that Fogarty et al.61 used
a QEq variant with a taper function (cf. the SERIALREAX imple-
mentation of Aktulga et al.63 for LAMMPS) that neglects important
long-range interactions and, moreover, uses only 1s-STOs for the
partial charge calculations instead of the correct 3s-STO and 2s-STO
for Si and O, respectively.

In the following, we will try to reproduce the results of Demi-
ralp et al.,33 but instead of using ns-STOs, we will use Gaussians.
To switch from ns-STOs to Gaussians, i.e., (n, ζ)→ η, we fitted the
Coulomb energies from the two-electron Coulomb repulsion of two
atomic species (i.e., between Si and Si or O and O) using Gaussians
instead of using ns-STOs. In general, the Coulomb energy between
two charge distributions ρi and ρj at positions r and r′, respectively,
is defined as

Uij = ∫
R3

d3r∫
R3

d3r′
ρi(r)ρj(r′)
∣r − r′∣

. (11)

Plugging Eq. (2) into Eq. (11) and using r = ∣ri − rj∣ with some alge-
bra gives the Coulomb energy between two Gaussians separated by
the distance r,

Uij(r) = e2 erf(ηijr)
r

. (12)

In Figs. 3(a) and 3(b), the Coulomb energies using ηSi and ηO,
obtained from a non-linear fit using the Levenberg–Marquardt algo-
rithm of the energies from Eq. (12) to corresponding energies using
ns-STOs, are shown. The resulting fitted values are ηSi = 0.474 Å−1

and ηO = 0.836 Å−1. The corresponding two-center Coulomb inte-
grals of ns-STOs in Fig. 3 are calculated using the method of Ref.
20.

There is some discrepancy in the way the QEq parameters for
Si–O are obtained when comparing Demiralp et al.33 and Rappe and
Goddard.16 While in both studies the radius of the atom in the stan-
dard state, RA, is the same and is used to obtain the orbital exponent
for the ns-STO, in Demiralp et al.,33 a combination rule is intro-
duced to calculate the orbital exponent ζAB of the Slater orbital, but
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FIG. 3. Non-linear least square fit of Coulomb energies from Gaussians to the
results of two interacting ns-STOs for Si–Si and O–O. Energies for interacting
Gaussians between Si and O are obtained using the combination rule in Eq. (4).

this does not reproduce the ζA values mentioned in Rappe and God-
dard16 if we substitute the corresponding values for ζAB, i.e., ζSiSi ≠

ζSi and ζOO ≠ ζO. In addition, in that formulation, a mixing para-
meter for the principal quantum number for Si and O is required
but is missing. It is not clear why a combination rule is needed at
all. The Coulomb potential presented in Rappe and Goddard16 actu-
ally does not need it, since both orbitals for Si and O should appear
there separately if ρ1 = ∣ϕSi∣

2 and ρ2 = ∣ϕO∣
2, where ϕSi and ϕO are the

corresponding ns-STOs [cf. Eq. (11)].
The QEq interaction between Si and O shown in Fig. 3(c)

is described here by ηSiO and is obtained by using the combina-
tion rule for two different Gaussians given in Eq. (4). This gives
ηcomb

SiO = 0.412Å−1 and yields Coulomb energies very similar to the
energy from a Coulomb integral between a 3s-STO for silicon and
a 2s-STO for oxygen and the corresponding Slater exponents ζ as
given in Rappe and Goddard.16 Note that using the above combina-
tion rule for Gaussians, ηii ≠ ηi, and the conversion is ηi = ηii/

√
2

(for a derivation of the combination rule and this expression, we
refer to the Ewald theory presented in Refs. 51 and 56.)

In an effort to reproduce the structural properties of stishovite
and quartz, it is interesting to note that Demiralp et al.33 do not seem
to use short-range correction terms for the interaction of ns-STOs in
their work, at least not in the force calculations, since only without
these similar densities could be obtained. As a side note, such correc-

tion terms for 1s-STO have been previously introduced by Nakano64

but are seldomly implemented. Neglecting short-range corrections
due to Coulomb shielding results in an Ewald summation equiva-
lent to that of point charges (assuming the self-interaction term is
included in the hardness or set to zero). Ignoring Gaussians and
instead using point charges to calculate forces and energies, the den-
sity for α quartz and stishovite was 2.55 and 4.29 g/cm3, respectively.
While these densities agree reasonably with those reported in Demi-
ralp et al.,33 the use of Gaussian charges in the force and energy
calculations decreased the densities and resulted in 2.49 g/cm3 for
α-quartz and 3.68 g/cm3 for stishovite. The stronger decrease in den-
sity of stishovite could be explained due to the stronger repulsion
of Gaussians than point charges as in stishovite, atoms are closer
together than in α-quartz and silica. It should be stressed again that
in both cases, the computation of the partial charges is using Gaus-
sians (instead of ns-Slater orbitals or simple point charges), but the
way the forces and energies are calculated differs, i.e., using a simple
point charge model or by including the full Gaussian interactions
through the correction terms introduced in the Ewald summation
of Eq. (3).

