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Abstract
Blending in with others is a possible self-serving motivation when people partici-
pate in cooperative situations. We use this motivation to formulate a corresponding 
fairness principle, combine it with rather weak standard axioms from cooperative 
game theory, and show that it leads to equal split of coalitional gains. The same 
normative principles characterize this solution when only cohesive games (where it 
is optimal for the coalition of all players to form) are considered.

Keywords  Blend-in fairness · Cohesive games · Cooperative games · Equal 
division solution

JEL Classification:  A13 · C71 · D63 · D91

1  Introduction

A key question in coalitional game theory is how the total payoff a coalition can 
achieve through cooperation should be divided among its members. One of the most 
influential answers to this question within the context of cooperative transferable util-
ity games (TU-games) has been provided by the Shapley value (cf. Shapley 1953). 
According to this single-valued solution, each player should be assigned a share of 
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the payoff that is proportional to his marginal contributions in the corresponding 
game. From an axiomatic perspective, the Shapley value is the unique solution which 
is efficient (the entire gain when all players cooperate (i.e., the worth of the ‘grand’ 
coalition) is distributed among the players), symmetric (players receive equal payoffs 
if they are exchangeable in generating coalitional gains), satisfies the null player 
property (no contribution to any coalition results in zero payoff), and is additive over 
games.

The experimental validity of the above principles was recently tested in de Clippel 
and Rozen (2022). The data analysis of these authors provides strong evidence for 
the symmetry and additivity axioms with the efficiency axiom being trivially satisfied 
due to the experimental design. However, no such evidence was found for the null 
player property; that is, even null players were assigned to payoffs which are signifi-
cantly different from zero.

The lack of experimental evidence for the null player property naturally draws 
one’s attention to another famous single-valued solution for TU-games, the equal 
division solution. For each game, the latter distributes the worth of the grand coali-
tion equally among all players and it violates the null player property while satisfying 
the other three mentioned principles. As originally shown in van den Brink (2007), 
the equal division solution can be characterized by replacing, in the above axiomatic 
system, the null player property by a nullifying player requirement (each player is 
assigned zero payoff if the worth of each coalition containing that player is zero). We 
refer the reader to Alonso-Meijide et al. (2019) for an excellent and detailed survey 
of the corresponding strand of the literature, to Hernandez-Lamoneda et al. (2008) 
for a characterization of the class of all additive, symmetric, efficient and continuous 
solutions, as well as to Chapter 4 in Branzei et al. (2008) for an overview of other 
egalitarianism-based solution concepts.

In this paper we follow a normative perspective on cooperative games (cf. Moulin 
2003) and provide an axiomatic support for the idea that the equal division solution 
springs out of a fairness principle which is rather “... strongly shaped by cultural 
values” (cf. Young 1994, p. xii). That is, our work fits into the strand of literature 
emphasizing the context-dependence of fairness and equity “... not because of the 
lack of general principles of justice, but due to its effect on the interpretation of those 
principles” (cf. Konow 2001, p. 139). For instance, Alesina and Angeletos (2005) 
study the extent to which the difference in social perceptions regarding the fairness 
of market outcomes and the underlying sources of income inequality (Americans 
vs Europeans) are consistent with equilibrium behavior. Almås et  al. (2020) pro-
vide experimental support for the differences between Americans and Scandinavians 
with respect to what kind of inequalities they consider fair and to the importance 
assigned to fairness relative to efficiency. Cappelen et al. (2007) consider a dictator 
game in which the distribution phase is preceded by a production phase and show 
how one may simultaneously estimate the prevalence of different fairness ideals and 
the weight people attach to fairness considerations. Finally, Gelfand et  al. (2002) 
stress the differences when it comes to self-serving motivations in individualistic or 
in collectivistic cultures. These authors argue that, in the former, the self is served by 
enhancing one’s positive attributes to “stand out” and be better than others, while in 
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collectivistic cultures the focus is rather on how individuals “blend in” and maintain 
interdependence with others.

Since the Shapley value averages players’ contributions to every coalition they 
join, it can be axiomatically rooted via a corresponding marginality principle (cf. 
Young 1985) in rather individualistic societies. In the present paper we follow a pos-
sible self-serving motivation for  collectivistic cultures, introduce a corresponding 
fairness principle (blend-in fairness), and show that it crucially shapes the character-
ization of the equal division solution.

We start in Sect. 2 by providing the formal definitions of the mentioned standard 
axioms and first weaken efficiency and symmetry to a  symmetric efficiency principle. 
The latter imposes on a single-valued solution the equal split of the worth of the 
grand coalition, provided that all players are symmetric in the corresponding game. 
A weak null player property additionally postulates null players to be assigned zero 
payoffs in games, where the total gain when all players cooperate is zero. These two 
properties, together with additivity, are clearly satisfied by both the Shapley value 
and the equal division solution.

In Sect. 3 we develop a notion of cooperation equivalence of games for players. 
To fix ideas, consider two superadditive games (that is, games where the formation of 
larger coalitions is worthy) and a particular player. Imagine now that what the player 
realizes when comparing these two games is that there is only a renaming of the other 
players but no change in the corresponding coalitional worths. That is, in terms of the 
offered ‘blending-in with others’ possibilities, the two games are cooperation equiva-
lent for that particular player. The blend-in fairness principle stated in Sect. 4 then 
requires a player to be assigned the same payoff in two superadditive games which 
are cooperation equivalent for him. This principle turns out to shape the characteriza-
tion of the equal division solution both on the entire set of games (Theorem 1) and 
on the subset of cohesive games, where it is optimal that the grand coalition forms 
(Theorem 2). We conclude in Sect. 5 with some final remarks.

The proofs of our characterization results are relegated to the Appendix, where 
we first introduce the class of partition games and show that they form a basis of the 
entire set of games (Theorem 0). Propositions 1–5 are then crucial for the proofs of 
Theorem 1 and Theorem 2 as they explain how additivity, symmetric efficiency, the 
weak null player property, and blend-in fairness generate the equal division solution 
on partition games. The Appendix also contains examples showing the independence 
of the utilized axioms.

2  Normative principles and solutions

Let N be a set of n individuals. A coalition is any subset of N. A cooperative transfer-
able utility game (TU-game) is a pair (N, v), where v is the characteristic function 
of the game assigning a worthv(S) to each coalition S ⊆ N  such that v(∅) = 0. The 
amount v(S) represents how much the members of S can share should they cooperate. 
In what follows, we fix the player set N and therefore denote the game (N, v) by its 
characteristic function v. The notation GN  stands for the set of all TU-games on the 
player set N.
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Two players i, j ∈ N  are called symmetric in a game v ∈ GN , if 
v(S ∪ {i}) = v(S ∪ {j}) holds for every S ⊆ N\ {i, j}. A player i ∈ N  is a null 
player in v ∈ GN  if v(S ∪ {i}) = v(S) is valid for every S ⊆ N\ {i}. The sum of 
two games v, w ∈ GN  is defined by (v + w)(S) = v(S) + w(S) for each S ⊆ N .

