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Abstract

Cryptographic protocols underpin modern digital security, yet their formal verification remains a
significant challenge. The symbolic model of cryptography addresses this, representing bitstrings
as terms and cryptographic operations as semantics of function symbol applications. This
approach allows a more abstract representation of protocols, improving scalability and automation
during analysis. However, this high level of abstraction can overlook attacks that exploit the
subtleties of underlying cryptographic operations. This thesis advances the accuracy of symbolic
analysis by refining the abstraction of cryptographic primitives and by assessing the limits of
leading verification tools.

First, we propose more detailed symbolic models for cryptographic hash functions, authenti-
cated encryption with associated data (AEAD), and key encapsulation mechanisms (KEMs). We
integrate these models into Tamarin, a leading symbolic verification tool, and demonstrate their
ability to automatically detect both known and novel attacks in real-world security protocols.

Second, we present the first formal analysis of the Security Protocol and Data Model (SPDM),
a widely deployed industry security standard. Our work results in one of the largest Tamarin
models to date, pushing the boundaries of symbolic analysis and revealing a severe authentication
vulnerability. This discovery led to our proposed fixes being included in both the specification
and the reference implementation.
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Zusammenfassung

Kryptographische Protokolle sind die Grundlage moderner digitaler Sicherheit, doch ihre formale
Verifikation bleibt eine große Herausforderung. Aus diesem Grund wurde das symbolische Modell
entwickelt, welches eine abstraktere Darstellung von Protokollen ermöglicht und dadurch höhere
Skalierbarkeit und Automatisierung erlaubt. Diese hohe Abstraktionsebene kann jedoch Angriffe
übersehen, die die Feinheiten der zugrunde liegenden kryptografischen Operationen ausnutzen.
Diese Dissertation verbessert die Genauigkeit der symbolischen Analyse durch die Verfeinerung
der Abstraktion von kryptographischen Primitiven und wertet währenddessen die Grenzen von
aktuellen Verifikationstools aus.

Zunächst erstellen wir detailliertere symbolische Modelle für kryptografische Hash Funktionen,
authentifizierte Verschlüsselung mit zugehörigen Daten, und Schlüsselkapselungsmechanismen.
Wir integrieren diese Modelle in Tamarin, ein führendes symbolisches Verifikationstool, und
demonstrieren ihre Fähigkeit, automatisch bekannte und neue Angriffe in realen Sicherheitspro-
tokollen zu erkennen.

Zweitens präsentieren wir die erste formale Analyse des Security Protocol and Data Model
(SPDM), einem weit verbreiteten Industriesicherheitsstandard. Diese Analyse resultiert in einem
der bisher umfangreichsten Tamarin-Modelle, das die Grenzen der symbolischen Analyse erweitert
und eine schwerwiegende Schwachstelle in der Authentifizierung aufgedeckt.
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1Introduction

In our modern digital world, computers and networked systems have become deeply embedded in our
daily lives, controlling everything from financial transactions to personal communication. While these
technologies provide convenience, they also introduce significant risks – sensitive data, if improperly
secured, can be exposed, leading to severe privacy violations and security breaches. The protection of
personal and financial information has become a fundamental human right, necessitating robust security
measures to protect bank accounts, private messages, and confidential data. However, as we continue to
integrate digital technologies into every aspect of life, the challenge of ensuring security and privacy only
grows more complex.

Since the 1980s, cryptography and security protocols have evolved as essential tools for protecting
digital communication. Starting with Goldwasser and Micali [118], classical cryptography laid the
foundation for security proofs, ensuring that cryptographic mechanisms could be mathematically verified
for their correctness. However, despite advancements in cryptographic techniques, security proofs remain
predominantly manual, requiring significant effort and expertise. The process is painstakingly slow, and
errors in these proofs can go unnoticed for years. While machine-checked proofs existed, they were still
not widely adopted, largely due to the steep learning curve and technical barriers in formal verification
tools in that time.

To address these challenges, an alternative approach to security verification emerged as early as the
late 1980s. The seminal work of Dolev and Yao [103], followed by significant contributions in the 1990s
(e.g., [142, 164]), introduced the symbolic model of cryptography. This model differs from the traditional
computational model by abstracting cryptographic primitives and focusing on high-level logical reasoning.
Symbolic verification allows for efficient reasoning about security protocols without delving into the
mathematical complexities of underlying cryptographic algorithms. Throughout this thesis, we refer to
the traditional approach as the computational model and the alternative as the symbolic model. The rise
of symbolic verification provided a new way to analyze security properties at a higher level, reducing the
effort required for manual proofs and offering a structured approach to protocol verification.

The early 2000s saw the development of automated verification tools within the symbolic model,
leading to increased adoption in protocol verification. These developments have been driven by the
emergence of powerful formal analysis tools such as Tamarin [170], ProVerif [43], DeepSec [62], and
SAPIC [150] which are part of today’s state-of-the-art. Advances in formal verification now allow us to
analyze complex security protocols like TLS1.3 [80], WPA2 [83], and EMV [23], which have high impact
on modern digital security.

Despite the successes of the recent decades, significant limitations remain within the symbolic model
and its automated verification capabilities. Research by Jackson, Cremers, Cohn-Gordon, and Sasse [134]
has shown that current abstractions of cryptographic primitives may not accurately reflect real-world
behaviors, raising concerns about the reliability of symbolic proofs. Additionally, automated tools
struggle with protocols that involve large, branching state machines, making certain security properties
difficult to express and verify. This results in a gap between theoretical security guarantees and practical
implementations, where subtle design choices can introduce vulnerabilities that are not accounted for in
abstract models.

Another major challenge lies in the human factor – protocol modeling remains a manual process,
prone to errors due to incorrect abstractions or ambiguities in the use of verification tools. The process
requires significant expertise and domain knowledge, making it inaccessible to non-experts. Additionally,
while automated tools can analyze simple protocols effectively, they often struggle with large-scale,
industry-grade protocols.

In this thesis, we explore some of these limitations by (I) proposing methods to improve the symbolic
verification landscape by increasing the expressiveness of the symbolic model, and (II) investigating the

1



2 chapter 1. introduction

limitations of large-scale analysis and its future perspectives.

Part I: Advancing Symbolic Models The first part of this thesis focuses on extending the symbolic
model to better represent cryptographic primitives that have remained unchanged for decades despite
advancements in cryptographic research. By improving these representations, we aim to bridge the gap
between theoretical models and real-world implementations, ensuring that security proofs remain relevant
as cryptographic techniques evolve.

Cryptographic Hash Function: Security proofs in both symbolic and computational models often treat
hash functions as perfectly random one-way functions. However, real-world instantiations exhibit
weaknesses that can be exploited. We introduce a hierarchy of hash function properties to address
these weaknesses, integrating them into the symbolic model. Our automated methodology extends
the Tamarin prover, enabling the rediscovery of known attacks and the identification of new
vulnerabilities. This refined approach allows for a more accurate representation of hash functions in
symbolic analysis, preventing misleading security claims that do not hold in practice.

Authenticated Encryption with Associated Data (AEAD): The landscape of AEAD security is chaotic,
with inconsistent definitions and unclear security guarantees. We start by compiling known AEAD
properties and attacks on AEAD instantiations from the literature, and group attacks to the specific
violated property. Building on the work of Zhao [223], who has proven relations between all the
collected properties, we derive major categories of AEAD weaknesses and develop symbolic models
to capture them. Additionally, we develop an automated methodology to detect both known attacks
and novel subtleties that can be used to exploit real-world protocols.

Key Encapsulation Mechanism (KEM): The transition to post-quantum cryptography has led to the
adoption of KEMs as one potential replacement for classical key exchange mechanisms. However,
the literature lacks a comprehensive formalization of certain KEM properties, which are often
assumed without explicit definitions. We introduce a new class of binding properties for KEMs and
propose symbolic models that encompass both existing and our newly defined properties. From the
symbolic models, we develop a methodology using the Tamarin prover to automatically analyze
security properties that rely on KEMs. We tested our methodology on real-world examples, helping
us to automatically discern which binding properties a KEM scheme needs to make sure the targeted
protocol stays secure.

Part II: Exploring the Limits The second part of this thesis investigates the limitations of current
symbolic analysis methods when applied to large-scale, complex security protocols.

We conduct an in-depth analysis of the Security Protocol and Data Model (SPDM) [96], developed by
the Distributed Management Task Force (DMTF) [93] with backing from major industry players. SPDM
aims to ensure cryptographic verification of platform component identities, firmware integrity, and secure
communications over platform interfaces. However, the protocol’s extensive specification lacks detailed
state machine diagrams and information flow descriptions, requiring significant manual effort for modeling.

After manually reconstructing SPDM’s state machines, we formally model the protocol in Tamarin,
creating one of the most complex verification models to date. Our analysis uncovered a critical attack on
SPDM’s goal of mutual authentication, which we successfully demonstrated in the reference implementation.
This discovery led to the registration of a Common Vulnerabilities and Exposures (CVE) entry with a
critical severity score (CVSS 9.0) [84]. We subsequently proposed a fix, which was adopted in an updated
version of the SPDM specification [94].

This case study illustrates the necessity of improving automated verification techniques to better
handle large-scale security protocols and prevent vulnerabilities before deployment. Aside from the
numerous design flaws of SPDM we could uncover, this case study highlights the importance of domain
separation, a concept supported by the research community, in managing large-scale security protocols.
Our findings confirm that tools like Tamarin struggle without domain separation, especially when looking
at large-scale protocols like SPDM. We discuss potential improvements to symbolic analysis methods,
SPDM, and other complex protocols. Our observations underscore the need for continuous improvements
in both the protocols and the tools used to verify them.
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[69] Cas Cremers, Alexander Dax, Charlie Jacomme, and Mang Zhao. “Automated Analysis of Protocols
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on Protocol Security.” In: USENIX Security Symposium. 2023
Distinguished Paper Award
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Distinguished Artifact Award

[75] Cas Cremers, Alexander Dax, and Aurora Naska. Breaking and Provably Restoring Authentication:
A Formal Analysis of SPDM 1.2 including Cross-Protocol Attacks. Under Submission. 2025

[76] Cas Cremers, Alexander Dax, and Aurora Naska. “Formal analysis of SPDM: Security protocol
and data model version 1.2.” In: USENIX Security Symposium. 2023

1.2 Outline

Chapter 1 motivates the work of this thesis and provides a clear outline for the remainder of thesis.

Chapter 2 introduces the necessary background on the analysis of security protocols and gives a clear
description of the symbolic model of cryptography. The chapter puts a special focus on the Tamarin
prover – a state-of-the-art security verification tool which is used as part of the research conducted
throughout this thesis.

Part I: Advancing Symbolic Models
Chapter 3 motivates the general idea underlying the research of creating better representations of

cryptographic primitives, providing an introduction to the following chapters.

Chapter 4 addresses the gap between the theoretical assumptions of cryptographic hash functions and
their practical implementations. By setting up a hierarchy of hash function properties, we integrate
these more accurate models into our symbolic analysis. With the help of these models, we are able
to automatically uncover known vulnerabilities from the literature and discover new variants. This
chapter is based on [61].

Chapter 5 systematizes the fragmented landscape of AEAD security by compiling and categorizing the
known properties and corresponding attacks on AEAD schemes. We develop symbolic models that
accurately capture the collected AEAD weaknesses and introduce an automated methodology to
detect both known and novel exploits. This chapter is based on [69].

Chapter 6 explores Key Encapsulation Mechanisms (KEMs), a cryptographic primitive gaining popular-
ity in the transition to post-quantum cryptography. Due to the lack of formalized properties of
KEMs in the existing literature, we introduce a new class of binding properties for KEMs. We create
new symbolic models of KEMs and their properties and, using the Tamarin prover, we develop a
methodology to automatically analyze real-world security protocols that use KEMs. This chapter is
based on [72].
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Chapter 7 presents the limitations of our new approaches from chapters 4 to 6 and discusses related
work.

Part II: Exploring the Limits
Chapter 8 introduces the second goal of this thesis: to explore the limits of symbolic analysis when it

comes to size and complexity. We introduce DMTF’s Security Protocol and Data Model (SPDM),
one of the most complex security protocols currently under specification.

Chapter 9 presents the first formal analysis of SPDM, starting with details on the protocol itself. After
manually constructing state machines from SPDM’s specification we provide details on our modeling
approaches in Tamarin, focusing on our modeling choices. In our final model of SPDM, Tamarin
automatically finds a critical authentication attack based on the complexity of the protocol. This
chapter is based on both [76] and [75].

Chapter 10 discusses the limitations of our analysis approach and presents learned lessons and insights
for future analysis of complex protocols.

Conclusion and Future Work
Chapter 11 concludes this thesis by summarizing our contributions before discussing potential future

work.
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2.1 Security Protocols

A protocol is a set of rules that define how two or more entities communicate and exchange information. It
ensures that messages are structured correctly and that both parties understand how to send and receive
data. Protocols are essential in various fields, including everyday interactions, business and especially
technology.

For example, a simple greeting protocol could work as follows: One party sends a message starting
with "Hello, I am [Name 1]. What is your name?", the other responds with "Hello [Name 1], my name is
[Name 2].", and the conversation ends with the first party replying "Nice to meet you [Name 2]." This
structured exchange ensures that both sides follow the same communication pattern. If a message is not
understood (dropped message), the parties can either stop talking (aborting the protocol) or repeat what
they said previously (retrying/resending messages). While human communication allows flexibility, digital
communication requires strict adherence to predefined rules—without structured protocols, reliable data
exchange over networks would not be possible.

In the digital world, protocols such as UDP, TCP, and HTTP allow for communication between
systems over the internet, ensuring that devices can exchange information in an orderly manner. However,
beyond enabling communication, some protocols also have security objectives – they help establish shared
secrets, exchange confidential data, protect private information, and maintain anonymity. To achieve
security goals, protocols must be designed to meet specific security properties. These properties define
what a protocol should guarantee under potential attacks.

2.1.1 Security Properties

Security requirements vary depending on the use case. Some situations demand strong authentication,
ensuring that only the right individuals gain access. Others prioritize confidentiality, preventing unau-
thorized entities from intercepting sensitive data. In more complex scenarios, privacy measures are also
essential to protect user identities and interactions.

Consider a remote employee accessing their company’s internal services. The system must first verify
that this is indeed an authorized employee before granting access. This process, known as authentication,
ensures that no outsider can enter the system. At the same time, the exchanged data must remain
confidential, meaning that even if a third party intercepts the communication, they cannot extract any
meaningful information. These two aspects – authentication and confidentiality – are fundamental security
properties to secure communications.

Beyond access control and confidentiality, privacy adds another layer of complexity. In some cases,
organizations may want to prevent external observers from learning who is logging into the system or
which resources are being accessed. Privacy mechanisms ensure that even if someone monitors network
traffic, they cannot determine whether a specific employee is using the internal services.

Security properties can generally be categorized into two types: reachability and indistinguishability.
Reachability properties ensure that certain undesirable events never occur, such as unauthorized users
accessing sensitive systems. Indistinguishability properties, on the other hand, focus on making different
scenarios appear identical to outsiders, ensuring, for instance, anonymity.

2.1.2 Cryptographic Primitives

Security protocols are designed to guarantee various security properties, such as authentication and
data confidentiality. However, constructing these protocols requires fundamental tools – this is where
cryptographic primitives come into play. These primitives serve as the essential building blocks of
cryptographic systems, enabling secure communication and data protection. They are functions that allow
us to encrypt, authenticate, or otherwise process messages securely.
To illustrate, consider the following examples of cryptographic primitives:

Symmetric Encryption This primitive usually consists of three functions, KeyGen, senc and sdec. KeyGen
is used to randomly draw a secret key k that is used to encrypt data. Given a message m and



10 chapter 2. background

the secret key k, encryption produces a ciphertext c = senc(m, k), which conceals any information
about m. Only someone possessing k can decrypt it, ensuring that the decryption of the ciphertext
sdec(senc(m, k), k) returns the original message m.

Authenticated Encryption with Associated Data (AEAD) AEAD extends symmetric encryption by pro-
viding both confidentiality and integrity. It ensures that, in addition to encrypting a message, any
unauthorized modification of the ciphertext will be detected. AEAD schemes also support associated
data, meaning that certain parts of the message (such as public headers) can be authenticated but
not encrypted.

Hash Functions These are functions that take an input m and return a fixed-size output, called the
hash. A hash function is designed to be non-invertible, meaning it is computationally infeasible
to recover m from its hash value. Hash functions are commonly used for data integrity checks,
password storage, or as a part of more complex cryptographic primitives.

Digital Signatures Digital signatures are designed to provide authentication. A signature scheme consists
of three algorithms: KeyGen, sign and verify. KeyGen is used to randomly draw a secret private
key sk to sign data, and a corresponding public key pk used to verify signatures constructed using
sk. Using a secret key sk, one can generate a signature sign(m, sk). Anyone with access to the
corresponding public key can verify that a given signature x is valid using verify(x, m, pk). This
ensures that messages cannot be forged and that the sender cannot later deny signing them. Note
that, for digital signatures to be applicable, a mechanism has to be set in place that allows to
distribute the public keys of identities.

Asymmetric Encryption Asymmetric encryption, also known as public-key encryption, uses a pair of keys
as well: a public key pk for encryption and a private key sk for decryption. This primitive consists
of three functions: KeyGen, Enc, and Dec. The KeyGen algorithm generates a key pair (pk, sk),
where pk is publicly shared while sk remains secret. Given a message m, encryption produces a
ciphertext c = Enc(m, pk) using the public key. Only the corresponding private key sk can decrypt
the ciphertext, ensuring that Dec(Enc(m, pk), sk) recovers the original message m.

Key Encapsulation Mechanisms (KEM) Similarly to asymmetric encryption, KEMs also rely on a pair of
keys (pk, sk). The primitive also consists of three functions: KeyGen, Encaps, and Decaps. KeyGen
is analogous to key generation of asymmetric encryption. Unlike traditional encryption, however,
KEMs are used to securely establish shared keys between parties that share public keys. A sender
generates a random key k and a ciphertext c using a recipient’s public key pk by running the
randomized Encaps algorithm: k, c = Encaps(pk). The recipient can then use their private key sk to
recover the shared key (k = Decaps(c, sk)), which can be used for further encrypted communication,
using e.g., symmetric encryption or AEADs.

These cryptographic primitives – and many more – each serve a specific purpose, but they are often
used together to provide even stronger security guarantees. By combining them, security protocols can
ensure data confidentiality, restrict access to authorized users, and detect any tampering. They form
the backbone of modern digital security, enabling secure communication, online transactions, and data
protection.

2.1.3 Formal Proofs

When designing security protocols to achieve specific security properties, it is crucial to ensure that the
protocol actually meets its objectives. To address this challenge, the concept of provable security was
introduced in the 1980s, providing a foundation for defining security protocols and its desired properties
precisely and proving them mathematically. This approach allows protocol designers to demonstrate that
their constructions are secure based on well-defined models and assumptions.
Two key paradigms have emerged to prove the security of protocols:

Computational Model Introduced by Goldwasser and Micali in their seminal paper [118], this model
focuses on security against attackers with limited computational power. A construction is considered
secure if a computationally bounded attacker can only break the security with a negligible probability.



2.2 the computational model of cryptography 11

Security proofs in this model often rely on the assumption that solving a specific problem, such as
factoring large integers or computing discrete logarithms, is computationally difficult.

Symbolic Model In this model, cryptographic primitives are typically assumed to be perfect, meaning
they cannot be broken or manipulated beyond their intended purpose. It is based on ideas of Dolev
and Yao in [103] where an attacker is assumed to have full control over the network, including the
ability to intercept, modify, and inject messages. However, the attacker’s capabilities are limited to
a fixed set of symbolic operations on the messages, such as signing or decryption using known keys.

While the computational model provides a more realistic view of security by accounting for compu-
tational limits, the symbolic model offers a more abstract and simplified analysis of security properties,
allowing for analysis of larger objects. Both paradigms are valuable and can be used in complementary
ways to gain confidence in the security of a protocol, depending on the goals and complexity of the system
being analyzed.

2.2 The Computational Model of Cryptography

The computational model of cryptography provides a formal framework for reasoning about the security
of cryptographic constructions using concepts from computational complexity theory. In this model,
attackers are modeled as probabilistic polynomial-time (PPT) Turing machines [118], – meaning they
have bounded computational resources and can only execute a feasible number of operations relative to
input size. Messages, keys, and ciphertexts are represented as bitstrings. Security is framed in terms of an
attacker’s ability to distinguish different cryptographic outputs with a high probability or perform an
attack within realistic computational limits.

Security in the classical computational model is typically proven using reduction arguments. These
proofs show that if an attacker were able to break a security protocol or cryptographic construction, then
they could also solve a well-established computationally hard problem, such as factoring large integers
[189] or computing discrete logarithms [92]. Since these problems are considered difficult to solve, the
security protocol or cryptographic construction is assumed to be secure. This approach ensures that
cryptographic constructions are secure as long as the underlying hardness assumptions hold.

A key example of a security definition in this model is indistinguishability under chosen plaintext attack
(IND-CPA), which is a standard for asymmetric encryption [27]. Here, an attacker is given access to an
encryption oracle1 and must attempt to distinguish between encryptions of two messages of their choice. If
they cannot do so with a non-negligible probability higher than random guessing, the scheme is considered
secure. Similarly, in digital signatures, security may be defined in terms of existential unforgeability under
chosen message attack (EUF-CMA), meaning no attacker should be able to forge a valid signature without
access to the secret signing key [119].

To make security proofs more manageable, multiple techniques have been proposed over the years,
e.g., the game-playing technique introduced by Shoup [204]. This method structures security proofs as
a sequence of small probabilistic games, each differing slightly from the previous one. The idea is to
show that an attacker’s success probability changes negligibly at each step, leading to an overall proof
that the system is secure. Variants of this technique have enabled researchers to explore automation and
tool-assisted verification, resulting in tools like CryptoVerif [42]. Building on this research, other tools
enabling proofs in the computational model were developed in recent years, for instance, Squirrel [15] or
EasyCrypt [18]. While being promising approaches, these tools do not yet scale well enough to tackle the
complexity of real-world secure communication protocols.

2.3 The Symbolic Model of Cryptography

The symbolic model uses function symbols to denote algorithms, and capture their properties through
equations. For instance, an encryption is modeled by two binary function symbols senc and sdec, with the

1An oracle is an API that the attacker can access. It performs a specific task like encryption under a fixed key
and only leaks the result to the attacker.
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equation:
sdec(senc(m, k), k) = m

Note that the randomness or nonce usually included into symmetric encryption schemes is not explicit
in this classical modeling. And crucially, in the symbolic model, only the equations that are explicitly
specified imply equalities. This results in the so-called perfect cryptography assumption: in the previous
example, the encryption is perfect, in the sense that given senc(k, m) and not k, the attacker learns
absolutely nothing about m or k as it cannot apply the decryption equation. The attacker cannot change
the content of the message, and no collisions will exist.

While the previous assumption may seem too restrictive, it allows for highly automated tools which
are one of the strengths of the symbolic model. These tools were already successfully used to automatically
find attacks on protocols like WPA2 [83] or Bluetooth [217] and aid standardization processes to avoid
design-level flaws [80, 87, 180].

In the following we will first present the used term algebra before taking a deeper glance at one of the
most prominent automation tools in symbolic analysis – the Tamarin prover.

2.3.1 Symbolic Model: Term Algebra

Formally, we assume a set of operators with their arities as signature Σ and a countably infinite set of
variables V. Operators model computations over messages such as symmetric encryption (senc). We
similarly treat atoms (usually called names in symbolic models), i.e. atomic data such as nonces or keys,
with a countable set A. The set of terms given by the closure of using operators from the signature Σ
containing variables in V and atoms in A is denoted T := TΣ(V,A). A term t is ground if it contains
no variables, and we write TΣ(A) for the set of all ground terms, or simply TΣ. We also call ground
terms messages. A substitution σ is a function from variables to messages. We homomorphically lift
substitutions to terms.

Algebraic properties over operators, such as decrypting a ciphertext with the right key yields the
plaintext, are expressed through an equational theory. Given a signature Σ, an equation is an unordered
pair of terms s and t, written s = t, for s, t ∈ TΣ(V). To a set of equations E, we associate an equational
theory that is the smallest congruence relation over terms =E that contains E and is closed under
substitution of terms for variables and atoms. Two messages s and t are equal modulo E if and only if
s =E t.

Example 1. For a basic model of symmetric encryption, let Σ contain the operators senc(·, ·) and sdec(·, ·)
together with the equation sdec(senc(x, y), y) = x. This does model decryption of a ciphertext that was
encrypted under the same key y as used for the decryption operation.

Example 2. We assume a concatenation operator ·∥· ∈ Σ equipped with an equation (x∥y)∥z = x∥(y∥z),
that is the concatenation is associative. We shall use ∥ to concatenate (suffix as second argument) different
messages prior to hashing.

To simplify presentation, we interpret all relations to be closed under the equational theory. For
example, we simply write t ∈ TΣ(V) if ∃t′ : t =E t′ ∧ t′ ∈ TΣ(V) and assume that for any binary relation
∼, t1 ∼ t2 implies t′

1 ∼ t′
2 whenever t′

1 =E t1 and t′
2 =E t2.

2.3.2 Symbolic Model: Tools

Our methodologies we introduce throughout this thesis are generalized enough to not be bound to a
specific tool. The tool of choice needs to support custom equational theories and explicit means to express
attacker knowledge. These are criteria fulfilled by various state-of-the-art symbolic tools like [45, 108,
150]. We choose the Tamarin prover [170], as it offers a straightforward way to add custom equational
theories and oracle-like processes.
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The Tamarin Prover
The Tamarin Prover [170] is a state-of-the-art protocol verification tool that is widely used in academia
and industry to analyze complex real-world protocols. In the following, we provide a brief overview of the
tool, and refer the reader to the official documentation for more information [20].

To verify a protocol in Tamarin, the user needs to provide three inputs: (i) the protocol model, (ii) the
security property, and (iii) the attacker model against which the property should hold. Given these inputs,
the tool will either verify the property and output a proof, or find a counter example and provide the
attack steps. However, Tamarin might also not terminate or run out of space and memory. In this case,
the user can manually explore the proof search in the user interface and provide additional input to help
its reasoning, e.g., in the form of invariants.
Protocol Models Tamarin takes a protocol description in a custom modeling language and security
properties specified in a fragment of first-order logic as input. The modeling language allows a user to
specify the protocol rules and the adversary’s capabilities via multiset rewriting rules. These rules induce
a labeled transition system. Tamarin then tries to verify whether the given security properties hold for all
traces of the transition system.

A multiset of facts serves as the state of the labeled transition system. The rewriting rules manipulate
this state by adding and removing facts. Facts are special user-defined symbols that contain terms and
represent the state of the protocol. The state of the adversary (i.e., their knowledge) is modeled by a
distinct set of facts. An example of a fact would be Alice(pk, sk), which models Alice who is in possession
of some key pair (pk, sk).

Rules are constructed by a left-hand side (LHS or premise), an action, and a right-hand side (RHS or
conclusion). These correspond to the input and conditions to trigger this transition in the protocol, the
action label or event marking the transition, and the output state of the protocol, respectively. In the
example in Figure 2.1, the Tamarin rule shows the creation of the root authority in a PKI.

[
Fr(ltk)

]
—

[
CreateRootAuth(ltk)

]
→[

!RootAuth(ltk), Out(pk(ltk))
]

Figure 2.1: The LHS shows the generation of a new unique long-term key ltk unknown by the attacker, expressed
by the built-in Fr fact. In the RHS, the rule outputs the root authority with their private key, modeled by
the !RootAuth fact and reveals to the network the public key. The transition is labeled by the action fact
CreateRootAuth, which will be used in properties referencing to this transition.

Facts annotated with a ! are called persistent and are not removed from the multiset when a rule is
executed. A rule can be executed in a given state if the premises are a subset of the current state. To
execute the rule, Tamarin removes the premises from the state and adds the conclusions to it.

The execution of the protocol starts with the empty multiset as state and uses the rules to transition
from one state to another. Rules can be used any number of times. The resulting sequence of actions is
called a trace.
Security Properties To express the security properties Tamarin uses first-order logic notation, where
the user can quantify over messages and time-points. In the example below, the property defines secrecy
of the long-term key of the root authority that was created by the previous transition.

∀ ltk ♯i .CreateRootAuth( ltk ) @ ♯i
⇒ ¬( ∃♯j .K( ltk ) @ ♯j)

The property states that for all traces that created root authorities with long-term key ltk at time-point ♯i,
the attacker does not know the authority’s private key, where the K fact models the attacker knowledge.

We also make use of Tamarin’s restrictions. Restrictions are formulas like security properties, but
they are used to constrain the execution of the protocol: if a trace violates any restriction, Tamarin does
not consider it.
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Attacker Model The tool has a built-in network attacker, that can read, drop, and inject messages
in the protocol. Additionally, the user has the flexibility to specify different attacker models. This can
be achieved, for example, by including rewriting rules that simulate the leakage of a party’s secret keys,
effectively modeling a compromise of that party.
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“But nothing’s ever perfect, haven’t you realized that yet? Earth turns on a tilted axis just doing
the best it can.”

– Hohenheim, FMA 2003
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Cryptographic primitives are the basic building blocks used to construct security protocols with various
objectives. Primitives such as symmetric encryption and asymmetric encryption enable protocol designers
to conceal data on the network, thereby providing confidentiality when applied correctly. Other primitives,
like message authentication codes or digital signatures, can be used to authenticate parties or ensure data
integrity. Without these established and intensely studied primitives, there would be no standardized
method for constructing security protocols, potentially resulting in systems that are less reliable and more
vulnerable to attacks.

As described in Chapter 2, in the symbolic model we traditionally encode cryptographic primitives
using equational theories. For example, consider digital signatures – a primitive often used to provide
identity authentication and data integrity. We encode this symbolically by defining three operators in Σ:
sign, verify, and true. The binary operator sign models the action of signing a message m with a private
key sk, written as sign(m, sk). To enable another party to verify the signature’s validity, we include the
equation verify(sign(m, sk), m, pk) = true in the system, where pk is the public key corresponding to sk
and verify represents the signature verification process, which succeeds (i.e., evaluates to true) only when
the keys and the signed message match.

Some established cryptographic primitives are traditionally modeled even more simply. For example,
cryptographic hash functions take an input m and return a fixed-size output called the hash. A hash
function is designed to make it computationally infeasible to recover m from its hash value. Hash
functions are commonly used for data integrity checks and also serve as building blocks for other
cryptographic primitives. Symbolically, hash functions are modeled as a single unary operator H ∈ Σ
with no accompanying equational theory – providing no way to retrieve m from H(m). As with all other
primitives modeled in the symbolic model, these representations are strong over-approximations of what
their real-world instantiations would look like.

This gap between symbolic representations and real-world instantiations poses a significant problem.
Although symbolic models of protocols may be proven secure, an implementation that closely follows the
protocol design might still be vulnerable to attacks. For instance, these vulnerabilities can arise from
weaknesses in hash function instantiations [37, 207, 208] that are not accounted for in the symbolic models,
as they assume that hash functions are perfect.

Our main goal in this part of the thesis is to narrow the gap between current symbolic representations
of cryptographic primitives and their concrete instantiations and computational definitions. Building on
the work of [82, 134], who improved the symbolic representations of digital signatures and Diffie-Hellman
groups, we will address multiple primitives in the following chapters. In particular, we will examine three
common cryptographic primitives: cryptographic hash functions, authenticated encryption schemes with
associated data (AEADs), and key encapsulation mechanisms (KEMs). We will not only develop improved
symbolic models for each of these, but also test their applicability through numerous case studies.
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4.1 Introduction

Cryptographic hash functions are a fundamental and highly efficient building block in nearly all crypto-
graphic protocols. They are traditionally required to meet several security properties, such as collision
resistance and first/second preimage resistance. Ideally, they are “perfect” and do not suffer from phe-
nomena like length-extension attacks. Modern hash functions like SHA3 (Keccak) are believed to satisfy
all these properties and behave like a perfect hash function.

In many modern protocol security analyses, both in the computational and symbolic setting, hash
functions are assumed to be “perfect” in the following sense: the modeled hash function meets all desired
cryptographic properties and every input/output combination is completely independent of all others.
Such a hash function corresponds to the Random Oracle Model (ROM) often used in cryptographic proofs.

In practice though, real hash functions are unfortunately far from perfect. In Table 4.1 we show some
widely deployed hash functions and their currently known imperfections. Several of these hash functions,
such as SHA1, are considered to be weak or broken with respect to collision or preimage resistance;
and nearly all widely deployed hash functions allow so-called length extension attacks, which can enable
someone to compute hash(x∥y) even if they do not know x – which is not possible with a perfect hash
function.

There are several reasons for the gap between reality and the perfect hash function. First, the security
of hash functions is often based on a heuristic argument, since we cannot reduce them to a known hard
problem. History has shown that many hash functions that initially seemed secure turned out to be
broken some years later [13, 216]. Second, it was long believed that potential hash weaknesses would not
weaken protocols that use (second) preimage resistant [37, 207] hash functions. Third, even if a hash
function satisfies all standard requirements for cryptographic hash functions (resistance to collisions and
preimages), it may still not be perfect. For example, many popular hash function designs follow the
Merkle-Damgård (MD) construction, which in its default setup, allows for length extension attacks. We
thus have to face the reality: protocols use hash function that are already imperfect, and history has
shown that over time, hash functions that appear secure now will become easier to attack in the future.

This raises the natural question: how can we check if a protocol that uses a hash function with a
particular weakness, meets its security guarantees? History so far has shown such attacks can be rare but
very subtle, e.g. [37, 207, 208], and therefore extremely hard to detect manually. From a cryptographic
perspective, the answer would be: provide a computational proof of the security of the entire protocol,

Hash function Year Examples of currently deployed applications Collision (2nd) Preimage No Length-
resistance resistance extension

MD4 1990 NTLM key derivation for Microsoft Windows ✗ 21 ⊗∗ 295 ✗

MD5 1992 File checksums (md5sum) ✗ 218 ⊗∗ 2123 ✗

SHA1 1995 Europay Mastercard Visa (EMV), File checksums,
Telegram

✗ 261 ✓ 2160 ✗

RIPEMD-160 1996 Bitcoin ⊗∗∗ 280 ✓ 2160 ✗

SHA2-256 2001 Bitcoin, TLS, SSL, SSH, S/MIME, IPSec,
DNSSEC, Linux/Unix password hashing, Telegram

✓ 2128 ✓ 2256 ✗

SHA2-512 2001 TLS, SSL, SSH, S/MIME, IPSec, DNSSEC, Lin-
ux/Unix password hashing

✓ 2256 ✓ 2512 ✗

SHA3-256 2012 Ethereum ✓ 2128 ✓ 2256 ✓

✓= currently still secure ⊗=weak, but no full attack yet ✗= known attack
* = Theoretical attacks on (second) preimage resistance were found[224][195], but they are still not feasible.
** = No known attack but the small bit size makes collision attack doable in practice, but not necessarily feasible.

Table 4.1: Examples of widely used hash functions that are currently deployed in security protocols and do not
offer perfect (random-oracle like) guarantees. The numbers indicate the complexity of the currently best known
attack on the property [159, 195, 196, 218, 224]. For the hash functions currently deemed secure the best known
attacks would be a brute-force approach; e.g. the complexity to break collision resistance on SHA2-256 is 2128.
Crucially, this situation is not constant, but expected to get worse: history suggests that the numbers for the best
attacks are likely to decrease over time for all hashes, see e.g. [13, 207].
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and if this proof seems to rely on properties of the hash function that it does not offer, this may indicate
an attack. However, for most protocols, this task ranges from daunting to infeasible; and most existing
protocol proofs simply assume that the hash function is perfect, by using the ROM.

In contrast, automated protocol analysis tools have shown to be effective for analyzing real-world
protocols [21, 23, 33, 66, 80, 143]. However, they model hash functions as being perfect (traditionally as
an operator in a free term algebra). Thus, like computational proofs that use the ROM, such analyses
miss any attacks that exploit the use of a non-perfect hash function.