Structural properties of silica depend on the melting and
quenching procedure65 and in particular on the quenching rate, e.g.,
quenching rates of 12.5, 25.0, and 50.0 K/ps using STOs resulted
in different silica densities of 2.32, 2.33, and 2.35 g/cm3.33 Here,
the amorphous silica was generated by following as closely as pos-
sible the recipe presented in Demiralp et al.33 We start by melting
a β-cristobalite crystal structure. The initial structure had a lat-
tice constant of 7.40 Å and was repeated 3 × 3 × 3, thus containing
1536 atoms with a density of 1.97 g/cm3. The crystal structure was
annealed at 4000 K for 200 ps instead of the 40 ps mentioned in
Demiralp et al.33 to remove any remnants of the β-cristobalite crys-
tal structure. The time step was set to 0.5 fs to ensure the stability of
the simulation. Then, the system was cooled using NVT dynamics
by decreasing the temperature at a rate of 25.0 K/ps to 1000 K. At
1000 K, we switched to NpT dynamics and continued cooling at the
same rate to 300 K. After quenching, constant pressure relaxation
was performed at 300 K and 1 atm for 1.5 ns and the silica obtained
had a density of 2.19 g/cm3, very close to the experimental densities,
which are typically around 2.20 g/cm3.66

Somewhat unexpectedly, the density for silica differed from the
results of Demiralp et al.,33 although we followed the recipe as closely
as possible. Most importantly, we use (fitted) Gaussians instead of
ns-STO, which might explain some differences. Another explana-
tion is that some details of the simulation parameters and settings
were not given, e.g., coupling constants to the barostat and ther-
mostat, so we used commonly used ones. To shed more light on
this and to see if other structural details are affected, the radial pair
and angle distributions in amorphous silica were examined to see if
there were other structural differences. The effect of using a point
charge or a Gaussian charge model on the structural results was also
investigated.

The O–Si–O bond angle distributions differ between the use of
point charges and Gaussian charges. Both are shown for comparison
in Fig. S3. Nevertheless, the mean differences are small compared
to the results found in Demiralp et al.33 and experimental results.
The mean O–Si–O angle was determined here to be 109○ ± 9○ and is
similar to that found in Demiralp et al.,33 and by neutron diffraction,
an angle of 109.4○67 was found.
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Si–O–Si angle distributions from melt-quench simulations
using Gaussians or point charges in the force and energy calculations
are shown in Fig. 4. The average Si–O–Si angle when using point
charges agreed well to that observed in nuclear magnetic resonance
(NMR) spectroscopy of 146.7○.69 However, when using Gaussians
in the force and energy computations, an average Si–O–Si angle
of 118○ ± 18○ was found, which is significantly smaller than that
obtained by using point charges. In the case of Si–O–Si, a rather
large fraction of angles around 90○ were also observed, as shown in
Fig. 4, regardless of whether Gaussian or point charges were used
but less pronounced in the case of point charges. Interestingly, the
appearance of these 90○ angles correlates with the increased under-
coordination of the Si atoms. Unfortunately, the data for Si–O–Si
were not shown in Demiralp et al.33 to compare whether these angles
occur there as well. Table II summarizes the mass densities, radial
distribution functions (RDFs), and mean angles of amorphous silica
for the case of Gaussians, point charges, and experimental data for
comparison. Apart from this, with respect to partial atomic charges,
there is good agreement with charges found in Demiralp et al.33

Here, using Gaussians instead of ns-STOs, average partial charges
of ⟨qSi⟩ = 1.30 e and ⟨qO⟩ = −0.65 e for α-quartz, ⟨qSi⟩ = 1.33 e and
⟨qO⟩ = −0.67 e for stishovite, and ⟨qSi⟩ = 1.28 e and ⟨qO⟩ = −0.64 e
for amorphous silica have been obtained. A summary of obtained
partial charges and densities for the SiO2 polymorphs is given in
Table S1.

FIG. 4. Si–O–Si angle distribution of am-SiO2 generated by a melt-quenching pro-
cess using the Morse potential for non-electrostatic interactions and QEq with (a)
Gaussian charges and (b) point charges.

TABLE II. Structural data for amorphous SiO2 from melt-quench simulations using
our QEq implementation.

