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ABSTRACT

In recent years, artificial intelligence (AI) has made impressive progress in various industries
and everyday life. Its rapid advancements have been driven by the integration of large-
scale data and sophisticated models. However, several significant challenges persist that
hinder further progress. First, the success of modern Al systems relies heavily on large-scale
labeled datasets; yet, acquiring such datasets is often costly, time-consuming, and impractical,
particularly in sensitive domains like healthcare and finance, where privacy and regulatory
issues complicate data collection. Second, although unlabeled data is typically abundant and
more readily accessible, it presents its own set of challenges, including issues of imbalanced
distribution, outliers, and domain shifts. These challenges complicate the effective utilization
of unlabeled data, raising critical questions about how to extract robust representations
from imperfect datasets. Third, there is a growing demand for versatile models capable of
performing a wide range of tasks across diverse domains, motivated by the broader ambition of
achieving Artificial General Intelligence (AGI). However, developing models that demonstrate
task-agnostic representation learning and ensure transferability across modalities remains a
substantial challenge, often limiting the applicability of existing solutions.

Therefore, this thesis aims to tackle the challenges of imperfect data and versatile model
design by studying three key topics: standard semi-supervised learning (SSL), realistic SSL, and
vision generalist models. In the first topic of standard SSL, we focus on improving two widely
used methodologies: consistency regularization and pseudo-labeling. For augmentation-
based consistency regularization, we propose explicitly regularizing the distance between
feature representations, demonstrating that encouraging equivariant features leads to superior
generalization performance compared to merely enforcing invariance. As for threshold-based
pseudo-labeling, we introduce two innovative schemes for enhancement. The first is a self-
adaptive thresholding approach that considers the current learning status of the model, while
the second is a unified sample weighting framework that completely replaces traditional
thresholding methods. Both methods achieve significant performance improvement over the
previous state-of-the-art. In the second topic of realistic SSL, we begin by investigating realistic
unlabeled data with imbalanced distributions or outliers. To address imbalanced SSL, we
propose a novel co-learning framework that effectively decouples representation learning from
classifier learning while maintaining a close coupling. Our method achieves state-of-the-art
results across various benchmarks. For SSL with outliers, we introduce a simple but strong
baseline that effectively leverages outlier data to enhance generalization. We also confront
the challenge of unrealistic benchmarks by proposing a new benchmark for semi-supervised
classification, which offers a fair testing ground to evaluate leading SSL methods across
multiple domains, including natural language processing and audio. Additionally, we provide
an open-source, modular, and extensible codebase to facilitate future developments in SSL. In
the final topic of vision generalist models, we propose a diffusion-based approach that unifies
four distinct types of vision tasks and demonstrates competitive performance compared to
existing vision generalists.

In summary, this thesis advances the two mainstream techniques in standard SSL while
investigating the challenges posed by realistic SSL, where we develop methods to deal with
real-world unlabeled data and realistic evaluation. Additionally, we also take an initial step
toward a unified model design for vision tasks.






ZUSAMMENFASSUNG

In den letzten Jahren hat die Kiinstliche Intelligenz (KI) in verschiedenen Industrien und im
Alltag beeindruckende Fortschritte erzielt. Ihre rasanten Entwicklungen wurden durch die
Integration von grofiskaligen Daten und fortschrittlichen Modellen vorangetrieben. Dennoch
bestehen weiterhin mehrere bedeutende Herausforderungen, die weiteren Fortschritt behindern.
Erstens hiangt der Erfolg moderner KI-Systeme stark von grofiskaligen, annotierten Datensitzen
ab. Das Sammeln solcher Datensédtze ist jedoch oft teuer, zeitaufwendig und in sensiblen
Bereichen wie dem Gesundheitswesen und der Finanzbranche unpraktisch, da Datenschutz-
und Regulierungsfragen die Datenerhebung erschweren. Zweitens ist unlabeled Data zwar
meist reichlich vorhanden und leichter zugénglich, bringt jedoch eigene Herausforderungen
mit sich, wie unbalancierte Verteilungen, Ausreiffer und Doménenverschiebungen. Diese
Probleme erschweren die effektive Nutzung unannotierter Daten und werfen kritische Fragen
auf, wie robuste Repradsentationen aus unvollkommenen Datensitzen extrahiert werden konnen.
Drittens gibt es eine wachsende Nachfrage nach vielseitigen Modellen, die in der Lage sind, eine
Vielzahl von Aufgaben iiber unterschiedliche Domé&nen hinweg zu losen. Diese Entwicklung
wird durch das tibergeordnete Ziel der Erreichung von Artificial General Intelligence (AGI)
motiviert. Die Entwicklung von Modellen, die eine aufgabenneutrale Reprasentationslernung
ermoOglichen und Transferfdhigkeit zwischen Modalitdten gewdhrleisten, bleibt jedoch eine
erhebliche Herausforderung, was die Anwendbarkeit bestehender Losungen oft einschréankt.

Daher zielt diese Dissertation darauf ab, die Herausforderungen unvollkommener Daten
und des Designs vielseitiger Modelle durch die Untersuchung von drei Schliisselaspekten zu
adressieren: Standard Semi-Supervised Learning (SSL), realistische SSL und generalistische
Vision-Modelle. Im ersten Thema, dem Standard-SSL, liegt unser Fokus darauf, zwei weit
verbreitete Methoden zu verbessern: Konsistenzregularisierung und Pseudo-Labeling. Fiir
die auf Augmentation basierende Konsistenzregularisierung schlagen wir vor, die Distanz
zwischen Merkmalsreprasentationen explizit zu regularisieren. Wir zeigen, dass die Forderung
von dquivarianten Merkmalen zu einer besseren Generalisierungsleistung fiihrt, verglichen mit
dem bloflen Erzwingen von Invarianz. Fiir das Schwellenwert-basierte Pseudo-Labeling fiihren
wir zwei innovative Verbesserungen ein. Die erste ist ein selbstadaptiver Schwellenwertansatz,
der den aktuellen Lernstatus des Modells berticksichtigt. Die zweite ist ein einheitliches
Probengewichtungsframework, das traditionelle Schwellenwertmethoden vollstandig ersetzt.
Beide Ansidtze erreichen signifikante Leistungsverbesserungen gegeniiber dem bisherigen
Stand der Technik. Im zweiten Thema, dem realistischen SSL, untersuchen wir zunichst
realistische unannotierte Daten mit unbalancierten Verteilungen oder Ausreiffern. Um das
Problem des unbalancierten SSL zu 16sen, schlagen wir ein neuartiges Co-Learning-Framework
vor, das die Reprasentationslernung von der Klassifikationslernung effektiv entkoppelt und
dennoch eine enge Kopplung aufrechterhdlt. Unsere Methode erzielt state-of-the-art Ergebnisse
tiber verschiedene Benchmarks hinweg. Fiir SSL mit AusreifSern stellen wir eine einfache,
aber leistungsstarke Baseline vor, die Outlier-Daten effektiv nutzt, um die Generalisierung
zu verbessern. Wir stellen uns aufSerdem der Herausforderung unrealistischer Benchmarks,
indem wir einen neuen Benchmark fiir semi-supervised Klassifikation vorschlagen, der eine
faire Testgrundlage bietet, um fiihrende SSL-Methoden iiber mehrere Doménen hinweg, ein-
schliefilich Natural Language Processing und Audio, zu bewerten. Zusitzlich stellen wir eine
Open-Source-, modulare und erweiterbare Codebasis bereit, um zukiinftige Entwicklungen im
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Bereich SSL zu fordern. Im dritten Thema der generalistischen Vision-Modelle schlagen wir
einen auf Diffusion basierenden Ansatz vor, der vier verschiedene Typen von Vision-Aufgaben
vereint und eine wettbewerbsfdhige Leistung im Vergleich zu bestehenden Vision-Generalisten
demonstriert.

Zusammenfassend treibt diese Dissertation die zwei Haupttechniken im Standard-SSL
voran, wahrend sie die Herausforderungen des realistischen SSL untersucht. Dabei entwickeln
wir Methoden, um mit realen unannotierten Daten und realistischen Evaluierungen umzuge-
hen. Dariiber hinaus unternehmen wir einen ersten Schritt in Richtung eines einheitlichen
Modelldesigns fiir Vision-Aufgaben.
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industries and reshaping many aspects of everyday life. From assisting with creative tasks

to accelerating scientific breakthroughs, Al systems have become deeply integrated into
modern society. For instance, large language models such as ChatGPT [BMR 20, AAA™ 23]
have proven useful as Al assistants, boosting productivity in tasks like writing, brainstorming,
and coding [HSX ™ 24]]. In the realm of science, AlphaFold [JEP " 21, [VAD™ 22] has revolutionized
biology by predicting protein structures with remarkable accuracy, speeding up progress in
drug discovery, disease research, and biotechnology. Meanwhile, generative models like Stable
Diffusion [RBL"22a, BDK" 23] are driving innovation in entertainment and the creative arts by
turning abstract ideas into vivid visuals, offering new tools to artists and designers.

At the core of these successes lie three fundamental pillars: data, models, and computing.
Together, they form the foundation of AIl's progress. A powerful Al system is typically
trained on large-scale, high-quality datasets [GIF " 24, SBV 22, NVNL ™23, TBW " 24], which are
essential for achieving state-of-the-art performance [RKH" 214, DJP 24, DDM ™23, CHL " 24].
Equally crucial is the design and capacity of the models themselves, which must be capable of
effectively learning from the available data [AZKB24, LLWL24]. However, both data collection
and model development present significant challenges in practice:

IN recent years, artificial intelligence (AI) has experienced rapid advancements, transforming

¢ The Challenge of Labeled Data. The success of many modern Al systems has been built
on large, labeled datasets, yet acquiring such datasets is often costly, time-consuming, and
sometimes impractical. Data collection in sensitive domains, such as healthcare or finance,
faces additional hurdles related to privacy, security, and data accessibility. Labeling data
also comes with substantial logistical and economic challenges, especially as modern
datasets continue growing in size. In contrast, unlabeled data is typically abundant
and more readily accessible, raising a crucial question: how can we effectively utilize
this wealth of unlabeled data? This challenge has sparked interest in semi-supervised
learning (SSL) methods, which leverage both labeled and unlabeled data to improve
model performance and hold promise for advancing Al in data-scarce settings.

¢ Limitations of Unlabeled Data. While unlabeled data is abundant, it often presents its
own set of challenges, making it difficult to leverage effectively. For example, unlabeled
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data are frequently imbalanced, where certain classes or concepts are overrepresented,
leading to biases in model training. Additionally, unlabeled data often contains outliers
that do not belong to any class of interest, which can mislead or degrade model perfor-
mance. Thus, a key challenge in modern semi-supervised learning is finding ways to
extract robust, meaningful representations from imperfect and diverse unlabeled data.

¢ The Need for Unified Models. Model design plays an equally critical role in Al’s success.
A key trend in recent years is the pursuit of unified or generalist models that is capable
of solving a wide range of tasks across diverse domains. This pursuit is motivated by the
broader ambition to push Al toward Artificial General Intelligence (AGI), where models
demonstrate versatile reasoning and adaptability. Despite notable progress and extensive
research efforts in recent years [TLI" 23, [DCLT18a, RWC™ 19, RSR™20], creating models
that are both versatile and scalable remains a substantial challenge due to the requirement
of task-agnostic representation learning and transferability across modalities.

In this thesis, we primarily focus on advancing semi-supervised learning by addressing
challenges in leveraging unlabeled data in both standard and more realistic settings. Addi-
tionally, we take an initial step to explore unified model design in Al in the final chapter. The
contributions of this research are outlined below.

¢ Standard Semi-Supervised Learning. In Part [, we examine and improve the two
popular paradigms in standard semi-supervised learning, consistency regularization, and
pseudo-labeling. Specifically:

— In Chapter [3| we revisit the idea of enforcing invariant features in consistency regu-
larization and improve it with a simple yet effective technique called FeatDistLoss
which further regularizes the distance between feature representations.

— In Chapter |4, we propose FreeMatch to improve the thresholding-based pseudo-
labeling by a self-adaptive threshold which reflects the learning status of the model.

— In Chapter |5, we introduce SoftMatch to overcome the inherent quantity-quality
trade-off of pseudo-labeling by effectively leveraging the unconfident yet correct
pseudo-labels.

* Realistic Semi-Supervised Learning. In Part [, we study and improve semi-supervised
learning algorithms under realistic settings, where data is long-tail distributed, or contains
outliers, or from different domains. Specifically:

— In Chapter [6| we propose a novel co-learning framework CoSSL for imbalanced SSL,
which decouples representation and classifier learning while coupling them closely
via a shared encoder and pseudo-label generation.

— In Chapter [, we contribute a Simple but Strong Baseline, SSB, for open-set SSL.
We find that incorporating pseudo-labels with high confidence into the training,
irrespective of whether a sample is an inlier or outlier, improves the unlabeled data
utilization ratio and, thus, the final performance.

— In Chapter |8 we propose USB: a unified and challenging semi-supervised learning
benchmark for classification with 15 tasks on CV, NLP, and Audio for fair and
consistent evaluations. At that time, it was the first work to discuss whether current
SSL methods that work well on CV tasks generalize to NLP and Audio tasks.
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¢ Foundation Models. In Part|[lIl, we study the vision generalist models Specifically, in
Chapter[g} we explore diffusion-based vision generalists, where we unify different types
of dense prediction tasks as conditional image generation and re-purpose pre-trained
diffusion models for it.

For the rest of this chapter, we discuss each topic and explain our contributions. Then, we
provide an outline of the thesis with relevant publications

1.1 STANDARD SEMI-SUPERVISED LEARNING.

In machine learning, we traditionally distinguish between three types of learning paradigms:
supervised learning, unsupervised learning, and semi-supervised learning (SSL). Let X" be
the input space and ) be the output space. Given a training set with input data {X;}},,
X; € X and labels {Y;} ,, Y; € Y, the goal of supervised learning is to construct a model
f from the training set that maps from X’ to V. In contrast, unsupervised learning operates
solely on the unlabeled training data {X;}" , seeking to uncover underlying structures in the
data, such as clustering similar data points. SSL is a hybrid setting that combines aspects of
both paradigms. It leverages a training set containing both labeled data L = {X;, Y;}! , and
unlabeled data U = {X;}!"" | to improve model performance. SSL can be further categorized
into two subtypes: transductive and inductive learning [Vapg8]. Given a labeled training set
L and an unlabeled test set U, transductive learning aims to predict the labels only for the
unlabeled test points, whereas the goal of inductive learning is to train a model capable of
generalizing across the entire input space A'.

As the core concept of SSL is to effectively leverage the unlabeled data to improve the
model performance, an important question is when does semi-supervised learning work? In
fact, the effectiveness of SSL hinges on three core assumptions:

* Smoothness assumption: The label function is smoother in high-density regions than in
low-density regions. Therefore, data points that are closer to each other in high-density
regions are more likely to share a label.

¢ Cluster assumption: Data points from the same cluster are likely to have the same label.
As clusters are often defined by sets of points that can be connected via many paths
through high-density regions, this assumption implies that the decision boundary should
lie in a low-density region.

* Manifold assumption: High-dimensional data often lie on low-dimensional manifolds.
This assumption helps mitigate the curse of dimensionality by simplifying the data
representation.

SSL has become increasingly relevant in the deep learning era, driven by two key factors.
First, obtaining large quantities of labeled data is time-consuming and costly, particularly in
specialized domains like medical or satellite image classification [DG22], where high-quality
expert annotation is prohibitively difficult to require. Second, unlabeled data is abundant
and readily available, for example, the vast amounts of images and text accessible online
[CWCT22, TSFT16]. How to properly leverage the knowledge embedded in this unlabeled
data is an important topic for both academia and industry. In fact, many studies have shown
that combining a small amount of labeled data with a larger set of unlabeled data can lead to
substantial performance improvements [BCG ™ 19, BCC™ 20, SBL " 20, LXH21|, BRS™ 22].
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In recent years, numerous SSL approaches have been proposed, which can broadly be
divided into two categories: consistency regularization and pseudo-labeling (or self-training).

¢ Consistency regularization exploits the idea that a model should produce consistent
predictions for perturbed versions of the same input. Perturbations can take various
forms, such as input noise through data augmentation or stochasticity during the model
inference, like dropout [SHK™ 14]. A particularly successful strategy [XDH" 19] is data-
augmentation-based consistency regularization, which produces data points from two
sets of distinct augmentation strategies (often a strong augmentation and a weak aug-
mentation) and enforces a consistency loss between them. This idea has inspired many
recent state-of-the-art SSL. methods [SBL " 20|, CTF" 23, WCH™23].

¢ Pseudo-labeling, also known as self-training or self-teaching, is one of the earliest forms
of SSL [CSZog]. It aims to generate artificial labels for unlabeled data so that the model can
utilize them the same way as labeled data. Traditionally, self-training involves alternation
between training the model on labeled data and augmenting the labeled set with high-
confidence predictions on the unlabeled data. Recent methods [Lee13, SBL™ 20, ZWH " 21]]
integrate pseudo-label generation with model training in an end-to-end manner, often
using a threshold to filter the pseudo-labels based on confidence scores. And how to
designing effective thresholds is crucial for the success of these methods.

Furthermore, there are many excellent works around generative models and graph-based
methods. We refer to Chapter [2 for a more comprehensive introduction to SSL methods.

Despite the notable progress in SSL, significant challenges remain. Addressing these
challenges is key to unlocking the full potential of SSL in real-world applications. In the follow-
ing sections, we will delve into these challenges and outline our contributions to advancing
semi-supervised learning.

1.1.1  Challenges

¢ Perturbation in Consistency Regularization. A major challenge in consistency regulariza-
tion is to develop effective perturbations without breaking the clustering assumption. For
instance, in image classification, strong data augmentations are commonly applied to per-
turb input images and encourage the model to produce consistent predictions. However,
these strong augmentations can sometimes generate images that diverge significantly
from the original semantics. It remains unclear whether enforcing invariance to such
perturbations always benefits the model’s generalization. Overly diverse perturbations
risk breaking the assumption that points within the same high-density cluster share the
same label, potentially degrading performance rather than improving it.

¢ Quantity-Quality Tradeoff in Pseudo-Labeling. In threshold-based pseudo-labeling, the
central idea is to train the model using pseudo-labels whose prediction confidence exceeds
a predefined threshold, while discarding the rest. However, this approach inherently
introduces a quantity-quality tradeoff [CTF" 23] that complicates the learning process.
On one hand, a high confidence threshold ensures that only high-quality pseudo-labels
are used, but this comes at the cost of discarding a significant number of potentially
correct but low-confidence labels, limiting the quantity of training data. On the other
hand, lowering the threshold increases the number of pseudo-labels utilized, but it
also introduces noisy, incorrect labels that can mislead the model. Striking the right
balance between the quantity and quality of pseudo-labels remains an open problem, and
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finding adaptive mechanisms to tune this threshold effectively is critical for improving
pseudo-labeling performance.

1.1.2 Contributions

In this section, we summarize our contributions to addressing the above main challenges of
standard SSL.

In Chapter 3, we tackle the first challenge, perturbation in consistency regularization, by
revisiting and improving the data-augmentation-based consistency regularization. Specifi-
cally, we show that while encouraging invariance results in good performance, encouraging
equivariance to differently augmented versions of the same image consistently results in even
better generalization performance. Therefore, we propose FeatDistLoss, which regularizes the
distance between feature representations from differently augmented images of the same class
while enforcing the same semantic class label. The final model, CR-Match, which combines
FeatDistLoss with other strong techniques, defines a new state-of-the-art across a wide range
of settings of standard SSL benchmarks.

In Chapter 4} we address the second challenge, quantity-quality trade-off in pseudo-labeling,
via a self-adaptive and parameter-free threshold adjusting scheme that respects the model’s
learning status. We first discuss why thresholds should reflect the model’s learning status and
provide some intuitions for designing a threshold-adjusting scheme. Based on the analysis, we
propose a novel approach, FreeMatch, which consists of Self-Adaptive Thresholding (SAT) and
Self-Adaptive class Fairness regularization (SAF). SAT is a threshold-adjusting scheme that is
free of setting thresholds manually and SAF encourages diverse predictions. Extensive results
demonstrate the superior performance of FreeMatch on various SSL benchmarks, especially
when the number of labels is very limited.

In Chapter |5} we address the second challenge, quantity-quality trade-off in pseudo-labeling,
by developing a unified sample weighting framework called SoftMatch. We first identify
that the inherent trade-off in previous methods mainly stems from the lack of careful design
on the distribution of pseudo-labels, which is imposed directly by the weighting function.
Then, we propose SoftMatch to effectively leverage the unconfident yet correct pseudo-labels,
fitting a truncated Gaussian function to the distribution of confidence, which overcomes
the trade-off. We further propose Uniform Alignment to resolve the imbalance issue of
pseudo labels while maintaining their high quantity and quality. Finally, we demonstrate that
SoftMatch outperforms previous methods on various image and text evaluation settings. We
also empirically verify the importance of maintaining the high accuracy of pseudo-labels while
pursuing better unlabeled data utilization in SSL.

1.2 REALISTIC SEMI-SUPERVISED LEARNING.

While standard semi-supervised learning (SSL) has made significant progress in leveraging
unlabeled data, it often falls short in real-world applications due to two key limitations. First,
standard SSL typically assumes clean, balanced data [OOR™18]. However, real-world data
collection frequently results in imperfections, especially in large-scale unlabeled datasets
that are challenging to clean [SVBT21]. In practice, unlabeled data may be imperfect in
several ways. It could be long-tailed [ZKH 23], with some classes overrepresented and others
underrepresented. It might include out-of-distribution (OOD) data or outliers [YZLL24]], which,
if not handled properly, can skew learning. Additionally, internal domain shifts may occur
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[WD18], where the distribution of the data differs between training and test sets. These factors
can severely limit the effectiveness of standard SSL methods when deployed in real-world
scenarios. Second, existing evaluation benchmarks [OOR™18, ZWH™21] do not adequately
reflect real-world challenges. They are often designed for specific computer vision (CV) tasks
and fail to generalize across diverse domains. SSL methods also tend to overfit to toy datasets
like CIFAR-10 and CIFAR-100 [KH " 09a] due to extensive hyperparameter tuning, which limits
their practical utility.

Semi-Supervised Learning with Imperfect Data. In this thesis, we explore semi-supervised
learning under realistic conditions by addressing two major challenges: imbalanced SSL and
open-set SSL.

¢ Imbalanced Semi-Supervised Learning. In real-world scenarios, training data is often
long-tailed, with a few classes having abundant samples while most classes are under-
represented. In SSL, this imbalance exists in both labeled and unlabeled data, making it
difficult to perform well across all classes. Typically, models overfit to the majority classes,
leading to poor generalization on minority classes. Imbalanced SSL seeks to develop
classifiers that perform well across a wide range of test data distributions, including those
that differ significantly from the training data. This is because uniform class distribution
is insufficient to reflect the diversity of real-world applications [HHC™ 21], where users
may have different needs. In practice, we need models capable of generalizing across
varying and potentially unknown distributions.

* Open-Set Semi-Supervised Learning. Another critical challenge in real-world SSL is the
presence of outliers or OOD data within unlabeled datasets. It is impractical to remove
all outliers, as doing so would require labeling the unlabeled data. Therefore, open-set
SSL addresses this challenge by considering a more realistic setting where the unlabeled
data contains samples from unknown classes that do not appear in the labeled set. At
test time, the model must accurately classify inlier samples while also identifying both
seen and unseen outliers. While most current methods focus on filtering out outliers
[YITA20a) [SKS21, HFC™21], an ideal solution would be to leverage the information from
these outliers rather than discarding them. Thus, effective detection and utilization of
outliers remains an open problem in SSL.

Semi-Supervised Learning with Realistic Evaluation. The current landscape of SSL evaluation
is also in need of improvement. Existing benchmarks, such as Realistic SSL Evaluation
[OOR"18] and TorchSSL [ZWH™21], while useful, are no longer actively maintained. These
benchmarks primarily focus on a limited set of SSL algorithms and CV tasks, which limits
their relevance in today’s rapidly evolving field. Additionally, most of these benchmarks
involve training models from scratch, which is computationally expensive and time-consuming
due to the slow convergence of SSL algorithms [AFIW18]. There is a pressing need for a
new benchmark that is both environmentally sustainable and cost-effective, allowing for fair
comparisons across SSL methods and domains. This would enable the SSL community to
continuously update algorithms and foster further advancements.

Despite the progress in the field, realistic semi-supervised learning presents significant
challenges. In the following sections, we will delve deeper into these issues and outline our
contributions toward addressing them.
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1.2.1 Challenges

¢ Imbalanced Semi-Supervised Learning. While methods for long-tailed recognition have
shown success in handling class imbalance [CBHKo2, [HM13} HGog, HLLT16, BMM18],
they are not equipped to exploit the benefits of unlabeled data. This results in suboptimal
performance, particularly when labeled data is scarce. On the other hand, SSL techniques
are designed to leverage unlabeled data but often struggle when confronted with class
imbalance. In fact, some standard SSL methods, when applied to imbalanced datasets,
perform worse than simpler re-balancing approaches that completely ignore unlabeled
data [KHP™20b]. This raises a fundamental challenge in SSL: how to develop methods
that can simultaneously address both the imbalance and the effective use of unlabeled
data. Resolving this challenge is crucial for unlocking the full potential of SSL in real-
world scenarios.

* Open-Set Semi-Supervised Learning. Most open-set SSL methods rely on a dual-task
framework [CZLG20, GZ] " 20a, [YI[A20a, [SKS21, HFC™ 21, PYJS22, HHLY22, HHYY22,
HYG22|, combining an inlier classifier with an outlier detector. These methods attempt
to filter out outliers, training the classifier exclusively on inliers. However, this filtering
process often discards a significant portion of inliers alongside out-of-distribution (OOD)
data, leading to suboptimal classification performance due to the reduced utilization of the
available unlabeled data. Furthermore, the shared feature encoder between the classifier
and the detector can result in conflicting objectives, negatively impacting detection
performance. Consequently, effectively identifying and utilizing outliers remains a major
challenge in SSL.

¢ Unrealistic benchmark. As previously noted, current SSL benchmarks focus primarily on
computer vision tasks, such as CIFAR-10/100, SVHN, STL-10, and ImageNet classification.
This narrow scope restricts the broader understanding of SSL’s potential, especially in
other domains like natural language processing (NLP) and audio, where labeled data
is equally scarce. Furthermore, with the growing adoption of the pre-training and fine-
tuning paradigm, SSL has the potential to significantly reduce training costs. However,
existing benchmarks fail to adequately support fair evaluation in this context, particularly
when pre-trained models are involved. In addition, many SSL evaluation protocols (e.g.,
TorchSSL [ZWH " 21])) are computationally expensive, often requiring models to be trained
from scratch [BCG ™19, BCC™ 20, XDH™20b, SBL" 20, XSY" 21, ZWH™21]. For example,
evaluating FixMatch [SBL™20] using TorchSSL [ZWH™ 21] demands approximately 335
GPU days (279 GPU days excluding ImageNet). Such resource-intensive evaluations
can be prohibitive for academic research labs with limited computational resources,
highlighting the need for more efficient and accessible benchmarking practices.

1.2.2 Contributions

In this section, we summarize our contributions to addressing the above main challenges of
Realistic SSL.

In Chapter [6| we tackle the first challenge of imbalanced SSL by proposing a novel co-
learning framework, CoSSL, which decouples representation and classifier learning while
coupling them closely via a shared encoder and pseudo-label generation. Furthermore, we
devise a novel Tail-class Feature Enhancement (TFE) method to increase the data diversity
of tail classes by utilizing unlabeled data, leading to more robust classifiers. Together, our
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model achieves new state-of-the-art results on multiple imbalanced SSL benchmarks across a
wide range of evaluation settings. Finally, we address the uniform test distribution issue by
introducing new evaluation criteria that cover a large range of varying distributions.

In Chapter [}, we address the second challenge of open-set SSL by contributing a Simple but
Strong Baseline, SSB, with three novel ingredients: (1) In contrast to detector-based filtering
aiming to remove OOD data, we propose to incorporate pseudo labels with high inlier classifier
confidence into the training, irrespective of whether a sample is an inlier or OOD. This not
only effectively improves the unlabeled data utilization ratio but also includes many useful
OOD data that can be seen as natural data augmentations of inliers. (2) Instead of directly
sharing features between the classifier and detector, we add non-linear transformations for the
task-specific heads and find that this effectively reduces mutual interference between them,
resulting in more specialized features and improved performance for both tasks. (3) In addition,
we propose pseudo-negative mining to further improve outlier detector training by enhancing
the data diversity of OOD data with pseudo-outliers. Despite its simplicity, SSB achieves
significant improvements in both inlier classification and OOD detection.

In Chapter |8} we tackle the third challenge of unrealistic benchmark of SSL by constructing
a Unified SSL Benchmark (USB) for classification, which selects 15 diverse, challenging, and
comprehensive tasks from CV, natural language processing (NLP), and audio processing
(Audio). We systematically evaluate the dominant SSL methods, and also open-source a
modular and extensible codebase for fair evaluation of these SSL methods. We further provide
the pre-trained versions of the state-of-the-art neural models for CV tasks to make the cost
affordable for further tuning. USB enables the evaluation of a single SSL algorithm on more
tasks from multiple domains but with less cost. Specifically, on a single NVIDIA V100, only
39 GPU days are required to evaluate FixMatch [SBL"20] on 15 tasks in USB while 335 GPU
days (279 GPU days on 4 CV datasets except for ImageNet) are needed on 5 CV tasks with
TorchSSL.

1 3 FOUNDATION MODELS.

In addition to data, the success of modern Al systems heavily relies on model design. Crafting
an effective model architecture has become as crucial as having access to large-scale training
data. In particular, learning a general perception model capable of handling diverse modalities
and tasks is considered a significant milestone on the path to artificial general intelligence. The
tield of artificial intelligence has made remarkable strides toward building generalized model
frameworks. In particular, autoregressive transformers [VSP™ 17] have become the dominant
unified approach in Natural Language Processing (NLP), addressing a wide variety of tasks
with a single model architecture [TLI" 23, [DCLT18a, RWC ™19, RSR™20]. This success has not
yet been fully realized in computer vision (CV), where the diversity of tasks and output formats
creates additional challenges. As a result, state-of-the-art computer vision models often feature
complex, task-specific designs that limit their ability to share features across tasks, thereby
restricting knowledge transfer and scalability.

This discrepancy between NLP and CV has fueled increasing interest in developing unified
approaches for vision tasks. Recent efforts in this area have sought to bridge the gap by
proposing models that can handle diverse vision tasks under a common framework. For
example, Pix2Seq [CSL™21] introduced the idea of leveraging an autoregressive transformer to
tackle vision tasks using next-token prediction, where traditionally complex outputs such as
bounding boxes or segmentation masks are cast as sequences of discrete tokens. This idea has
been further extended by models such as Unified-IO [LCZ"22], which uses vector quantization
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to encode image features and output predictions such as segmentation masks or depth maps
in a tokenized form. Similarly, OFA (One For All) [WYM22] unified various cross-modal and
unimodal tasks in a simple sequence-to-sequence learning framework, achieving competitive
results with significantly fewer training resources.

However, despite these advancements, building vision generalist models remains a difficult
and unresolved problem. The challenges stem from the inherent diversity of visual data and
tasks, requiring models to handle both structured and unstructured outputs, while maintaining
high performance across all tasks. Below, we discuss the primary challenges in building such
models and outline our contributions toward addressing these issues.

1.3.1 Challenges

One of the most significant challenges in creating a vision generalist model is accommodating
the diversity of task output formats. Unlike natural language processing (NLP), where various
tasks such as text generation, classification, and translation can often be framed within a
common sequence-to-sequence input-output structure, computer vision (CV) tasks tend to
require highly specialized output representations. For instance, image classification tasks
predict a single semantic label for each image, object detection involves regressing bounding box
coordinates alongside class labels, and segmentation tasks require dense, per-pixel predictions.
Each of these tasks has distinct output requirements, making the design of a unified model
that excels across them a complex problem.

1.3.2 Contributions

In this section, we summarize our contributions to addressing the challenge above in building
vision generalist models.

In Chapter [g] we tackle the above challenge by exploring diffusion-based vision generalists,
where we unify different types of dense prediction tasks as conditional image generation and
re-purpose pre-trained diffusion models [RBL™22b] for it. Our investigation reveals a list of
interesting findings as follows: 1. Diffusion-based generalists show superior performance over
the non-diffusion-based generalists on tasks involving semantics or global understanding of
the scene. 2 We find conditioning on the image feature extracted from powerful pre-trained
image encoders results in better performance than directly conditioning on the raw image.
3. Pixel diffusion [HJA20] is better than latent diffusion as it does not have the quantization
issue while upsampling. 4. We observe that text-to-image generation pre-training stabilizes
the training and leads to better performance. In experiments, we evaluate our method on four
different types of tasks and show competitive performance to the other vision generalists.

1.4 OUTLINE

In this section, we provide a summary of the thesis by briefly outlining each chapter and
establishing connections between them. We also acknowledge any relevant publications and
collaborations with other researchers.

Chapter 2, Related Work: This chapter surveys related works about improving representation
learning from data and model perspectives. In particular, it focuses on the three directions
of the thesis i.e., standard semi-supervised learning, realistic semi-supervised learning,
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and vision generalist model. We discuss how these works relate to the methods and
contributions presented in this thesis. Discussions of related work specific to the following
chapters are provided within each chapter.

Part[l, Data perspective: standard semi-supervised learning

Chapter 3, Revisiting Consistency Regularization: In this chapter, we revisit the idea of data-
augmentation-based consistency regularization in SSL. We find that while enforcing
invariance by decreasing distances between features from differently augmented images
leads to improved performance, encouraging equivariance instead, by increasing the
feature distance, further improves performance. Based on this, we design a simple yet
effective technique, FeatDistLoss, which imposes consistency and equivariance on the
classifier and the feature level, to improve consistency regularization.

The content of this chapter corresponds to the GCPR 2021 publication with the title
“Revisiting Consistency Regularization for Semi-Supervised Learning”[FKS21a]. This
work was further extended to IJCV 2023 publication [EKS21b] with the same title. Yue
Fan was the lead author of this paper under the supervision of Prof. Bernt Schiele.
The journal extension also involved the supervision of Dr. Dengxin Dai. It is also a
collaboration with Dr. Anna Kukleva.

Chapter g} Self-Adaptive Thresholding: In this chapter, we study threshold-based pseudo-
labeling in SSL and propose FreeMatch to adjust the thresholds in a self-adaptive manner
according to the learning status of each class. Moreover, we introduce a self-adaptive class
fairness regularization penalty to encourage the model for diverse predictions during the
early training stage.

The content of this chapter corresponds to the ICLR 2023 publication with the title
“FreeMatch: Self-adaptive Thresholding for Semi-supervised Learning” [WCH™23]. Yi-
dong Wang is the first author of this paper, under the supervision of Dr. Jindong Wang,
Prof. Takahiro Shinozaki, and Prof. Xing Xie. It is also a collaboration with Yue Fan and
Prof. Bernt Schiele from MPI-Informatics; Hao Chen, Prof. Marios Savvides, and Prof.
Bhiksha Raj from CMU; Qiang Heng from North Carolina State University; Wenxin Hou
from Microsoft STCA; Zhen Wu from Nanjing University. Yue Fan was involved in the
weekly and more detailed discussions and contributed to the writing of the paper and
the imbalanced SSL experiments.

Chapter[s} Unified Sample Weighting Framework: In this chapter, we tackle the quantity-
quality trade-off in pseudo-labeling by developing a unified weighting framework. We
propose SoftMatch to effectively leverage the unconfident yet correct pseudo-labels by
fitting a truncated Gaussian function to the distribution of confidence.

The content of this chapter corresponds to the ICLR 2023 publication with the title “Soft-
match: Addressing the quantity-quality trade-off in semi-supervised learning” [CTF " 23].
Hao Chen is the first author of this paper, under the supervision of Prof. Marios Savvides
and Prof. Bhiksha Raj. It is also a collaboration with Yue Fan and Prof. Bernt Schiele
from MPI-Informatics; Ran Tao from CMU; Yidong Wang and Dr. Jindong Wang from Mi-
crosoft Research Asia. Yue Fan was involved in the weekly and more detailed discussions
and contributed to the writing of the paper and the imbalanced SSL experiments.

Part[[l, Data perspective: realistic semi-supervised learning
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Chapter [6) Imbalanced Semi-Supervised Learning: In this chapter, we study the problem of
imbalanced SSL. We propose a novel co-learning framework CoSSL, which decouples
representation and classifier learning while coupling them closely via a shared encoder
and pseudo-label generation. Moreover, we propose Tail-class Feature Enhancement
(TFE) for improved classifier learning for imbalanced SSL, which utilizes unlabeled data
as a source of augmentation to enhance the data diversity of tail classes, leading to a
more robust classifier.

The content of this chapter corresponds to the CVPR 2022 publication with the title
“CoSSL: Co-Learning of Representation and Classifier for Imbalanced Semi-Supervised
Learning” [FDS22]. Yue Fan was the lead author of this paper under the supervision of
Prof. Bernt Schiele and Dr. Dengxin Dai. It is also a collaboration with Dr. Anna Kukleva.

Chapter[7, Open-Set Semi-Supervised Learning: In this chapter, we study the problem of
open-set semi-supervised learning and contribute a simple but strong baseline, SSB,
which effectively separates the feature space of inlier classification and outlier detection
via non-linear transformations and effectively leverages outliers via confidence-based
filtering. In addition, we propose pseudo-negative mining to further improve outlier
detector training by enhancing the data diversity of OOD data with pseudo-outliers.

The content of this chapter corresponds to the ICCV 2023 publication with the title
“SSB: Simple but Strong Baseline for Boosting Performance of Open-Set Semi-Supervised
Learning” [FKDS23]]. Yue Fan was the lead author of this paper under the supervision of
Prof. Bernt Schiele and Dr. Dengxin Dai. It is also a collaboration with Dr. Anna Kukleva.

Chapter [8) Unified Semi-supervised Learning Benchmark: In this chapter, we address the
issue of unrealistic benchmarks in SSL by introducing USB, a Unified Semi-supervised
Learning Benchmark for Classification. It selects 15 diverse, challenging, and comprehen-
sive tasks from CV, natural language processing (NLP), and audio processing (Audio).
Furthermore, it also provide an open-source, modular, and extensible codebase for fair
evaluation of SSL methods.

The content of this chapter corresponds to the NeurIPS 2022 publication with the title
“USB: A unified semi-supervised learning benchmark for classification” [WCF™22b].
Yidong Wang, Hao Chen, and Yue Fan are the co-first author of this paper, under the
supervision of Prof. Bernt Schiele, Prof. Marios Savvides, Prof. Bhiksha Raj, Prof.
Takahiro Shinozaki, Dr. Jindong Wang, Prof. Xing Xie, and Prof. Yue Zhang. It is also
a collaboration with Wang Sun from Tsinghua University; Ran Tao from CMU; Wenxin
Hou from Microsoft STCA; Linyi Yang from Westlake University; Renjie Wang, Zhi Zhou,
Lan-Zhe Guo, Zhen Wu, and Prof. Yu-Feng Li from Nanjing University; Heli Qi and
Satoshi Nakamura from Nara Institute of Science and Technology; Prof. Wei Ye from
Peking University. Yue Fan was involved in the idea proposal, weekly and more detailed
discussions, and contributed to the codebase implementation and the final paper writing.

Part[ITl) Model perspective: building vision generalists

Chapter g} Diffusion-Based Vision Generalist: In this chapter, we tackle the challenge of
building vision generalist models by proposing a diffusion-based vision generalist, where
we unify four types of dense prediction tasks as conditional image generation and re-
purpose pre-trained diffusion models for it. In addition, our exploration reveals a list of
interesting findings for diffusion-based generalists.
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The content of this chapter corresponds to the CVPR 2024 publication in the second
workshop on foundation models with the title “Toward a Diffusion-Based Generalist
for Dense Vision Tasks” [FXZ"24]. Yue Fan was the lead author of this paper under
the supervision of Dr. Yongqin Xian, Prof. Federico Tombari, and Prof. Bernt Schiele.
The journal extension also involved the supervision of Dr. Dengxin Dai. It is also a
collaboration with Dr. Xiaohua Zhai and Dr. Alexander Kolesnikov from DeepMind; and
Dr. Muhammad Ferjad Naeem from Google.

1.5 PUBLICATIONS

The content of this thesis has previously appeared in the following publications, ordered as
outlined above:

¢ [EKS21b|] Yue Fan, Anna Kukleva, Dengxin Dai, and Bernt Schiele. “Revisiting Consis-
tency Regularization for Semi-Supervised Learning”, International Journal of Computer
Vision (IJCV) 2023.

e [WCH™ 23] Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Yue Fan, Zhen Wu,
Jindong Wang, Marios Savvides, Takahiro Shinozaki, Bhiksha Raj, Bernt Schiele, Xing Xie.
“FreeMatch: Self-adaptive Thresholding for Semi-supervised Learning”, In Proceedings
of the International Conference on Learning Representations (ICLR), 2023.

¢ [CTF"23] Hao Chen, Ran Tao, Yue Fan, Yidong Wang, Jindong Wang, Bernt Schiele, Xing
Xie, Bhiksha Raj, Marios Savvides, “Softmatch: Addressing the quantity-quality trade-off
in semi-supervised learning”, In Proceedings of the International Conference on Learning
Representations (ICLR), 2023.

¢ [FDS22] Yue Fan, Dengxin Dai, Anna Kukleva, Bernt Schiele, “CoSSL: Co-Learning of
Representation and Classifier for Imbalanced Semi-Supervised Learning”, In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

¢ [FKDS23|] Yue Fan, Anna Kukleva, Dengxin Dai, Bernt Schiele, “SSB: Simple but Strong
Baseline for Boosting Performance of Open-Set Semi-Supervised Learning”, In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

e [WCF™22b] Yidong Wang*, Hao Chen*, Yue Fan*, SUN Wang, Ran Tao, Wenxin Hou,
Renjie Wang, Linyi Yang, Zhi Zhou, Lan-Zhe Guo, Heli Qi, Zhen Wu, Yu-Feng Li,
Satoshi Nakamura, Wei Ye, Marios Savvides, Bhiksha Raj, Takahiro Shinozaki, Bernt
Schiele, Jindong Wang, Xing Xie, Yue Zhang (* Equal contribution), “Usb: A unified
semi-supervised learning benchmark for classification”, Advances in Neural Information
Processing Systems (NeurlPS), 2022.

e [FXZ"24] Yue Fan, Yongqin Xian, Xiaohua Zhai, Alexander Kolesnikov, Muhammad
Ferjad Naeem, Bernt Schiele, Federico Tombari, “Toward a Diffusion-Based Generalist
for Dense Vision Tasks”, The second workshop on foundation models in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

Further contributions were made to the following works not discussed in this thesis:
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e [WFNT24] Haiyang Wang*, Yue Fan*, Muhammad Ferjad Naeem, Liwei Wang, Yonggin
Xian, Jan Eric Lenssen, Federico Tombari, Bernt Schiele (* Equal contribution), “Token-
Former: Rethinking Transformer Scaling with Tokenized Model Parameters”, under

review.
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AL Our survey is divided into three main sections: standard semi-supervised learning

(SSL), realistic SSL, and unified model design. Section [2.1| discusses key developments in
standard SSL, including popular techniques such as consistency regularization, pseudo-labeling,
generative models, and graph-based methods, before contrasting them with our proposed
approaches. Section [2.2|focuses on realistic SSL, examining challenges posed by data imbalance,
open-set conditions, and other factors that make standard SSL more vulnerable to real-world
scenarios. Finally, in Section we shift from a data-centric view to model design, examining
related work on unified models and discussing their relevance to SSL.

IN this chapter, we review literature from the perspectives of both model and data in

2.1 STANDARD SEMI-SUPERVISED LEARNING

Semi-supervised learning (SSL) has emerged as a major field in deep learning, tackling
scenarios where only a limited number of labeled examples are available, complemented by a
substantial amount of unlabeled data. SSL methods aim to leverage this additional unlabeled
data, uncovering latent patterns that can enhance learning performance. Below, we discuss
some of the predominant approaches in SSL and their relations to our contributions. Note
that while we primarily review SSL methods in image classification, the methods discussed
here can be readily adapted to other domains, such as object detection, semantic segmentation,
clustering, and regression.