In this chapter, we revisit cryptographic hash function definitions, common weaknesses, and the
potential attacker capabilities that arise from them. Based on this, we develop a methodology to
systematically discover attacks on protocols that exploit their use of “less-than-perfect” hash functions,
and show how this can be implemented in protocol-analysis tools, namely the Tamarin prover. To realize
this, we both exploit advanced features of the tool (such as equational theories, event-based modeling, and
restrictions) but we in fact also extend it (partial support for associative operators). Our methodology
can be used in the design phase to avoid the use of hash functions that are too weak, or to find and fix
problems in deployed protocols.
Outline We first provide some background about hash functions, their security properties and how
weaknesses of deployed hash functions may break protocols in practice (Section 4.2). Then we present
a novel hierarchy of threat models related to hash functions, detailing adversarial capabilities that we
are going to use for protocol analysis (Section 4.3) and show how this analysis can be automated in (an
improved version of) Tamarin (Section 4.4). Finally, we demonstrate the effectiveness and methodology of
our approach on a number of case studies discovering both known and novel vulnerabilities (Section 4.5).

4.2 Background

Many of the problems around hash functions arise from the gap between the properties described in the
theory and the property that real-world hash functions satisfy; but in this particular case, there is already
sufficient tension in how hash functions are handled in the theory of protocol proofs. We first describe the
state of the theory, before returning to the situation in practice. Afterwards we give background on the
symbolic model that we will be using in the next sections.

4.2.1 Hash Functions in Theory

The main three desirable properties that a cryptographic hash function should satisfy are well-established:
first and second preimage resistance, and collision resistance [172]:

• Preimage resistance: given h, it is infeasible to find x such that h = H(x);
• Second preimage resistance: given x, it is infeasible to find y ̸= x such that H(y) = H(x);
• Collision resistance: it is infeasible to find x, y such that H(x) = H(y)1.

Collision-resistance implies second preimage resistance, as finding a second preimage effectively results in
a collision.

An undesirable property is so-called length-extension: Many deployed hash functions are based on
the Merkle-Damgård (MD) construction: H(m∥m′) = f(H(m), m′) where f is the underlying compression
function and ∥ expresses concatenation of blocks. The origin of this design choice can be traced back to
an implicit design goal of many hash functions: it should be possible to compute a hash incrementally,
i.e. to compute H(m∥m′) without having to store both m and m′ in memory, for example by computing
a compact intermediate product based on m to later compute the full result once m′ is available. By
default, MD constructions satisfy the length-extension property: Given H(m) and m′, one can compute
H(m∥m′)2. As we will see below, this property can be problematic in certain protocol contexts because
it enables so-called length-extension attacks. In theory, this possibility has been known in the academic
literature at least as early as 1992 [213].

1By the pigeonhole principle, collisions necessarily exist. Hence, collision-resistance is informally defined as the
absence of a known algorithm to find a collision faster than generic birthday search-based brute-force.

2One can design incremental hashes without the length-extension property, e.g. with an internal state that
cannot be reconstructed from the hash.
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skA, pkB

A
skB, pkA

B

m1 := gx∥infoA

m2 := gy∥infoB

sign(skA, H(m1∥m2)), mac(gxy, A)

sign(skB, H(m1∥m2)), mac(gxy, B)

Figure 4.1: The Sigma’ protocol [37]

However, when developing proofs of security protocols that use hash functions, it turns out using the
three resistance properties as assumptions is very complex and error-prone. Because of this, the Random
Oracle Model (ROM) was introduced in 1993 by Bellare and Rogaway [28] as a proof methodology to
simplify proofs of protocols that use hash functions. We will go into more detail in Section 4.2.2, but
intuitively speaking, the ROM models “perfect” hash functions: as functions whose outputs are chosen
uniformly at random, independent of the input. We will give a definition of (a symbolic version of the)
ROM in Section 4.3.

The ROM satisfies first and second preimage resistance and collision resistance, and does not have
the length-extension property. The ROM thus has the most desirable cryptographic hash properties,
effectively over-approximating the security of real-world hash functions. Therefore, proving that a protocol
is secure using the ROM does not guarantee that it is secure when instantiated with a real hash function.
However, the vast majority of protocol proofs use the ROM due to its simplicity.

4.2.2 Hash Functions in Practice

In Table 4.1 we review a selection of widely used hash functions, the complexity of the best known collision
and preimage attacks against them, and whether length-extension is possible. The conclusion is clear:
high-profile cryptographic protocols still use hash functions that suffer from weaknesses that contradict
the usual idealized security assumption (ROM) and even (second) preimage and collision resistance. We
also see that hash functions get weaker over time as the attacks get more and more efficient (see also the
survey [207] and [13]). Moreover, it is likely that hash functions that are deemed secure today will be
weakened in the future.

The length extension property of many hash functions can theoretically be used to break a protocol’s
security, because it enables the following behaviors: (i) collisions can be extended since H(x) = H(y)
implies H(x∥s) = H(y∥s) for any s, and (ii) the adversary can extend the payload under known hash
outputs: given H(x), it can compute H(x∥s) for any known s. As an example of the latter, if the prefix x
contains a shared secret, and the protocol relies on this to authenticate hash values, then the adversary can
forge hashes by extending any hash values it observes. An early example of a widely deployed protocol that
was vulnerable due to such an attack was Flickr in 2009 [106]; we will revisit this attack in Section 4.5.3.

Despite this example, it was thought for a long time that cryptographic protocols are likely to remain
secure even though they rely on weakened hash functions as long as the hash functions are (second)
preimage resistant [37, 207]. For instance, even if the adversary can compute some c, c′ such that
H(c) = H(c′), which breaks collision-resistance, it seems unlikely that it can impact honest agents in a
protocol who will compute hashes for inputs that are unrelated to c, c′. Unfortunately, this is a false
sense of security: it has been shown that cryptographic protocols can be entirely broken when using
hash functions that merely suffer from some restricted classes of collisions [207, 208]; see an example in
Section 4.2.2. Unfortunately, it is difficult and error-prone to manually assess if a cryptographic protocol
can be broken if its hash function is vulnerable to some restricted class of collisions.
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Example: Hash Transcript Collisions

Using hash transcript collisions, we exemplify how certain collisions can be weaponized against protocols.
They have been shown to affect various authentication protocols such as TLS 1.2, SSH, or IKEv2 [37]. As
a running example, we use a variant of the sign-and-mac protocol [146]: the Sigma’ authentication protocol
introduced in [37] and depicted in Figure 4.1. It is essentially a signed Diffie-Hellman (DH) protocol with
MAC-based key confirmation where additional information infoA and infoB (e.g. for later negotiation)
is appended to the exchanged DH shares. infoA, infoB are length-varying and therefore prefixed with
their lengths. Sigma’ aims at guaranteeing matching conversations: after a successful execution both
parties share the same view of the transcript, even in the presence of an active attacker. As noted in [37],
the parties do not directly agree on the transcript but rather on the hash of the transcript. If the hash
function were perfect, this would not matter – but it makes a difference for real-world hash functions.

Machine-in-the-Middle (MITM) scenario First, one should note that the protocol is not immediately
broken, even if the hash function H is not preimage resistant. Assume a MITM attacker: the attacker can
replace messages m1 and m2 by messages m′

1 := gx′∥info′
A and m′

2 := gy′∥info′
B of its choice. This results

in the message m3 = sign(skA, H(m1∥m′
2)), mac(gxy′

, A). If the attacker does not know skA, it cannot
modify m3. Hence, B will check whether H(m1∥m′

2) = H(m′
1∥m2). Clearly, (second) preimage attacks

do not directly allow such a MITM attack to succeed, as the input for the target hash output H(m1∥m′
2)

must be of the form m′
1∥m2, where m2 is fixed and not adversary-chosen. Similarly, the mere existence

of collisions, say c ̸= c′ such that H(c) = H(c′), cannot be used to break this protocol.

Hash transcript collisions attacks Chosen-Prefix Collisions (CPC) [207, 208] are among the least
costly collisions to compute and yet can be weaponized against protocols. Given two prefixes, p1 and p2,
a CPC attack computes two suffixes s1 ≠ s2 such that H(p1∥s1) = H(p2∥s2). When additionally p1 = p2,
such a collision is called Identical-Prefix Collision (IPC) and is even less costly to compute.

As we shall see, Sigma’ is entirely broken as soon as (i) the used hash function suffers from CPC
attacks, (ii) obeys the length-extension property, and (iii) the length of m2 is predictable. Indeed, given
m1 sent by A, the adversary can choose arbitrary x′, y′ and compute a CPC for prefixes m1∥gy′ and gx′ ,
resulting in suffixes infoPartial′B and info′

A such that:
H(m1∥gy′∥infoPartial′B) = H(gx′∥info′

A). (†)
Moreover, the claimed length field of infoPartial′B can be chosen to be |infoPartial′B |+ |m2| The MITM
adversary then uses m′

1 := gx′∥info′
A and m′

2 = gy′∥info′
B where info′

B = infoPartial′B∥m2. By the length-
extension property of H, we obtain by appending m2 to the above collision (†):

H(m1∥m′
2) = H(m1∥gy′∥info′

B) = H(m′
1∥m2).

Therefore, the MITM adversary successfully impersonated A and B and hijacked the session key, i.e. gxy′

with A and gx′y with B. To give a sense of the attack cost, finding such a collision costs about 239 for
MD5 and 263.4 for SHA1 [159, 207]. As we shall see in Section 4.5, other kinds of CPC but no IPC affect
Sigma’ – findings we formally establish with our automated formal analysis framework (Section 4.4).

4.3 Generalizing Hash Function (In)Security for Systematic Analysis

In this section, we develop a hierarchy of hash function models. We start from the ROM, which represents
an ideal hash function, i.e. for which the adversary has the least possible capabilities to manipulate or learn
information from it. We then strengthen the adversary’s capabilities in various dimensions, corresponding
to possible weaknesses of hash functions.

A core observation is that from the different types of possible weaknesses – here framed as adversarial
capabilities – some are independent of others, and some are related. For example, length-extension attacks
and CPC are independent: there exist hash functions that have one of these two weaknesses, but not the
other. In contrast, CPC and IPC are related: if a hash function is vulnerable to CPC attacks, then the
attacker can also choose two identical prefixes: thus, any hash function that is vulnerable to CPC is also
vulnerable to IPC.

We identify four main independent dimensions of hash function weaknesses, and thus corresponding
adversary capabilities: collision-related weaknesses, length-extension style weaknesses, output-control
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weaknesses that can model, e.g. backdoored hash functions, and weaknesses that leak information about
the inputs from the output.
Random Oracle Model (ROM) We now take a deeper look into hash functions in the symbolic
model (see Section 2.3.) Virtually all prior symbolic analyses model hash functions in the ROM, which
corresponds to the weakest possible adversarial capabilities. At the technical level, this means the hash
function is symbolically modeled as a free operator, i.e. an operator H(·) ∈ Σ that does not occur in any
equation (in E). Since H does not occur in E, H : T → T has the same algebraic property as a random
oracle: it associates to an input t, an output value H(t) that has no other algebraic property than being
the hash output of t, modeled as a fresh atom nt. We informally describe this modeling choice using an
abstract hash functionality that is interfaced with a user and an adversary. Here, the adversary has no
control over the hash function, as shown in Figure 4.2.

Hash function
x

User
If x ∈ H
then n := H[x]
else pick fresh n ∈ A

H[x] := n

Adversary

n

Figure 4.2: Abstract hash function in the ROM. Initially, H is the empty mapping: H := ∅. Note that the
adversary can also act as a user of the hash function, but it cannot influence the oracle, unlike in some threat
models we will define later.

Modeling dimensions of Hash Weaknesses We identified four main dimensions of adversarial
capabilities that together can form various threat models, i.e. any two capabilities from different dimensions
can always be combined.
The overall structured lattice is depicted with its dimensions in Figure 4.3. Capabilities higher up represent
stronger capabilities; the lowest capability in each dimension effectively means the attacker does not have
a meaningful capability in this dimension. For example, the combination of the capabilities on the bottom
row effectively corresponds to an ideal hash function (in the ROM). We use a list notation to represent
a specific threat model, by listing the adversarial capabilities in each dimension. For example, we denote
the weakest threat model across the bottom row by ∅. Conversely, {allCol,allExt,anyTarget,inLeak} is
the strongest threat model in which the adversary has all capabilities (and corresponds to modeling the
weakest hash function).

Given such a threat model, the formal hash model is obtained in the following way: First, determine
the so-called collision-relation ∼c using Table 4.2 (or simplified in Table 4.3). Second, instantiate the
generic hash function model in Figure 4.4 (and optionally Figure 4.5) using the capabilities in the threat
model and ∼c.

We now introduce the details of each dimension in turn, including various types of collisions, how
hash outputs relate to other messages, and modeling hashes that leak their inputs.

anyTarget

frshTarget

Output Control (OC)

⊗
inLeak

∅

Input Leak (IL)

⊗
Collisions (COL)

chsnPrfx

idtclPrfx

⊗
allExt

Length-Extension (LE)

colExt hashExt

∅

fstPreImg

sndPreImg
∃

∅

allCol

∅ROM

⊗

Figure 4.3: Lattice of adversarial capabilities. An edge x → y expresses that x is a stronger capability than y.
Each column is a dimension described at the top. Capabilities from different dimensions can be combined into
threat models, e.g.{idtclPrfx,allExt}. The minimal threat model is the empty one, ∅, which corresponds to the
ROM.
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Allowed Collisions (COL) Without ROM-like constraints, all kinds of worst-case collisions might be
considered, provided that the resulting hash function is indeed a function. For instance, this includes the
constant function that maps all inputs to a single value. Such a strong adversarial capability corresponds to
an extremely weak hash function requirement, and can be of interest to establish strong security guarantees
when possible. In fact, such a constant function is not even the worst-case scenario: if the protocol has
authentication properties or inequality checks, modeling a hash function as a constant function might miss
attacks. On the other hand, a protocol can be deemed insecure with this strong adversarial capability
due to unrealistic attacks. To refine this, we restrict the allowed choices of hash outputs to the relevant
classes of collisions one may want to consider.

This is done using a collision-relation ∼c: it captures that for all x and y such that x ∼c y, the
hash function H allows collisions H[x] =E H[y]. We cover a large spectrum of types of collisions that can
be combined as defined in Table 4.2 (the last two rows are explained next). To define those relations, we
introduce a number of abstract operators cp1(·, ·), cp2(·, ·), sp1(·), sp2(·), pi1(·), pi2(·), c(), c′() ∈ Σ that
do not occur in protocols. Those operators correspond to computations performed by the adversary to
find a certain collision or preimage, and are motivated by real-world attack strategies. For instance, given
two messages p1, p2, the messages cp1(p1, p2) and cp2(p1, p2) correspond to the message the adversary
obtains when computing a CPC for the prefixes p1 and p2: the hash of p1∥cp1(p1, p2) equals the hash
of p2∥cp2(p1, p2), as expressed by ∼CP. (See an example of CPC in Section 4.2.2.)

Given a relation ∼c corresponding to the chosen kinds of collisions, the allowed hash outputs determined
by the output control dimension OC (explained below) are filtered out. The resulting hash function is
depicted in Figure 4.4.

Hash function
x

User
If x ̸∈ dom(H)
then NC := {H[y] | x ̸∼c y}

H[x] := oC

o := H[x]

Adversary

o

If anyTarget or frshTarget
then oC := oA

else choose oC ∈ AH \ NC
oAoC

Function Value Choice

If frshTarget
then compute oA ∈ A
else if anyTarget

then compute oA ∈ T \NC

NC
NC

Figure 4.4: Generic hash function model that generalizes the model from Figure 4.2, and can be instantiated with
different adversarial capabilities. Initially, H := ∅. Collisions and Length-Extensions do not appear explicitly since
they are captured in ∼c (see Table 4.2). When the input leak capability is present, the model additionally includes
the input leak capability in Figure 4.5.

Capability ∼c Intuitions behind the types of allowed collisions
∅ ∼⊥ Ideal model in which hash outputs never collide; ∀t ̸= t′ : t ̸∼⊥ t′

∃ ∼∃ There exist two constants c and c′ whose hashes collide H[c] = H[c′]; c ∼∃ c′

fstPreImg ∼1 Given o = H[t], the adversary can compute a preimage t′ = pi1(o) such that H[t′] = o; t ∼1 pi1(H[t])
sndPreImg ∼2 Given t, the adversary can compute a second preimage t′ = pi2(t) such that H[t′] = H[t]; t ∼2 pi2(t)

chsnPrfx ∼CP Given t, t′, the adversary can compute u = cp1(t, t′) and u′ = cp2(t, t′) such that H[t∥u] = H[t′∥u′];
t∥u ∼CP t′∥u′

idtclPrfx ∼IP Given t, the adversary can compute u = sp1(t) and u′ = sp2(t) such that H[t∥u] = H[t∥u′];
t∥u ∼IP t∥u′

allCol ∼⊤ All hash outputs can collide, which models the worst possible collision case; ∀t, t′ : t ∼⊤ t′

hashExt ∼LEa Length-extension collision. Given H[x] and s, the adversary can compute H[x∥s]; x∥s ∼LEa H[x]∥s
colExt LEc(∼c) Length-extension closure. H[x∥s] collides with H[y∥s], if H[x] = H[y] (based on any of the previous

capabilities).

Table 4.2: Intuition behind the basic collision-relations ∼c depending on the chosen adversarial capabilities.
Many of these relations define that there exist collisions that can be computed for very specific, but not all, input
patterns. Collision-relations in different dimensions can be combined by taking their union. We give the formal
definitions in Table 4.3.

Length-Extension (LE) The two last types of collisions defined in Table 4.2 are specific to the length-
extension property and weaknesses of hash functions built with the Merkle-Damgård or similar construc-
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Capability Types of Allowed Collisions Relation ∼c

∅ No collision ∼⊥= {}=

∃ Existential collisions ∼∃= {(c, c′)}=

fstPreImg Preimage collisions ∼1= {(t, pi1(H[t])) : t ∈ T}=

sndPreImg Second preimage collisions ∼2= {(t, pi2(t)) : t ∈ T}=

chsnPrfx Chosen-Prefix Collisions (CPC) ∼CP= {(p1∥cp1(p1, p2), p2∥cp2(p1, p2)) : p1, p2 ∈ T}=

idtclPrfx Identical-Prefix Collisions (IPC) ∼IP= {(p∥sp1(p), p∥sp2(p)) : p ∈ T}=

allCol All collisions ∼⊤= (T × T )=

hashExt Length-extension collisions ∼LEa= {(x∥s, H[x]∥s) : x, s ∈ T}=

colExt Length-extension closure (closure of ∼) LEc(∼) = {(x∥s, y∥s) : x, y, s ∈ T, x ∼ y}=

Table 4.3: Basic collision-relations ∼c depending on the chosen adversarial capabilities. ∼= denotes the reflexive,
symmetric, and transitive closure of the relation ∼. For example, by reflexivity, the “no collisions” relation encodes
that two hash outputs are the same exactly when their inputs are the same. The “existential collisions” relation
encodes that there exists two constants c and c′, for which the hash function output collides. Most of the other
relations define that there exist collisions that can be computed for very specific, but not all, input patterns. Collision-
relations in different dimensions can be combined by taking their union; e.g.sndPreImg,idtclPrfx corresponds to
the relations (e.g. ∼IP ∪ ∼2). The only exception is colExt: if this capability is enabled, we first determine the
collision relation ∼ based on the other capabilities as above, and then compute LEc(∼=) as in the last row.

tions.
The first, hashExt, captures the adversarial capability to extend the payload that is under a hash

with some adversary-chosen suffix, and is captured by the collision-relation ∼LEa. Namely, given a hash
output H[x], for any suffix s of its choice the adversary can compute H[x∥s] without knowing x. Indeed,
the hash output of x∥s, which the attacker cannot compute, is allowed to collide with the one of H[x]∥s,
which the attacker can compute. This is the most classical weakness of length-extension. The second,
colExt, corresponds to the fact that collisions may be extended, i.e. as soon as H[x] = H[y], we will also
have that H[x∥s] = H[y∥s] for any s. Interestingly, HMAC-SHA2 and HMAC-MD5 constructions have
colExt but not hashExt for a given key.3

Output Control (OC) In a worst-case scenario, we consider a hash function where the attacker may control
the output of the hash function to some extent, provided that the resulting hash is indeed a function. Such
scenarios could occur if, e.g. the hash function was badly designed or has a backdoor. It also mirrors attacks
similar to the nostradamus attack over MD5[140] where the attacker can by injecting some bytes inside the
input make the hash function go to a previously chosen target. The hash outputs can be taken from (i) a set
of atoms AH , that model fresh values unknown to the attacker (unless revealed), as in the ROM, (ii) fresh
atoms chosen by the attacker (frshTarget), or (iii) arbitrary messages provided that the adversary knows
them (anyTarget). The default capability models one of the behaviour of the ROM, where each hash output
is taken from a set of fresh atoms (but still allowing for collisions based on COL). The second capability
frshTarget models the case where the attacker can partially control the outputs of the hash function that
nonetheless must be names. This captures some type-flaw attacks but the attacker cannot control the actual
shape of the hash values which will appear as junk bytes. The third one anyTarget additionally captures
arbitrary type-flaws attacks, where the attacker can fully control the hash output to an arbitrary value.

Adversary
Compute o ∈ T

Hash function
Choose x ∈ H: H[x] = o

o

x

Figure 4.5: inLeak input leak adversarial capability.

Input Leak (IL) Finally, hash functions are sometimes implicitly assumed to guarantee confidentiality
of their inputs, and sometimes ill-used for this purpose in practice. In reality, some badly designed hash
functions might leak information about their inputs. Previous symbolic analyses did not capture this
capability, which can yield practical attacks. We model the worst case scenario in which the adversary

3HMAC [147] is message authentication code construction based on hash functions.
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can obtain the complete input. We therefore introduce an adversarial capability inLeak that allows the
adversary to learn the hash input of a given hash output as defined in Figure 4.5.

4.3.1 Lattice of Threat Models

As explained previously, we use the notation {·} to describe a specific threat model made of the explicit
hash weakness in each dimension, and omit it when there is none for this dimension. The weakest
capabilities occur as ∅ corresponding to ROM and Figure 4.2. Conversely, in the strongest threat model,
{allCol,allExt,anyTarget,inLeak}, all collisions are possible (and adversary-chosen), all types of type-flaw
attacks are considered, and hash outputs leak their inputs. The purpose of the lattice structure is to
structure this spectrum of threat models spanning those two extremes. In the next section we show how
we effectively explore the lattice.

Example 3. The weakest threat model capturing the CPC attack from Section 4.2.2 is {chsnPrfx,colExt}.
Indeed, the attack is possible provided that CPC exist (chsnPrfx) and can be extended due to the length-
extension property (colExt).

Remark 1. In our symbolic model, second preimage resistance (sndPreImg) implies preimage resistance
(fstPreImg). This might seems surprising, since in the computational models with the same name [172]
this is not the case. This is however not a contradiction, but an intended consequence of our modeling
choices and our orthogonal inLeak capability, which cause us to use slightly different definitions in this
case despite using the same names. inLeak expresses the ability for the adversary to compute the preimage
of a given hash output. fstPreImg expresses the ability to compute some input pi1(H[t]) that when hashed
yield a given, target output H[t] but that is always different from the original input t and similarly for
sndPreImg. For this modeling choice in our symbolic model, the above implication indeed holds.

Cross-dimension implications The previous lattice contains some redundant capabilities that are not
captured by the joint partial order. For instance, we have that allCol⇒ hashExt, sndPreImg∧inLeak ⇒
fstPreImg and inLeak ⇒ hashExt. Further, if on a dimension the protocol is secure at some given level,
it is secure for all weaker threat models (i.e. levels below), and conversely for attacks.

4.4 Automation Methodology

In this section we present different ways to automate verification for the previously defined threat models.
Our goal is to cast these threat models in Tamarin, one of the most widely used tool for symbolic analysis
of security protocols.4

We first explore a direct way of modeling these capabilities as equational theories (Section 4.4.1),
which seems the most idiomatic solution in symbolic tools. This modeling is however limited to a few
capabilities due to limited tool support for more advanced equations.

We then explain how we overcome this challenge by extending Tamarin (Section 4.4.2) yielding a fully
automated tool that is capable of exploring all of our threat model lattice. We achieve this by extending
Tamarin with a associative concatenation operator in order to provide a more precise model for collisions
and length extensions. We build on the latter and model hash function computations by a call to an oracle
process, in the flavor of Figure 4.4. This process allows fine-grained control over the output values and
raises events on each call that allow for a logical specification of the set of possible collisions and can be fully
automated in Tamarin. We provide tooling that uses Tamarin as back-end to automatically explore our
lattice of threat models and that returns the weakest threat models under which attacks were found (if any).

4.4.1 Equational Theory – Modeling

As explained in Section 2.3.1, the classical way to model cryptographic primitives in a symbolic model is
to use an equational theory, that specifies which operations yield equal values.

4Note that the threat models were additionally cast to ProVerif [43] by [61]
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Capabilities as Operators
Using an equational theory allows us to naturally and efficiently explore the set of scenarios corresponding
to the capabilities fstPreImg, sndPreImg, ∃, as well as inLeak. Each threat scenario for a given dimension
can be encoded by the following corresponding equation that we explain below.

fstPreImg H(pi1(z)) = z
sndPreImg H(pi2(z)) = H(z)

∃ H(c) = H(c′)
inLeak i(H(z)) = z

We note that the absence of a weakness for each dimension is the default in symbolic models and do not
require any particular modelling. To achieve a particular threat model we simply add the corresponding
equations for the collision and input leak dimension.

To express that a hash function is not preimage resistant (fstPreImg) we provide the attacker with an
explicit function pi1 that allows the attacker to compute a preimage of a hash z, i.e. a value pi1(z) that
hashes to z. Similarly, absence of second preimage resistance (sndPreImg) is expressed by the function
pi2 that corresponds to the attacker’s ability to compute a second preimage.5 The absence of collision
resistance (∃) relies on two distinguished constants c and c′ on which the hash function collides. These
two constants do not have any particular structure and are not attacker chosen, modelling that a collision
merely exists. Finally, we model that a hash function may leak (part of) its input (inLeak) by giving the
attacker the capability to inverse the function using the symbol i, and no leak being the default does not
require an equation.

We encoded this part of the hierarchy in Tamarin and used it on multiple case-studies as presented in
Section 4.5.1. As we will see, while such an equation based model is easy to deploy using symbolic tools, it
is also rather weak (and not a very effective way of finding attacks): the equations are basically obtained
by negating the security assumption and model the existence of a collision, or (second) preimage without
giving the attacker any additional control. (We exemplified this gap with Sigma’ in Section 4.2.2.) On the
other hand, when finding an attack with this model generally translates directly to a missing assumption
on the security of the used hash function.

Second Preimage Equation

Unfortunately, Tamarin is unable to handle the equation H(pi2(z)) = H(z): when internally completing
this equation it would need to introduce an infinite number of rewrite rules H(pi2(. . . pi2(z) . . .)→ H(z)
stacking any number of applications of pi2, because they would all be equal to H(z). This can be avoided
using a trick: additionally providing H(z) to pi2 in the equation H(pi2(H(z), z)) = H(z) effectively avoids
the problem mentioned above. As the attacker is able to compute H(z) from z this second argument can
be added without loss of generality.

Challenges with Modeling Associative ∥ and MD
To go beyond the above existential modeling of weaknesses in hash function we will give a more detailed
model of the associative ∥ operator and of the MD construction whose properties can be exploited by an
adversary. This will allows us to explore IPC, CPC, and length extension attacks, which are not covered
using equations from the previous section.

The presence of an associative concatenation operator is required if we want to capture IPC and
CPC. Indeed, recall that given prefixes, p1 and p2, a CPC attack computes suffixes s1, s2 such that
H(p1∥s1) = H(p2∥s2). If, for example, a protocol participant computes the transcript H(m1∥m2∥m3)
and the attacker controlled parts are m2 and m3, then the suffix in the previous equation needs to be
m2∥m3. With a non-associative concatenation operator (that we denote ⟨·, ·⟩) the CPC attack would
fail as H(⟨⟨m1, m2⟩, m3⟩) would not be identified with H(⟨m1, ⟨m2, m3⟩). This raises a challenge for
Tamarin (and other existing tools,) as it does not allow to model such an associative operator. The core
difficulty is that the tools rely on unification. Given two messages one needs to be able to compute a
finite and complete set of most general unifiers, i.e. a set of substitutions that represents all possible ways
of instantiating the messages that make them equal. For instance, ⟨x, 0⟩ =? ⟨1, y⟩ has a unique unifier

5The equation for pi2 does not work out of the box for a technical reason that we describe in Section 4.4.1.
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{x 7→ 1, y 7→ 0}. For associative operators, the issue is that such a set is not always finite. For instance,
0∥x =? x∥0 has an infinite set of unifiers of the form {x 7→ 0n | n ∈ N}. A first approach is to model
the associativity under a hash function operator for a bounded depth only, for instance specifying that
h(⟨x, ⟨y, z⟩⟩) = h(⟨⟨x, y⟩, z⟩), but this does not imply that h(⟨x, ⟨y, ⟨z, z′⟩⟩⟩) = h(⟨⟨⟨x, y⟩, z⟩, z′⟩). We use
such a bounded modeling successfully on some examples in Section 4.5. However, this modeling may miss
attacks that require associativity at a deeper depth than modeled. We explain how we can overcome this
problem in the next section.

Furthermore, a naive way to encode the MD construction would be to directly consider the equation
H(⟨x, y⟩) = f(H(x), y). However, such an equation is out of scope Tamarin (and other popular tools like
ProVerif) as it cannot be completed into a convergent rewrite system, which seems to be an inherent
difficulty for all tools based on equational reasoning.

4.4.2 Extending Tamarin for a Full and Automatic Lattice Exploration

Extension for the ∥ operator We extended Tamarin to obtain partial support for associative operators
such as ∥. The key observation is that we do not need the unification problem for an associative operator
to yield a finite set in general: it is sufficient that all particular unification problems that actually appear
in a protocol’s verification have a finite set of unifiers.

Tamarin relies on the Maude tool as a backend to perform equational unification. Although unification
for an associative operator is infinitary, support has recently been added in Maude [107]: it either returns
the complete set of unifiers, or only a subset but with a warning. We integrated this new feature in
Tamarin, which now has a built-in associative concatenation operator denoted by ∥. To ensure correctness,
Tamarin stops the analysis as soon as Maude raises a warning. In particular, as we use ∥ under a hash
function only, our case studies (Section 4.5) illustrate that Tamarin encountered this Maude warning in
rare occasions only6.

Proof. We provide here the proof for our extension to Tamarin. To achieve this, we rely on the two main
Tamarin thesis [169, 197], from which we reuse notations and definitions without reintroducing them.
From a high-level point of view, the original Tamarin proof is split into three main parts:

1. the validity of exploring possible protocol executions using so-called dependency graphs (Lemma
3.10 [197]);

2. a set of constraint solving rules over dependency graphs that are sound and complete (Theorem
3.33 [197] or Theorem 4 [169]);

3. a set of normal form conditions over dependency graphs, that allows to reduce the set of dependency
graphs to consider by removing redundant ones (Lemma 3.19/A.12 [197])).

We note that for the soundness and correctness of Tamarin, only point 1) and 2) are needed. Point 3)
should help the constraint solving algorithm terminate.
With the original proof of Tamarin in mind, we can describe our extension as the addition of:

• a builtin concatenation symbol ∥ with an associative (A) equation;
• the corresponding attacker construction/deconstruction rules:

K↓d(t1∥ . . . ∥tn)
K↓d(t1) . . . K↓d(tn)

K↑u(t1) . . . K↑u(tn)
K↑u(t1∥ . . . ∥tn)

• two normal form conditions on dependency graph.
N7’ There is no construction rule for ∥ that has a premise of the form K↑(s∥t) and all conclusion

facts of the form K↑(s∥t) are conclusions of a construction rule for ∥.
N8’ The conclusion of a deconstruction rule for ∥ is never of the form K↓d(s∥t).

We thus have the following proof obligation:

1. The proof of Theorem 4 [169] holds for an equational theory containing an A symbol;
6The warning only occurred with one of the security properties out of the 21 we verified, and even then only

for a particular threat-model.
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2. The proof of Lemma A.12 [197] holds with the two added rules N7’ and N8’.

Lemma A.12 We note that the (de)construction rules are duplicates from the multiset operator rules.
Further, the normal form conditions N7’ and N8’ are duplicates of N7 and N8 from [197]. As such, the
proof for N7 and N8 directly applies to N7’ and N8’.
Theorem 4 The original proof holds for an equational theory E for which there is a complete and
finite unification, as mentioned in the first sentence of Section 8.2 [169]. We observe that removing
the finitary condition does not impact the proof as long as we allow disjunction over constraints to be
potentially infinite. The only difference is that the rule S≈ may now create an infinite disjunction when
unify

vars(Γ)
E (t1, t2) is infinite. However, this does not change the fact that the completeness and soundness

proof for this rule hold, as we do consider all possibilities thanks to the completeness of the unification
(albeit there are infinitely many of them). Thus, as (A) does have a complete unification algorithm,
Theorem 4 in the infinite interpretation does hold when (A) is integrated inside the equational theory.
Hence, Theorem 4 covers the soundness and completeness of the theory behind the constraint solving
algorithm with an (A) symbol.

Implementation We directly plugged the maude unification algorithm for (A) inside Tamarin, which raises
a warning when it encounters a unification case for which the set of unifiers is infinite. The consequence of
considering that in theory the constraint solving algorithm may create an infinite disjunction has of course
consequences in the practical proof search of Tamarin as we cannot explore this infinite set of cases. As
such, whenever in practice Tamarin makes a unification query for which the unification algorithm returns
an infinite set, we must abandon the proof. Note that we can still try to find an attack in such a case.
Event based modeling The equational based models presented above have several drawbacks:

• the equations for computing collisions, and (second) preimages are existential and do not give the
adversary any control over the computed messages, missing most of our threat models and practical
attacks (e.g. based on CPC and IPC);

• the associative operator added to Tamarin increases the complexity of the equational theories often
leading to non-termination or extensive verification times when modeling CPC and length extension
attacks;

• the previous models do not cover the OC dimension.
To overcome these limitations, instead of using an operator to model a hash computation, we define,

in parallel to the protocol processes, a dedicated process for computing the hash function, in the spirit
of Figure 4.4. Notably this approach allows to either sample the hash value from a fresh set of values
(∅) or query the output values to the attacker (frshTarget or anyTarget), i.e. let the attacker choose the
value. By default, this process is free to create any collisions. To restrict this, we will give a logical
specification when precisely collisions are allowed. More precisely, (i) whenever a hash output value o is
returned for some input i, we raise an event Hash(i, o), and (ii) we specify that when a trace contains two
events Hash(i, o) and Hash(i′, o), i.e. two inputs i and i′ are mapped to the same output o, then we must
have i ∼ i′ for the desired ∼ relation. Otherwise the trace is discarded. For example, if ∼ is the identity
relation we do not allow any collision; if ∼ relates all inputs then arbitrary collisions are allowed.

Discarding traces is achieved using Tamarin’s restrictions. A restriction (or axiom) ρ is a logical
formula that is considered part of the specification and discards any trace that does not satisfy ρ: more
formally, instead of verifying that all traces satisfy a property φ, we actually check ρ ⇒ φ. Slightly
simplifying, we can represent the threat model {chsnPrfx,colExt} with the following restriction:

∀i, i′, o. Hash(i, o) & Hash(i′, o) & i ̸= i′

⇒ ∃p1, p2, l. ( i = p1∥cp1(p1, p2)∥l
& i′ = p2∥cp2(p1, p2)∥l)

This restriction requires that if a collision occurs for i and i′, then it must be a length-extended CPC: the
cpi(p1, p2) represent the attacker chosen suffix for prefixes p1 and p2 (chsnPrfx) and l is a same length
extension on both inputs (colExt).

Plug-and-Play library and tooling Using this approach, we define a modular library for hash functions
that allows Tamarin to explore the full lattice of capabilities. We developed a python script that allows to
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check a given protocol for all possible scenarios, only exploring non-redundant scenarios and outputting
the minimal threat models under which an attack was found. This yields a push-button tool that produces
results that can be as compact, yet comprehensive, as those shown in Table 4.6.

4.5 Case Studies

Using the techniques from the previous section, we have analyzed 20 protocols: 15 of them are based
on existing Tamarin models from the literature which were made available in the official Tamarin
repository [209] The remaining 5 case studies were modeled by us, covering protocols like IKEv2 or
SSHv2. We first analyze all of these protocols using the equational theory based hash models in Tamarin
(Section 4.5.1), exemplifying the limitations of this approach. We then perform an in-depth analysis of
the five new models using the event based modeling, completely automating the exploration of the threat
model lattice with Tamarin. We present our analysis methodology in Section 4.5.2, our main insights in
Section 4.5.3, and the full results in Section 4.5.4.