It is an implicit assumption in cooperative game theory models that the grand 
coalition forms (all players cooperate) and the basic question is then how should 
the corresponding proceeds be distributed among all individuals. Thus, a (single-
valued) solution f : GN → Rn assigns a payoff vector to each game v ∈ GN . The 
next four normative principles that could be imposed on a solution f are standard in 
the literature.

Efficiency For all v ∈ GN : Σi∈N fi(v) = v(N).
Symmetry For all v ∈ GN : If i, j ∈ N  are symmetric in v, then fi(v) = fj(v).
Null player property For all v ∈ GN : If i ∈ N  is a null player in v, then fi(v) = 0.
Additivity For all v, w ∈ GN : f(v + w) = f(v) + f(w).
The Shapley value is the unique solution which is efficient, symmetric, additive, 

and satisfies the null player property. This solution concept was introduced in Shap-
ley (1953) and it assigns to each player the average of his marginal contributions in 
the corresponding game. Given a game v ∈ GN , the marginal contribution of player 
i to a coalition S ⊆ N \ {i} is just the difference ∆i(S) = v(S ∪ {i}) − v(S). The 
Shapley value Sh is then defined by the condition

	
Shi(v) = 1

|N |!
∑
R∈R

∆i(Si(R)) for each i ∈ N,

where R is the set of all |N |! orderings of N and Si(R) is the set of players preceding 
i in the ordering R.

From the above four axioms, it is only the null player property that is violated by 
another famous procedure for sharing coalitional gains, the equal division solution. 
For each game v ∈ GN  it is defined by

	
EDi(v) = v(N)

n
for each i ∈ N.

That is, this solution distributes the worth of the grand coalition equally among all 
players.

In the next section we present our axiomatic characterization of the equal divi-
sion solution where all utilized axioms but one are also satisfied by the Shapley 
value. Besides additivity, these include the weak null player property and symmetric 
efficiency.

Weak null player property For all v ∈ GN : If i ∈ N  is a null player in v and 
v(N) = 0, then fi(v) = 0.

Symmetric efficiency For all v ∈ GN : If all players are symmetric in v, then 
fi(v) = v(N)

n  for each i ∈ N .

The weak null player property is clearly implied by the null player property and it 
is stronger than the null player in a null environment property introduced in Casajus 
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and Huettner (2013); the latter imposes that a null player gets a non-negative payoff 
in a game in which the grand coalition has zero worth. On the other hand, the com-
bination of efficiency and symmetry (but none of these properties taken separately) 
implies the symmetric efficiency axiom. Symmetric efficiency is stronger than the 
triviality axiom introduced in Chun (1989) and the weak symmetry axiom used in 
van den Brink (2007).

3  Cooperation equivalence of games

Imagine a player who evaluates his participation in two different cooperative situa-
tions and claims equal payoffs in the correspondingly generated games. As already 
argued above, one possible way of rationalizing such a claim is to look at the ways 
in which the particular player maintains interdependence with others and blends 
in when working with them in the respective situations. The notion of cooperation 
equivalence of games we introduce below formalizes the idea that, from the view-
point of a given player, two games offer the same possibilities when it comes to 
fitting in with other players. We use then this notion to formally state in Sect. 4 a 
corresponding blend-in fairness principle.

In order to equip the reader with a suitable intuition for the notion of cooperation 
equivalence, let us consider two games in which three players cooperate on their 
investment decisions.1 Players 1 and 2 are domestic investors lacking any experi-
ence and suitable investment technologies, while player 3 is an experienced foreign 
investor who possesses 100 units of capital and is able to double any fraction of it 
he invests. There is no government restriction on such investments when made in 
cooperation with at least one domestic investor. However, the foreign investor when 
acting on his own is allowed to invest only 40 units (in the game v) or 30 units (in 
the game w).

	

{1} {2} {3} {1, 2} {1, 3} {2, 3} N
v 10 20 2 × 40 + 60 30 220 240 260
w 20 10 2 × 30 + 70 30 240 220 260

In the game v, players 1 and 2 would like to invest 10 and 20 units of capital, respec-
tively. However, due to their lack of investment technology, one has v ({1}) = 10, 
v({2}) = 20, and v({1, 2}) = 30. In a coalition containing player 3, the foreign inves-
tor is allowed to use the entire 100 units of his capital and each domestic coalitional 
member has access to the corresponding investment technology doubling the sum 
of individual capitals. The interpretation of the coalitional worths in the game w is 
analogous.

Let us now compare the two games v and w from the viewpoint of the foreign 
investor. In both games he intends to invest 100 units of capital and this is exactly 
the amount he puts on the table when joining any non-empty coalition of domestic 

1 Each of these games can be seen as an appropriate modification of the landlord game in Shapley and 
Shubik (1967).
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players. Moreover, when looking at the domestic investors in the two games, he real-
izes that there is only a renaming of these players (player 1 becomes player 2 and 
vice versa) but no change in the worth of any coalition containing some of these 
players. Notice additionally that each of these games is superadditive as, exempli-
fied with respect to the game v, the inequality v(S ∪ T ) ≥ v(S) + v(T ) holds for all 
S, T ⊆ N  with S ∩ T = ∅. In other words, the domestic investors and the foreign 
investor are “incentivized” in both games to form larger coalitions; hence, it seems 
natural for a player to focus rather on larger coalitions when evaluating his participa-
tion in such situations. Correspondingly, we declare the two superadditive games as 
being cooperation equivalent for the foreign investor.

Let us denote by GN
sa, GN

sa ⊂ GN , the set of all superadditive games on the player set 
N. Consider two games v, w ∈ GN

sa, and fix a player i ∈ Nwhose viewpoint we would 
like to describe. Suppose further that there exists a bijectionσ : N → Nwithσ(i) = i 
such that v(S) = w(σ(S)) holds for all S ⊆ N  with j ∈ S for some j ∈ N \ {i}. In 
other words, when evaluating the two superadditive games, player i focusses on the 
coalitions each of the other players might belong to and realizes only a permutation 
of the players’ names but no changes at all in the corresponding coalitional worths. 
We call the games v and w cooperation equivalent for playeri.