2.1.1 Consistency regularization

Consistency regularization relies on the manifold or smoothness assumption, asserting that
small, realistic perturbations of input data should not significantly alter a model’s output. This

15
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idea has inspired a variety of methods to generate and leverage such perturbations. For instance,
[TV1za] uses an exponential moving average (EMA) of the model as a teacher to produce alter-
native inputs for a student model. This idea has been further extended in [KWY " 19], where they
replace the EMA teacher with another student and force them to learn their own knowledge to
avoid the performance bottleneck from the tight coupling. While [S]T16a), [LA17] use random
max-pooling and Dropout [SHK™ 14] to inject noise at the neural network level, [[PG™18] inves-
tigates the training process and improves generalization by averaging multiple points along the
trajectory of stochastic gradient descent (SGD) with a cyclical learning rate, achieving flatter
solutions than conventional SGD. [XDH " 19, BCC™" 20, ISBL " 20, KMHK20] emphasize advanced
data augmentation for introducing diverse perturbations. [BCG™19, VLK™ 19, BCC"20] use
MixUp regularization [ZCDLP18] to promote convex behavior between examples. [GWL21]
enforces label consistency with alpha-divergence, and [MMKI18a] introduces adversarial trans-
formations to reinforce consistency, Among all methods, data augmentation-based noise
injection [XDH " 19] remains a particularly effective strategy, especially when combining ad-
vanced and weak augmentations to introduce substantial noise in unlabeled data, yielding
considerable improvements [BCC™ 20, SBL™20]. For example, [SBL™20] incorporates pseudo-
labeling by first generating pseudo-labels from weakly augmented images and then applying
cross-entropy loss on the strongly augmented counterparts, enhancing consistency across
transformations.

2.1.2 Pseudo-labeling

Unlike consistency regularization methods, pseudo-labeling approaches depend on high-
confidence predictions, which are incorporated into the training dataset as labeled data. To
generate these pseudo-labels for unlabeled data, various techniques have been proposed in
the literature. For instance, EntMin [GBos|] and Pseudo-label [Lee13] both use entropy min-
imization to select the most confident pseudo-label as a proxy ground truth for unlabeled
instances. The Noisy Student method [XLHL2o0al] enhances pseudo-labeling by integrating
data augmentation, dropout, and stochastic depth when training the student network, thereby
improving robustness. Similarly, S4L [ZOKB19g] employs data augmentation while also intro-
ducing a separate 4-class auxiliary task to boost performance. MPL [PXDL20] builds upon
Pseudo-label [Lee13] by refining the teacher network’s updates using feedback from the student
network. Advances in data augmentation, meta-learning, and self-supervised learning, as well
as powerful network architectures like EfficientNet [TL19] and SimCLR [CKNH20]|, have further
strengthened self-training methods, enabling more accurate and reliable pseudo-labeling.

2.1.3 Generative models

Deep generative semi-supervised methods utilize generative models to enhance SSL by lever-
aging the distributional learning capabilities of generative approaches. A popular choice
is Generative Adversarial Networks (GANSs), which learn the real data distribution from
unlabeled samples. For instance, CatGAN [Spri5] optimizes the discriminator to maximize
mutual information between examples and their predicted class distributions, repurposing
the discriminator as a classifier for SSL. GoodBadGAN [DYY " 17] jointly trains a generator
and classifier to solve a (K+1)-class problem, where the first K classes represent real data,
and the (K+1)-th class represents synthetic images from the generator. Augmented BiGAN
[KSF17] uses a pre-trained BiGAN generator to enrich SSL by injecting estimated tangents
into the discriminator. MarginGAN [DL1g|] extends this by using a generator to maximize
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the margin of generated samples while the classifier minimizes the margin of fake images,
addressing pseudo-label inaccuracy in SSL and improving overall accuracy. Structured GAN
[DZL™ 17] takes a distinct approach by conditioning sample generation on two independent
latent variables (designated semantics and other variation factors) within a semi-supervised
conditional generative modeling framework. Another prominent generative approach in SSL is
based on Variational Autoencoders (VAEs). The foundational framework, M2 [KMJRW14], has
inspired extensions such as ADGM [MSSW16] and ReVAE [JST " 20|, which introduce auxiliary
variables, albeit with different roles in each model. Infinite VAE [EADvdH17] combines several
VAE models to boost overall performance, while Disentangled VAE [PVDMD™ 17] and SDVAE
[LPW T 19] tackle the semi-supervised VAE problem using various disentangling techniques.
Under semi-supervised conditions with limited labeled data, these VAE-based methods focus
on managing latent variables and label information to enhance performance effectively.

2.1.4 Graph-based methods

The idea of graph-based models for SSL is to perform label inference on a constructed similarity
graph so that the label information can be propagated from the labeled samples to the unlabeled
ones by incorporating both the topological and feature knowledge. A common solution is to
find a function that is close to the given labels as possible, and smooth on the entire constructed
graph. These two conditions can be further expressed in a general regularization framework in
which loss function can be decomposed into a supervised loss term and a graph regularization
term.

Traditional Graph-Based Methods: The choice of regularization differentiates various methods.
[ZHSos5]| takes the directionality of the edges into consideration and incorporates the idea of
naive random walk to perform label propagation on directed graphs. [GLT " 15] introduces
deformed graph Laplacian (DGL) and provides the corresponding label prediction algorithm
via DGL for SSL, where a new smoothness term that considers local information is added to the
regularize. Motivated by the need to address the degeneracy of previous graph regularization
methods when the label rate is meager, [CCTS20] proposes to replace the given label values
with the assignment of sources and sinks like flow in the graph. Thus, a resulting Poisson
equation based on the graph can be nicely solved.

GCN-Based Methods: With the recent success of GCN, there also exists a great number of
GCN variants to enhance SSL. [LHW18] is the first to provide deep insights into GCN’s success
and failure on SSL tasks. Later, [JZL" 19] proposes to learn an optimal graph structure that best
serves graph CNNs for semi-supervised learning by integrating both graph learning and graph
convolution in a unified network architecture. [XCH"20] proposes a Graph Inference Learning
framework to boost the performance of semi-supervised node classification by learning the
inference of node labels on graph topology.

Scalable and Uncertainty-Aware Graph Methods: [LBT 18] introduces graph partition neural
networks to handle extremely large graphs by alternating between locally propagating infor-
mation between nodes in small subgraphs and globally propagating information between the
subgraphs. [ZPCU19] adopts a Bayesian approach to incorporate uncertainty in the graph
structure by viewing the observed graph as a realization from a parametric family of random
graphs. [VYBT19] proposes to estimate label scores along with their confidences jointly in the
GCN-based setting and uses these estimated confidences to determine the influence of one
node on another during neighborhood aggregation, thereby acquiring anisotropic capabilities.
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2.1.5 Connection to our work

In Chapter 3| we revisit the consistency regularization framework with data augmentation
due to its recent impressive performance [LXHz21, ZYH™22]. While efforts have been made
to come up with more advanced and diverse augmentation strategies [BCCT20| ISBL"20],
we question whether it is always beneficial to make the model invariant to such strong
perturbations. In strong contrast with the previous work, we find that while enforcing
invariance by decreasing distances between features from differently augmented images leads
to improved performance, encouraging equivariance instead, by increasing the feature distance,
further improves performance. Based on this, we propose a novel feature distance loss to
explicitly regularize representation learning at both the feature and the classifier level and
show improved generalization performance. Moreover, as self-supervised learning has been
shown to be helpful in the context of SSL [ZOKB1g, BCC™20], we also incorporate an auxiliary
self-supervised loss alongside training, which is different from [HFW ™20, (CKNH20, (CKS™ 204,
REH20], where self-supervised pre-training is used to initialize SSL and several training
phases are involved.

In Chapter |4} we explore pseudo-labeling, a prominent paradigm in semi-supervised
learning (SSL) [SBL™20], with a specific focus on threshold-based pseudo-labeling. Our
initial investigation reveals that during early training stages, a low threshold is beneficial to
encourage diverse pseudo-labels, maximizing the utilization of unlabeled data and accelerating
convergence. However, a consistently low threshold as training progresses induces substantial
confirmation bias. To address this, we propose FreeMatch, a method that dynamically adjusts
the confidence threshold in a self-adaptive manner based on the model’s current learning
status. This approach differs from [SBL"20] as it introduces an adaptive threshold, and from
[ZWHT 21] as it avoids reliance on additional hyper-parameters. Additionally, inspired by the
principle of distribution alignment [BCC™20], we incorporate a self-adaptive class fairness
regularization penalty to promote diverse predictions during the early stages of training.

In Chapter |5, we delve further into pseudo-labeling, specifically examining the quantity-
quality trade-off. A high confidence threshold [SBL™20] can ensure the quality of pseudo-
labels but often discards a significant number of unconfident yet accurate labels, while a
dynamically growing threshold [ZWH™ 21, XSY ™21, BRS™ 22] increases pseudo-label utilization
but inadvertently incorporates erroneous labels that may mislead training. To address this, we
introduce a unified perspective on sample weighting formulation for threshold-based pseudo-
labeling, demonstrating that existing methods differ mainly in their weighting functions and
all face the quantity-quality trade-off challenge. We propose SoftMatch, which effectively
leverages unconfident yet accurate pseudo-labels by fitting a truncated Gaussian function to
the confidence distribution, enabling a flexible weighting function. Additionally, we propose
Uniform Alignment to mitigate pseudo-label imbalance while preserving both high quantity
and quality.

2.2 REALISTIC SEMI-SUPERVISED LEARNING

Recent advancements in standard semi-supervised learning (SSL) have shown significant
progress in leveraging unlabeled data, helping models to generalize better with limited labeled
examples. However, these methods often operate under the assumption that data is well-
distributed, relevant, and clean. In real-world applications, data is rarely ideal; it tends to
be imbalanced, may include outliers, and often exhibits distributional shifts that standard
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SSL techniques do not account for. Furthermore, current SSL methods are typically evaluated
on benchmarks that focus almost exclusively on curated, computer vision datasets. This
narrow focus limits their applicability in more diverse, real-world settings and exposes a gap
between research-driven SSL developments and practical deployment. In this section, we
review related work in realistic SSL, emphasizing recent efforts to address these challenges
through imbalanced SSL, open-set SSL, and the development of more representative SSL
benchmarks.

2.2.1 Imbalanced SSL

Imbalanced semi-supervised learning (SSL) addresses a setting where the training data is only
partially labeled, and both labeled and unlabeled data follow a long-tailed distribution. This
setting generalizes traditional long-tailed recognition and standard SSL, presenting unique
challenges for current algorithms. In this context, pseudo-labels generated by models trained
on imbalanced data often skew heavily towards majority classes. Consequently, a primary
approach in imbalanced SSL is to refine pseudo-labels to better represent the true distribution of
the data. For instance, [KHP ™ 20b|] addresses bias in pseudo-labels by formulating a Lagrangian
dual optimization problem that minimizes distortion from the original pseudo-labels, aligning
them more closely with the true distribution of the training data. Similarly, [WSM™21]
observes that standard SSL methods tend to exhibit high recall but low precision for majority
classes, while minority classes display the reverse. To balance this, they propose a reverse
sampling method for the unlabeled data, compensating for these biases. Additionally, [OKK21al
introduces a strategy to generate more balanced pseudo-labels by blending linear and semantic
pseudo-labels in different proportions based on the unlabeled data distribution, then replacing
the original linear pseudo-labels with these blended alternatives. [GL22|] improves class balance
by dynamically adjusting the pseudo-labeling threshold per class, using both the count and
confidence of selected pseudo-labels to ensure equal representation across classes. Beyond
refining pseudo-labels, there exist other methods that tackle class imbalance directly. For
instance, [HJK20] introduces a suppressed consistency loss to protect decision boundaries
for minority classes, preventing excessive smoothing in low-sample regions. [HKY"21] takes
a progressive approach, gradually shifting the data distribution during training: initially
prioritizing feature extraction, and later rebalancing to train the classifier effectively. Lastly,
[LSK21] addresses model bias by introducing an auxiliary balanced classifier (ABC) with
additional regularization terms, which helps rebalance the model’s predictions across classes.

2.2.2 Long-tailed recognition

Since many challenges in imbalanced SSL mirror those of long-tailed distribution problems,
many successful imbalanced SSL methods are directly inspired by long-tailed recognition
techniques. Thus, it is valuable to also briefly discuss related work in standard long-tailed
recognition. This field offers a variety of solutions, which can be broadly categorized as follows:
1. Re-sampling methods that aim to adjust the data distribution by either oversampling tail-
class instances or undersampling head-class instances, balancing class representation within
the training data [KJS20, LLK™ 21, MGR ™18, PBS™ 20, SLH16, LWZ08, Wil72]. 2. Re-weighting
methods that assign different weights to classes or instances, emphasizing tail classes to
counterbalance their underrepresentation and intensify learning for these classes [CJL™ 19,
HHC 21, HLLT16|, TLZ" 21, TWL™ 20, WZZ" 21, WHL™" 20, [ZCLJ21, HRCH21|, LLW19, RD17,
SGG16]. 3. Decoupling-based methods that separate representation learning from classifier
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learning and optimize them independently [KXR™ 20, WLK™ 20, ZLY 21, [ZCLJ21]. 4. Metric
learning methods that focus on learning an embedding space that accurately reflects the
similarity of embedded features, often enforcing a larger margin for tail classes to reduce
class overlap and improve minority classes [DGZ18, I[LSH"20b, WGY ™19, [ ZFW ™17, ICZL" 21].
5. Transfer learning methods that transfer knowledge from head classes to tail classes, allowing
tail classes to benefit from the richer information available in head-class representations
[HJT 20, [WRH17, LMZ" 19]. 6. Ensemble-based methods that combine multiple expert models
to make final predictions more balanced across classes [WLM™ 20, [ZCT" 21|, [ZCWC20]. 7.
Knowledge distillation methods where a student model is trained in a more balanced manner
by using guidance from an expert model [HWW21, XDH2oa|, [ZCHP23]. 8. Grouping-based
methods where data are divided into groups based on specific relationships or characteristics
to reduce the imbalance [LWK™ 20, WSW™20]. These strategies, when adapted to the semi-
supervised learning context, offer promising directions for addressing the unique challenges
posed by imbalanced SSL.

2.2.3 Open-set SSL

The challenge of out-of-distribution (OOD) samples in unlabeled data, first identified by
[OOR™ 18], reveals that standard SSL methods degrade in performance when OOD data is
present. To address this, numerous approaches have been developed to mitigate the impact
of OOD samples [CZLG20, GZ] " 20a, [YITA20a), [SKS21|, HFC™ 21, [PYJS22, HHLY22, HHYY22|
HYG22]. Most existing methods aim to filter out OOD data, ensuring that the classifier is
trained predominantly with in-distribution (ID) samples. For instance, [CZLG20] introduces
soft target generation, which prevents catastrophic error propagation and enables effective
learning from unconstrained, OOD-containing unlabeled data. [GZ]" 20a] employs bi-level
optimization to reduce the influence of OOD data through adaptive loss weighting, ensuring
that performance is never compromised below a baseline of labeled-only learning. [YIIA2oal
utilizes a joint optimization framework to iteratively update both the model parameters and
OOD scoring, ultimately selecting ID samples with low OOD scores. [SKS21] integrates
FixMatch [SBL™20] with novelty detection by applying one-vs-all (OVA) classifiers [SS521] and
a consistency loss that enhances OVA-classifier stability under transformations, significantly
improving outlier detection. [HFC™21] proposes a cross-modal matching module that detects
outliers by generating a compatible feature space aligned with the main classification task.
In a different vein, [HHLY22] leverages “recyclable” OOD data by identifying OOD samples
closely related to ID data, using adversarial domain adaptation to project these samples into
the ID feature space. Additionally, [ZKIC20] optimizes a teacher-student framework with
an energy-discrepancy scoring function that enhances the security of sample selection, and
[LCM™21] combines meta-learning with Weighted Batch Normalization to suppress OOD
influence at the feature level.

2.2.4 Open-set recognition

Since open-set SSL shares many similarities with open-set recognition (OSR), as both address
scenarios where unknown classes emerge during testing, it is valuable to discuss related work
in open-set recognition. The OpenMax model [BB16] was one of the first deep-learning-based
open-set classifiers to function without using background samples. It introduces the OpenMax
layer, which estimates the probability that an input belongs to an unknown class, allowing
for the rejection of “fooling” and unrelated open-set images presented to the system. An
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alternative approach, [LLCD19||, proposes an improved instance representation method that
clusters same-class instances while distancing instances of different classes. This representation
enhances detection by creating larger separation zones where unknown classes can reside.
The work in [CFGi5] develops based on WiSARD [ADGF 09|, incorporating a rejection
mechanism that flags inputs as outliers if the highest or best-matching class score falls below
a predefined threshold. To enhance open-set rejection capabilities, [OP19b] employs a multi-
task learning framework combining a classifier and a decoder network with a shared feature
extractor. Here, reconstruction errors from the decoder network are utilized for open-set
rejection. [OP19a] uses conditioned autoencoders for open-set identification by reconstructing
inputs conditioned on class identity. Reconstruction errors are analyzed using Extreme Value
Theory to define thresholds for distinguishing known and unknown samples. Recently,
Generative Adversarial Networks (GANSs) have been widely explored in OSR. G-OpenMax
[GDCG17] extends OpenMax by generating unknown instances through GANs to simulate
adversarial scenarios. Building on a similar concept, [NOFT18] introduces a GAN-based
method that generates examples close to, yet distinct from, the training set, training the model
to detect outliers effectively. [YQLG17] introduces the adversarial sample generation (ASG)
framework for open-category classification, generating both positive and negative samples from
seen categories in an unsupervised manner via adversarial learning. Open-GAN [YHL " 19]
also builds on adversarial learning by creating fake target samples with a generator and
modifying the discriminator to accommodate multiple known classes alongside an unknown
class. Additionally, Open Set Back Propagation (OSBP) [SYUH18] utilizes adversarial training
for a more complex open-set framework that operates without requiring unknown source
samples, pushing the boundaries of open-set recognition in deep learning.

2.2.5 Open-world SSL

Open-world SSL [CBL21, RKK ™22, RKS22] shares similarities with open-set SSL but also has
several critical differences. Both approaches include unlabeled data from novel classes during
training; however, the goal of open-world SSL is to classify inliers and discover new classes
from out-of-distribution (OOD) data rather than rejecting them. Another key difference is
that open-world SSL typically operates in a transductive learning setting, while open-set
SSL necessitates generalization beyond the training distribution. [CBL21] first introduces the
open-world SSL setting, along with an uncertainty adaptive margin mechanism that reduces
the gap between intra-class samples and novel classes. Using a bi-level optimization framework,
[RKK™22] leverages pairwise similarity loss to exploit labeled set information, thereby implicitly
clustering samples of novel classes. In [RKS22], a pseudo-labeling approach addresses SSL in
the open-world setting by incorporating sample uncertainty and prior knowledge about class
distributions, yielding reliable, distribution-aware pseudo-labels for both known and unknown
class data. Finally, [WSKH24] introduces a framework that learns from all unlabeled data via
self-supervision and an energy-based scoring system to identify known-class data accurately,
making the approach well-suited for handling uncurated data in deployment.

2.2.6 SSL evaluation

Despite significant advancements in SSL, limited research has focused on establishing realistic
benchmarks and evaluation protocols for assessing SSL methods. Current SSL benchmarks
are primarily limited to basic computer vision tasks (e.g., CIFAR-10/100 [KH"09a], SVHN
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[NWCT11b], STL-10 [CNL11al, ImageNet [DDS " o9])), which restricts their relevance in estimat-
ing generalization to diverse settings and real-world data. Besides, evaluation practices vary
significantly across papers, with SSL methods often developed and tested under inconsistent
experimental setups, making fair comparison and reliable assessment challenging. To address
these gaps, [OOR™ 18] proposes a unified reimplementation of widely-used SSL techniques,
evaluating them across a suite of experiments intended to reflect real-world constraints. It
covers four SSL algorithms and three classification tasks. Building on this, TorchSSL [ZWH ™" 21]]
extends the framework by reimplementing nine SSL algorithms and evaluating them on
tive classification tasks, further advancing efforts toward standardized, comprehensive SSL
evaluation.

2.2.7 Connection to our work

In Chapter [6, we propose a novel co-learning framework, CoSSL, for tackling imbalanced
SSL. CoSSL decouples representation learning from classifier learning, while coupling them
through a shared encoder and pseudo-label generation. Our method is closely related to
the decoupling-based methods [KXR™ 20, WLK ™20, ZLY 21, [ZCL]J21] commonly used in long-
tailed recognition, which also separate representation and classifier learning. However, CoSSL
uniquely connects these two modules via a shared encoder, allowing them to exchange
information and effectively bootstrap each other. Among existing imbalanced SSL methods,
[LSK21] is the most closely related to CoSSL. The distinguishing features of CoSSL are: (1)
the decoupling of representation and classifier training; (2) an active connection between the
encoder and classifier modules through pseudo-labeling; and (3) tailored handling of tail
classes by leveraging unlabeled data.

In Chapter [7|, we introduce a Simple but Strong Baseline (SSB) for open-set SSL. Rather
than filtering out OOD data, our approach applies a straightforward, confidence-based pseudo-
labeling method to incorporate these samples, significantly improving classification outcomes.
This approach diverges sharply from prior methods, which typically attempt to filter out OOD
data before or during training [CZLG20| GZ] " 20a, [YIIA20a| [SKS21, HFC " 21, [PY]S22, HHLY22,
HHYY22, HYG22]. Additionally, rather than directly sharing features between the classifier
and detector, we implement task-specific, non-linear transformations for each head. This
separation effectively minimizes mutual interference, allowing for more specialized feature
learning and enhancing performance for both tasks. To further strengthen the outlier detector,
we introduce pseudo-negative mining, which improves OOD detector training by generating
diverse pseudo-outliers, increasing data diversity and enabling more robust detection.

In Chapter |8, we introduce a unified and comprehensive semi-supervised learning bench-
mark for classification, spanning 15 tasks across computer vision (CV), natural language
processing (NLP), and audio domains to facilitate fair and consistent evaluations. Unlike
[OOR"18] and [ZWH™21], this benchmark is the first to explore the generalizability of SSL
methods beyond CV tasks, examining whether existing SSL techniques that perform well in CV
also translate effectively to NLP and audio. Furthermore, we implement an environmentally
conscious and cost-efficient evaluation protocol by employing a pre-training and fine-tuning
paradigm, substantially lowering the computational demands of SSL experiments. Following
the practices in [OOR™ 18] and [ZWH™ 21], we have open-sourced a modular codebase along
with configuration files, enabling easy reproduction of our reported results. Additionally, we
provide comprehensive documentation and tutorials to support modifications. Our codebase is
designed to be extensible, inviting contributions from the community, where new algorithms,
models, configuration files, and results can be continually added to advance the field.
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2.3 VISION GENERALIST MODELS

The success of modern Al systems is not only dependent on data but also critically shaped
by model design. Recently, there has been significant interest in developing models that can
tackle a wide variety of vision tasks within a unified framework. Inspired by the success of
sequence-to-sequence modeling in Natural Language Processing (NLP) [TLI"23, [DCLT18a,
RWC ™19, RSR™20], researchers have aimed to create generalist models for vision, integrating
diverse tasks under a common approach.

Pixel-to-Sequence Frameworks: Several efforts in this direction demonstrate promising results.
For instance, [CSL™21] introduces a language modeling approach for object detection, repre-
senting object attributes (e.g., bounding boxes and class labels) as sequences of discrete tokens,
transforming object detection into a language modeling task conditioned on pixel inputs.
Expanding on this, [CSL™22] extends the model to cover instance segmentation, keypoint detec-
tion, and image captioning, all mapped to a pixel-to-sequence framework. Similarly, [LCZ"22]
develops a unified model that spans go different datasets, covering tasks like pose estimation,
object detection, depth estimation, image generation, vision-language interaction, and NLP
tasks. This model standardizes inputs and outputs as sequences of discrete tokens, further
advancing task unification. [WWC™ 23] redefines the output of core vision tasks as images,
and proposes an in-context learning generalist that unifies vision tasks as standard masked
image modeling on the stitch of input and output image pairs. Based on the in-context learning
generalist, [WZC™ 23] introduces a unified segmentation model via an in-context coloring prob-
lem with random color mapping for each data sample. The objective is to accomplish diverse
tasks according to the context, rather than relying on specific colors. [WYMT™22] presents a
simple sequence-to-sequence framework unifying a range of cross-modal and unimodal tasks,
including image generation, visual grounding, image captioning, classification, and language
modeling. Moreover, [GYH ™ 24, |(GPS™ 23] leverage the power of diffusion models and steer its
functionality to an instruction-guided multi-task vision learner via instruction-tuning.

Task-Specific Customization within Unified Architectures: Alongside these approaches,
another line of research aims for unified architectures with task-specific customization. For
example, UVIM [KSPB"22]] addresses the high-dimensionality of vision outputs by using a
guiding code—a short sequence encoded with task-specific information, allowing the main
model to focus on task-specific predictions. Here, individual models are trained for each
task, as the guiding code varies across tasks. Similarly, XDecoder [ZDY " 23] unifies pixel-level
segmentation, image-level retrieval, and vision-language tasks through a generic decoding
procedure, predicting pixel-level masks and token-level semantics and combining these outputs
differently for each task.

2.3.1 Connection to our work

In Chapter [g} we investigate diffusion-based vision generalists by unifying various dense pre-
diction tasks under a conditional image generation framework, adapting pre-trained diffusion
models for these tasks. Similar to [WWC™ 23], we reframe outputs from different vision tasks
as RGB images, but unlike [WWC™ 23] using image inpainting, our model is trained purely as a
conditional image generator, eliminating the need for additional in-context examples at test time.
Our approach also differs from other diffusion-based vision generalists [GYH" 24, (GPS™ 23],
by utilizing pixel diffusion rather than latent diffusion, which can suffer from quantization
artifacts during upsampling. Furthermore, we enhance the image conditioning of the diffusion
model by using powerful pre-trained vision encoders that extract semantically rich image
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features. This feature-based conditioning yields superior performance compared to models
conditioned directly on raw images.



STANDARD SEMI-SUPERVISED LEARNING

In the first part of the thesis, we focus on standard semi-supervised
learning (SSL) and investigate strategies to effectively leverage
unlabeled data to enhance representation learning. Specifically,

in Chapter we revisit the idea of augmentation-based con-
sistency regularization and find that improving equivariance on
strongly augmented images can provide even better performance
rather than making the model invariant to all kinds of augmentations.
To this end, we formulate FeatDistLoss to explicitly encourage
equivariance between features from different augmentations while
enforcing the same semantic class label.

in Chapter we address the quantity-quality trade-off in
pseudo-labeling and introduce a self-adaptive, parameter-free
thresholding scheme that dynamically adjusts thresholds based
on the current learning status. Our method yields consistent
improvements across various settings. For scenarios with minimal
supervision, we further introduce a class fairness objective to guide
the model in effectively handling scarcely labeled classes.

in Chapter [5, we explore an alternative approach to threshold-based
pseudo-labeling by fitting a sample-specific weight function. Here,
we utilize a truncated Gaussian fit on the confidence distribution,
which assigns smaller weights to potentially correct pseudo-labels
with lower confidence. Additionally, we propose Uniform Alignment,
a strategy to mitigate pseudo-label imbalance while maintaining both
high quality and quantity.
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and aims to enhance model performance by effectively leveraging the large amount of
unlabeled data. Consistency regularization is one of the most widely-used techniques
for SSL. Generally, the aim is to train a model that is invariant to various data augmentations.
In this chapter, we revisit this idea and find that enforcing invariance by decreasing distances
between features from differently augmented images leads to improved performance. How-
ever, encouraging equivariance instead, by increasing the feature distance, further improves
performance. To this end, we propose an improved consistency regularization framework by a
simple yet effective technique, FeatDistLoss, that imposes consistency and equivariance on the
classifier and the feature level, respectively. Experimental results show that our model defines
a new state of the art across a variety of standard semi-supervised learning benchmarks as well
as imbalanced semi-supervised learning benchmarks. Particularly, we outperform previous
work by a significant margin in low data regimes and at large imbalance ratios. Extensive
experiments are conducted to analyze the method.
This Chapter is based on [FKSz1bl. Yue Fan was the lead author of this paper and
conducted all the experiments and wrote most parts of the paper.

SEMI—superVised learning (SSL) deals with scenarios where limited labeled data is available,

3.1 INTRODUCTION

Deep learning requires large-scale and annotated datasets to reach state-of-the-art performance
[RDS™15a, LMBT14]]. As labels are not always available or expensive to acquire a wide range of
semi-supervised learning (SSL) methods have been proposed to leverage unlabeled data [TV17a,
LA17, MMKI18b, VLK ™19, BCG™ 19, SBL" 20, XDH" 19, BCC" 20, AOA ™ 20a, [Lee13| PXDL20),
FOS20|, BHB19, ICKS ™ 20a].

Consistency regularization [BAP14al, [LA17, [SJT16a] is one of the most widely-used SSL
methods. Recent work [SBL ™20, XDH ™ 19, KMHK?20] achieves strong performance by utilizing
unlabeled data in a way that model predictions should be invariant to input perturbations.

27
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original
weak
augmentation

strong
augmentation

Figure 3.1: Examples of strongly and weakly augmented images from CIFAR-100 (please refer
to Section for details of strong and weak augmentation). The visually large difference
between them indicates that it can be more beneficial if they are treated differently.

However, when using advanced and strong data augmentation schemes, we question if the
model should be invariant to such strong perturbations. In Figure [3.1] we illustrate that strong
data augmentation leads to perceptually highly diverse images. Thus, we argue that improving
equivariance on such strongly augmented images can provide even better performance rather
than making the model invariant to all kinds of augmentations. Moreover, existing works
apply consistency regularization either at the feature level or at the classifier level. We find
empirically that it is more beneficial to introduce consistency on both levels. To this end, we
propose a simple yet effective technique, Feature Distance Loss (FeatDistLoss), to improve
data-augmentation-based consistency regularization.

We formulate our FeatDistLoss as to explicitly encourage invariance or equivariance between
features from different augmentations while enforcing the same semantic class label. Figure
shows the intuition behind the idea. Specifically, encouragement of equivariance for the same
image but different augmentations (increase distance between stars and circles of the same
color) pushes representations apart from each other, thus, covering more space for the class.
Imposing invariance, on the contrary, makes the representations of the same semantic class
more compact. In this work, we empirically find that increasing equivariance to differently
augmented versions of the same image can lead to better performance especially when rather
few labels are available per class (see section [3.4.3).

This chapter introduces the method CR-Match which combines FeatDistLoss with other
strong techniques defining a new state-of-the-art across a wide range of settings of standard
SSL benchmarks, including CIFAR-10, CIFAR-100, SVHN, STL-10, and Mini-Imagenet. More
specifically, our contribution is fourfold. (1) We improve data-augmentation-based consistency
regularization by a simple yet effective technique for SSL called FeatDistLoss which regularizes
the distance between feature representations from differently augmented images of the same
class as well as the classifier simultaneously. (2) We show that while encouraging invariance
results in good performance, encouraging equivariance to differently augmented versions of
the same image consistently results in even better generalization performance. (3) We provide
comprehensive ablation studies on different distance functions and different augmentations
with respect to the proposed FeatDistLoss. (4)

In combination with other strong techniques, we achieve new state-of-the-art results on most
standard semi-supervised learning benchmarks as well as imbalanced semi-supervised learning
benchmarks. In particular, our method outperforms previous methods by a significant margin
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Invariance Equivariance

Figure 3.2: Binary classification task. Stars are features of strongly augmented images and
circles are of weakly augmented images (please refer to Section for details of strong and
weak augmentation). While encouraging invariance by decreasing distance between features
from differently augmented images gives good performance (left), encouraging equivariant
representations by increasing the distance regularizes the feature space more, leading to even
better generalization performance.

in low data regimes and at large imbalance ratios.

A preliminary version of this work has been published in [FKS21a]. In this work, we
extend [FKS21al in three aspects: (1) We extend the existing standard SSL settings by providing
evaluations on wider range of the datasets and showing the benefit of the proposed technique
on top of various SSL methods. In particular, combining with the recently published method
FlexMatch [ZWH™21], we can push the state-of-the-art even further under the standard settings.
Moreover, we evaluate our method on ImageNet to verify that the method scales to larger
datasets as well. (2) We evaluate our methods under a more realistic and challenging setting:
imbalanced SSL, where the training data is not only partially annotated but also exhibits
long-tailed class distribution. We achieve new state-of-the-art results on multiple imbalanced
SSL benchmarks across a wide range of settings. (3) To give more in-depth insight into our
method, we provide pseudo-code and more analysis of the method, especially the robustness
against important hyper-parameters.

3.2 CR-MArcH

Consistency regularization is highly-successful and widely-adopted technique in SSL [BAP14al
LA17, [S]T16al SBL™ 20, XDH" 19, KMHK20]. In this work, we aim to leverage and improve it
by even further regularizing the feature space. To this end, we present a simple yet effective
technique FeatDistLoss to explicitly regularize representation learning and classifier learning
at the same time. We describe our SSL method, called CR-Match, which shows improved
performance across many different settings, especially in scenarios with few labels. In this
section, we first describe our technique FeatDistLoss and then present CR-Match that combines
FeatDistLoss with other regularization techniques inspired from the literature.
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Figure 3.3: The proposed FeatDistLoss utilizes unlabeled images in two ways: On the classifier
level, different versions of the same image should generate the same class label, whereas on
the feature level, representations are encouraged to become either more equivariant (pushing
away) or invariant (pulling together). f and f denote strong and weak features; p and p
are predicted class distributions from strong and weak features; a) and b) denote features
before and after the global average pooling layer. Our final model takes features from a) and
encourages equivariance to differently augmented versions of the same image. An ablation
study of other choices is in section [3.4.3}

3.2.1 Feature Distance Loss

Background: The idea of consistency regularization [BAP14a, [LA17, [SJT16a] is to encourage
the model predictions to be invariant to input perturbations. Given a batch of n unlabeled
images u;,i € (1,..,n), consistency regularization can be formulated as the following loss
function:

3 L (A) - fa(u)l3 6.1

where f is an encoder network that maps an input image to a d-dimensional feature space;
A and « are two stochastic functions which are, in our case, strong and weak augmentations,
respectively (details in Section [3.2.3). By minimizing the L, distance between perturbed images,
the representation is therefore encouraged to become more invariant with respect to different
augmentations, which helps generalization. The intuition behind this is that a good model
should be robust to data augmentations of the images.

FeatDistLoss: As shown in Figure we extend the above consistency regularization idea by
introducing consistency on the classifier level and invariance or equivariance on the feature
level. FeatDistLoss thus allows to apply different types of control for these levels. In particular,
when encouraging to reduce the feature distance, it becomes similar to classic consistency
regularization, and encourages invariance between differently augmented images. As argued
above, making the model predictions invariant to input perturbations gives good generalization
performance. Instead, in this work we find it is more beneficial to treat images from different
augmentations differently because some distorted images are largely different from their
original images as demonstrated visually in Figure Therefore, the final model (CR-Match)
uses FeatDistLoss to increase the distance between image features from augmentations of
different intensities while at the same time enforcing the same semantic label for them. Note
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that in Section we conduct an ablation study on the choice of distance function, where
we denote CR-Match as CR-Equiv, and the model that encourages invariance as CR-Inv.

The final objective for the FeatDistLoss consists of two terms: Lp;s; (on the feature level),
that explicitly regularizes feature distances between embeddings, and a standard cross-entropy
loss Lpseudoraver (0N the classifier level) based on pseudo-labeling.

With Lp;s; we either decrease or increase the feature distance between weakly and strongly
augmented versions of the same image in a low-dimensional space projected from the original
feature space to overcome the curse of dimensionality [Bel66]. Let d(-, -) be a distance metric
and z be a linear layer that maps the high-dimensional feature into a low-dimensional space.
Given an unlabeled image u;, we first extract features with strong and weak augmentations by
f(A(u;)) and f(a(u;)) as shown in Figure[3.3|(a), and then FeatDistLoss is computed as:

Lpist(u;) = d(z(f(A(wi))), z(f (a(w;)))) (3-2)

Different choices of performing Lp;s; are studied in Section where we find empirically
that applying Lp;s at (a) using cosine distance in Figure [3.3|gives the best performance. The
use of the projection head z does not only reduce the computation burden as the original
feature space is high-dimensional, but also brings additional performance improvements as
shown in [CKNH20, ICKS ™ 20al.

At the same time, images from strong and weak augmentations should have the same
class label because they are essentially generated from the same original image. Inspired by
[SBL"20], given an unlabeled image u;, a pseudo-label distribution is first generated from
the weakly augmented image by p; = g(f(a(u;))), and then a cross-entropy loss is computed
between the pseudo-label and the prediction for the corresponding strongly augmented version
as:

EPseudoLuhel(ui) = ﬁcg(f)l,g(f(fl(ul)))) (33)

where (g is the cross-entropy, g is a linear classifier that maps a feature representation to a
class distribution, and A (u;) denotes the operator for strong augmentations.

Putting it all together, FeatDistLoss processes a batch of unlabeled data u;,i € (1,..., By)
with the following loss:

1 &
Ly = 3 Z ]l{Ci > T}(Cpist<ui) + LpseudoLabel (ui)) (3-4)
U i=1

where ¢; = max P, is the confidence score, and 1{-} is the indicator function which outputs
1 when the confidence score is above a threshold. This confidence thresholding mechanism
ensures that the loss is only computed for unlabeled images for which the model generates
a high-confidence prediction. Therefore, it controls the trade-off between the quality and the
quantity of contributing unlabeled samples. As is shown in Section a higher threshold T
is normally preferred because it alleviates the instability early in the training by eliminating
less confident unlabeled samples. As training progresses, the model produces more confident
predictions and more samples will contribute to the final loss, which also provides a natural
curriculum to balance labeled and unlabeled losses [SBL"20]. Moreover, the thresholding
mechanism is applied for both the feature level consistency and the classifier level consistency
so that the two losses are well-synchronized.

As mentioned before, depending on the function d, FeatDistLoss can decrease the distance
between features from different data augmentation schemes (when 4 is a distance function,
thus pulling the representations together), or increase it (when d is a similarity function, thus
pushing the representations apart). As shown in Table we find that both cases results in
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an improved performance. However, increasing the distance between weakly and strongly
augmented examples consistently results in better generalization performance. We conjecture
that the reason lies in the fact that FeatDistLoss by increasing the feature distance explores
equivariance properties (differently augmented versions of the same image having distinct
features but the same label) of the representations. It encourages the model to have more
distinct weakly and strongly augmented images while still imposing the same label, which
leads to both more expressive representation and more powerful classifier. As we will show in
Section information like object location or orientation is more predictable from models
trained with FeatDistLoss that pushes the representations apart. Additional ablation studies of
other design choices such as the distance function and the linear projection z are also provided

in Section [3.4.3}

3.2.2  Overall CR-Match

Algorithm 1 CR-Match Algorithm.

Require: Labeled batch X = {(x;,p;) : i € (1,...,B;)}, unlabeled batch & = {u; : i €
(1,...,Bu)}, confidence threshold 7, FeatDistLoss weight A,, rotation prediction loss
weight A,, classifier g, distance metric d, FeatDistLoss head z, rotation prediction head h.

: > Cross-entropy loss for labeled data

: Es = Bis 2?;1 éCE(Pirg(“(xi)))

=

2
3: fori =1to B, do
4 D Extract representation from weak data augmentation
5 uf = f(a(u) |
6: D Extract representation from strong data augmentation
7w = f(A(w))
8: > Compute confidence score from the weakly augmented image
9 ¢ =max g(ul)
10: end for
11: > Cross-entropy loss with pseudo-label for unlabeled data
1 vB
12 Lpseudo = g, Lity Lei > T} Lee(g(uf’), uf)
13: > Increase the B/‘cnfure distance for unlabeled data
1 u
% Lo = = X0 1{c; > 1} — d(z(u?), 2(u))
15: > rotation prediction loss
1 Bll
16: LRot = B, Zi:l ZrGIR ECE(r,h(R(u?’, 7’)))
17: return Lg + Au(»CPseudo + ‘CDist) + ArLRot

Now we describe our SSL method called CR-Match leveraging the above FeatDistLoss.
Pseudo-code for processing a batch of labeled and unlabeled examples is shown in algorithm
Given a batch of labeled images with their labels as X = {(x;,p;) : i € (1,..,Bs)} and a
batch of unlabeled images as i/ = {u; : i € (1,...,B,)}. |'| CR-Match minimizes the following

learning objective:
,Cs(X) —|—/\u£u(U) —|—/\rﬁR0t(U) (3.5)

where L; is the supervised cross-entropy loss for labeled images with weak data augmentation
regularization; £y is our novel feature distance loss for unlabeled images which explicitly
regularizes the distance between weakly and strongly augmented images in the feature space;

'In practice, unlabeled data includes all labeled data without labels.
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and Lr is a self-supervised loss for unlabeled images and stands for rotation prediction from
[GSK18] to provide an additional supervisory and regularizing signal.

Fully supervised loss for labeled data: We use cross-entropy loss with weak data augmentation
regularization for labeled data:

B
@zigmmammm> (3.6)

where (¢ is the cross-entropy loss, a(x;) is the extracted feature from a weakly augmented
image x;, g is the same linear classifier as in equation and p,; is the corresponding label for
X;.

Self-supervised loss for unlabeled data: Rotation prediction [GSK18] (RotNet) is one of the
most successful self-supervised learning methods, and has been shown to be complementary
to SSL methods [ZOKB19, BCG 19, REH " 20]. Here, we create four rotated images by 0°, 90°,
180°, and 270° for each unlabeled image u; for i € (1, ..., uB). Then, classification loss is applied
to train the model predicting the rotation as a four-class classification task:

By
Lrot = g5 1o 1 Cee(rhla(R(w ) (5.7)

i=1reR

where R is {0°,90°,180°,270°} and r refers to one of the four rotations, i denotes a three-layer
MLP with its hidden dimension the same as the input dimension. Using a predictor head
is shown to be beneficial for such an auxiliary loss [CKNHz0, (CKS™20a]. Note that rotation
prediction, though commonly used, might also have adverse effects. For example, numbers six
and nine in most print fonts are centrosymmetric, rotating one upside down gives the other.

3.2.3 Implementation Details

Data augmentation: As mentioned above, CR-Match adopts two types of data augmenta-
tions: weak augmentation and strong augmentation from [SBL™20]. Specifically, the weak
augmentation « corresponds to a standard random cropping and random mirroring with
probability 0.5, and the strong augmentation A is a combination of Rand Augment [CZSL20]
and CutOut [DT17]. At each training step, we uniformly sample two operations for the strong
augmentation from a collection of transformations and apply them with a randomly sampled
magnitude from a predefined range. The complete table of transformation operations for the
strong augmentation is provided in the supplementary material.

Other implementation details: For our results in Section [3.4/ and Section we minimize
the cosine similarity in FeatDistLoss, and use a fully-connected layer for the projection layer
z, which maps the feature from the original un-flattened 8192-dimension space into a 128-
dimension space, the same dimension as the feature dimension for classification. The dimension
of the original feature space and the patch size are fixed and depend on the architecture, which
is chosen following the previous conventions [OOR"18, BCG™ 19, BCC 20, SBL"20]. In our
case, 8192 = 8 x 8 x 128, where the patch size is 8 x 8, and there are 128 feature maps. The
predictor head & in rotation prediction loss consists of two fully-connected layers and a ReLU
as non-linearity. We use the same A, = A, = 1 in all experiments since CR-Match shows good
robustness within a range of loss weights in our preliminary experiments. We train our model
for 512 epochs on CIFAR-10, CIFAR-100, and SVHN. On STL-10 and Mini-ImageNet, we train
the model for 300 epochs. Other hyper-parameters are from [SBL"20] for the compatibility.
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Specifically, the confidence thresholds T for pseudo-label selection is 0.95. We use SGD with
momentum 0.9 and cosine learning rate schedule from [SBL™20] starting from 0.03, batch
size Bs is 64 for labeled data, and B, is 7 x Bs;. The final performance is reported using an
exponential moving average of model parameters as recommended by [TV17a]. As a common
practice, we repeat each experiment with five different data splits and report the mean and the
standard deviation of the error rate.