4.5.1 Equational Theory – Hash Models

Using the equational theories described in Section 4.4.1, we analyzed all 20 case studies. The results are
listed in Table 4.4. Even with the strongest threat model in the hierarchy described in Section 4.4.1 without
input leak ({fstPreImg}), only one potential attack is found. The TESLA protocol (v1) instantiates a
pseudorandom function (PRF) with a weak construction (HMAC-MD5), and we found that this could
break the protocol as soon as preimage attacks against it will be found. Adding the equation for input
leak (Section 4.4.1) results in the scenario {fstPreImg,inLeak}, and triggered regular non-termination
issues in Tamarin. For many protocols the input leak resulted in potential attacks on secrecy. For this
particular set of case studies, this is not surprising as the hash function is applied to cryptographic keys.

4.5.2 Fully Automated Analysis Methodology

As described in Section 4.4.2, we developed a Tamarin library that can be imported into a model. It
allows verification of a specified threat model in the lattice of hash weaknesses. To automate a systematic
exploration of the full lattice of threat models, we developed a Python program that computes the set of
all minimal (and maximal) scenarios that invalidate (and, respectively, validate) the security goals. This
program allows for parallel verification, and avoids redundant exploration: once a property is falsified for
a threat model, we automatically conclude that it is falsified for all stronger threat models (and conversely
for verified properties). We also exploit cross-dimension implications discussed in Section 4.3.1, and avoid
calling Tamarin systematically for each of the 264 distinct scenarios of the lattice. As a heuristic, we start
by verifying the set of strongest and weakest threat model, as they may allow to quickly prune the search
space.

For a given protocol, Tamarin may find an attack on some threat model in a very short time, but take
much longer to find the same attack in a more complex threat model, and the converse may happen for a
security proof. Thus, the optimal order of verifying the scenarios is protocol dependent. We therefore
first run each analysis with a short timeout, to ensure that we first find all easy proofs and attacks. We
then immediately conclude implied results and prune the corresponding scenarios. We then re-run the
remaining scenarios with a longer timeout. We show an example of a fully automatically generated table
for Sigma’ in Table 4.6 (detailed in Section 4.5.4.1).

After the initial, fully automated analysis, one can perform a more in-depth analysis of the attacks
found. Notably, multiple attacks may exist for a given threat model, and by default the tools return the
first attack found. This may “hide” some interesting attack variants and can cause Tamarin to initially
report different variants. Tamarin’s interactive mode can be used to semi-automatically find all variants
of attacks for a given threat model.
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Extracted Protocols Modeling Attack
from variations found
Schmidt DH2 [60] 1 ✗
et al. [198] TS1 [137] 1 ✗
& Meier [169] TS2 [137] 1 ✗

KAS1 [17] 1 ✗
KAS2 [17] 1 ✗
KEA+ [156] 5 ✗
STS-MAC [40] 2 ✗
NAXOS [154] 3 ✗
UM [39] 4 ✗
TESLAv1 [185] 1 ✓∗∗

Mauw et al. Meadows [168] 3 ✗∗

[165][166] MAD [58] 1 ✗∗

Kim & Avoine [141] 1 ✗∗

Munilla et al. [177] 1 ✗∗

CRCS [188] 2 ✗∗

original IKEv2 [139] 2 ✗
Sigma [146] 1 ✗
Telegram KE [210] 1 ✗
SSHv2 [162] 1 ✗
Flickr [106] 1 ✗∗

* = Attack requires breaking one-wayness of the hash
** = Attack requires to instantiate a PRF with a hash function
that is not preimage resistant

Table 4.4: Our initial list of case studies using the equation based threat models from Section 4.4.1. While
the results can indicate missing proof assumptions, this methodology is rather weak and not effective at finding
attacks. This motivated our decision to develop a more fine-grained methodology.

4.5.3 Results from Automated Analysis

We demonstrate the applicability of our methodology on our original Tamarin case studies and report
on the results obtained by running our Tamarin-based automatic tool for exploring our lattice of threat
models. We first detail the results for Sigma’ in Section 4.5.3 to exemplify how to interpret the results
and then discuss a selection of other attacks and insights. In Table 4.5 we summarize the most interesting
attacks that our method automatically found and that we describe in the remainder of this section (we
refer to attacks with labels such as AT(S1)). Our attacks are at the design level: their severity depends
on whether the discovered attack requirements (including the choice of hash primitive) are met given a
specific implementation, threat model and use case.

Discovered Attacks and Insights
In this section, we will highlight the results of our analysis and will use our running example Sigma’ to
showcase how the results should be read and interpreted.
Sigma’ We analyzed mutual authentication and key secrecy for Sigma’. As argued in [37], even though
Sigma’ is not deployed, its protocol logic is similar to many widely deployed authentication protocols such
as TLS, SSH, IKEv2, which makes it an interesting and relevant case study. The output of our tool for
this protocol model is shown in Table 4.6. Each row contains either one of the strongest threat models
under which all of the three properties hold or one of the weakest threat model under which one of the
properties is violated. For Sigma’, they were actually all violated as soon as one was. This kind of tables
(more of them are in Section 4.5) allow to concisely and yet comprehensively describe the security level
against any of the threat models in the lattice.

How to read threat model tables. As an example, consider the last row of Table 4.6: the protocol
is broken as soon as CPCs are possible (chsnPrfx) and can be extended thanks to colExt, even when
hash outputs are fresh values preventing any type-flaw attack. However, without colExt, the protocol is
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Protocol Broken Main attack New? In-text ref. Time (s) Noteproperties requirements

Sigma
Sec,Agr(t) chsnPrfx,colExt [37] AT(S1) 28
Sec,Agr(t) chsnPrfx,colExt ∼[37] AT(S2) manual collisions on shares
Sec,Agr(t,role) chsnPrfx new AT(S3) 55 role-confusion, no

need for colExt

SSH
Agr(nego) CI(*) new AT(SSH1) 3 see Figure 4.6
Agr(nego) idtclPrfx,colExt [37] AT(SSH2) 28
Agr(nego) CI(I),sndPreImg, new AT(SSH3) 41

colExt

IKEv2
Sec(R) CI(*) new AT(IKE1) 6 CI should be on

the cookie
Auth(I) idtclPrfx,colExt [37] AT(IKE2) 20
Agr(cookie,t) ∃,colExt new AT(IKE3) 9 disagreement on

cookies only
Flickr Auth(I) hashExt [106] AT(F) 9

Table 4.5: A selection of the most meaningful attacks we found whose details are given in Section 4.5. Those
attacks are at the design level and their severity depends on whether the attack requirements are met given a
specific implementation and threat model.
Time: number of seconds it takes for our tool and Tamarin to find the attack.
Sec: Secrecy of session data (e.g. session key); only from a given role’s perspective if specified (R: responder,
I:initiator),
Agr(data): agreement can be either on transcript data (t), negotiation data (nego), protocol role information (role),
or cookie data (cookie). Note that disagreement on negotiation data (nego) can lead to downgrade attacks,
Auth(X): authentication of role X (R: responder, I:initiator, *:both),
∼: new variant of an existing attack,
CI(X): role X must suffer from colliding inputs; see Section 4.5.3.

Threat Models Auth.
COL LE OC IL

fstPreImg,chsnPrfx hashExt anyTarget inLeak ✓
allCol ✗

fstPreImg,idtclPrfx allExt anyTarget inLeak ✓
chsnPrfx colExt ✗

Table 4.6: Sigma’ analysis. ✓: security holds, ✗: attack found.

deemed secure (otherwise this threat model would not represent a minimal violation). Similarly, a CPC
is required. Inspecting the attack trace returned by Tamarin for this threat model, we observe that it
corresponds to the CPC attack AT(S1) from [37] described in Section 4.2.2.

The second row shows that when collisions are unconstrained (allCol), then an attack is possible. This
was to be expected as such collisions subsume through a cross-dimension implication CPC with colExt.
While the automated analysis uses those implications to prune the search space, we chose for clarity to
display in the tables all minimal results for the basic partial order of the lattice.

The third row shows that even for the strongest OC, LE, and IL capabilities, the protocol is deemed
secure if CPC is impossible (as shown by the COL capability, which is the strongest among the ones that
are strictly weaker than chsnPrfx). Similarly, the first row shows that even for the strongest OC and IL
capabilities and for {fstPreImg,chsnPrfx}, we find no attacks as long as colExt is impossible.
Colliding input attacks on SSH and IKE Using our methodology, we found colliding input attacks
on both, SSH and IKEv2. Colliding input attacks allow an adversary to alter exchanged messages between
two agents such that they are parsed differently by both agents but yield the same bitstring when they are
recomposed into a bitstring prior to hashing, hence not relying on hash collisions or other hash weakness.
An example of such an attack AT(SSH1) is depicted in Figure 4.6 in the case of SSH, where the attacker can
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Party A
skA, pkB

Adversary Party B
skB, pkA

m1 := VA∥infoA m′1 := VA∥(infoA∥x)

m2 := VB∥infoBm′2 := VB∥(x∥infoB)

· · · · · ·· · · · · ·

sign(skA, H(· · · ∥infoA∥x∥infoB∥ · · · )), · · ·

sign(skB, H(· · · ∥infoA∥x∥infoB∥ · · · )), · · ·

Figure 4.6: Attack AT(SSH1) on SSH: In the set-up phase where A sends the set of its allowed algorithms infoA,
the adversary alters infoA by extending it with some message x. The adversary then alters infoB sent by B by
putting x before it. Despite the different input messages, the concatenation of infoA and infoB results in the
same transcript · · · ∥infoA∥x∥infoB∥ · · · on both side.

alter the messages such that both parties agree on different sets of algorithms in the set-up phase. As shown
in the figure, the attack relies on the fact that, before hashing, fields of previous messages are concatenated
into a bitstring, hence loosing the message structure: (infoA∥x)∥infoB is the same as infoA∥(x∥infoB).
For such attacks to be realistic, the protocol needs to drop some length fields (which initially allowed
unambiguous message parsing) before hashing or be very liberal about parsing, e.g. accept any list of
length-prefixed fields and process them until the input buffer is empty without requiring knowledge of
the list size in advance. Our automated verification framework is able to capture such attacks and did so
for both SSH and IKE; it is up to the user to assess if such attacks may occur in actual implementations.

While this attack may not practical on SSH or IKE, in an early version of the EU Federation Gateway
Service[109] for the EU’s contact tracing apps for Covid-19, this kind of colliding input attack was found,
which was caused by the hash computation that concatenated multiple fields, including two variable-length
fields. The attack allowed circumvention of accountability, e.g. for the gateway server to manipulate
country data, or for countries to repudiate data that they uploaded; it was fixed before full deployment.

IKEv2 We already mentioned an input colliding attack AT(IKE1) above for the weakest threat model
∅. This attack seems impractical since it requires an ambiguous parsing of the cookie. However, it can
be simply combined with an IPC to change the length information at the start of the cookie to make it
practical as it no longer relies on ambiguous parsing. We automatically found this stronger attack variant
AT(IKE2), which corresponds to the one documented in [37], for the threat model {idtclPrfx,colExt}.

Finally, we found a low-severity attack AT(IKE3) for the threat model {∃,colExt} where the adversary
breaks transcript agreement as it uses two colliding hash inputs as the cookies for respectively the initiator
and responder.

SSH In addition to the colliding input attack previously mentioned, we automatically found the IPC
attack AT(SSH2) from [37] for the threat model {idtclPrfx,colExt}. This is similar to the previous attack
escalation of IKE and appears to be a recurring pattern.

Finally, our analysis revealed a different attack AT(SSH3) for the threat model {sndPreImg,colExt}
that exploits a second preimage attack and the specific way the transcript is reorganized prior to being
hashed; the attack would not be possible if the hash input would simply be the transcript. However, it
requires the initiator to be liberal in the way it parses B’s negotiation information (similarly to input
colliding attacks). This attack violates transcript agreement and allows a MITM attacker to completely
tamper with the negotiation information sent by the initiator to the responder, potentially enabling
downgrade attacks.

Telegram We modeled Telegram’s key exchange protocol described in [210] and [6, Figure 57]. The
minimal threat model for an attack AT(T) is {frshTarget}, which is not surprising as some output of the
hash function is used as a secret key. However, we found no collision attack even under the strong threat
model {fstPreImg,chsnPrfx,allExt,inLeak}. This seems to indicate that despite using SHA1 and SHA2-256
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as hash functions, Telegram cannot be broken based on the hash weaknesses of our lattice. The attack for
{frshTarget} however indicate that PRF like assumptions are needed to prove the security of the protocol,
which has been independently identified in [6], and Telegram would benefit from upgrading their hash
functions. Note that timing attacks such as the one of [6] are still out of scope for our techniques.
Flickr For the old API of Flickr, we automatically found the length-extension attack AT(F) first documented
in [106] under the threat model {hashExt}. We also found variants of these attacks relying either on the
inLeak or the fstPreImg capabilities. Our methodology could have then easily spotted the design flaws of
this API. After the discovery of the first attack [106], Flickr migrated to the Oauth framework.

4.5.4 Additional Results for the Case Studies

In this section, we showcase some excerpts of the tables that were generated in an automated fashion
(with some manual edits for a simplified display). We did explain in section 4.5.3 how to read such tables,
which we briefly recall here. Each table corresponds to a protocol analysis, where each row is a threat
model and each column after the vertical line is a security property that we verified. We only display the
threat models that are a minimal or a maximal one for one of the properties. In each row, the red or green
colored tick or cross correspond to these maximal or minimal entries, and each gray tick or cross in a
column indicate that the result for this property is implied by one of the colored ones in the same column.

When a result contains a ∗, it means that some simplifications where required to make Tamarin
terminate. Those are either a restriction on the number of time the attacker may use a capability, or a
restriction on which input values inside the protocol may be used to stuff collisions. Our Python script
detects when such simplifications are needed (in case we reach the end of the timeout) but indicates the
use of those with ∗.

4.5.4.1 Sigma
For the Sigma protocol, we verified the secrecy of both keys and authentication in both directions. We
show an excerpt of our results over the sigma protocol in table 4.6, where we only display the results for
a single Lemma, as the others strictly have the same set of minimal and maximal threat models. The
{chsnPrfx,colExt} scenario corresponds to the attack of [37].

We automatically found the CPC attack from [37], described in Section 4.2.2. We additionally found a
variant of this attack where the CPC is computed to replace the DH shares gx, gy instead of the infoA, infoB

fields. This variant AT(S2) seems harder to exploit as it is unlikely that DH shares allow a large enough
search space for finding the CPC.

Initiator A
skA, pkA′

Adversary Initiator A’
skA′ , pkA

m1 := gx∥infoA m′1 := gx′∥infoA′

mA
1 := gc∥col1 m′A1 := gd∥col2

sign(skA, H(m1∥mA
1 )), mac(gxc, A) sign(skA′ , H(m′1∥m′A1 )), mac(gx′d, A′)

sign(skA′ , H(m′1∥m′A1 )), mac(gxc, A′) sign(skA, H(m1∥mA
1 )), mac(gx′d, A)

Figure 4.7: The new CPC attack we found on Sigma’. coli = cpi(L1, L2) for i ∈ {1, 2} where L1 := gx∥infoA∥gc

and L2 := gx′
∥infoA′ ∥gd. Therefore H(m1∥mA

1 ) = H(m′
1∥m′A

1 ) so that A’s and A′’s signatures can be reused.

More interestingly, we also automatically found a different CPC attack AT(S3) that, to the best of our
knowledge, was not documented before. The adversary acts as a MITM between two agents A and A′ both
acting as initiator. He is able to impersonate A towards A′, who believes A is acting as a responder, and A′

towards A, who believes A′ is acting as a responder. The adversary additionally learns both session keys.
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This attack thus violates session key secrecy, authentication, and agreement on the agents’ role. The attack
is depicted in Figure 4.7. A simple fix for this attack is to include the role name (initiator or responder) under
the signature to avoid such role confusion. We show automatically that the attack disappears with this fix.

4.5.4.2 IKE
We distinguish our analysis between the IKE version where cookies are used and where they are not used.
In both scenarios, we allow for weak DH elements.
Cookie and weak DH Due to the type confusion, the attacker can always break the secrecy of the
responder by sending him the weak DH element, and using the cookie and the info to create the same
transcript on both sides.

The collision scenarios ∃ and idtclPrfx show how the attack can also stuff the transcript with some
controlled values, and typically allow to produce the attack from [37] by tampering with the lengths of
the cookies (the first attack found by Tamarin in the idtclPrfx scenario does not exactly correspond to
the attack, but it can be re-found in the interactive mode by exploring all the attacks).
No cookie and weak DH Without the cookie to allow stuffing elements before the first DH share
appear, we see in table 4.8 that the attacker cannot anymore break the secrecy. However, whenever the
attacker can compute a second preimage, he can lie about the first element of the transcript.

Threat Scenarios Lemmas
OC COL LE IL trans_auth secrecy_key_A secrecy_key_B

allCol ✗ ✗ ✗

anyTarget fstPreImg,chsnPrfx allExt inLeak ✗ ✓ ✗

∃ colExt ✗ ✓ ✗

anyTarget fstPreImg,chsnPrfx hashExt inLeak ✓ ✓ ✗

✓ ✓ ✗

anyTarget allExt inLeak ✓ ✓ ✗

idtclPrfx colExt ✗ ✓ ✗

Table 4.7: IKE analysis with Cookie and weak DH

Cookie without weak DH Without the weak DH element, it becomes harder for the attacker to
obtain the key of the responder (but the other lemma yield similar results). Notably, we found that,
in comparison to table table 4.7, the lemma secrecy_key_B is now true (in the simplified setting) for
{∃,colExt} and {idtclPrfx,colExt}. However, this is a case where in the most complex threat model, the
incompleteness of the associativity operator provoked the failure of the Tamarin proofs.

Threat Scenarios Lemmas
OC COL LE IL trans_auth secrecy_key_A secrecy_key_B

sndPreImg colExt ✗ ✓ ✓

anyTarget chsnPrfx allExt inLeak ✓ ✓ ✓

allCol ✗ ✗ ✗

anyTarget fstPreImg,chsnPrfx hashExt inLeak ✓ ✓ ✓

anyTarget ∃ allExt inLeak ✓ ✓ ✓

anyTarget fstPreImg,chsnPrfx allExt inLeak ✗ ✓ ✓

Table 4.8: IKE analysis with weak DH but no cookie

4.5.4.3 SSH
Due to the colliding input attack described in Section 4.5.3, the attacker can always break authentication.
The colliding input attack is then evolved into the attack on the transcript from [37], in a similar fashion
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to the previous IKE case.

Threat Scenarios Lemmas
OC COL LE IL secrecy_key_A secrecy_key_B trans_auth agree_keys_all

anyTarget fstPreImg,chsnPrfx allExt inLeak ✓∗ ✓∗ ✗ ✗

✓∗ ✓∗ ✓ ✗

anyTarget fstPreImg,chsnPrfx hashExt inLeak ✓∗ ✓∗ ✓ ✗

sndPreImg colExt ✓∗ ✓∗ ✗ ✗

allCol ✗ ✗ ✗ ✗

idtclPrfx colExt ✓∗ ✓∗ ✗ ✗

anyTarget ∃ allExt inLeak ✓∗ ✓∗ ✓ ✗

Table 4.9: SSH analysis

4.5.4.4 Telegram

As illustrated in Table 4.10, Telegram is secure even against very strong threat models, i.e. even with
a very weak hash function. We only display the authentication lemma, but the secrecy one has similar
results.

Threat Scenarios Lemmas
OC COL LE IL trans_auth

frshTarget ✗
allCol ✗

fstPreImg,chsnPrfx allExt inLeak ✓

Table 4.10: Telegram analysis. trans_auth refers to transcript agreement, i.e. do both parties agree on the full
transcript at the end of a session?

4.5.4.5 Flickr

The results are provided in Table 4.11. The previously known length-extension attack correspond to the
threat model {hashExt}. Since the some of the hash function’s inputs must remain confidential, we also
found an attack under {inLeak}. This reveals a further assumption on the used hash function: the function
is required to satisfy some form of confidentiality property such as PRF. (For instance, the identity
function is collision and (second) preimage resistant but is not a PRF.) We also found an attack under
{frshTarget}, where a hash output must remain confidential for the protocol to provide authentication.
This again indicates a KDF assumption may be required. Finally, we found a first preimage attack under
{fstPreImg,colExt}, which is a variant of the first attack: instead of providing an extension of the hash,
we extend its preimage.

Threat Scenarios Lemmas
OC COL LE IL authenticate authenticatePermissions

inLeak ✓ ✗

hashExt ✓ ✗

anyTarget allCol allExt inLeak ✓ ✗

sndPreImg,chsnPrfx colExt ✓ ✓

fstPreImg,chsnPrfx ✓ ✓

allCol ✓ ✗

frshTarget ✓ ✗

fstPreImg colExt ✓ ✗

Table 4.11: Flickr analysis



4.5 case studies 41

Protocol Lemma ET Secure EB Secure ET time (s) EB time (s) Speed loss

Flickr authenticate ✓ ✓ 0.19 0.19 1
Flickr authenticatePermissions ✓ ✓ 0.19 0.29 2
Flickr KeySecrecy ✓ ✓ 0.18 0.22 1
SSH secrecy_key_A ✓ ✓ 1.76 2.64 2
SSH secrecy_key_B ✓ ✓ 2.77 3.12 1
SSH trans_auth ✓ ✓ 1.51 1.53 1
SSH agree_keys_all ✓ ✗ 1.47 6.89 5

Telegram t_auth ✓ ✓ 0.85 1.08 1
Telegram t_secC ✓ ✓ 1.50 1.18 1

IKE_NoCookie trans_auth ✓ ✓ 1.40 1.53 1
IKE_NoCookie secrecy_key_A ✓ ✓ 1.97 2.47 1
IKE_NoCookie secrecy_key_B ✓ ✓ 1.87 1.83 1

IKE_Cookie trans_auth ✓ ✓ 1.84 1.75 1
IKE_Cookie secrecy_key_A ✓ ✓ 2.86 2.15 1
IKE_Cookie secrecy_key_B ✓ ✓ 2.76 10.84 4

Sigma target_secA ✓ ✓ 0.65 2.90 4
Sigma target_secB ✓ ✓ 0.62 0.70 1
Sigma target_agree_B_to_A ✓ ✓ 0.56 2.56 5
Sigma target_agree_A_to_B_or_Bbis ✓ ✓ 0.58 0.90 2

Table 4.12: Comparing efficiency of ROM modelings. ET is the classical Equational Theory based model (see
Section 4.4.1) while EB is the Event Based one (Section 4.4.2). Note that the EB one also contains the associative
symbol used for building transcripts, and security properties can become false. All results are in seconds, and
correspond to average run time over four runs. ✓: security holds, ✗: attack found. As shown in the Table, the
speed loss factor is reasonable given that the ET approach has severe limitations in terms of ability to capture
interesting classes of attacks for other threat models than ROM (see Section 4.4.2).

4.5.5 Detailed Timings for Benchmarks

We provide in the following a set of benchmarks for our experiments. Each timing was obtained on a
Intel(R) Xeon(R) CPU E5-4650L 0 @ 2.60GHz server with 756GB of RAM, on 8 threads for the Tamarin
calls, while ProVerif is single threaded.

We first ran a test set to compare the efficiency of our new event based threat model (Section 4.4.2)
to the classical equational based modeling. We executed all protocols Table 4.5 first with a perfect ROM
model using a basic function symbol and non-associative concatenation, and then with the perfect ROM
model part of our event based approach with associative concatenation. Overall, most protocols verify
with almost exactly the same time, and some outliers take up to five times longer. Given the substantially
increased expressivity, this is very encouraging. We provide detailed results in Table 4.12.

Overall about 5000 scenarios were verified in 150 minutes through 1600 Tamarin calls. Verification
times vary substantially among protocols: most protocols only take a few minutes, while two particular
models (SSH and IKE without a neutral Diffie-Hellman (DH) element) take around an hour to complete.
Overall, our pruning strategy was very effective: about two thirds of the scenarios were not verified through
a dedicated Tamarin call but directly implied by another one. We provide detailed results in Table 4.13.
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With Short Timeout of 60 seconds
Protocol # Lemmas Runtime (s) # Calls # Avoided Calls # timeouts

Flickr (table 4.11) 2 42.0 102 522 0
SSH (table 4.9) 4 497.0 541 707 372

TELEGRAM (table 4.10) 2 107.9 93 531 0
Sigma (table 4.6) 4 301.8 358 890 180

IKE_nocookie (table 4.8) 3 148.0 203 733 0
IKE (table 4.7) 3 115.6 161 775 13

With Long Timeout of 20 minutes
Protocol # Lemmas Runtime (s) # Calls # Avoided Calls

Flickr (table 4.11) 2 - - -
SSH (table 4.9) 4 3870.5 58 314

TELEGRAM (table 4.10) 2 - - -
Sigma (table 4.6) 4 1739.6 105 75

IKE_nocookie (table 4.8) 3 - - -
IKE (table 4.7) 3 - - -

Table 4.13: Benchmarking details, where each line corresponds to one of the table of section 4.5, with the given
protocols and the corresponding number of lemmas verification. We first run the script with a timeout of 60
seconds for each individual Tamarin call and two threads. If there are timeouts, we then rerun them with a longer
timeout of 20 minutes and 8 threads. We proceed this way in order to maximize the number of calls we can prune
thanks to other calls with short timeout (60 seconds) and so that we can invest more threads onto the difficult
cases, i.e. cases that timed out after 60 seconds and that we could not prune. We give for each of those two phases
the total number of time it took to complete, the total number of actual calls to Tamarin, as well as the number
of calls avoided thanks to the pruning strategy. The total run time for all those protocols and lemmas (including
parallelization) was 220 minutes. Each timing corresponds to an average over four distinct runs.
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5.1 Introduction

Authenticated Encryption (AE) and Authenticated Encryption with Associated Data (AEAD) are essential
cryptographic tools used in secure communication. AEAD combines symmetric encryption with authenti-
cation to protect both the integrity and confidentiality of data. These encryption methods are widely used
in securing internet traffic, including in protocols such as TLS, WPA2, WireGuard, Signal and WhatsApp.
For instance, in the WireGuard protocol, AEAD encryption ensures that both the message payload and
its associated metadata are authenticated, preventing attackers from tampering with or forging messages.
However, while AEAD is fundamental to modern security, there is no single agreed-upon definition of
what constitutes strong AEAD security.

The current security landscape for AEAD is complex, with many different proposed security frameworks
and definitions [1, 2, 5, 19, 25, 26, 46, 59, 102, 122, 124, 158, 190, 202]. Some of these definitions have
clear relationships with each other, while others are difficult to compare due to technical differences.
In practice, weaknesses in AEAD schemes have led to real-world attacks. For example, attackers have
exploited the misuse of AEAD mechanisms, such as the unintended reuse of a nonce – a number that
should only be used once – to break encryption security [102, 131, 153]. Several such vulnerabilities have
been discovered manually by analyzing protocols and understanding the specific AEAD scheme in use.
Ideally, we want to formally prove that a given protocol, like WireGuard or WPA2, remains secure when
using a specific AEAD algorithm, such as AES-GCM.

Modeling and detecting these vulnerabilities is challenging. A security analysis needs to be precise
enough to capture the subtle behaviors of AEAD (such as how nonce reuse impacts security) while also
scaling efficiently to analyze complex protocols. To address this, we present the first systematic method
for automated security analysis of protocols that use AEAD by constructing fine-grained models of subtle
AEAD differences and implementing them in the Tamarin prover (see Section 2.3.2). Our approach can
both uncover attacks that exploit specific AEAD behaviors and verify the absence of such attacks.

One of the key challenges in developing our AEAD models is balancing theoretical security definitions,
practical attack scenarios, and the need for automation. We identify the most critical aspects of AEAD
security and use them to construct generic symbolic models suitable for automated analysis. When testing
our methodology, we successfully rediscovered known attack categories, such as failures in accountability
or authentication. Additionally, we uncovered a new attack class in group messaging scenarios, where
a dishonest group member could craft a message that different recipients interpret in conflicting ways,
which we coin content agreement.
Outline First, we provide the necessary background on AEADs in Section 5.2. We revisit the AEAD
landscape and real-world attack patterns in Section 5.3. We then develop our symbolic modeling and
analysis approach in Section 5.4. Lastly, we evaluate our approach on several real-world case studies and
present them in more detail in Section 5.5.
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5.2 Background

Authenticated encryption (with associated data) is a fundamental cryptographic primitive that ensures
both the confidentiality and authenticity of messages. This extends traditional symmetric encryption
by incorporating authentication mechanisms that verify both the encrypted data and any associated
plaintext.

While it is theoretically possible to achieve these properties by combining symmetric encryption with
message authentication codes (MACs), AEAD schemes offer a more optimized approach. AEADs integrate
authentication and encryption into a single, efficient operation, ensuring that authentication tags are
tightly coupled with ciphertexts to provide robust security guarantees.

The design of AEAD schemes presents significant challenges. A crucial property in encryption is that
if a sender encrypts the same message multiple times, an adversary should not be able to recognize this
from the ciphertexts. This is typically achieved by incorporating a unique value, known as a nonce, into
each encryption operation. However, in practice, nonce reuse can occur due to implementation errors or
protocol design flaws, which can severely compromise security. Even AEAD schemes that are provably
secure under correct usage assumptions can be vulnerable when nonce reuse occurs, potentially leading to
catastrophic failures.

Another practical consideration is that AEAD schemes, like other symmetric encryption methods, are
often used in real-world applications that require incremental encryption and transmission of ciphertexts.
Many AEAD APIs support decryption before authentication verification, allowing systems to process
ciphertext fragments as they arrive. While this can improve efficiency, it also introduces security risks if
not carefully managed.

The concept of AEAD was introduced by Rogaway [190] as a cryptographic mechanism that simulta-
neously guarantees privacy and authenticity for both message contents and associated metadata, such as
headers. AEAD schemes typically follow a nonce-based approach, where the nonce is a number used only
once.

Nonce-based AEADs simplify security requirements compared to fully randomized or counter-based
encryption schemes. By ensuring that nonces are never reused, AEADs can maintain both confidentiality
and integrity. Additionally, Bellare and Hoang [25] initiated research into binding encryption keys and
other auxiliary inputs to ciphertexts, further strengthening the security of AEAD schemes.

The structure of the remainder of this section is as follows: In Section 5.2.1, we formally define AEAD
syntax and its standard security guarantees concerning privacy and integrity, before we examine critical
attacks on cryptographic protocols that exploit subtle weaknesses in AEAD designs in Section 5.2.2.
In Section 5.2.3, we categorize widely known AEAD frameworks from the existing cryptographic literature.

5.2.1 Formal AEAD Syntax and Core Properties

Notations Throughout the remainder of this chapter, all algorithms are implicitly parameterized by
the security parameter. We use s ∈ S that a variable s is part of the set S. Further, we use s←$ S to
denote the uniform sampling of a variable s from a set S. Similarly, x←$ X represents the execution of
a probabilistic algorithm X, with its output assigned to x. When the algorithm X is deterministic, we
instead write x← X.

We introduce ⊥ as a special error symbol that does not belong to any set defined in this chapter.
Additionally, we use _ to denote variables that are irrelevant to the discussion.

We focus on defining nonce-based AEAD schemes. This choice primarily simplifies our presentation, as
AEAD schemes based on randomness or counters can be naturally expressed as special cases of nonce-based
AEADs. All symbolic models developed in the latter parts of this chapter will be applicable to nonce-based
AEADs. Consequently, they can be readily extended to capture both randomized and counter-based
AEAD schemes.
To formally define a nonce-based AEAD we cite Rogaway [190] as follows:

Definition 1 ([190]). Let Key, Nonce, Header, Message, Ciphertext respectively denote the space of keys,
nonces, headers (aka. associated data), messages, and ciphertexts. An authenticated encryption with
associated data scheme AEAD = (KGen, Enc, Dec) is a tuple of algorithms where
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• KGen the key generation algorithm outputs a symmetric key k ∈ Key, i.e., k ←$ KGen().

• Enc the encryption algorithm inputs a key k ∈ Key, a nonce N ∈ Nonce, a header H ∈ Header, and
a message m and (deterministically) outputs a ciphertext c, i.e., c← Enc(k, N, H, m).

• Dec the decryption algorithm inputs a key k ∈ Key, a nonce N ∈ Nonce, a header H ∈ Header,
and a ciphertext c ∈ Ciphertext and deterministically outputs a message m ∈ Message ∪ {⊥}, i.e.,
m← Dec(k, N, H, c).

In the following, we assume that for any nonce-based AEAD, the N, H and ciphertext c are public as they
will be sent over the network. The correctness of the scheme ensures that decrypting a ciphertext using
the same parameters N, H, k correctly retrieves the original plaintext; if decryption is performed with
inputs outside their defined domains, it must return the special error symbol ⊥. The two fundamental
security properties of these schemes are integrity and privacy, as defined in [190].

Definition 2 (Privacy [190]). We say an AEAD = (KGen, Enc, Dec) is ϵ-IND$-CPA secure, if the below
defined advantage of any attacker A against ExprIND$-CPA

AEAD experiment in fig. 5.1 is bounded by:

AdvIND$-CPA
AEAD := |Pr[ExprIND$-CPA

AEAD (A) = 1]− 1
2 | ≤ ϵ

ExprIND$-CPA
AEAD :

1 b←$ {0, 1}

2 Lc ← ∅

3 k ←$ KGen()

4 b′ ←$AEnc()

5 return Jb = b′K

ExprIND$-CCA
AEAD :

1 b←$ {0, 1}

2 Lc ← ∅

3 k ←$ KGen()

4 b′ ←$AEnc,Dec()

5 return Jb = b′K

Enc(N, H, m):
6 if (N, H, m, _) ∈ Lc

7 return ⊥

8 if b = 0

9 c← Enc(k, N, H, m)

10 else c←$ {0, 1}ℓ(|m|)

11 Lc ← Lc ∪ {(N, H, m, c)}

12 return c

Dec(N, H, c):
13 if (N, H, _, c) ∈ Lc

14 return ⊥

15 m← Dec(k, N, H, c)

16 if m ̸= ⊥

17 Lc ← Lc∪{(N, H, m, c)}

18 return m

Figure 5.1: IND$-CPA and IND$-CCA security for an AEAD = (KGen, Enc, Dec) scheme. Included from [70][Fig. 1]

Definition 3 (Integrity [190]). We say an AEAD = (KGen, Enc, Dec) is ϵ-CTI-CPA secure, if the below
defined advantage of any attacker A against ExprCTI-CPA

AEAD experiment in fig. 5.2 is bounded by:

AdvCTI-CPA
AEAD := Pr[ExprCTI-CPA

AEAD (A) = 1] ≤ ϵ

ExprCTI-CPA
AEAD :

1 Lc ← ∅

2 k ←$ KGen()

3 (N, H, c)←$AEnc()

4 if c ∈ Lc

5 return 0

6 return JDec(k, N, H, c) ̸=
⊥K

ExprCTI-CCA
AEAD :

1 Lc ← ∅

2 k ←$ KGen()

3 (N, H, c)←$AEnc,Dec()

4 if c ∈ Lc

5 return 0

6 return JDec(k, N, H, c) ̸=
⊥K

Enc(N, H, m):
7 c ←

Enc(k, N, H, m)

8 Lc ← Lc ∪ {c}

9 return c

Dec(N, H, c):
10 return

Dec(N, H, c)

Figure 5.2: CTI-CPA and CTI-CCA security for an AEAD = (KGen, Enc, Dec) scheme. Included from [70][Fig. 2]

Both for privacy and integrity, we can define two security variants, IND$-CCA (see Figure 5.1) and
CTI-CCA (see Figure 5.2). These variants differ based on whether the attacker has access to a decryption
oracle during the experiment. For the fully detailed properties and the relationships between these
properties, we refer the reader to [70] and [223].
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5.2.2 Historical Real-World Protocol Attacks Exploiting AEADs

Beside the well-studied privacy and integrity, some recent attacks against practical application protocols
suggest that the underlying AEADs need an evolution to meet stronger security guarantees. We identify
six main classes of these protocol attacks that have occurred in the wild and briefly describe their high-level
requirements.