4  Blend-in fairness leads to equal split

The blend-in fairness principle we introduce below relies on the notion of coopera-
tion equivalence of games for players. More precisely, it requires from a solution 
to assign the same payoff to a player in superadditive games which are cooperation 
equivalent for him.

Blend-in fairness For all v, w ∈ GN
sa and i ∈ N : If v and w are cooperation equiva-

lent for player i, then fi(v) = fi(w).
We would like to mention the fact that (1) it is a specific bijection σ( satisfying 

σ(i) = i for the corresponding player i ∈ N ) we use in the formulation of coopera-
tion equivalence of games and (2) the implication refers only to the payoff of player 
i in the two games. The reader might then wonder whether there is a logical relation 
(on the class of superadditive games) between the above axiom and the anonym-
ity property of single-valued solutions requiring that a solution should not discrimi-
nate between the players solely on the basis of their “names”. Notice that, in the 
definition of blend-in fairness, it might happen that v ({i}) ̸= w ({σ(i)}) for player 
i whose viewpoint the bijection σ describes. Clearly then, the Shapley value violates 
the newly introduced requirement, while satisfying anonymity. On the other hand, 
one can define a dictatorship solution dk : GN

sa → Rn with respect to a pre-specified 
player k ∈ N , where for v ∈ GN

sa one has

	
dk

j (v) =
{

v(N) if j = k,
0 otherwise.

As it can be easily seen, dk satisfies blend-in fairness and violates anonymity. Hence, 
these two requirements are independent.
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Our main characterization result is stated in Theorem 1 below and it basically says 
that, along with additivity and the weak versions of standard requirements, it is the 
blend-in fairness that leads to equal split of coalitional gains.

Theorem 1  A solution f : GN → Rn  satisfies additivity, the weak null player prop-
erty, symmetric efficiency, and blend-in fairness if and only if it is the equal division 
solution.

It is worth mentioning that the equal division solution also satisfies a stronger 
version of the blend-in fairness axiom requiring that for all pairs of (not necessarily 
superadditive) cooperation equivalent games for some particular player, this player 
receives the same payoff in both games. As we show in the proof of Theorem 1, there 
is no need to impose this stronger version on a solution since its weaker version stated 
only with respect to superadditive games suffices for providing the characterization 
of the equal division solution on the entire set of games.

Observe additionally that two of the other axioms we utilize, symmetric efficiency 
and the weak null player property, rather indicate the formation of the grand coali-
tion, the reader might ask whether a corresponding characterization could be reached 
when only cohesive games are considered. In a cohesive game v ∈ GN  it is opti-
mal for the grand coalition to form since by definition v(N) ≥ ΣK

k=1v(Sk) holds 
for every partition {S1, . . . , SK} of N (cf. Osborne and Rubinstein (1994), p. 258). 
Theorem 2 shows that there are the same four normative principles2 which character-
ize the equal division solution on the mentioned subclass (denoted by GN

coh) of games.

Theorem 2  A solution f : GN
coh → Rn  satisfies additivity, the weak null player prop-

erty, symmetric efficiency, and blend-in fairness if and only if it is the equal division 
solution.

As we show in the Appendix, the proof of Theorem 2 relies on the fact that all 
games used in the proof of Theorem 1 are cohesive (with the partition games serving 
as a basis of the entire set of games being even superadditive (cf. Remark 0 in Sect. 
6.1).

5  Concluding remarks

The notion of blend-in fairness introduced in this paper relies on the very basic idea 
that individuals in cooperative situations are usually construed as being fundamen-
tally connected to others. Such a fundamental connection in superadditive games is 
mirrored by the formation of larger coalitions; in other words, players’ “incentives” 
to look at individual worths when comparing two such games are rather moderate. 
The latter interpretation naturally leads to the developed notion of cooperation equiv-

2 Additivity, the weak null player property, and symmetric efficiency should then be stated with respect to 
cohesive games. There is no need to change the formulation of blend-in fairness since it is anyway stated 
with respect to superadditive games and superadditive games are also cohesive.

1 3
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alence of games with blend-in fairness requiring a player to be assigned the same 
payoff in two superadditive games that are cooperation equivalent for that player.

As already elaborated in Sect. 4, the standard anonymity axiom (satisfied by the 
Shapley value) and blend-in fairness (violated by the Shapley value) are independent 
requirements. Nevertheless, blend-in fairness can alternatively be seen as a local ver-
sion of anonymity in the sense that (1) anonymity in the corresponding superadditive 
games holds with the possible exception for the player under consideration and (2) 
the payoff equivalence is required only for that particular player (whereas it holds for 
all players in the classical axiom of anonymity). In other words, an axiom in the spirit 
of anonymity (blend-in fairness) combined with (small modifications of) classical 
axioms satisfied by the Shapley value turns out to have rather dramatic consequences.

It seems therefore reasonable to further study and axiomatically characterize solu-
tions that satisfy the blend-in fairness axiom and are as close as possible to the formal 
definition of the Shapley value. Notice that the Shapley value violates blend-in fair-
ness due to the fact that it particularly accounts for players’ marginal contributions 
to the empty set and to singleton coalitions. Hence, any solution respecting only the 
marginal contributions to coalitions of size at least two would satisfy our fairness 
axiom. One particular example of a symmetrically efficient and additive solution 
satisfying blend-in fairness is provided in Sect. 6.3.

Appendix

In Sect. 6.1 we introduce the collection of partition games and show that they form 
a basis of the space of all games. This fact is then used in Sect. 6.2 to show how 
blend-in fairness shapes the characterization of the equal division solution (Theorem 
1 and Theorem 2). Section 6.3 contains examples for the independence of the utilized 
axioms.

Partition games

Let T ⊆ N  be a nonempty coalition. The partition game over T is the game uT  
defined as follows. 

(1)	 If T ̸= N , then for each coalition S ⊆ N , 

	
uT (S) :=

{
0 if (1) S ∈ {∅, T, N} or (2) |S| > |T | with (S, T ) partitioning N ,
−1 otherwise.

(2)	 If T = N , then for each coalition S ⊆ N , 

	
uN (S) :=

{
0 if S ≠ N ,
1 otherwise.
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Remark 0  Notice that for each nonempty T ⊆ N  the inequality 
uT (P ∪ Q) ≥ uT (P ) + uT (Q) holds for all P, Q ⊆ N  with P ∩ Q = ∅, i.e., parti-
tion games are  superadditive.3  

Let us now show that the set 
{

uT : T ∈ 2N \ {∅}
}

 formed by partition games is a 
basis of the linear (vector) space GN .

Theorem 0  Every game v ∈ GN  is a linear combination of partition games.