3.3 REeLATED WORK

SSL is a broad field aiming to exploit both labeled and unlabeled data. Consistency regu-
larization is a powerful method for SSL [RBH" 154, [SJT16a, BAP14a]. The idea is that the
model should output consistent predictions for perturbed versions of the same input. Many
works explored different ways to generate such perturbations. For example, [TV17al] uses an
exponential moving average of the trained model to produce another input; [SJT16al [LA17]
use random max-pooling and Dropout [SHK™ 14]; [XDH™ 19, BCC™ 20, SBL" 20, KMHK20]
use advanced data augmentation; [BCG™ 19, VLK™ 19, BCC"20] use MixUp regularization
[ZCDLP18], which encourages convex behavior “between” examples; [GWL21] enforces label
consistency with alpha-divergence. Another spectrum of popular approaches is pseudo-
labeling [Scu6s| [Nes83) [Lee13], where the model is trained with artificial labels. [AOA™20a]
trained the model with “soft” pseudo-labels from network predictions; [PXDL20] proposed
a meta learning method that deploys a teacher model to adjust the pseudo-label alongside
the training of the student; [SBL™ 20, [Lee13] learn from “hard” pseudo-labels and only retain
a pseudo-label if the largest class probability is above a predefined threshold; [ZWH™21]]
further refines the thresholding mechanism by adaptively adjusting thresholds for different
classes according to the learning effect of each class. Furthermore, there are many excellent
works around generative models [KMRW14, (Ode16a, [DGF16a] and graph-based methods
[LZL™ 18, LWHL19, BDLRO06, Joao3]. We refer to [CSZog| [Zhuosa, [ZGoga] for a more compre-
hensive introduction of SSL methods.

Noise injection plays a crucial role in consistency regularization [XDH " 19]. Thus advanced
data augmentation, especially combined with weak data augmentation, introduces stronger
noise to unlabeled data and brings substantial improvements [BCC™ 20, SBL"20]. [SBL™20]
proposes to integrate pseudo-labeling into the pipeline by computing pseudo-labels from
weakly augmented images, and then uses the cross-entropy loss between the pseudo-labels and
strongly augmented images. Besides the classifier level consistency, our model also introduces
consistency on the feature level, which explicitly regularizes representation learning and shows
improved generalization performance. Moreover, self-supervised learning is known to be
beneficial in the context of SSL. In [HFW ™20, (CKNH20, (CKS™"20a|, REH" 20], self-supervised
pre-training is used to initialize SSL. However, these methods normally have several training
phases, where many hyper-parameters are involved. We follow the trend of [ZOKB1g, BCC™20]
to incorporate an auxiliary self-supervised loss alongside training. Specifically, we optimizes a
rotation prediction loss [GSK18].

Another paradigm of SSL is to first perform self-supervised pre-training on unlabeled data
and then fine-tune the pre-trained model with labeled data. In particular, contrastive learning
based methods are gaining popularity and achieve good performance recently [CKS™20a,
HFW ™20, CMM ™20, GSA™ 20, BPL22| (CH21]. The goal of contrastive representation learning
is to learn an embedding space in which different versions of the same image stay close to
each other while features of different images are far apart. Different to this stream of works,
our FeatDistLoss with equivariance pushes apart features from different augmentations of the
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same image while enforcing the same semantic label, which leads to both more expressive
representation and more powerful classifier. Moreover, FeatDistLoss does not have the collapse
problem [CH21] due to the availability of labeled data.

Equivariant representations are recently explored by capsule networks [SFH17, [HSF18].
They replaced max-pooling layers with convolutional strides and dynamic routing to preserve
more information about the input, allowing for preservation of part-whole relationships in
the data. It has been shown, that the input can be reconstructed from the output capsule
vectors. Another stream of work on group equivariant networks [CW16a, WC1g| (CW16b]
explores various equivariant architectures that produce transform in a predictable linear
manner under transformations of the input. Different from previous work, our work explores
equivariant representations in the sense that differently augmented versions of the same image
are represented by different points in the feature space despite the same semantic label. As we
will show in section information like object location or orientation is more predictable
from our model when features are pushed apart from each other.

Imbalanced semi-supervised learning. While SSL has been extensively studied, the setting
of class-imbalanced semi-supervised is rather under-explored. Most successful methods from
standard SSL do not generalize well to this more realistic scenario without addressing the data
imbalance explicitly. Hyun et al. [HJK20] proposed a suppressed consistency loss to suppress
the loss on minority classes. Kim et al. [KRHP20b] proposed Distribution Aligning Refinery
(DARP) to refine raw pseudo-labels via convex optimization. Wei et al. [WSM™21] found
that the raw SSL methods usually have high recall and low precision for head classes while
the reverse is true for the tail classes and further proposed a reverse sampling method for
unlabeled data based on that. BiS [HKY " 21] implements a novel sampler which is helpful for
the encoder in the beginning but classifier in the end. DASO [OKK21a] refines pseudo-labels
by two complementary classifiers. ABC [LSK21|] introduces an auxiliary classifier which is
trained in a balanced way to help the model while sharing the same backbone. As is shown in
Section we examine the effectiveness of our method on top of state-of-the-art imbalanced
SSL frameworks and show improved results.

3.4 EXPERIMENTAL RESULTS

Following protocols from previous work [BCG™ 19, SBL™20], we conduct experiments on several
commonly used SSL image classification benchmarks to test the efficacy of CR-Match. We
show our main results in Section where we achieve state-of-the-art error rates across all
settings on SVHN [NWC™11b], CIFAR-10 [KH " 09a], CIFAR-100 [KH" 09a], STL-10 [CNL11al,
and mini-ImageNet [RL17]. In our ablation study in Section we analyze the effect of
FeatDistLoss and RotNet across different settings. Finally, in Section we extensively
analyse various design choices for our FeatDistLoss.

3.4.1 Main Results

In the following, each dataset subsection includes two paragraphs. The first provides technical
details and the second discusses experimental results.

CIFAR-10, CIFAR-100, and SVHN. We follow prior work [SBL"20] and use 4, 25, and 100
labels per class on CIFAR-100 and SVHN without extra data. For CIFAR-10, we experiment
with settings of 4, 25, and 400 labels per class. We create labeled data by random sampling, and
the remaining images are regarded as unlabeled by discarding their labels. Following [BCG 19,
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CIFAR-10 CIFAR-100
Per class labels 4 labels 25 labels 400 labels 4 labels 25 labels 100 labels
Mean Teacher [TV17a] - 32.32£2.30% 9.1910.19* - 53.91£0.57% 35.831+0.24"
MixMatch [BCG 19| 47.54£11.50* 11.084+0.87 6.24F+0.06 67.61£1.32" 39.94%0.37° 25.88+0.30
UDA [XDH" 19 29.05+5.93*  5.43%£0.96 4.32+0.08* 159.284+0.88* 33.13t0.22* 24.50%+0.25"
ReMixMatch [BCC™ 20| 19.10£9.64"  6.27+0.34 5.14+0.04 44.28+£2.06" 27.43F+0.31" 23.03%0.56"

FixMatch (RA) [SBL*20] 13.81£3.37 5.07£0.65 4.26+0.05 4885+1.75 28.29+0.11 22.60+0.12
FixMatch (CTA) [SBL™20]  11.39+3.35 5.07£0.33  4.31f0.15 49.95%£3.01 28.64+0.24 23.18+0.11

FeatMatch [KMHK?2o0] - 6.00+0.41  4.64F0.11 - - -

FlexMatch [ZWH"21] 5.1910.05 5.33+£0.12  4.47+0.09  45.91t1.76 28.11+0.20  23.04%+0.28
CR-Match 10.70£2.91 5.05+0.12  3.96t0.16  39.45+1.69  25.43+0.14  20.40%0.08
CR-Match$ 5.5240.32 5.21£0.06  4.26+0.19  35.72£0.50 24.61+0.37  20.9110.24

Table 3.1: Error rates on CIFAR-10, and CIFAR-100. A Wide ResNet-28-2 [ZK164] is used for
CIFAR-10 and a Wide ResNet-28-8 with 135 filters per layer [BCG™ 19] is used for CIFAR-100.
We use the same code base as [SBL™20] (i.e., same network architecture and training protocol)
to make the results directly comparable. The best number is in bold and the second best
number is in italic. *Numbers are generated by [SBL20]. CR-Match$ refers to CR-Match
combined with CPL [ZWH™" 21| from FlexMatch.

STL-10 SVHN
Per class labels 100 labels 4 labels 25 labels 100 labels
Mean Teacher [TV17a] 21.34%+2.39* - 3.57t0.11*  3.42+0.07"
MixMatch [BCG™19] 10.18+£1.46 42.55+14.53" 3.78+£0.26  3.27+0.31
UDA [XDH" 19 7.66+0.56* 52.63+20.51% 2.72+0.40  2.2330.07
ReMixMatch [BCC™20] 6.18+1.24 3.3440.20"  3.10£0.50 2.8340.30

FixMatch (RA) [SBL"20] 7.98+1.50 3.96t2.17  2.48+0.38 2.2840.11
FixMatch (CTA) [SBL*20]  5.1740.63 7.65+7.65 2.6410.64 2.3640.19
FeatMatch [KMHK20] - - 3.34+0.19"  3.1040.06"
FlexMatch [ZWH™"21] 6.1510.25 20.81+5.26  17.3242.07 12.90£2.68

CR-Match 4.89+0.17 2.79£0.93 2.3540.29 2.0840.07

Table 3.2: Error rates on Mini-ImageNet with 40 labels and 100 labels per class. All methods
are evaluated on the same ResNet-18 architecture. *Numbers are generated by [SBL™20].

fNumbers are produced without CutOut. The best number is in bold and the second best
number is in italic.

Mini-ImageNet

Per class labels 40 labels 100 labels
Mean Teacher [TV17a] 72.51+£0.22 57.55+1.11
Label Propagation [[TAC1i9a] 70.29+0.81 57.58+1.47
PLCB [AOA ™ 20a] 56.49£0.51 46.08+0.11
FeatMatch [KMHK20] 39.05+0.06 34.791+0.22
CR-Match 34.87+0.99 32.58+1.60

Table 3.3: Error rates on Mini-ImageNet with 40 labels and 100 labels per class. All methods
are evaluated on the same ResNet-18 architecture. *Numbers are generated by [SBL™20].

TNumbers are produced without CutOut. The best number is in bold and the second best
number is in italic.
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SBL 20|, BCCT20], we use a Wide ResNet-28-2 [ZK16a] with 1.5M parameters on CIFAR-10
and SVHN, and a Wide ResNet-28-8 with 135 filters per layer (26M parameters) on CIFAR-100.

As shown in Table and our method improves over previous methods across
all settings, and defines a new state-of-the-art. Most importantly, we improve error rates in
low data regimes by a large margin (e.g., with 4 labeled examples per class on CIFAR-100,
we outperform FlexMatch and the second best method by 10.19% and 8.56% in absolute
value respectively). Prior works [SBL"20, BCG™ 19, BCC"20] have reported results using a
larger network architecture on CIFAR-100 to obtain better performance. On the contrary, we
additionally evaluate our method on the small network used in CIFAR-10 and find that our
method is more than 17 times (17 ~ 26/1.5) parameter-efficient than FixMatch. We reach
46.05% error rate on CIFAR-100 with 4 labels per class using the small model, which is still
slightly better than the result of FixMatch using a larger model.

STL-10. STL-10 contains 5,000 labeled images of size 96-by-96 from 10 classes and 100,000
unlabeled images. The dataset pre-defines ten folds of 1,000 labeled examples from the
training data, and we evaluate our method on five of these ten folds as in [SBL 20, BCC™20].
Following [BCG 19|, we use the same Wide ResNet-37-2 model (comprising 5.9M parameters),
and report error rates in Table

Our method achieves state-of-the-art performance with 4.89% error rate. Note that Fix-
Match with error rate 5.17% used the more advanced CTAugment [BCC™20], which learns
augmentation policies alongside model training. When evaluated with the same data aug-
mentation (RandAugment) as we use in CR-Match, our result surpasses FixMatch by 3.09%
(3.09%=7.98%-4.89%), which indicates that CR-Match itself induces a strong regularization
effect.

Mini-ImageNet. We follow [ITAC19a, AOA™20a, KMHK?20] to construct the mini-ImageNet
training set. Specifically, 50,000 training examples and 10,000 test examples are randomly se-
lected for a predefined list of 100 classes [RL17] from ILSVRC [DDS" 0g]. Following [KMHK20],
we use a ResNet-18 network [HZRS16a] as our model and experiment with settings of 40 labels
per class and 100 labels per class.

As shown in Table our method consistently improves over previous methods and
achieves a new state-of-the-art in both the g4o-label and 100-label settings. Especially in the
4o-label case, CR-Match achieves an error rate of 34.87% which is 4.18% higher than the second
best result. Note that our method is 2 times more data efficient than the second best method
FeatMatch [KMHK20] (FeatMatch, using 100 labels per class, reaches a similar error rate as our
method with 40 labeled examples per class).

ImageNet. To verify the effectiveness of our method on large scale datasets, we conduct
experiments on ImageNet-1k. Following [ZWH™21]], we take ~10% (100,000) training images
as the labeled set and construct unlabeled set using the rest of the images. The validation
setting remains the same. We train a ResNet-50 [HZRS16a] with the same hyper-parameters
from [ZWH™21]. Note that FixMatch and FlexMatch use different protocols on ImageNet, and
we follow the setup from FlexMatch therefore the numbers are directly comparable.

Table [3.4) shows the error rate comparison after running 2?2 iterations. Our method outper-
forms the previous state-of-the-art by 1.04% absolute top-5 error rate, which demonstrates the
efficacy of the proposed method at large scale dataset.
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Method Top-1  Top-5

FixMatch [SBL ™ 20] 43.66*  21.80*
FlexMatch [ZWH"21] 41.85* 19.48*

CR-MatchS$ 40.69  18.44

Table 3.4: Error rates on ImageNet after 220 iterations. CR-MatchS$ refers to CR-Match combined
with CPL [ZWH"21] from FlexMatch. *Numbers are from [ZWH™"21].

RotNet FeatDistLoss MinilmageNet@40 CIFAR10@4 CIFAR100@4 SVHN@4

35.13 11.86 46.22 2.42

v 34.14 10.33 4348 2.34

v 34.64 11.27 41.48 2.21
v v 33.82 10.92 39.22 2.09

Table 3.5: Ablation studies across different settings. Error rates are reported for a single split.

3.4.2 Ablation Study

In this section, we analyze how FeatDistLoss and RotNet influence the performance across
different settings, particularly when there are few labeled samples. We conduct experiments
on a single split on CIFAR-10, CIFAR-100, and SVHN with 4 labeled examples per class, and
on MinilmageNet with 40 labels per class. Specifically, we remove the Lp;;; from equation
and train the model again using the same training scheme for each setting. We do not ablate
Lpsendo and Lg due to the fact that removing one of them leads to a divergence of training.

We report final test error rates in Table We see that both RotNet and FeatDistLoss
contribute to the final performance while their proportions can be different depending on
the setting and dataset. For MinilmageNet, CIFAR-100 and SVHN, the combination of both
outperforms the individual losses. For CIFAR-10, FeatDistLoss even outperforms the combina-
tion of both. This suggests that RotNet and FeatDistLoss are both important components for
CR-Match to achieve the state-of-the-art performance. Note that RotNet can be replaced by
other types of self-supervision as well. We opt RotNet due to its superior performance in our
initial experiments. On CIFAR-100 with 4 labels per class, CRMatch with SimCLR achieves an
error rate of 42.50% compared to that of 39.22% from CRMatch with RotNet. More details of
the experiment are provided in the supplementary material.

Figure [3.4] shows a more detailed analysis of the training process on CIFAR-100 with 4
labels per class for CR-Match and CR-Match without FeatDistLoss. The confidence threshold
in CR-Match filters out unconfident predictions during training. Therefore, at each training
step only images with confidence scores above the threshold contribute to the loss. We observe
that CR-Match improves pseudo-labels for the unlabeled data, as it achieves a lower error rate
of all unlabeled images as well as contributing unlabeled images during the training while
maintaining the percentage of contributing images.

The increasing of the pseudo-label error rate in Figure 3.4/ middle is due to the increasing of
the percentage of contributing pseudo-labels and the prediction confidence. At the beginning
of the training, the contributing pseudo-labels are mostly correct as only a small number of
samples are highly confident and, thus, selected. However, during the course of the training,
the overall prediction confidence increases, resulting in more unlabeled data being used, which
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Figure 3.4: Ablation study of our best model on CIFAR-100 with 4 labels per class. Left:
CR-Match has a lower pseudo-label error rate. Middle: If only the confident predictions are
taken into account, CR-Match outperforms the other with an even larger margin in terms of
pseudo-label error rate. Right: In spite of a better pseudo-label error rate on contributing
unlabeled images, the percentage of contributing unlabeled images is maintained the same for
CR-Match.
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Figure 3.5: Left: Effect of different confidence thresholds on error rate. We run experiments
on a single split of CIFAR-100 with 4 labels per class. The model is a Wide-ResNet-28-2. Our
model shows good robustness against small changes in the confidence threshold. Middle:
Effect of different confidence thresholds on pseudo-label error rate during the training. Right:
Effect of different confidence thresholds on the number of unlabeled training samples.

introduces more errors in pseudo-labels.

Effect of different confidence thresholds. For the main results in Section we use a
confidence threshold of 0.95 following [SBL™20]. We now study the model robustness against
different confidence thresholds. Experiments are conducted on a single split with 4 labeled
examples from CIFAR-100 on a Wide ResNet-28-2. Figure [3.5{shows the error rate of CR-Match
when using a confidence threshold from 0.90 to 0.99. In general, the thresholding mechanism
provides the model a relatively smooth transition between learning from labeled data and
learning from unlabeled data. A low percentage of the contributing unlabeled data at the
beginning of the training can alleviate the potential error introduced by the low-quality pseudo-
labels. This suggests that the quality of pseudo-labels is more important than the quantity
for reaching a high accuracy at the early stage. As the model learns from the labeled data,
the error rate of the pseudo-label decreases, and the model becomes more confident about its
predictions. Then, the number of unlabeled data that contribute to the final loss gradually
increases, which allows the model to continue learning from unlabeled data. Figure [3.5|left
also implies that our model is quite robust against small changes in the confidence threshold.
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3.4.3 Influence of Feature Distance Loss

In this section, we analyze different design choices for FeatDistLoss to provide additional
insights of how it helps generalization. We focus on a single split with 4 labeled examples from
CIFAR-100 and report results for a Wide ResNet-28-2 [ZK16a]. For fair comparison, the same 4
random labeled examples for each class are used across all experiments in this section.

Different distance metrics for FeatDistLoss. Here we discuss the effect of different metric
functions d for FeatDistLoss. Specifically, we compare two groups of functions in Table
metrics that increase the distance between features, including cosine similarity, negative JS
divergence, and L2 similarity (i.e. normalized negative L2 distance); metrics that decrease the
distance between features, including cosine distance, JS divergence, and L2 distance. We find
that both increasing and decreasing distance between features of different augmentations give
reasonable performance. However, increasing the distance always performs better than the
counterpart (e.g., cosine similarity is better than cosine distance). We conjecture that decreasing
the feature distance corresponds to an increase of the invariance to data augmentation and leads
to ignorance of information like rotation or translation of the object. In contrast, increasing the
feature distance while still imposing the same label makes the representation equivariant to
these augmentations, resulting in more descriptive and expressive representation with respect
to augmentation. Moreover, a classifier has to cover a broader space in the feature space to
recognize rather dissimilar images from the same class, which leads to improved generalization.
In summary, we found that both increasing and decreasing feature distance improve over the
model which only applies consistency on the classifier level, whereas increasing distances
shows better performance by making representations more equivariant.

Please refer to the supplementary material for experiments of combining both invariant
and equivariant loss in FeatDistLoss.

Metric Error rate
Impose cosine ‘51m.11ar1ty 45.52
equivariance L, similarity 46.22
9 negative JS div. 46.46
cosine distance 46.98
Impose .
. . L, distance 48.74
invariance .
JS divergence 47.48
CR-Match w/o FeatDistLoss 48.89

Table 3.6: Effect of different distance functions for FeatDistLoss. The same split on CIFAR-100
with 4 labels per class and a Wide ResNet-28-2 is used for all experiments. Metrics that
pull features together performs worse than those that push features apart. The error rate of
CR-Match without FeatDistLoss is shown at the bottom.

Invariance and equivariance. Here we provide an additional analysis to demonstrate that
increasing the feature distance provides equivariant features while the other provides invariant
features. Based on the intuition that specific transformations of the input image should be
more predictable from equivariant representations, we quantify the equivariance by how
accurate a linear classifier can distinguish between features from augmented and original
images. Specifically, we compare two models from Table the model trained with cosine
similarity denoted as CR-Equiv and the model trained with cosine distance denoted as CR-Inv.
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Feature extractor

Transformations

CR-Equiv CR-Inv
Translation 33.22+0.28 36.80740.30
Scaling 11.091+0.66 14.87+0.40
Rotation 15.05+0.33 21.92+0.32

ColorJittering 31.04£0.50 35.997F0.27

Table 3.7: Error rates of binary classification (whether a specific augmentation is applied)
on the features from CR-Equiv (increasing the cosine distance) and CR-Inv (decreasing the
cosine distance). We evaluate translation, scaling, rotation, and color jittering. Lower error rate
indicates more equivariant features. Results are averaged over 10 runs.

We train a linear SVM to predict whether a certain transformation is applied for the input
image. 1000 test images from CIFAR-100 are used for training and the rest (9000) for validation.
The binary classifier is trained by an SGD optimizer with an initial learning rate of 0.001 for
50 epochs, and the feature extractor is fixed during training. We evaluate translation, scaling,
rotation, and color jittering in Table All augmentations are from the standard PyTorch
library. The SVM has a better error rate across all augmentations when trained on CR-Equiv
features, which means information like object location or orientation is more predictable from
CR-Equiv features, suggesting that CR-Equiv produces more equivariant features than CR-Inv.
Furthermore, if the SVM is trained to classify strongly and weakly augmented image features,
CR-Equiv achieves a 0.27% test error while CR-Inv is 46.18%.

Regularization on the classifier level. As we described in Section FeatDistLoss contains
two levels of regularization: On the feature level, representations are encouraged to become
more equivariant. On the classifier level, the same class label is imposed on different versions
of the same image via pseudo-labeling. Here we provide more insights into the regularization
on the classifier level in Table Specifically, we conduct experiments on replacing or
complementing the CE loss with Jensen-Shannon divergence. First, we can see that removing
the classifier loss and using only the equivariant loss on the feature level leads to a significant
drop on performance (from 45.52% to 91.53%). This is because Lp;s; alone will just make
the model aware of the difference between augmentations but does not help the classifier to
distinguish between classes of unlabeled data, making the classifier unable to benefit from the
usage of unlabeled data. Thus, the performance is on par with the model trained on labeled
data only (91.28% error rate) Second, complementing the cross-entropy loss on the classifier
level with Jensen-Shannon divergence, improves the performance (45.01%) while replacing it
leads to inferior performance (76.83%).

Different data augmentations for FeatDistLoss. In our main results in Section FeatDist-
Loss is computed between features generated by weak augmentation and strong augmentation.
Here we investigate the impact of FeatDistLoss with respect to different types of data aug-
mentations. Specifically, we evaluate the error rate of CR-Inv and CR-Equiv under three
augmentation strategies: weak-weak pair indicates that FeatDistLoss uses two weakly aug-
mented images, weak-strong pair indicates that FeatDistLoss uses a weak augmentation and
a strong augmentation, and strong-strong pair indicates that FeatDistLoss uses two strongly
augmented images.

As shown in Table using either CR-Inv or CR-Equiv using weak-strong pairs conistently
outperforms the other augmentation settings (weak-weak and strong-strong). Additionally,
CR-Equiv consistently achieves better generalization performance across all three settings. In



42 CHAPTER 3. CONSISTENCY REGULARIZATION FOR SEMI-SUPERVISED LEARNING

Classifier level Feature level Error rate

None None 91.28
None Equiv. 91.53
CE Equiv. 45.52
JSD Equiv. 76.83
CE +JSD Equiv. 45.01

Table 3.8: Effect of different regularization techniques on the classifier level. CE denotes cross-
entropy loss. JSD denotes Jensen-Shannon divergence. Equiv. denotes the equivariance version
of Lpist. Note that the chance level is 99%. None + None represents the model trained with
labeled data only. The same split on CIFAR-100 with 4 labels per class and a Wide ResNet-28-2
is used for all experiments.

Error rate CR-Inv CR-Equiv
Weak-Weak 48.88 48.51
Weak-Strong 46.98 45.52
Strong-Strong 48.57 48.05

Table 3.9: Effect of combinations of weak and strong augmentation in FeatDistLoss on a Wide
ResNet-28-2 for CR-Inv and CR-Equiv.

particular, in the case advocated in this chapter, namely using weak-strong pairs, CR-Equiv
outperforms CR-Inv by 1.46%. Even in the other two settings, CR-Equiv leads to improved
performance even though only by a small margin. This suggests that, on the one hand, that it
is important to use different types of augmentations for our FeatDistLoss. And on the other
hand, maximizing distances between images that are inherently different while still imposing
the same class label makes the model more robust against changes in the feature space and
thus gives better generalization performance.

Linear projection and confidence threshold in FeatDistLoss. As mentioned in Section we
apply Lpis at (a) in Figure with a linear layer mapping the feature from the encoder to
a low-dimensional space before computing the loss, to alleviate the curse of dimensionality.
Also, the loss only takes effect when the model’s prediction has a confidence score above a
predefined threshold 7. Here we study the effect of other design choices in Table While
features after the global average pooling (i.e. (b)) gives a better result than the ones directly
from the feature extractor, (b) performs worse than (a) when additional projection heads are
added. Thus, we use features from the feature extractor in CR-Match. The error rate increases

Features taken featur feature feature
from Fig. at cature + linear + MLP
(a) 48.37 4552 47.52
(b) 4737  46.10  47.15

Table 3.10: Effect of the projection head z, and the place to apply Lp;s. (a) denotes un-flattened
features taken from the feature extractor directly. (b) denotes features after the global average
pooling. MLP has 2 FC layers and a ReLU. Removing the linear projection head harms the test
error, and a non-linear projection head does not improve the performance further.
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from 45.52% to 48.37% and 47.52% when removing the linear layer and replacing the linear
layer by a MLP (two fully-connected layers and a ReLU activation function), respectively. This
suggests that a lower dimensional space serves better for comparing distances, but a non-linear
mapping does not give further improvement. Moreover, when we apply FeatDistLoss for all
pairs of input images by removing the confidence threshold, the test error increases from
45.52% to 46.94%, which suggests that regularization should be only performed on features
that are actually used to update the model parameters, and ignoring those that are also ignored
by the model.

@ aquarium fish @ crab pickup_truck @ caterpillar

@ butterfly @ bicycle @ bowl pear ® bee ® fox

Figure 3.6: We plot t-SNE of input image features extracted by a CR-Match model trained
without FeatDistLoss (left) and a CR-Match model with it (right). The better separation from
CR-Match suggests that FeatDistLoss improves decision boundaries.

FeatDistLoss improves decision boundaries.

As suggested by Figure models trained with FeatDistLoss tend to have improved
decision boundaries. Here we take two models from section CR-Match (39.22% error
rate) and CR-Match without FeatDistLoss (41.48% error rate), and plot t-SNE plots of features
extracted from unlabeled images. As shown in Figure CR-Match with FeatDistLoss
produces better separation between classes. For example, CR-Match forms two clearer clusters
for caterpillar and butterfly, while CR-Match without FeatDistLoss mostly mixes them up.
Another example is that the overlap between crab, bowl, and pear is much less for CR-Match
compared to CR-Match without FeatDistLoss. Moreover, the improved decision boundaries
also lead to better per-class error rate. The standard deviation of per-class error rates for
CR-Match is 4.34% lower than that from CR-Match without FeatDistLoss (30.83% v.s. 26.49%).

Additional analysis on FeatDistLoss.

To further verify the importance of FeatDistLoss, we show in Figure [3.7 the contribution of
FeatDistLoss compared to other losses. The model is CR-Equiv. trained on CIFAR-100 with
4 labels per class. We can see that during the training, the two components of FeatDistLoss,
Lpist and Lpgeydorave, account for a large portion of the overall loss, thus, the gradient. Note
that Lp;s is the negative cosine distance, thus, ranging from 1 to -1.
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Figure 3.7: The amount of the contribution of the regularization term in the loss. The model is
CR-Equiv. trained on CIFAR-100 with 4 labels per class.

3.5 EXPERIMENTS ON IMBALANCED SSL

In this section, we go beyond the standard setting and evaluate the efficacy of our method
under imbalanced SSL settings where both labeled and unlabeled data follow class imbalanced
distributions. We first present the problem setup of imbalanced SSL. Then, we introduce the
construction of the datasets before showing the final evaluation results.

Problem setup and notations. For a K-class classification problem, there is a labeled set
X = {(xn,yn) : n € (1,..,N)} and an unlabeled set Y = {u, : m € (1,..,M)}, where
Xn, Uy € R? are training examples and y, € {1,..., K} are class labels for labeled examples. Nj
and Mj denote the numbers of labeled and unlabeled examples in class k, respectively, i.e.,
YX Ny = N and Y& ; My = M. Without loss of generality, we assume the classes are sorted
by the number of training samples in descending order, i.e., Ny > N, > ... > Ni. The goal is to
train a classifier f : R? — {1,..., K} on X Ul that generalizes well on a class-balanced test set.

Datasets. We consider three common datasets in the field to evaluate the efficacy of CRMatch
for imbalanced SSL: CIFAR10-LT [KH " 09al], CIFAR100-LT [KH" 09a], and Semi-Aves [SM21al.

For CIFAR-10-LT and CIFAR100-LT, we follow the convention [KHP"20b, WSM™ 21| and
randomly select some training images for each class determined by a pre-defined imbalance

ratio 7 as the labeled and the unlabeled set. Specifically, we set Ny = Nj - 'y’% for labeled

data and M; = M; - ’y’% for unlabeled data. We use N; = 1500; M; = 3000 for CIFAR-10
and N; = 150; M; = 300 for CIFAR-100, respectively. Following [KHP"20b, WSM™21], we
report results with imbalance ratio v = 50, 100 and 150 for CIFAR10-LT and v = 20, 50 and
100 for CIFAR100-LT. Therefore, the number of labeled samples for the least class is 10 and 1
for CIFAR-10 with ¢ = 150 and CIFAR-100 with 7 = 100, respectively.

Semi-Aves is a subset of bird species from the Aves kingdom of the iNaturalist 2018 dataset.
There are 200 in-class and 8oo out-of-class categories. The dataset consists of a labeled set L;,
with 3,959 labeled images, an in-class unlabeled set U;, with 26,640 images, an out-of-class
unlabeled set U,,; with 122,208 images, a validation set L., of 2,000 images, and 8,000 test
images. The training data in L;,, U;,, and U,,; has imbalanced distributions, specifically L;,
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has 5 to 43 images and U, has 16 to 229 images per class. The validation data and test data
have a uniform distribution with 40 and 10 images per class, repectively. In our experiments,
we use L;, or L;, U L., as the labeled set and U;,, as the unlabeled set. We do not use unlabeled
images from U,,; since out-of-class unlabeled images are found empirically harmful to the
final performance [OOR™ 18] and making good use of out-of-class unlabeled images is out of
the scope of this chapter. More details on the class distribution can be found in [SM21al.

Class index 1 2 3 4 5 6 7 8 9 10  Avg.

Recall FixMatch + CReST+ 98.6 99.3 858 1774 844 634 772 555 374 346 713
CR-Match + CReST+ 98.6 99.6 88.8 8255 86.7 67.8 78.7 57.0 42.7 40.6 74.3

FixMatch + CReST+ 53.3 614 714 579 77.0 824 930 971 97.6 98.0 78.9

Precision CR-Match + CReST+ 56.1 62,9 75.1 63.7 78.6 833 945 971 981 971 80.7

Table 3.11: Class-wise precision and recall (%) on the balanced test set of CIFAR-10-LT. Models
are trained with imbalance ratio v = 150.

Implementation details. Due to the performance superiority of Eu_eqm over Lii_inp, W€
use CR-Equiv throughout this section. For all experiments in this section, we use the same
hyper-parameters and design choices from the CIFAR experiments in Section We deploy
FixMatch [SBL™20] as the base SSL method due to its superiority under the standard SSL
settings. A Wide ResNet-28-2 [ZK16a] is used as the backbone as recommended by [OOR™ 18].
We base our implementation on the public codebases of each methods. Therefore, method-
specific hyper-parameters follow the same as in their original papers [KHP™20b, WSM ™ 21].
For example, all experiments on CIFAR-LT are trained with batch size 64 using Adam optimizer
[KB15|] with a constant learning rate of 0.002 without any decay. We train the models for 500
epochs, each of which has 500 steps, resulting in a total number of 2.5 x 10° training iterations.
On Semi-Aves, we follow the hyper-parameters from [OKK21a]. For example, the models are
trained for 9o epochs with a batch size of 256, and the optimizer is SGD with a learning rate of
0.04. For all experiments, we report the average test accuracy of the last 20 epochs following
[OORT18].

Results on CIFAR-10 and CIFAR-100. Table and Table compare our method with
various SSL algorithms and long-tailed recognition algorithms on CIFAR-10-LT and CIFAR-100-
LT with various imbalance ratios y. Adding our method shows improved performance in most
of settings. Our method combining with CoSSL [FDKS22] achieves the best or comparable
performance across all settings. In particular, CRMatch + CoSSL outperforms others at large
imbalance ratios (82.29% v.s. the second best 81.28% on CIFAR-10 at imbalance ratio v = 150),
which indicates the superiority of our method in handling severe dataset imbalance.

To analyze how the improvement is obtained, we compare the class-wise precision and
recall of CReST+ and CReST+ with our method in Table Both models are trained with
imbalance ratio v = 150 on CIFAR-10-LT using the same data split. The class indices are sorted
according to the number of samples in descending order, i.e., class 1 has the largest number of
data. For CReST+, the head classes tend to have higher precision but lower recall while the
tail classes have lower precision but higher recall. By adding our method, the recall on the tail
classes can be significantly improved without sacrificing much precision, which leads to the
overall better performance. Similarly, the precision of the head classes is improved while the
recall remains at the same level.

Results on Semi-Aves. As Semi-Aves is naturally imbalanced (y ~ 9 and 4 for Ly, and
Liy U Ly, respectively), we compare CRMatch with other methods using different numbers of
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CIFAR-10-LT
=50 Y=100 Y=150
vanilla 65.2+0.05* 58.8+£0.13" 55.64+0.43"
Long-tailed recognition methods
Re-sampling [Japoo]| 64.3+0.48" 55.84+0.47" 52.24-0.05"
LDAM-DRW [CWG™T19] 68.9+£0.07* 62.840.17° 57.9+0.20*
cRT [KXR ™ 20] 67.8+0.13" 63.24+0.45" 59.3+0.10*
SSL methods
FixMatch [SBL"20] 81.58+0.34 74.74+1.35 70.04%0.77
ReMixMatch [BCC™20] 82.79+0.17 76.81+0.23 72.53+1.16
FlexMatch [ZWH™ 21]] 81.89+0.25 74.944+0.96 70.09%0.42
CR-Match 82.87+0.04 76.54+0.87 72.14+0.76
FixMatch + DARP [KHP " 20b] 82.46+0.30 76.51+0.50 71.88+1.02
ReMixMatch + DARP [KHP"20b]  82.88+0.23 76.7740.29  72.90+0.95
FlexMatch + DARP [KHP ™ 20b] 81.93+0.22  74.84+0.66 70.46+0.58
CR-Match + DARP 83.22+0.27  77.32+0.29  73.44%0.06

FixMatch + CReST+ [WSM ™ 21] 82.25+0.08 76.31+0.23 71.70%0.83
ReMixMatch + CReST+ [WSM™21] 83.71+0.17 79.13+0.19  75.17£0.31
FlexMatch + CReST+ [WSM™ 21]] 82.75+0.25 77.23+0.35 72.2140.11

CR-Match + CReST+ 84.11+0.32 78.55+0.55 74.2140.11
FixMatch + CoSSL [FDKS22| 86.63+0.24 83.10+0.48 80.15+0.59
ReMixMatch + CoSSL [[FDKS22] 87.55+0.06  84.15+0.65 81.28+0.95
FlexMatch + CoSSL [FDKS22] 86.30+0.30 81.61+0.74 78.80%0.73
CR-Match + CoSSL [FDKS22] 88.11+0.17 84.80+0.54 82.29+0.33

Table 3.12: Classification accuracy (%) on CIFAR-10-LT using a Wide ResNet-28-2 under the
uniform test distribution of three different class-imbalance ratios y. The numbers are averaged
over 5 different folds. We use the same code base as [KHP™20b] for fair comparison following
[OOR™18]. Numbers with * are taken from the original papers. The best number is in bold
and the second best number is in italic.

labeled data. We report the raw performance of backbone algorithms as well as the performance
with CoSSL [FDKS22] considering its superior performance on CIFAR-10-LT and CIFAR-100-LT.
From Table we can see that CRMatch outperforms other backbone algorithms by a large
margin in both settings. While CoSSL leads to improvement in all methods, CRMatch still
achieves the best performance, which demonstrates the effectiveness of our method in realistic
settings.
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CIFAR-100-LT

Y=20 Y=50 Y=100
FixMatch [SBL"20] 49.58+0.90 42.10+0.38 37.46+0.48
ReMixMatch [BCC™20] 51.46+0.51 44.37+0.62 39.29+0.59
FlexMatch [ZWH™"21]] 51.00£0.75 42.86+0.42 37.20+0.51
CR-Match 52.03+0.42 44.37+0.57 39.32+0.31
FixMatch + DARP [KHP"20b] 50.89£0.86 43.12+0.61 38.19+0.47
ReMixMatch + DARP [KHP"20b]  51.95+0.40 45.24+0.46 39.50+0.58
FlexMatch + DARP [KHP™20b] 50.78+0.71 42.81+0.36 36.99+0.66
CR-Match + DARP 49.33+0.32  44.13+0.38 39.18+0.80
FixMatch + CReST+ [WSM™21] 51.874+0.11 45.25+0.06 40.41+0.35
ReMixMatch + CReST+ [WSM™21] 51.2240.38 45.91+0.33 41.24+0.79
FlexMatch + CReST+ [WSM™21]] 51.16+0.63 43.12+0.57 38.09+0.58
CR-Match + CReST+ 53.77+0.36  46.44+0.58 40.94+0.43
FixMatch + CoSSL [FDKS22] 53.9920.87 47.78+0.53 42.87+0.61
ReMixMatch + CoSSL [FDKS22] 55.92+0.69 49.10%£0.59 44.10+0.68
FlexMatch + CoSSL [FDKS22] 53.46+0.79 46.83+0.80 41.42+0.58
CR-Match + CoSSL [FDKS22] 55.34+0.43 48.83+0.87 44.21+0.61

Table 3.13: Classification accuracy (%) on CIFAR-100-LT under the uniform test distribution of
three different class-imbalance ratios . The numbers are averaged over 5 different folds. We
reproduce all numbers using the same codebase from [KHP"20b] for a fair comparison. The
best number is in bold and the second best number is in italic.

Semi-Aves
X =LiyULyy X =1Ly
FixMatch [SBL"20] 53.15 42.46
ReMixMatch [BCC™20] 51.28 40.10
FlexMatch [ZWH™ 21]] 52.78 43.50
CRMatch 54.53 44.42
FixMatch + CoSSL [FDKS22] 54.15 44.58
ReMixMatch + CoSSL [FDKS22] 54.13 43.97
FlexMatch + CoSSL [FDKS22]] 53.98 44.09
CRMatch + CoSSL [FDKS22| 54.90 45.81

Table 3.14: Classification accuracy (%) on Semi-Aves under the uniform test distribution. Ly,4,
and L;, U Ly, have imbalance ratio y ~ 9 and 7 =~ 4, respectively. The best number is in bold
and the second best number is in italic.
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3.6 CONCLUSION

The idea of consistency regularization gives rise to many successful works for SSL [BAP14a)
LA17,[SJT16al SBL™ 20, XDH " 19, KMHK?20]. While making the model invariant against input
perturbations induced by data augmentation gives improved performance, the scheme tends to
be suboptimal when augmentations of different intensities are used. In this work, we propose a
simple yet effective improvement, called FeatDistLoss. It introduces consistency regularization
on both the classifier level, where the same class label is imposed for versions of the same
image, and the feature level, where distances between features from augmentations of different
intensities is increased. By encouraging the representation to distinguish between weakly
and strongly augmented images, FeatDistLoss encourages more equivariant representations,
leading to improved classification boundaries, and a more robust model.

Through extensive experiments we show the superiority of our training framework, and
define a new state-of-the-art on both standard and imbalanced semi-supervised learning
benchmarks. Particularly, our method outperforms previous methods in low data regimes by
significant margins, e.g., on CIFAR-100 with 4 annotated examples per class, our error rate
(39.45%) is 4.83% better than the second best (44.28%). In future work, we are interested in
integrating more prior knowledge and stronger regularization into SSL to further push the
performance in low data regimes.
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semi-supervised learning (SSL). While confidence threshold-based pseudo-labeling has
significantly advanced SSL, we argue that existing methods might fail to utilize the
unlabeled data more effectively since they either use a pre-defined / fixed threshold or an
ad-hoc threshold adjusting scheme. We first analyze a motivating example to obtain intuitions
on the relationship between the desirable threshold and model’s learning status. Based on
the analysis, we hence propose FreeMatch to adjust the confidence threshold in a self-adaptive
manner according to the model’s learning status. We further introduce a self-adaptive class
fairness regularization penalty to encourage the model for diverse predictions during the early
training stage. Extensive experiments indicate the superiority of FreeMatch especially when
the labeled data are extremely rare. FreeMatch achieves 5.78%, 13.59%, and 1.28% error rate
reduction over the latest state-of-the-art method FlexMatch on CIFAR-10 with 1 label per class,
STL-10 with 4 labels per class, and ImageNet with 100 labels per class, respectively. Moreover,
FreeMatch can also boost the performance of imbalanced SSL.
This chapter is based on [WCH"23]]. As one of the co-authors, Yue Fan was involved in
the weekly and more detailed discussions and contributed to the writing of the paper and the
imbalanced SSL experiments.

IN this chapter, we explore pseudo-labeling, another widely adopted methodology in

4.1 INTRODUCTION

The superior performance of deep learning heavily relies on supervised training with sufficient
labeled data [HZRS16b, VSP' 17, [DXX18]. However, it remains laborious and expensive to
obtain massive labeled data. To alleviate such reliance, semi-supervised learning (SSL) [Zhuosb),
ZGogb), [SBL " 20, [RHSo5al, GTM™ 16, KDGBA19, DYY " 17] is developed to improve the model’s
generalization performance by exploiting a large volume of unlabeled data. Pseudo labeling
[Lee13, XLHL20b, [McL75, IRDRS20] and consistency regularization [BAP14b,[ST17,|SJT16b] are
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Figure 4.1: Demonstration of how FreeMatch works on the “two-moon” dataset. (a) Decision
boundary of FreeMatch and other SSL methods. (b) Decision boundary improvement of
self-adaptive fairness (SAF) on two labeled samples per class. (c) Class-average confidence
threshold. (d) Class-average sampling rate of FreeMatch during training.

two popular paradigms designed for modern SSL. Recently, their combinations have shown
promising results [XDH™20b, SBL™ 20, PDXL21, XSY" 21, ZWH™" 21]. The key idea is that the
model should produce similar predictions or the same pseudo labels for the same unlabeled
data under different perturbations following the smoothness and low-density assumptions in
SSL [CSZo6].

A potential limitation of these threshold-based methods is that they either need a fixed
threshold [XDH™ 20b}, SBL™ 20, ZWH™ 21, [GL22] or an ad-hoc threshold adjusting scheme [XSY " 21]
to compute the loss with only confident unlabeled samples. Specifically, UDA [XDH™20b]
and FixMatch [SBL™20] retain a fixed high threshold to ensure the quality of pseudo labels.
However, a fixed high threshold (0.95) could lead to low data utilization in the early training
stages and ignore the different learning difficulties of different classes. Dash [XSY"21] and
AdaMatch [BRS™22] propose to gradually grow the fixed global (dataset-specific) threshold as
the training progresses. Although the utilization of unlabeled data is improved, their ad-hoc
threshold adjusting scheme is arbitrarily controlled by hyper-parameters and thus disconnected
from model’s learning process. FlexMatch [ZWHT"21] demonstrates that different classes
should have different local (class-specific) thresholds. While the local thresholds take into
account the learning difficulties of different classes, they are still mapped from a pre-defined
fixed global threshold. Adsh [GL22] obtains adaptive thresholds from a pre-defined threshold
for imbalanced Semi-supervised Learning by optimizing the the number of pseudo labels
for each class. In a nutshell, these methods might be incapable or insufficient in terms of
adjusting thresholds according to model’s learning progress, thus impeding the training process
especially when labeled data is too scarce to provide adequate supervision.