A1 Nonce reuse attacks - While nonces are expected to be used only once, this can fail in practice
for three main reasons. First, protocol designs might aim to establish nonces, but their complex state
machines may hide edge cases in which they are in fact reused, as in e.g., WPA2 [214]. Second, the
generation of nonces might involve external sources, which may be unreliable, e.g., YubiKey [153] or
Trustzone [202]. Third, implementations may be flawed. For example, the Zerologon attack[222] notably
exploited the fact that the nonce underlying the AES-CBF8 mode in Microsoft Netlogon protocol is a
constant string of zero bits. The encryption of a block of zero bits equals to 016 with probability 1/256 for
any key k, breaking the authentication of windows servers.
A2 Padding oracle attacks [215] - Many AEADs and symmetric encryption schemes are constructed
from block ciphers and require the length of input messages to be multiple of a fixed value. Messages
whose length is not a multiple are extended before encryption using a so-called padding scheme. These
can enable plaintext recovery attacks if the attacker has a way to determine if a ciphertext is correctly
padded or not, e.g., through timing leaks or error messages. Padding oracle attacks have found on many
protocols, including SSL [57], IPSec [90], and GPG [174].
A3 SSH fragmentation attacks [7] - SSH was designed for securing Internet traffic over the unstable
channel, where ciphertext blocks in a packet might get lost. The length of a SSH packet is encrypted in
its first block. If the number of delivered blocks is less than the length decrypted from the first ciphertext
block, no ciphertext integrity is executed.

If an attacker can inject the first ciphertext block and observe the error message reported by the SSH
connection, then the plaintext of the transmitted ciphertext can be recovered.
A4 Partitioning oracle attacks [158] - Some real-world applications do not sample the AEAD
symmetric keys randomly but simply pick users’ passwords. Thus, attackers might know a set of possible
password candidates and perform brute-force attacks. Even worse, if attackers have access to a partitioning
oracle, which tells whether the password of a ciphertext belongs to some known sets, then the password
can be recovered exponentially faster.

In practice, attackers sometimes can obtain the partitioning oracle by observing the reply messages
responding to a selected ciphertext. This causes the vulnerability of applications in the real world, such
as Shadowsocks [158].
A5 Salamander attack [102] - The end-to-end secure messaging provides high security against the
surveillance of the server but potentially prevents the server from blocking the abusive messages. To
mitigate this, Facebook invents a abuse report mechanism that allows each user to report the received
abusive messages from a claimed sender.

However, this mechanism turns out to be broken because a malicious sender could send a single
encrypted attachment that would decrypt to both an abusive message and an innocent message under
two distinct keys.
A6 Sframe attack [131] - An AEAD scheme authenticates the owners of a symmetric key of a ciphertext
rather than the sender’s identity. This is especially relevant for group communication, where an AEAD
cannot use the shared group key to authenticate the specific sender. To provide sender authenticity in
groups, while keeping low bandwidth cost, the IETF SFrame protocol v01 [182] requires senders to sign a
portion of the AEAD ciphertext using digital signatures.

Unfortunately, the sender identity authenticity of SFrame mechanism turns out to be broken, since
the underlying AEAD schemes, AES-CM-HMAC and AES-GCM, do not provide collision resistance for
the unsigned portion. This means, a malicious group member holding the symmetric key can forge the
unsigned portion of other group members’ ciphertexts.
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5.2.3 Theoretical AEAD Frameworks

Apart from the previously outlined classes of real-word attacks linked to AEADs, on the theoretical
side, many variants of AEADs have been designed in the past twenty years following the seminal work
from [190].

Each of those variants come with their own flavors of properties like, e.g., integrity, confidentiality,
nonce-misuse resistance, or robustness, leading to dozens of distinct security definitions. Furthermore, these
AEAD variants differ in functionality, with some enabling e.g. ciphertext fragmentation or nonce-hiding.
We categorize the main differences between distinct AEAD variants as follows:
F1 - does each ciphertext (or a part of it) bind to a set of its encryption inputs? This question motivates
the study of a novel (compactly) committing AEAD (ccAEAD, [70, Definition 6]) regime as well as
various security properties, such as collision resistance ([70, Definition 9]), commitment ([70, Definition
10]), sender binding ([70, Definition 14]), and receiver binding ([70, Definition 15]) [2, 25, 102, 122].
Roughly speaking, the collision resistance prevents the collisions between AEAD encryption with different
inputs. The commitment ensures that each valid AEAD decryption indicates the agreement on a subset
of its encryption/decryption inputs. The sender- and receiver binding properties are relevant in the
abuse-reporting scenarios. While the sender binding allows every ccAEAD receiver to report abusive
messages, the receiver binding prevents malicious receivers from framing honest ccAEAD senders. The
full definitions can be found in [70, Appendix B] - motivated by A5.
F2 - can we find collisions on valid decryption inputs for the same ciphertext? This question motivates
the study of a novel property called robustness ([70, Definition 11])[1, 158]. Briefly speaking, robustness
prevents attackers from having a single ciphertext decrypt to multiple distinct valid messages on different
inputs. - motivated by A4, A6.
F3 - is the AEAD supporting fragmentation of the ciphertexts? That is, can we start decrypting chunks
of data before having verified the whole ciphertext?
F4 - is the decryption atomic, or split into a decryption and an integrity check? [19] - motivated by A2.
F5 - is the AEAD nonce-hiding? That is, is the nonce explicitly needed for the decryption, or is it
included and hidden inside the ciphertexts? [26, 59]
F6 - is the AEAD nonce-misuse resistant? [124] Must a nonce be used once strictly, or can repeat? -
motivated by A1.

5.3 Generalizing Real-World AEAD (In)Security for Systematic Analysis

We identify three main causes for the protocol attacks:
• A1 comes from a misuse of nonces.
• A2 and A3 from a decryption misuse, where the decryption is not atomic but performed in two

steps, in which case we lose the integrity and privacy guarantees.
• A4, A5, and A6 actually all stem from a lack of collision-resistance.

This leads us to summarizing the concrete security guarantees for AEADs in three categories:
• privacy and integrity - the core guarantees that we defined previously, and are expected to be

met by all AEADs. This is what is lost under decryption misuse.
• collision-resistance - this guarantee hinders attackers from coming up with collisions over the

output of Enc, i.e. find two distinct sets of inputs i⃗1 and i⃗2 such that Enc(⃗i1) = Enc(⃗i2).
• nonce-misuse resistance - this guarantees that using a weak nonce twice or the same nonce for

distinct message does not lead to a compromise.
With respect to those core properties, we provide in Table 5.1 the security and weaknesses of many widely
deployed AEADs. In addition to the concrete constructions, we also provide in this table the generic
constructions of AEAD such as Encrypt-then-MAC (EtM), whose security guarantees depend on the
concrete encryption and MAC algorithm instantiations. For the generic construction EtM, we distinguish
two cases based on whether the encryption and MAC keys are related, e.g. derived from k with a key
derivation function, or unrelated, e.g. simply the first and the second half of the input k.

Notably, while all of AEADs in the table do provide integrity and privacy (otherwise they would not
be used), only some of them tolerate that a single nonce is reused twice for different messages. Moreover,
we can also observe that the picture for collision-resistance is very disparate and many deployed schemes
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Concrete AEAD Integrity and Privacy Full Collision Resistance Nonce Misuse Resistance

XSalsa20-Poly1305 ✦ ✗ [2] ✗ Xor of plaintexts
AES-GCM ✓ [132, 167] ✗ [102] ✗ Forgeability + xor of plaintexts
ChaCha20-Poly1305 ✓ [187] ✗ [2] ✗ Xor of plaintexts
OCB3 ✓ [38, 152] ✗ [2] ✗ Forgeability + equality of blocks
EtM (unrelated keys) ✓ [190] ✗ [122] ✗ Encryption dependent
AES-CCM ✓ [115, 138] ✦ ✗ Xor of plaintexts
AES-EAX ✓ [29, 173] ✦ ✗ Xor of plaintexts
EtM (related keys) ✓ [190] ✓ [122] ✗ Encryption dependent
CAU-C4 ✓ [25] ✓ [25] ✗ Forgeability + Xor of plaintexts
AES-GCM-SIV ✓ [124, 133] ✗ [2] ✓ [124]
CAU-SIV-C4 ✓ [25] ✓ [25] ✓ [25]

✓ : proven in the cited work(s). ✦ : we conjecture that this holds, but do not know of a proof.
✗ : does not hold, with reference or explanation of counterexample.

Table 5.1: AEADs (in)-security guarantees: Integrity and Privacy refers to IND$-CPA and CTI-CPA. Full Collision
Resistance refers to Definition 4. For Nonce Misuse Resistance we indicate the potential impact of reusing nonces
if the AEAD scheme does not have this property. Adapted from [223][Table 4.1]

do not meet it. In the remainder of this section, we recall collision resistance and its relation to other
properties of AEADs, before having a look at practical attacks on AEADs based on the absence of collision
resistance.

5.3.1 Generalizing AEAD Collision Resistance and Relations

This section builds on the results of Zhao [223] and provides a summary of their key findings.
We adopt their formulation of full collision resistance based on the CMT-4 definition from [25], which

we recall below. Informally, full collision resistance ensures that each AEAD ciphertext can be generated
from a unique set of inputs.

While this may seem like a strong requirement, its absence can lead to unexpected vulnerabilities
in certain protocols. As we will see, both known attacks and our case studies highlight that, despite its
strictness, full collision resistance remains a meaningful and desirable security property.

Definition 4 (Full Collision Resistance). We say an AEAD = (KGen, Enc, Dec) has ϵ-full collision
resistance (or ϵ-full-CR ), if the below defined advantage of any attacker A against the Exprfull-CR

AEAD experiment
in fig. 5.3 is bounded by

Advfull-CR
AEAD := Pr[Exprfull-CR

AEAD (A) = 1] ≤ ϵ

Exprfull-CR
AEAD :

1
(

(k1, N1, H1, m1), (k2, N2, H2, m2)
)
←$A()

2 if ⊥ ∈ {k1, N1, H1, m1, k2, N2, H2, m2} or (k1, N1, H1, m1) = (k2, N2, H2, m2)

3 return 0

4 c1 ← Enc(k1, N1, H1, m1), c2 ← Enc(k2, N2, H2, m2)

5 return Jc1 = c2K

Figure 5.3: full-CR security for an AEAD = (KGen, Enc, Dec).

Relationship with existing frameworks This notion of collision resistance, though straightfor-
ward, is sufficient to encompass various definitions found in the literature, including those from [2, 25,
112, 122, 158]. Informally, these definitions aim to address the following questions:
tidyness - for a fixed key, is the encryption function the inverse of the decryption one?
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commitment (CMT-l and CMTD-l for l ∈ {1, 3, 4} [25]) - can we find collisions either over the encryp-
tion or the decryption, with different parts of the inputs being allowed to stay fixed based on l?
1

full robustness (FROB [112]) and even fuller robustness (eFROB [122]) - is any attacker able to
compute a ciphertext that decrypts correctly under two distinct inputs?

key committing KC security [2] - is any attacker able to compute a ciphertext that decrypts correctly
under different keys but same nonce?

multi-key collision resistance (MKCR) [158] - is any attacker able to compute a ciphertext that
decrypts correctly under multiple keys but same nonce and header?

receiver binding (r-BIND) [122] - is any attacker able to compute a ciphertext that can be verified
under the different header and message?

The illustration in Figure 5.4 summarizes the relations of all the properties listed above. For the definitions
and the detailed proofs, we refer to [70, 223].

Figure 5.4: The relation between collision related properties for AEAD with key space Key. The black arrow →
indicates the general implication. The purple dash-dotted arrow indicates the implication for tidy AEAD.
The orange dash-dot-dotted arrow indicates the implication for ccAEAD[AEAD]. The X in the figure is a
subset of (k, N, H, m), i.e., X ⊆ (k, N, H, m). The theorems highlighted with red color are claimed or proven
in other papers. The theorems highlighted with green color are part of our third contribution. Included from
[223][Fig. 4.1]

Collision attacks on deployed AEADs Any form of ciphertext collision can pose a security risk.
We argue that general-purpose AEAD schemes should be fully resistant to such collisions. However, as
summarized in Table 5.1, many widely deployed AEAD schemes fail to achieve full collision resistance.
Below, we summarize known attacks against various notions of collision resistance in different AEAD
schemes, as discussed in the literature:

• r-BIND - [122] presents generic attacks against any EtM construction with unrelated keys. In these
attacks, an adversary can trivially alter the encryption key. The work also demonstrates attacks
against real-world modes using Carter-Wegman MACs, such as GCM and ChaCha20-Poly1305,
by crafting a specific final ciphertext block to create collisions. [102] describes a concrete attack
against AES-GCM and OCB, leveraging nonce collisions and suggesting an accelerated attack
via a birthday-bound approach on keys. Additionally, using a corollary of Theorem 1 from [192],
[102] argues that this attack extends to any schemes that make one block cipher call per message
block. This may indicate vulnerabilities in AES-GCM-SIV, ChaCha20-Poly1305, and other EtM
constructions.

• KC: - [2] extends the attack from [102] on AES-GCM, demonstrating proof-of-concept attacks against
several widely used AEAD schemes, including AES-GCM, ChaCha20-Poly1305, AES-GCM-SIV,
and OCB3. The attack exploits ciphertext collisions under distinct keys. Moreover, [2] highlights
real-world implications, including practical applications in binary polyglot scenarios.

• MKCR: - [158] introduces a novel partitioning oracle attack that effectively compromises MKCR
security in widely deployed AEAD schemes, such as AES-GCM, AES-GCM-SIV, ChaCha20-
Poly1305, and XSalsa20-Poly1305.

• X-CR and X-IBC: - [25] demonstrates that all the aforementioned attacks also break k-CR and
k-IBC security for the corresponding AEAD schemes. Consequently, AES-GCM, AES-GCM-SIV,

1In this paper we rename CMT-l to collision resistance (X-CR). In particular, the full-CR in Definition 4 is
identical to (k, N, H, m)-CR
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XSalsa20-Poly1305, ChaCha20-Poly1305, and OCB are all k-CR insecure.

5.4 Symbolic Models for Automated Verification

We next describe how to, using the generalizations we developed in the previous section, develop symbolic
models for AEADs that encompass many of the essential weaknesses from Section 5.2.2. For each essential
weakness, we will develop a specific model that gives the attacker the capability to use the given weakness.
Analyzing a protocol with those attacker capabilities enabled will then allow us to automatically find
attacks on protocols that may rely on subtle AEAD weaknesses.
Our models cover:

• collisions Coll- covering A4, A5, A6, and definitions from F1 and F2.
• nonce reuse NR- covering A1 and F6.
• decryption misuse Forge- covering A2, A3, F3 and F4.

Some modern protocols, like [102] or [182], rely on additional features of AEADs that we cover in a
modular fashion:

• explicit tag Tag- for most AEADs, one can extract a verification tag from the ciphertext, needed to
model protocols like [182] for A6.

• explicit commit Com- to extract a value from the ciphertext committing to the inputs of the
encryption. Needed to model protocols like [102] covering A5 and F1.

Collisions can then be lifted to the tag or the commit in a modular fashion, and are essentially only
impacting on the complexity of mounting concrete attacks.

We additionally build a model Leak that provides an explicit capability to reveal the nonce used for
encryption to the attacker. Not sending out the nonce by default but using a dedicated functionality
allows accounting for nonce hiding AEADs covering F5. While we cannot claim completeness of our
models w.r.t. to all possible AEAD weaknesses that may arise in the future, we provide a set of models
based on our analysis of the real-world security of AEADs Section 5.3 that covers most practical attacks.

We develop and specify the previously enumerated models of AEADs in the symbolic model of
cryptography, an abstract model used in the formal methods community to express and automate
the analysis of cryptographic protocols (see Section 2.3). We then present symbolic models of the
before-mentioned AEAD weaknesses in Section 5.4.1.

5.4.1 Symbolic AEAD Models

We first explicitly model all the input parameters, making the senc and sdec having four inputs,
senc(k, n, h, m). Then, we model the multiple weaknesses previously discussed. While we focus on
providing models for nonce-based AEADs, as it is the most fine-grained model of AEADs, it is easy to
derive from them models for counter-based or randomized AEADs. They can typically be modelled by
removing the explicit nonce as senc(k, h, m), and all equations or capabilites given in the following and
that do not directly relate to the nonce can be transposed to this case.

Practical Collision models Coll We start by adding collision capabilities that match the known
real-world collision capabilities. When using these models reports an attack on the protocol in one of the
automated tools, we can then investigate its feasibility in practice based on the concrete AEAD used and
the message encodings by referring to Section 5.3, and in particular Table 5.2.

We start with the capability that can be reasonably computed on many AEADs and was shown to
be practical by [102] for Facebook’s Message Franking protocol. As an example, consider the scenario
where an attacker tries to produce some colliding ciphertexts given two keys. One option would be to
brute-force over the nonce for a fixed header, e.g., an empty header. If successful, the attacker would have
a ciphertext that could be decrypted to distinct plaintexts under a common nonce and header using the
two keys. We model this nonce finding algorithm in the symbolic model as an additional function symbol
cn, modeling the colliding nonce, which will take as input all the given parameters the collision depends
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on. We then add the collision model nColl:
senc(k1, cn(k1, k2, h, m1, m2), h, m1)

= senc(k2, cn(k1, k2, h, m1, m2), h, m2) (nColl)

Another widespread collision capability is captured by adding two function symbols c1
k and c2

k with the
collision model KeysColl:

senc(c1
k(n, h, m1, m2), n, h, m1)

= senc(c2
k(n, h, m1, m2), n, h, m2) (KeysColl)

To check whether a potential attack found using KeysColl might be feasible, refer to Table 5.2. Whereas
for KeysColl the attacker needs to produce a collision on the AEAD for a fixed nonce and header, the
same kind of collision appears also to be feasible in the case where one of the keys is already fixed. We
model this slight variation of KeysColl as well (KeyColl).

AEAD nColl KeysColl

AES-GCM [102] [2, 102, 122, 158]
AES-GCM-SIV [102] [2, 102, 122, 158]
ChaCha20-Poly1305 [102] [2, 102, 122, 158]
Encrypt-then-MAC (EtM) [102] [102, 122]

Table 5.2: Effective attacks against collision resistance of several AEADs in the literature. nColl describe collisions
where, for given keys and a header, the attacker uses brute-force over the nonce to produce colliding ciphertexts.
In KeysColl, the attacker brute-forces, given a nonce and header, over the keys.
For the generic Encrypt-then-MAC paradigm we refer to the concrete attacks for CTR, OFB, CBC, and CFB
modes to [70, Appendix A].

Notice that we, for instance, set that the two colliding encryptions may necessarily use the same nonce
and header in those equations. This is caused by many existing protocols implementing that nonces and
associated data can be computed independently by the parties, or that they cannot be sent out twice
with distinct values.
Generic Collision models FullColl The previous collision models allow to efficiently check for the
collisions that are most likely to be practical for existing AEADs and given their use in protocols. While
obtaining an attack in those models is instantly interesting, we may miss some future practical attacks.
Indeed, as illustrated by Table 5.1, most AEADs do not meet the full collision resistance property. As we
in fact do not know if they meet any kind of collision resistance properties as no proofs exists for many of
them, it is possible that in the coming years, new practical ways of building collisions on the existing
AEADs are discovered. As such, from a security point of view, for any non collision resistant AEADs, it is
prudent to consider that many more collisions are possible than currently practical.

Our approach makes it easy to define such a prudent model, and capture all attacks that may be
possible on a protocol if the AEADs is not fully collision resistant. We do this by allowing more collisions
and changing which part of the encryption input is fixed on both sides, and which part the attacker is
brute-forcing over.

senc(k, n, h, m)
= senc(gen-ck(n, n2, h, h2, m, m2), n2, h2, m2) (FullKeyColl)

senc(k, n, h, m)
= senc(k2, n2, h2, gen-cm(k, k2, n, n2, h, h2)) (Full-mColl)

senc(k, n, h, m)
= senc(k2, gen-cn(k, k2, h, h2, m, m2), h2, m2) (Full-nColl)

senc(k, n, h, m)
= senc(k2, n2, gen-ch(k, k2n, n2, m, m2), m2) (Full-adColl)

With FullKeyColl, Full-mColl, Full-nColl, and Full-adColl, we capture the capability of an attacker to
find collisions by just finding one distinct k, n, h, or m, respectively. These models may cover collisions
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that are impractical as their main purpose is to check whether the analyzed protocol relies on collision
resistance of AEAD schemes. Indeed, if we get an attack in such a model, it implies that a strong collision
resistance notion is needed to prove the security of the protocol in the computational model. Further, and
as we see later in Section 5.5, some of these attack may even be practical and could not have been easily
discovered in another way.
Nonce-reuse NR The nonce-reuse issue A1 is slightly more complex to model, as we cannot capture
it using an equation. We thus have to use a less classical way to model primitives: we model the attacker
capability by providing access to an additional process, or oracle, that does the following:

if k1 = k2 & n1 = n2 :
if m1 ̸= m2 | h1 ̸= h2 :

k ← k1

k-NRenc(k1, n1, h1, m1)
enc(k2, n2, h2, m2)

k

In this oracle, the attacker can provide two ciphertexts. If those ciphertexts are encrypted under the
same key and nonce but differ in either header of message, the attacker learns the secret encryption key.
Similar to the collision model, Coll, we included a model of this process into our set of AEAD models and
call it k-NR. This process models the strongest possible leak, namely leakage of the secret key. We can
also make it more fine-grained by leaking, e.g., m1 ⊕m2 instead of k. As not all tools in the symbolic
model provide support for exclusive-or like equations, we modeled an over-approximation m-NR, which
leaks both m1 and m2 as an example. Note that with these kinds of oracle-like models, the concrete leaked
values can be decided by the capabilities of the chosen tool and the actual weaknesses listed in Table 5.1.
Decryption Misuses Forge Some protocols, notably SSH, that allow for ciphertext fragmentation,
also use AEADs in a non-recommended way by splitting the atomic sdec operation into verification
and decryption. This may also be the case for protocols building their own AEAD based on the EtM
construction. In such a case, instead of sdec that checks integrity, we use a weak decryption function
w-dec and a verification function verify, with the equations:

w-dec(k, n, h, senc(k, n, h, m)) = m
verify(senc(k, n, h, m), k, n, h, m) = true

We model the fact that the decryption is weak by making decryption succeed on messages forged by
the attacker using the forge algorithm:

w-dec(k2, n2, h2, forge(senc(k, n, h, m), m2)) = m2

Remark that a limitation of this Forge model is that the attacker cannot compute a valid ciphertext for
some function of the message m, which is sometimes possible. Assume that for a given protocol we know
that plaintexts are pairs of elements, denoted by < x, y >, we can also add dedicated forgery rules:

w-dec(k2, n2, h2, forge1(senc(k, n, h, < m1, m2 >))) = m1
w-dec(k2, n2, h2, forge2(senc(k, n, h, < m1, m2 >))) = m2

If the encryption is XOR based, the attacker should also be able to encrypt at this stage any XOR
of a value to the ciphertext. This limitation notably implies that we cannot cover in general premature
release of ciphertexts or the SSH fragmentation attacks. While we can do this for particular cases as
illustrated, lifting this limitation generically in the symbolic model requires advances in the existing tools
and symbolic techniques that we consider out of scope for this work.
Explicit Tag Tag Despite the recommendations, some protocols do not use AEADs only through a
decryption and encryption API, but actually rely on some more low-level detail. For instance, schemes
rely on the fact that the ciphertext is often a pair (encryption, tag), where the encryption is a basic
symmetric encryption of the message and the tag is what provides the integrity. Instead of going to such
a low-level, which would be AEAD dependent, we capture this possibility modularly by adding a new
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function symbol get_tag, that inputs ciphertext senc(k, n, h, m). We can then model collisions over the
tags, by adding a variant of each of the previous collision equations over the tag, with, e.g., nTag being:

get_tag(senc(k1, cn(k1, k2, h, m1, m2), h, m1))
= get_tag(senc(k2, cn(k1, k2, h, m1, m2), h, m2))

Reasoning about explicit tags allows for a top-down approach rather than bottom up. For example, it
allows us to ignore implementation details, such as to which side of the encryption the tag is concatenated.
Explicit commitment Com We model compactly committing AEADs by adding a get-commit
function symbol similar to the get_tag. Once again, this allows for a modular model of compactly
committing AEADs, where we only specify that a commitment can be extracted, but do not specify how.
This extraction can be combined with the collision capabilities to model non-committing AEADs, as
a collision on the ciphertexts directly translates to a collision on the commitment. Modeling the fact
that the collisions are only on the commitment in a more fine grained way would be possible, but would
not yield better attack finding capabilities as they are covered by the ciphertexts collisions. Further, it
appears that collisions on the ciphertext or the commitment only differ in the ease of mounting attacks,
the commitment being smaller and easier to manipulate than the whole cipher.
Nonce-Leaking Leak Following F5, we capture that an AEAD may not hide the nonce by adding a
nonce extraction function symbol get_nonce along with the needed equation:

get_nonce(senc(k, n, h, m)) = n

This equation can now be also used instead of sending the nonce to the network explicitly.
Concrete encodings for tools Previously, we presented general equations that can be used to
capture multiple AEAD weaknesses in symbolic models. However, symbolic analysis tools often have
restrictions on the type of equations that are supported. The most efficient class of equations that are
supported by tools satisfy the so called subterm convergence property: the right hand side of the equation
only contains terms that occur as subterms in the left-hand side. This is not the case for all equations we
introduced previously. However, all of them can be expressed in an equivalent fashion using only subterm
convergent equations. For instance, for the nColl equation the same attacker capability can be captured
with the following equations, where we introduce a new function symbol ct as an encoding artifact:

senc(k1, cn(ct(k1, k2, h, m1, m2)), h, m1)
= ct(k1, k2, h, m1, m2)

senc(k2, cn(ct(k1, k2, h, m1, m2)), h, m2)
= ct(k1, k2, h, m1, m2)

(n-subtermColl)

5.5 Case Studies

We demonstrate our symbolic models for automated verification on a set of eight protocols, classified into
four categories depending on the analyzed security property:

• Key Secrecy – rediscovering the attack on YubiHSM [221]
• Authentication – rediscovering the attack on SFrame [182]
• Accountability – rediscovering the attacks on the accountability of the Facebook Message Franking

mechanism [110] and finding that the Web Push [211] standard does not provide server accountability.
• Content Agreement – analysis of multiple group messaging and content delivery protocols, namely

SaltPack [194], WhatsApp Groups [130], Scuttlebutt [201], and GPG [144].
We tested our methodology on a computing cluster with Intel® Xeon® Gold 6244 CPUs and 1TB RAM
against all possible combinations of the threat models from Section 5.4. We automate this process using a
Python program as described in Section 5.5.1. For each Tamarin call within our script we limit Tamarin
to use 4 threads and set the timeout to 60 seconds per Tamarin call.

For the 8 case studies (plus 3 variants) we had a total evaluation time of 17 hours and 29 minutes
with a total of 1404 Tamarin calls. We give an overview of the results in Table 5.3. We show an excerpt
of the detailed results in Table 5.4, while all results are reproducible and can be found in GitHub [71].
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Protocol AEAD Scheme Model Analysis Results Time (s) Novel? Status

YubiHSM [221] AES-CCM NR Key secrecy attack 2 [153] Fixed
SFrame [182] AES-GCM, EtM CTR Tag Authentication attack <1 [131] Fixed
FB Message Franking [110] AES-GCM Coll Content Agreement attack 8 [102] Fixed
FB Message Franking [110] AES-GCM Coll Framing attack 3 [102, 122] Fixed

GPG SED [144] PGP-CFB Coll No Content Agreement <1 ✓ Deprecated
GPG SEIPDv2 [144] AES-OCB Coll No Content Agreement <1 ✓ Infeasible
Saltpack [194] XSalsa20-Poly1305 Coll No Content Agreement 8 ✓ Infeasible

WebPush [211] AES-GCM Coll Server Accountability 8 ✓ Reported
WhatsApp [130] EtM CBC Coll No Content Agreement 3 ✓ Reported ‡

Scuttlebutt [201] XSalsa20-Poly1305 Coll No Content Agreement 3 ✓ Reported ∗

∗ = Feasibility depends on the collision resistance of XSalsa20-Poly1305. See discussion in Section 5.5.6.
‡ = Reported to WhatsApp. Feasibility heavily relies on implementation details, which are not open source.

Table 5.3: Summary of the main analysis results from our case-studies, illustrating the generality of our models by
rediscovering previous attacks and finding new subtleties. In each case, we give the threat model, the used AEAD
scheme, the analysis result, as well as the time it took Tamarin to find it. We also give some additional notes on
the status of the observation.

After presenting our automated analysis methodology in Section 5.5.1, we additionally explain how to
choose the correct threat model for targeted analysis in Section 5.5.2. We then show our case studies from
Section 5.5.3 to Section 5.5.6 and highlight our findings.

5.5.1 Automated Analysis Methodology

We now have a set of models to capture multiple weaknesses of AEADs. To analyze a protocol, the
following steps should be followed with the symbolic tool of choice:

1. Verify the protocol in all possible threat models (malicious participants, AEADs weaknesses)
2. If there is an attack based on collisions or nonce misuse, check which AEAD the protocol is using

and whether it has the corresponding weakness (Table 5.1);
3. If an attack is from KeyColl, KeysColl, or nColl, use Section 5.3.1 to check whether the use AEAD is

non collision resistant. If it is not, check Table 5.2 to evaluate if the attack is practical or not.
4. If an attack is from one of the over-approximated capabilities FullKeyColl,Full-mColl,Full-nColl,

Full-adColl, there are two consequences:
• Collision Resistance is probably needed to prove the protocol computationally secure.
• The attack may however be impractical, and one needs to check the trace to see if the attacker

can have enough control over the ciphertext inputs to create a collision.

False attacks In the previously outlined methodology, we say that an attack found in a symbolic
model may not be a true attack. To provide more details: during modeling, we sometimes on purpose
overapproximate the possible AEAD weaknesses, both to completely rule out classes of attacks or detect
subtle attacks. This may indeed lead to us finding “false attacks” that are possible on the design of
the protocol but not on all possible implementations for all concrete primitives. In such cases, when by
following the methodology we get an attack trace, we have to carefully inspect it, and identify precisely
whether it could lead to an attack on the concrete protocol. This typically depends on details of the
plaintext encoding used by the protocol (json, concatenation, lengths, etc).
Automated analysis setup We split the models from Section 5.4 into two general classes:

1. collisions and nonce misuse (Coll, NR, Leak)
2. explicit functionalities (Forge, Com, Tag)

Class 1) corresponds to a set of weaknesses that we can check on any protocol using an AEAD scheme.
We build a library of those models and a script that verifies the security of a given protocol against those
models. Class 2) only makes sense on protocols that do rely on some explicit functionality, like an explicit
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commitment. Hence, we only model them in the relevant cases where the protocol relies on these explicit
functionalities.

For our set of case studies, we want to explore their security guarantees against all our AEAD models.
To do so, we implemented a Python script that for a given protocol, automatically executes Tamarin for
all possible combinations of threat models, and provides a summary of the secure or insecure scenarios.

When doing this exhaustively, it would mean running Tamarin 210 times for each case study of class
1) and up to 219 times for class 2). We optimize the script by re-using strict implications of some of
our models, e.g. FullKeyColl makes the attacker strictly more powerful than KeyColl. Additionally, some
models can be restricted to not be used at the same time with others. This reduces the possible model
combinations to 29 (and up to 213 for class 2).) As this is still a huge number of calls, we can use the same
implications mentioned before to do some dynamic pruning. The number of prunable model combinations
can vary a lot depending on the case study. The total Tamarin calls that our script automatically made for
our case studies can be found in Table 5.3. Using these implications is useful, both for dynamic pruning
and to optimize the search, but also to provide a more compact view of the final results, only displaying
non-redundant secure or insecure scenarios. Our script provides us with a summary of the security of a
scheme, that can then be formatted in a table as illustrated in Table 5.4.

A limiting factor in our analysis is the run-time of the protocol models. As the problem of automatically
analyzing protocol models is in general undecidable, running Tamarin could lead to non-termination. We
deal with this possibility by introducing timeouts into our experiments such that for each Tamarin call,
we either find a proof, a potential attack trace, or we have a timeout.

Using our technique, which automatically modifies the model for each of the AEAD model combinations,
can lead to non-termination more easily, especially on fragile models that were manually tailored toward
termination. We selected the value of the timeout depending on the run-time of the protocol model with
the classic AEAD model in use.

As an exhaustive search might not be feasible for every future case study, in Section 5.5.2 we describe
how one can correctly choose the right AEAD model for a certain protocol model.

5.5.2 Choosing the Correct AEAD Model

Whereas using the fully automated methodology from the previous section covers all AEAD models, it
can be out-of-scope for complex and detailed protocol models. As complex protocol models often need
manual work to aid automation, it might be more feasible to a priori choose the correct AEAD model for
the instantiations actually used in the protocol. We demonstrate a way to choose the right combinations
of AEAD models on the example of a toy protocol using AES-GCM. Assume that the protocol explicitly
adds the functionality that compares the tag instead of using authenticated decryption of the ciphertext:

1. As a first step check whether your protocol specification forbids sending the nonce used for AES-GCM.
If no, add Leak to you AEAD model combination.

2. Check Table 5.1 and see if the the AEAD is resistant to nonce-reuse attacks. For AES-GCM we see
that an XOR of plaintexts can be leaked and there is the possibility to forge ciphertexts. Here, add
k-NR to the AEAD models. As this is an over-approximation of the before-mentioned weakness,
you can also decide to instead of leaking the encryption key, to leak the XOR of plaintext (if your
tool of choice allows modeling of XOR) or to output a forged ciphertext under the given key.

3. When checking Table 5.1 again, AES-GCM is not collision resistant. Then we check Table 5.2
and see that AES-GCM is also vulnerable to collisions of type KeysColl (,KeyColl), and nColl. As
KeyColl is strictly stronger than KeysColl, we only need to add KeyColl and nColl to the set of
combinations. However, if we would like to future proof the protocol (and we know that AES-GCM
is not collision-resistant) we could also decide to add the strongest collision models, e.g. FullKeyColl,
instead. With this, we could see if the protocol relies on collision resistant AEADs.

4. As the described protocol explicitly uses AES-GCM tags we would also add the Tag models. As
collisions on tags are as hard or even easier than finding collisions on the AEAD scheme itself,
we would recommend to use at least the same kind of collision types for tags as well, for instance
FullKeyTag.
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Protocol Threat Model Content Agreement

GPG SED Full-mColl ∧ Full-nColl ∧ Full-adColl ∧ Forge ∧ k-NR ∧m-NR ∧ Leak ✓

KeyColl ✗

GPG SEIPDv2 FullKeyColl ∧ Full-nColl ∧ Full-adColl ∧ Forge ∧ k-NR ∧m-NR ∧ Leak ✓

Full-mColl ✗

Scuttlebutt Full-adColl ∧ Forge ∧ k-NR ∧m-NR ∧ Leak ✓

KeysColl ∨ Full-mColl ∨ nColl ✗

Table 5.4: Example of how our methodology can, given a protocol and a security property, automatically establish
the minimal requirements on the AEAD guarantees for the property to hold. We achieve this by analyzing all
possible AEAD models, here applied to content agreement for GPG SED, GPG SEIPDv2, and Scuttlebutt. For
each analyzed protocol, we obtain the strongest combination of AEAD models under which content agreement
holds (✓), which directly yields minimal requirements on the AEAD. The weakest combinations of AEAD models
under which a potential violation of the target property (here content agreement) is found is marked with (✗).

5.5.3 Key Secrecy

YubiHSM The YubiHSM [221] is hardware security module by Yubico to generate, store and manage
cryptographic key material. It implements an API to strictly separate key usage from its applications, to
mainly prevent full or partial leakage of secure key material.

In earlier versions of the YubiHSM, [153] found an attack on the YubiHSM API to leak secret keys by
exploiting the ability of the user to specify nonces. With the underlying AEAD not being nonce-reuse
resistant, they were able to leak secret keys.

By now, this very nonce-reuse issue is known and well-studied throughout the community. However,
just recently, Samsungs Trustzone [202] was found to have the same kind of attack, demonstrating that
nonce misuse is still worth paying attention towards.