Proof  Observe that the number of partition games equals the number 2n − 1 of non-
empty coalitions in N. Since the dimension of the space GN  is also 2n − 1, it suffices 
to show that the partition games are linearly independent over R2n−1.

Suppose, by contradiction, that the partition games are linearly dependent. Then 
there exist real numbers (aT ){T ⊆N,T ̸=∅}, not all zero, such that

	

∑
{T ⊆N,T ̸=∅}

aT uT (S) = 0, ∀S ⊆ N.� (1)

By proving the next six consecutive claims, we show that the above system of equali-
ties requires aT = 0 to hold for each nonempty T ⊆ N  in contradiction to the fact 
that the partition games are linearly dependent. � □

Claim 1  aN = 0.

Proof of Claim 1  Given the definition of a partition game, we have uN (N) = 1 and 
uT (N) = 0 holding for each nonempty T ⊂ N . For S = N  we have from (1) that

	

∑
{T ⊆N,T ̸=∅}

aT uT (N) =
∑

{T ⊂N,T ̸=∅}

aT uT (N) + aN uN (N) = aN uN (N) = aN = 0

follows. � □

Claim 2  aT = 0 for each T ⊂ N  with |T | > |N | /2.

Proof of Claim 2  Let S ⊂ N  be such that 0 < |S| < |N | /2. By the definition of a 
partition game,

	
uT (S) =

{
0 if T ∈ {S, N} ,
−1 otherwise.

For the selected coalition S, we have from (1) that

3 Note additionally that there are no nullifying players in partition games and that each i ∈ N  is a null 
player in exactly one partition game (u{i}).
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∑
{T ⊆N,T ̸=∅}

aT uT (S) =
∑

{T ⊂N,T ̸=∅,T ̸=S}

−aT = 0� (2)

holds. On the other hand, for the coalition N \ S( with |N | > |N\S| > |S|) we have 
by definition

	
uT (N \ S) =

{
0 if T ∈ {S, N \ S, N} ,
−1 otherwise.

For the coalition N \ S, it follows from (1) that

	

∑
{T ⊆N,T ̸=∅}

aT uT (N \ S) =
∑

{T ⊂N,T ̸=∅,T ̸=S,T ̸=N\S}

−aT = 0� (3)

should hold. Substituting (3) in (2) results in aN\S = 0. Repeating this step as many 
times as necessary yields aT = 0 for each T ⊂ N  with |T | > |N | /2. � □

Claim 3  a{i} = a{j} := a for all i, j ∈ N .

Proof of Claim 3  Take i, j ∈ N  and notice that, by applying the definition of a parti-
tion game and in view of (1),

	

∑
{T ⊆N,T ̸=∅}

aT uT ({i}) −
∑

{T ⊆N,T ̸=∅}

aT uT ({j}) = −a{j} + a{i} = 0

holds. Thus, we have a{i} = a{j} for all i, j ∈ N . Set a := a{i}. � □

Claim 4  aT = a for each T ⊂ N  with 1 < |T | < |N | /2.

Proof of Claim 4  Let i ∈ N  and S ⊂ N  be such that 2 ≤ |S| < |N | /2 holds. By 
Claims 1-3 and in view of (1), we have

	

∑
{T ⊆N,T ̸=∅}

aT uT ({i}) = −(n − 1)a −
∑

{T ⊆N,T ̸=∅,1<|T |≤|N |/2}

aT = 0� (4)

and

	

∑
{T ⊆N,T ̸=∅}

aT uT (S) = −na −
∑

{T ⊆N,T ̸=∅,T ̸=S,1<|T |≤|N |/2}

aT = 0.� (5)

Subtracting (4) from (5) gives us aS = a. Repeating this step as many times as neces-
sary yields aT = a for each T ⊂ N  with 1 < |T | < |N | /2. � □

Claim 5  aT = a for each T ⊂ N  with 1 < |T | = |N | /2.

1 3
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Proof of Claim 5  Let i ∈ N  and S ⊂ N  be such that |S| = |N | /2( which is possible 
only if |N | is even). By Claims 1-4 and in view of (1 ), we have

	

∑
{T ⊆N,T ̸=∅}

aT uT ({i}) = −(n − 1)a − |{T : T ⊆ N, T ≠ ∅, 1 < |T | < |N | /2}| a

−
∑

{T ⊆N,T ̸=∅,1<|T |=|N |/2}

aT = 0
� (6)

and

	

∑
{T ⊆N,T ̸=∅}

aT uT (S) = −na − |{T : T ⊆ N, T ̸= ∅, 1 < |T | < |N | /2}| a

−
∑

{T ⊆N,T ̸=∅,T ̸=S,1<|T |=|N |/2}

aT = 0.
� (7)

Subtracting (6) from (7) gives us aS = a. Repeating this step as many times as neces-
sary yields aT = a for each T ⊂ N  with 1 < |T | = |N | /2. � □

Claim 6  aT = 0 for each nonempty T ⊆ N .

Proof of Claim 6  Due to the above claims it suffices to show that a = 0. Take i ∈ N  
and notice that (4) transforms into

	

∑
{T ⊆N,T ̸=∅}

aT uT ({i}) = − [n − 1 + |{T : T ⊆ N, T ̸= ∅, 1 < |T | ≤ |N | /2}|] a = 0.

We conclude that a = 0 should hold.
The assertion in Theorem 0 then follows from the contradiction between Claim 6 

and the partition games being linearly dependent. � □

Proofs of Theorem 1 and Theorem 2

The structure of the proof of Theorem 1 is as follows. We start by deriving the play-
ers’ payoffs in partition games and show first that, when there are two players in a 
game, only three axioms are needed (Proposition 1). When the player set contains 
at least three players, we first show that each player i ∈ N  gets zero payoff in the 
games u{i} and uN\{i}( Lemma 1) and continue showing that i’s payoff is the same 
in any two games uT  and uT ′ , provided that the coalitions T and T ′ are of the same 
size and player i belongs to either T ∩ T ′ or N\ (T ∪ T ′)( Lemma 2). By using these 
two lemmas, we prove that all players get zero payoffs in the partition games defined 
either over singleton coalitions (Proposition 2) or over coalitions of size |N | − 1( 
Proposition 3).

Lemma 3 is then crucial for the rest of the proof as it describes the transfer of argu-
ments with respect to the payoff of a player k ∈ T ⊂ N , |T | ≥ 2, from the partition 
game over T to the partition game over T\ {k}. Thanks to Proposition 2 and Lemma 
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3, we show in Proposition 4 that, in fact, each player gets zero payoff in every parti-
tion game over a coalition of size less than |N |, while Proposition 5 delivers the 
corresponding (short) argument for the equal distribution of uN (N) in the partition 
game uN . Finally, we use the set of partition games as basis of GN ( cf. Theorem 0) 
and the solution’s additivity to complete the characterization.