For example, as shown in Fig. 4.1|(a), on the “two-moon” dataset with only 1 labeled sample
for each class, the decision boundaries obtained by previous methods fail in the low-density
assumption. Then, two questions naturally arise: 1) Is it necessary to determine the threshold based
on the model learning status? and 2) How to adaptively adjust the threshold for best training efficiency?

In this chapter, we first leverage a motivating example to demonstrate that different datasets
and classes should determine their global (dataset-specific) and local (class-specific) thresholds
based on the model’s learning status. Intuitively, we need a low global threshold to utilize
more unlabeled data and speed up convergence at early training stages. As the prediction
confidence increases, a higher global threshold is necessary to filter out wrong pseudo labels to
alleviate the confirmation bias [AOA " 20b]. Besides, a local threshold should be defined on
each class based on the model’s confidence about its predictions. The “two-moon” example in
Fig. (a) shows that the decision boundary is more reasonable when adjusting the thresholds



4.2 A MOTIVATING EXAMPLE 51

based on the model’s learning status.

We then propose FreeMatch to adjust the thresholds in a self-adaptive manner according
to learning status of each class [GPSW17]. Specifically, FreeMatch uses the self-adaptive
thresholding (SAT) technique to estimate both the global (dataset-specific) and local thresholds
(class-specific) via the exponential moving average (EMA) of the unlabeled data confidence.
To handle barely supervised settings [SBL™20] more effectively, we further propose a class
fairness objective to encourage the model to produce fair (i.e., diverse) predictions among all
classes (as shown in Fig. (b)). The overall training objective of FreeMatch maximizes the
mutual information between model’s input and output [JB91], producing confident and diverse
predictions on unlabeled data. Benchmark results validate its effectiveness. To conclude, our
contributions are:

¢ Using a motivating example, we discuss why thresholds should reflect the model’s
learning status and provide some intuitions for designing a threshold-adjusting scheme.

¢ We propose a novel approach, FreeMatch, which consists of Self-Adaptive Thresholding
(SAT) and Self-Adaptive class Fairness regularization (SAF). SAT is a threshold-adjusting
scheme that is free of setting thresholds manually and SAF encourages diverse predictions.

¢ Extensive results demonstrate the superior performance of FreeMatch on various SSL
benchmarks, especially when the number of labels is very limited (e.g, an error reduction
of 5.78% on CIFAR-10 with 1 labeled sample per class).

4.2 A MOTIVATING EXAMPLE

In this section, we introduce a binary classification example to motivate our threshold-adjusting
scheme. Despite the simplification of the actual model and training process, the analysis leads
to some interesting implications and provides insight into how the thresholds should be set.

We aim to demonstrate the necessity of the self-adaptability and increased granularity
in confidence thresholding for SSL. Inspired by [YX20], we consider a binary classification
problem where the true distribution is an even mixture of two Gaussians (i.e., the label Y is
equally likely to be positive (+1) or negative (—1)). The input X has the following conditional
distribution:

X|Y=—-1~N(u,02), X | Y =+1~ N(up,03). (4-1)

We assume yp > pp without loss of generality. Suppose that our classifier outputs confidence
score s(x) = 1/[1 + exp(—B(x — 52))], where B is a positive parameter that reflects the
model learning status and it is expected to gradually grow during training as the model
becomes more confident. Note that @ is in fact the Bayes’ optimal linear decision boundary.
We consider the scenario where a fixed threshold 7 ¢ (%, 1) is used to generate pseudo labels.
A sample x is assigned pseudo label +1 if s(x) > T and —1 if s(x) < 1 — 7. The pseudo label
is 0 (masked) if 1 — 7 < s(x) < 7.

We then derive the following theorem to show the necessity of self-adaptive threshold:

Theorem 4.2.1. For a binary classification problem as mentioned above, the pseudo label Y, has the
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following probability distribution:

Ha—p1 _ 19 T Mizk 14 T
o1 pl B Og(lfr) 1 > B Og(lfT)
P(Y,=1) = QCD( 7 ) + 543( o ),
Ha—H1 1 T H1—H2 1 T
B 1 P glegliR) 1 TR 3 log (%) (4-2)
P(Y, = 1) = yo(—— LT s e LT,

P(Y,=0)=1-P(Y,=1) - P(Y, = 1),

where @ is the cumulative distribution function of a standard normal distribution. Moreover, P(Y, = 0)
increases as py — yy gets smaller.

Theorem has the following implications or interpretations:

(i) Trivially, unlabeled data utilization (sampling rate) 1 — P(Y, = 0) is directly controlled
by threshold 7. As the confidence threshold T gets larger, the unlabeled data utilization
gets lower. At early training stages, adopting a high threshold may lead to low sampling
rate and slow convergence since f is still small.

(ii) More interestingly, P(Y, = 1) # P(Y, = —1) if 01 # 0». In fact, the larger 7 is, the more
imbalanced the pseudo labels are. This is potentially undesirable in the sense that we
aim to tackle a balanced classification problem. Imbalanced pseudo labels may distort
the decision boundary and lead to the so-called pseudo label bias. An easy remedy for
this is to use class-specific thresholds 7 and 1 — 7 to assign pseudo labels.

(iii) The sampling rate 1 — P(Y), = 0) decreases as y, — j; gets smaller. In other words, the
more similar the two classes are, the more likely an unlabeled sample will be masked. As
the two classes get more similar, there would be more samples mixed in feature space
where the model is less confident about its predictions, thus a moderate threshold is
needed to balance the sampling rate. Otherwise we may not have enough samples to
train the model to classify the already difficult-to-classify classes.

The intuitions provided by Theorem is that at the early training stages, T should
be low to encourage diverse pseudo labels, improve unlabeled data utilization and fasten
convergence. However, as training continues and B grows larger, a consistently low threshold
will lead to unacceptable confirmation bias. Ideally, the threshold T should increase along with
B to maintain a stable sampling rate throughout. Since different classes have different levels
of intra-class diversity (different ) and some classes are harder to classify than others (y2 — 1
being small), a fine-grained class-specific threshold is desirable to encourage fair assignment
of pseudo labels to different classes. The challenge is how to design a threshold adjusting
scheme that takes all implications into account, which is the main contribution of this chapter.
We demonstrate our algorithm by plotting the average threshold trend and marginal pseudo
label probability (i.e. sampling rate) during training in Fig. (c) and |4.1](d). To sum up, we
should determine global (dataset-specific) and local (class-specific) thresholds by estimating
the learning status via predictions from the model. Then, we detail FreeMatch.

4.3 PRELIMINARIES

In SSL, the training data consists of labeled and unlabeled data. Let D = {(xp,yp) : b € [NL]}
and Dy = {up : b € [Ny} be the labeled and unlabeled data, where N; and Ny is their

N]:={1,2,...,N}.
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number of samples, respectively. The supervised loss for labeled data is:

Du\)—\

B
Z (Yo, P (ylw (xp))), (4-3)

where B is the batch size, (-, -) refers to cross-entropy loss, w(-) means the stochastic data
augmentation function, and p,,(-) is the output probability from the model.

For unlabeled data, we focus on pseudo labeling using cross-entropy loss with confidence
threshold for entropy minimization. We also adopt the “Weak and Strong Augmentation”
strategy introduced by UDA [XDHT20b]. Formally, the unsupervised training objective for
unlabeled data is:

1 1B

Lo =g 1o Hmax(qe) > ) M, Q) (44

We use g, and Q, to denote abbreviation of p,,(y|w(up)) and p,(y|Q(uyp)), respectively. 4§
is the hard “one-hot” label converted from g;, y is the ratio of unlabeled data batch size to
labeled data batch size, and 1(- > 7) is the indicator function for confidence-based thresholding
with T being the threshold. The weak augmentation (i.e., random crop and flip) and strong
augmentation (i.e., Rand Augment [CZSL20]) is represented by w(-) and Q)(-) respectively.

Besides, a fairness objective L is usually introduced to encourage the model to predict
each class at the same frequency, which usually has the form of £L¢ = UlogE,3 [95] [AK10],
where U is a uniform prior distribution. One may notice that using a uniform prior not only
prevents the generalization to non-uniform data distribution but also ignores the fact that the
underlying pseudo label distribution for a mini-batch may be imbalanced due to the sampling
mechanism. The uniformity across a batch is essential for fair utilization of samples with
per-class threshold, especially for early-training stages.

4.4 FREEMATCH

4.4.1  Self-Adaptive Thresholding

We advocate that the key to determining thresholds for SSL is that thresholds should reflect
the learning status. The learning effect can be estimated by the prediction confidence of a
well-calibrated model [GPSW17]. Hence, we propose self-adaptive thresholding (SAT) that auto-
matically defines and adaptively adjusts the confidence threshold for each class by leveraging
the model predictions during training. SAT first estimates a global threshold as the EMA
of the confidence from the model. Then, SAT modulates the global threshold via the local
class-specific thresholds estimated as the EMA of the probability for each class from the model.
When training starts, the threshold is low to accept more possibly correct samples into training.
As the model becomes more confident, the threshold adaptively increases to filter out possibly
incorrect samples to reduce the confirmation bias. Thus, as shown in Fig. we define SAT as
T;(¢) indicating the threshold for class c at the t-th iteration.

Self-adaptive Global Threshold We design the global threshold based on the following two
principles. First, the global threshold in SAT should be related to the model’s confidence on
unlabeled data, reflecting the overall learning status. Moreover, the global threshold should
stably increase during training to ensure incorrect pseudo labels are discarded. We set the
global threshold 7; as average confidence from the model on unlabeled data, where t represents
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Self-adaptive Thresholding
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Figure 4.2: Illustration of Self-Adaptive Thresholding (SAT). FreeMatch adopts both global and
local self-adaptive thresholds computed from the EMA of prediction statistics from unlabeled
samples. Filtered (masked) samples are marked with red X.

the t-th time step (iteration). However, it would be time-consuming to compute the confidence
for all unlabeled data at every time step or even every training epoch due to its large volume.
Instead, we estimate the global confidence as the exponential moving average (EMA) of the
confidence at each training time step. We initialize 7; as % where C indicates the number of
classes. The global threshold 1; is defined and adjusted as:

L ift =0, (45)
T = .
! Ao+ (1— )L)%B 2551 max(qp), otherwise, 45

where A € (0,1) is the momentum decay of EMA.
Self-adaptive Local Threshold The local threshold aims to modulate the global threshold in a
class-specific fashion to account for the intra-class diversity and the possible class adjacency. We

compute the expectation of the model’s predictions on each class c to estimate the class-specific
learning status:

Api—1(c)+ (1 — /\)iTB Yh” q(c), otherwise,

where py = [pr(1), pr(2),..., P¢(C)] is the list containing all f;(c). Integrating the global and
local thresholds, we obtain the final self-adaptive threshold 7;(c) as:
pi(c)

T:(c) = MaxNorm(ps(c)) -t = max{71(0) : c €[]} - T, (4-7)

x
max(x)

where MaxNorm is the Maximum Normalization (i.e., x' =
training objective £, at the t-th iteration is:

). Finally, the unsupervised

1 1B

=3 Y L(max(qy) > 7 (argmax (qs)) - H(4s, Qp)- (4.8)
KB 35

Ly
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4.4.2 Self-Adaptive Fairness

We include the class fairness objective as mentioned in Section [4.3]into FreeMatch to encourage
the model to make diverse predictions for each class and thus produce a meaningful self-
adaptive threshold, especially under the settings where labeled data are rare. Instead of
using a uniform prior as in [AOA™20b], we use the EMA of model predictions p; from
Eq.|4.6/as an estimate of the expectation of prediction distribution over unlabeled data. We
optimize the cross-entropy of f; and p = E,[pm(y|Q(up))] over mini-batch as an estimate
of H(Ey [pm(y|u)]). Considering that the underlying pseudo label distribution may not be
uniform, we propose to modulate the fairness objective in a self-adaptive way, i.e., normalizing
the expectation of probability by the histogram distribution of pseudo labels to counter the
negative effect of imbalance as:

uB
15 1 1 (max () = wlargmax (1) Q »

A

h = Histy (1 (max (g5) > t(argmax (q;)) Qp) -

p

Similar to f;, we compute hy as:
he = Ahy_q + (1 — A) Histyg (4p) - (4.10)

The self-adaptive fairness (SAF) Ly at the t-th iteration is formulated as:

Ef =—H (SumNorm (?) ,SumNorm <Z>> , (4.11)

t

where SumNorm = (-)/ Y.(-). SAF encourages the expectation of the output probability for
each mini-batch to be close to a marginal class distribution of the model, after normalized by
histogram distribution. It helps the model produce diverse predictions especially for barely
supervised settings [SBL™ 20|, thus converges faster and generalizes better. This is also shown
in Fig. [4.1] (b).

The overall objective for FreeMatch at t-th iteration is:
L=Ls+w,L,+ Wfﬁf, (4.12)

where w, and wy represents the loss weight for £, and L respectively. With £, and Ly,
FreeMatch maximizes the mutual information between its outputs and inputs. We present the
procedure of FreeMatch in Algorithm
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Algorithm 2 FreeMatch algorithm at ¢-th iteration.

1 Input: Number of classes C, labeled batch X = {(x;,y;) : b € (1,2,...,B)}, unlabeled
batchd = {u, : b € (1,2,...,uB)}, unsupervised loss weight w,,, fairness loss weight w iz
and EMA decay A.

2: Compute L; for labeled data
Ls = § Ypa My, pu(ylw(x)))

3: Update the global threshold
T =At_1+(1— /\)}%B Egzl max(qy) // qpis pm(y|w(uy)), shape of T: [1]

4 Update the local threshold
Pr=Apa+ (=N h2 0 // Shape of pi: [C)

5: Update histogram for f;

hy = Ahy_1 + (1 — A)Histyg (§5)  // Shape of Iy: [C]

: forc=1to C do

Tt(c) = MaxNorm(p,(c)) - v // Calculate SAT

: end for

: Compute £, on unlabeled data

Lo = 5 42, 1 (max (qp) > 7 (argmax (qs))) -H(qe, Qo)

10: Compute expectation of probability on unlabeled data
P = ;%B Zgil 1 (max (qp) > w(argmax(qy)) Qp // Oy is an abbr. of p,,(y|CQ(uy)), shape of
p: [C]

11: Compute histogram for p
h = Histyp (1 (max (q5) > w(argmax (q,)) Qp) // Shape of h: [C]

12: Compute L on unlabeled data
Lr=—-H (SumNorm(%),SumNorm(%))

13: Return: L +w, - Ly, +wy - Ly

© ® N o

4.5 EXPERIMENTS

4.5.1 Setup

We evaluate FreeMatch on common benchmarks: CIFAR-10/100 [KH " 0ogb], SVHN [NWC™" 11al,
STL-10 [CNL11b] and ImageNet [DDS"og]. Following previous work [SBL'20, XSY"21,
ZWH™ 21, OOR"18], we conduct experiments with varying amounts of labeled data. In
addition to the commonly-chosen labeled amounts, following [SBL™20], we further include the
most challenging case of CIFAR-10: each class has only one labeled sample.

For fair comparison, we train and evaluate all methods using the unified codebase
TorchSSL [ZWHT™21] with the same backbones and hyperparameters. Concretely, we use
Wide ResNet-28-2 [ZK16b|] for CIFAR-10, Wide ResNet-28-8 for CIFAR-100, Wide ResNet-
37-2 [ZWB20] for STL-10, and ResNet-50 [HZRS16b] for ImageNet. We use SGD with a
momentum of 0.9 as optimizer. The initial learning rate is 0.03 with a cosine learning rate decay
schedule as 77 = 79 cos(2X), where 7 is the initial learning rate, k(K) is the current (total)
training step and we set K = 22 for all datasets. At the testing phase, we use an exponential
moving average with the momentum of 0.999 of the training model to conduct inference for
all algorithms. The batch size of labeled data is 64 except for ImageNet where we set 128. We
use the same weight decay value, pre-defined threshold 7, unlabeled batch ratio y and loss
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Dataset | CIFAR-10 | CIFAR-100 | SVHN | STL-10
# Label | 10 40 250 4000 | 400 2500 10000 | 40 250 1000 | 40 1000
IT Model 79.18+111  74.34+176 46.24+129 13.13+059 | 86.96+080 58.80+0.66 36.65+0.00 | 67.48+0.95 13.30£1r12  7.16+011 | 74.31+085 32.78%0.40
Pseudo Label | 80.21+055 74.61+026 46.49+220 15.08+019 | 87.45+085 57.74%0.28 36.55+024 | 64.61+56 15.59+095 9.40+032 | 74.68+099 32.64%0.71
VAT 79.81+1.17  74.66+212 41.03+179 10.51+o12 | 85.20+140 46.84%079 32.144019 | 74.75+3.38 4.33+o12  4.11do20 | 74.74+0.38 37.95+1L12

MeanTeacher | 76.37+044 70.09+160 37.46+330 8.10+021 | 81.11+144 45.17+1.06 31.75+023 | 36.09+3.98 3.45+0.03  3.27+005 | 71.72+145 33.90+1.37
MixMatch 65.76+7.06  36.19+648 13.63+059 6.66+026 | 67.50+0.66 39.76+048 27.784029 | 30.60+839  4.56+032  3.69+037 | 54.93+0.96 21.7040.68
ReMixMatch | 20.77+748  9.88+103  6.30%0.05  4.84+001 | 42.75+1.05 26.03+0.35 20.02+027 | 24.04+9.13  6.36+022  5.16+031 | 32.12+624  6.74%0.14

UDA 34.53+1069 10.62+375 5.16%+006  4.29+007 | 46.39+159 27.73+021 22.49+023 | 5.124427  1.92+005 1.89+001 | 37.42+8.44  6.64+0.17
FixMatch 24.79+7.65  7.47+028  4.86t005  4.21+0.08 | 46.42+082 28.03+0.16 22.20+012 | 3.81+118  2.02+0.02  1.96+0.03 | 35.97+414 6.25+033
Dash 27.28+1409 8.93+3.11  5.16%023  4.36+0a1 | 44.82+096 27.15+022 21.88+o0o0y | 2.19+018  2.04+0.02 Eiom 34.52+430  6.39+0.56
MPL 23.55+6.01  0.62+091  5.76+024  4.55+0.04 | 46.26+184 27.71+o19 21.7440.09 @ﬂ.oz 2.29+0.04 2.28+0.02 | 35.76+483  6.66+0.00
FlexMatch 13.85+1204  4.97+006  4.98+009  4.19+001 | 39.94%162 26.49+020 21.90+o0.15 | 8.19+3.20  6.59+229  6.72+0.30 | 20.15+4.16  5.7740.18
FreeMatch T(ﬂi4,24 mzo,m 4.88+0.18 mio.oz ﬁio.;@z 26.47+020 21.68+0.03 | 1.97+o.02 1.97+001  1.9640.03 ﬁioss Eio.ls

Table 4.1: Error rates on CIFAR-10/100, SVHN, and STL-10 datasets. The fully-supervised
results of STL-10 are unavailable since we do not have label information for its unlabeled data.
Bold indicates the best result and underline indicates the second-best result.

weights introduced for Pseudo-Label [Lee13], IT model [RBH 15b], Mean Teacher [TV1i7b],
VAT [MMKI18a], MixMatch [BCG'19], ReMixMatch [BCC"20], UDA [XDH™"20b], FixMatch
[SBL™20], and FlexMatch [ZWH21].

We implement MPL based on UDA as in [PDXL21], where we set temperature as 0.8 and
wy as 10. We do not fine-tune MPL on labeled data as in [PDXL21] since we find fine-tuning
will make the model overfit the labeled data especially with very few of them. For Dash, we use
the same parameters as in [XSY"21] except we warm-up on labeled data for 2 epochs since too
much warm-up will lead to the overfitting (i.e. 2,048 training iterations). For FreeMatch, we set
wy = 1 for all experiments. Besides, we set wr = 0.01 for CIFAR-10 with 10 labels, CIFAR-100
with 400 labels, STL-10 with 40 labels, ImageNet with 100k labels, and all experiments for
SVHN. For other settings, we use w ¢ = 0.05. For SVHN, we find that using a low threshold
at early training stage impedes the model to cluster the unlabeled data, thus we adopt two
training techniques for SVHN: (1) warm-up the model on only labeled data for 2 epochs as
Dash; and (2) restrict the SAT within the range [0.9,0.95]. We train each algorithm 3 times
using different random seeds and report the best error rates of all checkpoints [ZWH™21].

4.5.2 Quantitative Results

The Top-1 classification error rates of CIFAR-10/100, SVHN, and STL-10 are reported in
Table The results on ImageNet with 100 labels per class are in Table These quantitative
results demonstrate that FreeMatch achieves the best performance on CIFAR-10, STL-10,
and ImageNet datasets, and it produces very close results on SVHN to the best competitor.
On CIFAR-100, FreeMatch is better than ReMixMatch when there are 400 labels. The good
performances of ReMixMatch on CIFAR-100 (2500) and CIFAR-100 (10000) are probably brought
by the mix up [ZCDLP18] technique and the self-supervised learning part. On ImageNet with
100k labels, FreeMatch significantly outperforms the latest counterpart FlexMatch by 1.28%f]
We also notice that FreeMatch exhibits fast computation in ImageNet from Table Note that
FlexMatch is much slower than FixMatch and FreeMatch because it needs to maintain a list
that records whether each sample is clean, which needs heavy indexing computation budget
on large datasets.

2Following [ZWHT™21], we train ImageNet for 220 jterations like other datasets for a fair comparison. We use 4
Tesla Vioo GPUs on ImageNet.
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Noteworthy is that, FreeMatch consistently outper-
forms other methods by a large margin on settings with

Runtime

Top-1 Top-5 (sec./iter.)

extremely limited labeled data: 5.78% on CIFAR-10 with FixMatch | 43.66 21.80 0.4
10 labels, 1.96% on CIFAR-100 with 400 labels, and sur- ~ FlexMatch | 4185 19.48 0.6
FreeMatch | 40,57 18.77 0.4

prisingly 13.59% on STL-10 with 40 labels. STL-10 is
a more realistic and challenging dataset compared to
others, which consists of a large unlabeled set of 100k
images. The significant improvements demonstrate the
capability and potential of FreeMatch to be deployed in
real-world applications.

Table 4.2: Error rates and runtime on
ImageNet with 100 labels per class.

4.5.3 Qualitative Analysis

We present some qualitative analysis: Why and how does FreeMatch work? What other benefits
does it bring? We evaluate the class average threshold and average sampling rate on STL-10 (40)
(i.e., 40 labeled samples on STL-10) of FreeMatch to demonstrate how it works aligning with
our theoretical analysis. We record the threshold and compute the sampling rate for each batch

1B max rg max
during training. The sampling rate is calculated on unlabeled data as L, 1(max(g, ):Bn(a gmax(@))

We also plot the convergence speed in terms of accuracy and the confusion matrix to show the
proposed component in FreeMatch helps improve performance. From Fig. (a) and (b),
one can observe that the threshold and sampling rate change of FreeMatch is mostly consistent
with our theoretical analysis. That is, at the early stage of training, the threshold of FreeMatch
is relatively lower, compared to FlexMatch and FixMatch, resulting in higher unlabeled data
utilization (sampling rate), which fastens the convergence. As the model learns better and
becomes more confident, the threshold of FreeMatch increases to a high value to alleviate
the confirmation bias, leading to stably high sampling rate. Correspondingly, the accuracy of
FreeMatch increases vastly (as shown in Fig. (c)) and resulting better class-wise accuracy
(as shown in Fig. (c)). Note that Dash fails to learn properly due to the employment of the
high sampling rate until 100k iterations.

To further demonstrate the effectiveness of the class-specific threshold in FreeMatch, we
present the t-SNE [VdMHo8] visualization of features of FlexMatch and FreeMatch on STL-10
(40) in Fig. We exhibit the corresponding local threshold for each class. Interestingly,
FlexMatch has a high threshold, i.e., pre-defined 0.95, for class 0 and class 6, yet their feature
variances are very large and are confused with other classes. This means the class-wise
thresholds in FlexMatch cannot accurately reflect the learning status. In contrast, FreeMatch
clusters most classes better. Besides, for the similar classes 1,3, 5,7 that are confused with each
other, FreeMatch retains a higher average threshold 0.87 than 0.84 of FlexMatch, enabling to
mask more wrong pseudo labels.

4.5.4 Ablation Study

Self-adaptive Threshold

We conduct experiments on the components of SAT in FreeMatch and compare to the compo-
nents in FlexMatch [ZWH™21]], FixMatch [SBL"20], Class-Balanced Self-Training (CBST) [ZYKW18],
and Relative Threshold (RT) in AdaMatch [BRS™22]. The ablation is conducted on CIFAR-10
(40 labels).

As shown in Table SAT achieves the best performance among all the threshold schemes.
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(a) FlexMatch (train, test) (b) FreeMatch (train, test)

Figure 4.3: T-SNE visualization of FlexMatch and FreeMatch features on STL-10 (40). Unlabeled
data is indicated by gray color. Local threshold 7;(c) for each class is shown on the legend.
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Figure 4.4: How FreeMatch works in STL-10 with 40 labels, compared to others. (a) Class-
average confidence threshold; (b) class-average sampling rate; (c) convergence speed in terms of
accuracy; (d) confusion matrix, where fading colors of diagonal elements refer to the disparity
of accuracy.

Self-adaptive global threshold 7; and local threshold MaxNorm(f;(c)) themselves also achieve
comparable results, compared to the fixed threshold 7, demonstrating both local and global
threshold proposed are good learning effect estimators. When using CPL M (B(c)) to adjust
T;, the result is worse than the fixed threshold and exhibits larger variance, indicating potential
instability of CPL. AdaMatch uses the RT, which can be viewed as a global threshold
at t-th iteration computed on the predictions of labeled data without EMA, whereas FreeMatch
conducts computation of 7; with EMA on unlabeled data that can better reflect the overall data
distribution. For class-wise threshold, CBST [ZYKW18] maintains a pre-defined sampling rate,
which could be the reason for its bad performance since the sampling rate should be changed
during training as we analyzed in Sec. Note that we did not include L in this ablation
for a fair comparison.

Self-adaptive Fairness As illustrated in Table we also empirically study the effect of SAF
on CIFAR-10 (10 labels). We study the original version of fairness objective as in [AOA¥20b].
Based on that, we study the operation of normalization probability by histograms and show that
countering the effect of imbalanced underlying distribution indeed helps the model to learn and
diverse better. One may notice that adding original fairness regularization alone already helps
improve the performance. Whereas adding normalization operation in the log operation hurts
the performance, suggesting the underlying batch data are indeed not uniformly distributed.
We also evaluate Distribution Alignment (DA) for class fairness in ReMixMatch
and AdaMatch [BRST22], showing inferior results than SAF. A possible reason for the worse
performance of DA (AdaMatch) is that it only uses labeled batch prediction as the target
distribution which cannot reflect the true data distribution especially when labeled data is
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Threshold CIFAR-10 (40)
T (FixMatch) 7.47+0.28
Tx M(B(c)) (FlexMatch) 4.97+0.06
T * MaxNorm(f(c)) 5.13+0.03
T; (Global) 6.06+0.65
7+ M(B(c)) 8.40+2.49
CBST 16.65i2.90
RT (AdaMatch) 6.09+0.65
SAT (Global and Local) 4.92+0.04

Table 4.3: Comparison of different thresholding schemes.

Fairness CIFAR-10 (10)
w/o fairness 10.37+7.70
Ulogp 9.57+6.67
Ulog SumNorm(%) 12.07+5.23
DA (AdaMatch) 32.94+1.83
DA (ReMixMatch) 11.06+8.21
SAF 8.07:t4.24

Table 4.4: Comparison of different class fairness items.

scarce and changing the target distribution to the ground truth uniform, i.e., DA (ReMixMatch),
is better for the case with extremely limited labels.

4.6 RELATED WORK

To reduce confirmation bias [AOA™20b] in pseudo labeling, confidence-based thresholding
techniques are proposed to ensure the quality of pseudo labels [XDH™"20b| [SBL" 20, ZWH™" 21,
XSYT21], where only the unlabeled data whose confidences are higher than the threshold are
retained. UDA [XDH™20b] and FixMatch [SBL™20] keep the fixed pre-defined threshold during
training. FlexMatch [ZWH™ 21] adjusts the pre-defined threshold in a class-specific fashion ac-
cording to the per-class learning status estimated by the number of confident unlabeled data. A
co-current work Adsh [GL22] explicitly optimizes the number of pseudo labels for each class in
the SSL objective to obtain adaptive thresholds for imbalanced Semi-supervised Learning. How-
ever, it still needs a user-predefined threshold. Dash [XSY"21] defines a threshold according to
the loss on labeled data and adjusts the threshold according to a fixed mechanism. A more re-
cent work, AdaMatch [BRS™22], aims to unify SSL and domain adaptation using a pre-defined
threshold multiplying the average confidence of the labeled data batch to mask noisy pseudo
labels. It needs a pre-defined threshold and ignores the unlabeled data distribution especially
when labeled data is too rare to reflect the unlabeled data distribution. Besides, distribution
alignment [BCC™ 20, BRS™22] is also utilized in Adamatch to encourage fair predictions on
unlabeled data. Previous methods might fail to choose meaningful thresholds due to ignorance
of the relationship between the model learning status and thresholds. [CWKMz20, KML20]|
try to understand self-training / thresholding from the theoretical perspective. We use a
motivating example to derive some implications and further adjust meaningful thresholds
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according to the learning status satisfying the derived implications.

Except consistency regularization, entropy-based regularization is also used in SSL. Entropy
minimization [GBo4] encourages the model to make confident predictions for all samples disre-
garding the actual class predicted. Maximization of expectation of entropy [AK10, AOA™20b]
over all samples is also proposed to induce fairness to the model, enforcing the model to predict
each class at the same frequency. But previous ones assume a uniform prior for underlying data
distribution and also ignore the batch data distribution. Distribution alignment [BCC™20] ad-
justs the pseudo labels according to labeled data distribution and the EMA of model predictions.

4.7 CONCLUSION

We proposed FreeMatch that utilizes self-adaptive thresholding and class-fairness regularization
for SSL. FreeMatch outperforms strong competitors across a variety of SSL benchmarks,
especially in the barely-supervised setting. We believe that confidence thresholding has more
potential in SSL. A potential limitation is that the adaptiveness still originates from the heuristics
of the model prediction, and we hope the efficacy of FreeMatch inspires more research for
optimal thresholding.
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OLLOWING a similar theme to the previous chapter, this chapter further explores threshold-
based pseudo-labeling for semi-supervised learning (SSL) from a different perspective.
We first revisit the popular pseudo-labeling methods via a unified sample weighting
formulation and demonstrate the inherent quantity-quality trade-off problem of pseudo-
labeling with thresholding, which may prohibit learning. To this end, we propose SoftMatch to
overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels
during training, effectively exploiting the unlabeled data. We derive a truncated Gaussian
function to weight samples based on their confidence, which can be viewed as a soft version
of the confidence threshold. We further enhance the utilization of weakly-learned classes
by proposing a uniform alignment approach. In experiments, SoftMatch shows substantial
improvements across a wide variety of benchmarks, including image, text, and imbalanced
classification.
This chapter is based on [CTF'23]]. As one of the co-authors, Yue Fan was involved in
the weekly and more detailed discussions and contributed to the writing of the paper and the
imbalanced SSL experiments.

5.1 INTRODUCTION

Semi-Supervised Learning (SSL), concerned with learning from a few labeled data and a
large amount of unlabeled data, has shown great potential in practical applications for signifi-
cantly reduced requirements on laborious annotations [FKS21b, XDH™ 20b, SBL™ 20, PDXL21),
ZWH 21, XSY" 21, XZH 21, [CYZW21, OOR"18]. The main challenge of SSL lies in how to
effectively exploit the information of unlabeled data to improve the model’s generalization
performance [CSZo6]. Among the efforts, pseudo-labeling [Lee13|, AOA™20b] with confidence

63



64 CHAPTER 5. ADDRESSING THE QUANTITY-QUALITY TRADE-OFF IN SSL

thresholding [XDH ™ 20b, SBL™ 20, XSY ™21, ZWH™21] is highly-successful and widely-adopted.

The core idea of threshold-based pseudo-labeling [XDH™20b, SBL™ 20, XSY 21}, ZWH™21]
is to train the model with pseudo-label whose prediction confidence is above a hard threshold,
with the others being simply ignored. However, such a mechanism inherently exhibits the
quantity-quality trade-off, which undermines the learning process. On the one hand, a high
confidence threshold as exploited in FixMatch [SBL™20] ensures the quality of the pseudo-
labels. However, it discards a considerable number of unconfident yet correct pseudo-labels.
As an example shown in Fig. (a), around 71% correct pseudo-labels are excluded from the
training. On the other hand, dynamically growing threshold [XSY ™21, BRS™ 22|, or class-wise
threshold [ZWH™21] encourages the utilization of more pseudo-labels but inevitably fully
enrolls erroneous pseudo-labels that may mislead training. As an example shown by FlexMatch
[ZWH21] in Fig. (b), about 16% of the utilized pseudo-labels are incorrect. In summary,
the quantity-quality trade-off with a confidence threshold limits the unlabeled data utilization,
which may hinder the model’s generalization performance.

In this work, we formally define the quantity and quality of pseudo-labels in SSL and
summarize the inherent trade-off present in previous methods from a perspective of unified
sample weighting formulation. We first identify the fundamental reason behind the quantity-
quality trade-off is the lack of sophisticated assumption imposed by the weighting function
on the distribution of pseudo-labels. Especially, confidence thresholding can be regarded as
a step function assigning binary weights according to samples’ confidence, which assumes
pseudo-labels with confidence above the threshold are equally correct while others are wrong.
Based on the analysis, we propose SoftMatch to overcome the trade-off by maintaining high
quantity and high quality of pseudo-labels during training. A truncated Gaussian function is
derived from our assumption on the marginal distribution to fit the confidence distribution,
which assigns lower weights to possibly correct pseudo-labels according to the deviation
of their confidence from the mean of Gaussian. The parameters of the Gaussian function
are estimated using the historical predictions from the model during training. Furthermore,
we propose Uniform Alignment to resolve the imbalance issue in pseudo-labels, resulting
from different learning difficulties of different classes. It further consolidates the quantity of
pseudo-labels while maintaining their quality. On the two-moon example, as shown in Fig.
(c) and Fig. [5.1/ (b), SoftMatch achieves a distinctively better accuracy of pseudo-labels while
retaining a consistently higher utilization ratio of them during training, therefore, leading to
a better-learned decision boundary as shown in Fig. [5.1|(d). We demonstrate that SoftMatch
achieves a new state-of-the-art on a wide range of image and text classification tasks. We
further validate the robustness of SoftMatch against long-tailed distribution by evaluating
imbalanced classification tasks.

Our contributions can be summarized as:

¢ We demonstrate the importance of the unified weighting function by formally defining
the quantity and quality of pseudo-labels, and the trade-off between them. We identify
that the inherent trade-off in previous methods mainly stems from the lack of careful
design on the distribution of pseudo-labels, which is imposed directly by the weighting
function.

¢ We propose SoftMatch to effectively leverage the unconfident yet correct pseudo-labels,
fitting a truncated Gaussian function the distribution of confidence, which overcomes
the trade-off. We further propose Uniform Alignment to resolve the imbalance issue of
pseudo-labels while maintaining their high quantity and quality.

* We demonstrate that SoftMatch outperforms previous methods on various image and
text evaluation settings. We also empirically verify the importance of maintaining the
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Figure 5.1: [llustration on Two-Moon Dataset with only 4 labeled samples (triangle purple/pink
points) with others as unlabeled samples in training a 3-layer MLP classifier. (a) Confidence
distribution, including all predictions and wrong predictions. The red line denotes the correct
percentage of samples used by SoftMatch. The part of the line above scatter points denotes the
correct percentage for FixMatch (blue) and FlexMatch (green). (b) Quantity of pseudo-labels;
(c) Quality of pseudo-labels; (d) Decision boundary. SoftMatch exploits almost all samples
during training with lowest error rate and best decision boundary.

high accuracy of pseudo-labels while pursuing better unlabeled data utilization in SSL.

5.2  REVISIT QUANTITY-QUALITY TRADE-OFF OF SSL

In this section, we formulate the quantity and quality of pseudo-labels from a unified sample
weighting perspective, by demonstrating the connection between sample weighting function
and the quantity/quality of pseudo-labels. SoftMatch is naturally inspired by revisiting the
inherent limitation in quantity-quality trade-off of the existing methods.

5.2.1 Problem Statement

We first formulate the framework of SSL in a C-class classification problem. Denote the labeled
and unlabeled datasets as D = {xl,yz} and Dy = {x¥ fi”l, respectively, where x!,x! € R?
is the d-dimensional labeled and unlabeled training sample, and y! is the one-hot ground-truth
label for labeled data. We use Ni and Ny to represent the number of training samples in Dy
and Dy, respectively. Let p(y|x) € R® denote the model’s prediction. During training, given
a batch of labeled data and unlabeled data, the model is optimized using a joint objective
L = Ls+ L,, where L, is the supervised objective of the cross-entropy loss (H) on the B -sized
labeled batch:

727{ Yi, P Y|X ) (51)

For the unsupervised loss, most existing methods with pseudo-labeling [Lee13, | AOA™20b,
XDH™ 20b, SBL 20, XSY 21, ZWH™21] exploit a confidence thresholding mechanism to mask
out the unconfident and possibly incorrect pseudo-labels from training. In this chapter, we
take a step further and present a unified formulation of the confidence thresholding scheme
(and other schemes) from the sample weighting perspective. Specifically, we formulate the
unsupervised loss £, as the weighted cross-entropy between the model’s prediction of the



66 CHAPTER 5. ADDRESSING THE QUANTITY-QUALITY TRADE-OFF IN SSL

strongly-augmented data Q)(x") and pseudo-labels from the weakly-augmented data w(x"):

1 Bu

L= By ;A(Pi)ﬂ(ﬁi,P(YIQ(X?))), (5-2)

where p is the abbreviation of p(y|w(x")), and p is the one-hot pseudo-label argmax(p); A(p)
is the sample weighting function with range [0, Amax|; and By; is the batch size for unlabeled
data.

5.2.2 Quantity-Quality Trade-off from Sample Weighting Perspective

In this section, we demonstrate the importance of the unified weighting function A(p), by
showing its different instantiations in previous methods and its essential connection with
model predictions. We start by formulating the quantity and quality of pseudo-labels.

Definition 5.2.1 (Quantity of pseudo-labels). The quantity f(p) of pseudo-labels enrolled in
training is defined as the expectation of the sample weight A(p) over the unlabeled data:

f(p) = IE‘Du [A(p)] S [0/ Amax]' (5.3)

Definition 5.2.2 (Quality of pseudo-labels). The quality g(p) is the expectation of the weighted
o/1 error of pseudo-labels, assuming the label y* is given for x" for only theoretical analysis
purpose:

Ny A ; A L
stp) = 2105 - y;‘>2ij§()pﬁ B (106 = y*)] € 0,1], 54)

where A(p) = A(p)/ L A(p) is the probability mass function (PMF) of p being close to y*.

Based on the definitions of quality and quantity, we present the quantity-quality trade-off of
SSL.

Definition 5.2.3 (The quantity-quality trade-off). Due to the implicit assumptions of PMF A(p)
on the marginal distribution of model predictions, the lack of sophisticated design on it usually
results in a trade-off in quantity and quality - when one of them increases, the other must
decrease. Ideally, a well-defined A(p) should reflect the true distribution and lead to both high
quantity and quality.

Despite its importance, A(p) has hardly been defined explicitly or properly in previous
methods. In this chapter, we first summarize A(p), A(p), f(p), and ¢(p) of relevant methods,
as shown in Table For example, naive pseudo-labeling [Lee13] and loss weight ramp-up
scheme [ST17, [TV1i7b, BCG™ 19, BCC20] exploit the fixed sample weight to fully enroll all
pseudo-labels into training. It is equivalent to set A = Apmax and A = 1/ Ny, regardless of p,
which means each pseudo-label is assumed equally correct. We can verify the quantity of
pseudo-labels is maximized to Amax. However, maximizing quantity also fully involves the
erroneous pseudo-labels, resulting in deficient quality, especially in early training. This failure
trade-off is due to the implicit uniform assumption on PMF A(p) that is far from the realistic
situation.

In confidence thresholding [AOAT20b| SBL"20, XDH"20b], we can view the sample
weights as being computed from a step function with confidence max(p) as the input and
a pre-defined threshold T as the breakpoint. It sets A(p) to Amax When the confidence is
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exp(*g(maxg};,)zit)z) max(p) < #
% . Nu N 7 t
}L(p) 1/Nu {(:;l)/ONZ—I, lftl’ll'naX(p) > T, NTU‘*'Z,‘T exp(— (max(z};[)zﬂx[ﬂ)
.0, otherwise. - - 1 — max(p) > s
Yoyt exp(- B R,
T 3 (max(p;) —fu)>
f(p) Amax AmaxNu/NU )\max/z + )\max/Nl,I Zi EXP(—T)
N .
- ) . M1 = y*) /2Ny+
Ny 1(p=y") Nuq(a — it T Z:/ Pj =Y; u
s(p) YN Lt 1(p=y")/Ng Ny — N/ 2 .
P ’ L L(ps = y) exp(— MBI /2 (Ny - K
Not High Quantity Low Quantity High Quantity
ote Low Quality High Quality High Quality

Table 5.1: Summary of different sample weighting function A(p), probability density function
A(p) of p, quantity f(p) and quality g(p) of pseudo-labels used in previous methods and
SoftMatch.

above T and otherwise 0. Denoting N = Y™ 1(max(p) > T) as the total number of sam-
ples whose predicted confidence are above the threshold, A is set to a uniform PMF with a
total mass of Nj; within a fixed range [7,1]. This is equal to constrain the unlabeled data as
D, = {x*;max(p(y[x*)) > 7}, with others simply being discarded. We can derive the quantity
and the quality as shown in Table A trade-off exists between the quality and quantity
of pseudo-labels in confidence thresholding controlled by 7. On the one hand, while a high
threshold ensures quality, it limits the quantity of enrolled samples. On the other hand, a low
threshold sacrifices quality by fully involving more but possibly erroneous pseudo-labels in
training. The trade-off still results from the over-simplification of the PMF from actual cases.
Adaptive confidence thresholding [ZWH™ 21, XSY™21] adopts the dynamic and class-wise
threshold, which alleviates the trade-off by evolving the (class-wise) threshold during learning.
They impose a further relaxation on the assumption of distribution, but the uniform nature of
the assumed PMF remains unchanged.

While some methods indeed consider the definition of A(p) [RYS20, HWH 21, KMK™22],
interestingly, they all neglect the assumption induced on the PMF. The lack of sophisticated
modeling of A(p) usually leads to a quantity-quality trade-off in the unsupervised loss of SSL,
which motivates us to propose SoftMatch to overcome this challenge.

5.3 SorrtMATCH

5.3.1 Gaussian Function for Sample Weighting

Inherently different from previous methods, we generally assume the underlying PMF A(p)
of marginal distribution follows a dynamic and truncated Gaussian distribution of mean y; and
variance o; at t-th training iteration. We choose Gaussian for its maximum entropy property
and empirically verified better generalization. Note that this is equivalent to treat the deviation
of confidence max(p) from the mean y; of Gaussian as a proxy measure of the correctness of
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the model’s prediction, where samples with higher confidence are less prone to be erroneous
than that with lower confidence, consistent to the observation as shown in Fig. (a). To this
end, we can derive A(p) as:

_ (max(p)—pu)? ;
Alp) = {Amax exp( 207 ), if max(p) < uy,

. (5.5)
Amaxs otherwise.

which is also a truncated Gaussian function within the range [0, Amax], on the confidence
max(p).