When instantiating the original Tamarin model by [153] with our AEAD library, we efficiently
rediscover the attack using k-NR.

5.5.4 Authentication

SFrame SFrame is a communication protocol developed by CoSMo Software and Google [182] with the
goal to be used for online audio and video meeting protocols. It uses end-to-end encryption and is made
to support groups of multiple users.

[131] found forgery attacks on the authentication of the SFrame protocol. For a malicious user of the
protocol, who is part of a group, it is enough to find collisions on the authentication tags of the used
AEAD to break authentication of the messages. This is mainly possible by only explicitly authenticating
on the tags of AEADs instead of the full ciphertexts. They reported the attack to be practical on:

1. schemes with short tag length, or
2. schemes that allow to easily find collisions with key knowledge.

We modeled the SFrame protocol with its groups and the sending and receiving of frames. We modeled it
against an attacker with the power to join groups and the power to act as a group participant. Using
our extended AEAD models, which allows adding explicit tags, Tamarin could quickly find the reported
attack by using collisions under the tags.

When exploring all possible scenarios of our AEAD models, Tamarin also found a potential attack
on the same authentication property as in the original attack. Executing it would require to produce a
full AEAD ciphertext collision (Full-mColl & Full-nColl) instead of a collision on the tags. However, this
attack does not appear to be practical and directly implies collision of tags as a collision on the whole
ciphertext is computationally harder.
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5.5.5 Accountability

Facebook Message Franking In the setting of End-to-End encryption, reporting the abusive
behavior of users seems hard to achieve without weakening security guarantees. In 2016, Facebook
introduced Message Franking [110] to allow reporting of offensive message attachments. The idea is for a
recipient of a malicious message attachment to use a cryptographically sound way to prove that it was
sent by a specific sender.

[102] found an attack against Facebook’s message franking mechanism in 2018. The practical attack
they demonstrated involved finding a collision on the used AEAD’s ciphertext. As the sender in this
scenario was able to choose the cryptographic keys, messages, and the nonce, they showed how to compute
two keys k1 and k2, two message attachments (for which one is the malicious one) m1 and m2, and a
nonce n, such that the encryption of m1 under n and k1 leads to the same ciphertext as the encryption of
m2 under k2 and n.

After reporting this attack to Facebook, Facebook immediately patched it. That attack demonstrates
the practicality and the impact of collision attacks on real-world schemes.

To show that such attacks can be found on the design level by our analysis, we modeled Facebook’s
Message Franking mechanism in Tamarin. In the initial setting, with the attacker being a malicious
sender, we could automatically find the reported attack in a few seconds using the KeysColl model.

In addition to analyzing the property violated by the initial attack – can a malicious sender avoid
detection? – we also studied the converse property – can a malicious receiver create a fake report? The
converse property got first reported as a concern by [122].

We thus additionally model a malicious receiver that tries to report an honest user. In this threat
model, we, therefore, look at frameability properties. Being able to frame another party can be severe in
practice, for instance, by falsely accusing another person of having sent illegal material. After testing
our AEAD models against it, we could re-discover a potential attack [122] on the previously property.
However, this attack would require finding a collision on the ciphertext for which one key, the nonce, and
the ciphertext itself need to be fixed. Unless further weaknesses of AEADs are found, in this particular
case over AES-GCM, this attack is, as of now, impractical.

Web Push The Web Push protocol provides means for a server to push notifications to clients by
depositing an encrypted notification to the push service that will be fetched by the client when they go
online. Web Push is standardized at IETF [211], and, for instance, Apple is planning to integrate it into
its ecosystem.

Web Push aims to provide confidential push notifications from a server to its users and to ensure
certain privacy properties, like the the unlinkability of unique identifiers through the push notification
content. Given the wide array of possible applications and concrete use cases, we consider it interesting
to check whether the server is accountable or not: can a client prove to a third party that it received a
particular push notification from a given server? In contexts where push notifications trigger important
actions from a user, protecting users from malicious servers that would try to make the user act and then
be able to claim never having done so is crticial. The importance of this guarantee would depend on the
actual deployment and usage of Web Push; we are currently in an ongoing discussion with IETF on this
point. To include this case in our threat model, we thus consider a malicious server controlled by the
attacker and verify if it is possible to upload one notification that could be interpreted in two different
ways, for instance, offensively or benignly.

Our analysis reports that this guarantee does not hold w.r.t. Full-mColl: a single notification can be
decrypted validly to two different plaintexts, depending on whether we use the current or deprecated public
key of the user. As Full-mColl is a strong over-approximation an attack first seemed impractical. After
manual inspection of the counterexample trace given by Tamarin, we could see that this theoretical attack
carries over to the real world: WebPush relies on AES-GCM, and we can then reuse similar techniques
as for Facebook Message Franking attack: concretely, an attacker can brute-force over the salt used to
produce a nonce/key pair to encrypt the message to find a collision over the unauthenticated part of the
ciphertext, and then inject at the end of the ciphertext the needed block to create a collision over the tag.
The practicality of the attack depends on the encoding of the plaintexts, and the severity depends on
whether the server being not accountable is critical given the use case.
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5.5.6 Content Agreement

We focus now on analyzing the design of multiple messaging mechanisms. We study them in the multiple-
recipient setting, trying to answer the following question: Can a dishonest member of the group send a
single message that will be read differently by some recipients? This question leads us to analyze Content
Agreement in the following contexts:

• end-to-end encrypted group messaging applications, like WhatsApp or Signal, or
• dedicated encrypted message mechanism, like GPG, Saltpack, or Scuttlebutt.

Our study reveals that there is a discrepancy between existing guarantees, which we summarize in Table 5.5.

Protocol Content Agreement Content Agreement Noteswith CR without CR

WhatsApp ✓ ✗ Practicality depends on plaintext encodings
Scuttlebutt ✓ ✗ Practical
GPG SED (to be deprecated) ✓ ✗ Practical
GPG SEIPD v1/v2 ✓ ✓ Only theoretical attacks
SaltPack ✓ ✓ Only theoretical attacks

Signal ✗ ✗ Pairwise channels, hence no content agreement

Table 5.5: Content Agreement summary, with and without Collision Resistance (CR): for a set of group messaging
applications and multiple recipients message sending mechanism, we summarize whether a given message can
yield to different message for multiple users. In this table, we mention that the Signal application does not meet
consistency as a side-remark: as Signal uses pairwise channels to send messages in groups, a different message can
be sent to each member of the group.

WhatsApp groups We model the design of WhatsApp’s group messaging. Because the code of
WhatsApp is not available, we constructed our model based on the available information provided in
its whitepaper [130, p. 10]. While it relies on the Signal X3DH protocol to establish pairwise channels
between the members of the groups, sending a message is slightly different:

• The sender generates a so called sender key (also part of the Signal library), and sends this key to
each participant over the corresponding pairwise channel;

• To send a message, there is then a single encrypted payload which is uploaded to the server.

While content agreement is trivially broken in Signal itself because of the pairwise channels, it could
intuitively be expected within the setting of group messaging. It is however not guaranteed, as reported
by our model. Our model captures a group of three people, where one of them is the attacker. We then
aim to verify that a given message uploaded to the server will yield the same plaintext for all group
members. Our automated analysis reports an attack on this property when enabling ciphertext collisions
under KeyColl.

The group messaging mechanism relies on an AES-CBC encryption which is then signed with an
independent key. This is similar to the Encrypt-then-Mac with unrelated keys scenario. It means that
the complexity of mounting an attack in practice is equivalent to the complexity of finding meaningful
collisions over AES-CBC. We have seen that with the current capabilities, this strongly depends on the
concrete encoding of plaintexts, and whether we can find so-called polyglot plaintexts [2]. As WhatsApp
is closed source, verifying the practicality of the attack would require to reverse engineer the full message
encoding, which we consider out of scope for this paper. However, given the variety of possible message
contents (notification, GIFs, media, React, . . . ) it is likely that the encoding would be loose enough to
carry out the attack.
GPG GPG is the golden standard for file and mail encryption and signing. We review its ongoing
cryptographic update [144]. It contains three different encryption formats:

• Symmetrically Encrypted Data (SED) – the legacy encryption with the dedicated GPG-CFB
encryption mode. It is now marked as deprecated, and accepting such messages must raise a
warning.
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• Version 1 Symmetric Encrypted Integrity Protected Data (SEIPD v1) – the legacy authenticated
encryption format, not deprecated.

• SEIPD v2 – the current proposal relying on AEADs.

SED is not integrity protected, and is simply a symmetric encryption with a dedicated mode. SEIPD v1 is
a variant, still relying on a dedicated encryption mode, and given the plaintext p, returns the encryption of
p∥SHA1(p) (abstracting away some message formatting). SEIPD v2 relies on AEADs, with the specificity
that the plaintext can be split into chunks, each chunk corresponding to a call with the same AEAD and
same key but different nonces. A final specific tag is always appended to the ciphertext by computing a
final AEAD over a null plaintext with the same key and a nonce depending on the number of chunks.

We modeled all three encryption modes, checking if an attacker can send the same message to different
recipients. In all cases, our automated analysis reported attacks, but under different collision capabilities.
That gives us the following practical consequences:

• SED is trivially broken, and even more so as we showed that collisions over the dedicated mode can
be found in constant time ([70, Appendix A]). The severity is however low as it is to be deprecated.

• We find that for a non collision resistant encryption, SEIPD v1 is theoretically broken, but appears
to be secure in practice. While the attacker can brute force the keys to try to come up with
collisions, the SHA1 value appended to the plaintext puts too many constraints over the collision.
This indicates however that if e.g. weak keys were found for AES, this could be attacked.

• The results are similar for SEIPD v2. By appending an additional call to the AEAD (either GCM,
EAX or OCB) with the same key, it implies that in practice, one would need to find not one collision,
but a pair of collisions, which greatly increases the complexity and makes the attack impractical.
Going back to the variants of known collision that are practical (Table 5.2), finding two collisions at
the same time has not been explored, and is for the moment an open question. As such, we consider
this to not be possible in practice as of now.

Scuttlebutt Scuttlebutt is a protocol that provides an authenticated append-only feed. The private
box feature [201] allows publishing encrypted messages that are uploaded in public and meant for multiple
recipients. In this case, Content Agreement appears to be valuable and intuitively expected.

We model the mechanism with a malicious sender, and Tamarin does report an attack under the
collision models KeysColl and nColl. Scuttlebutt uses the XSalsa20-Poly1305 AEAD, a variant of ChaCha20-
Poly1305 (which is in Table 5.2). Hence, this attack appears to be feasible under the condition that the
known attacks against ChaCha20-Poly1305 can be translated to XSalsa20-Poly1305.
SaltPack SaltPack is a proposed alternative to GPG. We modeled the surprisingly involved version 2
format [194].

Nonces and integrity packet checks are derived with multiple iterations of MACs and hashes. Notably,
after a fresh payload key k has been asymmetrically encrypted for each of the recipients public key, a
MAC is computed for each recipient. The payload key k is used both to encrypt the desired plaintext
Enc(k, N1, ∅, m) , but also the sender public key spk with Enc(k, N2, ∅, spk). We use ∅ to denote empty
headers.

On this protocol, Tamarin does report an attack with Full-mColl. Intuitively, it seems that the scheme
ensures consistency, as we need once again to come up with a pair of collisions for the desired plaintext
m1, m2:

Enc(k1, N1, ∅, m2) = Enc(k2, N1, ∅, m1)
Enc(k1, N2, ∅, spk) = Enc(k2, N2, ∅, spk)

This is a similar kind of collisions that is required for the GPG case, and is once again not possible in
practice with respect to the current techniques.
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6.1 Introduction

A Key Encapsulation Mechanism (KEM) [68] is a common building block in security protocols and
cryptographic primitives such as hybrid encryption. Intuitively, a KEM can be seen as a specialized
version of Public Key Encryption (PKE) that, instead of encrypting a payload message, specifically
serves to generate and share a symmetric key between sender and recipient. During the last decade,
many post-quantum secure KEMs have been proposed, see e.g., [3, 10, 24, 31, 47, 48, 85, 128, 171, 179].
This has made KEMs a prime candidate to replace Diffie-Hellman constructions, for which no practical
post-quantum secure scheme is currently available.

The traditional security notion for a KEM is a version of IND-CCA that is directly inherited from
its related Public Key Encryption (PKE) notion. Intuitively, a KEM is (IND-CCA) secure if, given
a ciphertext, an adversary that does not have the corresponding private key cannot tell the difference
between a random key and the encapsulated key. Additionally, robustness-like properties have been
proposed for KEMs in [123], which similarly inherit from their PKE counterparts. Initially, “robustness”
[1] was defined in the PKE setting as the difficulty of finding a ciphertext valid under two different
encryption keys. Phrased differently, a PKE is robust if a ciphertext “binds to” (only decrypts under) one
key.

In this part of the thesis, we set out to enable automated analysis of KEM-based security protocols
that can take the differences between concrete KEMs into account. We first systematically explore the
possible binding properties of KEMs. Our work is similar in spirit to explorations in the space of digital
signatures [49, 79, 134, 186] and authenticated encryption [69, 102, 122, 157], where recent works have
identified many desirable binding properties for these primitives that could have prevented real-world
attacks.

Our systematic analysis leads to the formulation of several core binding properties for KEMs, with
multiple variants. Whereas traditional KEM robustness properties only considered binding values to
a specific ciphertext, we propose variants that bind values to a specific output key. We argue this is
much more in line with viewing a KEM as a one-pass key exchange. Similarly, implicitly rejecting KEMs
resemble implicitly authenticated key exchanges, where correct binding properties of the established key
prevent classes of unknown key share attacks [40]. We relate our properties to properties previously
reported in the literature, as well as related notions such as contributory behavior.

We provide a new hierarchy of our binding properties and use it to develop novel symbolic analysis
models that reflect the binding differences between concrete KEMs. We implement our models in the
framework of the Tamarin prover and apply the methodology to several case studies.

Notably, our automated analysis uncovers an attack on an example key exchange protocol in the Kyber
documentation when instantiated with another KEM, which proves that the protocol design in fact relies
on properties of the used KEM beyond just IND-CCA. We coin this type of attack a “re-encapsulation
attack”, as it relies on the adversary encapsulating keying material that it previously obtained from
decapsulation, causing two ciphertexts to decapsulate to the same key. We also show how our novel
properties can prove the absence of such attacks.
Outline We provide background and motivate our binding properties by the example of the re-
encapsulation attack in Section 6.2, before developing our family of new security notions in Section 6.3.
We then turn to developing our automated symbolic analysis in Section 6.4 and report on case studies in
Section 6.5.
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6.2 Background

A key encapsulation scheme [68] KEM consists of three algorithms (KeyGen, Encaps, Decaps). It is
associated with a key space K and a ciphertext space C. The probabilistic key-generation algorithm
KeyGen creates a key pair (pk, sk) where pk is the public key and sk is the secret key. Given a public key
pk as input, the probabilistic encapsulation algorithm Encaps returns a ciphertext c ∈ C and a key k ∈ K.
In this paper, we sometimes want to view Encaps as a deterministic algorithm with explicit randomness r,
in which case we write Encaps(pk; r). To avoid ambiguity, we refer to k as the output key or the shared
secret. The deterministic decapsulation algorithm Decaps uses a public key pk, a secret key sk, and a
ciphertext c ∈ C to compute an output key k ∈ K or the error symbol ⊥ that represents rejection. If
decapsulation never returns ⊥, we call KEM an implicitly rejecting KEM. Otherwise, we call it an explicitly
rejecting KEM. We say that a KEM is ϵ-correct if for all (sk, pk)←$ KeyGen() and (c, k)←$ Encaps(pk), it
holds that Pr[Decaps(sk, c) ̸= k] ≤ ϵ.

The security of a KEM is defined through indistinguishability of the output key k ∈ K computed by
Encaps against different adversaries. The standard security notion is resistance against a chosen-ciphertext
attack (IND-CCA) [48, 203]. We recall the formal definition of the IND-CCA experiment shown in
Figure 6.1.

IND-CCAKEM
A :

(sk, pk)←$ KeyGen()
(c0, k0)←$ Encaps(pk)
k1 ←$ K
b←$ {0, 1}
b′ ←$AD(sk,pk,·)(c0, kb, pk)
return b = b′

D(sk, pk, c):
if c ̸= c0 then

k ← Decaps(ct, sk)
return k

Figure 6.1: IND-CCA experiment for KEMs. Originally introduced in [68], we re-use syntax from [48].

First, the experiment creates a key pair (sk, pk) and encapsulates against the public key, returning (c0, k0).
Next, it samples a random key k1 from the key space and a random bit b. Then, the adversary A is
given c0, the key corresponding to the bit b, and pk, and outputs its guess b′. Finally, the adversary
wins if they correctly guessed b, i.e., b = b′. During the experiment, the adversary has access to the
decapsulation oracle Decaps(sk, ·), which returns the decapsulation of any ciphertext c except for the
challenge ciphertext c0.

6.2.1 Fujisaki-Okamoto (FO) Transform

A common construction for KEMs is the FO transform [116]. The FO transform can be used to turn
any weakly secure (i.e., IND-CPA) public-key encryption scheme into a strongly (i.e., IND-CCA) secure
KEM scheme by hashing a random message (and optionally other values) into an output key. Since the
FO transform gives cryptographers a straightforward way to create a post-quantum secure KEM from a
post-quantum secure PKE, these KEMs have surged in popularity and are now the de-facto standard
post-quantum secure KEMs. All the finalists of the KEM NIST PQC [179] process are FO-KEMs.

6.2.2 Re-encapsulation Attacks

Our initial motivation for this work was to uncover the subtle difference in guarantees offered by different
KEM designs and to analyze their impact on protocols. As we will see later, this leads to a hierarchy of new
binding properties, which we used to build an automated analysis that discovered new attacks. Notably,
Tamarin found instances of a class of attacks that we call re-encapsulation attacks. While re-encapsulation
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attacks were not our original motivation, they clearly illustrate important binding properties that were
not captured by previous security notions.

Intuitively, re-encapsulation attacks exploit the fact that for some KEMs, it is possible to decapsulate
a ciphertext to an output key k and then produce a second ciphertext for a different public key that
decapsulates to the same k. This can be possible even for robust IND-CCA KEMs since neither IND-
CCA nor robustness prescribe that the output key binds a unique public key. At the protocol level, a
re-encapsulation attack can typically manifest as an unknown-key-share attack, where two parties compute
the same key despite disagreeing on their respective partners.

Unfortunately, strong robustness notions that already exist for KEMs do not prevent this class of
attacks. Robustness properties reason about a single ciphertext c that should not decapsulate to the
same key under different key pairs. However, a re-encapsulation attack revolves around two different
ciphertexts: based on one party’s ciphertext, the attacker creates a different ciphertext that decapsulates
to the same key as the initial one by reusing the randomness. We refer to Section 6.5 for concrete examples
of re-encapsulation attacks we discovered on, e.g., Kyber.

6.3 Generalizing New Security Notions for KEMs

We now turn to our first main objective: to establish a generic family of binding properties of KEMs. We
first identify the elements that may be candidates for binding. The syntax of a KEM includes a long-term
key pair, a ciphertext, and an (output) key. In some formalizations, the randomness of the KEM is made
explicit, but we are looking for universal black-box notions that do not require us to know the internals of
a KEM. With respect to the long-term key pair, we note that we want the guarantees to be relevant for
both sender and recipient, which means we only consider the public key as the identifying aspect of the
key pair. This leaves us with pk, ct, and k: we expect that for each invocation of the KEM’s encapsulation
with the same pk, the outputs ct and k would be unique.

We can thus wonder: if we have a specific instance of one of these, does that mean the others are
uniquely determined? If we have a ciphertext, can it only be decapsulated by one key?

6.3.1 Design Choices

To define our notions, we make the following design decisions:

1. We consider the set of potential binding elements BE = {pk, ct, k}.
2. We will consider if an instance of a set P ⊂ BE “binds” some instance of another set of elements

Q ⊂ BE with respect to decapsulation with the KEM. Thus, “P binds Q” if for fixed instances of
P there are no collisions in the instances of Q.

3. When using a KEM, pk is re-used in multiple encapsulations by design. Thus, pk does not bind any
values on its own, and we hence exclude it from occurring in P alone. However, ciphertexts or keys
might bind a public key pk, so it may occur in Q alone.

4. Adding multiple elements in the set Q corresponds to a logical “and” of the singleton versions, i.e.,
we have that P binds {q1, . . . , qn} iff for all i ∈ [n] . P binds {qi}. We therefore choose to focus on
the core properties, i.e., with |Q| = 1.

5. We require P and Q to be disjoint: elements that would occur on both sides are trivially bound.
Additionally, we require both P and Q to be non-empty.

6. For all of our properties, we will consider honest variants (i.e., the involved key pairs are output by
the key generation algorithm of the KEM), leakage variants (i.e., the involved key pairs are output
by the key generation algorithm of the KEM and then leaked to the adversary), and malicious
variants (i.e., the adversary can create the key pairs any way they like in addition to the key
generation).

Based on the above choices, we have five choices for P . We refer to this set of choices as P ={
{k}, {ct}, {k, ct}, {pk, k}, {pk, ct}

}
. For Q, we can choose from the set Q =

{
{pk}, {k}, {ct}

}
. Without

disjointness this would yield 5× 3 options, but since we require the sets to be disjoint, this yields seven
combinations.
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ID P Q Property Explanation Relation to existing notions

1 {k} {ct} X-BIND-K-CT Output key binds the ciphertext.
2 {k} {pk} X-BIND-K-PK Output key binds the public key.
3 {ct} {k} X-BIND-CT -K Ciphertext binds the output key.
4 {ct} {pk} X-BIND-CT -PK Ciphertext binds the public key. HON -BIND-CT -PK is equivalent

to SROB [123].
5 {k, ct} {pk} X-BIND-K, CT -PK Together, the output key and ciphertext

bind the public key.
HON -BIND-K, CT -PK is equiva-
lent to SCFR [123].

6 {k, pk} {ct} X-BIND-K, PK-CT Together, the public key and the output
key bind the ciphertext.

LEAK -BIND-K, PK-CT is equiva-
lent to CCR [16].

Table 6.1: The six core instantiations of our generic binding property X-BIND-P -Q before choosing X ∈
{HON , LEAK , MAL}.

One of these seven cases is the case where P = {pk, ct} and Q = {k}. This property holds when the
public key pair and the ciphertext, which are the inputs to Decaps, bind the output key. If Decaps is
deterministic, this is trivially true. We will therefore not consider this case in the remainder of the paper,
leaving us with six combinations that we will investigate further, which we show in Table 6.1.

6.3.2 Naming Conventions

Naming security notions is hard; once names are fixed, they tend to stick around for (too) long. We opt
here for clarity and being descriptive at the cost of some verbosity. In the literature, it is more common to
collapse all of these properties into “robustness” or “collision-freeness”, but this becomes very ambiguous
because one can imagine many subtle variants, depending on the exact robust/collision-free element in the
construction. This has lead to a long list of non-descriptive names in the literature, including: Robustness,
Fuller Robustness (FROB), even Fuller Robustness (eFROB), CROB, KROB, SROB, USROB, WROB,
XROB, SCFR, WCFR, CCR, etc. In contrast, we illustrate our descriptive naming scheme for our binding
properties in Figure 6.2.

Q ∈ Q =
{
{pk}, {k}, {ct}

}
P ∈ P =

{
{k}, {ct}, {k, ct}, {pk, k}, {pk, ct}

}
X ∈ {HON , LEAK , MAL}

X-BIND-P -Q

Figure 6.2: Design space and naming conventions for our security properties: For a KEM scheme that is X-BIND-
P -Q secure, we say that “P [honestly|leak|maliciously] binds Q”, using “honestly” when X = HON , “leak” when
X = LEAK , and “maliciously” when X = MAL. We commonly omit set brackets in the notation when clear
from the context, and we use uppercase for all characters. For example, HON -BIND-CT -P K corresponds to “ct
honestly binds pk.”

6.3.3 Generic Binding Notions of KEMs

We now introduce the generic security notion for our class of binding properties. In Figure 6.3 we show
the generic game for X ∈ {HON , LEAK}, and in Figure 6.4 we show the game when X = MAL.

Definition 5. Let KEM be a key encapsulation mechanism. Let X ∈ {HON , LEAK , MAL}, let P ∈ P
and Q ∈ Q such that P ∩Q = ∅. We say that KEM is X-BIND-P -Q-secure iff for any PPT adversary A,
the probability that X-BIND-P -QKEM

A returns 1 (true) is negligible.

In our definitions, X ∈ {HON , LEAK , MAL} indicates the adversary’s control over the considered
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X-BIND-P-QKEM
A :

sk0, pk0 ← KeyGen()
sk1, pk1 ← KeyGen()
if pk ∈ Q : b← 1
else if pk ∈ P : b← 0
else : b ∈ {0, 1}, st← A()
sk1, pk1 ← skb, pkb

if X = HON : ct0, ct1 ← ADb′ (skb′ ,·)(pk0, pk1, st)
if X = LEAK : ct0, ct1 ← A(pk0, sk0, pk1, sk1, st)
k0 ← KEM.Decaps(sk0, pk0, ct0)
k1 ← KEM.Decaps(sk1, pk1, ct1)
if k0 = ⊥ ∨ k1 = ⊥ : return 0
// A wins if ¬

(
(∀x ∈ P . x0 = x1) =⇒ (∀y ∈ Q . y0 = y1)

)
return ∀x ∈ P . x0 = x1 ∧ ∃y ∈ Q . y0 ̸= y1

Figure 6.3: Generic game for our new binding notions X-BIND-P-Q for X ∈ {HON , LEAK}.

MAL-BIND-P-QKEM
A :

g, st← A(st)
if g = 1 :

(sk0, pk0), (sk1, pk1), ct0, ct1 ← A(st)
k0 ← KEM.Decaps(sk0, pk0, ct0)
k1 ← KEM.Decaps(sk1, pk1, ct1)

if g = 2 :
(sk0, pk0), (sk1, pk1), r0, ct1 ← A(st)
k0, ct0 ← KEM.Encaps(pk0; r0)
k1 ← KEM.Decaps(sk1, pk1, ct1)

if g ̸∈ {1, 2} :
(sk0, pk0), (sk1, pk1), r0, r1 ← A(st)
k0, ct0 ← KEM.Encaps(pk0; r0)
k1, ct1 ← KEM.Encaps(pk1; r1)

if k0 = ⊥ ∨ k1 = ⊥ : return 0
// A wins if ¬

(
(∀x ∈ P . x0 = x1) =⇒ (∀y ∈ Q . y0 = y1)

)
return ∀x ∈ P . x0 = x1 ∧ ∃y ∈ Q . y0 ̸= y1

Figure 6.4: Generic game for our new binding notions MAL-BIND-P-Q. The adversary can use g to choose
whether they want to find a collision between two calls to Encaps, Decaps or a single call to both, in line with [111].

key pairs. In the honest case X = HON , two honestly generated key pairs are considered, and we give the
adversary access to a decapsulation oracle Db′(skb′ , ·), where b′ ∈ P(0, 1), that they can use to decapsulate
ciphertexts with either secret key. For the leak case X = LEAK , we also give the adversary access to
both secret keys. In the malicious case X = MAL, the adversary can choose or construct the key pairs in
any way they want. For X ̸= HON we do not need a decapsulation oracle since the adversary already has
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the secret keys.
If X ∈ {HON , LEAK}, we check whether pk ∈ P or pk ∈ Q and choose the key pairs for the second

call to Decaps accordingly. For X = MAL, the adversary chooses the key pairs.
The difference between X = LEAK and X = HON is whether the adversary only has access to a

decapsulation oracle or has access to the secret keys. Given the secret keys, the adversary can decapsulate
ciphertexts and learn intermediate values of the decapsulation. If they only have the oracle, they only
learn the output of decapsulation but no intermediate values.

6.3.4 Relating Binding to Contributive Behavior

In the context of other cryptographic primitives, the notion of contributive (or contributory) behavior
exists. Intuitively, in a two-party protocol that yields some randomized output, a protocol is contributive
if the output is not only determined by one of the parties, but both contribute to the results.

For example, in a standard FO-KEM such as KEM⊥
m from [127], the randomness sampled for encapsu-

lation is the direct (and only) input for the key derivation function (KDF). Thus, for KEM⊥
m, the only

party that contributes to the output key is the sender. We say that such KEMs are non-contributory and
can enable re-encapsulation attacks, as described in Section 6.2.2.

In contrast, if the KEM’s key binds the public key (e.g., by including the public key in the KDF), then
the KEM satisfies LEAK -BIND-K-PK, and we say that the KEM is contributory because the recipients’
key contributes to the output key.

If the KEM’s key binds the ciphertext (LEAK -BIND-K-CT ), it is not immediately clear whether this
is enough to make the KEM contributory, and it depends on the collision freeness [123] (SCFR) of the
underlying PKE. If the underlying PKE is not SCFR, i.e., it is possible to decrypt a single ciphertext to
the same message with different secret keys, then the KEM is not contributory. The reason for that is
that a single ciphertext is valid for multiple public keys, and thus the identity of the receiver is not bound
by including the ciphertext in the output key of the KEM. On the other hand, if the PKE is strongly
collision free (or even robust) then including the ciphertext makes the KEM contributory.

6.3.5 Relationship to Other Properties

Our generic security notions cover a wide array of different properties and generalize existing security
properties in the literature. In this section, we give a short overview of other properties that can be
expressed using our generic notions.

When P = {ct} and Q = {pk}, our generic games resemble different robustness notions. For example,
HON -BIND-CT -PK corresponds to strong robustness (SROB) from [123] and HON -BIND-K, CT -PK
corresponds to strong collision freeness (SCFR) from [123]. Interestingly, the strong robustness notion
from [1], which coined the term in the context of PKEs, is weaker than both our HON -BIND-CT -PK
notion and the strong robustness notion from [123], since they both allow the adversary to query an oracle;
this was not possible in the original definition. As an example, we compare our notions to the SROB and
SCFR notions from [123] in Figure 6.5.

The properties introduced for PKEs in [111] are formulated analogously to ours: complete robustness
(CROB) resembles MAL-BIND-CT -PK, and their intermediate notion unrestricted strong robustness
(USROB) resembles our HON -BIND-CT -PK notion.

Our HON -BIND-K, CT -PK is equivalent to the strong collision freeness property from [123]; it is a
weaker version of SROB, where an adversary has to decapsulate a single ciphertext to the same output
key for distinct public keys.

LEAK -BIND-K, PK-CT matches the ciphertext collision resistance (CCR) property for KEMs
from [16].

6.3.6 Relations and Implications

In this section, we summarize the results by [73] on the relations between our various binding notions.
The proofs and separating examples can all be found in [73], and we only show the main results here.
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SROB-CCAKEM
A :

(sk0, pk0)← KeyGen()
(sk1, pk1)← KeyGen()
ct← AD(·,·)(pk0, pk1)
k0 ← KEM.Decaps(sk0, pk0, ct)
k1 ← KEM.Decaps(sk1, pk1, ct)
return k0 ̸= ⊥ ∧ k1 ̸= ⊥

SCFR-CCAKEM
A :

(sk0, pk0)← KeyGen()
(sk1, pk1)← KeyGen()
ct← AD(·,·)(pk0, pk1)
k0 ← KEM.Decaps(sk0, pk0, ct)
k1 ← KEM.Decaps(sk1, pk1, ct)
return k0 = k1 ̸= ⊥

HON -BIND-CT -PKKEM
A :

sk0, pk0 ← KeyGen()
sk1, pk1 ← KeyGen()
ct← ADb′ (skb′ ,·)(pk0, pk1)
k0 ← KEM.Decaps(sk0, pk0, ct)
k1 ← KEM.Decaps(sk1, pk1, ct)
if k0 = ⊥ ∨ k1 = ⊥

return 0
return pk0 ̸= pk1

HON -BIND-K, CT -PKKEM
A :

sk0, pk0 ← KeyGen()
sk1, pk1 ← KeyGen()
ct← ADb′ (skb′ ,·)(pk0, pk1)
k0 ← KEM.Decaps(sk0, pk0, ct)
k1 ← KEM.Decaps(sk1, pk1, ct)
if k0 = ⊥ ∨ k1 = ⊥

return 0
return k0 = k1 ∧ pk0 ̸= pk1

LEAK -BIND-CT -PKKEM
A :

sk0, pk0 ← KeyGen()
sk1, pk1 ← KeyGen()
ct← A(pk0, sk0, pk1, sk1)
k0 ← KEM.Decaps(sk0, pk0, ct)
k1 ← KEM.Decaps(sk1, pk1, ct)
if k0 = ⊥ ∨ k1 = ⊥

return 0
return pk0 ̸= pk1

LEAK -BIND-K, CT -PKKEM
A :

sk0, pk0 ← KeyGen()
sk1, pk1 ← KeyGen()
ct← A(pk0, sk0, pk1, sk1)
k0 ← KEM.Decaps(sk0, pk0, ct)
k1 ← KEM.Decaps(sk1, pk1, ct)
if k0 = ⊥ ∨ k1 = ⊥

return 0
return k0 = k1 ∧ pk0 ̸= pk1

Figure 6.5: At the top, the strong robustness and strong collision freeness definitions from [123]. In the middle, our
HON -BIND-CT -P K and HON -BIND-K, CT -P K definitions which correspond to SROB and SCFR respectively.
At the bottom, our LEAK -BIND-CT -P K and LEAK -BIND-K, CT -P K definitions which give the adversary
access to the secret keys.

We first formalize the ordering of our threat models.

Lemma 1. Let KEM = (KeyGen,Encaps,Decaps) be a key encapsulation mechanism. If KEM is MAL-
BIND-P-Q-secure, then KEM is also LEAK -BIND-P-Q-secure.

Lemma 2. Let KEM = (KeyGen,Encaps,Decaps) be a key encapsulation mechanism. If KEM is LEAK -
BIND-P-Q-secure, then KEM is also HON -BIND-P-Q-secure.

The next lemma states that adding elements to P or removing elements from Q weakens a property.
Intuitively, if, e.g., k binds pk, then k and ct also bind pk (since it is already bound by k).

Lemma 3. Let KEM = (KeyGen,Encaps,Decaps) be a key encapsulation mechanism. For X ∈ P(MAL, LEAK , HON ),
if KEM is X-BIND-P-Q′-secure and P ⊆ P ′ ∧Q ⊆ Q′, then KEM is also X-BIND-P ′-Q-secure.
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Theorem 1. Let KEM = (KeyGen,Encaps,Decaps) be a key encapsulation mechanism. For X ∈ P(MAL, LEAK , HON ),
if KEM is X-BIND-P-Q′-secure, X-BIND-Q-R′-secure and P ⊆ P ′, Q ⊆ Q′ ∪P ′, and R ⊆ R′, then KEM
is also X-BIND-P ′-R-secure.

Lemma 4. Let KEM be a KEM that is HON -BIND-CT -PK secure. Then KEM is also HON -BIND-
CT -K secure.

Lemma 5. Let KEM be a KEM that is LEAK -BIND-CT -PK secure. Then KEM is also LEAK -BIND-
CT -K secure.

Proposition 1. There exists a KEM scheme KEM that is MAL-BIND-CT -PK but not MAL-BIND-CT -
K.

MAL-BIND-P -Q

LEAK -BIND-P -Q

HON -BIND-P -Q

×

X-BIND-K-CT

X-BIND-PK, K-CT

X-BIND-K-PK X-BIND-CT -PK

X-BIND-CT -KX-BIND-K, CT -PK

Lemmas 4 and 5
(X ∈ {HON , LEAK})

Lemma 3

Lemma 3 Lemma 3

Lemma 1

Lemma 2

Figure 6.6: General hierarchy of binding properties for KEMs. An edge from A to B indicates that any KEM that
is A-binding is also B-binding. Missing edges represent the existence of separating examples, which can be found
in [73][Table 4]. The hierarchy left of the × denotes the implications between the different attacker capabilities
{MAL, LEAK, HON}. The hierarchy on the right of the × represents the implications between our binding
properties, independent of the attacker capabilities. We can combine both hierarchies by choosing a node from
the left and instantiating P and Q according to a node from the right, resulting in, for instance, an implication
between MAL-BIND-CT -P K and HON -BIND-K, CT -P K. For X = MAL, X-BIND-CT -P K and X-BIND-CT -
K are incomparable. The orange edge indicates that for X ∈ {HON, LEAK}, X-BIND-CT -P K implies X-BIND-
CT -K.