Gaussians Point charges Experimental

Density (g/cm3) 2.19 2.14 2.20a

Si–O–Si angle (○) 118 (18) 141 (18) 144 (38),a 153b

O–Si–O angle (○) 109 (9) 109 (7) 109.4,b 109.5a

Si–O RDF first max. (Å) 1.7 1.62 1.608,c 1.620a

Si–O first min. 2.18 2.22 ⋅ ⋅ ⋅

Si–O second max. 4.26 4.18 4.15a

O–O RDF first max. 2.78 2.62 2.626,c 2.65a

Si–Si RDF first max. 2.98 3.14 3.12a

aReference 66.
bReference 67.
cReference 68.

DISCUSSION AND OUTLOOK

In this work, we presented a QEq formulation where the charge
densities are described by real-space Gaussians. Both Coulomb and
QEq terms are calculated using a long-range solver, i.e., the Ewald
summation, taking correctly into account real-space charge distribu-
tions. Three parameters are required for this: the electronegativity,
the hardness, and the reciprocal width ηi of the charge density.
Optimized widths were obtained by fitting the Coulomb energy of
two isolated Gaussian charge distributions to the repulsion between
STOs and applied to the case study of SiO2 polymorphs.

We have also studied the convergence of our algorithm in
terms of different settings for the hardness and Gaussian widths.
The Coulomb matrix needs to be positive definite for the QEq algo-
rithm to converge. We first showed this for a simple example of two
interacting Gaussians. We have studied this also for a more com-
plex system by calculating the minimum eigenvalue of the Coulomb
matrix for different QEq settings on the example of Ti/TiOx. In
the limit of very narrow Gaussians, we were able to show that our
algorithm converges to EEM results. By studying the dependence of
the Coulomb matrix on the effective hardness and the width of the
Gaussian, we found that for a reasonable hardness choice, Gaussians
can be made almost point-like.

Although we obtain very reasonable partial charges for SiO2
polymorphs, the densities of SiO2 polymorphs previously obtained
in Demiralp et al.33 are reproducible only if we neglect the additional
force correction in the Ewald summation due to the Gaussians inter-
acting at short distances. While the densities for α-quartz, stishovite,
and silica are in agreement with experimental densities using the
approach presented here, a higher density was found for amorphous
silica in the original work by Demiralp et al.33 It should be noted
that we do not get exactly the experimental values, nor the val-
ues mentioned in Demiralp. One reason could be that the (re)fitted
Gaussians do not exactly reproduce the STO behavior originally
used. The density found for silica depends on many factors, e.g.,
the exact protocol of the simulations or the manufacturing pro-
cess of real specimens, but experimentally, it is usually around 2.20
g/cm3.66 The inclusion of Gaussian interactions in the forces and
energies also had a strong effect on O–Si–O and an even stronger
effect on the Si–O–Si angle distributions. Notably, if we use point
charges for the computation of forces and energies, while still using
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Gaussians for the charge assignment, the resulting silica struc-
ture agrees much better, in terms of structural properties such as
bond lengths and bond angles, despite a somewhat lower density of
2.14 g/cm3. In conclusion, the results presented here suggest a re-
parameterization of the Ref. 33 potential, which is beyond the scope
of this work as we focus more on the general aspects of QEq meth-
ods and their implementation, but is important for follow-up work
on Si/SiOx interfaces.

The simple recipe to switch from ns-STO to Gaussians by
doing a fit as shown in Fig. 3 should be emphasized here again.
One could think of setting the effective hardness completely to the
self-interaction from the fit, but this has a caveat. Apparently, the
hardness J0 from the literature for SiO2 and TiO2 (we even tested
NaCl) is always larger than the self-interaction of Gaussians using
η obtained from the fit of Fig. 3. Since J0 is often calculated from
the experimental idempotential and electron affinity, other quan-
tum chemical effects are included, e.g., exchange–correlation and a
fit to Coulombic energies where such information is neglected are
expected to give lower values for the hardness. Thus, setting J0

i = 0
should be done with care.

Our implementation has, moreover, some advantages due to
its flexibility and many other interesting features. For example, due
to the similarity of QEq to the CPM method of the ELECTRODE
package, our QEq implementation as such allows for interactions
between Gaussians and point charges. This is needed, for example,
whenever QEq is used in combination with water models with fixed
point charges. It would also allow the consideration of long-range
interactions in Streitz and Mintmire17 partial charge calculations,
since the effective nuclear charges are described by point charges.

SUPPLEMENTARY MATERIAL

The supplementary material provides additional details on the
structural differences between the use of Gaussian and point charges
in the QEq formalism: A table summarizing the average charges and
densities for different SiO2 polymorphs, the coordination numbers
and radial distributions of Si and O, and the angular distributions of
O–Si–O is also provided.
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