However, the underlying true Gaussian parameters y; and o; are still unknown. Although
we can set the parameters to fixed values as in FixMatch [SBL™20] or linearly interpolate them
within some pre-defined range as in Ramp-up [IV17b], this might again over-simplify the
PMF assumption as discussed before. Recall that the PMF A(p) is defined over max(p), we
can instead fit the truncated Gaussian function directly to the confidence distribution for better
generalization. Specifically, we can estimate u and ¢ from the historical predictions of the
model. At t-th iteration, we compute the empirical mean and the variance as:

e 1 &
iy = Ep, [max(p)] = =— ) max(p;),
Bu i=1

B, (5.6)

= Vg [max(p)] = g3 (max(py) — )"

We then aggregate the batch statistics for a more stable estimation, using Exponential Moving
Average (EMA) with a momentum m over previous batches:

fir = mfly_1 + (1 —m)fy,
Bu ., (5.7)

0F =mo? + (1 — m)BU — %

where we use unbiased variance for EMA and initialize fig as % and 63 as 1.0. The estimated

mean fl; and variance 67 are plugged back into Eq. |5.5/to compute sample weights.
Estimating the Gaussian parameters adaptively from the confidence distribution during

training not only improves the generalization but also better resolves the quantity-quality

trade-off. We can verify this by computing the quantity and quality of pseudo-labels as

1_~)2

shown in Table The derived quantity f(p) is bounded by %z (1 + exp(—%)), Amax],
indicating SoftMatch guarantees at least Amax/2 of quantity during training. As the model
learns better and becomes more confident, i.e., fi; increases and 0; decreases, the lower tail
of the quantity becomes much tighter. While quantity maintains high, the quality of pseudo-
labels also improves. As the tail of the Gaussian exponentially grows tighter during training,
the erroneous pseudo-labels where the model is highly unconfident are assigned with lower
weights, and those whose confidence are around fi; are more efficiently utilized. The truncated
Gaussian weighting function generally behaves as a soft and adaptive version of confidence
thresholding, thus we term the proposed method as SoftMatch.

5.3.2 Uniform Alignment for Fair Quantity

As different classes exhibit different learning difficulties, generated pseudo-labels can have
potentially imbalanced distribution, which may limit the generalization of the PMF assumption
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[OOR™18, ZWH21]. To overcome this problem, we propose Uniform Alignment (UA), encour-
aging more uniform pseudo-labels of different classes. Specifically, we define the distribution
in pseudo-labels as the expectation of the model predictions on unlabeled data: Ep, [p(y|x")].
During training, it is estimated as Eg, [p(y|x")] using the EMA of batch predictions on un-
labeled data. We use the ratio between a uniform distribution u(C) € R® and Eg, [p(y|x")]
to normalize the each prediction p on unlabeled data and use the normalized probability to
calculate the per-sample loss weight. We formulate the UA operation as:

UA(p) = Normalize (p . Eu(({f}))}) , (5.8)
Bu

where the Normalize(-) = (-)/ Y.(-), ensuring the normalized probability sums to 1.0. With
UA plugged in, the final sample weighting function in SoftMatch becomes:

Amax €X —W , if max(UA < fiy,
A(p)z{ p(~ =) (WAR)) < (59)

AmaX/ otherwise.

When computing the sample weights, UA encourages larger weights to be assigned to less-
predicted pseudo-labels and smaller weights to more-predicted pseudo-labels, alleviating the
imbalance issue.

An essential difference between UA and Distribution Alignment (DA) [BCCT20] proposed
earlier lies in the computation of unsupervised loss. The normalization operation makes the
predicted probability biased towards the less-predicted classes. In DA, this might not be an
issue, as the normalized prediction is used as soft target in the cross-entropy loss. However,
with pseudo-labeling, more erroneous pseudo-labels are probably created after normalization,
which damages the quality. UA avoids this issue by exploiting original predictions to compute
pseudo-labels and normalized predictions to compute sample weights, maintaining both the
quantity and quality of pseudo-labels in SoftMatch. The complete training algorithm is shown

in Alg.

Algorithm 3 SoftMatch algorithm.

. Input: Number of classes C, labeled batch {x;, yi};cp,], unlabeled batch {u;} and

EMA momentum m.

i€[By)’

2: Define: p; = p(y|w(u;))
3 L= BLL Z?il H(yi, p(ylw(x;))) // Compute L, on labeled batch
4 fly = % ?:”1 max(p;) // Compute the mean of confidence
5 02 = % YU (max(p;) — #,)*  // Compute the variance of confidence
6: iy =mpy_1+ (1 —m)fy, // Update EMA of mean
7 02 =mo? |+ (1—m) Bgljl(rg / / Update EMA of variance
8: fori=1to By do
_ (max(UA(p;))—fu)? if UA(p:)) < 7
9 Alp;) = exp( 207 )’ if max(UA(pi)) < i // Compute loss weight
P - F &
1.0, otherwise.
10: end for
1 L, = Bl—u ?:”1 Ap)H(pi, p(y|Q(w;))) // Compute L, on unlabeled batch

12: Return: £ + L,
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5.4 EXPERIMENTS

While most SSL literature performs evaluation on image tasks, we extensively evaluate Soft-
Match on various datasets including image and text datasets with classic and long-tailed
settings. Moreover, We provide ablation study and qualitative comparison to analyze the
effectiveness of SoftMatch.

5.4.1 Classic Image Classification

Setup. For the classic image classification setting, we evaluate on CIFAR-10/100 [KH" 09b],
SVHN[NWC™"11al], STL-10 [CNL11b] and ImageNet [DDS"og], with various numbers of
labeled data, where class distribution of the labeled data is balanced. We use the WRIN-28-2
[ZK16Db] for CIFAR-10 and SVHN, WRN-28-8 for CIFAR-100, WRN-37-2 [ZWB20] for STL-10,
and ResNet-50 [HZRS16b|] for ImageNet. For all experiments, we use SGD optimizer with a
momentum of 0.9, where the initial learning rate 79 is set to 0.03. We adopt the cosine learning
rate annealing scheme to adjust the learning rate with a total training step of 22°. The labeled
batch size By is set to 64 and the unlabeled batch size By; is set to 7 times of By for all datasets.
We set m to 0.999 and divide the estimated variance 0; by 4 for 20 of the Gaussian function.
We record the EMA of model parameters for evaluation with a momentum of 0.999. Each
experiment is run with three random seeds on labeled data, where we report the top-1 error
rate.

Results. SoftMatch obtains the state-of-the-art results on almost all settings in Table and
Table except CIFAR-100 with 2,500 and 10,000 labels and SVHN with 1,000 labels, where
the results of SoftMatch are comparable to previous methods. Notably, FlexMatch exhibits
a performance drop compared to FixMatch on SVHN, since it enrolls too many erroneous
pseudo-labels at the beginning of the training that prohibits learning afterward. In contrast,
SoftMatch surpasses FixMatch by 1.48% on SVHN with 40 labels, demonstrating its superiority
for better utilization of the pseudo-labels. On more realistic datasets, CIFAR-100 with 400
labels, STL-10 with 40 labels, and ImageNet with 10% labels, SoftMatch exceeds FlexMatch by
a margin of 7.73%, 2.84%, and 1.33%, respectively. SoftMatch shows the comparable results
to FlexMatch on CIFAR-100 with 2,500 and 10,000 labels, whereas ReMixMatch [BCC™20]
demonstrates the best results due to the Mixup [ZCDLP18] and Rotation loss.

5.4.2 Long-Tailed Image Classification

Setup. We evaluate SoftMatch on a more realistic and challenging setting of imbalanced SSL
[KHP ' 20a, WSM ™ 21| [LSK21|, [FDS22], where both the labeled and the unlabeled data exhibit
long-tailed distributions. Following [FDS22], the imbalance ratio 7 ranges from 50 to 150 and
20 to 100 for CIFAR-10-LT and CIFAR-100-LT, respectively. Here, y is used to exponentially
decrease the number of samples from class 0 to class C [FDS22]. We compare SoftMatch with
two strong baselines: FixMatch [SBL™20] and FlexMatch [ZWH™21]. All experiments use the
same WRN-28-2 [ZK16b] as the backbone and the same set of common hyper-parameters. Each
experiment is repeated five times with different data splits, and we report the average test
accuracy and the standard deviation.

TAll experiments in Section Section and Section are conducted with TorchSSL [ZWH™21] and Section

are conducted with USB [WCF ™ 22a] since it only supports NLP tasks back then. More recent results of SoftMatch are included in
USB along its updates, refer https://github.com/Hhhhhhao/SoftMatch! for details.
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Dataset | CIFAR-10 | CIFAR-100 | SVHN | STL-10

# Label ‘ 40 250 4,000 ‘ 400 2,500 10,000 ‘ 40 1,000 ‘ 40 1,000

PseudoLabel | 74.61+026 46.49+220 15.08+0.19 | 87.45+085 57.74+0.28 36.55+0.24 | 64.614560 9.40+0.32 | 74.68+0.99 32.64+071
MeanTeacher | 70.09+1.60 37.46+330 8.10+021 | 81.11+144 45.17+1.06 31.75+0.23 | 36.09+398 3.27+005 | 71.72+145 33.90+1.37
MixMatch 36.19+6.48 13.63+059 6.66+026 | 67.50+066 39.76+048 27.7840.29 | 30.60+839 3.69+0.37 | 54.9340.96 21.70+0.68
ReMixMatch | 9.88+103  6.304005  4.84+001 | 42.75+105 26.03+035 20.02+0.27 | 24.04+9.13 5.16+031 | 32.12+6.24 6.74+0.14

UDA 10.62+375 5.16+006  4.29+o007 | 46.39+159 27.73+021 22494023 | 5.12+427  1.89+oor | 37.42+844 6.64+0.17
FixMatch 7-47+0.28 4.86:&0.05 4.21+0.08 46.42:&0.82 28.03:&0.16 22.20+0.12 3.81:&1.18 1.9610.03 35.97+4.14 6.25:&0.33
Influence - 5.05+0.12"  4.3540.06* - - - 2.63+0.23"  2.34+o0.15" - -

FlexMatch 4.97+006  4.98+009  4.19+oo1 | 39.94+1.62 26.49+o.20 21.90xo.15 ‘ 8.19+320  6.72+030 | 29.15+4.16 5.77+0.18

SoftMatch ‘4.91i0.1z 4.8240.09  4.04+0.02 ‘37.10j:o.77 26.66+0.25 22.03+0.03 ‘ 2.33%025  2.01+o0.01 ‘21.42j:3.48 5.73+0.24

Table 5.2: Top-1 error rate (%) on CIFAR-10, CIFAR-100, STL-10, and SVHN of 3 different
random seeds. Numbers with * are taken from the original papers. The best number is in bold.

#Label | 100k 400k Dataset | CIFAR-10-LT | CIFAR-100-LT
FixMatch | 43.66 32.28 Imbalance 7y | 50 100 150 | 20 50 100
FlexMatch | 41.85 31.31 FixMatch 18.464030 25.114120 29.62+088 | 50.42+078 57.89+033 62.40+0.48
SoftMatch | 40.52 29.49 FlexMatch 18.13+019 25.51+092 29.804036 | 49.11+0.60 57.20+039 62.70+047

SoftMatch ‘16.55iu.29 22.93+037 27.40+0.46 ‘ 48.09+055 56.24+051 61.08+0.81

Table 5.3: Top1 error rate
(%) on ImageNet. The best Table 5.4: Top1 error rate (%) on CIFAR-10-LT and CIFAR-100-
number is in bold. LT of 5 different random seeds. The best number is in bold.

Results. As is shown in Table [5.4] SoftMatch achieves the best test error rate across all
long-tailed settings. The performance improvement over the previous state-of-the-art is still
significant even at large imbalance ratios. For example, SoftMatch outperforms the second-best
by 2.4% at v = 150 on CIFAR-10-LT, which suggests the superior robustness of our method
against data imbalance.

Discussion. Here we study the design choice of uniform alignment as it plays a key role in
SoftMatch’s performance on imbalanced SSL. We conduct experiments with different target
distributions for alignment. Specifically, the default uniform target distribution u(C) can be
replaced by ground-truth class distribution or the empirical class distribution estimated by
seen labeled data during training. The results in Section show a clear advantage of
using uniform distribution. Uniform target distribution enforces the class marginal to become
uniform, which has a strong regularization effect of balancing the head and tail classes in
imbalanced classification settings.

5.4.3 Text Classification

Setup. In addition to image classification tasks, we further evaluate SoftMatch on text topic
classification tasks of AG News and DBpedia, and sentiment tasks of IMDb, Amazon-5, and
Yelp-5 [MDP™ 11, [ZZL15]]. We split a validation set from the training data to evaluate the
algorithms. For Amazon-5 and Yelp-5, we randomly sample 50,000 samples per class from the
training data to reduce the training time. We fine-tune the pre-trained BERT-Base [DCLT18a]
model for all datasets using UDA [XDH™ 20b], FixMatch [SBL"20], FlexMatch [ZWH™21], and
SoftMatch. We use AdamW [KB15, [LH17] optimizer with an initial learning rate of 1e — 5 and
the same cosine scheduler as image classification tasks. All algorithms are trained for a total
iteration of 2!8. The fine-tuned model is directly used for evaluation rather than the EMA
version. To reduce the GPU memory usage, we set both B; and By; to 16. Other algorithmic
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Datasets ‘ AG News ‘ DBpedia IMDb ‘ Amazon-5 ‘ Yelp-5
#Labels | 40 200 | 70 280 100 1000 | 1000
UDA 16.83£1.68 14.34*19 | 4.11+144 6.93+385 | 18.3320.61 | 50.29+4.6 47.49+6.83
FixMatch | 17.104313 11.24+143 | 2.18%+092 1.4240.18 | 7.5940.28 | 42.70+0.53 | 39.56+07
FlexMatch 15.49+197 10.95+0.56 2.69i0.34 1.6910.02 7.80i0.23 42.34+0.62 39.01+o0.17
SoftMatch | 12.68+0.23 10.41+0.13 | 1.68+0.33 1.2740a1 | 7.484012 | 42.14+0.92 | 39.3140.45

Table 5.5: Top1 error rate (%) on text datasets of 3 different random seeds. Best numbers are in
bold.

hyper-parameters stay the same as image classification tasks.

Results. The results on text datasets are shown in Section SoftMatch consistently
outperforms other methods, especially on the topic classifications tasks. For instance, SoftMatch
achieves an error rate of 12.68% on AG news with only 40 labels and 1.68% on DBpedia with
70 labels, surpassing the second best by a margin of 2.81% and 0.5% respectively. On sentiment
tasks, SoftMatch also shows the best results on Amazon-5 and IMDb, and comparable results
to its counterpart on Yelp-5.

5.4.4 Qualitative Analysis

In this section, we provide a qualitative comparison on CIFAR-10 with 250 labels of FixMatch
[SBL"20], FlexMatch [ZWH™21], and SoftMatch from different aspects, as shown in Fig. We
compute the error rate, the quantity, and the quality of pseudo-labels to analyze the proposed
method, using the ground truth of unlabeled data that is unseen during training.

SoftMatch utilizes the unlabeled data better. From Section [5.4.4] and Section [5.4.4} one can
observe that SoftMatch obtains highest quantity and quality of pseudo-labels across the training.
Larger error with more fluctuation is present in quality of FixMatch and FlexMatch due to the
nature of confidence thresholding, where significantly more wrong pseudo-labels are enrolled
into training, leading to larger variance in quality and thus unstable training. While attaining
a high quality, SoftMatch also substantially improves the unlabeled data utilization ratio,
i.e., the quantity, as shown in Section demonstrating the design of truncated Gaussian
function could address the quantity-quality trade-off of the pseudo-labels. We also present
the quality of the best and worst learned classes, as shown in Section where both retain
the highest along training in SoftMatch. The well-solved quantity-quality trade-off allows
SoftMatch achieves better performance on convergence and error rate, especially for the first
50k iterations, as in Section m

5.4.5 Ablation Study

tiveness of the truncated Gaussian assumption on PMF A(p), as shown in Section Both
linear function and Quadratic function fail to generalize and present large performance gap be-
tween Gaussian due to the naive assumption on PMF as discussed before. Truncated Laplacian
assumption also works well on different settings, but truncated Gaussian demonstrates the

most robust performance.

Sample Weighting Functions. We validate different instantiations of A(p) to verify the effec-
h



5.4 EXPERIMENTS 73

— FL\I\IELLC]! ) ” el 1 O WW
g (<53 = (5
0.8 —— FlexMatch ,i% }‘/ _:_: 08 e ;:;‘;:’::b’-\"&’-‘«’mw"
—— SoftMatch — < 0.8 = A |
2 - : o
206 = < =
~ g £ P —— Fix Best Cls.
§ 0.4 & ‘L 06 & —— Flex.| Best Cls.
=h Z, B 204 — Soft. Best Cls.
; é FixMatch :fo 4 — FixMatch g +=-- Fix. Worst Cls.
0.2 El 0.2 = FlexMatch g —— FlexMatch = 0.2 1 == Flex. Worst Cls
< SoftMatch = SoftMatch & ——=- Soft. Worst Cls
005k 50k 100K 150k 005k 50k 100K 150k 02555 S0k 00k 50k 005k 50k 100K 150k
Iter. Iter. Tter. Iter.
(a) Eval. Error (b) Quantity (c) Quality (d) Cls. Quality

Figure 5.2: Qualitative analysis of FixMatch, FlexMatch, and SoftMatch on CIFAR-10 with 250
labels. (a) Evaluation error; (b) Quantity of Pseudo-Labels; (c) Quality of Pseudo-Labels; (d)
Quality of Pseudo-Labels from the best and worst learned class. Quality is computed according
to the underlying ground truth labels. SoftMatch achieves significantly better performance.
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Figure 5.3: Ablation study of SoftMatch. (a) Target distributions for Uniform Alignment (UA)
on long-tailed setting; (b) Error rate of different sample functions; (c) Error rate of different
Gaussian parameter estimation, with UA enabled; (d) Ablation on UA with Gaussian parameter
estimation;

Gaussian Parameter Estimation. SoftMatch estimates the Gaussian parameters y and o>
directly from the confidence generated from all unlabeled data along the training. Here we
compare it (All-Class) with two alternatives: (1) Fixed: which uses pre-defined u and ¢? of
0.95 and 0.01. (2) Per-Class: where a Gaussian for each class instead of a global Gaussian
weighting function. As shown in Section the inferior performance of Fixed justifies
the importance of adaptive weight adjustment in SoftMatch. Moreover, Per-Class achieves
comparable performance with SoftMatch at 250 labels, but significantly higher error rate at 40
labels. This is because an accurate parameter estimation requires many predictions for each
class, which is not available for Per-Class.

Uniform Alignment on Gaussian. To verify the impact of UA, we compare the performance
of SoftMatch with and without UA, denoted as all-class with UA and all-class without UA
in Section Since the per-class estimation standalone can also be viewed as a way to
achieve fair class utilization [ZWHT 21|, we also include it in comparison. Removing UA from
SoftMatch has a slight performance drop. Besides, per-class estimation produces significantly
inferior results on SVHN.
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5.5 RELATED WORK

Pseudo-labeling [Lee13] generates artificial labels for unlabeled data and trains the model
in a self-training manner. Consistency regularization [ST17] is proposed to achieve the goal
of producing consistent predictions for similar data points. A variety of works focus on
improving the pseudo-labeling and consistency regularization from different aspects, such as
loss weighting [ST17, TV1yb, ITAC19b, RYS20], data augmentation [GBog, SJT16b, MMKI18a)
BCG™ 19, BCC™ 20, XDH20b)| [CZSL20, [SJT16b], label allocation [TBV21], feature consistency
[LXH21| ZYH™ 22, [FKS21b|, and confidence thresholding [SBL™ 20, ZWH™" 21, XSY " 21].

Loss weight ramp-up strategy is proposed to balance the learning on labeled and unlabeled
data. [ST17, [TV1iyb, BCG™19, BCC"20]. By progressively increasing the loss weight for the
unlabeled data, which prevents the model involving too much ambiguous unlabeled data at
the early stage of training, the model therefore learns in a curriculum fashion. Per-sample
loss weight is utilized to better exploit the unlabeled data [ITAC19b, RYS20]. The previous
work “Influence” shares a similar goal with us, which aims to calculate the loss weight for each
sample but for the motivation that not all unlabeled data are equal [RYS20]. SAW [LWG™22]
utilizes effective weights [CJL " 19] to overcome the class-imbalanced issues in SSL. Modeling
of loss weight has also been explored in semi-supervised segmentation [HWH™21]. De-biased
self-training [CJW ™22, WWLY22] study the data bias and training bias brought by involving
pseudo-labels into training, which is similar exploration of quantity and quality in SoftMatch.
[KMKT22] proposed to use a small network to predict the loss weight, which is orthogonal to
our work.

Confidence thresholding methods [SBL™ 20, XDH"20b|, ZWH™ 21, XSY"21] adopt a thresh-
old to enroll the unlabeled samples with high confidence into training. FixMatch [SBL"20] uses
a fixed threshold to select pseudo-labels with high quality, which limits the data utilization
ratio and leads to imbalanced pseudo-label distribution. Dash [XSY"21] gradually increases the
threshold during training to improve the utilization of unlabeled data. FlexMatch [ZWH™ 21]
designs class-wise thresholds and lowers the thresholds for classes that are more difficult to
learn, which alleviates class imbalance.

5.6 CONCLUSION

In this chapter, we revisit the quantity-quality trade-off of pseudo-labeling and identify the
core reason behind this trade-off from a unified sample weighting. We propose SoftMatch
with truncated Gaussian weighting function and Uniform Alignment that overcomes the
trade-off, yielding both high quantity and quality of pseudo-labels during training. Extensive
experiments demonstrate the effectiveness of our method on various tasks. We hope more
works can be inspired in this direction, such as designing better weighting functions that can
discriminate correct pseudo-labels better.



REALISTIC SEMI-SUPERVISED LEARNING

The previous part of the thesis focuses on standard semi-supervised
learning (SSL), where both labeled and unlabeled data are clean
and well-balanced. In this part, we explore realistic SSL and aim to
bridge the gap between conventional SSL. methodologies and their
applicability in real-world scenarios by addressing both data and
evaluation realism. Specifically,

in Chapter [f, we examine imbalanced SSL, where both labeled
and unlabeled data follow a long-tailed distribution. To address
this, we introduce a novel co-learning framework that decouples
representation learning from classifier learning, while coupling them
effectively through a shared encoder and pseudo-label generation.
Additionally, we propose a Tail-class Feature Enhancement (TFE)
method that enriches tail-class data diversity by leveraging unlabeled
data, resulting in more robust classifiers. Together, these innovations
set a new state-of-the-art on multiple imbalanced SSL benchmarks
across a range of evaluation settings.

In Chapter [7, we study another realistic setting of open-set
SSL, where the unlabeled dataset includes outliers that belong
to classes not present in the labeled dataset. Here, the objective
is to accurately classify inliers while distinguishing outliers. To
achieve this, we develop a simple but strong baseline that utilizes
outliers to enhance inlier classification without compromising outlier
detection. Despite its simplicity, this approach achieves significant
improvements in both inlier classification and out-of-distribution
(OOD) detection.

In Chapter we tackle the limitations of current SSL bench-
marks by constructing a Unified SSL Benchmark (USB) for
classification. Our benchmark encompasses a diverse range of
tasks across domains and evaluates numerous SSL approaches
under the pretraining-finetune paradigm, which is more practical
than traditional training from scratch. Furthermore, we release
an open-source, modular, and extensible codebase to support the
continued advancement of SSL research.
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unlabeled data are well-balanced. We study the more realistic setting of class-imbalanced

data, called imbalanced SSL, which is largely underexplored, and standard SSL tends
to underperform. We propose a novel co-learning framework (CoSSL), which decouples
representation and classifier learning while coupling them closely. To handle the data imbalance,
we devise Tail-class Feature Enhancement (TFE) for classifier learning. Furthermore, the
current evaluation protocol for imbalanced SSL focuses only on balanced test sets, which has
limited practicality in real-world scenarios. Therefore, we further conduct a comprehensive
evaluation under various shifted test distributions. In experiments, we show that our approach
outperforms other methods over a large range of shifted distributions, achieving state-of-the-
art performance on benchmark datasets ranging from CIFAR-10, CIFAR-100, ImageNet, to
Food-101.

IN this chapter, we deviate from the standard semi-supervised learning (SSL) setting where

This chapter is based on [FDS22]. Yue Fan was the lead author of this paper and conducted
all the experiments and wrote most parts of the paper.

6.1 INTRODUCTION

Imbalanced data distributions are ubiquitous, and pose great challenges for standard deep
learning methods. Many approaches have been proposed for long-tailed recognition, where the
number of (labeled) examples exhibits a long-tailed distribution with heavy class imbalance
[LMZ"19,IGZH" 16, EVGW ' 10, LMB™ 14, KZG " 17, [VHP17]. While semi-supervised learning
(SSL) in the class-balanced setting has shown great promise, in this chapter we are interested in
the challenging and realistic setting of imbalanced SSL where both the labeled and the unlabeled
data are class-imbalanced, as shown in Fig.

Despite a few pioneer works [KHP™20b, WSM™21], existing solutions from long-tailed
recognition and SSL do not generalize well to this setting. On the one hand, long-tailed
recognition [CBHKo2, HM13, [HGog|, HLLT16, BMM18] is not designed to utilize unlabeled
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Long-tailed Imbalanced SSL
recognition

unlabeled data
Il labeled data

Sorted class index

Standard SSL

Number of samples

Sorted class index

Number of samples Number of samples
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Figure 6.1: Conventional recognition tasks focus on constrained settings: long-tailed recognition
does not involve unlabeled data; semi-supervised learning (SSL) assumes class-balanced
distributions for both labeled and unlabeled data. In this work, we aim at imbalanced SSL,
where the training data is partially annotated, and both labeled and unlabeled data are
not manually balanced. This setting is more general and poses great challenges to existing
algorithms. A robust learning algorithm should still be able to learn a good classifier under
this setting.

data despite being good at handling data imbalance. Semi-supervised learning (SSL) [RBH " 154,
SJT16al, [BAP144, [Scu6s, [Nes83| [Lee13, BCG 19, BCC 20, SBL"20], on the other hand, can
effectively leverage unlabeled data but can not address data imbalance. In certain cases,
standard SSL methods trained with imbalanced unlabeled datasets can lead to even worse
results than a simple re-balancing method without using any unlabeled data [KHP"20b], which
counters the promise of SSL.

In this chapter, we address the imbalanced SSL problem by leveraging strong SSL algorithms
[BCG ™19, BCC' 20, SBL ™20, XDH" 19] and recent success of decoupling representation and
classifier learning from long-tailed recognition [KXR"20]. To this end, we propose CoSSL, a
novel co-learning framework for imbalanced SSL, which closely couples representation and
classifier while the training of them is decoupled. As shown in Fig. CoSSL consists of
three modules: semi-supervised representation learning, classifier learning, and pseudo-label
generation. In our co-learning framework, the representation learning module and the classifier
learning module are trained separately without the gradient exchange. Nonetheless, the two
modules in CoSSL are still connected via a shared encoder and pseudo-label generation. It
can then bootstrap itself by exchanging information between the two modules: 1) a shared
encoder from the representation learning is passed to classifier training for feature extraction;
and 2) the enhanced classifier is used to generate better pseudo-labels for the representation
learning. We show the superiority of our co-learning framework empirically, outperforming
previous state-of-the-art methods by a large margin, especially in the case of severe imbalance.
Moreover, we propose Tail-class Feature Enhancement (TFE) for improved classifier learning
for imbalanced SSL, which utilizes unlabeled data as a source of augmentation to enhance the
data diversity of tail classes, leading to a more robust classifier.

Furthermore, the standard evaluation protocol of long-tailed recognition and SSL normally
assumes that the test data are from a uniform class distribution [BCG™ 19, SBL" 20, BCC ™20,
CWGT 19, KXR" 20, MJR " 21, [THZ20, WLK™ 20, LWK ™ 20]. However, this is insufficient to re-
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flect the diversity of real-world applications, where users may have different needs. It is strongly
desired that the trained model can perform well over a large range of varying distributions,
including those that are radically different from the training distribution. Therefore, in this
chapter, we adopt the shifted evaluation from [HHC"21]], where the test data are from variously
shifted class distributions. We further distinguish between unknown shifted evaluation and
known shifted evaluation, depending on whether test distribution is known a priori during
training. This evaluation protocol can be used for long-tailed recognition as well.

Our contributions are: (1) We propose a novel co-learning framework CoSSL for imbalanced
SSL, which decouples representation and classifier learning while coupling them closely
via a shared encoder and pseudo-label generation. (2) We devise a novel Tail-class Feature
Enhancement (TFE) method to increase the data diversity of tail classes by utilizing unlabeled
data, leading to more robust classifiers. (3) We propose new evaluation criteria for imbalanced
SSL and conduct a comprehensive evaluation. CoSSL achieves new state-of-the-art results on
multiple imbalanced SSL benchmarks across a wide range of evaluation settings.

6.2 RELATED WORK

Semi-supervised learning. Many efforts have been made in various directions in SSL. For
example, many recent powerful methods [RBH™" 154, [S]T16a) [BAP14a] are based on consistency
regularization, where the idea is that the model should output consistent predictions for
perturbed versions of the same input. Another spectrum of popular approaches is pseudo-
labeling [Scu6s, Nes83) [Lee13] or self-training [RHSosb], where the model is trained with
artificial labels. Furthermore, there are many excellent works around generative models
[KMRW14}, [Ode16al [DGF16a] and graph-based methods [LZL™ 18, LWHL19, BDLRo6, [Joao3].
A more comprehensive introduction of SSL methods is available in [CSZog, |[Zhuosa, [ZGoogal.
However, none of the aforementioned works have studied SSL in the class-imbalanced setting,
in which the standard SSL methods fail to generalize well.

Long-tailed recognition. Research on class-imbalanced supervised learning has attracted
increasing attention. In particular, many recent efforts have been made to improve the perfor-
mance under imbalanced data by decoupling the learning of representation and classifier head
[KXR ™20, MJR " 21, THZ20, WLK™ 20, LWK™ 20]. In the two-stage framework from [KXR"20],
an instance-balanced sampling scheme was first used for representation learning. In the second
stage, the classifier head is simply retrained by a class-balanced sampling. We found that
this scheme is also very competitive for imbalanced SSL in our preliminary experiments. In
contrast to this line of works, our co-learning framework focuses on imbalanced SSL and
largely simplifies the training pipeline compared to the two-stage framework [KXR™20]. The
joint training enables interaction between representation learning and classifier learning, which
brings additional benefits to the final performance. In contrast to BBN [ZCWC20], which has
a single loss for two branches and learns the classifier and the representation jointly, CoSSL
independently learns classifier and representation with different losses while still connecting
them via EMA and pseudo-labeling. Evaluation under shifted distributions was also proposed
by [HHC 21, however, we take a step further and consider settings where the test-time
distribution is given or not as prior knowledge during the training.

Imbalanced semi-supervised learning. While SSL has been extensively studied, the setting
of class-imbalanced semi-supervised is rather under-explored. Most successful methods from
standard SSL do not generalize well to this more realistic scenario without addressing the data
imbalance explicitly. Hyun et al. [H]K20] proposed a suppressed consistency loss to suppress
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the loss on minority classes. Kim et al. proposed Distribution Aligning Refinery
(DARP) to refine raw pseudo-labels via convex optimization. Wei et al. found
that the raw SSL methods usually have high recall and low precision for head classes while
the reverse is true for the tail classes and further proposed a reverse sampling method for
unlabeled data based on that. BiS [HKYT21] implements a novel sampler which is helpful for
the encoder in the beginning but classifier in the end, however, CoSSL trains the encoder and
the classifier independently with different samplers and losses. In contrast to DASO [OKK21a],
where pseudo-labels are refined by two complementary classifiers, CoSSL uses a balanced
classifier, which is trained by TFE with unlabeled data, to generate pseudo-labels. Another
concurrent work ABC introduces an auxiliary classifier which is trained in a balanced
way to help the model while sharing the same backbone. CoSSL differs from ABC [LSK21] in:
(1) the training of representation and classifier is decoupled; (2) the classifier and the encoder
are actively connected to help each other via pseudo-label generation; (3) enhancing tail classes
with unlabeled data.

6.3 CoSSL: CO-LEARNING FOR IMBALANCED SSL
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Figure 6.2: Our co-learning framework CoSSL decouples the training of representation and
classifier while coupling them in a non-gradient manner. CoSSL consists of three modules: a
semi-supervised representation learning module, a balanced classifier learning module, and
a carefully designed pseudo-label generation module. The representation module provides
a momentum encoder for feature extraction in the other two modules, and the classifier
module produces a balanced classifier using our novel Tail-class Feature Enhancement (TFE).
Then, pseudo-label module generates pseudo-labels for the representation module using the
momentum encoder and the balanced classifier. The interplay between these modules enhances
each other, leading to both a more powerful representation and a more balanced classifier.
Additionally, our framework is flexible as it can accommodate any standard SSL methods and
classifier learning methods.

In this section, we first present the problem setup of imbalanced semi-supervised learning
(SSL). Based on this, we introduce CoSSL, a flexible co-learning framework for imbalanced SSL
in Section
Problem setup and notations: For a K-class classification problem, there is a labeled set
X = {(xw,yn) : n € (1,..,N)} and an unlabeled set Y = {u, : m € (1,..,M)}, where
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Xy, Wy € RY are training examples and y, € {1, ..., K} are class labels for labeled examples. Nj
and M denote the numbers of labeled and unlabeled examples in class k, respectively, i.e.,
YK | Ny = N and Yf_; My = M. Without loss of generality, we assume the classes are sorted
by the number of training samples in descending order, i.e., Ny > N, > ... > Nj. The goal
of imbalanced SSL is to train a classifier f : R — {1, ..., K} that generalizes well over a large
range of varying test data distributions.

6.3.1 Co-learning representation and classifier

The two-stage framework [KXRT20, MJR" 21, THZ20, WLK™ 20, LWK™20] from long-tailed
recognition is quite successful for supervised learning with imbalanced data. It decouples
representation and classifier by retraining a classifier after the representation learning. While
classifier re-training (cRT) [KXR™20] is out-of-the-box a strong baseline, as we will see in the
experimental section the method has its own limitations when applied to imbalanced
SSL: (1) unlabeled data is not utilized during cRT; (2) the two-stage training scheme makes it
impossible to refine the pseudo-labels, which in turn limits the quality of feature representation
learning.

This motivates us to propose CoSSL, a co-learning framework for imbalanced SSL with a
mutual interplay between representations and classifier learning. While decoupling the training
of the representations and the classifier, we couple them without gradient propagation, so that
the final model leverages from the interactions between all the co-modules in our framework.
As illustrated in Fig. CoSSL consists of three modules: a semi-supervised representation
learning module, a classifier learning module, and a pseudo-label generation module. The
feature encoder from the representation learning module is shared with the classifier module
to learn a better classifier, and the improved classifier is used to generate better pseudo-labels
for the representation learning module to further improve the feature encoder. This joint
framework largely simplifies the training pipeline compared to the two-stage framework and
enables interaction between the representation learning and the classifier learning, which
brings additional benefits to the final performance (see Section for ablation).

Semi-supervised representation learning: The goal of the semi-supervised representation
learning module is to obtain a strong feature encoder by exploring unlabeled data. Thanks to
the flexibility of our framework, we can use and evaluate a variety of SSL methods [BCG ™19,
BCC ™20, ISBL"20]. Given a batch of unlabeled data sampled from the random sampler, we
first pass the unlabeled data to the pseudo-label generation module. Then, the unlabeled data
loss is computed using the generated pseudo-labels. Meanwhile, a batch of labeled data is
sampled by the random sampler, and the labeled data loss is computed. The resulting encoder
is accumulated into a momentum encoder and further passed to the classifier module for
feature extraction to enhance the classifier training as shown in Fig.

Classifier learning with Tail-class Feature Enhancement: Inspired by the success of cRT, we
train a separate classifier in the classifier learning module and aim to further improve it by
using unlabeled data. To this end, we propose Tail-class Feature Enhancement (TFE) that
exploits unlabeled data by blending unlabeled data features with labeled data features while
preserving the label of the labeled sample. Specifically, at each training step, we train the
classifier using blended features between labeled and unlabeled data with labels from labeled
data. We deploy a class-balanced sampler and a random sampler to sample a labeled example
(x;,yi) and an unlabeled example u;. Then the new fused feature for classifier training is
generated by:

z=A(x;))+(1-A)¢(w;)) and F=y; (6.1)
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Algorithm 4 Classifier training with Tail-class Feature Enhancement

1: Input: Labeled set X, unlabeled set U/, feature encoder ¢, parameter y, and batch size B
2: forb=1to B do

3: // Sample labeled and unlabeled examples
4. Xx;,y; ~ Class-balanced sampler(X)
5 u; ~ Random sampler(/)
6: Py = Nl;,f\]y" / / Compute the blend probability
7. if Uniform(0,1) < Py, then
8: // Generate features by feature blending
9: A ~ Uniform(p, 1)
10: z, = Ag(x;) + (1= A)¢(u))
1 bp =i
12:  else
13: // Use features of labeled data directly
14: z, = (x;)
15: o = Vi
16:  end if
17: end for

18: return {Z,§} // Features for classifier training

where ¢ is the momentum encoder from the representation learning module and the fusion
factor A is sampled from a uniform distribution over the interval [y, 1]. We consider samples of
A with a value of at least y to ensure the validity of the label y; for the synthesized sample.

To enhance the data diversity of tail classes, we train the classifier using different portions
of fused examples in a stochastic way. The feature blending is applied with a blend probability
that depends on the number of data for each class so that the more labeled data a class has, the
less fused data is synthesized for classifier learning. Formally, given a labeled example from
class k, we apply feature blending with probability P, defined as:

N - N
=

where Nj is the number of examples from the k-th class, and Nj is the number of examples of
the first class (with the most labeled data). Such a class-dependent blend probability encourages
more augmented data from feature blending for tail classes, thus, improving the data diversity
of tail classes. For instance, there is no fused data for the first class, which has the most labeled
data, since P; = 0. For a tail class with only 5% samples of the first class, the blend probability
will be as high as 95%. Note, that since fused data share the same label with the labeled data,
the class distribution is uniform during cRT as the labeled set is sampled using a class-balanced
sampler. Pseudo-code for processing a batch of labeled and unlabeled examples can be found
in Alg. [4}

Pseudo-label generation: As standard SSL methods suffer from biased pseudo-labels under
data imbalance [KHP™20b, WSM 21|, we devise a pseudo-label generation module to generate
high-quality pseudo-labels by combining the strengths of the representation learning module
and the classifier learning module. Given a batch of unlabeled data, it first uses the momentum
encoder ¢ from the representation learning to extract features since the representations learned
from instance-balanced sampling from SSL is the most generalizable [KXR™20]. Then the
pseudo-labels are predicted using the classifier trained from TFE leveraging its robustness
against data imbalance. Our pseudo-label generation module replaces the original pseudo-
labeling part of the SSL algorithm in the representation learning module and enables the
trained classifier to enhance representation learning. Note, that no gradient updates happen at
this step.

Pk (62)
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Overall co-learning framework: The three aforementioned modules, while being decoupled,
are closely coupled with each other in a non-gradient manner. CoSSL can then bootstrap itself
by exchanging information between them: the representation learning module provides a
momentum encoder for better feature extraction for training classifiers and pseudo-labeling.
And the improved classifier, in turn, generates high-quality pseudo-labels to further enhance
representation learning. Specifically, denote the overall network by f, which consists of a
feature extractor network g(-) and a classifier head h(-). At training iteration f, the three
modules operate successively as shown in Fig. (1) For the classifier module, a batch of
labeled data and unlabeled data from & and U/ are sampled using a class-balanced sampler
and a random sampler, respectively. Then, the features are extracted by a momentum encoder
¢(-) of g(-), which is provided by the representation learning module. We update ¢ by
¢t = mi—1+ (1 —m)g; where o = go and m € [0,1) is a momentum coefficient. Then, the
classifier  is trained using our TFE with standard cross-entropy loss. (2) For the pseudo-label
generation module, it encodes a new batch of unlabeled data with the same momentum
encoder ¢; and predicts the pseudo-labels using the classifier & from the classifier module.
(3) The generated pseudo-labels are then fed into the representation module to compute the
unlabeled data loss. Meanwhile, a new batch of labeled data is used in the representation
module.

CoSSL fits particularly well for imbalanced SSL as the representation module and the
classifier module, despite being decoupled, can enhance each other via pseudo-labeling and
the momentum encoder, leading to both a more powerful representation and a more balanced
classifier. We find empirically that coupling representation and classifier without explicit
gradient propagation leads to a better performance than variants with it. (see Section [6.4.5).
Moreover, our co-learning framework is very flexible as it can accommodate any standard SSL
algorithm and classifier learning method, which makes it possible to benefit from the most
advanced approaches.

6.4 EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments to evaluate the efficacy of our framework. In
Section and we compare our method with existing works and show that we
achieve state-of-the-art performance for the commonly used uniform test evaluation. Section
evaluates different methods over a large range of imbalance settings, and we distinguish
between two cases: the distributions are unknown or known a priori during training. A
detailed analysis of our framework can be found in Section [6.4.5|

6.4.1 Main results on CIFAR-10 and CIFAR-100

Datasets. Following common practice [CJLT19, CWGT19], we employ CIFAR10-LT and
CIFAR100-LT for imbalanced SSL by randomly selecting some training images for each class
determined by a pre-defined imbalance ratio 7y as the labeled and the unlabeled set. Specifically,

we set Ny = Nj - 'f% for labeled data and My = M - 'y’% for unlabeled data. For results
in the main chapter, we use N; = 1500; M; = 3000 for CIFAR-10 and N; = 150; M; = 300 for
CIFAR-100, respectively. Following [KHP"20b, WSM™21]], we report results with imbalance
ratio v = 50, 100 and 150 for CIFAR10-LT and 7 = 20, 50 and 100 for CIFAR100-LT. Therefore,
the number of labeled samples for the least class is 10 and 1 for CIFAR-10 with ¢ = 150 and
CIFAR-100 with o = 100, respectively.
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CIFAR-10-LT
=50 Y=100 =150
vanilla 6521005 98.81013 556043

Long-tailed recognition methods

w/ Re-sampling [Japoo] 64.3% 045 958704 522105
w/ LDAM-DRW [CWGT1g] 6897, 62.8%,,, 57.9%0
w/ cRT [KXR 2] 67.8% 015 632% .. 593710
SSL methods
MixMatch [BCGT 1] 73.2% 55 64850, 62554
w/ DARP [KHP " 20b] 75250 679501, 6585
w/ CReST+ [WSM*21] 79.0%0,6 719504 68355
w/ CoSSL 80.31, 031 7641114 7351125
ReMixMatch [BCC™20] 81.5% 00 73.8%035 69970047
W/ Re-sampling []apoo] 83.6:|:0.54 76.7:|:0.24 71~5:|:O.64
W/ LDAM-DRW [CWG+19] 85.9:|:0.23 80.5i0_71 76.1:|:0,53
w/ DARP [KHP " 20b] 821% 1, 7585000 71.0%0,7
w/ DARP + cRT [KHP 20b]  87.3%,,, 835%0 79.7%0s4
w/ CReST+ [WSM+21] 83.7+0.15 78.84054 75.24030
W/ CReST+ + LA [WSM+21] 84.2i0.11 81.3i0.34 79-2i0.31
w/ CoSSL 8771001 8411056 81310483
FixMatch [SBL " 20] 79.2% 05  715%.,, 684% s
w/ Re-sampling [Japoo] 848021 78941063 7524045
W/ LDAM-DRW [CWG+19] 80.010_60 73-1:|:0.81 69.1:|:0.51
w/ DARP [KHP ™ 20b] 81.8% 0, 7550 704%005
W/ DARP + CRT[KHP+20b] 85.8:|:0.43 82-4i0.26 79.6:|:().42
w/ CReST+ [WSM*21] 83.9% 1, 774504 7285058
W/ CReST+ + LA [WSM+21] 84.9i0.02 80.8i0.20 77.5:|:().74
w/ CoSSL 86.81030 83.2.049 80.3.(55

Table 6.1: Classification accuracy (%) on CIFAR-10-LT using a Wide ResNet-28-2 under the
uniform test distribution of three different class-imbalance ratios . The numbers are averaged
over 5 different folds. We use the same code base as [KHP™20b] for fair comparison following
[OOR™18]. Numbers with * are taken from the original papers. The best number is in bold.
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Setup. Following [KHP20b, CMGS10], we evaluate our method with MixMatch [BCG™ 19],
ReMixMatch [BCC"20], and FixMatch [SBLT20] under the same implementation (as recom-
mended by [OOR™18]) using Wide ResNet-28-2 [ZK16a] as the backbone. The hyper-parameter
p in Alg. [4]is set to 0.6 based on the ablation study in Section We apply TFE module
in the last 20% of iterations for faster training and better accuracy. As our implementation is
based on the public codebase from [KHP"20b], we use the same hyper-parameters as theirs.
For example, all experiments are trained with batch size 64 using Adam optimizer [KB15]
with a constant learning rate of 0.002 without any decay. We train all models for 500 epochs,
each of which has 500 steps, resulting in a total number of 2.5 x 10° training iterations. For all
experiments, we report the average test accuracy of the last 20 epochs following [OOR™18]. For
CReST+, we use the official TensorFlow implementation. As for data augmentation for TFE, we
use the strong augmentation from [SBLT20], which consists of Rand Augment [CZSL20] and
CutOut [DT17].