These results give rise to a hierarchy for our properties, which we visualize in Figure 6.6. We want to
highlight that for so-called implicitly rejecting KEMs, i.e., KEMs whose Decaps algorithm never returns
⊥, we establish a reduced hierarchy in Section 6.3.7 by showing that for these KEMs the ciphertext alone
cannot bind other values. As a result, implicitly rejecting KEMs cannot meet properties like HON -BIND-
CT -PK, i.e., be robust.

6.3.7 Implicitly Rejecting KEMs

Many real-world KEMs are so-called implicitly rejecting: Their decapsulation algorithm never returns
⊥ for a valid ciphertext and any valid private key. However, only when decapsulating with the correct
private key (corresponding to the public key used for encapsulation), the correct key is output.

Intuitively, an implicitly rejecting KEM is similar to an implicitly authenticated key exchange:
Successfully completing the protocol does not imply that someone else has the same key or sent any
message; instead, the guarantee is that only the correct party can possibly compute the same secret key.

Rejection Keys
When decrypting a ciphertext using implicitly rejecting KEMs, one of two outcomes can occur: if the
ciphertext is valid for the KEM key pair, decryption proceeds successfully. However, if the ciphertext is
invalid, the algorithm still yields an output key, referred to as the rejection key. In Lemma 6, we state a
useful, informal lemma that establishes how an implicitly rejecting KEM has to compute its rejection keys.
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Lemma 6. The rejection key computation of an implicitly rejecting KEM has to at least contain a secret
random value and the rejected ciphertext.

We do not give a formal proof of this statement. Instead, we argue informally why for any KEM that
does not compute its rejection keys in this manner, an adversary can actually distinguish the rejection
keys from a random key, turning them into an error flag. Note that this does not indicate a problem with
IND-CCA, as IND-CCA only requires “accepting” keys to be indistinguishable from a random key.

Recall that Decaps(sk, pk, ct) is a deterministic algorithm. Therefore, sk, pk, and ct are the only
possible inputs to the rejection key computation, as Decaps cannot sample random values. Notice that if
the computation only contains pk or ct, the adversary can easily compute the same rejection key since
only public values were used for the computation. Thus, a secret random value z has to be part of the
computation.

Due to Decaps’s deterministic nature, KEM designers are now left with two choices: Modify the
decapsulation API to include z directly or let the secret key sk contain z . Depending on the choice made
here and the origin of z (is it randomly sampled independent or dependent of sk?), it has implications on
the achievable binding properties which we will discuss in Section 7.2.

Lastly, we point out that the ciphertext needs to be part of the rejection key computation, as otherwise
there will be collisions: The rejection key would be the same for every ciphertext since sk and pk are static.
One might wonder whether the statement is no longer true if we allow for a probabilistic Decaps. We
argue that the statement still holds. If Decaps were to sample random, instead of using static randomness
contained in the secret key, different queries with the same secret key, public key, and ciphertext would
result in different rejection keys.

Modifying the Hierarchy
A trivial side effect of implicitly rejecting KEMs is that the ciphertext alone cannot bind any other value:
Any ciphertext will be accepted, and these will (with overwhelming probability) decapsulate to different
keys. A special case of this is the observation in [123] that an implicitly-rejecting KEM cannot satisfy
SROB, i.e., HON -BIND-CT -PK. We recall [73][Theorem 4.10]:
Theorem 2. An implicitly rejecting key encapsulation scheme KEM cannot satisfy X-BIND-CT -PK or
X-BIND-CT -K for X ∈ {HON , LEAK , MAL}.

MAL-BIND-P -Q

LEAK -BIND-P -Q

HON -BIND-P -Q

×

X-BIND-K-CT

X-BIND-K, PK-CT

X-BIND-K-PK

X-BIND-K, CT -PK

Lemma 3 Lemma 3

Lemma 1

Lemma 2

Figure 6.7: Restricted hierarchy of binding properties for implicitly rejecting KEMs, as X-BIND-CT -K and X-
BIND-CT -P K cannot be met by any implicitly rejecting KEM

Thus, for implicitly rejecting KEMs, we have a reduced hierarchy of relevant properties. The separation
between honest and malicious variants persists, but only four core properties are relevant and distinct,
which are the key-binding properties. This leaves us with a simple hierarchy with only eight relevant
binding properties overall for implicitly rejecting KEMs, which we visualize in Figure 6.7.

6.4 Symbolic Analysis of KEMs

We now turn to our second main objective: to develop a formal analysis framework for automatically
analyzing security protocols that use KEMs. Our framework is rooted in the symbolic model of cryptography.
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We will use Tamarin to implement our framework. Lastly, we create new fine-grained symbolic models for
KEMs that allow us to configure which cryptographic properties they have, allowing us to precisely model
real KEM schemes in the symbolic model.

6.4.1 Symbolic Models for KEMs

In this section, we develop a new symbolic model for KEMs that allows the user to specify exactly
which binding properties the model gives. Like the Symbolic Verification of Signatures model from [134],
our model achieves this by only relying on the implications that the standard computational security
definitions, e.g, IND-CCA, and our binding properties give, which makes it perfectly suited for verification.
Specification We observe that the definitions of correctness and IND-CCA only hold when the key
pair that is used is honestly generated. When this is not the case, no guarantees are given. Correctness
requires that the decapsulation of a ciphertext created by encapsulating against an honest public key
returns the same output key for both algorithms. IND-CCA requires that the output key, created by
encapsulating against an honest public key, is indistinguishable from true randomness (even when the
adversary has access to a decryption oracle). Additionally, we note that Encaps can be a probabilistic
algorithm, while Decaps is deterministic.

We now build a symbolic model that follows these constraints but allows for any other behavior. To
do so, we model the key- and ciphertext space of a KEM and allow the adversary to choose arbitrary
values from them as the result of Encaps and Decaps, as long as they respect the following constraints:

1. If the public key was honestly generated, an Encaps computation must return a fresh key different
from any other Encaps computation.

2. If the public key was honestly generated, Encaps and Decaps computations using the same ciphertext
and public key pair must return the same output key.

3. Given X-BIND-P-Q, any pair of calls to Decaps (and/or Encaps if X = MAL) must agree on Q if
the parameters in P are equal.

4. Multiple computations of Decaps with the same inputs give the same result.
5. Any Encaps computation by the adversary only results in fresh keys or known values from the key

space.

Constraints 1) and 2) model IND-CCA and correctness respectively, 3) ensures that the relevant
binding properties are met, 4) makes Decaps deterministic, and 5) models the adversary computing a
derandomized Encaps as seen in Section 6.2.2. We over-approximate this by allowing the adversary to
let Encaps result in any element of the key space if they were already aware of this value, as letting the
adversary choose any value would break IND-CCA.

Additionally, we add an option that, when enabled, specifies that Encaps and Decaps only work on
honestly generated key pairs, rejecting any other values. This allows us to prevent the adversary from
breaking IND-CCA and correctness by feeding bogus values into Encaps and Decaps. To achieve this, we
require that a user of our library annotates rules in which the protocol honestly generates a public key pk
with an action GoodKey(pk).

Due to space limitations, we only give a brief example of how our KEM model works. Recall the
previous multiset rewriting rule. It shows how Alice, who possesses a public key pk, a secret key sk, and a
ciphertext ct, decapsulates with these values to obtain key k. As long as the semantic constraints of our
KEM model are fulfilled, the key can be an arbitrary value from the key space, represented by !KeyValues.
Note that the key space only contains atomic values, which allows our KEM model to avoid achieving
certain binding properties, e.g., MAL-BIND-CT -PK, by construction, which was not possible for previous
symbolic models (see Section 7.2.3).

Definition 6. HON -BIND-K-PK restriction

∀ k ct1 ct2 pk1 pk2 sk1 sk2 ♯i ♯j ♯l ♯m .

Decaps(k, ct1 , pk1 , sk1 )@♯i ∧ Decaps(k, ct2 , pk2 , sk2 )@♯j
∧ GoodKey(pk1 )@♯l ∧ GoodKey(pk2 )@♯m
⇒ (pk1 = pk2 )
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6.4.2 Tamarin Implementation

To model the key generation of the KEM, the event GoodKey(pk) is introduced, indicating that pk was
generated honestly. Properties such as Correctness are later specified to apply only to keys that were
produced via honest key generation.

Users of the library can employ arbitrary values as secret keys, but they must use the function symbol
kem_pk(· · · ) to generate the corresponding public key.

Encapsulation and decapsulation operations of KEMs are modeled with events Encaps(k, ct, pk) and
Decaps(pk, ct, pk, sk). The input is provided via the premises of the protocol rule annotated with the
event, while the output is delivered through persistent facts !KeyValues(k) and !CTValues(ct) in the rule’s
premises. These persistent facts come from our symbolic model of KEMs and represent the key- and
ciphertext space, respectively. For instance, when modeling an encapsulation:

[Alice(pk, sk), !KeyValues(k), !CTValues(ct)]
−[Encaps(k, ct, pk)]→
[Out(ct)]

!KeyValues(k) and !CTValues(ct) are needed to bind the output of the Encaps call on pk. By default, no
restriction is placed on these values, and arbitrary collisions in the key and ciphertext are possible.

To restrict collisions in the key and ciphertext spaces, the computational properties such as Correctness,
HON -BIND-K-CT , and MAL-BIND-K-CT are encoded as logical formulas to ensure desired behavior,
including key equality and binding properties. Tamarin traces violating these properties are discarded
through imposed restrictions. For instance, we can encode the Correctness property using the following
formula:

Definition 7. Correctness

∀ k1 k2 ct sk ♯i ♯j ♯k .

Encaps(k1 , ct, kem_pk(sk))@♯i ∧ Decaps(k2 , ct, kem_pk(sk), sk)@♯j
∧ GoodKey(kem_pk(sk))@♯k
⇒ (k1 = k2 )

The restriction encodes that an Encaps call and a Decaps call that use the same public key pair–
produced by the honest key generation algorithm–and the same ciphertext must also produce the same
key.
In the same manner, we can encode our binding properties. For instance, HON -BIND-K-CT :

Definition 8. HON -BIND-K-CT

∀ k ct1 ct2 pk1 pk2 sk1 sk2 ♯i ♯j ♯l ♯m .

Decaps(k, ct1 , pk1 , sk1 )@♯i ∧ Decaps(k, ct2 , pk2 , sk2 )@♯j
∧ GoodKey(pk1 )@♯l ∧ GoodKey(pk2 )@♯m
⇒ (ct1 = ct2 )

To encode MAL-BIND-K-CT , we drop the requirement that the public keys have to be good keys, and
we add additional restrictions that enforce the same behavior for pairs of Encaps calls as well as pairs of
Encaps and Decaps.

For IND-CCA, it is required that the output key k of an Encaps call with a good key is distinct from
any other output key produced by Encaps. We model this with a restriction as well.

Additionally, in a classical symbolic model with function symbols, the adversary can freely use these
symbols as well. To also allow this behavior for our event-based computations, we provide protocol rules
in our model that allow the adversary to perform these computations. While this would encode the
adversary to emulate honest parties, we also give the adversary access to a modified Encaps computation
where they can force the output key to be any value they already know. This models the case where the
adversary does not use fresh randomness but reuses randomness to compute an output key of their choice.
Note that this behavior is also why re-encapsulation attacks exist
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Optional restrictions are provided to enforce the use of good keys in Encaps and Decaps computations,
allowing users to exclude traces where bad keys are used.

Finally, we want to explain why we only implement our properties for X = HON and X = MAL
in the symbolic setting. In Section 6.3.3, we note that LEAK and HON are indeed different in the
computational model since an adversary can learn intermediate values when computing Dec themself, as
is the case in the LEAK setting. This is not the case in the HON setting, where they can only observe
the result of honest Dec computations done by an oracle. Thus, LEAK and HON are not equivalent
in the computational model. In our KEM model, on the other hand, the output key is not computed
from intermediate values but from an atomic fresh value. Thus, an adversary cannot learn any additional
information by computing Dec themself. As a result, HON and LEAK are equivalent for our KEM model.
We leave building a symbolic KEM model that allows for arbitrary combinations of our binding properties,
where LEAK is not equal to HON , as future work. This is challenging because modeling arbitrary partial
information leakage in the symbolic model is still an open problem, and modeling the output key as a
compound term built from other terms (which could be leaked) inherently satisfies some of our binding
properties (see Section 7.2.3).

6.5 Case Studies

This section showcases the practicality of our approach through case studies. We begin with a brief
overview of the evaluation methodology applied to evaluate the various Authenticated Key Exchange
(AKE) protocols we modelled as case studies. In Section 6.5.2, we summarize the outcome of the chosen
case studies. As case studies, we cover diverse post-quantum AKE protocols from the literature like the
Kyber-AKE [48] or PQ-SPDM [219, 220], detailed in Sections 6.5.3 to 6.5.6.

6.5.1 Methodology

Our novel KEM model allows us to reason about both (i) an adversary that is restricted to use honestly
generated, valid public key pairs as required by the KEM scheme and (ii) arbitrary, potentially malicious
keys. Together with the option to use any combination of our specified binding properties from Section 6.3,
this leads to a high number of configurations. Thus, it is infeasible to analyze each security property of
every case study with every configuration of our KEM model. To analyze the influence of our binding
notions on a protocol’s security properties, we develop a methodology that allows us to discover the
minimal requirements on a KEM that are needed to prove the property, while pruning the search space.
Initial Configuration Testing First, we analyze each statement of a protocol with the following
initial configurations:

1. Only keys from KeyGen and no binding properties
2. Only keys from KeyGen and all leak binding properties
3. Any keys and no binding properties
4. Any keys and all malicious binding properties

If, for a specific property of a protocol, Tamarin terminates with the same result in each of these
configurations, we conclude that the protocol gives this property independent of any binding properties of
the KEM or maliciously generated key pairs.
Key-Based Inference If Tamarin falsifies a property when we allow malicious keys, we infer that
the protocol indeed relies on honestly generated key pairs to give the property.
Binding Property Analysis In the event that Tamarin gives different results when we change the
binding property, we proceed with a more in-depth analysis:

1. For both the LEAK and MAL setting, we construct a directed acyclic graph whose nodes correspond
to the possible combinations of our binding properties. We add an edge from node u to node v iff
the properties that correspond to u imply the properties that correspond to v.

2. To efficiently compute for which combinations of properties a given statement is valid, we explore
the graph as follows: We pick an unexplored node randomly and try to verify the statement using
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the corresponding binding properties. If Tamarin proves the statement, we mark the node as proven
and recursively mark all of its parent nodes as proven too. We know that Tamarin will also prove
the statement for the parent nodes since their corresponding properties imply the properties that
were sufficient for a proof. If Tamarin falsifies the statement we mark the node as falsified, and
recursively mark all of its child nodes as falsified too. This result is also valid for the child nodes
because the corresponding binding properties of these nodes are weaker, removing fewer traces from
the model and thus allowing for the same counterexample. In the event of a timeout, we mark the
node as timed out and continue.

3. Once all nodes are marked, we extract the nodes for which Tamarin could still verify the statement
but for whose direct child nodes Tamarin cannot verify the statement. The properties corresponding
to these nodes are the minimal binding properties Tamarin needs to verify the statement.

6.5.2 Discussion of Results

We ran our models on an Intel(R) Xeon(R) CPU E5-4650L 2.60GHz machine with 1TB of RAM and 4
threads per Tamarin call. The execution time of our full methodology was approximately ∼16h30m.

#Lemmas KEM-Binding Dependent Runtime for
Model Secrecy Auth. Auxiliary #Tamarin calls Protocol Properties Initial Configurations
Onepass AKE 5 4 3 48 Implicit Key Authentication (Init.) ∼ 1m
Σ′0-protocol 3 6 0 36 Implicit Key Authentication (Init.), SK-security ∼ 6m
PQ-SPDM 6 12 8 104 ∼ 38m
Kyber-AKE 4 2 7 52 Implicit Key Authentication (Init., Resp.) ∼ 4h10m

Table 6.2: Summary of the analysis for our initial configurations. For the listed protocol properties, Tamarin
returns different verification results in our initial configurations. For the minimal binding properties required to
prove them, we refer to Table 6.3.

We summarize the results of our initial configuration (see Section 6.5.1) in Table 6.2. We can observe
that the specified security properties of the one-pass AKE, Kyber-AKE, and Σ′

0-protocol do not solely
rely on IND-CCA but also on other binding properties of the KEM. Details regarding this can be found
in the corresponding sections 6.5.3, 6.5.4, and 6.5.6.

In Table 6.3 we show the concrete binding properties the aforementioned protocols require of their
KEMs to achieve the desired security properties.

Challenges The newly introduced symbolic definitions of Encaps and Decaps can now result in arbitrary
values from the key- and ciphertext space instead of only compound terms built from their inputs–vastly
increasing the size of the search space. As the default heuristics of Tamarin do not prioritize solving, e.g.,
Encaps goals, when exploring the search space, we additionally develop proof tactics, tailored towards our
KEM model. These tactics are prioritizing goals related to the output key, the KEM secret keys, and
key-derivation functions, as well as deprioritizing goals related to ciphertexts.

Model Protocol Property Minimal Binding Properties
One-pass AKE Implicit Key Authentication (Init.) X-BIND-K-PK { X-BIND-K-CT , X-BIND-K, CT -PK }
Σ′0-protocol Implicit Key Authentication (Init.) X-BIND-K-PK { X-BIND-K-CT , X-BIND-K, CT -PK }

SK-Security HON -BIND-CT -K
MAL-BIND-CT -K MAL-BIND-PK-K

Kyber-AKE Implicit Key Authentication (Init.) X-BIND-K-PK { X-BIND-K-CT , X-BIND-K, CT -PK }
Implicit Key Authentication (Resp.) X-BIND-K-PK { X-BIND-K-CT , X-BIND-K, CT -PK }

Table 6.3: Minimal binding properties required by Tamarin to prove the property of an AKE model. We omit the
set brackets for singleton sets like HON -BIND-CT -K. We write X-BIND-P-Q without specifying X to indicate
that this set of properties is a solution for X = MAL when all keys are allowed and for X = HON when only
honestly generated keys are allowed.
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6.5.3 One-Pass AKE

As a starting point, we model a one-pass AKE based on the SIKE protocol from [127], which we show
in Figure 6.8. Note that in this protocol the Recipient does not receive standard mutual authentication
guarantees since it cannot verify any information from the Initiator. Thus, we focus on the properties the
Initiator can achieve.

I

knows IDR

R

(ltkR, IDR)←$ KeyGen()

(c, k)← Encaps(IDR)
c

k ← Decaps(ltkR, c)

Figure 6.8: Simplified one-pass AKE.

In particular, we are interested in authentication properties like Implicit Key Authentication (as
defined in Definition 9). However, in this protocol, neither the Initiator nor the Recipient can achieve it,
since only one party contributes to the final key. Thus, we focus on a weaker, unilateral version, where
only the identity of the Recipient has to match in both sessions, i.e., both Initiator and Recipient agree
on the Recipient’s identity when they derive the same shared key.

We find that the Initiator can achieve this weaker property when the protocol uses a KEM that is
at least X-BIND-K-PK-secure. When the KEM does not have this binding property, the adversary
can mount a re-encapsulation attack against the Initiator by leaking ltkR of the Recipient and then
re-encapsulating towards another Recipient, resulting in two Recipient sessions with the same key.

Definition 9. Implicit Key Authentication Initiator

∀ id1 id2 pkI1 pkI2 pkR1 pkR2 k ct1 ct2 ♯i ♯j .

FinishInitiator(id1 , pkI1 , pkR1 , k, ct1 )@♯i
∧ FinishResponder(id2 , pkI2 , pkR2 , k, ct2 )@♯j
⇒ (pkI1 = pkI2 ∧ pkR1 = pkR2)

6.5.4 Σ′0-Protocol

The Σ′
0-protocol is introduced by [184] as a KEM-based variation of the Σ0-protocol [56]. The original

Σ0-protocol is a component of the Internet Key Exchange (IKE) protocols [146], and Σ′
0 was suggested as

a post-quantum replacement. We provide a description of the Σ′
0-protocol in Figure 6.9. [184] claims that

the Σ′
0-protocol is SK-secure in the post-specified peer model [56] for any IND-CCA KEM. We analyze

whether Σ′
0 achieves SK-security (Definition 11) and Implicit Key Authentication and Final Key Secrecy

(Definition 10).

Definition 10. Final Key Secrecy Initiator

∀ id pkI pkR k ct ♯i ♯j .

FinishInitiator(id, pkI , pkR, k, ct )@♯i ∧ GoodKey(pkR)@♯j
⇒ (∃ ♯x .K(k)@♯x) ∨ (∃ ♯x .RevealLTK(pkR)@♯x)
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Definition 11. SK-Security

∀ sid pkI pkR k k2 ♯i ♯j .

FinishInit(sid, pkI , pkR, k)@♯i ∧ FinishResp(sid, pkI , pkR, k2 )@♯j
∧ not(∃ ♯y .RevealLTK(pkR)@♯y) ∧ not(∃ ♯x .RevealLTK(pkI )@♯x)
⇒ (k = k2 ) ∧ not(∃ ♯z .K(k)@♯z)

When modeling Σ′
0, we noticed two issues with the protocol description in [184]. First, the authors

assume that the Responder can store an unlimited number of session identifiers it receives from the
Initiator and that it only accepts sessions that use a new, unused identifier, which is notoriously hard to
achieve. Second, after replying to the Initiator, the Responder should erase pkI from its state. However,
when the Responder receives the final message, it has to verify σI –which contains pkI . It is unclear how
the Responder can verify this signature after erasing pkI .

I

(ltkI , IDI )←$ KeyGen()

R

(ltkR, IDR)←$ KeyGen()

sid←$ P(0, 1)n

(pkI , skI )←$ KeyGen()

sid, pkI

(c, k)← Encaps(pkI )
k0 = Fk(0)
k1 = Fk(1)
σR = signltkR

(1, sid, pkI , c)
tagR = mack1(1, sid, IDR)

sid, c, IDR, σR, tagR

k← Decaps(skI , c)
k0 = Fk(0)
k1 = Fk(1)

verifyIDR
(σR)

verifyk1(tagR)
σI = signltkR

(0, sid, c, pkI)
tagI = mack1(0, sid, IDI)

sid, IDI , σI , tagI

verifyIDI
(σI)

verifyk1(tagI)

Figure 6.9: The Σ′
0-protocol introduced by [184].

To address these issues, we create two Σ′
0 models. In the first model, Σ′

0-perfect, the Responder
keeps pkI in its state and verifies σI correctly, as well as only accepting the first message when it sees a
new, fresh session identifier. The second model, Σ′

0, does not keep pkI in the Responder’s state, and the
verification of σI = (0, sid, c, pk) succeeds for any KEM public key pk as long as 0, sid, and c are correctly
signed. In this model, the Responder always replies to the first message, even if session identifiers repeat.

We find that Σ′
0 and Σ′

0-perfect achieve Implicit Key Authentication and Final Key Secrecy for the
Responder in all of our initial configurations. Additionally, we prove Full Key Confirmation for the
Responder, which we define in Definition 12.
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Definition 12. Full Key Confirmation Responder

∀ sid pkI pkR k epkI ♯i ♯j .

FinishResponder(sid, pkI , pkR, k, epkI )@♯i ∧ GoodKey(epkI )@♯j
⇒ (∃ pkI2 pkR2 epkI2 ♯x .FinishInitiator(sid, pkI2 , pkR2 , k, epkI2 )@♯x)

As is the case for Kyber-AKE (Section 6.5.6), both Σ′
0 and Σ′

0-perfect do not achieve Implicit Key
Authentication for the Initiator for any IND-CCA-secure KEM. This is because the adversary can switch
pkI for their own ephemeral key and reveal ltkR of the Responder. Let A and B be honest agents. The
attack then proceeds as follows: the adversary waits until A initiates a session as initiator with peer B
and starts another session impersonating as C towards B in the Responder role. After replacing pkA with
their own ephemeral KEM key pkC and revealing ltkB, the adversary forwards sid, pkC to B, who acts
according to the protocol. Then, the adversary decapsulates c to learn k, k0, and k1. Next, the adversary
mounts a re-encapsulation attack against A’s actual ephemeral key pkA, resulting in a ciphertext c′ that
also decapsulates to key k. Since the adversary knows both lktB and k1, they can forge B’s signature on c′

and create a valid tagB, which they both forward to A, completing A’s run. Finally, the adversary creates
a valid signature and tag for B, who thinks they are communicating with the adversary. At the end of
their respective runs, A and B agree on key k but not on their peers’ identities.

We find that the protocol gives Implicit Key Authentication for the Initiator when the KEM satisfies at
least HON -BIND-K-PK or both HON -BIND-K-CT and HON -BIND-K, CT -PK. Note that the later
two, together, imply HON -BIND-K-PK by [73][Corollary 4.11]. Thus, HON -BIND-K-PK really is the
property that prevents the attack: I and R deriving the same key k implies that they agree on pkI .
This stops the adversary from switching out pkI for their own ephemeral key, which prevents them from
learning the key k. However, knowledge of k is necessary to create a valid tagI for R in the last message.
Thus, the above attack is prevented.

We observe that Σ′
0 does not achieve SK-security for any IND-CCA-secure KEM when the Responder

erases pkI from its state and accepts duplicate session identifiers.
To understand this attack, we want to highlight that the signatures σI and σR only include c; they

do not include the actual output key k. Thus, the adversary can choose c such that it decapsulates to
different keys for the Initiator and the Responder. This behavior is not excluded by correctness of the
KEM, since SK security does not enforce that Initiator and Responder agree on the ephemeral key pkI ;
they only need to agree on their respective identities. Thus, the adversary can force a session between A
and B where they agree on their identities but disagree on the ephemeral key pkB. Together with the
deficiencies of Σ′

0, this allows for an attack on SK security, which can be prevented by using, for instance,
a MAL-BIND-CT -PK-secure KEM.

The adversary starts a session between Initiator A and Responder B where they agree on their
identities and pkA. After receiving the first message, B computes σB and tagB, which the adversary
intercepts. Then, impersonating A, the adversary starts another session with B, where they switch out
pkA for another KEM public key but reuse the session identifier sid. Recall that the Responder only
accepts this session in the Σ′

0 protocol where we do not assume infinite, persistent storage at the Responder
side. The Responder B again acts according to the protocol and computes (c, k) ← Encaps(pkA). The
adversary then forwards σB and tagB to A, who computes σA, tagA, and finishes their session with B
decapsulating k′ from c because of the lack of binding properties of KEM. The adversary then forwards
these values to B in the session where they disagree on pkA. Since B accepts any σB as long as c and sid
match, they also finish their session with A computing k. As these sessions agree on the identities but
disagree on the final shared key, SK security does not hold.

When honestly generated keys are used, the KEM must at least satisfy HON -BIND-CT -K, and, in
the presence of maliciously generated keys, the KEM must at least satisfy MAL-BIND-CT -PK or MAL-
BIND-CT -K to prevent this attack. These properties prevent Initiator and Responder from opening the
same ciphertext to different output keys.

To summarize, we find that Σ′
0 does not achieve Implicit Key Authentication for the Initiator when

used with any IND-CCA-secure KEM due to a re-encapsulation attack, and that SK security does not
hold when the Responder misbehaves as described previously. A KEM with additional binding properties,
e.g., HON -BIND-K-PK and HON -BIND-CT -K, could have prevented these attacks.
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6.5.5 PQ-SPDM

The Security Protocol and Data Model (SPDM) [94] is an emerging industry standard aimed at ensuring
end-to-end trust in infrastructure, focusing on hardware and chip-to-chip communication. Although the
standard is being developed by major industry players, there has been limited cryptographic analysis.

In this dissertation, we provide the first formal model of SPDM in Part II. In addition to the normal
version, a post-quantum version of SPDM’s session establishment has been proposed [219, 220].

We model this proposed post-quantum key exchange of SPDM and analyze for both Initiator and
Responder whether the protocol achieves Final Key Secrecy, Implicit Key Authentication, and Full Key
Confirmation. A detailed description of the post-quantum SPDM protocol can be found in Part II and
[76, 219, 220].

We find that, for the Initiator, Final Key Secrecy holds as long as neither the ephemeral KEM key
pair nor the long-term key of the Responder is revealed. For the Responder, we find that Final Key
Secrecy holds even when the ephemeral KEM key pair is revealed. The Initiator obtains Implicit Key
Authentication only if the ephemeral KEM key pair is not revealed, and the Responder as long as either
the long-term key of the Initiator or the ephemeral KEM key pair is not revealed.

Full Key Confirmation does not hold for the Initiator if either key pair is revealed. For the Responder,
we find that the property holds as long as at least one key pair is not revealed.

We find these results across all initial configurations and conclude that PQ-SPDM provides these
guarantees independently of any KEM binding properties or maliciously generated keys.

6.5.6 Kyber-AKE

We model the Kyber-AKE (see Figure 6.10) in Tamarin and analyze the protocol, both in terms of secrecy
and authentication properties.

The secrecy of the final key of the Kyber-AKE is guaranteed for both Initiator and Responder as long
as the long-term secrets are not revealed. The property is defined analogously to Definition 10.

We also analyze Implicit Key Authentication for both the Initiator and Responder analogously to
Definition 9. Without any additional binding properties, even when we restrict the adversary to only use
honest keys out of KeyGen, Tamarin is able to produce a counterexample violating the defined property.
We call this attack re-encapsulation attack, as described in Section 6.2.2.

We show that, in the setting where we do not allow keys outside KeyGen, the used KEM in the
Kyber-AKE additionally needs to provide HON -BIND-K-PK or both HON -BIND-K-CT and HON -
BIND-K, CT -PK to guarantee implicit authentication for both parties. Analogously, in the stronger
adversary model, the used KEM needs to provide MAL-BIND-K-PK or both MAL-BIND-K-CT and
MAL-BIND-K, CT -PK to guarantee implicit authentication.

This observation also confirms why we do not see this kind of attack in the original Kyber-AKE, as
the Kyber KEM is conjectured to fulfill these properties [73]

Note that [48] claims the Kyber-AKE is secure in the Canetti-Krawczyk (CK) model with weak
forward secrecy [55]. However, they state no explicit proof and claim that this “follows directly from the
generic security bounds of [12, 64]”. Our results show that this statement is incorrect if the KEM is only
IND-CCA secure. In particular, in the CK model with weak PFS, the re-encapsulation attack would
imply that the sessions are not matching, and this would allow the adversary to reveal the session key at
A’s session.

We illustrate this on a concrete example, which was automatically found by Tamarin, on an authenti-
cated key exchange protocol from the Kyber paper [48] shown in Figure 6.10.

We stress that when the key exchange protocol is instantiated with Kyber as intended by the paper,
the protocol seems secure. However, can Kyber be replaced by any other KEM? In the paper, Kyber is
only proven to be IND-CCA secure. Is IND-CCA sufficient for the protocol’s security? It turns out this is
not the case.

To show this, we consider the same key exchange protocol, but instantiated with KEM⊥
m from [127].

KEM⊥
m is an FO-KEM (cf. Section 6.2.1). In the context of our work, FO-KEMs are interesting because

they have a property that is not captured by the current syntax of KEMs: when a party A decapsulates
a ciphertext to learn k, they can also learn the message m that was used by the underlying PKE. This



82 chapter 6. key encapsulation mechanisms

A

(sskA, spkA)←$ Kyber.KeyGen()

B

(sskB, spkB)←$ Kyber.KeyGen()

r←$ P(0, 1)n

(eskA, epkA)←$ Kyber.KeyGen()
(cspkB , kspkB )← Kyber.Encaps(spkB; r)

epkA, cspkB

r ′←$ P(0, 1)n

r ′′←$ P(0, 1)n

(cepkA , k ′epkA
)← Kyber.Encaps(epkA; r ′)

(cspkA , k ′spkA
)← Kyber.Encaps(spkA; r ′′)

k ′spkB
← Kyber.Decaps(sskB, cspkB )

cepkA , cspkA

kepkA← Kyber.Decaps(eskA, cepkA)
kspkB← Kyber.Decaps(sskA, cspkA)

key← KDF(kepkA , kspkA , kspkB )
key← KDF(k ′epkA

, k ′spkA
, k ′spkB

)

Figure 6.10: The authenticated key exchange described in the original Kyber paper [48].

is unavoidable for any PKE-based KEM because the ciphertext that contains m needs to be decrypted
before deriving k from m.

To simplify notation in this example, we assume that we can infer the randomness r from the message
m. This allows for a slightly more abstract description of the attack, but we can instantiate the attack for
any concrete FO-KEM without this assumption. We capture this by writing (k, r)← KEM.Decaps(sk, c)
in this example.

We now explain the re-encapsulation attack in Figure 6.11. In the attack, A and B are honest.
The adversary C wants to coerce B into establishing a key shared with A, where B mistakenly assumes
that A thinks they share the key with B; instead, A will think they share it with C. This is a so-called
unknown-key-share attack [40], which violates B’s implicit key agreement.

The attack proceeds as follows: A initiates communication with C, after which C decapsulates the
ciphertext cspkB to obtain kr0 and, more importantly, r0, which was used by A to create cspkB . Now, C
impersonates A towards B by encapsulating against B’s static public key with r0 and forwarding the
resulting ciphertext and epkA. B responds with the expected values to A, as B thinks A is communicating
with them. Finally, A decapsulates the ciphertexts received from B, and both A and B derive the final
key. Since we instantiated the protocol with KEM⊥

m, the keys obtained via Decaps only depend on the
randomness supplied by the encapsulating party. As a result, A and B derive the same key; this is a
violation of implicit authentication since A thinks they now share a key with C, which does not match B’s
expectations.

One might wonder whether a KEM with strong robustness properties would prevent this attack.
Unfortunately, this is not the case: robustness properties reason about a single ciphertext c that should
not decapsulate to the same key under different key pairs. However, our re-encapsulation attack revolves
around two different ciphertexts: based on A’s ciphertext, the malicious C creates a different ciphertext
cspkC that decapsulates to the same key as cspkB by reusing the randomness r0.
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A
(assumes peer C)

(sskA, spkA)←$ KEM.KeyGen()
C

(adversary)

(sskB, spkB)←$ KEM.KeyGen()
B

(assumes peer A)

(sskC , spkC )←$ KEM.KeyGen()

r0 ←$ P(0, 1)n

(eskA, epkA)←$ KEM.KeyGen()
(cspkB , kr0 )← KEM.Encaps(spkB; r0 )

epkA, cspkB

(kr0 , r0 )← KEM.Decaps(sskB, cspkB )
(cspkC , kr0 )← KEM.Encaps(spkC ; r0 )

epkA, cspkC

r1 ←$ P(0, 1)n

r2 ←$ P(0, 1)n

(cepkA , kr1 )← KEM.Encaps(epkA; r1 )
(cspkA , kr2 )← KEM.Encaps(spkA; r2 )

kr0 ← KEM.Decaps(sskC , cspkC )
cepkA , cspkA

kr1 ← KEM.Decaps(eskA, cepkA)
kr2 ← KEM.Decaps(sskA, cspkA)

key← KDF(kr1 , kr2 , kr0 )
key← KDF(kr1 , kr2 , kr0 )

Figure 6.11: Re-encapsulation attack against the Authenticated Key Exchange (AKE) suggested for the Kyber
KEM [48] where the adversary C coerces honest A into unknowingly sharing the key with honest B, who correctly
thinks they are being contacted by honest A. This violates the implicit key agreement guarantee for B, who
expects to share a key with someone that assumes B is the peer. Note that this attack is only possible when the
AKE is instantiated with a KEM that does not bind the output key to the public key, and is not possible when
instantiated with Kyber.





7Limitations and Related Work

We are the first to develop methodologies to automatically analyze security protocols with fine-grained
models of cryptographic hash functions, authenticated encryption schemes with associated data (AEAD),
and key encapsulation mechanisms (KEM). Our methodologies for all primitives allow both: (i) Analyzing
a protocol for a concrete primitive instantiation, or (ii) analyzing a protocol with the goal to discover the
weakest properties the primitive needs to provide in order to achieve the desired security guarantees. To
construct our fine-grained primitive models, we build on the results of several cryptographic definitions
and known attacks from the literature.