Proposition 1  If a solution f : G{1 ,2} → R2  satisfies additivity, symmetric efficiency, 
and blend-in fairness, then 

(1)	 fi(u{k}) = 0 for each i, k ∈ {1, 2};
(2)	 fi(u{1,2}) = 1

2  for each i ∈ {1, 2}.

Proof  Let z be the game on the player set {1, 2} that is identically zero. Since all 
players are symmetric in z, we have by symmetric efficiency that f1(z) = f2(z) = 0. 

(1)	 Consider the games z and u{1}( with u{1} ({1}) = u{1} ({1, 2}) = 0 and 
u{1} ({2}) = −1) as well as the bijection σ (1) = 1, σ (2) = 2. With respect to 
the two coalitions containing player 1 we have 

	 z({1}) = u{1} ({σ(1)}) = u{1} ({1}) = 0

 and 

	 z({1, 2}) = u{1} ({σ (1) , σ(2)}) = u{1} ({1, 2}) = 0.

 By blend-in fairness, f2(u{1}) = f2(z) = 0. By an analogous argument applied 
with respect to the games z and u{2}( with u{2} ({2}) = u{2} ({1, 2}) = 0 
and u{2} ({1}) = 1), we get f1(u{2}) = f1(z) = 0. Notice finally 
that all players are symmetric in the game u{1} + u{2} since we have (
u{1} + u{2}

)
({1}) =

(
u{1} + u{2}

)
({2}) = −1 and 

(
u{1} + u{2}

)
({1, 2}) = 0. 

Thus, by symmetric efficiency, fi(u{1} + u{2}) = 0 holds for each i ∈ {1, 2}. By 
additivity, f1(u{1}) = f2(u{2}) = 0.

(2)	 Since all players are symmetric in u{1,2}( due to u{1,2} ({1}) = u{1,2} ({2}) = 0 
and u{1,2} ({1, 2}) = 1), the assertion follows by symmetric efficiency.� □

Assume now that the player set N contains at least three players.

Lemma 1  If a solution f : GN → Rn  satisfies the weak null player property and 
blend-in fairness, then fi(u{i}) = fi(uN\{i}) = 0  for each i ∈ N .

Proof  Fix i ∈ N  and consider first the partition game u{i}. Recall that u{i}(S) = 0 if 
S ∈ {∅, {i} , N\ {i} , N} and u{i}(S) = −1, otherwise. We have then
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u{i}(S ∪ {i}) − u{i}(S) =

{
0 − 0 = 0 if S ∈ {∅, N \ {i}} ,
−1 + 1 = 0 otherwise,

i.e., player i is a null player in u{i}. By u{i}(N) = 0 and the weak null player prop-
erty, fi(u{i}) = 0 follows.

Consider next the partition game uN\{i} and recall that uN\{i}(S) = 0 if 
S ∈ {∅, N\ {i} , N} and uN\{i}(S) = −1, otherwise. Let the bijection σ : N → N  
by defined by σ(k) = k for each k ∈ N . Fix then j ∈ N\ {i} and consider S ⊆ N  
with j ∈ S. We have

	
u{i}(S) = uN\{i}(σ(S)) = uN\{i}(S) =

{
0 if S ∈ {∅, N \ {i} , N} ,
−1 otherwise.

By blend-in fairness, fi(uN\{i}) = fi(u{i}) follows. � □

Lemma 2  Let T , T ′ ⊂ N  be two different coalitions with |T | = |T ′|. If a solu-
tion f : GN → Rn  satisfies blend-in fairness, then fi(uT ) = fi(uT ′) for each 
i ∈ (T ∩ T ′) ∪ (N\ (T ∪ T ′)).

Proof  Recall that uT (N) = uT ′(N) = 0 holds and let us consider the following two 
possible cases.

Case 1 (|T | < |N | /2): For the two partition games we have in this case 
uT (S) = 0 if S ∈ {∅, T, N\T, N} and uT (S) = −1, otherwise; uT ′(S) = 0 if 
S ∈ {∅, T ′, N\T ′, N} and uT ′(S) = −1, otherwise. Notice further that, due to 
|T | = |T ′|, we have |T\T ′| = |T ′\T |. Define then the bijection (of order two) 
σ : N → N  by σ(k) = k for each k ∈ (T ∩ T ′) ∪ (N\ (T ∪ T ′)) and σ(ℓ) = m for 
ℓ ∈ T\T ′ and m ∈ T ′\T .

Fix then i ∈ (T ∩ T ′) ∪ (N\ (T ∪ T ′)) and consider any S ⊂ N  with 
j ∈ S for some j ∈ N \ {i}. Notice first that j ∈ T  makes S = N \ T  impos-
sible and thus, uT (S) = uT ′(σ(S)) = 0 holds only if S ∈ {∅, T, N}( with 
σ(T ) = T ′ and σ(N) = N ) while for all other relevant coalitions S we have 
uT (S) = uT ′(σ(S)) = −1. On the other hand, j ∈ N\T  would make S = T  impos-
sible and thus, uT (S) = uT ′(σ(S)) = 0 holds only if S ∈ {∅, N\T, N}( with 
σ(N\T ) = N\T ′ and σ(N) = N ) while for all other relevant coalitions S we have 
uT (S) = uT ′(σ(S)) = −1. We conclude by blend-in fairness that fi(uT ) = fi(uT ′) 
follows.

Case 2 (|T | ≥ |N | /2): For the two partition games we have in this case uT (S) = 0 
if S ∈ {∅, T, N} and uT (S) = −1, otherwise; uT ′(S) = 0 if S ∈ {∅, T ′, N} and 
uT ′(S) = −1, otherwise. Consider then the bijection σ, players i and j, and coali-
tion S as defined in Case 1. Notice then that we have uT (S) = uT ′(σ(S)) = 0 
only if S ∈ {∅, T, N}, while for all other relevant coalitions S we have 
uT (S) = uT ′(σ(S)) = −1. Hence, fi(uT ) = fi(uT ′) follows by blend-in fairness. 
� □
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Proposition 2  If a solution f : GN → Rn  satisfies additivity, the weak null player 
property, symmetric efficiency, and blend-in fairness, then fi(u{k}) = 0  for each 
i, k ∈ N .