Results. Table|6.1|and Table [6.2| compare our method with various SSL algorithms and long-
tailed recognition algorithms on CIFAR-10-LT and CIFAR-100-LT with various imbalance ratios
7. Our method achieves the best performance across all settings with significant margins over
the previous state-of-the-art. Noticeably, our method is particularly good at larger imbalance
ratios. For example, we outperform the second-best by an absolute accuracy of 7.5% on
CIFAR-10-LT at imbalance ratio y = 150 with FixMatch, which underlines the superiority of
our method. Replacing MixMatch with ReMixMatch or FixMatch as the representation learning
module can increase test accuracy on CIFAR-10-LT at imbalance ratio y = 150 by 7.8% and
6.8%, respectively. On CIFAR-100-LT, we evaluate our method on top of ReMixMatch and
FixMatch as they give the best performance on CIFAR-10-LT. Besides the best performance
across settings, our method also improves performance for small imbalance ratios as well (4.5%
higher than the second-best at imbalance ratio v = 20 with ReMixMatch).

6.4.2 Main results on Small-ImageNet-127

Dataset. ImageNet127 is originally introduced in [HAE16] and used by [WSM™21] for imbal-
anced SSL. It is a naturally imbalanced dataset with imbalance ratio y ~ 286 by grouping the
1000 classes of ImageNet [DDS™ og] into 127 classes based on the WordNet hierarchy. Due to
limited resources, we are not able to conduct experiments on ImageNet127 with the full resolu-
tion?] Instead, we propose a down-sampled version of ImageNet127 to test the effectiveness
of our method on a large-scale dataset. Inspired by [CLH17|], we down-sample the original
images from ImageNet127 to smaller images of 32 x 32 or 64 x 64 pixels using the box method
from Pillow library (different down-sampling techniques yield very similar performance as
pointed out by [CLH17]). Following [WSMT21], we randomly select 10% training samples
as the labeled set. The test set is unchanged, and averaged class recall is used to achieve a
balanced metric.

Setup and results. We evaluate our method using FixMatch [SBL"20] with ResNet-50
[HZRS16a] due to its good performance on CIFAR. For all experiments, we train for a total
number of 500 epochs. For CReST+, we train for 5 generations with 100 epoch per generation.
The rest of hyper-parameters are the same as used in CIFAR-LT. As for data augmentation
of TFE, we use random crop and horizontal flipping. Table summarizes the results on

°Note that the results from [KHP"20b] with ¢ = 20 are not used here because they were produced by
N = 300, M; = 150: https:/ /github.com/bbuingg/DARP /blob/master/run.sh

2One run of vanilla FixMatch on ImageNet127 on a single NVIDIA Tesla V1oo takes 10676.5 hours which is
about 444 days.


https://github.com/bbuing9/DARP/blob/master/run.sh

86 CHAPTER 6. CO-LEARNING OF REPRESENTATION AND CLASSIFIER FOR IMBALANCED SSL

CIFAR-100-LT

Y=20 Y=50 Y=100

ReMixMatch [BCC+20] 51.6:‘:0.43 44.210.59 39.35;0_43
w/ Re-sampling [Japoo] 50.04056 4291095 37.84046
W/ LDAM-DRW [CWG+19] 54-5i0.95 47.510.79 42-3i0.35
W/ DARP [KHP+20b] 51.9:‘:0.35 44-7:t0.66 39.8:|:0.53
W/ DARP + cRT [KHP+20b] 54.5:‘:0.42 48.5:‘:0.91 43-7:|:0.81
W/ CReST+ [WSM+21] 51~3i0.34 45-5:|:0.76 41-0:|:0.78
W/ CReST+ + LA [WSM+21] 51-9i0.60 46.6:|:1.14 41-7i0.69
w/ CoSSL 5581062 4891061 44-Ti059
FixMatch [SBL+20] 49.61978 4214033 37.64048
w/ Re-sampling [Japoo]| 4991076 4321054 38.24060
W/ LDAM-DRW [CWG+19] 51.110_45 40-4i0.46 34.75;0.22
W/ DARP [KHP+20b] 50-810_77 43-1:t0.54 38.3:|:0.47
W/ DARP + cRT [KHP+20b] 51~4:t0.68 44-9i0.54 40.4:|:0.7g
w/ CReST+ [WSM+21] 51.840120 4491050 40.14065
w/ CReST+ + LA [WSM+21] 52.9:‘:0.07 47.310.17 42.7:|:0,7()
w/ CoSSL 5391078 47-61057 4301061

Table 6.2: Classification accuracy (%) on CIFAR-100-LT under the uniform test distribution of
three different class-imbalance ratios . The numbers are averaged over 5 different folds. We
reproduce all numbers using the same codebase from [KHP™20b] for a fair comparisorfl} The
best number is in bold.

Small-ImageNet-127. CoSSL achieves the best and the second-best performance for image sizes
32 and 64, respectively.

Small-ImageNet-127 Food-101-LT
32 x 32 64 x 64 v=50 =100

FixMatch 29.7 42.3 42.6 35.3
w/ DARP [KHP ™ 20b] 30.5 42.5 42.0 34.2
w/ DARP + cRT [KHP " 20b] 39.7 51.0 41.5 34.4
w/ CReST+ [WSM™21] 32.5 44.7 43.8 31.2
w/ CReST+ + LA [WSM™21]  40.9 55.9 47.7 36.1
w/ CoSSL 43.7 53.8 49.0 40.4

Table 6.3: Averaged class recall (%) on Small-ImageNet-127 and Food-101. We test image size
32 x 32 and 64 x 64 for Small-ImageNet-127 and y = 50 and « = 100 for Food-101.

6.4.3 Main results on Food-101

Dataset. To evaluate the effectiveness of our method on high-resolution images, we use the
fine-grained image classification dataset Food-101 [BGVG14|]. The original dataset consists of
101 food categories, with 101,000 images. For each class, 250 manually reviewed test images
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are provided as well as 750 training images. All images were rescaled to have a maximum side
length of 512 pixels. We construct Food-101-LT for imbalanced SSL using the same way as
CIFAR-10-LT with imbalance ratio v = 50 and 100.

Setup. We consider FixMatch [SBL™20] as the SSL algorithm due to its good performance. We
train a ResNet-50 [HZRS16al| for 1,000 epochs of unlabeled dataset using a SGD optimizer with
momentum 0.9. The learning rate is set to 0.04 without decay, with a linear warm-up for the
tirst 5 epochs. We set the labeled batch size as 256 and the unlabeled batch size as 512. The
EMA decay rate is 0.999. We use random crop and horizontal flipping for TFE.

Results. Table |6.3|shows the results on Food-101-LT. Compared to other methods, which give
marginal improvements or, in some cases, even worse performance over the baseline, our
method consistently improves the accuracy. We outperform the second-best by 1.3% and 4.3%
at imbalance ratio oy = 50 and 100, respectively.

6.4.4 Evaluation at unknown and known shifted test distributions

As mentioned above, the standard evaluation under uniform test distribution is often limited in
reflecting real-world scenarios. To this end, we conduct a more realistic evaluation by assessing
different methods at shifted test distributions. Moreover, we argue that the test distribution can
be given as prior knowledge in real-world applications in some cases. Thus, we distinguish
two types of shifted evaluation: known test distributions in which the test distribution is given
during training, and unknown test distributions in which this information is unknown. When
the test distribution is known, the imbalanced SSL method should be able to accommodate the
information for further improvement.

Test imbalance ratio 92 256 150 128 64 32 16 8 4 2 ‘ 1 ‘ -2 -4 -8 -16 -32 -64 -128 -256 -512 Mean
Unknown test-time imbalance ratio
Fix 94.83 93.95 93.13 9287 91.24 89.11 86.62 82.90 78.92 73.58 ‘ 67.83 ‘ 61.83 5541 49.50 44.46 4037 36.88 33.89 30.95 29.04 66.36
Fix + PC 9463 93.95 9330 92.95 91.54 89.89 87.87 84.89 8205 77.97 | 73.49 | 68.86 63.88 5945 5570 5276 5024 47.90 4577 44.23 7257
Fix + vanilla cRT 94.78 93.90 93.17 92.83 91.24 89.24 86.87 83.75 80.29 75.54 | 70.40 | 65.10 59.47 54.36 49.86 46.35 43.39 40.81 38.34 36.61 69.31
Fix + DARP 95.14 94.46 93.73 93.50 92.18 9o.12 87.70 84.39 81.03 76.26 | 71.15 | 66.12 60.99 56.10 52.28 48.84 45.75 43.25 40.79 39.17 70.65
Fix + CReST+ 94.18 9339 92.74 9245 9105 89.04 86.70 83.52 80.20 76.05 | 71.75 | 67.28 62.76 58.73 5568 5289 5047 48.49 46.61 4554 71.98
Fix + CoSSL 91.73 91.13 90.90 90.60 89.85 89.07 87.95 86.24 84.60 82.61 | 80.40 | 78.39 76.03 74.19 73.21 72.49 7143 70.64 70.02 69.71 81.06
Known test-time imbalance ratio
Fix + PC 94.98 94.00 93.13 92.83 91.16 89.24 87.03 84.00 81.03 77.31 | 73.49 | 70.10 66.79 64.21 62.69 61.89 62.41 63.26 64.80 66.50 77.04

Fix + vanilla cRT 95.14 94.32 9339 93.25 91.35 89.24 86.73 83.45 79.85 75.04 | 70.40 | 65.76 60.65 56.67 53.81 52.04 51.07 51.09 49.98 51.60 72.24
Fix + DARP + PC 9519 94.46 93.73 93.54 92.32 90.32 88.17 8553 83.00 79.96 | 76.82 | 74.33 7205 7088 7037 7053 7098 7139 7219 7307 8094
Fix + CReST+ + PC  94.48 93.44 92.74 92.49 91.09 89.17 87.20 84.75 82.60 79.86 | 77.74 | 76.09 74.41 74.03 74.40 7540 7638 7722 78.66 80.29 82.62
Fix + CoSSL + PC 92.83 9159 90.90 90.31 89.22 87.93 86.42 85.01 84.00 82557 | 82.00 | 81.70 8172 81.66 82.994 84.66 8577 86.83 87.58 88.31 86.20

Table 6.4: Classification accuracy (%) on CIFAR-10-LT with imbalance ratio y = 150. We test
different methods on top of FixMatch [SBL*20] for known and unknown shifted distributions.
Post-compensation (PC) [HHC™ 21] is deployed to utilize the information of the known test
distribution.

Inspired by [HHC ™ 21], we construct shifted test sets with a wide range of imbalance ratios.
When v > 0, the number of test examples of class k is defined as Ny = Nj - 7_%, where class

1 has the most test data. Similarly, Ny = Nj - || = when v < 0, where class 1 has the least
test data, and, thus, test set is weighted in favor of tail classes. For unknown distributions, we
train different methods and evaluate them directly over a family of shifted distributions. The
mean accuracy is also reported. When the distribution is known during training, we deploy
post-compensation [HHC"21] as a post-processing method to utilize this information for all
methods. For all experiments, we use FixMatch and train on CIFAR-10-LT with imbalance ratio
v = 150. Then, we evaluate different methods at unknown and known shifted test distributions
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varying from imbalance ratio v = 512 to —512. All experiments are run with the same data
split and the training protocol from Section

Table |6.4] summarizes the results. Compared to other methods, our approach has higher
mean accuracy for both known and unknown distributions, which is mainly due to the
good performance at the negative test imbalance ratios. For example, while being lower at
positive ratios, our method is 24.17% and 8.02% better than the second-best at imbalance ratio
¥ = —512 in known and unknown cases, respectively. Our method also shows good robustness
against the change of test imbalance ratios. For known test distribution, as the information of
test distributions is utilized during the training in our method, we achieve a more balanced
performance under various imbalance ratios. For example, the performance gap between
v =512 and v = —512 is 4.52% for our method compared to 14.19% for CReST+ and 22.12%
for DARP. Despite the improved performance from our method, the relatively lower results at
the negative ratios also indicate that none of the existing methods, including ours, can achieve
a real balanced performance. Note that our protocol can be applied for imbalanced supervised
learning as well.

Benefits of decoupling CIFAR-10 CIFAR-100

- 69.16 36.79
Fix. two-stage 73.52 39.54 CIFAR-10 CIFAR-100
CoSSL 80.24 42.09 - no sg 76.46 39.82
- 70.89 38.48 CoSSL 80.24 42.09
ReMix. two-stage 80.30 41.87  nosg 68.12 42.65
CoSSL 81.94 43.14 ReMix. CoSSL 81.94 43.14

Table 6.5: Both decoupled approaches (two-  Table 6.6: Performance degrades if representa-

stage, CoSSL) show better results over the  tion is updated with gradients from the clas-
joint training. Particularly, our co-learning sifier module.
achieves the best performance across settings.

Pseudojlabel CIFAR-10 CIFAR-100 Use U Enhancement CIFAR-10 CIFAR-100
generation
- 77.22 4133
Fix hssr 78.23 40.43 Fix. v mixUp[ZCDLP18] 77.36 41.24
’ her 80.24 42.09 v MFW[YZCz21] 77.91 41.61
3 80.22 42.00 v TFE 80.24 42.09
ReMbe 5 srgq 4314 I 7953 4260
ReMix. v mixUp[ZCDLP18] 81.75 42.27
v MFW[YZC21| 81.48 42.51
v TFE 81.94 43.14

Table 6.7: Benefits of using classifier learning
module to generate pseudo-labels. hsgy is ) o
the classifier from the representation learning Table 6.8: Test accuracy of different classifier

module, /i is the classifier from the classifier learning methods in CoSSL. cRT+ denotes
learning module. classifier re-training with mixUp.

6.4.5 Ablation study

In this section, we first analyze different design choices for CoSSL to provide additional insights
into how it helps generalization. Then, we provide detailed ablation studies on TFE. We use
CIFAR-10-LT with v = 150 as our main ablation settings. We focus on a single split and report
results for a Wide ResNet-28-2 [ZK16al] with FixMatch [SBL"20] backbone. For fair comparison,
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the same data split is used for all experiments in this section.

Benefits of the co-learning framework. We attribute the success of CoSSL to four aspects. (1)
Decoupling representation and classifier is crucial for imbalanced SSL, and our co-learning
framework which further couples them closely is superior to the standard two-stage approach.
As is shown in Table both decoupled training schemes (co-learning and two-stage) show
significant performance improvement over the joint training method. In particular, our co-
learning approach CoSSL shows preferred test accuracy to the two-stage approach across
settings, which suggests the importance of coupling representation and classifier while being
decoupled. (2) It is more beneficial to not update the representation directly with the gradient
from the classifier learning module. In Table test accuracy shows 3.78% drop when
representation is updated with gradients from the classifier learning module. (3) Instead,
it is advantageous to use the balanced classifier iy for pseudo-label generation due to its
robustness against data imbalance, as is shown in Table (4) Last but not least, it is important
to utilize unlabeled data for classifier learning, and modifications we proposed in TFE are
important for the final performance. Table |6.8| compares performance of different classifier
learning strategies for CoSSL. Methods that leverage unlabeled data (MFW[YZC21] and TFE)
outperform the ones that do not (cRT and cRT+) in most cases. In particular, TFE achieves the
best accuracy across different settings, which justifies its importance to CoSSL.

Design choices in TFE. Dedicated to imbalanced SSL, TFE differs from existing feature mixing
approaches in three important aspects. First, we utilize class-dependent blend probability P
to encourage more augmentation for the tail classes, thus, improving the final performance
as is shown in Table Removing the mechanism of Py decreases the performance by
2.34%. Second, the fusion factor A is sampled from a uniform distribution between y and 1.

This strategy shows better empirical results than

Test Acc. CIFAR-10 the commonly used beta distribution and other
blend labels with pseudo-labels  73.24 variants of uniform distribution. Thirdly, TFE
image-level enhancement 78.92 does not apply label blending. Table [6.9|shows a
remove blend probability 779 performance drop of 7.00% when labels are mixed
TFE 8024 with pseudo-labels from unlabeled data. TFE does

not only show the best performance in our joint
framework but also shows the best performance
in the two-stage framework.

Table 6.9: Design choices in TFE.

6.5 CONCLUSION AND LIMITATIONS

In this work, we study imbalanced SSL, which is a more general setting as both labeled and
unlabeled data from imbalanced distributions. We propose CoSSL, a flexible co-learning
framework for imbalanced SSL, which decouples the representation learning and classifier
learning while connecting them by sharing learned features and generated pseudo-labels. We
also design Tail-class Feature Enhancement for learning the classifier with unlabeled data and
enhancing the performance at tail classes. Integrating TFE and strong SSL methods into our
CoSSL framework, we achieve new state-of-the-art results across a variety of imbalanced SSL
benchmarks, especially when the imbalance ratio is large. At the evaluation, we address the
limitation of the conventional uniform protocol by evaluating methods at shifted distributions
and considering known and unknown test distribution during training. Such a comprehensive
evaluation provides more insights into the existing methods and uncovers limitations.

This work, however, is also subject to several limitations. First, this chapter focuses on the
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object recognition problem under class-imbalanced distribution. Therefore, caution must be
taken when generalizing to other vision tasks. Second, our method only considers in-class
unlabeled data whose potential class labels are covered by the labeled set. However, there are
often a large number of out-of-class unlabeled data available in real-world applications. And
they are often mixed with in-class unlabeled data, which can be detrimental if not properly
handled. Our method, at the current stage, is not able to handle such a case and effectively
leverage out-of-class unlabeled data, which we leave for future work. Thirdly, as we have
seen from Section all of the existing methods, including ours, can not achieve a real
balanced performance across test distributions. The performance at distributions that are
radically different from the training distribution is relatively lower.
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assumes unlabeled data are always from the same classes of labeled data. Therefore,
SSL models often underperform in open-set scenarios, where unlabeled data contain
outliers from novel categories that do not appear in the labeled set. In this chapter, we study
the challenging and realistic open-set SSL setting, where the goal is to both correctly classify
inliers and to detect outliers. Intuitively, the inlier classifier should be trained on inlier data
only. However, we find that inlier classification performance can be largely improved by
incorporating high-confidence pseudo-labeled data, regardless of whether they are inliers or
outliers. Also, we propose to utilize non-linear transformations to separate the features used
for inlier classification and outlier detection in the multi-task learning framework, preventing
adverse effects between them. Additionally, we introduce pseudo-negative mining, which
further boosts outlier detection performance. The three ingredients lead to what we call Simple
but Strong Baseline (SSB) for open-set SSL. In experiments, SSB greatly improves both inlier
classification and outlier detection performance, outperforming existing methods by a large
margin.
This chapter is based on [FKDS23]. Yue Fan was the lead author of this paper and
conducted all the experiments and wrote most part of the paper.

S NOTHER unrealistic assumption of standard semi-supervised learning (SSL) is that it

7.1 INTRODUCTION

Semi-supervised learning (SSL) has achieved great success in improving model performance
by leveraging unlabeled data [Lee13, [LA17, [TViza, MMKIi8b, BCG™ 19, BCC™ 20, ISBL™ 20,
XDH " 19, [FKS21b), ZWH™ 21, WCF ™ 22a]. However, standard SSL assumes that the unlabeled
samples come from the same set of categories as the labeled samples, which makes them
struggle in open-set settings [OORT 18], where unlabeled data contain out-of-distribution
(OOD) samples from novel classes that do not appear in the labeled set (see Fig. [7.1). In this
chapter, we study this more realistic setting called open-set semi-supervised learning, where the
goal is to learn both a good closed-set classifier to classify inliers and to detect outliers as

91
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Figure 7.1: Open-set semi-supervised learning considers a realistic and challenging setting,
where unlabeled data contains samples from novel classes (seen outliers) that do not appear in
the labeled data. At test time, the model should correctly classify inliers, while identifying
outliers seen during the training and, most importantly, unseen outliers that do not appear in
the training set. We measure test accuracy for the inlier classification performance and AUROC
for the outlier detection performance. Our method (SSB) achieves superior performance in
both tasks.

shown in Fig.
Recent works on open-set SSL HHLY22|
have achieved strong performance [WBH19, MRos| [HAo4, through a

multi-task learning framework, which consists of an inlier classifier, an outlier detector, and
a shared feature encoder, as shown in Figure The outlier detector is trained to filter out
OOD data from the unlabeled data so that the classifier is only trained on inliers. However,
this framework has two major drawbacks. First, detector-based filtering often removes many
inliers along with OOD data, leading to suboptimal classification performance due to the low
utilization ratio of unlabeled data. Second, the inlier classifier which shares the same feature
encoder with the outlier detector can have an adverse effect on the detection performance as
shown in Table

To this end, we contribute a Simple but Strong Baseline, SSB, for open-set SSL with three
ingredients to address the above issues. (1) In contrast to detector-based filtering aiming
to remove OOD data, we propose to incorporate pseudo-labels with high inlier classifier
confidence into the training, irrespective of whether a sample is an inlier or OOD. This not only
effectively improves the unlabeled data utilization ratio but also includes many useful OOD
data that can be seen as natural data augmentations of inliers (see Fig. [7.5). (2) Instead of
directly sharing features between the classifier and detector, we add non-linear transformations
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for the task-specific heads and find that this effectively reduces mutual interference between
them, resulting in more specialized features and improved performance for both tasks. (3) In
addition, we propose pseudo-negative mining to further improve outlier detector training by
enhancing the data diversity of OOD data with pseudo-outliers. Despite its simplicity, SSB
achieves significant improvements in both inlier classification and OOD detection. As shown
in Fig. existing methods either struggle in detecting outliers or have difficulties with inlier
classification while SSB obtains good performance for both tasks.

7.2  RELATED WORK

Semi-supervised learning. Semi-supervised learning (SSL) aims to improve model per-
formance by exploiting both labeled and unlabeled data. As one of the most widely used
techniques, pseudo-labeling [Lee13] is adopted by many strong SSL methods [SBL™ 20, BCG" 19,
BCG'19, XDH" 19, ZWH " 21, I AOA ™ 20a, PXDI 20, XLHIL20a), BRS" 22, LXH21]]. The idea is to
generate artificial labels for unlabeled data to improve model training. [BCG™ 19, BCC™20]
compute soft pseudo-labels and then apply MixUp [ZCDLP18] with labeled data to improve
the performance; [SBL" 20, XDH 19, ZWH"21] achieves good performance by combining
pseudo-labeling with consistency regularization [LA17, MMKI18b, [TV17a]; [PXDL20] proposes
a meta learning approach that uses a teacher model to refine the pseudo-labels based on the
training of a student model; [XLHL20a] leverages the idea of self-training which generates
pseudo labels in an iterative way and inject noise to each training stage. In this chapter, we also
adopt a simple confidence-based pseudo-labeling [SBL™20] for classifier training, which is an
effective way of leveraging unlabeled data to improve the model performance. Compared to
standard SSL, SSB has an additional outlier detector, which enables the model to reject samples
that do not belong to any of the inlier classes.

Open-set SSL & Class-mismatched SSL. First shown by [OOR™18], standard SSL methods
suffer from performance degradation when there are out-of-distribution (OOD) samples in
unlabeled data. Since then, various approaches have been proposed to address this challenge
[CZLG20, GZ] " 20a| [YITA20a| [SKS21| HFC ™21, [PY]S22, [HHLY22, HHYY22, HYG22|]. Existing
methods seek to alleviate the effect of OOD data by filtering them out in different ways so
that the classification model is trained with inliers only. For example, [CZLG20] uses model
ensemble [Schgo] to compute soft pseudo-labels and performs filtering with a confidence
threshold; [GZ] " 20a] proposes a bi-level optimization to weaken the loss weights for OOD
data; [YIIA20a] assigns an OOD score to each unlabeled data and refines it during the training;
[SKS21] leverages one-vs-all (OVA) classifiers [SS21] for OOD detection and propose a con-
sistency loss to train them; [HFCT21] proposes a cross-modal matching module to detector
outliers. [HYG22] employs adversarial domain adaptation to filter unlabeled data and find re-
cyclable OOD data to improve the performance; [HHLY22] uses energy-discrepancy to identify
inliers and outliers. In contrast, we show that if the representations of the inlier classifier and
the outlier detector are well-separated, OOD data turns out to be a powerful source to improve
the inlier classification without degrading the detection performance. So, instead of filtering
OOD data, we use a simple confidence-based pseudo-labeling to incorporate them into the
training.

Open-world SSL. Open-set SSL is similar to open-world SSL [CBL21| RKK™ 22| RKS22] but
bears several important differences. While both have unlabeled data of novel classes during the
training, the goal of open-world SSL is to classify inliers and discover new classes from OOD
data instead of rejecting them. Another important difference is that open-world SSL is often a
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transductive learning setting while open-set SSL requires generalization beyond the current
distribution. Namely, the model should be able to detect OOD data from novel classes that
present in the training set as well as OOD data from classes that are never seen during training.

7.3 SSB: SIMPLE BUT STRONG BASELINE FOR OPEN-SET SEMI-SUPERVISED
LEARNING

In this section, we first present the problem setup of open-set semi-supervised learning (SSL).
Then, we give an overview of our method SSB in Section [7.3.1]before presenting details of the
three simple yet effective ingredients used in our method in Section|7.3.2}[7.3.3} and [7.3.4]
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Figure 7.2: Left: Our baseline for open-set SSL consists of an inlier classifier g., an outlier detec-
tor g4, and a shared feature encoder f whose features are separated from the task-specific heads
by two projection heads k. and ;. Unlike the detector-based filtering, we adopt confidence-
based pseudo-labeling by the inlier classifier to leverage useful OOD data for classifier training.
For detector training, we train one-vs-all (OVA) classifiers as in OpenMatch [SKS21]. Right:
Given the inlier scores (s; to s4), pseudo-negative mining selects confident negatives (s, and s3
in the figure), whose inlier scores are lower than a pre-defined threshold, as pseudo-outliers to
help the outlier detector training.

Problem setup and notations: As shown in Fig. open-set SSL generalizes the settings of
standard SSL and out-of-distribution (OOD) detection. It considers three disjoint sets of classes:
C corresponds to the inlier classes that are partially annotated, {/s contains the outlier classes
seen during training but without annotations, and lastly, {4, is composed of the classes that are
not seen during training (only seen at test time). The training data contains a small labeled set
Diabeled = { (X}, 1) N, C X x C and a large unlabeled set Dyniabeted = {(x*)}M, C X, where X
is the input space. While the labeled set only consists of samples of inlier classes, the unlabeled
set contains both samples from C and Us. Thus, the the ground-truth label of x* is from C UUs
with CNUs = @.

The goal of open-set SSL is to train a model that can perform good inlier classification
as well as detecting both seen and unseen outliers. Without loss of generality, consider a
test set Diest = {(x;, yi)}fil C X x (CUUs UUy), where CNUy = @ and Us NUy = @. The
learned model should be able to correctly classify inliers {(x;|y; € C)} and detect outliers from
{(xilyi € Us)} as well as {(x;|y; € Uy)}, which is crucial for practical applications.
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7.3.1  Method Overview

Following [HFC™ 21| [CZLG20, [SKSz1), [YIIA20a| |GZ] "20a, HHLY22, [HHYY22, HYG22], we
adopt a multi-task learning framework for open-set SSL, which performs inlier classification
and outlier detection. As shown in Fig. SSB comprises four components: (1) An inlier
classifier g, (2) an outlier detector g, (3) a shared feature encoder f, and (4) importantly, two
projection heads & and ;. Inspired by [SKS21], the outlier detector g; consists of |C| one-vs-all
(OVA) binary classifiers, each of which is trained to distinguish inliers from outliers for each
single class. Given a batch of labeled data X' = { (xt, vi) ZB; , and unlabeled data X" = {(x})} ?:”1,
the total loss for training the model is:

Ltotal = LCls (Xlrxu;f/ hC/ gc) + Ldet(xl/ Xu;f/ hd/ gd) (71)

where L and Ly, are the classification and detection losses, respectively. For the sake of
brevity, we will drop the dependencies of the loss function on f, k., g, hs, and g; in the
following. The complete algorithm of SSB is summarized by Alg.

During inference, the test image is first fed to the inlier classifier to compute the class
prediction. Then, the corresponding detector is used to decide whether it is an inlier of the
predicted class or an outlier. We explain the details of SSB in the following three sections.

7.3.2 Boosting Inlier Classification with Classifier Pseudo-Labeling

Existing methods for open-set SSL [HFC™ 21| [CZLG20| SKS21| [YITA20a, GZ] " 20a] aim to
eliminate OOD data from the classifier training. This is typically accomplished by training
outlier detectors that can filter out OOD data from unlabeled data, as shown in Fig.
However, as we will see in Table detector-based filtering often removes many inliers along
with OOD data, which leads to a low utilization ratio of unlabeled data and hinders inlier
classification performance.

In this work, instead of using detector-based filtering, we propose to incorporate unlabeled
data with confident pseudo-labels (as generated by the inlier classifier) into the training, irre-
spective of whether it is inlier or OOD data. This not only effectively improves the unlabeled data
utilization ratio but also includes many useful OOD data as natural data augmentations of
inliers into the training (see Fig. . Inspired by [SBL™20], we train the model with pseudo-
labels from the inlier classifier whose confidence scores are above a pre-defined threshold.
Specifically, for each unlabeled sample x!, we first predict the pseudo-label distribution as
pi = softmax(he(g:(f(x!))). Then, the confidence score of the pseudo-label is computed as
max p¥. Finally, the cross-entropy loss is calculated for samples whose pseudo-labels have
confidence scores greater than a pre-defined threshold 7 as:

1 Bu AU AU AU
as (X)) = 3 Y 1(max p} > ©)H(p}, 97) (7.2)

Ui=1

where H(-,-) denotes the cross-entropy, 7% = argmaxp!, and 1(-) is the indicator function
which outputs 1 when the confidence score is above the threshold .
The total classification loss is computed as the summation of a labeled data loss and the
unlabeled data loss as:
Las (X, X") = Ly, (X) + L, (X1) (7:3)

cls cls

where L!, _is a standard cross-entropy loss for labeled data.
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Algorithm 5 SSB algorithm for Closed-Set Classification and OOD Detection.

1: Input: Labeled set Dippeleq = {(xl,y,) N |, unlabeled set Dynlabeled = {(x*)}M,, feature
encoder f, inlier classifier g., outlier detector g;, two MLP projection heads . and h,
thresholds 7 and 6, batch size B; and B, loss weights A7 ,, A{,-, and Ay, warm-up iterations
To, total number of training iterations T

2: Initialize the parameters of f, gc, g4, hic, and h; randomly

3: fort =1to T do

4 // Sample labeled and unlabeled data

{xf,yi i 1 ~ Random sampler(Di,peled)

5:

6: {x;’}f:"l ~ Random sampler(Dypiabeled)

7 // Compute classification losses

8 p¥ = softmax(gc(hc(f(x¥))),i=1,..,By // Compute pseudo-label distributions

9 U= argmaxﬁ i=1,..,By, // Compute pseudo-labels

o L o= Bz Yo H(ge(he(F(XK),yi)  // Labeled data loss

1 LY o= ZB“ I(max p¥ > T)H(p¥,§¥) // Unlabeled data loss as in Equation (2)

12 Las = cls + Lcls

13: // Compuh detection losses

y L, = 2 Llog(py,(xh)) + |C‘ T Lty log(1 —pj(x})) // Detection loss for labeled data

as in Equatzon (4)

150 Ly, = —5 Zf“l ! ;C>9) Z‘f:'l L(pe > 0)log(1 — pc(xt'))  // Pseudo-negative mining as

in Equ(mon (5)
16 LY = ZB“l entropy(g4(ha(f(x¥)))) // Entropy minimization loss as in [GBos||
177 Le = Bu Zl:l 14 (ha(F(T1(x)))) — ga(ha(F (T2(X)N))||*  // Open-set consistency loss
as in [SKS21]
18: Lier = Liiet + AZethLilet
19: / / Total loss
20: Liotar = Leis + ]l(t > TO)Ldet
21z Update parameters in f, g, g4, o, and h; with SGD
22: end for
23: return f, g, 94, he, and hy

+ AbcLe + AemLen

Despite its simplicity, we obtain a substantial performance improvement in inlier classifica-
tion through classifier confidence-based pseudo-labeling as shown in Table Our method is
conceptually different from previous methods as we aim to leverage OOD data rather than
remove them. On the one hand, our method effectively improves the unlabeled data utilization
ratio as shown in Table which leads to great inlier classification performance improvement.
On the other hand, our method provides an effective way of leveraging useful OOD data for
classifier training. In fact, many OOD data are natural data augmentations of inliers and are
beneficial for classification performance if used carefully. As shown in Fig. [7.5} the selected
OOD data present large visual similarities with samples of inlier classes, and, thus significantly
enhance the data diversity, leading to improved generalization performance.
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7.3.3 Non-Linear Feature Boosting

In previous methods, simply including OOD samples into the classifier training harms de-
tection performance since the inlier classifier and the outlier detector use the same feature
representation [SKS21), [YITA20a, HFCT21]. On the one hand, the classifier uses OOD data
as pseudo-inliers, thus mixing their representations in the feature space. On the other hand,
the outlier detector is trained to distinguish inliers and outliers, which leads to separated
representations in the feature space. As a result, the contradiction between the classifier and the
outlier detector ultimately adversely affects each other, which limits the overall performance,
as shown in Table

In this work, we find empirically that simply adding non-linear transformations between
the task-specific heads and the shared feature encoder can effectively mitigate the adverse
effect. Given a sample x;, two multi-layer perceptron (MLP) projection heads /. and h; are used
to transform the features from the encoder. The output of the network is thus h:(g.(f(x;))) for
the classifier and h;(g;(f(x;))) for the outlier detector. Compared to the previous methods,
the non-linear transformations effectively prevent mutual interference between the classifier
and detector, resulting in more specialized features and improved performance in both tasks.
In Table while the OOD detection performance degenerates when adding OOD data for
classifier training for the model without the projection heads, SSB, in contrast, still exhibits
excellent performance in detecting outliers with the help of the projection heads. Moreover, the
efficacy of the non-linear projection head also generalizes to other frameworks. We show in the
experiment section that it is compatible with various SSL backbones and open-set SSL methods
and leads to performance improvement.

7.3.4 Outlier Detection with Pseudo-Negative Mining

In this section, we first describe the outlier detector used in SSB and then introduce a simple
yet effective technique called pseudo-negative mining to improve the outlier detector training.
Following [SKS21], we adopt |C| one-vs-all (OVA) binary classifiers for OOD detection,
where each OVA classifier is trained to distinguish between inliers and outliers for each
individual inlier class. Given a labeled sample x! from class y;, it is regarded as an inlier for
class y; and an outlier for class k, k # y;. Therefore, the OVA classifiers can be trained using
binary cross-entropy loss on the positive-negative pairs constructed from the labeled set as:

B
i) = — 5 ¥ Iog(py () + & X log(1 — pilx) 79
li=1 k#y;

where pi(x!) is the inlier score of x! for class k computed by the k-th detector and K = |C| — 1.

However, due to data scarcity, it is difficult to learn good representations for outliers with
labeled data only. To this end, we propose pseudo-negative mining to further improve the
outlier detector training by leveraging confident negatives as pseudo-outliers to enhance the
data diversity of OOD data. As shown in Fig. given an unlabeled sample x}', we consider it
as a pseudo-outlier for class k if the inlier score for class k is lower than a pre-defined threshold.
Then, x}’ is used as a negative sample to calculate the cross-entropy loss of class k. The final
loss for x}' is the summation over all classes using it as the negative sample:

] ]

Y 1(pe < 0)log (1 — pr(xi')) (7.5)

u xly - -
e S ey
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where py is the inlier score from the k-th detector and 1(-) is the indicator function which
outputs 1 when the confidence score is less than the threshold 6. This increases the data diversity
of outliers and improves generalization performance as shown in Table Compared to
standard pseudo-labels, pseudo-outliers have much higher precision because we specify which
classes the sample does not belong to rather than which class it belongs to. The latter is a
more difficult task than the former. Therefore, pseudo-negative mining is less susceptible to
inaccurate predictions while increasing data utilization.

Our final loss for detector training also includes Open-set Consistency (OC) loss [SKS21]]
and entropy minimization (EM) [GBos] because they can lead to further improvement. The
overall loss for training the detector is as follows:

Lier (X', X") = Lot (X') + Ager Lfer (X*) + ALy (X) + A, L (X*) (7.6)
where AY ,, A}, and A, are loss weights; L{- is the soft open-set consistency regularization
loss, which enhances the smoothness of the OVA classifier with respect to input transformations;
LY, is the entropy minimization loss, which encourages more confident predictions.

7.4 EXPERIMENTS

In this section, we first compare SSB with existing methods in Section and then provide
an ablation study and further analysis in Section [7.4.2}
CIFAR-10, 25 labels, 6 inlier classes

CIFAR-100, 25 labels, 55 inlier classes CIFAR-100, 25 labels, 80 inlier classes
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Figure 7.3: Classification and detection performance on CIFAR-10 and CIFAR-100 with
varying numbers of inlier classes and labeled data. We measure test accuracy for the inliers
classification performance and AUROC for the outlier detection performance. While standard
SSL methods suffer in outlier detection and open-set SSL methods suffer in inlier classification,
SSB achieves good performance in both tasks. Noted that the reported outlier detection
performance is the average AUROC in detecting both seen and unseen outliers.
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ImageNet-30, 5% labels, 20 inlier classes
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Figure 7.4: Classification performance versus the outlier detection performance on ImageNet-
30. SSB achieves good performance in both inlier classification and OOD detection.

7.4.1  Main Results

Datasets & Evaluation. As mentioned in Section the goal of open-set SSL is to train a
good inlier classifier as well as an outlier detector that can identify both seen and unseen
outliers. Therefore, we need to construct three class spaces: inlier classes C, seen outlier classes
Us, and unseen outlier classes U,. For each setting: the labeled set contains samples from C
only; the unlabeled set contains samples from C and Us; the test set contains samples from
C, Us, and Uy. The inlier classification performance is evaluated on C using test accuracy as
in standard supervised learning. The OOD detection performance is measured by AUROC
following [SKS21] and we report the average performance in detecting seen outliers and
unseen outliers.

Following [SKS21]], we evaluate SSB on CIFAR-10 [KH " 09a], CIFAR-100 [KH"09a], and
ImageNet [DDS"og] with different numbers of labeled data. For CIFAR-10, the 6 animal
classes are used as inlier classes, and the rest 4 are used as seen outlier classes during the
training. Additionally, test sets from SVHN [NWCT11b], CIFAR-100, LSUN [YSZ™ 15|, and
ImageNet are considered as unseen outliers, and used to evaluate the detection performance
on unseen outliers. For CIFAR-100, the inlier-outlier split is performed on super classes, and
two settings are considered: 8o inlier classes (20 outlier classes) and 55 inlier classes (45 outlier
classes). Similar to CIFAR-10, test sets from SVHN, CIFAR-10, LSUN, and ImageNet are used
to evaluate the detection performance on unseen outliers. For ImageNet, we follow [SKS21] to
use ImageNet-30[HG16], which is a subset of ImageNet containing 30 distinctive classes. The
first 20 classes are used as inlier classes while the rest 10 are used as outlier classes. Stanford
Dogs [KJYFF11], CUB-200 [CZSL20], Flowers102 [NZo8], Caltech-256 [GHP " 07], Describable
Textures Dataset [CMK ™ 14]], LSUN are used as unseen outlier classes at test time.

Implementation details. We use Wide ResNet-28-2 [ZK16a] as the backbone for CIFAR
experiments and ResNet-18 [HZRS16a] for ImageNet experiments. As standard SSL models do
not have the notion of OOD detection, we adopt the method in [HG16|], where the OOD score
of an input image x is computed as 1 — max softmax(f(x)) and f denotes the model. Thus, the
input image is considered as an outlier if the OOD score is higher than a pre-defined threshold.
For other open-set SSL methods, we directly employ the authors” implementations and follow
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their default hyper-parameters.

For SSB, we use two two-layer MLPs with ReLU [NH10] non-linearity to separate represen-
tations for all settings. The hidden dimension is 1024 for CIFAR settings and 4096 for ImageNet
settings. For classifier training, we follow [SBL"20] and set the threshold 7 as 0.95. For outlier
detector training, we set A, as 1 for all settings and follow [SKS21] for the weights of OC loss
and entropy minimization. The threshold 0 is 0.01 for all experiments. Following [SKS21], we
train our model for 512 epochs with SGD [KW52] optimizer. The learning rate is set as 0.03
with a cosine decay. The batch size is 64. Additionally, we defer the training of the outlier
detector until epoch 475 to reduce the computational cost as we find empirically the deferred
training does not comprise the model performance.

When combined with standard SSL methods (e.g. SSB + FlexMatch), we replace the classifier
training losses in Equation 1 with the corresponding losses of different methods while keeping
the outlier detector the same. When combined with open-set SSL methods (e.g. MTC + SSB),
we make three modifications. First, we separate the outlier detector branch from the classifier
branch using the proposed MLP projection head. Second, we replace the outlier detector
training losses with our loss from Equation 6. Third, we do not filter unlabeled data with the
outlier detector for classifier training.

Results. We compare SSB with both standard SSL and open-set SSL methods. Fig. and
summarize the inlier test accuracy and outlier AUROC for CIFAR datasets and ImageNet,
respectively. Considering the goal of open-set SSL is to achieve both good inlier classification
accuracy and outlier detection, SSB greatly outperforms standard SSL methods in outlier detection,
and open-set SSL methods in inlier classification. For example, on CIFAR-10 with 25 labels,
the AUROC of our best method is 11.97% higher than the best method excluding ours.
Moreover, when combined with standard SSL algorithms, our method demonstrates consistent
improvement in OOD detection, and in most cases, better test accuracy for inlier classification.
This suggests the flexibility of our method, which makes it possible to benefit from the most
advanced approaches. Note that the performance improvement of SSB can not be simply
explained by the increased number of parameters introduced in the projection heads. Please
see Fig. for a comparison between SSB and other methods + MLP heads.

Additionally, SSB is more robust to the number of labeled data than others. We achieve
reasonable performance given a small number of labeled data while other methods fail to
generalize. For example, on CIFAR-10 with 6 inlier classes, OpenMatch has similar inlier
accuracy as ours at 50 labels. When the number of labeled data is halved, their performance
decreases to 54.88% while our method still has a test accuracy of 91.74%.

7.4.2  Ablation Study

In this section, we analyze the design choices of SSB and show their importance through
ablation experiments. If not specified, we use CIFAR-10 with 25 labeled data as our default
setting for ablation. The same data split is used for fair comparison.

Importance of non-linear projection heads. As mentioned in Section we use 2-layer MLPs
to mitigate the adverse effect between the inlier classifier and outlier detector. Here we study
the effect of the projection heads in Table As we can see, incorporating confidence filtering
yields a significant improvement in inlier classification performance (resulting in a 12.23% to
13.18% increase). However, the OOD detection performance experiences a substantial decline
when the projection heads are missing (AUROC from 89.67% to 63.46%). This is because the
classifier tends to mix the features of inliers and outliers with the same pseudo-labels in a
shared feature space, which contradicts the goal of the outlier detector. The addition of the
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projection heads not only restores the OOD detection performance but also achieves superior
results when combined with confidence filtering. Adding the projection heads in combination
with confidence filtering not only restores the OOD detection performance but achieves even
better performance, which indicates the importance of representation separation. Note that it is
important to have two independent projection heads for the inlier classifier and outlier detector.
A shared projection head does not restore the OOD detection performance as shown in Table
Moreover, we show in Table [7.2| that both classification and detection performance degrade
when swapping the task-specific features of a pre-trained model with the fixed encoder. In
particular, when re-training the detector (just a fully-connected layer) on top of classification
features, seen AUROC drops from 89.18% to 53.99%, which suggests our model learns more
task-specific features. Therefore, the utilization of the projection heads separates concerns
between the classifier and detector, which eases the difficulties of the task and allows them to
be trained jointly without adversely affecting each other.