With all the methodologies outlined in Chapters 4 to 6 we discovered attacks and undesired behavior
in several real-world protocol designs. Whereas most of these behaviors are of theoretical interest (e.g.,
the discovered flaws found using the hash methodology are rediscoveries or variants of already known
attacks), our methodology from Section 5.5.1 discovered undesired behavior in deployed protocols. We
detail the disclosure process in Section 7.1.
We will discuss the literature Section 7.2, before we discuss the limitations of our approach and method-
ologies in Section 7.3.
Source Code and Reproducibility All of our technical contributions from Chapters 4 to 6 including
the implementation of our symbolic representation of the primitives in Tamarin and all models of the case
studies are open-source. We provide all models, instructions, and software to reproduce our results for
hashes at [101], for AEADs at [71], and for KEMs at [74].

7.1 Disclosure

Using our methodology from Section 5.5.1, we detected several undesirable behaviors in the protocol
design of Scuttlebutt, Web Push, and WhatsApp Groups [130, 201, 211] related to their use of AEADs.
While the behaviors are possible on the protocol design level, their implementation-level feasibility depends
on low-level encoding choices.

The behaviors we found did not violate the main specified goals of the respective protocols, and hence
we did not mark them as “attacks”. Nevertheless, we contacted the developers of the affected protocols
and explained our observations, such that they can assess their implementation-level feasibility, with
distinct feedback:

• The developers of the WebPush standard acknowledged the issue, and a discussion is ongoing to
determine how to best document the possible behaviors in the standard;

• WhatsApp considered this outside their threat model, and noted that using a different AEAD would
still allow a variant of the behavior with the same effect; and

• The Scuttlebutt developers did not respond.
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7.2 Related Work

Improving the symbolic models of primitives to enable automated attack finding has recently been explored
for several types of basic primitives, like Diffie-Hellman groups [82] or digital signatures [134].

ProVerif [44] is, besides Tamarin, the other major tool for automated analysis of protocols in the
symbolic model. While we developed our models and case-studies in Tamarin, they could also be used in
the ProVerif framework (see [61] for a first attempt to include our hash models).

As we are focused on automated attack finding with our analyses, our work is orthogonal to tools from
the computational model [15, 18, 42] that are all focused on proving security, and cannot find attacks.
Our automated models can be useful to establish the assumptions on the primitives before attempting a
computational proof.

7.2.1 Cryptographic Hash Functions

Besides the works already mentioned in Section 4.2, there are many works on hash functions, their design,
and their cryptographic properties (see e.g. [172, 175, 191]). A further related work is [117], which analyzes
the impact of breaking cryptographic primitives on Bitcoin, including its hash functions RIPEMD-160
and SHA2-256.

The ROM shares features with the classical symbolic (Dolev-Yao) model of hash functions used in
nearly all previous symbolic analyses. One exception is the automated TLS 1.3 analysis in [33], which
explicitly considers the possibility of a very weak hash function where all inputs collide. However, as we
have seen, such a model does not necessarily give the adversary strictly more powers: for authentication
properties, or protocols with inequalities, such a model may inadvertently miss possible protocol behaviors.

The use of the ROM in symbolic models also connects to the so-called computational soundness
question: can we obtain computational guarantees from a symbolic proof? In this field, the only two
works that consider hash functions model them as a random oracle [14, 67]. Additionally, [14] shows an
impossibility result in the standard model for a hash function that is symbolically represented as a free
symbol.

7.2.2 Authenticated Encryption with Associated Data

AEADs do not have a designated way to model them symbolically. Ad-hoc approaches include a specific
form of nonce-reuse in the Tamarin analysis of WPA [83] and the analysis of Yubikey [153]. In a different
approach, [151] modeled the fine-grained block based encryption in the tool ProVerif, but this approach
did not scale to protocols of the complexity considered here. Overall, our work is the first to systematically
explore weaknesses of concrete algorithms or formal definitions for AEADs and provide models amenable
to automation.

With respect to our case studies, based on the absence of collision resistance of AEADs, also referred
to as robustness or key-commitment, [102] already reported an attack on the Facebook abuse reporting
mechanism, which violates accountability. We are the first to report on behaviors in which content
agreement is not satisfied due to AEAD weaknesses. Other undesirable behaviors have arisen due to
collisions, which are linked to oracle partitioning attacks [158], where an attacker can obtain a better than
brute force advantage against the OPAQUE protocol. While we can model the relevant AEAD weakness
in our framework, modeling the violated security property in the symbolic model is left to future work.

7.2.3 Key Encapsulation Mechanism

We are not the first to model KEMs in the symbolic model. Some KEM-based protocols, e.g., KEMTLS [199,
200, 205], post-quantum Wireguard [129], and PQXDH [36], were recently analyzed in the symbolic
model. In this section, we investigate how these case studies model KEMs, which of our binding properties
these models achieve, and why a class of symbolic models for KEMs implicitly assumes certain binding
properties, highlighting the need for a new symbolic model that can model any combination of our binding
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properties.
In [205], the authors create and analyze two Tamarin models of KEMTLS, a variant of TLS that uses

KEMs to achieve post-quantum security. Similarly, [129] uses Tamarin to analyze a KEM-based variant
of Wireguard. The authors of [36] use another tool, ProVerif, to analyze the PQXDH protocol. In all of
these case studies, function symbols and equational theories are used to model the behavior of KEMs. In
fact, all but one model from [205] use the built-in equational theories for public key encryption to model
KEMs. Concretely, they use the function symbols aenc/2, denoting encryption, and adec/2, denoting
decryption. The function symbols are related through the equation adec(sk, aenc(pk(sk), msg)) = msg
and mapped to the standard KEM API in the following way:

Encaps(pk(sk), r) = aenc(pk(sk), r)
Decaps(sk, ct) = adec(sk, ct)

Note that Encaps does not return a tuple of ciphertext and key but only the ciphertext. Instead, r directly
serves as the output key. One model from [205] uses a slightly different approach: instead of using r
directly as the output key, they incorporate the receiver’s public key and model the output key as a
function kdf(r , pk). These models for KEMs are not surprising, since PKEs and KEMs are also strongly
related in the computational model.

However, unlike the computational model, the above symbolic models encode much stronger assump-
tions on KEMs than just IND-CCA. Because the output key and the ciphertext are deterministic functions
of pk and r , they bind these values by construction. That is, given an output key (or a ciphertext), the
corresponding public key and randomness are uniquely determined. In fact, the reverse is also true. Thus,
any symbolic model that computes, for instance, the ciphertext as ct = Encaps(pk, r) is MAL-BIND-
CT -PK, MAL-BIND-CT -K (assuming k is also a function of pk and r), and MAL-BIND-K, PK-CT by
construction.

As a result, the second KEM model from [205] implicitly assumes that the KEM satisfies all of our
MAL binding properties. This means they cannot detect, e.g., re-encapsulation attacks. On the other
hand, the first model from [205] and the models from [36, 129] do not assume HON -BIND-K-PK or
HON -BIND-K-CT , because the output key is independent of the public key. Consequently, this model
might detect some of our re-encapsulation attacks, which the findings of [36] confirm.

Further security notions
While IND-CCA is still the main security notion for KEMs, additional security notions have been proposed.

The term “robustness” was initially coined by Abdalla, Bellare, and Neven in [1] in the context of
PKE schemes. In a nutshell, robustness means it is hard to produce a ciphertext that is valid for two
different key pairs (or users). They introduce both weak (WROB) and strong (SROB) robustness. In the
weak robustness game, an adversary has to find a message m and two distinct public keys pk0 and pk1
such that encrypting m with pk0 results in a valid ciphertext when decrypted with sk1, pk1’s secret key.
In the strong robustness game, the adversary has to find a ciphertext c and two distinct public keys such
that c decrypts under both corresponding secret keys. This strengthens the adversary since c does not
have to be the result of an honest encryption but could have been specifically created by the adversary.

In [111], the authors make a case for new, stronger robustness notions by showing how the notions
of [1] fail to prevent attacks in certain applications such as fair auction protocols. First, they observe that
the original strong robustness definition does not allow the adversary to query their oracle with the secret
keys of the public keys they are challenged with; removing this restriction leads to an intermediate notion
that they call unrestricted strong robustness (USROB). Then, they go on to remove the restriction that
the adversary is challenged with honestly generated public keys. Instead, the adversary is given complete
control over the key generation, and it is up to the decryption algorithm to reject invalid key pairs, which
leads to their full robustness (FROB) notion. The USROB and FROB notions define robustness via
the decryption routine of a PKE, implicitly assuming that robustness “carries” over to the encryption
algorithm since encryption and decryption are related through correctness. However, in a setting where
the adversary can freely choose key pairs and ciphertexts, correctness may no longer hold, since the
adversary can feed values from outside the key- and ciphertext-space into the PKE algorithms. Thus,
it is necessary that the whole cryptosystem satisfies a robustness notion. To capture this, [111] defines



88 chapter 7. limitations and related work

complete robustness (CROB), which challenges the adversary to find a ciphertext that decrypts under
different key pairs for any combination of encryption and decryption calls.

In [123], Grubbs, Maram, and Paterson define anonymity, robustness, and so-called collision freeness
for KEMs, building upon Mohassel’s work [176] that only defined these properties for PKEs. They
investigate whether a PKE constructed via the KEM-DEM paradigm inherits anonymity and robustness
from the underlying KEM. They show that this is true for explicitly rejecting KEMs. However, for
implicitly rejecting KEMs, this is not the case in general. Since all NIST PQC finalist KEMs are implicitly
rejecting KEMs constructed via variants of the FO transform [116], they then go on to analyze how the
FO transform lifts robustness and anonymity properties from a PKE scheme, first to the KEM built via
the FO transform and then to the hybrid PKE scheme obtained via the KEM-DEM paradigm. They
apply their generic analysis of the FO transform to the NIST PQC finalists Saber [85], Kyber [48], and
Classic McEliece [31] as well as the NIST alternate candidate FrodoKEM [47]. Another finding of [123]
regarding the IND-CCA secure Classic McEliece scheme will be relevant for our work: for any plaintext
m, they find that it is possible to construct a single ciphertext c that always decrypts to m under any
Classic McEliece private key.

Our Binding Properties in the Wild
Building on an earlier pre-release of our work on KEMs, Schmieg reports in [206] attacks on ML-KEM’s
MAL-BIND-K-PK and MAL-BIND-K-CT security, which we conjectured in an earlier version (Version
1.0.5) of [73].

The attack in [206] on MAL-BIND-K-CT exploits the fact that implementations of ML-KEM store
a hash of the public key, which is needed to compute the shared secret when the KEM accepts, inside
the secret key. This is done to avoid recomputing this hash across decapsulation operations. While
this improves the performance of the KEM, it allows strong adversaries that can control the secret key
for decapsulation–like the adversary in our MAL properties–to manipulate this hash. In a nutshell, an
adversary can carefully manipulate the hash which does not trigger the FO rejection flow during Dec
and create two different ciphertexts that decapsulate to the same shared secret. This is possible because
ML-KEM derives the shared secret only from the stored hash of the public key and the sampled message
when it accepts. For further details of the attack, we refer the reader to [206]. We want to highlight that
this attack is neither specific to ML-KEM nor to implicitly rejecting KEMs (since it does not trigger the
rejection flow) but caused by the serialization format of the secret key.

To mitigate the attack, [206] suggests to not cache the hash of the public key inside the secret key but
to recompute it for every decapsulation operation. Another mitigation they suggest is to check whether
the stored hash is actually the hash of the public key. In summary, both of these mitigation strategies
assert that the secret key is well-formed. Therefore, we believe that KEM implementations can achieve
the MAL-BIND-K-CT property in practice, albeit at the cost of a minor performance loss, and the attack
does not indicate a problem with our property.

The attack on ML-KEM’s MAL-BIND-K-PK is very similar to the previously described attack on
MAL-BIND-K-CT . The difference is that the adversary now replaces the rejection value z, which is also
stored inside the secret key. The attack then proceeds as follows: The adversary creates two secret keys
which share a rejection value z, produces a random ciphertext c, and tries to decapsulate c with both
secret keys. With overwhelming probability, both decapsulation calls will reject the ciphertext resulting in
the same shared secret because the rejection flow computes the shared secret as a hash of c and z.

Again, the mitigation that Schmieg suggests tries to verify that the secret key is indeed well-formed.
The idea is to not store the secret key directly, but to store the seed that the key was derived from and to
recompute the key in every decapsulation call. Unfortunately, this mitigation is impossible to implement
for the ML-KEM proposal (FIPS 203, August 24, 2023 [178]) without technical changes, since it currently
derives the rejection value z from a different seed that is independent of the key generation seed. Because
of this, it is impossible to check whether a secret key is well-formed: the rejection value z stored inside
the key is random and independent of the key; any value is possible. As a consequence, there seems to be
no mitigation for Schmieg’s attack without changing the proposal, and implicitly rejecting KEMs with
such independent values cannot achieve our MAL-BIND-K-PK and MAL-BIND-K, CT -PK properties
just by performing simple sanity checks. If, instead, the key pair and rejection value are derived from the
same seed, a KEM can verify whether a secret is well-formed by recomputing it from the seed.
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Lastly, we want to highlight that both attacks can be prevented by including both the ciphertext and
the public key in the derivation of the shared secret as well as the rejection key, instead of using only
one of them in each derivation respectively. This can, for instance, be achieved by the generic wrapper
construction of [73].

Recall that ML-KEM derives the shared secret from the sampled message and the stored hash of the
public key when it accepts, and from the rejection value and the ciphertext when it rejects. If it were to
include both the public key and the ciphertext in both cases, the MAL-BIND-K-CT attack by Schmieg,
which relies on ML-KEM accepting, would not work because including the different ciphertexts in the
key derivation trivially leads to different shared secrets. For Schmieg’s MAL-BIND-K-PK attack, which
relies on ML-KEM rejecting, including the different public keys in the derivation of the rejection key also
forces different rejection keys.

Note that for ML-KEM we cannot simply add the ciphertext to the computation of the shared secret,
and we have to resort to the wrapper construction. The underlying reason is that ML-KEM computes
the shared secret and the coins r used for the call to the underlying PKE from the same call to G (see
Algorithm 16 in [178]). Hence, it is impossible to include the ciphertext c in the key-derivation of the
shared secret at this point, because it cannot be computed yet.

To conclude, we find that the attack on MAL-BIND-K-CT is tightly linked to the additional informa-
tion that is stored inside the secret key, but KEM implementations can achieve the property if they check
the secret key for well-formedness. However, we are not aware of any current KEM implementations that
do this due to its negative performance implications. Regarding the attack on MAL-BIND-K-PK, we
find that it is tightly linked to the relationship of the key pair’s seed and the rejection value’s seed. If they
are independent, there appears to be no way of mitigating this attack since any combination of key pair
and rejection value is well-formed. If they are dependent, checking for well-formedness becomes possible,
however, this would require changes to current proposals as well as their implementations.

7.3 Limitations

Building advanced, fine-grained models of cryptographic hashes, AEADs, and KEMs resulted in significant
improvements in symbolic verification. In all three cases, our methodologies allow us to automatically
discover protocol flaws based on subtle differences in cryptographic primitives. However, we are far from
done, even with the primitives covered in Chapters 4 to 6. In the following, we will talk about the main
two limitations for our primitive models: the computational overhead our methodologies introduce and
the generality of our results.

Runtime
Our models of cryptographic hashes, AEADs, and KEMs introduce a computational overhead compared
to their “perfect” representations previously used in Tamarin.1

This increase in needed computational resources is to be expected. The more fine-grained models
offer a deeper level of detail, which, while more expressive and accurate, also increase the amount of
computations of the tool for the same problem. While the overhead is usually small (see for instance
Table 4.12), a small increase can already lead to big challenges in protocol verification. One such problem
is the “state space explosion”, where the number of different states that the verification process needs to
consider becomes very large, very quickly.

At present, with the level of efficiency Tamarin offers, using multiple of our advanced primitive models
within one analysis is out-of-scope for any bigger real-world protocol.

Coverage
In an ideal world, we would like to (i) cover all possible definitions and weaknesses of a primitive, and
(ii) have the guarantee that if our method reports an attack, the attack is always feasible in practice.

1We conjecture that this will be the case for any tool that relies on idealized representations of cryptographic
primitive, e.g., ProVerif.
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Unfortunately this is not the case yet.
Let us take our models of AEADs as an example. In terms of possible AEAD definitions there are

subtle differences that we currently do not capture yet. This includes, for example, properties beyond
collisions and nonce-reuse, such as the “s-way committing security property” [25] that generalizes the
CMT notions to the multi-user setting.

Our models can also be improved with respect to the Forge capability, as discussed in section 5.4.
On the positive side, we define general models and capture for instance collisions that given the current
knowledge are not practical, but could become so in the future, e.g., with new developments on AES.
While we do not claim to cover all possible AEAD attacks in the future, this allows to future-proof
protocols.

The same holds for all our primitive models. Especially, properties that reason about multi-user
settings or properties that we cannot encode in tools like Tamarin are still out-of-scope for our approaches.

With respect to practical feasibility of attacks, the fundamental problem is that our analysis method
and standard cryptographic analyses in fact consider protocols designs and not their implementation
details. For example, this includes abstracting away from encoding details, i.e., how values and compound
structures are exactly mapped to bitstrings. Yet such details are critical to determine whether certain
attacks are possible or not. As a consequence, when we find an attack on the protocol design, this should
intuitively be interpreted as: there exists an encoding scheme for which the protocol implementation is
insecure. We argue that security of a protocol design should avoid depending on its encoding scheme,
and if not, specify the requirements explicitly. The problems we found here using our methodologies are
therefore real concerns for the protocol designs. Still, manual inspection of the implementation is still
needed to check whether the encoding allows the attack execution.
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Pa r t I I : E x p l o r i n g t h e L i m i t s



“If you always put limits on everything you do, physical or anything else, it will spread into your
work and into your life. There are no limits. There are only plateaus, and you must not stay

there, you must go beyond them.”
– Bruce Lee, Description of personal philosophy, n.d.



Statement of Originality

This part of the thesis consists of three chapters.
Chapters 8 to 10 are all based on my previous work

Cas Cremers, Alexander Dax, and Aurora Naska. “Formal analysis of SPDM: Security protocol and data
model version 1.2.” In: USENIX Security Symposium. 2023 [76]

and

Cas Cremers, Alexander Dax, and Aurora Naska. Breaking and Provably Restoring Authentication:
A Formal Analysis of SPDM 1.2 including Cross-Protocol Attacks. Under Submission. 2025 [75].

Both papers are joined work with Cas Cremers and Aurora Naska. In both, Aurora Naska and I
shared the lead on the project.
While both of us worked on all parts of this project, I lead the research in formalizing the device attestation
part of the SPDM protocol. I also took the lead on identifying challenges and limitations of our approach
and developed strategies on how to overcome them during the merging and composition of our final
monolithic SPDM model.
I will describe my contributions in more detail in the following.

The general description of SPDM in Section 9.1 is drawn directly from [75, 76] and follows their presentation
closely. The models described in Section 9.2 were jointly constructed by Aurora Naska and I. My primary
focus within this section encompassed the abstraction layer and the modeling of the phases of SPDM
leading up to session establishment phases (Section 9.2.1).

The security properties of the phases up to the session establishment phases presented in section 9.3.1
from Section 9.3 as well as the initial formulation of the threat model in Section 9.3.3, were extracted and
formulated by myself.

Additionally, I took the lead in the research concerning the merging and composition of protocol
components into a monolithic model (Section 9.2.2), with a particular emphasis on exploring scalability
and identifying limitations inherent in the monolithic model (Section 9.4).

In Section 9.5, I describe our analysis results for both the initial models and the monolithic model.
While the general results are to be attributed to all authors, I additionally describe an attack uncovered
in the monolithic Tamarin model and its respective fix. The process of finding, describing, implementing,
and fixing the attack was lead by Aurora Naska and is presented here in a shortened version.

Furthermore, the limitations and discussion in Chapter 10 are collected and presented by me but
include a culmination of the experiences and observations of all authors throughout the projects, and
thus, it does not solely reflect my own insights.

The figures presented in the following chapters are taken from [75, 76] with the permission of all
authors and are therefore not to be seen as solely my own contributions.





8Exploring the Limits – Analyzing SPDM

The preceding chapters have examined methods to align symbolic models of basic cryptographic primitives
more closely with real-world scenarios. These analyses have advanced our understanding of protocol
verification and allowed us to detect subtle flaws previously only detectable by manual inspection.

However, while we were able to allow symbolic analysis to be more fine-grained, it does not assist us
in tackling the other prominent issue with automated analysis – the size and complexity limitations of the
object to be analyzed.

Most formal analyses of security protocols, even after decades of research, primarily focus on isolated
protocol components, such as single key exchanges using specific cryptographic primitives, ratcheting
steps in messaging, transmission layer steps, or key renegotiations. However, real-world protocols like
WhatsApp, Signal, and TLS combine multiple such components and often involve various bootstrapping
methods, such as starting a conversation with either pre-shared symmetric keys or using certificates within
an established public key infrastructure (PKI). Combining components in such a way can exhibit complex
behaviors when components share data – which is not covered by component-specific proofs.

Consequently, in practice, the composition of these components often leads to vulnerabilities, as
demonstrated by attacks on delayed authentication in TLS 1.3 [81] or cross-protocol attacks on Blue-
tooth [217], Threema [183], and Matrix [4]. Although studies on protocol composition exist, such as those
by [52, 54, 120, 121, 125, 126], they often do not fully apply to real-world scenarios because they do not
accommodate less idealized design principles or the full range of potential attack vectors encountered in
practice.

Although there are analysis results available for complex protocols like that TLS [80], WPA2 [83], and
Apple PQ [161], much work remains to make analyzing such protocols easier. With the growing number
of complex standards being introduced recently and expected in the future, the challenge is increasing.
Our goal here is twofold:

1. First, we aim to analyze a new and complex real-world security protocol, namely DMTF’s SPDM,
and be the first to provide formal security guarantees for it.

2. Second, by tackling the formal analysis of a large-scale security protocol currently in standardization,
we hope to better understand the current limitations and capabilities of state-of-the-art methodologies
within the symbolic model.

The Security Protocol and Data Model (SPDM) standard is actively being developed by the Distributed
Management Task Force (DMTF) [93], an industry organization focused on creating standards for IT
infrastructures, including cloud computing, virtualization, networks, servers, and storage. Its board and
members include major companies such as AMD, Google, Huawei, IBM, Intel, Lenovo, NVIDIA, and
many more. One of DMTF’s core objectives is to establish common solutions that enable products in
this space to work seamlessly together. Recently, key members of DMTF have placed a high priority on
securing their platforms through what is known as the platform root of trust. As part of this effort, they
have supported the development and standardization of SPDM protocol [96].

The SPDM protocol has two main goals, as outlined in its technical note [97]: (i) to cryptographically
verify the identity and firmware integrity of platform components, and (ii) to ensure private and secure
data communication over platform interfaces. SPDM is already being implemented across hardware
components (e.g., Intel, Dell, NVIDIA), cloud platforms (e.g., Google, Cisco, IBM), and operating systems
(e.g., Linux). It is also a core security mechanism in CXL 2.0 (Compute Express Link), part of PCIe
5.0, which will be adopted in all Intel and AMD server CPUs, supporting Confidential Computing in
technologies like Intel TDX and NVIDIA Hopper.

Analyzing SPDM is challenging due to several reasons. SPDM is often described as a six-round
message flow, but this abstraction hides its true complexity. The actual state machines involve loops,
optional flows, session resets, and delayed authentication. Although it borrows from TLS 1.3, and regularly
compares itself to it, its state machines and transcript handling are significantly more complex, leading
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the existing analysis of TLS [11, 30, 34, 35, 41, 50, 51, 80, 81, 86, 91, 104, 105, 113, 114, 136, 145, 149,
155, 160] to be non-transferable to SPDM. SPDM also uses filtered message transcripts in a non-standard
way, making its state machines even more complex than those of TLS 1.3. Additionally, the specification
of SPDM provides only informal security goals and a high-level STRIDE analysis, limiting its precision.

8.1 Outline

In the following chapters, we will address the goals previously outlined.
In Chapter 9, we formally model the SPDM protocol in Tamarin, one of the state-of-the-art tools to

perform automated, symbolic analysis of security protocols. Our final model of SPDM results in one of
the largest Tamarin models created to date. To provide a rough measure of its complexity: our model
includes 71 transition rules and 42 analyzed lemmas, with the most demanding proof search requiring 261
proof steps. For a general comparison with other major Tamarin case studies, the PQ3 model includes 22
rules [161], the WPA2 model has 69 rules [83], and TLS1.3 comprises 63 rules[80].

As a result of our analysis, Tamarin identified a critical attack on the mutual authentication needed
to ensure private and secure data communication. We successfully implemented this attack on the official
DMTF reference implementation written in C [100] and the Rust implementation [98], leading DMTF to
register a CVE [84] with critical severity (CVSS score 9.0). In response, we proposed a fix and formally
proved the security of the updated version of the standard. As a result, both the standard and the
reference implementations have been revised and updated accordingly.

In Section 9.4, we address the primary challenges encountered while constructing our monolithic
SPDM model in Tamarin, working towards our second goal. Continuing in Chapter 10, we elaborate on the
substantial effort required to develop our models and discuss our observations along with the limitations
of our analyses. Our work highlights the significance of modeling decisions, such as choosing between
processes-based modeling and transition-based modeling, as without choosing the latter, we most likely
would have missed our discovered attack. We also demonstrate that domain separation is not only a wise
design choice but also allows for the analysis of extensive case studies in Tamarin. With the progress we
made on our goal to understand the current limitations and capabilities of state-of-the-art methodologies
within the symbolic model, we explore potential future directions for SPDM and the broader field of
security protocol analysis.

Our results showcase that analysis results of single modes of protocols do not propagate to the entire
protocol analysis. In turn, this calls for holistic analysis of protocol standards and development of tools
to support their size. We recommend protocol designers to take the state of current formal analysis
techniques into account when designing new protocol standards. This can be prudent design measures
like adopting domain separation of their keys or proactively setting out explicit security goals.

8.2 Related Work

The Security Protocol and Data Model (SPDM) by DMTF is supported by numerous significant industry
stakeholders, and it is already implemented in hardware or cloud components as well as being a part of
PCIe 5.0. Yet, the protocol has seen very limited attention within the academic community.

Studies like [8, 9] have conducted benchmark assessments on SPDM implementations, focusing on
performance but not exploring their security dimensions. On the other hand, [219, 220] aim towards
advancements in post-quantum security for SPDM. [220] discusses necessary adjustments for a post-
quantum adaptation of SPDM, proposing a new key exchange mechanism that substitutes traditional
Diffie-Hellman (DH) approaches with Key-Encapsulation Mechanisms (KEMs) to meet future cryptographic
challenges. Meanwhile, [219] introduces a variant of the KEM-based key exchange that forgoes digital
signatures, though their security proofs were unavailable at the time of writing. In Part I of this thesis,
we analyzed a minimal version of post-quantum SPDM (see Section 6.5.5.)

In the analysis of our comprehensive SPDM model, Tamarin reveals a hybrid threat combining a
cross-protocol attack and a state machine flaw within the SPDM framework. There has been extensive
research into potential state machine attack vectors for the TLS protocol, including methods to infer or
test the state machines of an implementation through fuzzing, as seen in studies such as [32, 89, 193, 212].
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However, the SPDM 1.2.1 standard lacks defined state machines, which means there is not a clear baseline
or "ground truth" for comparisons.

Despite this, it would be interesting to apply state machine inference techniques or specialized fuzzing
to SPDM’s reference implementation to see if these methods could uncover any mode-switch behaviors.
However, the effectiveness of these techniques could vary significantly. Our particular attack involves
creating non-standard messages after the mode-switch occurs, which complicates matters. The success
of detecting such issues heavily depends on the specific threat models used, which influence how state
machine behaviors are interpreted and analyzed.

Furthermore, the security community’s efforts to apply composition results to ensure holistic protocol
security do not currently align with SPDM’s architecture. Results such as those from Ciobâca and
Cortier [63] do not extend to protocols sharing cryptographic elements, as is the case with SPDM. Other
results [52, 54, 120, 121, 125, 126] are similarly inadequate due to their limitations or the complex shared
state and cryptographic dependencies within SPDM’s sub-protocols, demonstrating the challenge of
applying general-purpose composition theories to SPDM.
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9.1 Security Protocol and Data Model 1.2.1

The Security Protocol and Data Model (SPDM) is a protocol designed for two parties: an Requester,
who starts the communication, and a Responder. SPDM is focused on achieving two principal security
objectives: device attestation and authenticated, secure communication. Device attestation allows the
Requester to verify various aspects of the Responder, such as firmware integrity and device identity. This
goal ensures that the device being communicated with is secure and trustworthy. The second objective,
similar to that of the TLS protocol, involves establishing a secure and authenticated channel that allows
for the safe transmission of data between the two parties over a network. The SPDM protocol is structured
into five distinct phases:

(i) Device Initialization phase This phase occurs outside the formal protocol and is focused on
setting up devices with their initial cryptographic functions and protocol configurations.

(ii) VCA phase The Version-Capabilities-Algorithms phase begins the protocol process, negotiating
the ciphersuites and protocol versions to be used by the participants.

(iii) Options phase This phase allows for the unilateral authentication of the Responder and the
attestation of various device attributes through what are termed measurements – the changeable
configurations of the Responder’s device. These actions depend on prior device initialization and
the objectives of the Requester. It is possible for the Requester to bypass this phase entirely and
proceed directly to the Session phase by sending a key exchange request immediately following the
VCA phase.

(iv) Key Exchange phase The key exchange phase (or handshake phase) establishes a secure and
authenticated session for exchanging application data later on. In this phase session keys are derived
through a Diffie-Hellman exchange or using pre-shared symmetric keys.

(v) Application Data phase The final phase involves data exchange under an AEAD protocol as
detailed in the SPDM architecture whitepaper [95]. This phase also incorporates a key update
mechanism to maintain security integrity over time.

•

Initialization

VCA

VCA Options

New Session

(a) High-level view of the phases of SPDM’s main process:
Device Initialization, VCA phase, Options phase, and cre-
ation of new sessions.

•

•

Key Exchange

CertificatesPub. KeysSymm. Keys

Key Update

Terminate

Data Exchange

(b) High-level view of the sub-phases of each new session:
the Key Exchange phase and the Application Data phase.

Figure 9.1: High-level views of SPDM’s protocol flow. (a) gives an overview of the connections of SPDMs different
main phases, while (b) depicts an high-level view of the sub-phases within the session phase. Note that multiple
sessions can be spawned and executed concurrently for each SPDM protocol run.

In Figure 9.1 we show an overview of the five phases of SPDM and the sub-phases of each new session.
We will now give a more in-depth description each SPDM phase.

9.1.1 Device Initialization

Prior to initiating the protocol, parties are equipped with their initial protocol software and cryptographic
resources during the device initialization phase. This setup is typically carried ouf messages exchanged
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during the protocol, are detailed in the SPDM specification [96, p. 33–36]. Furthermore, the initialization
process should include at least one of the following elements:

(i) pre-shared symmetric keys with one or more other devices,
(ii) pre-shared public keys with one or more other devices, or
(iii) a public key pair, certificates over the public key, and a root of trust to verify certificates.

Options (i) and (ii) are configured with pre-established communication partners, and interestingly, there
is no specified upper limit on the number of shared keys that can be used. For option (iii), a device
is capable of storing up to eight certificates. These certificates must be in ASN.1 DER-encoded X.509
v3 format as stipulated in [65]. The first certificate slot, labeled as certificate slot 0, should only be
configured or modified in a secure and trusted environment. The remaining seven slots allow for dynamic
updates: SPDM provides functionality for retrieving a certificate signing request from a Responder [181],
and for setting certificates remotely via GET_CSR and SET_CERTIFICATE commands. It is specified
that SET_CERTIFICATE should be executed only within a secure session, although the details of what
constitutes such a session are not elaborately defined in the standard.

Furthermore, during initialization, vendors have the flexibility to create and implement their own
custom request and response codes. This is allowed through the optional “vendor defined functionality,”
which enables vendors to tailor the protocol to specific needs and scenarios.

9.1.2 VCA Phase

This phase begins with the Requester sending a version request to determine the versions supported
by the Responder. Upon receiving this information, the Requester chooses the highest common version
supported by both parties, as recommended by the specification.

Each party possesses a set of capabilities that outline the operations they can perform under the
SPDM specifications. For example, if a party has pre-shared symmetric keys, it will set and communicate
the PSK_CAP flag. Following the capabilities exchange, both parties identify and store the common
capabilities that they both support.

The exchange of supported cryptographic algorithms follows, where each party presents a list of the
cryptographic algorithms they can implement, such as various signature or encryption schemes. While
ideally, the strongest available cryptographic algorithms are selected, the standard does not provide a
specific method for choosing these algorithms, leaving some flexibility in their selection.

The parties keep a transcript of all messages sent and received. For more specific details see Appendix A.

9.1.3 Options Phase

Runtime Responder Authentication
When establishing a connection using public keys and certificates for the first time, the communicating
parties initially lack cryptographic information about each other to perform authentication. To address
this, SPDM allows the Requester to obtain the public key and certificate of its partner (option (iii) of
device initialization) for use in the protocol run.

After obtaining the certificate, the Requester can challenge the Responder’s knowledge of the private
key associated with the certificate by requesting a signature over the communication transcript and a
randomly chosen Requester nonce. For details on transcript computation, refer to [96], line 355.

If the Responder’s certificate was already stored in a previous session, the Requester can request
a certificate digest for comparison (GET_DIGESTS) instead of retrieving the entire certificate. The
following summarizes SPDM’s functionality for verifying the responder before session establishment:

GET_DIGESTS Instead of retrieving and checking the complete certificate in every session, the
Requester can store and compare the certificate’s hash. If the hash of the requested certificate is
not yet available, the Requester must execute GET_CERTIFICATE .

GET_CERTIFICATE During this phase, the complete certificate is retrieved and verified against the
chain of trust. Once verified, the corresponding public key and the hash of the certificate are stored
for future use.
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CHALLENGE In this phase, the Requester challenges the Responder to prove knowledge of the long-term
key associated with the certified public key. The responder must sign the transcript, which includes
a challenge nonce, using its long-term key. Details are provided in [96], page 78, v1.2.1.

The specification recommends performing unilateral responder authentication using CHALLENGE at
least once before proceeding with device attestation through measurements.

Device attestation through Measurements
The Requester can query measurements from the Responder. The Requester sends a nonce along with the
measurement request the responder responds with a bitstring that represents the measurement or a set of
measurements. The response is not specified in SPDM, but envisioned to be, e.g., some hash of the device
state, certain software versions or any other user- or manufacturer-defined function. The Requester sends
a nonce along with the measurement request. In response, the responder provides a bitstring representing
the measurement or a set of measurements. While SPDM does not define the specific format of this
response, it is generally envisioned to include elements such as a hash of the device state, specific software
versions, or any user-defined or manufacturer-defined function.

The measurements can optionally be authenticated through digital signatures in the public key settings,
provided this capability is supported by the communicating parties. However, in scenarios involving
pre-shared symmetric keys, explicit requests for measurements cannot be made at this stage. Instead, the
measurements may be included as part of the PSK exchange at a later point.

9.1.4 Key Exchange Phase

SPDM allows devices to establish a secure session using key exchanges in three ways (i) using certificates
signed by a trusted certificate authority, (ii) using pre-shared public keys, or (iii) using pre-shared symmetric
keys. Parties that support digital signatures and public key cryptography can start a Diffie-Hellman
based key exchange to derive the session secret with option i) or ii). Otherwise, devices provisioned with
pre-shared symmetric keys iii) can perform a key exchange based on those secrets without relying on
public key cryptography.

Key Exchange with Certificates
In the key exchange process with certificates, trust in the partner’s identity is established using device
certificates signed by a root authority. Verification is performed through the certificate chain-of-trust,
with the root certificate of a CA at the top level. During the key exchange, identity verification occurs
when the parties sign a challenge using the private key associated with the certificate. Concurrently, a
Diffie-Hellman computation is used to derive the base session key, known as the handshake secret in
SPDM. Note that SPDM supports multiple parallel sessions.

To initiate the session, the Requester sends a KEY _EXCHANGE request containing an ephemeral
Diffie-Hellman public key, a 32-byte nonce, 2 bytes of its contribution to the session ID, and the negotiated
version. Upon receiving the request, the Responder generates its own ephemeral Diffie-Hellman key pair
and computes the handshake secret. The Responder then prepares its response, which includes a 32-byte
nonce, 2 bytes for the session ID, a signature of the transcript so far (signed using the private key of its
device certificate), and the ResponderVerifyData– an HMAC over the transcript using the finished_key.
Details on transcript construction are given in Appendix A.