Proof  Notice that fk(u{k}) = 0 for each k ∈ N  follows from Lemma 1. Moreover, 
by Lemma 2, fm

(
u{i}

)
= fm

(
u{k}

)
:= xm holds for each m ∈ N \ {i, k}. Fix 

next m ∈ N\ {i, k} and q ∈ N\ {i, k, m}, and consider the games u{i} and u{q}. 
Again by Lemma 2, fm

(
u{q}

)
= fm

(
u{i}

)
= xm follows. Repeating this argument 

as many times as necessary results in fi(u{k}) = xi for each i, k ∈ N  with i ̸= k.

Consider now the game u = Σℓ∈N u{ℓ} and notice that

	
u(S) =

{ 0 if S ∈ {∅, N} ,
− |N | + 1 if |S| ∈ {1, |N | − 1} ,
− |N | otherwise,

and thus, all players are symmetric in u. By symmetric efficiency, fi(u) = 0 holds for 
each i ∈ N . Applying additivity requires (− |N | + 1) xi = 0 to hold for each i ∈ N  
and thus, fi(u{k}) = 0 for each i, k ∈ N  with i ̸= k follows. � □

Remark 1  Notice that the game u constructed in the proof of Proposition 2 is super-
additive and thus, cohesive.

Proposition 3  If a solution f : GN → Rn  satisfies additivity, the weak null player 
property, symmetric efficiency, and blend-in fairness, then fi(uN\{k}) = 0  for each 
i, k ∈ N .

Proof  Notice first that, for i = k, the assertion follows from Lemma 1. Denote by 
T|N |−1 the set of all coalitions of size |N | − 1, fix i ∈ N\ {k} and let T|N |−1 (i) 
stand for the set of all coalitions in T|N |−1 containing player i; notice that 
T|N |−1 = T|N |−1(i) ∪ (N\ {i}). In view of Lemma 2, fi(uT ) = fi(uT ′) := xi 
holds for each T, T ′ ∈ T|N |−1 (i).

Consider now the game u = Σk∈N uN\{k} and notice that

	
u(S) =




0 if S ∈ {∅, N} ,
−

∣∣T|N |−1
∣∣ + 1 if |S| = |N | − 1,

−
∣∣T|N |−1

∣∣ otherwise,

and thus, all players are symmetric in u. By symmetric efficiency, fi(u) = 0. By 
fi(uN\{i}) = 0 and additivity, 

∣∣T|N |−1(i)
∣∣ xi = 0 should hold. We have then xi = 0 

and thus, fi(uN\{k}) = 0 follows. � □

Remark 2  Notice that the game u constructed in the proof of Proposition 3 is super-
additive and thus, cohesive.

1 3

   27   Page 14 of 21



Blend-in fairness and equal split

Lemma 3  Fix T ⊂ N , k ∈ T  with |T | ≥ 2 , and let f : GN → Rn  satisfy additivity, 
the weak null player property, and symmetric efficiency. Then, 

(1)	 [|T | ̸= |N | /2 and fk(uT ) = 0] ⇒fk(uT \{k}) = 0; 
(2)	 [|T | = |N | /2 and fk(uT ) = fk(uN\T ) = 0] ⇒fk(uT \{k}) = 0.

Proof  Fix T ⊂ N  with |T | ≥ 2 and k ∈ T . Clearly then, the coalitions T and T\ {k} 
are nonempty. Recall further that uT (N) = uN\T (N) = 0 holds.

(1) Notice that |T | ̸= |N | /2 implies either (|T | > |N | /2 and |T\ {k}| ≥ |N | /2) or 
(|T | < |N | /2 and |T\ {k}| < |N | /2). We consider these two possibilities separately.

(1.1) (|T | > |N | /2 and |T\ {k}| ≥ |N | /2): For the two partition games uT  
and uT \{k} we have: uT (S) = 0 for S ∈ {∅, T, N} and uT (S) = −1, otherwise; 
uT \{k}(S) = 0 for S ∈ {∅, T\ {k} , N} and uT \{k}(S) = −1, otherwise. Define the 
games cT  and cT \{k} by

	
cT (S) =

{
−1 if S = T ,
0 otherwise,

and

	
cT \{k}(S) =

{
−1 if S = T \ {k} ,
0 otherwise,

and proceed as follows.
For the game uT + cT  we have (uT + cT ) (S) = 0 for S ∈ {∅, N} and 

(uT + cT ) (S) = −1, otherwise. That is, all players are symmetric in uT + cT  and 
thus, by symmetric efficiency, fk (uT + cT ) = 0 in particular holds. By assumption, 
fk (uT ) = 0 holds as well and thus, by additivity,

	 fk (cT ) = 0� (8)

follows. Considering now the game cT + cT \{k} with 
(
cT + cT \{k}

)
(S) = −1 

for S ∈ {T, T\ {k}} and 
(
cT + cT \{k}

)
(S) = 0, otherwise, we have that player k 

is a null player in the game. By 
(
cT + cT \{k}

)
(N) = 0 and the weak null player 

property,

	 fk

(
cT + cT \{k}

)
= 0� (9)

follows. We have then from (8), (9), and additivity that

	 fk

(
cT \{k}

)
= 0� (10)

should hold. Notice finally that for the game uT \{k} + cT \{k} we have (
uT \{k} + cT \{k}

)
(S) = 0 for S ∈ {∅, N} and 

(
uT \{k} + cT \{k}

)
(S) = −1, oth-

erwise. In other words, all players are symmetric in uT \{k} + cT \{k} and thus, by 
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symmetric efficiency, fk

(
uT \{k} + cT \{k}

)
= 0 in particular holds. By (10) and 

additivity, fk

(
uT \{k}

)
= 0 follows.

(1.2) (|T | < |N | /2 and |T\ {k}| < |N | /2): Recall that the coalitions T and 
T\ {k} are nonempty and observe further that the coalitions N\T  and N\(T\ {k}) 
are nonempty as well. For the two partition games uT  and uT \{k} we have: 
uT (S) = 0 for S ∈ {∅, T, N \ T, N} and uT (S) = −1, otherwise; uT \{k}(S) = 0 
for S ∈ {∅, T\ {k} , N\ (T\ {k}) , N} and uT \{k}(S) = −1, otherwise. Define the 
games cT  and cT \{k} by

	
cT (S) =

{
−1 if S ∈ {T, N \ T} ,
0 otherwise,

and

	
cT \{k}(S) =

{
−1 if S ∈ {T \ {k} , N \ (T \ {k})} ,
0 otherwise,

and proceed as follows.
For the game uT + cT  we have (uT + cT ) (S) = 0 for S ∈ {∅, N} and 

(uT + cT ) (S) = −1, otherwise. That is, all players are symmetric in uT + cT  and 
thus, by symmetric efficiency, fk (uT + cT ) = 0 in particular holds. By assumption, 
fk (uT ) = 0 holds as well and thus, by additivity,

	 fk (cT ) = 0� (11)

follows. Consider now the game cT + cT \{k} with 
(
cT + cT \{k}

)
(S) = −1 for 

S ∈ {T\ {k} , T, N\T, N\ (T\ {k})} and 
(
cT + cT \{k}

)
(S) = 0, otherwise. 