Proj. Conf. Inlier Cls. Outlier Det.
head filter (Acc.) (AUROCQ)

78.05 89.67

shared 76.75 91.92
separate 78.47 90.92
v 90.28 63.46

shared v 90.93 63.87
separate v 91.65 94.76

Table 7.1: Effect of the projection head and confidence-based pseudo-labeling for classifier
training. We use a 2-layer MLP as the projection head. All models are trained with pseudo-
negative mining on the same data split.
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Inlier Cls. Outlier Det.

Nearest Neighbor (Acc) (AUROC)
default (a) 55.04 99.43
swap cls. & det. features (b) 53.70 77.89

Table 7.2: Classification and detection performance using features of different heads. We fix
the encoder and MLP heads and evaluate the classification and detection performance using
nearest neighbors on labeled set. Our model learns specialized features since swapping h, and
h; leads to inferior performance in both tasks.

Improving data utilization with confidence-based pseudo-labeling. Here we study the effect
of different classifier training strategies. We compare three unlabeled data filtering methods
for classifier training: (1) det. selects pseudo-inliers with the outlier detector as in [SKS21]; (2)
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det. (tuned), where we choose the selection threshold in detector-based filtering so that the
recall of actual inlier samples matches ours; (3) conf. uses unlabeled data whose confidence is
higher than a pre-defined threshold, which is our method. As shown in Table although
det. successfully removes many OOD data, it also eliminates many inliers, resulting in a low
utilization ratio of unlabeled data (0.29% unlabeled data are used in training). In contrast, our
method includes pseudo-labels with high classifier confidence into the training, irrespective of
whether a sample is out-of-distribution, which leads to a high utilization ratio of unlabeled
data (94.22%), thus, outperforming det. with a large margin. Moreover, our method also
outperforms det (tuned) whose data selection threshold is tuned for better performance. This
is because we incorporate a significant amount of OOD data in the training process (40.16%
v.s. 16.90%). In fact, many OOD data are natural data augmentation of inliers, which can
substantially improve closed-set classification if used carefully. When removing pseudo-labeled
OOD data using an oracle during the training. The inlier classification accuracy decreases by
3.37% on CIFAR-10 with 25 labels (from 91.65% to 88.28%), which suggests pseudo-labeled
OOD data are helpful for inlier classification. In Fig. we visualize top-5 confident OOD
samples predicted for three inlier classes from conf. on CIFAR-100. We can see that the selected
samples are related to the inlier classes and contain the corresponding semantics despite being
outliers. For example, OOD data selected for sea are images with sea background

Filter method det. det (tuned) conf. (ours)

+ Inlier Clf. (Acc.) 47.20 86.53 91.65

= Outlier Det. (AUROC) 57.72 87.87 94.76
Utilization ratio of:

o Unlabeled 0.29 58.09 94.22

© -0O0D data 0.04 16.90 40.16

h
Prec. of pseudo-inliers 95.17 86.53 58.30
Recall of inliers 0.47 93.86 92.14

Table 7.3: Effect of different OOD filtering methods for classifier training. We compare three
tiltering methods: conf. denotes the confidence-based pseudo-labeling; det. uses the outlier
detector to select pseudo-inliers for classifier training; det. (tuned) is a tuned version of det. that
matches the recall of inliers with our method. We compare the performance as well as the data
utilization ratio, precision, and recall of the inliers from unlabeled data during training. All
models are trained with pseudo-negative mining and the projection head on the same data
split.

Effect of pseudo-negative mining. Table [7.5/shows the effect of pseudo-negative mining. We
compare our pseudo-negative mining with standard pseudo-labeling which predicts artificial
labels for unlabeled data and uses confident predictions with labeled data loss. While standard
pseudo-labeling does not help the OOD detection performance further, pseudo-negative
mining improves the seen AUROC by 4.73% over the model without pseudo-negative mining.
Compared to standard pseudo-labeling, pseudo-negative mining not only includes more
unlabeled data into the training, but also presents high precision for the selected pseudo-
outliers as shown in Fig.

As mentioned in Section we utilize unlabeled data with low inlier scores as pseudo-
outliers to enhance the data diversity of outlier classes. An unlabeled sample is used as a
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Figure 7.5: OOD samples can be used as data augmentation to improve the generalization
performance. The figure shows three semantic classes from labeled data (wolf, road, and sea),
and top-5 confident OOD samples predicted for those classes. The ground-truth semantic
class of the OOD sample is on the top of each image. We can see that OOD data with high
confidence present large visual similarities to the corresponding semantic classes.

pseudo-outlier only if its confidence score is less than a pre-defined threshold 6. Table [7.4
compares the results of different thresholds. We can see that our method achieves similar
performance as long as 0 takes a relatively small value, which suggests the good robustness of
our method against this hyper-parameter.

Inlier Cls.  Outlier Det.
Threshold 6 ) ()" (seen AUROC)
0.2 91.87 92.96
0.1 92.03 93.16
0.05 91.97 94.21
0.01 91.65 94.76
0.005 91.52 94.75
0.001 91.70 94.15

Table 7.4: Effect of different thresholds 6 for pseudo-negative mining. Our method shows
good robustness against a wide range of thresholds. We use CIFAR-10 with 25 labeled data
here.

Ablation on outlier detectors. Here, we compare the performance of different outlier detection
methods. Specifically, we choose three schemes from recent works, including the binary
classifier from MTC [YIIA2oal], cross-modal matching from T2T [HECT21], and OVA classifiers
from OpenMatch [SKS21]. As shown in Table While all methods show reasonable
performance, OVA classifiers exhibit the best performance in both inlier classification and OOD
detection. Hence, we use OVA classifiers as the outlier detector in our final model.

Compatibility with other open-set SSL methods. We evaluated the compatibility of our
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Pseudo- Inlier Cls. Outlier Det.
labeling (Acc.) (AUROCQ)
None 91.52 90.03
Standard 91.63 89.69
Pseudo-neg. 91.65 94.76

Table 7.5: Effect of pseudo-negative mining for OOD detection. All models are trained with
confidence-based pseudo-labeling and a 2-layer MLP projection head on the same data split.
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Figure 7.6: Compared to standard pseudo-labeling, pseudo-negative mining has not only
higher prediction precision, but also higher data utilization rate.

method with other open-set SSL techniques in Table Our results indicate that our method
is highly compatible, as all existing methods showed improved performance in both inlier
classification and outlier detection when combined with our approach. This demonstrates the
flexibility of our method and suggests that it can be easily integrated into existing frameworks
as a plug-and-play solution.

Equal-parameter comparison. As mentioned in Section the performance improvement
of SSB can not be simply explained by the increased number of parameters introduced in the
projection heads. Here we compare SSB with other methods + MLP heads so that they have
the same number of parameters as SSB. As shown in Fig. adding MLP heads improves the
performance of other methods, but SSB still greatly outperforms all of them, indicating that the
performance improvement of our method can not be merely explained by the increase of the
model capacity.
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Inlier Cls. Outlier Det.

OQOD Detector (Acc) (AUROC)
binary classifier [YIIA2oa] 70.93 76.12
cross-modal matching [HFC™21] 69.27 75.99
OVA classifiers [SKS21] 71.00 82.62

Table 7.6: Comparison between different outlier detectors. The experiment is conducted on
CIFAR-100 with 55 inlier classes and 25 labels per class.

Inlier Cls. Outlier Det.
(Acc.) (AUROQ)

MTC 60.24 69.88
MTC + Ours 60.42 74.98
T2T 64.78 52.93
T2T + Ours 66.98 69.50
OpenMatch 68.53 80.00
OpenM. + Ours 71.00 82.62

Table 7.7: Integrating our method with other open-set SSL methods improves performance.
The setting is CIFAR-100 with 55 inlier classes and 25 labels per class.

CIFAR-10, 25 labels, 6 inlier classes CIFAR-100, 25 labels, 80 inlier classes
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Figure 7.7: Comparison between SSB and other methods with the same model parameters.
The performance improvement of SSB can not be simply explained by the increased number of
parameters.
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7.5 CONCLUSION AND LIMITATIONS

In this chapter, we study a realistic and challenging setting, open-set SSL, where unlabeled data
contains outliers from categories that do not appear in the labeled data. We first demonstrate
that classifier-confidence-based pseudo-labeling can effectively improve the unlabeled data
utilization ratio and leverage useful OOD data, which largely improves the classification
performance. We find that adding non-linear transformations between the task-specific head
and the shared features provides sufficient decoupling of the two heads, which prevents
mutual interference and improves performance in both tasks. Additionally, we propose
pseudo-negative mining to improve OOD detection. It uses pseudo-outliers to enhance the
representation learning of OOD data, which further improves the model’s ability to distinguish
between inliers and OOD samples. Overall, we achieve state-of-the-art performance on several
benchmark datasets, demonstrating the effectiveness of the proposed method.

Nonetheless, SSB has potential limitations. Despite the improved overall performance, the
outlier detector suffers from overfitting as the performance gap between detecting seen outliers
and unseen outliers is still very large. Therefore, in the future, more regularizations need to be
considered to improve the generalization. Another drawback is that our method is not able
to deal with long-tail distributions, which is also very realistic in practice. Presumably, our
method will have difficulty distinguishing inliers of tail classes and OOD data due to the data
scarcity at tail.
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learning (SSL), this chapter approaches it from the evaluation standpoint. Currently,
popular SSL evaluation protocols are often constrained to computer vision (CV)
tasks. In addition, previous work typically trains deep neural networks from scratch, which is
time-consuming and environmentally unfriendly. To address the above issues, we construct
a Unified SSL Benchmark (USB) for classification by selecting 15 diverse, challenging, and
comprehensive tasks from CV, natural language processing (NLP), and audio processing
(Audio), on which we systematically evaluate the dominant SSL methods, and also open-source
a modular and extensible codebase for fair evaluation of these SSL methods. We further provide
the pre-trained versions of the state-of-the-art neural models for CV tasks to make the cost
affordable for further tuning. USB enables the evaluation of a single SSL algorithm on more
tasks from multiple domains but with less cost. Specifically, on a single NVIDIA V100, only 39
GPU days are required to evaluate FixMatch on 15 tasks in USB while 335 GPU days (279 GPU
days on 4 CV datasets except for ImageNet) are needed on 5 CV tasks with TorchSSL.
This chapter is based on [WCF'22a]. Yue Fan, as the co-first author, was involved in
the idea proposal, weekly and more detailed discussions, and contributed to the codebase
implementation and the final paper writing.

WHILE the previous chapters focus on the data perspective of realistic semi-supervised

8.1 INTRODUCTION

Neural models give competitive results when trained using supervised learning on suffi-
cient high-quality labeled data [HZRS16b, RDGF16, HSg7, VSP™ 17, YD16, GQC™ 20, VQK ™ 21].
However, it can be laborious and expensive to obtain abundant annotations for model train-
ing [RDS"15b, WSM ™ 19)]. To address this issue, semi-supervised learning (SSL) emerges as

107
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Domain & Backbone = Dataset  Classification Task Hours x Settings x Seeds Total GPU Hours Total GPU Hours w/o ImageNet

CIFAR-10 Natural Image 110 X 3 X 3
CIFAR-100 Natural Image 300 X 3 X 3
CV, ResNets SVNH Digital 108 X 3 X 3 8(03 ! gg‘é g:usr)s 6687 GPU Hours
STL-10 Natural Image 225 X 3 X 3 335 4 (279 GPU Days)
ImageNet Natural Image 336 hours x 4 GPUs
(a) TorchSSL [ZWH T 21]
Domain & Backbone Dataset Classification Task Hours x Settings x Seeds Total GPU Hours
CIFAR-100 Natural Image 11X 2X3
STL-10 Natural Image 18 X2 X3
CV, ViTs EuroSAT Satellite Image 10 X 2 X 3
TissueMNIST Medical Image 8§x2x3
Semi-Aves Fine-grained, Long-tailed Natural Image 13X 1X3
IMDB Movie Review Sentiment 8x2x3
AG News News Topic 6x2x3 924 GPU Hours
NLP, Bert Amazon Review Product Review Sentiment 8§Xx2x3 (39 GPU Days)
Yahoo! Answer QA Topic 7X2X3
Yelp Review Restaurant Review Sentiment 8x2x3
GTZAN Music Genre 12X 2X3
Audio, WavezVec 2.0 UrtraSqundSk Urban Sound Event 15 X 2 X 3
FSDnoisy18k Sound Event 17 X 1 X 3
and HuBert )
Keyword Spotting Keyword 10 X 2 X 3
ESC-50 Environmental Sound Event 18 X 2 X3
(b) USB

Table 8.1: A summary of datasets and training cost used in (a) the existing popular protocol
and (b) USB. USB largely reduces the training cost while providing a diverse, challenging, and
comprehensive benchmark covering a wide range of datasets from various domains. Training
cost is estimated by using FixMatch [SBL™20] on a single NVIDIA Vioo GPU from Microsoft
Azure Machine Learning platform, except for ImageNet where 4 V1oos are used. Experiments
in (a) follow the settings in [ZWH™21].

an effective paradigm to improve model generalization with limited labeled data and massive
unlabeled data [RVR18| Zhuosb, |[ZGogb, VEH20, (OHT20, QL20].

SSL has made remarkable progress in recent years [ZOKB1g| [LSH20a, ICKS™ 20b, PDXL21),
SBL ™20, ZWH™ 21], yet there are still several limitations with the popular evaluation protocol in
the literature [OOR™ 18, SBL" 20, ZWH™ 21]. First, existing benchmarks are mostly constrained
to plain computer vision (CV) tasks (i.e., CIFAR-10/100, SVHN, STL-10, and ImageNet classifica-
tion [OOR™ 18, BCC " 20, SBL™ 20, XSY ™21, ZWH ™ 21], as summarized in TorchSSL [ZWH™ 21]),
precluding consistent and diverse evaluation over tasks in natural language processing (NLP),
audio processing (Audio), etc., where the lack of labeled data is a general issue and SSL
has gained increasing research attention recently [CYY20, BWA™ 19, [CLP22]. Second, the
existing protocol (e.g., TorchSSL [ZWH™21]) can be mainly time-consuming and environ-
mentally unfriendly because it typically trains deep neural models from scratch [BCG 19,
BCC ™20, XDH™ 20b} SBL™ 20, XSY" 21, ZWH™21]. Specifically, as shown in Table it takes
about 335 GPU days (279 GPU days without ImageNet) to evaluate FixMatch [SBL"20] with
TorchSSL [ZWH™21]. Such a high cost can make it unaffordable for research labs (partic-
ularly in academia) to conduct SSL research. Recently, the pre-training and fine-tuning
paradigm [DCLT18b| LOG™ 19, HBT ™21, HCX" 21| achieves promising results. Compared with
training from scratch, pre-training has much reduced cost in SSL. However, there are relatively
few benchmarks that offer a fair test bed for SSL with the pre-trained versions of neural models.

To address the above issues and facilitate general SSL research, we propose USB: a Unified



8.2 RELATED WORK 109

SSL Benchmark for classification [} USB offers a diverse and challenging benchmark across
five CV datasets, five NLP datasets, and five Audio datasets (Table , enabling consistent
evaluation over multiple tasks from different domains. Moreover, USB provides comprehensive
evaluations of SSL algorithms with even fewer labeled data compared with TorchSSL, as the
performance gap between SSL algorithms diminishes when the amount of labeled samples
becomes large. Benefiting from the rapidly developed neural architectures, we introduce pre-
trained Transformers [VSP™ 17] into SSL instead of training ResNets [HZRS16b] from scratch
to reduce the training cost for CV tasks. Specifically, we find that using pre-trained Vision
Transformers (ViT) [DBK™20] can largely reduce the number of training iterations (e.g., by 80%
from 1,000k to 200k on CV tasks) without hurting the performance, and most SSL algorithms
achieve even better performance with less training iterations.

As illustrated in Table using USB, we spend only 39 GPU days to evaluate the
performance of an SSL algorithm (i.e., FixMatch) on a single NVIDIA V100 over these 15
datasets, in contrast to TorchSSL, which costs about 335 GPU days on only 5 CV datasets
(279 GPU days on 4 CV datasets except for ImageNet). To further facilitate SSL research, we
open-source the codebase and pre-trained models []| for unified and consistent evaluation of
SSL methods. In addition, we also provide config files that contain all the hyper-parameters
to easily reproduce our results reported in this work. We obtain some interesting findings
by evaluating 14 SSL algorithms (Section [8.5.4): (1) introducing diverse tasks from diverse
domains can be beneficial to comprehensive evaluation of an SSL algorithm; (2) pre-training
is more efficient and can improve the generalization; (3) unlabeled data do not consistently
improve the performance especially when labeled data is scarce.

To conclude, our contributions are three-fold:

¢ We propose USB: a unified and challenging semi-supervised learning benchmark for
classification with 15 tasks on CV, NLP, and Audio for fair and consistent evaluations.
To our humble knowledge, we are the first to discuss whether current SSL methods that
work well on CV tasks generalize to NLP and Audio tasks.

¢ We provide an environmentally friendly and low-cost evaluation protocol with pre-
training & fine-tuning paradigm, reducing the cost of SSL experiments. The advantages
of USB as compared to other related benchmarks are shown in Table

¢ We implement 14 SSL algorithms and open-source a modular codebase and config files
for easy reproduction of the reported results in this work. we also provide documents
and tutorials for easy modification. Our codebase is extensible and open for continued
development through community effort, where we expect new algorithms, models, config
files and results are constantly added.

8.2 RELATED WORK

Deep semi-supervised learning originates from I'T model [RBH" 15b]], where it solves the task
of image classification by using consistency regularization that forces the model to output
similar predictions when fed two augmented versions of the same unlabeled data. Subsequent
methods can be classified as the variants of IT model, where the difference lies in enforcing the

'The word ‘unified” means the unification of different algorithms on various application domains.

2https:/ / github.com /microsoft/Semi-supervised-learning. We also provide the training logs of the experiments
in this chapter. Note that the results and training logs will be continuously updated/provided if we reorganize the
codes for better use or add more algorithms and datasets. Microsoft Research Asia (MSRA) will provide both the
support and resources for future updates.
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Benchmark # SSL algorithms Domian # Tasks Pre-trained Training hours using FixMatch
Realistic SSL evaluation [OOR™ 18] 4 Ccv 3 X -
TorchSSL [ZWH " 21] 9 (Y 5 X 6687
USB 14 CV, NLP, Audio 15 v 924

Table 8.2: The comparison between USB and other related benchmarks.

consistency between model perturbation [TV17b], data perturbation [MMKI18a, XDH™ 20b],
and exploiting unlabeled data [SBL ™20, ZWH™ 21]]. Since the best results in both CV and NLP
are given by such algorithms, we choose them as typical representative methods in USB. While
most SSL methods have seen their use in CV tasks, NLP has witnessed recent growth in SSL
solutions [XDH™20b, [CYY20]. However, only some of the popular methods [XDH20b] in CV
have been used in the NLP literature, probably because other methods give lower results or
have not been investigated. This gives us motivation for evaluation of SSL. methods on various
domains in USB.

As shown in Table 2, related benchmarks include Realistic SSL evaluation [OOR™ 18] and
TorchSSL [ZWHT21]. Realistic SSL evaluation [OOR™ 18] has 4 SSL algorithms and 3 CV
classification tasks and TorchSSL has g SSL algorithms and 5 CV classification tasks. Both of
them are no longer maintained /updated. Thus it is of significance to build an SSL community
that can continuously update SSL algorithms and neural models to boost the development of
SSL. Besides, previous benchmarks mainly train the models from scratch, which is computation
expensive and time consuming, since SSL algorithms are known to be difficult to converge
[AFIW18]. In USB, we consider using pre-trained models to boost the performance while being
more efficient and friendly to researchers.

In the following, we will first introduce the tasks, datasets, algorithms, and benchmark
results of USB. Then, the codebase structure of USB will be presented in Section

8.3 Tasks AND DATASETS

USB consists of 15 datasets from CV, NLP, and Audio domains. Every dataset in USB is under
a permissive license that allows usage for research purposes. The datasets are chosen based on
the following considerations: (1) the tasks should be diverse and cover multiple domains; (2)
the tasks should be challenging, leaving room for improvement; (3) the training is reasonably
environmentally friendly and affordable to research labs (in both the industry and academia).

8.3.1 CV Tasks

The details of the CV datasets are shown in Table We include CIFAR-100 [KH ™ ogb]
and STL-10 [CNL11b] from TorchSSL since they are still challenging. The TissueMNIST
[YSN21, YSWT21], EuroSAT [HBDB19, [HBDB18], and Semi-Aves [SM21b] are datasets in
the domains of medical images, satellite images, and fine-grained natural images. CIFAR-
10 [KH " 0gb] and SVHN [NWC " 11a] in TorchSSL are not included in USB because the state-
of-the-art SSL algorithms [XDH™20b, SBL™ 20, XSY"21] have achieved similar performance on
these datasets to fully-supervised training with abundant fully labeled training data P} SSL
algorithms have a relatively large room for improvement on all chosen CV datasets in USB.

3We highly recommend reporting ImageNet [RDS™ 15b|] results since it is a reasonable dataset for hill-
climbing [SBL™ 20, ZYH " 22} [ZWH™" 21].
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Domain Dataset #Label per class #Training data #Validation data #Test data #Class
CIFAR-100 2/ 4 50,000 - 10,000 100
STL-10 4/ 10 5,000 / 100,000 - 8,000 10
Ccv EuroSat 2/ 4 16,200 - 5,400 10
TissueMNIST 10 / 50 165,466 - 47,280 8
Semi-Aves 15-53 5,959 / 26,640 - 4,000 200
IMDB 10 / 50 23,000 2,000 25,000 2
Amazon Review 50 / 200 250,000 25,000 65,000 5
NLP Yelp Review 50 / 200 250,000 25,000 50,000 5
AG News 10 / 50 100,000 10,000 7,600 4
Yahoo! Answer 50 / 200 500,000 50,000 60,000 10
Keyword Spotting 5/ 20 18,538 2,577 2,567 10
ESC-50 5/ 10 1,200 400 400 50
Audio UrbanSound8k 10 / 40 7,079 816 837 10
FSDnoisy18k 52-171 1,772 / 15,813 - 947 20
GTZAN 10 / 40 7,000 1,500 1,500 10

Table 8.3: Details of the datasets in USB. Two #Label per class settings are chosen for each dataset
except Semi-Aves and FSDnoisy18k, which have long-tailed distributed data. Labeled data are
sampled from the training data for each dataset except STL-10, Semi-Aves, and FSDNoisy18k,
where the split of labeled and unlabeled data is pre-defined (e.g. 5,959 labeled images and
26,640 unlabeled images in Semi-Aves). Following [SBL™ 20, ZWH™21], validation data are not
provided for CV datasets. The NLP validation data are sampled from the original training
datasets. All test sets are kept unchanged.

8.3.2  NLP Tasks

The detailed dataset statistics of NLP tasks in USB are described in Table We mostly
followed previous work in the NLP literature, and thus the existing datasets in USB cover
most test sets used in the existing work [CYY20, [LLO21, XDH"20b]. We include widely
used IMDB [MDP™11], AG News [ZZL15], and Yahoo! Answer [CRRS08] from the previous
protocol [CYY20, LLO21, XDH™ 20b], which are still challenging for SSL. Since IMDB is a binary
sentiment classification task, we further add Amazon Review [ML13] and Yelp Review [Asg16]
to evaluate SSL algorithms on more fine-grained sentiment classification tasks. DBpedia is
removed from the previous protocol [CYY20, [LLO21, XDH™20b|] because we find that the
state-of-the-art SSL algorithms have achieved similar performance on it when compared with
fully-supervised training. For all tasks in NLP, we obtain the labeled datasets, unlabeled
datasets, and validation sets by randomly sampling from their original training datasets while
keeping the original test datasets unchanged, mainly following previous work [CYY20, [LLO21].

8.3.3 Audio Tasks

USB includes five audio classification datasets as shown in Table We choose the tasks to
cover different domains such as urban sound (UrbanSound8k [S]B14], ESC-50 [Pic15], and
FSDNoisy18k [FPET 19]), human sound (Keyword Spotting [YCC™21]), and music (GTZAN)
[Stui3]. All chosen datasets are challenging even for state-of-the-art SSL algorithms. For
example, FSDNoisy18k is a realistic dataset containing a small labeled set and a large unlabeled
set. To the best of our knowledge, we are the first to systematically evaluate SSL algorithms
on Audio tasks. Although there is a concurrent work [CLP22], our study includes more
algorithms and more datasets than [CLP22|.
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Algorithm PL CRLoss Thresholding Dist. Align. Self-supervised Mixup W-S Aug.

I1-Model MSE
Pseudo Labeling v CE
Mean Teacher MSE
VAT CE
MixMatch MSE v
ReMixMatch CE v Rotation v v
UDA CE v v
FixMatch v CE v v
Dash v CE v v
CoMatch v CE v v Contrastive v
CRMatch v CE v Rotation v
FlexMatch v CE v v
AdaMatch v CE v v v
SimMatch v CE v v Contrastive v

Table 8.4: Essential components used in 14 SSL algorithms supported in USB. PL, CR, Dist.
Align., and W-S Aug., MSE, CE are the abbreviations for Pseudo Labeling, Consistency
Regularization, Distribution Alignment, Weak-Strong Augmentation, Mean Squared Error, and
Cross-Entropy, respectively. PL denotes hard ‘one-hot’ labels adopted in CR Loss.

8.4 SSL ALGORITHMS

We implement 14 SSL algorithms in the codebase for USB, including IT model [RBH™ 15b],
Pseudo Labeling [Lee13], Mean Teacher [TViyb], VAT [MMKI18a], MixMatch [BCGT19],
ReMixMatch [BCC™20], UDA [XDH ™ 20b], FixMatch [SBL " 20|, Dash [XSY " 21|, CoMatch [LXHz1],
CRMatch [FKSz21b], FlexMatch [ZWH™21], AdaMatch [BRS™ 22|, and SimMatch [ZYH™22], all
of which exploit unlabeled data by encouraging invariant predictions to input perturbations
[VEH20, [OHT20, [YSKX21 Spr15| DGF16b, DYY " 17, [KSF17]. Such consistency regularization
methods give the strongest performance in SSL since the model is robust to different per-
turbed versions of unlabeled data, satisfying the smoothness and low-density assumptions in
SSL [CSZog].

The above SSL algorithms use Cross-Entropy (CE) loss on labeled data but differ in the
way on unlabeled data. As shown in Table Pseudo Labeling [Lee13] turns the predictions
of the unlabeled data into hard ‘one-hot” labels and treats the ‘one-hot” pseudo-labels as
the supervision signals. Thresholding reduces the noisy pseudo labels by masking out the
unlabeled samples whose maximum probabilities are smaller than the pre-defined threshold.
Distribution Alignment aims to correct the output distribution to make it more in line with the
target distribution (e.g., uniform distribution). Self-supervised learning, Mixup, and Stronger
augmentations techniques also can help learn better representation. We summarize the key
components exploited in the implemented consistency regularization based algorithms in

Table

8.5 BENCHMARK RESULTS

For CV tasks, we follow [ZWH™21] to report the best number of all checkpoints to avoid
unfair comparisons caused by different convergence speeds. For NLP and Audio tasks, we
choose the best model using the validation datasets and then evaluate it on the test datasets.

4Note that all experimental results and training logs will be continuously updated in https://github.com/
microsoft/Semi-supervised-learning. Please refer to the latest results for comparison.
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Dataset ‘ CIFAR-100 ‘ STL-10 ‘ Euro-SAT ‘ TissueMNIST ‘ Semi-Aves ‘ Friedman ‘ Final ‘ Mean
# Label ‘ 200 400 ‘ 20 40 ‘ 20 40 ‘ 80 400 ‘ 5,959 ‘ rank ‘ rank ‘ error rate
Fully-Supervised | 8.44:007  8.44s007 - - 0.94:007  0.89:005 | 29.15:013 20.10s002 - - - -

Supervised 35.63:036 26.08:050 | 47.02:148 26.02:072 | 27.124126  16.90:148 | 59.91:203 54.10:152 |  41.55029 - - -
IT-model 36.24:027  26.49s064 | 44385159  25.76:237 | 24.5Ts102  11.58:13: | 56.79:501  47.502171 | 39.23s036 10.11 11 34.72

Pseudo-Labeling | 33.16:120 25.20u067 | 45.134408 26.20:155 | 23.644090 15.61s251 | 56.22:401  50.30s162 | 40.131000 9.89 10 35.08

Mean Teacher 35.61:038 25.97:037 | 39.94<199 20.16:125 | 26.5T4115  17.05:207 | 61.40:248 55.22:206 | 38.52u027 10.89 14 35.60

VAT 31.61:s157 21.2Q:032 | 52.03<048 23.10:072 | 24.77+191  9.30:123 | 58.50:641 51.3Ts166 | 39.00:030 10.11 12 34.55

MixMatch 37.43:058 26.17:024 | 48.98:141  25.56:500 | 29.861289  16.30:317 | 55.73:220 49.08s106 | 37.22:015 10.11 12 36.27

ReMixMatch 20.85:14:  16.80:059 | 30.61:347 18.33:108 | 4.53#160  4.10%03 | 59.2Q:516 52.92:393 | 30.40z033 4.00 1 26.43

UDA 30.75:105  19.94s032 | 39.22:287 23.59:297 | 1115120  5.99:075 | 55.88:326 51.42:205 | 32.55:026 6.89 7 30.05

FixMatch 30.45:065 19.48:003 | 42.06:30; 24.05:170 | 12.48:257  6.414161 | 55.95406 50.93:123 | 31.74s033 6.56 6 30.39

Dash 30.19:134  18.90:0.42 | 43.34+146 25.90:035 | Q.44s075  7.00:139 | 57.00:281 50.93s1s55 | 32.50:030 7.44 9 30.58

CoMatch 35.68:054 26.10:000 | 29.70t11; 21.40:134 | 5.25:040  4.89:086 | 57.15:346 51832071 |  41.39:016 7.22 8 30.38

CRMatch 29.43:111  18.50:026 | 30.55:201 17.43%196 | 14.52+154  7.00:060 | 54.844305 51.10s150 | 31.97:010 4.67 2 28.37

FlexMatch 27.08:090  17.67:066 | 37.58:207 23.40:150 | 7.07:232  5.58:057 | 57.23s250 52.00s178 |  33.09:016 6.44 5 28.97

AdaMatch 21.27:104 17.0%s055 | 36.25:180 23.30:073 | 5.70s037  4.92:087 | 57.87:447 52.284079 | 31.54s010 5.22 3 27.79

SimMatch 23.260:125  16.824040 | 34.12:163 22.97:204 | 0.884177  5.86:107 | 57.91s460 51.144185 | 34.14w030 5.44 4 28.12

Table 8.5: Error rate (%) and Rank with CV tasks in USB. For Semi-Aves and STL10, as they have
unlabeled sets, we do not report the fully-supervised results. We follow [SBL™20, ZWH™ 21,
XDH ™" 20b] to show error rates as default.

In addition to mean error rate over the tasks, we use Friedman rank [Fri3y, [Frigo] to fairly
compare the performance of different algorithms in various settings:

1 m
ranky = — Z rank;,
miz

where m is the number of evaluation settings (i.e., how many experimental settings we use, e.g.,
m =9 in Table [8.5), and rank; is the rank of an SSL algorithm in the i-th setting. We re-rank
all algorithms to give final ranks based on their Friedman rankings. Note that all ranks are in
ascending order because the lower error rate corresponds to a better performance. Note that
‘supervised” denotes training with the partially chosen labeled data while “fully-supervised’
refers to training using all data with full annotations in our reported results.

The results for the 14 SSL algorithms on the datasets from CV, NLP, and Audio are shown
in Table Table and Table respectively. We adopt the pre-trained Vision Transformers
(ViT) [VSP" 17, DBK™ 20, IDCLT18b, BZMA20] instead of training ResNets [HZRS16b] from
scratch for CV tasks. For NLP, we adopt Bert [DCLT18b]. Wav2Vec 2.0 [BZMA20] and HuBert
[HBT " 21] are used for Audio.

8.5.1 CV Results

The results are illustrated in Table Thanks to the good initialization of representation on
unlabeled data given by the pre-trained ViT, SSL algorithms, even without using thresholding
techniques, often achieve much better performance than the previous performance shown
in TorchSSL [ZWH™21]. Among all the SSL algorithms, ReMixMatch [BCCT20] ranks at
the first and outperforms other SSL algorithms, due to the usage of Mixup, Distribution
Alignment, and rotation self-supervised loss. Its superiority is especially demonstrated in
the evaluation of Semi-Aves, a long-tailed and fine-grained CV dataset that is more realistic.
Notice that SSL algorithms with self-supervised feature loss generally perform well than
other SSL algorithms, e.g., CRMatch [FKS21b] and SimMatch [ZYH™22] rank second and
fourth respectively. Adaptive thresholding algorithms also demonstrate their effectiveness, e.g.,
AdaMatch [BRS™22] and FlexMatch [ZWH™ 21] rank at third and fifth respectively. While better
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Dataset ‘ IMDB ‘ AG News ‘ Amazon Review ‘ Yahoo! Answer ‘ Yelp Review ‘ Friedman ‘ Final ‘ Mean
# Label ‘ 20 100 ‘ 40 200 ‘ 250 1000 ‘ 500 2000 ‘ 250 1000 ‘ rank ‘ rank ‘ error rate
Fully-Supervised | 5.87:001  5.84:012 | 5.74s03  5.64s005 | 36.8Ts005 36.88s010 | 26.25:107 25.55:043 | 31.74s023 32.70s058 - - -

Supervised 20.63:313  13.47:055 | 15.01sez1  13.00:100 | 51.7420635 47.342066 | 37.102122  33.50z008 | 50.27:051 46.96:042 ‘ - ‘ - ‘ -
IT-Model 49.02:137  27.57:1585 | 46.8412620 13.441076 | 73.53260:  48.27:048 | 41.37:215 32.90:016 | 73.35:231  52.02:148 11.80 12 45.84

Pseudo-Labeling | 26.38:0;  21.38:15 | 23.864765 12.2Q:040 | 53.00:148  46.49:045 | 38.60:100  33.442024 | 55.70:005 47.72:03 10.60 11 35.89

Mean Teacher 21.27s57: 1411177 | 14.98s110  13.23s112 | 51.675045 47.512024 | 36.97s102  33.432022 | 51.07:144 46.61034 9.30 10 33.09

VAT 32.5Q:460 14.42s253 | 15.00:112  11.5Qs004 | 50.38:085 46.042028 | 35.160s075 31.532041 | 52.76:08; 45.53z013 8.40 8 33.50

UDA 9.361126  8.332061 | 18.734268 12.34u100 | 52482120 45.51s061 | 35.3Ls043 32.0Ls068 | 58.22:050 42.18:068 8.70 9 31.45

FixMatch 8.201020 7362007 | 22.80s518 11.43:065 | 47.85:122  43.732045 | 34.15:004 30.76:053 | 50.342040 41.99:058 5.60 7 29.86

Dash 8.93:127  7.97:05 | 19.30s6735 11.20s112 | 47.79:103 43.52:007 | 35.10:1356  30.51:047 | 47.99:105 41.59:061 5.10 6 29.39

CoMatch 7.365026  7.41s020 | 13.25:31 11.6Ts042 | 48.98:120  44.37:025 | 33.48:067 30192022 | 46.49:142  41.11:053 3.80 3 28.43

CRMatch 788102 7.68:035 | 13.35s106 11.36s104 | 46.23:085 43.09:048 | 33.07:068 30.62:047 | 46.601s102  41.80:077 3.70 2 28.23

FlexMatch 7.351010  7.80s024 | 16.90s676 11.43s00: | 45.752121  43.142082 | 35.8Tu100  31.42s041 | 46.37:07 40.862074 4.10 5 28.68

AdaMatch 9.62:126  7.81i046 | 12.924153 1L.032062 | 46.75:123 43.50:067 | 32.972043 30.82:029 | 48.16:08 41.7T1:108 4.00 4 28.53

SimMatch 7243002 7.44s020 | 14.80s05 11.12+015 | 47.27:175 43.09z050 | 34.15:001 30.64:042 | 46.402151  41.242017 2.90 1 28.34

Table 8.6: Error rate (%) and Rank with NLP tasks in USB.

results of the evaluated SSL algorithms are obtained on CIFAR-100, Euro-SAT, and Semi-Aves,
we also observe that the performance is relatively lower on STL-10 and TissueMNIST. The
reason for lower performance on STL-10 might result from the usage of the self-supervised
pre-trained model [HCX™21], rather than the supervised pre-trained model is used in other
settings. Since TissueMNIST is a medial-related dataset, the biased pseudo-labels might
produce a destructive effect that impedes training and leads to bad performance. The de-
biasing of pseudo-labels and safe semi-supervised learning would be interesting topics in
future work, especially for medical applications of SSL algorithms.

8.5.2 NLP Results

The results of NLP tasks are demonstrated in Table The overall ranking of SSL algorithms in
NLP is similar to that in CV. However, the SSL algorithm that works well in NLP does not always
guarantee good performance in CV, which shows that the performance of SSL algorithms will
be affected largely by data domains. For example, SimMatch which ranks first in NLP does not
have the best performance in CV tasks (ranks fourth). The ranking of CoMatch is also increased
in NLP, compared to that in CV. A possible reason is the different pre-training in backbones.
For BERT, a masked language modeling objective is used during pre-training [DCLT18b], thus
the self-supervised feature loss might further improve the representation during fine-tuning
with SSL algorithms. We observe that adaptive thresholding methods, such as FlexMatch
and AdaMatch, consistently achieve good performance on both CV and NLP, even without
self-supervised loss. Note that we do not evaluate MixMatch and ReMixMatch on NLP and
Audio tasks because we find that mixing sentences with different lengths harms the model’s
performance.

8.5.3 Audio Results

The results of Audio tasks are shown in Table AdaMatch outperforms other algorithms in
Audio tasks, while SimMatch demonstrates a similar performance to AdaMatch. An interesting
tinding is that CRMatch performs well on CV and NLP tasks, but badly in Audio tasks.
We hypothesize that this is partially due to the noisy nature of the raw data in audio tasks.
Except for Keyword Spotting, the gap between the performance of fully-supervised learning
and that of SSL algorithms in Audio tasks is larger than in CV and NLP tasks. The reason
behind this is probably that we exploit models that take waveform as input, rather than Mel
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Dataset ‘ GTZAN ‘ UrbanSound8k ‘ Keyword Spotting ‘ ESC-50 ‘ FSDnoisy ‘ Friedman ‘ Final ‘ Mean
# Label ‘ 100 400 ‘ 100 400 ‘ 50 100 ‘ 250 500 ‘ 1,772 ‘ rank ‘ rank ‘ error rate
Fully-Supervised | 5.98:05:  5.98:052 | 16.65:71 16.6Ts171 | 2.12s01m  2.25:002 | 26.00:213  26.00:215 - - - -

Supervised 52.16:18 31.53:052 | 40.42:100 28.55:100 | 6.80:116  5.25:056 | 5158112 35.07:042 | 35.20:150 - - -
IT-Model 74.07:062  33.18:364 | 54.24s601  25.80s151 | 64.392410 25.48:404 | 47.25:114  36.00:162 | 35.73z08; 10.67 12 44.03

Pseudo-Labeling | 57.29:280 33.93:060 | 42.0Q:241 27.00s13 | 7.82:16  5.16:014 | 49.33:252  35.584105 | 35.34s160 10.00 10 32.62

Mean Teacher 51.40:348 31.60:146 | 41.70:330 28.91w003 | 5.95:04s  5.3Q2042 | 50.25:105 37.332120 | 35.834122 10.33 11 32.04

VAT 79.51s100  35.384780 | 49.62:242  27.68i130 | 2.18s008  2.23s008 | 46.42s190 36.92s225 | 32.07sr05 8.33 9 34.67

UDA 46.560:860 23.621063 | 37.28s317  20.27:158 | 2.52:015  2.62s010 | 42.75:08 33.50s195 | 30.80:047 6.33 7 26.66

FixMatch 36.044457  22.0Q:065 | 30.12:426 21.434288 | 4.842357 2382005 | 37.754319 30.67:105 | 30.31s108 4.00 3 24.63

Dash 47.00:365  23.42:083 | 42.02:502  22.20:08 | 5.70:440  2.52:016 | 48.17:116  32.75:227 | 33.19x005 7.56 8 28.56

CoMatch 36.93:123  22.20:139 | 30.59%245  21.35:149 | 11.392085  Q.44e152 | 40.17:208 2983131 | 27.63s135 5.11 6 25.50

CRMatch 40.58:307  22.04:122 | 39.47+466 20.1Ts265 | 2.40:013  2.4Q:008 | 42.67:05  33.58:103 | 30.45:152 5.00 5 26.04

FlexMatch 34.60s407  21.82:117 | 40.18:273  22.824310 | 2.42:008  2.572025 | 39.58:05 29.92:185 | 26.36:055 4.11 4 24.47

AdaMatch 31.382041  20.732067 | 35.76s639 21.15:122 | 2.492008  2.4Q:010 | 39.17s174 31.331125 | 27.95:07 2.89 1 23.61

SimMatch 32.42:218  20.80:077 | 31.70s605 19.55%189 | 2.57:008  2.532022 | 39.92:235 32.83s143 | 28.16u087 3.67 2 23.39

Table 8.7: Error rate (%) and Rank with Audio tasks in USB. Fully-supervised result is not
reported for FSDNoisy18k due to the unknown labels of its unlabeled set.

spectrogram. Raw waveform might contain more noisy information that would be harmful to
semi-supervised training. We identify exploring audio models based on Mel spectrogram as
one of the future directions of USB.

8.5.4 Discussion

The evaluation results of SSL algorithms using USB are generally consistent with the results
reported by previous work [OOR™18, BCG™ 19, BCC 20, XDH20b), SBL " 20, ZWH™"21]. How-
ever, using USB, we still provide some distinct quantitative and qualitative analysis to inspire
the community. This section aims to answer the following questions: (1) Why should we
evaluate an SSL algorithm on diverse tasks across domains? (2) Which option is better in the
SSL scenario, training from scratch or using pre-training? (3) Does SSL consistently guarantee
the performance improvement when using the state-of-the-art neural models as the backbones?

Performance Comparisons Table 8.8/ shows the performance comparison of SSL algorithms
in CV, NLP and Audio tasks. Although the ranking of each SSL algorithm in each domain is
roughly close, the differences between ranks of SSL algorithms in different domains cannot
be ignored. For example, FixMatch, CoMatch and CrMatch show large difference (Rank,x —
Ranki, > 4) on the ranks across domains, which indicates that NLP and Audio tasks may have
different characteristics compared with CV tasks that are more amenable to certain types of SSL
algorithms compared with others. From the task perspective, it is important to consider such
characteristics for guiding the choice of SSL methods. From the benchmarking perspective, it is
useful to introduce diverse tasks from multiple domains when evaluating an SSL algorithm.