Clearly, player k is a null player in this game. By 
(
cT + cT \{k}

)
(N) = 0 and the 

weak null player property,

	 fk

(
cT + cT \{k}

)
= 0� (12)

follows. We have then from (11), (12), and additivity that

	 fk

(
cT \{k}

)
= 0� (13)

should hold. Notice finally that for the game uT \{k} + cT \{k} we have (
uT \{k} + cT \{k}

)
(S) = 0 for S ∈ {∅, N} and 

(
uT \{k} + cT \{k}

)
(S) = −1, oth-

erwise. In other words, all players are symmetric in uT \{k} + cT \{k} and thus, by 
symmetric efficiency, fk

(
uT \{k} + cT \{k}

)
= 0 in particular holds. By (13) and 

additivity, fk

(
uT \{k}

)
= 0 follows.

(2) Notice that |T | = |N | /2 implies |T | = |N\T | = |N | /2. Consider then 
the partition games uT , uN\T , and uT \{k} recalling that they are defined as fol-
lows: uT (S) = 0 for S ∈ {∅, T, N} and uT (S) = −1, otherwise; uN\T (S) = 0 
for S ∈ {∅, N\T, N} and uT (S) = −1, otherwise; uT \{k}(S) = 0 for 

1 3

   27   Page 16 of 21



Blend-in fairness and equal split

S ∈ {∅, T\ {k} , N\ (T\ {k}) , N} and uT \{k}(S) = −1, otherwise. Define the 
games cT , cN\T , and cT \{k} by

	
cT (S) =

{
−1 if S = T ,
0 otherwise,

	
cN\T (S) =

{
−1 if S = N \ T ,
0 otherwise,

and

	
cT \{k}(S) =

{
−1 if S ∈ {T \ {k} , N \ (T \ {k})} ,
0 otherwise,

and proceed as follows.
For the game uT + cT  we have (uT + cT ) (S) = 0 for S ∈ {∅, N} and 

(uT + cT ) (S) = −1, otherwise. That is, all players are symmetric in uT + cT  and 
thus, by symmetric efficiency, fk (uT + cT ) = 0 in particular holds. By assumption, 
fk (uT ) = 0 holds as well and thus, by additivity,

	 fk (cT ) = 0� (14)

follows. Applying the same argument with respect to the game uN\T + cN\T  and 
recalling fk

(
uN\T

)
= 0 holds by assumption, we get

	 fk

(
cN\T

)
= 0.� (15)

Consider now the game cT + cN\T + cT \{k} with 
(
cT + cN\T + cT \{k}

)
(S) = −1 

for S ∈ {T\ {k} , T, N\T, N\ (T\ {k})} and 
(
cT + cN\T + cT \{k}

)
(S) = 0, other-

wise. Clearly, player k is a null player in this game. By 
(
cT + cN\T + cT \{k}

)
(N) = 0 

and the weak null player property,

	 fk

(
cT + cN\T + cT \{k}

)
= 0� (16)

follows. We have then from (14), (15), (16), and additivity that

	 fk

(
cT \{k}

)
= 0� (17)

should hold. Notice finally that for the game uT \{k} + cT \{k} we have (
uT \{k} + cT \{k}

)
(S) = 0 for S ∈ {∅, N} and 

(
uT \{k} + cT \{k}

)
(S) = −1, oth-

erwise. In other words, all players are symmetric in uT \{k} + cT \{k} and thus, by 
symmetric efficiency, fk

(
uT \{k} + cT \{k}

)
= 0 in particular holds. By (17) and 

additivity, fk

(
uT \{k}

)
= 0 follows.
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Remark 3  Notice that the games cT , cT \{k}, and cN\T  constructed in the proof of 
Lemma 3 are not superadditive but cohesive.

Proposition 4  If a solution f : GN → Rn  satisfies additivity, the weak null player 
property, symmetric efficiency, and blend-in fairness, then fi(uT ) = 0  for each 
i ∈ N  and T ⊂ N .

Proof  We proceed by induction on the cardinality of T ⊂ N .

Initialization: For |T | = |N | − 1, fi(uT ) = 0 for each i ∈ N  follows from Propo-
sition 3.

Induction Hypothesis: Suppose that fi(uT ) = 0 holds for each i ∈ N  and each 
T ⊂ N  with |T | > t.

Take T ⊂ N  with |T | = t and i ∈ N\T . Notice that if t = 1, then the asser-
tion directly follows from Proposition 2. Suppose now that t ≥ 2 holds. Since 
|T ∪ {i}| = t + 1 > t, we get fi(uT ∪{i}) = 0 by the induction hypothesis. By 
the same reasoning and for the case when t + 1 = |N | /2, we additionally get 
fi(uN\(T ∪{i})) = 0 due to |N\ (T ∪ {i})| = t + 1. Applying Lemma 3 results 
then in fi(uT ) = 0. Since player i ∈ N \ T  was arbitrary chosen, we conclude that 
fi(uT ) = 0 holds for each i ∈ N\T .

Hence, it remains to be shown that fi(uT ) = 0 holds for each i ∈ T  as well. For 
this, fix i ∈ T , denote by T|T | the set of all coalitions of size |T | and by T|T | (i) 
the set of all coalitions in T|T | containing player i. Notice that we have i /∈ T ′ for 
each T ′ ∈ T|T |\T|T | (i). Hence, as already shown above, fi(uT ′) = 0 holds for each 
T ′ ∈ T|T |\T|T | (i).

Consider now the game u = ΣT ′∈T|T |uT ′  and notice that, when |T | ≥ |N | /2 
holds, we have

	
u(S) =




0 if S ∈ {∅, N} ,
−

∣∣T|T |
∣∣ + 1 if |S| = |T | ,

−
∣∣T|T |

∣∣ otherwise,

while, when |T | < |N | /2 is the case, we have

	
u(S) =




0 if S ∈ {∅, N} ,
−

∣∣T|T |
∣∣ + 1 if |S| ∈ {|T | , |N \ T |} ,

−
∣∣T|T |

∣∣ otherwise.

Observe that, in either of these cases, all players are symmetric in u. By symmet-
ric efficiency, fi(u) = 0. By fi(uT ′) = 0 for each T ′ ∈ T|T |\T|T | (i) and additivity, ∣∣T|T |(i)

∣∣ xi = 0 should hold. We have then xi = 0 and thus, fi(uT ) = 0 follows.

Remark 4  Notice that the game u constructed in the proof of Proposition 4 is super-
additive and thus, cohesive.
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Proposition 5  If a solution f : GN → Rn  satisfies symmetric efficiency, then 
fi(uN ) = 1

n  for each i ∈ N .

Proof  Recall that uN (N) = 1 and uN (S) = 0 for each S ̸= N  holds. Clearly then, 
all players are symmetric in uN (N) and thus, by symmetric efficiency, fi(uN ) = 1

n  
for each i ∈ N  follows. � □

Propositions 1–5 show that, thanks to additivity, the weak null player property, 
symmetric efficiency, and blend-in fairness, one has fi(uT ) = EDi(uT ) for each 
partition game uT ( T ⊆ N , T ̸= ∅) and each i ∈ N .

Proof of Theorem 1  It can be easily verified that the equal division solution satisfies 
the four axioms. As for the reverse implication, let T be a non-empty coalition, b a 
real number, and define the game ub

T  as follows: 

(1)	 If T ̸= N , then for each coalition S ⊆ N , 

	
ub

T (S) :=
{

0 if (1) S ∈ {∅, T, N} or (2) |S| > |T | with (S, T ) partitioning N ,
−1 otherwise.

(2)	 If T = N , then for each coalition S ⊆ N , 

	
ub

N (S) :=
{

0 if S ≠ N ,
b otherwise.

 In view of Propositions 1–5, we conclude for each i ∈ N  that 

	
fi(ub

T ) =
{

0 if T ⊂ N ,
b
n if T = N .

 Theorem 0 further implies the existence of real numbers (aT ){T ⊆N,T ̸=∅} such that, 
for v ∈ GN , one has v = ΣT ⊆N,T ̸=∅aT ub

T . By the additivity of f, 

	 fi(v) = ΣT ⊆N,T ̸=∅fi(aT ub
T )� (18)

 follows. We further make use of the following result. ClaimΣT ⊂N,T ̸=∅fi(aT ub
T ) = 0.

� □

Proof of the Claim  Notice first that Proposition 1–5 and the additivity of f give us 
fi(aub

T ) = 0 for each i ∈ N , each non-empty T ⊂ N , and any a ≥ 0; in particu-
lar, we have fi(aT ub

T ) = 0 for each i ∈ N  and each non-empty T ⊂ N  whenever 
aT ≥ 0 holds. Suppose now that we have aT < 0 for some non-empty T ⊂ N . 
Notice then that, with z being the zero game, aT ub

T + (−aT )ub
T = z holds and thus, 

due to the additivity of f and f(z) = 0 following from symmetric efficiency, we get 
fi(aT ub

T ) = 0 for each i ∈ N . Hence, the assertion follows.
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The combination of (18) with the above Claim gives us 
fi(v) = fi(aN ub

N ) = fi(ubaN

N ) = fi(uv(N)
N ) = v(N)

n  for each i ∈ N . � □

Proof of Theorem 2  Recall that partition games are superadditive (Remark 0) and thus, 
cohesive, and that all games constructed in the corresponding proofs of Propositions 
1–5 are cohesive as well (Remarks 1–4). Since the zero game is also superadditive, 
the proof of Theorem 2 is fully analogous to the proof of Theorem 1. � □

Independence of the axioms

In what follows, we assume that the player set contains at least three players and construct 
four examples where the correspondingly defined solution satisfies all axioms but the men-
tioned one. Observe that all solutions utilized to show axioms’ logical independence on 
GN  can also be used to show the corresponding independence on GN

coh as well. This is due 
to the fact that each non-superadditive game constructed in these examples is cohesive.

Additivity The solution fA, given by fA(v) = ED(v) if v ∈ GN
sa and 

fA(v) = Sh(v) if v ∈ GN \GN
sa, satisfies all axioms but additivity. As to see the latter 

fact, let N = {1, 2, 3} and consider the games v and w defined as follows: v(S) = 1 if 
S ∈ {{1, 2} , N}, and v(S) = 0, otherwise; w(S) = 1 if S ∈ {{3} , N}, and w(S) = 0, 
otherwise. The game v is superadditive but w is not and thus, we have fA(v) =

( 1
3 , 1

3 , 1
3
)
 

and fA(w) =
( 1

6 , 1
6 , 4

6
)
. For the game (v + w) we have (v + w) (N) = 2, 

(v + w) (S) = 1 if S ∈ {{3} , {1, 2}}, and (v + w) (S) = 0, otherwise. Since (v + w) 
is not a superadditive game, we get fA(v + w) =

( 4
6 , 4

6 , 4
6
)

̸=fA(v)+fA(w).
Weak null player property Denote by R3

i  the set of all permutations of the player set 
N at which player i ∈ N  is at least the third player in the corresponding order. Notice that ∣∣R3

i

∣∣ =
∣∣R3

j

∣∣ holds for all i, j ∈ N  and set r :  =
∣∣R3

i

∣∣. For i ∈ N , let

	
gi(v) = 1

r

∑
R∈R3

i

∆i(Si(R)).

Define then the solution fW NP  by

	
fW NP

i (v) = gi(v) + v(N) − Σi∈N gi(v)
n

for each i ∈ N.

In other words, the payoff fW NP
i (v) is just the sum of the average of player i’s marginal 

contributions to coalitions of size at least two (gi(v)) and the equal division of the excess 
v(N) − Σi∈N gi(v). This solution clearly satisfies additivity and symmetric efficiency. 
In order to see that it satisfies blend-in fairness as well, recall that σ(i) = i holds for the 
permutation σ guiding the cooperation equivalence of two superadditive games v and w 
for player i ∈ N . Given that v(S) = w(σ(S)) holds for all S ⊆ N  with j ∈ S for some 
j ∈ N \ {i}, fW NP

i (v) = fW NP
i (w) follows. Notice finally that fW NP  violates the 

weak null player property. As to see it, take N = {1, 2, 3} and consider the superaddi-
tive game v defined by v(S) = 0 if S ∈ {{1} , {2, 3} , N}, and v(S) = −1, otherwise. 
Notice that player 1 is a null player in v and v(N) = 0. We get g(v) = (0, 1, 1) and 
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fW NP (v) =
(
− 2

3 , 1
3 , 1

3
)
 in violation of the weak null player property requiring player 1 

to get zero payoff in the game v.
Symmetric efficiency The solution fSE, defined by fSE(v) = 0 for each v ∈ GN , 

satisfies all axioms but symmetric efficiency.
Blend-in fairness The Shapley value violates blend-in fairness while satisfying all 

other axioms.
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