Effectiveness of Pre-training As shown in Figure (a) and Figure (b), benefiting from
the pre-trained ViT, the training becomes more efficient, and most SSL algorithms achieve
higher optimal performance. Note that Pseudo Labeling, Mean Teacher, II model, VAT, and
MixMatch barely converge if training WRN-28-8 from scratch. A possible reason is that the
scarce labeled data cannot provide enough supervision for unlabeled data to form correct
clusters. However, these methods can achieve sufficiently reasonable results when using
pre-trained ViT. As illustrated in Figure using ViT without pre-training performs the
worst among different backbones. The reason can be that ViT is data hungry if trained from
scratch [DBK ™20, HWC 22, TCD"21]. However, after appropriate pre-training, ViT performs
the best among all the backbones. In addition, we provide the T-SNE visualization of the
features in Figure where the pretrained ViT model demonstrates the most separable feature
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Figure 8.1: Comparison of test accuracy of SSL algorithms on CIFAR-100 with 400 labels. (a)
Existing protocol which trains WRN-28-8 from scratch; (b) USB CV protocol which trains
ImageNet-1K pre-trained ViT-S-P2-32, where S denotes small, P denotes patch size, and 32 is
input image size.
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Figure 8.2: Pre-training ablation on CIFAR-400 with 400 labels. Test and pseudo-label accuracy
are compared with WRN-28-8 without pre-training, pre-trained WRN-28-8, pre-trained ViT-S-
P16-224, ViT-S-P2-32 without pre-training, and pre-trained ViT-S-P2-32.

| TI-Model | Pseudo-Labeling | Mean Teacher | VAT | UDA | FixMatch | Dash | CoMatch | CRMatch | FlexMatch | AdaMatch | SimMatch

CvV 10 9 12 11 6 5 8 7 1 4 2 3
NLP 12 11 10 8 9 7 6 3 2 5 4 1
Audio 12 10 11 9 7 3 8 6 5 4 1 2
Rankyqax — Rankyin 2 2 2 3 3 4 2 4 4 1 3 2

Table 8.8: Final ranks of SSL algorithms. Note that the rank for CV tasks here is different from
the ones in Table [8.5| because we ignore MixMatch and ReMixMatch here to remove the effects
of their missing ranks in NLP and Audio.

| TI-Model | Pseudo-Labeling | Mean Teacher | VAT | MixMatch | ReMixMatch | UDA | FixMatch | Dash | CoMatch | CRMatch | FlexMatch | AdaMatch | SimMatch

cv
NLP
Audio

3 2 o 1 o o
4 o o o o

9 7 5
7 5 6

1‘4‘0‘0‘0‘0‘2‘0‘0‘0‘0

2 ‘ i ‘ ;

Table 8.9: This table shows how many times an SSL algorithm is worse than supervised training,
where the numbers of total settings are 9, 10, and g for CV, NLP, and Audio respectively.

space after training. In a word, pre-trained ViT makes the training more efficient and improves
the generalization performance of SSL algorithms. For NLP tasks, we observe similar results,
yet the improvement can be relatively less significant since pre-training is the de-facto fashion
in the field.
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(d) WRN-28-8 from scratch. (e) Pre-trained WRN-28-8. (f) Pre-trained ViT-S-P2-32.

Figure 8.3: T-SNE visualization of FixMatch features on training data (first row) and testing
data (second row) of CIFAR-100 (400 labels). Different colors refer to labeled data with different
classes while unlabeled data is indicated by gray color.

Robustness SSL sometimes hurts the generalization performance due to the large differences
between the number of labeled data and the number of unlabeled data as shown in Table
We refer to an SSL algorithm as a robust SSL algorithm if it is consistently better than the
supervised training setting. SSL algorithms cannot always outperform supervised training
especially when labeled data is scarce. We find that CRMatch, AdaMatch and SimMatch are
relatively robust SSL algorithms in USB. Although previous work has done some research
towards robust SSL when using support vector machine Nobo6], we hope that our
finding can serve as the motivation to delve into deep learning based robust SSL methods.

8.6 CODEBASE STRUCTURE OF USB

In this section, we provide an overview of the codebase structure of USB, where four abstract
layers are adopted. The layers include the core layer, algorithm layer, extension layer, and API
layer in the bottom up direction as shown in Fig. 8.4

Core Layer. In the core layer, we implement the commonly used core functions for training
SSL algorithms. Besides, the code regarding datasets, data loaders, and models used in USB is
also provided in the core layer. For flexible training, we implement common training hooks
similar to MMCYV [Con18], which can be modified and extended in the upper layers.

Algorithm Layer. In the algorithm layer, we first implement the base class for SSL algorithms,
where we initialize the datasets, data loaders, and models from the core layer. Instead of
implementing SSL algorithms independently as in TorchSSL [ZWHT21], we further abstract
the SSL algorithms, enabling better code reuse and making it easier to implement new algo-
rithms. Except for the standalone implementation of loss functions used in SSL algorithms
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Figure 8.4: Structure of USB Codebase, consisting of 4 layers. The core layer provides the
common functions, datasets, and models for SSL algorithms. The algorithm layer mainly
implements the related SSL algorithms, with a high abstract level of algorithm components.
Upon the algorithm layer, we use an extension layer for easy and flexible extension of core
SSL algorithms. The top API layer supports a public python package SEMILEARN: pip install
semilearn.

and algorithm-specific configurations, we further provide algorithm hooks according to the
algorithm components summarized in Table The algorithm hooks not only highlight the
common part of different algorithms but also allows for a very easy and flexible combination
of different components to resemble a new algorithm or conduct an ablation study. Based on
this, we support 14 core SSL algorithms in USB, with two extra supervised learning variants.
More algorithms are expected to be added through continued extension of USB.

Extension Layer. The extension layer is where we further extend the core SSL algorithms to
different applications. Continuted effort are made on the extension of core SSL algorithms
to imbalanced SSL algorithms [KHP™20a, WZH ™22, LWZL11 [H]K20, WSM ™21, [YX20, [FDS22|
OKK21b] and open-set SSL algorithms [SKS21, (GZ] " 20b, [YITA20b, LCG™ 21, HXH" 21]. Sys-
tematic ablation study can also be conducted in the extension layer by inheriting either the core
components and algorithms from the core layer or the algorithm layer.

API Layer. We wrap the core functions and algorithms in USB in the API layer as a public
python package SEMILEARN. SEMILEARN is friendly for users from different backgrounds who
want to employ SSL algorithms in new applications. Training and inference can be done in
only a few lines of code with SEMILEARN. In addition, we provide the configuration files of all
algorithms supported in USB with detailed parameter settings, which allows for reproduction
of the results present in USB.



8.7 LIMITATION 119

8.7 LIMITATION

Our primary focus is on semi-supervised classification in this chapter. However, there are other
SSL tasks that the SSL community should not ignore. USB currently does not include SSL tasks
such as imbalanced semi-supervised learning [KHP ™ 20a, TWZIL 11, HJK20, WSM ™21, [YX20),
FDS22|, [OKK21b], open-set semi-supervised learning [SKS21| |GZ] " 20b, [YIIA20b, [LCGT 21
HXH™21], semi-supervised sequence modeling [CLML18, [CRLL20, [LMos| [DL15, BWA ™19,
WWL"22], semi-supervised text generation [LWO22, HGSR1g, [CY21], semi-supervised re-
gression [WLo7, [XE18| KKKR18)| |ZL 05, [LZZ17], semi-supervised object detection [TWGT16,
TRW ™21, XZH" 21, TCLZ21, GWD™ 19, LMH" 20|, semi-supervised clustering [BBMoz2| [Bai13]
GCBo4, BBMo4], etc. In addition, we do not implement generative adversarial networks based
SSL algorithms [KMJRW14, Spr1s, (Ode16b, DGF16b] and graph neural network based SSL
algorithms [VQK™ 21, [FZD™" 20, [SZC19, |(GZQ™" 22, ZCHC20] in USB, which are also important
to the SSL community. Moreover, it is of great importance to extend current SSL to distribu-
tional shift settings, such as domain adaptation [WFC™18,WCH " 17] and out-of-distribution
generalization [WLL"22], as well as time series anaysis [DWF"21]. We plan to evolve the
benchmark in future iterations over time by extending it with more tasks.

8.8 ConNcrLusioN

We constructed USB, a unified SSL benchmark for classification that aims to enable consistent
evaluation over multiple datasets from multiple domains and reduce the training cost to make
the evaluation of SSL more affordable. With USB, we evaluate 14 SSL algorithms on 15 tasks
across domains. We find that (1) although the performance of SSL algorithms is roughly close
across domains, introducing diverse tasks from multiple domains is still necessary in the SSL
scenario because the performance of SSL algorithms are not exactly steady across domains; (2)
pre-training techniques can be helpful in the SSL scenario because it can not only accelerate the
training but also improve the generalization performance; (3) unlabeled data sometimes hurts
the performance especially when labeled data is extremely scarce. USB is a project for open
extension and we plan to extend USB with more challenging tasks other than classification and
introduce new algorithms.






LEARNING WITH FOUNDATION MODELS

While the previous parts discuss the data perspective in Al systems,
this section shifts to the model perspective in representation learning,
aiming to develop versatile vision models capable of tackling a wide
array of vision tasks. Specifically,

in Chapter |9 we introduce a diffusion-based vision general-
ist, unifying four distinct types of dense prediction tasks under a
conditional image generation framework and repurposing pre-trained
diffusion models to achieve this. Our investigation reveals a list of
interesting findings and provides a recipe for fine-tuning pre-trained
text-to-image diffusion models for dense vision tasks.
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interested in building generalized models that can solve many computer vision tasks
simultaneously. Recent works have shown image itself can be used as a natural interface
for general-purpose visual perception and demonstrated inspiring results. In this chapter, we
explore diffusion-based vision generalists, where we unify different types of dense prediction
tasks as conditional image generation and re-purpose pre-trained diffusion models for it.
However, directly applying off-the-shelf latent diffusion models leads to a quantization issue.
Thus, we propose to perform diffusion in pixel space and provide a recipe for finetuning
pre-trained text-to-image diffusion models for dense vision tasks. In experiments, we evaluate
our method on four different types of tasks and show competitive performance to the other
vision generalists.
This chapter is based on [FXZ"24]. Yue Fan was the lead author of this paper and
conducted all the experiments and wrote most parts of the paper.

IN this chapter, we discuss the model design in modern Al systems. In particular, we are

9.1 INTRODUCTION

The field of artificial intelligence has made significant progress in building generalized model
frameworks. In particular, autoregressive transformers [VSP™ 17] have become a prominent
unified approach in Natural Language Processing (NLP), effectively addressing a wide range
of tasks with a singular model architecture [TLI" 23, [DCLT18a, RWC™ 19, RSR™20]. However,
in computer vision (CV), building a unified framework remains challenging due to the inherent
diversity of the tasks and output formats. Consequently, state-of-the-art computer vision models
still have many complex task-specific designs [CMS™ 20, [CSK21, CMS™ 22, LWL]22, WCB™22],
making it difficult for feature sharing across tasks and, thus, limiting knowledge transfer.

The stark contrast between NLP and CV has given rise to a growing interest in developing
unified approaches for vision tasks [LCZ" 22, (CSL ™21} (CSL™ 22, WWC™ 23, WZC 23| ZZL" 22].
Recently, [WWCT23, WZC 23] have shown image itself can be used as a robust interface

123
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Figure 9.1: We present a diffusion-based vision generalist for dense vision tasks. Given an
input image, the model performs the corresponding task following the text instruction. We
showcase the effectiveness of our model on depth estimation, semantic segmentation, panoptic
segmentation, and three types of image restoration tasks. The images are the actual output of
our model.

for unifying different vision tasks and demonstrated good performance. In this chapter, we
propose a multi-task diffusion generalist for dense vision tasks by reformulating the dense
prediction tasks as conditional image generation, and re-purpose pre-trained latent diffusion
models for it. Fig. [9.1| visualizes the output of our model on semantic segmentation, panoptic
segmentation, depth estimation, and image restoration. Based on text prompts, our model
can perform different tasks with one set of parameters. However, directly finetuning the
pre-trained latent diffusion models (e.g. Stable Diffusion [RBL*22b]) leads to quantization
errors for segmentation tasks (see Table[9.2). To this end, we propose to do pixel-space diffusion
which effectively improves the generation quality and does not suffer from quantization errors.
Moreover, our exploration into training diffusion models as vision generalists reveals a list of
interesting findings as follows:

* Diffusion-based generalists show superior performance over the non-diffusion-based
generalists on tasks involving semantics or global understanding of the scene.

* We find conditioning on the image feature extracted from powerful pre-trained image
encoders results in better performance than directly conditioning on the raw image.

* Pixel diffusion is better than latent diffusion as it does not have the quantization issue
while upsampling.

* We observe that text-to-image generation pre-training stabilizes the training and leads to
better performance.

In experiments, we demonstrate the model’s versatility across six different dense prediction
tasks on depth estimation, semantic segmentation, panoptic segmentation, image denoising,
image draining, and light enhancement. Our method achieves competitive performance to the
current state-of-the-art in many settings.
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9.2 RELATED WORK

Unified framework & Unified model: Efforts have been made to unify various vision tasks with
a single model, resulting in several vision generalists [LCZ" 22, (CSL™ 21, [CSL 22, WWC™ 23,
WZC 23, KSPB™22]. Inspired by the success of sequence-to-sequence modeling in Natural
Language Processing (NLP), Pix2Seq [CSL™21, ICSL"22] leverages a plain autoregressive
transformer and tackles many vision tasks with next-token prediction. For example, bounding
boxes in object detection are cast as sequences of discrete tokens, and masks in semantic
segmentation are encoded with coordinates of object polygons [CKUF17]. The idea was further
developed in Unified-IO [LCZ™22], where dense prediction such as segmentation, depth map,
and image restoration are also unified as tokens by using the corresponding image features
from a vector quantization variational auto-encoder (VQ-VAE) [VDOV " 17]. On the output side,
the predicted image tokens are then decoded into masks and depth maps as the final prediction.
Similarly, OFA [WYM ™ 22] unified a diverse set of cross-modal and unimodal tasks in a simple
sequence-to-sequence learning framework and achieved competitive performance pretrained
with only 20M publicly available image-text pairs. Painter [WWC™23] and SegGPT [WZC™ 23],
on the other hand, reformulate different vision tasks as an image inpainting problem, and
perform in-context learning following [BGD™22]. Unlike the previous work, our method
unifies different vision tasks under a conditional image generation framework and introduces
a diffusion-based vision generalist for it.

Unified framework & Task-specific model: Besides the aforementioned literature, there
is another line of related works that pursue unified architecture but task-specific models.
UViM [KSPB™ 22] addressed the high-dimensionality output space of vision tasks via learned
guiding code, where a short sequence modeled by an additional language model to encode
task-specific information guides the prediction of the base model. Separate models are trained
for different tasks as the guiding code is task-specific. XDecoder [ZDY 23] unified pixel-level
image segmentation, image-level retrieval, and vision-language tasks with a generic decoding
procedure, which predicts pixel-level masks and token-level semantics, and different combi-
nations of the two outputs are used for different tasks. Despite their good performance, the
task/modality-specific customization poses difficulty for knowledge sharing among different
tasks and is also not friendly for supporting unseen tasks.

9.3 TOWARD A DIFFUSION-BASED GENERALIST

9.3.1  Unification with Conditional Image Generation

As the output of most vision tasks can be always visualized as images, we redefine the output
space of different vision tasks as RGB images and unify them as conditional image generation
to tackle the inherent difference of output formats of different vision tasks. Given a input
image x and the corresponding ground-truth y, we first transform y into RGB images and then
pair it with a task descriptor in text. By doing so, training sets of different tasks are combined
into a holistic training set. And training the model jointly on it enables the knowledge transfer
between tasks. At test time, given a new image, the model can perform different tasks following
the text instructions (examples in Fig. [9.1).

In this chapter, we consider four types of dense prediction tasks: depth estimation, semantic
segmentation, panoptic segmentation, and image restoration.
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Figure 9.2: The training pipeline of the diffusion-based vision generalist consists of two parts:
Left: Redefining the output space of different vision tasks as RGB images so that they can be
unified under a conditional image generation framework. Right: We finetune a pre-trained
diffusion model on the reformatted data from the first step. Diffusion is performed in the
pixel space to mitigate the quantization error of the latent diffusion (see Table[9.2). The image
and text conditionings are fed into the model via the corresponding encoders, where only the
image encoder is tuned during the training.
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Depth estimation outputs real number depth value for each pixel on x. Given the minimum
and the maximum values, we map them into [0,255] linearly and discretize them into integers,
which is then repeated and stacked along the channel to form the ground-truth RGB label.

Semantic segmentation predicts a class label for each pixel. We use a pre-defined injective
class-to-color mapping to transform the segmentation mask into RGB images. Given a task
with C categories, we define C colors which are evenly distributed in the 3-dimensional RGB
space. Specifically, following [WWCT23], the class index is represented by a 3-digit number
with b-base system, where b = [C %]. Thus, the margin between two colors is defined as
int(%2). The color for the i-th class is then [int(b%) x m, int(£)%b x m, 1%b x m]. At test time,
we find the nearest neighbor of the predicted color in the predefmed class-to-color mapping
and predict the corresponding category.

Panoptic segmentation is solved as a combination of semantic and instance segmentation.
Semantic segmentation labels are constructed as stated above. For instance segmentation, we
set N as the maximum number of instances a single training image can contain. Then, we
define N colors which are evenly distributed in the 3-dimensional RGB space as in semantic
segmentation. Finally, we assign colors to objects based on their spatial location to form the
RGB ground-truth label. For example, the instance whose center is at the upper leftmost corner
obtains the first color and the lower rightmost gets the last color. At test time, the model
makes predictions twice with different text instructions and merge the results for panoptic
segmentation.

Image restoration aims to predict the clean image from corrupted images. Thus, the output
space is inherently RGB image and does not need further transformation to fit in the framework.

9.3.2 A Diffusion Multi-Task Generalist Framework

By reformating the output space of different vision tasks into images, it is natural to solve
them together under a conditional image generation framework. To this end, we leverage the
powerful diffusion models pre-trained for image generation and re-purpose them in our use
case.



9.3 TOWARD A DIFFUSION-BASED GENERALIST 127

Fig. |9.2|shows the overall pipeline of the method, which is a conditional image generation
framework with pixel-space diffusion. Given M tasks with datasets {Ii, Yl}f\i 1 Where I' are the
input images of task i and Y’ are the corresponding ground-truth labels. We first transform the
output into RGB image format X’ and augment each task with a text instruction T’. At each
training step, we randomly sample a subset of tasks and then sample data from each task. For
each input data {I’, X, T'}, we first compute the multi-scale feature map of the original image
I' from the image encoder. Then, it is concatenated with the noised target image X! before
being fed into the UNet for the reconstruction loss. Note that the image feature can have a
different spatial resolution than the target image X!, in which case the concatenation will be
performed on the interpolated image feature. In experiments, we find both the image feature
resolution and the target resolution are important for the final performance but target resolution
matters more. The text conditioning T' is fed into the UNet via cross-attention [RBLF22b]. The
whole pipeline is trained in an end-to-end manner except for the text encoder, which is frozen
throughout the training. Compared to the standard diffusion model for conditional image
generation, there are three main differences:

Target Depth Estimation Semantic Seg. Panoptic Seg. Denoising Deraining Light Enhance.

image RMSE | mloU 1 PQ 1 SSIM 1 SSIM 1 SSIM 1
resolution NYUv2 ADE-20K COCO SIDD 5 datasets LoL
Generalist framework, task-specific models
UViM [KSPBF22] | 512 x 512 0.467 - 45.8% - -
Generalist models
Unified-10 [LCZ"22] | 256 x 256 0.385 25.7% - - - -
InstructCV [GPS™23] | 256 x 256 0.297 47.2% - - - -
Painter [WWCT23] | 448 x 448 0.288 49.9% 43.4% 0.954 0.868 0.872
Painter [WWC™23] | 128 x 128 0.435% 28.4%t 22.6%t 0.9221 0.6261 o.773t
Ours | 128 x 128 0.448 48.7% 40.3% 0.954 0.815 0.758

Table 9.1: Our method achieves competitive performance in most of the tasks while trained
at a much smaller target resolution of 128 x 128. When compared at the same resolution,
our method shows superior performance over the previous best method (Painter [WWC™23]),
especially on semantic segmentation and panoptic segmentation. The best number is in bold
and the second best number is underscored. tindicates numbers from our reproduction.

¢ We propose to directly perform diffusion in the pixel space. As shown in Table when
mapping from the latent space to the pixel space, visually uniform regions actually have
pixels of many different RGB values. This variance can lead to inaccurate class mappings,
and consequently, suboptimal performance for semantic and panoptic segmentation.

e The image conditioning is provided via a feature extractor (we use ConvNeXt [LMW ™ 22])
and is concatenated to the target image Xo. Compared to the widely adopted method of
directly concatenating the raw image as the condition, this brings significant performance
improvement, especially for semantic and panoptic segmentation (see Table for
ablation).

¢ We remove the self-attention layers in the outermost layers of UNet. This is because the
pixel space diffusion at large target image resolutions induces considerable memory costs.
Removing them alleviates the issue without compromising the performance.
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Input Image Generated RGB Image Class Prediction

Semantic Seg. Panoptic Seg.
mloU 1 PQ 1
ADE-20K COCO
Latent Diffusion 17.1% 11.7%
Pixel Diffusion 48.0% 35.5%

Table 9.2: Upper: Semantic segmentation output of the latent diffusion model. The perceptually
same colored regions have different pixel values and, therefore, are mapped to different class
labels, leading to bad final performance. While the red box contains only one ground-truth class
sky in generated RGB image, the final class prediction has four classes after the quantization.
Lower: Latent diffusion suffers from the quantization issue while pixel diffusion achieves good
performance.

9.4 EXPERIMENTAL RESULTS

Here, we first explain experimental settings in Section Then, we highlight important
design choices in diffusion-based multi-task generalists in Section [9.4.2| before comparing our
method with previous approaches in Section [9.4.3}

9.4.1 Datasets and Implementation Details

Datasets: We evaluate our method on six different dense prediction tasks with various output
formats. For depth estimation, we use NYUv2 [SHKF12] and report the Root Mean Square Error
(RMSE). For semantic segmentation, we evaluate on ADE20K [ZZP"17] and adopt the widely
used metric of mean IoU (mlIoU). For panoptic segmentation, we use MS-COCO [LMB ™ 14]
and report panoptic quality as the measure. During inference, the model is forwarded twice
for each validation image with different instructions to obtain the results of semantic and
instance segmentation respectively. The outputs are then merged together into the panoptic
segmentation. Image restoration tasks are evaluated on several popular benchmarks, including
SIDD [ALB18] for image denoising, LoL [WWYL18] for low-light image enhancement, and 5
merged datasets [ZAK"22] for deraining.

Implementation details. As mentioned above, we take the Stable Diffusion v1.4 [RBL"22b]
checkpoint and finetune it jointly on six tasks. The image feature extractor is an ImageNet-
21K [RDS"15¢] pre-trained ConvNeXt-Large [LMW22]. The text encoder is Open-CLIP
[RKH™21b], which is used in Stable Diffusion [RBL"22b]. We adopt uniform sampling for each
tasks except panoptic segmentation, whose weight is twice as much as the other tasks (as it is a
combination of semantic and instance segmentation). Following [Che23|], we also adjust the
input scaling factor by a constant factor b in the forward noising processing of diffusion. We
use AdamW optimizer [KB15] with constant learning rate of 0.0001, linearly warmed up in the
first 20,000 iterations. The target image resolution is 128 x 128 while the conditioning image
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resolution is 512 x 512. We train our model for 180,000 steps in total with a batch size of 1024.

Depth Estimation Semantic Seg. Panoptic Seg. Denoising Deraining Light Enhance.
RMSE | mloU 1 PQ T SSIM 1 SSIM 1 SSIM 1
NYUv2 ADE-20K COCO SIDD 5 datasets LoL
Ours ‘ 0.511 48.0% 35.5% 0.949 0.772 0.704
Non-diffusion 0.443 42.4% 19.8% 0.951 0.773 0.703
Train from scratch 0.528 46.6% 33.6% 0.948 0.764 0.704
Direct concat. 0.476 37.6% 27.1% 0.941 0.772 0.687

Table 9.3: We analyze the important design choices of our method and aim to provide a
recipe for training diffusion-based generalists: 1. diffusion models greatly outperform non-
diffusion models on panoptic segmentation; 2. text-to-image generation pre-training leads to
an overall better performance; 3. conditioning on image features extracted from an encoder
gives significant improvement over the raw image.

9.4.2 Recipes for Diffusion-Based Generalists

In this section, we analyze the design choices of our method and show their importance through
ablation experiments. Specifically, we show the importance of diffusion by training the same
model as in Fig. |9.2] to directly generate target images without using diffusion (non-diffusion).
We study the significance of image generation pre-training and image encoder by training
models without them (train from scratch and direct concat.). If not specified, we train all
models at a target resolution of 64 x 64 for 50,000 steps.

We attribute the success of our method to four aspects. (1) While having similar results
on image restoration tasks, diffusion-based generalist achieves better performance than non-
diffusion models on segmentation tasks which requires a global understanding of the scene and
the semantics. For example, the diffusion model reaches 35.5% PQ for panoptic segmentation
while the non-diffusion model has only 19.8% (Table|9.3|ours v.s. non-diffusion). (2) Image gen-
eration pre-training on large scale dataset transfers useful knowledge to the many downstream
tasks. The model finetuned from Stable Diffusion v1.4 [RBL™22b] achieves better results than
the one trained from scratch across the tasks (Table ours vs train from scratch). (3) The
image conditioning can take advantage of powerful pre-trained image encoders by conditioning
on the image features rather than the raw image, which is in contrast to the standard practice
for image generation tasks. On semantic segmentation and panoptic segmentation, extracting
features gives 10.4% and 8.4% performance improvement, respectively (Table ours v.s.
direct concat.). (4) Pixel diffusion is better than latent diffusion as it does not suffer from the
quantization issue while upsampling (see Table |9.2| for an example).

9.4.3 Comparisons with Prior Art

We compare our model with recent vision generalists in Table With a much smaller target
image resolution at 128 x 128, our method achieves competitive performance across the tasks.
In particular, when compared with the previous best model Painter [WWC 23] at the same
target resolution, our method has a significant margin over them, which highlights the potential
of our method at a higher resolution.
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9.4.4 Qualitative Results

In this section, we visualize the output of our method on six different tasks in Fig. We use
DDIM at inference time with 50 steps. Each figure shows the output of the denoising process
at the o-th, 25-th, and 50-th steps.

Original Output of Denoising Process Original Output of Denoising Process Original Output of Denoising Process
Image t=0 t=25 =50 Image t=0 t=25 t=50 Image t=0 =25 t=50
=

Original Output of Denoising Process Original Output of Denoising Process Original Output of Denoising Process
Image t=0 t=25 t=50 Image t=0 t=25 t=50 Image t=0 t=25 t=50
: = = = ] .

Figure 9.3: Qualitative results on images from the validation sets of ADE20K, MS-COCO,
NYU-V2, SIDD, Deraining, and LOL. Following a raster scan order, the text prompts are
"Performance semantic segmentation”, "Performance instance segmentation"”, "Performance
depth estimation", "Performance image restoration denoising”, "Performance image restoration
deraining", and "Performance image restoration light enhancement", respectively. The images
are not cherry-picked.
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9.4.5 Ablation Study

In this section, we analyze the effect of other important hyper-parameters of our method, such
as batch size, target image resolution, and noise-signal ratio. Similar to Section we train
all models at a target resolution of 64 x 64 for 50,000 steps by default.

Effect of batch size. Here, we discuss the effect of different batch sizes for our method. As
shown in Table the performance of most of the tasks improves with the increase of the
batch size. In particular, panoptic segmentation greatly benefits from the large batch size.

Depth Sem. Seg. Pan. Seg. Denoise Detrain Enhance.
RMSE | mloU 1 PQt SSIMt SSIM{T  SSIM 1
NYUv2 ADE-20K COCO  SIDD 5datasets LoL

128 | 0.548 35.5% 26.2% 0.941 0.754 0.701
256 | 0.495 44.3% 30.0% 0.945 0.766 0.703
512| 0.491 47.1% 33.5% 0.948 0.770 0.702
1024 | 0.511 48.0% 35.5% 0.949 0.772 0.704

Table 9.4: Large batch size improves the performance for all the tasks except depth estimation.

Effect of target resolution. Table [9.5/studies the effect of different target image resolutions.
Since our method performs diffusion in the pixel space, increasing the target image resolution
is important for good performance. Despite the increased memory cost, our method achieves
its best performance at the resolution of 128 x 128 and can be further improved with even
larger target images.

Depth Sem. Seg. Pan. Seg. Denoise Detrain Enhance.
RMSE | mloU 1 PQft SSIMtT SSIMt  SSIM 1
NYUv2 ADE-20K COCO  SIDD 5datasets LoL

32x32| 0.514 44-4% 32.1% 0.940 0.743 0.653
64x64| 0.511 48.0% 35.5% 0.949 0.772 0.704
128x128| 0.467 49.2% 36.7% 0.953 0.810 0.762

Table 9.5: Effect of output resolution. Increasing the target image resolution significantly
improves the performance across tasks.

Importance of noise-signal ratio. In DDPM [HJA20|, the forward diffusion process is defined
as x;y = /7txo + /1 — 1€, where xp is the input image, € is a Gaussian noise, and t is the
number of diffusion step. As shown in [Che23], the denoising task at the same noise level (i.e.
the same t) becomes simpler with the increase in the image size. In order to compensate for
this, [Che23] proposed to scale the input with a constant b to explicitly control the noise-signal
ratio, which results in the forward diffusion process as x; = /7:bxo + /1 — ys€. As we reduce
b, it increases the noise levels. Table shows the effect of the noise-signal ratio b where
b = 0.5 gives the best performance.
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Depth Sem. Seg. Pan. Seg. Denoise Detrain Enhance.
RMSE | mloU 1 PQt SSIMt SSIM{1  SSIM 1
NYUv2 ADE-20K COCO SIDD 5 datasets LoL

0.1| 0.497 46.9% 33.1% 0.948 0.770 0.702
0.3| 0.511 48.0% 35.5% 0.949 0.772 0.704
0.5| 0.514 49.3% 35.9% 0.949 0.774 0.708
0.7| 0.533 48.2% 34.4% 0.949 0.773 0.707
1.0| 0.572 40.3% 31.1% 0.948 0.770 0.706

Table 9.6: Importance of noise-signal ratio b in the forward diffusion process x; = /7:bxo +

V1 — €.

9.5 CONCLUSION AND LIMITATIONS

In this work, we explore a diffusion-based vision generalist, where different dense prediction
tasks are unified as conditional image generation and we re-purpose pre-trained diffusion
models for it. Furthermore, we analyze different design choices of diffusion-based generalists
and provide a recipe for training such a model. In experiments, we demonstrate the model’s
versatility across six different dense prediction tasks and achieve competitive performance to
the current state-of-the-art. This work, however, is also subject to limitations. For example, full
fine-tuning of the pre-trained diffusion model at a larger target image resolution is memory
intensive due to the pixel space diffusion. Thus, exploring parameter-efficient tuning for such
a model would be an interesting future direction.
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and transforming everyday life. At the core of this progress are two fundamental compo-

nents: data and model design, both of which pose distinct challenges. While scaling data is
an effective strategy for enhancing model performance, collecting large-scale labeled datasets is
often expensive and time-consuming. This drives the development of semi-supervised learning,
which seeks to leverage the vast amount of available unlabeled data. However, unlabeled
data presents difficulties such as noise, imbalance, and domain shifts. How to extract robust
representations from such imperfect unlabeled data remains an important research question.
On the model side, there is a growing trend toward developing generalized models that can
handle a diverse array of tasks. However, this pursuit comes with its own set of complexities.
Effectively addressing these challenges is crucial for the future of Al advancements.

IN recent years, artificial intelligence has made remarkable strides, revolutionizing industries

10.1 KEeY INsicHTS AND CONCLUSIONS

In this thesis, we aim to address critical challenges in advancing Al systems from both data and
model perspectives. Our contributions span three major parts, each focusing on key aspects of
improving semi-supervised learning and foundation models.

¢ In Part[l, we delve into enhancing standard semi-supervised learning paradigms, specif-
ically consistency regularization and pseudo-labeling. First, we revisit the concept of
enforcing feature invariance in consistency regularization, and improve upon it with
a technique called FeatDistLoss. This approach introduces a regularization term that
constrains the distance between feature representations, leading to more robust features.
Next, we introduce FreeMatch, which improves thresholding-based pseudo-labeling by
incorporating a self-adaptive threshold. This threshold dynamically adjusts based on
the model’s learning status, resulting in more accurate pseudo-labels. Finally, SoftMatch
addresses the quantity-quality trade-off in pseudo-labeling by effectively leveraging un-
confident yet correct pseudo-labels, thus optimizing label utilization without sacrificing
quality. Together, these contributions push the boundaries of standard semi-supervised
learning by improving the learning dynamics and feature quality in both consistency
regularization and pseudo-labeling approaches.

¢ In Part [lI, we shift our focus to semi-supervised learning in more realistic settings,
where data challenges such as long-tail distributions, outliers, and domain shifts are
prevalent. We propose CoSSL, a novel co-learning framework designed for imbalanced
semi-supervised learning. This framework decouples representation learning from
classifier learning while coupling them through a shared encoder and pseudo-label
generation, providing better handling of imbalanced data. Additionally, we introduce
a Simple but Strong Baseline (SSB) for open-set SSL. This approach highlights the

133
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importance of high-confidence pseudo-labels, regardless of whether a sample is an inlier
or outlier, improving the overall utilization of unlabeled data and enhancing final model
performance. We further contribute USB, a unified and challenging SSL benchmark,
which offers consistent evaluation across 15 tasks in computer vision (CV), natural
language processing (NLP), and audio. This benchmark serves as a fair testing ground to
evaluate the generalization of SSL methods beyond CV tasks, marking a significant step
forward in assessing SSL across diverse domains.

* In Part[ITl, we explore the realm of vision generalist models and the scaling of foundation
models. Here, we investigate diffusion-based vision generalists, where dense prediction
tasks are unified as conditional image generation problems. By re-purposing pre-trained
diffusion models, we enable the application of a single model across multiple dense
prediction tasks, showcasing the versatility of this approach. Lastly, we introduce Token-
former, a natively scalable architecture that not only employs the attention mechanism for
token-to-token interactions but also for interactions between tokens and model parame-
ters. This unique design enhances architectural flexibility and allows for progressive and
efficient model scaling without the need for retraining from scratch, making it a powerful
tool for large-scale applications.

In the following, we revisit the contributions of individual chapters in more detail, before
discussing future work in Section

Part 1. Standard Semi-Supervised Learning: In the first part, we focus on the standard
setting of SSL, where the goal is to enhance the representation learning by leveraging a large
amount of unlabeled data along with a small number of labeled data. Specifically, the thesis
focuses on two popular SSL frameworks: consistency regularization and pseudo-labeling.

In Chapter [3, we revisit the idea of consistency regularization with data augmentation.
Normally, consistency regularization enforces the model output to be invariant to data aug-
mentations. However, when the data augmentation is too strong, it might generate images
that diverge significantly from the original semantics. We argue that improving equivariance
on such strongly augmented images can provide even better performance rather than making
the model invariant to all kinds of augmentations. We formulate FeatDistLoss to explicitly
encourage equivariance between features from different augmentations while enforcing the
same semantic class label.

In Chapter |4, we tackle the challenge of quantity-quality trade-off in pseudo-labeling,
where a high confidence threshold discards a significant number of potentially correct but
low-confidence labels while a low threshold introduces noisy, incorrect labels that can mislead
the model. To this end, we propose a parameter-free and self-adaptive thresholding scheme that
changes thresholds according to the learning status of each class. To handle barely supervised
settings more effectively, we further propose a class fairness objective to encourage the model
to produce fair (i.e., diverse) predictions among all classes.

In Chapter [5, we further explore a different strategy to improve the threshold-based pseudo-
labeling by replacing the threshold by fitting a weight function per sample. Specifically, we
fit a truncated Gaussian function to the confidence distribution which assigns lower weights
to possibly correct pseudo-labels with lower confidence scores. We further propose Uniform
Alignment to resolve the imbalance issue of pseudo labels while maintaining their high quantity
and quality.

Part 2. Realistic Semi-Supervised Learning: In the second part, we move beyond the
standard setting of SSL, where data is clean and balanced. In particular, we consider more
realistic settings where unlabeled data follow long-tailed distribution or contain outliers. In
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addition, we introduce a new SSL benchmark for classification as the existing SSL benchmarks
have limitations in practical utility due to their constrained settings.

In Chapter [6} we investigate the challenging and realistic setting of imbalanced SSL where
both the labeled and the unlabeled data are class-imbalanced. We address the problem by
proposing a novel co-learning framework that closely couples representation and classifier
while the training of them is decoupled. Moreover, we propose Tail-class Feature Enhancement
(TFE) for improved classifier learning for imbalanced SSL, which utilizes unlabeled data as a
source of augmentation to enhance the data diversity of tail classes, leading to a more robust
classifier. In addition, we also propose new evaluation criteria for imbalanced SSL, and evaluate
them over a large range of varying distributions, including those that are radically different
from the training distribution.

In Chapter [7}, we consider another realistic setting of open-set SSL, where unlabeled data
contain out-of-distribution (OOD) samples from novel classes that do not appear in the labeled
set. The goal is to correctly classify inliers, while identifying outliers seen during the training
and, most importantly, unseen outliers that do not appear in the training set. To this end, we
design SSB, which effectively separates the feature space of inlier classification and outlier
detection via non-linear transformations and effectively leverages outliers via confidence-based
filtering. In addition, we propose pseudo-negative mining to further improve outlier detector
training by enhancing the data diversity of OOD data with pseudo-outliers.

In Chapter (8, we construct a Unified SSL Benchmark (USB) for classification, which selects
15 diverse, challenging, and comprehensive tasks from CV, natural language processing (NLP),
and audio processing (Audio). We systematically evaluate the dominant SSL. methods, and
also open-source a modular and extensible codebase for fair evaluation of these SSL methods.
We further provide the pre-trained versions of the state-of-the-art neural models for CV tasks
to make the cost affordable for further tuning. USB enables the evaluation of a single SSL
algorithm on more tasks from multiple domains but with less cost.

Part 3. Building vision generalist model: In the third part, we turn to the model perspective
of representation learning and aim to build versatile vision models that are capable of handling
many diverse types of vision tasks.

In Chapter [g] we address the challenge of the vision generalist model by exploring diffusion-
based vision generalists, where we unify different types of dense prediction tasks as conditional
image generation and re-purpose pre-trained diffusion models for it. Our investigation reveals a
list of interesting findings as follows: 1. Diffusion-based generalists show superior performance
over the non-diffusion-based generalists on tasks involving semantics or global understanding
of the scene. 2. We find conditioning on the image feature extracted from powerful pre-trained
image encoders results in better performance than directly conditioning on the raw image. 3.
Pixel diffusion is better than latent diffusion as it does not have the quantization issue while
upsampling. 4. We observe that text-to-image generation pre-training stabilizes the training
and leads to better performance. In experiments, we evaluate our method on four different
types of tasks and show competitive performance to the other vision generalists.

10.2 FUTURE DIRECTIONS

In the following, we provide a discussion on potential future directions within the scope
of this thesis. The first direction is exploring more sophisticated ways to utilize unlabeled
data. How can we harness inherent structures within unlabeled data, and what additional
supervision signals can we leverage from them? Second, extending SSL methods beyond
semi-supervised image classification to other tasks and modalities is essential, especially given
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the large performance differences in different domains as shown in Chapter |8 Tackling
this generalization challenge would allow SSL advancements to impact a broader range of
applications. Third, real-world data collection involves complexities beyond simple imbalances
or outliers, as discussed in Chapters [f| and [} identifying and addressing these nuanced pitfalls
will be critical to SSL’s applicability in real settings. Finally, with model design increasingly
central to Al, exploring model-based solutions and enhancements remains vital to advancing
the field.

Unsupervised and Self-Supervised Learning: Learning robust representations from unlabeled
data has been a focal point of many recent research. Although this thesis primarily uses
SSL frameworks, many self-supervised learning methods have been proposed to explore the
internal structures of the unlabeled data as the supervision signals and have demonstrated
strong generalization abilities[HFW ™20, [CKNH20, CTM™21]. Therefore, it is a promising
direction to design methods that combine the strength of SSL and self-supervised techniques
while managing potentially conflicting training signals. In fact, Chapter [3|can serve as a good
starting point, where a self-supervised component is integrated into the SSL framework and
further improves model performance.

Generalization beyond Image Classification: Much of the progress in standard semi-supervised
learning has centered on image classification, potentially limiting its adaptability and effec-
tiveness across domains. Expanding SSL research to encompass diverse data modalities and
complex tasks is essential to broaden its real-world applicability.

¢ SSL for diverse data modalities: Real-world data often spans various modalities, such as
images, sensor data, and text, particularly in fields like autonomous driving, healthcare,
and multimedia. Current SSL methods, however, lack proven effectiveness with these
mixed and complex modalities. For example, consistency regularization, a popular SSL
approach, depends on strong data augmentations tailored for image data, which are chal-
lenging to design for text, audio, or medical images. Standard image augmentations, like
horizontal or vertical flipping, are inappropriate for medical images, where anatomical
structures may lose integrity if altered. Extending SSL to effectively handle such diverse
data types is a complex but critical area for further research.

* SSL for complex tasks: Beyond classification, tasks like object detection and image
segmentation require more sophisticated outputs, such as bounding boxes and pixel-
level labels, introducing new challenges for SSL. For instance, object detection often
involves multiple objects per image. Generating high-quality pseudo-labels for bounding
boxes demands additional processes like non-maximum suppression (NMS) and faces
issues with data imbalance, as smaller or infrequent objects may be underrepresented.
Developing SSL methods that can effectively handle such complexities—or adapting
existing techniques to accommodate them—remains an open challenge in advancing SSL
capabilities.

Toward Realistic Semi-Supervised Learning: Real-world data collection often introduces
various imperfections, as explored in Chapter 6| and [7} which focus on long-tailed distribution
and outliers, respectively. However, real-world data issues extend beyond these cases. Below,
we outline several promising directions toward more realistic SSL:

* Open-world SSL: In open-world SSL, the unlabeled dataset may contain classes that are
absent from the labeled set. Given an unlabeled test set, the model must either assign
instances to a previously seen class or form and assign instances to a novel class. This
differs from open-set SSL as it operates in a transductive learning setting and emphasizes
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the discovery of novel classes, presenting unique challenges in class representation and
generalization.

* Semi-supervised domain adaptation (SSDA): SSDA addresses the scenario where train-
ing and test data come from related yet distinct domains. This setup typically involves
a source domain rich in labeled data and a target domain with few labeled instances
but many unlabeled ones. The objective is to correctly classify new data from the tar-
get domain. Key challenges include developing domain-invariant representations and
effectively extracting the underlying structure of the target domain.

¢ Semi-supervised domain generalization (SSDG): SSDG further extends SSDA by re-
moving the assumption that test data originates from the same domain as the unlabeled
data. SSDG generally involves multiple source and target domains and aims to develop
a domain-generalizable model using a small amount of labeled data and abundant un-
labeled data from each source domain. Since standard SSL methods assume matched
training and test distributions, directly applying them to SSDG is suboptimal. The main
challenge is creating representations that generalize across domains effectively.

¢ Continual semi-supervised learning: In many real-world settings, training data ac-
cumulates gradually, and storing all the old data may not be possible due to storage
constraints or privacy concerns. Continual Semi-Supervised Learning addresses this
issue by allowing both labeled and unlabeled data to arrive sequentially. In each task, the
model receives both labeled and unlabeled data and is evaluated on a cumulative test set
across tasks. The primary challenge here is mitigating catastrophic forgetting, ensuring
that newly acquired knowledge does not erase previously learned information.

Foundation Model: Foundation models are large-scale, versatile neural networks pre-trained on
massive datasets, designed to generalize across a wide range of downstream tasks with minimal
task-specific fine-tuning. They have redefined the AI landscape and achieved promising
performance across domains, from natural language processing to computer vision and beyond.
Below, we outline three critical future directions for foundation models:

* Model Scaling: Expanding the scale of foundation models in terms of model size and
training data continues to yield substantial performance gains across applications. Larger
models often demonstrate enhanced generalization, capturing intricate patterns and
complex representations. Yet, scaling poses significant cost and resource challenges. An
promising direction is to leverage pre-trained smaller models to expedite the training of
larger models, potentially reducing costs without compromising performance. Our work
on TokenFormer [WFN ™ 24] highlights one way toward more efficient scaling, serving as
a foundational approach for further exploration in this area.

¢ Efficient Model Inference: Increasing the efficiency of model inference is another essential
direction for foundation models. Enhancing inference efficiency not only enables faster
processing times and reduces computational demands but also facilitates the deployment
of these models in time-sensitive, resource-limited settings. Achieving efficient inference
is crucial for broadening the accessibility of advanced Al across industries and devices,
ensuring that even resource-constrained environments can benefit. In essence, prioritizing
inference efficiency is key to making foundation models more sustainable and widely
adopted in practical applications.
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* Generalist Models: The unification of tasks and modalities stands out as one of the most
transformative goals for foundation models. Unlike conventional models designed for
single tasks, generalist foundation models can handle a broad spectrum of tasks (e.g.,
classification, segmentation, and detection) and even multi-modal inputs (e.g., visual
question answering) with minimal adaptation. This shift towards task and modality
unification unlocks new possibilities, paving the way for highly generalized Al systems
capable of solving diverse challenges within a unified architecture.
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