Upon receiving the response, the Requester verifies the signature and computes the required session
secrets, including the role-oriented handshake secrets and finished keys. The Requester then verifies
the HMAC using the responder’s finished_key and composes the FINISH request to finalize the key
establishment and optionally authenticate to the Responder. The Requester then sends a signature of
the transcript using its private key and an HMAC of the transcript with the requester’s finished_key.
The Responder, upon verification, responds with a FINISH_RSP message containing an HMAC of the
transcript. It then derives the session encryption keys from the handshake secret and enters the application
data exchange phase.
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Requester Responder

VCA phase

KEY_EXCHANGE, v, n1 , sid1 , ga

KEY_EXCHANGE_RSP, v, n2 , sid2 , gb, sign(T1 ′, ltkResp), hmac(T1 , fkResp), ...

FINISH, v, sign(T2 ′, ltkReq), hmac(T2 , fkReq)

FINISH_RSP, v, hmac(T3 , fkResp)

Figure 9.2: Key Exchange with Mutual Authentication in the certificate mode.

Mutual Authentication The certificate-based key exchange always authenticates the Responder, but to
explicitly authenticate the Requester, the Responder needs to explicitly require it.

Requester Responder

VCA phase

Options phase

KEY_EXCHANGE, v, nonce1 , sid1 , ga

KE_RESP, v, nonce2 , sid2 , gb, sign(TH1 , ltkResp), hmac(TH1 , fkResp), MutAuth

D_Encap_Resp(DIGEST, v, h(certReq))

Encap_Resp_Ack(GET_CERTIFICATE, v)

D_Encap_Resp(CERTIFICATE, v, certReq)

Encap_Resp_Ack(v)

FINISH, v, sign(TH2 , ltkReq), hmac(TH2 , fkReq)

FINISH_RESP, v, hmac(TH2 , fkResp)

Figure 9.3: Key Exchange with Mutual Authentication in the optimized encapsulation flow. In the FINISH
message, if Mutual Authentication is requested (MutAuth), the Responder can request digests and certificates for
the Requester’s public key using encapsulated messages. Additionally, the Requester does sign the transcript TH2
(which is marked in blue.) If the Responder already has the certificate of the Requester from another protocol run,
they can skip directly to FINISH .

The Responder can signal mutual authentication by setting the MutAuthRequested flag in their
key exchange reply. Depending on the value of this flag, the protocol can either trigger the mutual
authentication mechanism using an encapsulated flow or proceed directly to the finish phase. The latter
option is preferred when the certificate has already been obtained from a previous protocol run or when
the parties have pre-shared public keys.

For the encapsulated mutual authentication flow, the protocol employs dedicated messages, such
as ENCAPSULATED_REQUEST , to handle the exchange. An example of this mutual authentication
process is illustrated in Figure 9.3.
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Key Exchange with Pre-shared Public Keys

The key exchange using pre-shared public keys is similar to the key exchange presented in Section 9.1.4
with a message flow similar to Figure 9.2. The main difference lies in the usage of public keys: In a key
exchange with pre-shared public keys, both parties are equipped during the trusted manufacturing process
with long-term private-public key pairs and their partners’ public keys. This eliminates the need for
certificates, as they directly verify signatures over the transcript using the pre-provisioned long-term keys.

Key Exchange with Pre-shared Symmetric Keys

In the key exchange using pre-shared symmetric keys, both the Requester and Responder are provisioned
with shared keys during a secure manufacturing process. These keys serve two purposes: mutual
authentication and session key derivation for the application data phase. Although they can share multiple
PSKs for different connections, we assume a single PSK for simplicity.

The handshake begins when the Requester sends a PSK_EXCHANGE request containing the protocol
version, a 32-byte nonce, and a 2-byte session identifier. Upon receiving this, the Responder retrieves the
corresponding PSK for the Requester and calculates the handshake secret as:

handshake_secret = HKDF(Salt0, PSK)

From the handshake_secret, the Responder derives the role-specific handshake secrets and finished_keys,
as described in Appendix A.9. The Responder then calculates the verification tag ResponderVerifyData
using the finished_key as the HMAC key and responds with a PSK_EXCHANGE_RSP message that
includes the session ID and a 32-byte nonce.

Upon receiving the PSK_EXCHANGE_RSP message, the Requester derives the same handshake
secrets and keys as the Responder and composes the session transcript. It verifies ResponderVerifyData to
ensure the integrity and authenticity of the response. If the verification succeeds, the Requester calculates
its verification tag RequestorVerifyData and sends the PSK_FINISH request to authenticate itself to
the Responder and confirm the session secrets. The Responder verifies the HMAC over the session
transcript using the finished_keys. This step implicitly authenticates the Requester (achieving mutual
authentication,) confirming that it possesses the correct shared PSK. The Responder then responds with
a PSK_FINISH_RSP message and derives the encryption keys for the application data phase, as shown
in Figure 9.6.

9.1.5 Application Data Phase

After completing one of the key exchanges, the session reaches the application data phase where Requester
and Responder can exchange data and update their keys without starting a new handshake. In this phase,
the roles are not bound to Requester and Responder anymore and both parties can act as a sender or
receiver.
Key Update Keys can be updated in two ways: the sender can decide to only update their own key, or
it can decide to update all session keys.

In the first case, the Requester sends a key update request (KEY _UPDATE) and, upon acknowl-
edgment, derives the new session major secret: mski+1 = HKDF(mski ,

′ upd ′,′ 0 ′). The new encryption
key is then derived as enckey = HMAC (mski+1 ,′ key′). To verify the update, the Requester encrypts
a request using the new key. After the Responder decrypts it, it deletes the old keys and encrypts an
acknowledgment response.

In the second case, both parties’ major secrets are updated, and the Responder encrypts the verification
acknowledgment using its new key. If the Responder initiates the update, the same process applies,
but it sends the key update through encapsulated messages, such as ENCAPSULATED_REQUEST
(KEY _UPDATE (...)).
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9.2 Formal Model of SPDM v1.2.1

As SPDM has shown to be a highly complex security protocol relying on several sub-protocols, we attempt
the first formal analysis in two stages. First, we analyze each sub-protocol in a modular fashion, reducing
the initial complexity while still covering all core mechanisms and features. Using the gained experience
and the manually extracted state-machines, we construct a monolithic, comprehensive model of SPDM,
covering the full protocol. The resulting Tamarin model is in size and complexity one of the biggest
models to date.

9.2.1 Modular Approach

In this section we describe our formal, modular modeling approach of the SPDM protocol. Because of the
size and complexity of the protocol, we split the analysis into four Tamarin models. This is an inherent
limitation of the current scalability of the analysis tools, and as we will see later, our split models already
push the boundary of what can be realistically handled by state-of-the-art tools. We tried to reduce the
impact of this modularization by identifying naturally distinct cases in the protocol flow, and identified
five main components: (i) Device initialization and the VCA phase (Section 9.2.1), (ii) Options phase
(Section 9.2.1), (iii) Session setup (Section 9.2.1) used in Tamarin, (iv) Three different key exchanges
(Section 9.2.1), and (v) Application data exchange and termination (Section 9.2.1). Whereas the (i,ii,iv,v)
naturally correspond to the five phases of SPDM from section 9.1, (iii) is a component needed in Tamarin
to connect the different state machines of Figure 9.1. We use these components to create four models:

• Device Attestation, includes device initialization, VCA and the options phase (i,ii).
• Key Exchange Certificate, includes device initialization, VCA, the key agreement with certificates,

and application data (i,iii,iv-1,v).
• Key Exchange pre-shared Public Keys, includes device initialization, VCA, the key agreement

with public keys, and application data (i,iii,iv-2,v).
• Key Exchange pre-shared Symmetric Keys, includes device initialization, VCA, the key

agreement with symmetric keys, and application data (i,iii,iv-3,v).

We will now describe how we model the five main components (i-v), need to construct the four final
models.

Device Initialization and VCA Phase

Each device gets initialized with a unique device identifier. Additionally, each device gets its supported
software versions, device capabilities, and cryptographic algorithms. We decided to model them as fixed
after initialization since updating, e.g. the capabilities, is not clearly specified as of now. In addition,
following the standard we model three ways to initialize cryptographic key material of the device: pre-
shared symmetric keys (PSK), pre-shared public keys, and public keys with an associated certificate; none
or any number of them can be used for initialization. After the initialization the parties negotiate these
capabilities during the VCA phase, as shown in the state machines in Figure 9.4a.

Certificates SPDM specifies using certificates as defined in [65], which implies the need to include a
public key infrastructure (PKI) and certificate chains with a root of trust into our analysis. We created
an abstract model with a single trusted root certificate authority (CA), which issues certificates directly
to the devices. We assume that this keeps the trust anchor assumption of certificate chains in place
while abstracting from all points of failures during the trust delegation. We claim that this abstraction
is reasonable, as formally analyzing PKIs and certificate chains lie outside of the scope of this paper.
Further, we restrict devices to only have a single slot to store a certificate for each communication partner.

In Tamarin we created the root CA from a unique public key pair and model it as a persistent fact
!RootCA(key, pk(key)). In the same way a device with identifier id is represented by !Device(id, · · · ),
where we use · · · to omit some details. Now given the initialized device, a fresh long-term key and the
root CA, the latter can sign a certificate for the newly generated public key of the device as shown in the
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following rule:[
!Device(id, · · · ), Fr(ltk), !RootCA(key, pk(key))

]
—

[
HonestlyGenerated(id, ltk, pk(ltk)), · · ·

]
→[

!Cert(id, pk(ltk), sign(< id, pk(ltk) >, key)), Out(< pk(ltk), sign(< id, pk(ltk) >, key) >), · · ·
]

Notice that to label the honest generation of the public key pair, we use an HonestlyGenerated action
fact containing the identifier of the device and the keys. As we will see in Section 9.3, this helps us to
express our security properties.

VCA phase For the VCA phase, we model the established channel of communication (handled by the
underlying network protocol in the implementation) using so called thread identifiers tid, which are fresh,
unique terms. In the following we can see the GET_VERSION request generate such an identifier and
bootstrap a protocol run:[

!Device(idReq, · · · ), !Device(idRes, · · · ), Fr( tid), · · ·
]

—
[

StartThread(tid , idReq , idRes) , Channel(idReq , idRes)
]
→[

StateReq(tid , idReq , idRes , · · · , ’GETVERSION’), Out(< ’GET_VERSION’, ’1’ >)
]

We restrict the model to only contain a single communication channel (restriction on the Channel fact)
per pair of devices at the same time. We then restricted that no messages are allowed to be sent using
older thread ids (tid.) With this we aim to distinguish one run of the VCA phase from another run
between the same parties. At any point the Requester sends a new version request a new thread id gets
created and a main part of the device state gets deleted.

Further, transcripts of a VCA run need to be stored in each party’s state and need to be updated with
every message sent and received. For the details on modelling transcripts refer to Appendix A. To make
accessing, updating and deleting the transcripts easier in Tamarin, we used the built-in multiset feature.
While using multisets in state facts makes proving harder for Tamarin, we can circumvent that problem
by enforcing the structure of the transcript on the multisets. With this, we do not lose any efficiency
while proving, but make modeling easier and more clear for users. Moreover, during a protocol run the
Requester should be able to return to the start of the protocol, by issuing a GET_VERSION request
and restart the entire conversation. From here, all sessions and data related to that conversation are
not accessible anymore, i.e., no further transitions are allowed in the old thread. This is modeled as a
restriction in Tamarin:

∀ tid1 tid2 idReq idRes ♯i ♯j . ♯i < ♯j &
StartThread(tid1 , idReq , idRes )@♯i &
StartThread(tid2 , idReq , idRes )@♯j
⇒ ¬(∃ ♯t . ♯j < ♯t & CurrentThread(tid1 , idReq , idRes )@♯t )

As we can see, at the GET_VERSION rule we log an action fact called StartThread with a fresh
thread identifier tid for the conversation, and later on every other transition of the protocol we always use
the CurrentThread action fact. CurrentThread keeps record of the current thread being executed. The
restriction can be read as: whenever an old thread tid1 is replaced by a new tid2 , there cannot be any
other transition being executed in the old thread tid1 .

Options Phase
To model this phase, we captured the multiple transitions, namely between certificates, digest, challenge
and measurements. In total, our model included 17 rewriting rules. Further, we modeled the transcript
needed during the responder authentication procedure using multisets as described for the VCA phase in
Section 9.2.1. For the details on modelling transcripts refer to Section 9.2.1.

Responder Authentication Runtime Responder authentication encompasses the request codes GET_DIGESTS ,
GET_CERTIFICATE , CHALLENGE , and their respective response codes (see Appendix B.) With the
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restriction of only modelling one certificate slot, we also model that the Requester only stores one certificate
of the Responder it communicates with. Hence, when Requester request the digest of the Responders
certificate, we model that verification of the digest either succeeds or that the digests do not match. With
this, we need to construct a total of 4 rules to exchange a digest: (i) requesting the digest, (ii) responding
to the digest, (ii) reaction of Requester if the digest is already stored, and (iv) reaction of Requester if
the digest is unknown. In the case that the digests do not match, the honest Requester requests the full
certificate of the Responder and verifies it using the root of trust stored in their persistent state.

When modeling CHALLENGE and CHALLENGE_AUTH , we implicitly require that the Requester
issued a GET_CERTIFICATE request at some previous point, as it is the only means for the Requester
to learn the public key of the Responder in the certificate setting.

Measurements The standard offers both signed and non-signed measurement requests. We modeled only
measurement requests, for which the Requester requires the measurement response to be signed using
the Responder’s private signing key. As non-signed measurement requests cannot guarantee any form of
authentication, they are irrelevant to our security analysis. Additionally, we needed to model two versions
of measurement requests and responses: one for the shared public key setting and one where certificates
are used.

Session Setup
Our formal models includes the two main session sphases: the key exchange handshake, and the application
data exchange loop with key update and termination. In Figure 9.1b, we give an overview of the state
machines of a session’s phases.

While devices only have limited memory, there is no a priori bound on the number of parallel sessions.
In our models, we therefore allow for an arbitrary number of parallel sessions, each independent from
another and executing different phases of the execution. To capture this, we maintain a main state of the
conversation thread and on each session creation we generate a new temporary state for that session’s
handshake. Specifically, we modeled a rule that given the main state of the Requester, StateReq, generates
a fresh session identifier sid and outputs the key exchange state KeyExchangeReq. Respectively, the same
transition is possible for the state of the Responder. In the agents’ state machines, this transition is
represented by the Spawn Session edge. The core of the rule is the following:[

StateReq(tid, idReq, idRes, v, · · · , ’IDLE’), Fr( sid)
]

—
[

CurrentThread(tid , idReq , idRes)
]
→[

StateReq(tid, idReq, idRes, v, · · · , ’IDLE’),
KeyExchangeReq(sid, tid, idReq, idRes, v, · · · , ’START_KE’)

]
As a result, parties can share data easily between sessions by accessing the main thread’s memory state.

This is desirable when data needs to be accessible to all other sessions, such as when a certificate obtained
in one session, should be available when creating the next.

Once at the end of the key exchange phase, the parties’ states transition to the application data
phase, AppDataKey. Here they are stripped of their roles as Requester and Responder during the message
exchange and can send and receive messages arbitrarily. However, the key update request still adheres
to their initial roles, meaning only the Requester can directly send a key update, while the Responder
needs to use the encapsulated mechanisms. In the end, the Requester can terminate the specific session
by issuing an END_SESSION .

Key Exchange Phase
For the key exchange phase we again distinguish between the three main modes to establish a session
from Section 9.1.4. In the following, we describe their respective models and describe how to the final
sessions keys are computed.
Certificates In this model we capture the protocol flow of the key agreement between parties that have
been initialized with certificates signed by a certificate authority CA. From the specification we modeled
the transitions of the Requester and the Responder to perform the handshake with unilateral and mutual
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Figure 9.4: Detailed state machines of the Requester and Responder in the Key Exchange with Certificates model.
Each of the labeled edges corresponds to a Tamarin rule in our model.

authentication. In the second case, the Responder can either use the encapsulated flow to request for the
certificate or use a certificate obtained from a previous session.

To initiate the key exchange the Requester sends a KEY _EXCHANGE message to the Responder in
which it includes a new Diffie-Hellman public key and its random values. While sending the message, it
updates the transcript by adding the current message, stores the private key and goes in a state of waiting
for a response. To encode the transition, we use a multi-set rewriting rule as follows:[

KeyExchangeReq(sid, tid, · · · , ’NULL’, tscript, ’START_KE’),
Fr( nonce), Fr( privK ), · · ·

]
—

[
CurrentThread(tid , idReq , idRes) , KETranscriptR(tscript)

]
→[

Out(< KEY _EXCHANGE , nonce, gprivK , · · · >),
KeyExchangeReq(sid, tid, · · · , privK , new_tscript, ’WAIT_RESP’)

]
Notice that we label this transition with the action facts CurrentThread and KETranscriptR. The first is
used to keep track of the current active thread in the conversation, as we saw previously in Section 9.2.1,
while the second serves for message transcript structure checks, as we will see later.

After receiving the response, the state of the Requester can trigger three possible transitions in our
model: a) send a finish request with only unilateral authentication, b) send their certificate using the
encapsulated flow to mutually authenticate (see Figure 9.3), and c) send a finish request with mutual
authentication if the certificate was provided in a previous session. In each of these cases, the parties
cannot go back the protocol steps or change their choice within the same session. In the end, we model two
ways to finish the key exchange, unilateral and mutual authentication, where in the latter the Requester
also signs the protocol transcript and certificate digests.

In Figure 9.4 we give an in-depth description of the Requester and Responder state machines of
setting up a session with certificates. More precisely, in Figure 9.4a we show the state machine of the
Device Initialization and VCA phase which are shared across all models, and in Figure 9.4b we give the
specifics of all possible modes in running a session in this model. Note that the KEY _EXCHANGE
rule in Tamarin we saw previously, corresponds to the KE Req edge on the Requester state machine in
Figure 9.4b. Similarly, the Encap(Digest) and Encap(Cert) represent the encapsulated mechanism for
mutual authentication, while Old Cert the transition when the certificate has been received in a previous
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Figure 9.5: Detailed state machine of the Responder in the Key Exchange with pre-shared Symmetric Keys. We
give the details of the rules that are specific to this key exchange mode corresponding to the SPDM responses
PSK_EXCHANGE_RSP , and PSK_FINISH_RSP , while omitting the VCA phase, and the details of
application data phase, shared across models. The state machines of the Requester are similar with the additional
edges that process the responses of the Responder.

iteration. Lastly, after finishing the handshake the parties reach the Application Data state where they
send and receive message, and update their keys until the session is terminated.

To represent the handshake with certificates and mutual authentication we modeled 18 rules in total,
in addition to the 13 rules needed for device initialization and VCA phase.

Pre-shared public keys The key agreement using pre-shared public keys is a slight variation of our
certificate model. Here, the parties do not need to exchange certificates, but rather only verify their
partner’s knowledge of the keys provisioned to both devices before the start of the protocol. From the
certificate model, we made the following two changes: a) removed the encapsulated mutual authentication,
and b) used pre-shared public keys instead of certificates to create signatures of the transcript. In total
we needed 8 rules to capture the transitions of the handshake.

Pre-shared symmetric keys We modeled the two options to perform the handshake of parties who have
been provisioned with pre-shared symmetric keys, namely with both parties contributing on the session
secret derivation or only the Requester. The distinction lays on whether the Responder expresses intent
to contribute by sending a random nonce in the key exchange response. Concretely in the protocol flow,
the Responder either directly enters the application data phase after the key exchange request/response
or continue with the finish request/response.

To model the decision, we write two distinct rewriting rules as seen in the state machine of the
Responder in Figure 9.5. Notably, after receiving the key exchange request m1 , the Responder either
replies without a nonce and enters the application phase, or sends a nonce and waits for the finish request
m3 . Similarly, the Requester receives m2 on two different rules, where the one that requires the nonce
not to be Null sends out m3 , and the other enter the application phase. The messages from m2 until
m4 are encrypted using symmetric cryptography with the role-dependent handshake keys derived at this
point in the protocol. In our model, this is expressed using the symmetric encryption theory, where
senc(m4 , resp_hkey) models the encryption of the finish response m4 with responder handshake secret
resp_hkey. In total we model the pre-shared symmetric key agreement with 9 Tamarin rules.

Transcripts During the protocol run, the parties need to sign and/or authenticate the transcript of
the conversation. Transcripts are concatenations of different messages, e.g., in the key exchange it is the
concatenation of the following: 1) messages of the VCA phase, 2) hash of Responder’s certificate or public
key, 3) key exchange request/response 4) hash of Responder’s certificate (if mutual authentication) or
public key, and 5) finish request/response messages. For the pre-shared private keys case, items 2 and 4
are not included. Note that the transcript only includes the already issued and the current message. For
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example, when the Responder signs the transcript in the key exchange response it will only include up to
item 3.

In our models, we store the messages of the transcript using multisets. In Tamarin’s syntax, + denotes
multiset union. We initialize two variables, respectively for the VCA phase and key exchange phase, and
update their content on every new message exchange. To help the tool’s reasoning, we also prove helper
lemmas to show the consistency of the transcript structure in these variables, like in the following:

∀ ke_transcript ♯i. KETranscriptR(ke_transcript)@♯i
⇒ (∃ m1 m2 m3 m4 .

ke_transcript =< ’Get_Key_Exchange’, m1 >

+ < ’Key_Exchange_Resp’, m2 >

+ < ’Finish’, m3 > + < ’Finish_Resp’, m4 >)

The lemma states that all KETranscriptR labels at time ♯i containing the transcript of the key exchange
ke_transcript, will have a transcript with the defined structure. Transcripts are heavily used in the
protocol, not only to be verified and sent to their partners, but also to derive the session keys and the
authentication keys for the transcripts themselves as we will see next.

Figure 9.6: Derivation of finished key, session keys and update of message keys for Requester, symmetrically for
the Responder. The _ is a placeholder for the input secret in the function, e.g., the handshake secret is calculated
as hmac(keypre−shared,′ 0′) in the pre-shared key setting. For the certificate model, transcript TH1 and TH2
are defined as follows: TH1 = TVCA ∥ h(certResp) ∥ TKeyExchange, and TH2 = TVCA ∥ h(certResp) ∥ TKeyExchange ∥
h(certReq) ∥ TFinish . See Appendix A for more details on transcripts.

Session key derivation During the key exchange the parties need to derive two keys: a) the finished-keys,
used for authenticating the transcript, and b) the encryption/decryption keys, used to send encrypted
data during the application phase. Starting from the shared secret, which can be a Diffie-Hellman output
or a pre-shared symmetric key, both parties derive role-oriented secrets by incorporating the transcripts
and pre-determined strings. This mean that the parties derive their own key to encrypt and their partner’s
key to decrypt the messages. The same is applied for the finished key.

The mechanism uses an HMAC and an HKDF function to expand and derive keys, as defined
respectively in [147] and [148]. However, in the protocol, the parties decide the hash algorithm to
instantiate these functions during the VCA phase. In Tamarin, we defined two functions symbols to
model the same functionality. In Figure 9.6 we can see how the entire key derivation is performed by the
Requester.

Application Data Phase
The application data phase starts at the end of the key agreement, as shown in Figure 9.4b. At this point
in the protocol, the parties are no longer restricted to their roles as Requester and Responder. In fact,
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either of them can send and receive messages. To capture this, we modeled two rules Send_Message and
Receive_Message. In the first, the sender encrypt a fresh payload using their encryption key and sends it
in the network. In the latter, the receiver decrypts the cipher text using their decryption key.

At any point during the session, the parties can update their own keys or all keys of the session. This
includes several back and forth between the parties, either in their normal flow or in an encapsulated way
(for the Responder). To model this mechanism we had to abstract the request and verify in the same step.
This was due to the large state the protocol has accumulated at this point in the protocol, which makes
it difficult to reason about the key secrecy. In total we used 6 rules to model the back and forth of the
messages and a restriction to deprecate the old session key.

In the end, the Requester can send a END_SESSION to finish the application data and remove
all secrets from the memory. Once the partner processes the request, they send an acknowledge to end
the session and will no longer send or update in this session. On processing the response the Requester
performs the same operations.

9.2.2 Monolithic Approach

In a second attempt, using the gained insight from the modular approach, we attempted to model SPDM in
a monolithic fashion. Our model of SPDM 1.2.1 as a whole comprehensively captures all main interactions
among sub-protocols in the Tamarin prover. This model contains all components described in Section 9.2.1.
It supports an unbounded number of devices that can initiate unilateral SPDM connections with any
other devices, allowing device A to establish two connections (in Requester and Responder roles) with
all available partners. Additionally, within a connection, the parties can spawn an unlimited number of
sessions in any of the three modes.

In Figure 9.7, we present the state machines for the Requester in each individual mode’s intended
flow, as well as a state machine modelling SPDM’s session establishment as a whole. These state machines
are based on the standard’s specified transitions. The rightmost figure highlights the complexity of the
key exchange composition of the three modes. However, the complexity shown in the figure is only a
subset of the actual state machine model, which includes far more transitions, for example to model VCA
and device attestation mode request and responses. Our final model includes 71 Tamarin rules, where we
model the device initializations with 5 rules, 1 rule for malicious certificates, 7 for the VCA phase, 16 for
the Options phase, 2 rules to spawn sessions, 29 rules for the key-exchange showed in Figure 9.7, and 11
rules for the application data phase.

To analyze the protocol for the desired properties with respect to an adversary that controls the
network, we do not just consider one instance of the Requester and Responder state machine. Instead, our
final Tamarin model considers that participants can potentially execute an unbounded number of instances
of the Requester or Responder state machine concurrently, while communicating over a network that is
completely controlled by a Dolev-Yao adversary. I.e., the adversary can decrypt any messages it receives
for which it knows the corresponding keys, can generate fresh values, and can construct arbitrarily complex
messages from the knowledge derived from messages it observed, and send these to the participants.

We discuss the design choices we made to enable the analysis of such a complex model in Section 9.4.
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Figure 9.7: To illustrate a small part of our model, we provide simplified state machines for the Requester for the
normal flows of the key exchange modes (the three on the left), and our model of SPDM as a whole (highlighted on
the right) for a single session. To simplify the presentation, we omit several edges that concern concurrent session
handling and session resets, but which are included in our formal model. The dashed lines denote transitions
unique to the message flow of key exchange states in PSK mode, dotted lines denote PK mode, and solid lines
the certificate mode and shared edges. We constructed these state machines based on the standard’s description
of (a) transition/event preconditions and (b) flow sequences, because the SPDM 1.2 standard and reference
implementation do not specify any explicit state machines. Each edge in such a state machine is modeled by a
Tamarin rule in our model.

9.3 Security Properties and Threat Model

We now turn to formalizing the security properties of the SPDM models which we described in Section 9.2.1
and Section 9.2.2. Recalling previously defined security objectives of SPDM, we first introduce the security
properties centered on identity verification and firmware integrity – which we refer to as device attestation
throughout this thesis – and discuss them in Section 9.3.1. Additionally, to address SPDM’s goal of
ensuring private and secure data communication, we outline the relevant properties for secure session
establishment in Section 9.3.2. Lastly, we will define the threat model we consider for our analysis in
Section 9.3.3.

9.3.1 Device Attestation

The main security properties during the device attestation phase of the protocol encompass the authenti-
cation of the Responder by the Requester and the integrity of measurements.

Unilateral Responder Authentication The primary authentication guarantee of SPDM focuses on the
authentication of the Responder by the Requester, namely unilateral responder authentication where only
the Requester receives an assurance of the Responder’s identity. This guarantee can be obtained in two
distinct ways: 1. before the key exchange when the parties agreed on using public key cryptography and
certificates, and 2. during the key exchange when the parties agreed on using public key cryptography,
certificates, and mutual authentication was disabled.

We derive our formalization of authentication from the hierarchy established by Lowe [163], which
outlines that if a party A in a specific role roleA participates in a protocol session with another party B
and agrees on certain data ds, there must indeed be a party B assuming the role roleB who is running the
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protocol and agrees on the same data ds.
In the SPDM context, where public keys serve as the default identifiers for parties, ensuring that an

Requester is actually communicating with the correct Responder equates to confirming that the interaction
is occurring with the legitimate owner of the public key. As the public key of the Responder can be
compromised, we define the authentication property as follows: for every successful authentication attempt
by an initiator, we require that 1. the public key challenged belongs to an honest party, and 2. there is a
corresponding responder (Responder) who possesses the correct public key and is actively participating in
the protocol session.

As an example, we define responder authentication before a key exchange as follows in Tamarin:

Definition 13. Responder Authentication 1:

∀ tid1 id1 id2 pk2 ltk2 ♯i ♯j .

CommitChallenge(tid1 , id1 , id2 , pk2 )@♯i
∧ HonestlyGenerated(id2 , ltk2 , pk2 )@♯j
⇒ (∃ tid2 ♯t . ♯t < ♯i ∧ RunningChallenge(tid2 , id2 , ltk2 ) @♯t )

Responder Authentication 2 representing the authentication during the key exchange is formalized analo-
gously but uses different action facts. Note that the difference between formulating responder authentication
in both the modular and monolithic approach is only syntactically.

Measurement Integrity Similar to the unilateral responder authentication, integrity of device mea-
surements is another goal of SPDM. Whenever an Requester requests measurements using the public key
of an honest Responder, the Requester should be communicating with the intended Responder, and the
measurements that the Responder sends should be received by the Requester.

The SPDM standard specifies two methods for requesting measurements during device attestation,
based on the type of key material used: certificates or pre-shared public keys. For example, in Tamarin
the latter is specified as follows:

Definition 14. Measurement Integrity PK:

∀ tid idReq idRsp pkRsp data ♯i .

ReceiveMeasurementPK(tid, idReq, idRsp, pkRsp, data )@♯i
⇒ (∃ id skRsp ♯t . ♯t < ♯i ∧ (pkRsp = pk(skRsp)) ∧
SendMeasurement(tid, id, idRsp, skRsp, data ) @♯t )

Typically, Tamarin can prove such lemmas quite easily. However, due to the intricate loops within
the SPDM protocol, Tamarin’s backward search might unroll these loops excessively, potentially leading
to non-termination. To assist Tamarin in proving these properties, we had to manually add extra helper
lemmas. This requirement is likely due to the complex looping behaviors encountered during device
attestation. The complexity increases further in our monolithic approach due to the various key exchanges
and how sessions are initiated, which complicates the proof process even more.

9.3.2 Secure Session Establishment

Next to unilateral responder authentication, the main goals of the session establishment is to create a
mutually authenticated session while guaranteeing the secrecy of the final keys after the key exchange.

Mutual Authentication We define mutual authentication of the parties at the conclusion of the key
exchange in all three modes of the protocol. This property ensures that once an Requester has committed
to a specific Responder and an agreed-upon transcript by the end of a mode, then that Responder should
also be actively engaged in the protocol, using the same transcript and operating within the same mode.
This requirement should hold for both directions. We formally define this property both for public keys
and for pre-shared symmetric keys. As an example, we define mutual authentication for public keys in
Tamarin like:
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Definition 15. Mutual Authentication PK: We define mutual authentication for models with pre-shared
public keys and certificates as follows, where we require agreement over the used public keys:

∀ sid1 tid1 pk1 pk2 secret TH2 role1 id2 ltk2 ♯i ♯j .

CommitMutAuth(sid1 , tid1 , pk1 , pk2 , secret, TH2 , role1 )@♯i
∧ HonestlyGenerated(id2 , ltk2 , pk2 )@♯j
⇒ (∃ sid2 tid2 role2 ♯t . ♯t < ♯i ∧ not(role1 = role2 ) ∧
RunningMutAuth(sid2 , tid2 , pk2 , pk1 , secret, TH2 , role2 ) @♯t )

In our monolithic approach, we further refine the property by dividing it into two distinct parts:
one for certificate-based handshakes and another for handshakes that use pre-shared public keys. For
pre-shared symmetric keys, we model the property analogously. However, there is a possibility that parties
might end up executing the protocol with themselves if they are allowed to use the same key for both the
Requester and Responder roles. We address this by including a specific check to ensure that pre-shared
keys are used only in one direction, preventing such self-directed interactions within the protocol.

Secrecy of Handshake Key We define the secrecy of the final handshake keys for each key exchange
mode and for each role, leading to a total of six secrecy lemmas. As an example, we define handshake
secrecy of an honest Requester as:

Definition 16. Handshake Secrecy:

∀ sid tid idReq idRsp pkRes secret id ltk ♯i ♯j .

SesssionMajorSecretReq(sid, tid, idReq, idRsp, pkRes, secret)@♯i
∧ HonestlyGenerated(id, ltk, pkRes)@♯j
⇒ ¬(∃ ♯t . K(secret)@♯t)

9.3.3 Threat Models

For both the modular approach (see Section 9.2.1) and the monolithic approach (see Section 9.2.2) we
analyze the protocol models against the same class of attacker, who can control the network and create
malicious certificates.

Attacker-controlled Network The attacker in our models has full control over the network. We use the
built-in Dolev-Yao attacker of Tamarin, which can inject, modify and drop any messages in the network.

Malicious Certificates The attacker can register a malicious certificate for any honest device. For
example, the attacker can abuse the Certificate Authority to sign for a victim device a private-public
key pair that are known to the attacker. We modeled this with a rule that takes as input the Cer-
tificate Authority state, !RootCA (key, pk(key)) with private key key, an attacker provided private key
ltkbad, and the identifier of the victim’s device idhonest and outputs a correct certificate cert in the
network, cert = sign(< idhonest , pk(ltkbad) >, key). We question whether such an attacker can break the
authentication guarantees in the certificate mode of the key agreement.

9.4 Addressing Challenges

We faced several challenges when using the Tamarin prover to process and analyze this substantially large
model. We identified three major challenges introduced while modeling and analyzing SPDM as a whole:

1. For the models described in Section 9.2.1, the Tamarin prover already faced challenges with the
size of the models, which are much smaller than the monolithic one (Section 9.2.2). Constructing a
model capturing all modes in a coherent manner is expected to significantly increase these issues.
Throughout the modeling process, there were instances where Tamarin encountered difficulties in
loading the models or even aborted during proof attempts.



116 chapter 9. security protocol and data model

2. The Tamarin prover lacks a modular composition/proof framework, resulting in proofs of modular
models being non-transferable and not reusable for proving similar properties in the model of SPDM
as a whole. This extends to the technical formulation of proven properties and their helper lemmas,
where we needed to redo the proof effort. In essence, the proof process does not benefit from
reusability and modularity, making it more challenging to establish proofs for the monolithic model
based on those of the modular models.

3. The unbounded number of devices, sessions, application messages exchanged, multiple keys and
non-standard transcripts being computed simultaneously from multiple sources led to difficulties
when exploring the proof space or finding the needed helper lemmas to guide the tool.

To address these challenges in our model of SPDM as a whole, we incorporated several changes and
modeling decisions which we outline in the following.

Modeling the session handling of SPDM as a whole In the models from Section 9.2.1, different
modes were verified separately, which implied that the individual models did not have access to the
complete information that might be present in a full implementation. We solved this by including a
modeling trick in the session handling layer that artificially added information in the state of the key
exchange mode from the other phases of the protocol, e.g., receiving certificates. In contrast, our monolithic
model explicitly includes all phases, removing the need for this modeling trick. As a result, we could
model the session-handling layer in two rules, instead of the six rules of the models from Section 9.2.1,
which reduced the complexity of the session-handling component.

Detailed Transcripts We model the key exchange and the device attestation transcripts to explicitly
include all the fields of the messages exchanged. In the modular models, the transcripts would only
include the message fields needed for the specific sub-protocol. Then, we proved a helper lemma to help
guide Tamarin proofs on the structure of the transcript. While we compute transcripts as in the modular
models, having this consistent structure throughout the full model improves Tamarin’s proof search.

Helper Lemmas To enable analysis of our complex model, we needed to develop some helper lemmas
to guide the proofs of the main properties. This was done by manually exploring partial proofs in the user
interface and then providing feedback to the tool in an iterative fashion. In general our helper lemmas are
of four categories:

1. Loop breakers that help reason about sequences of messages happening one after the other in a loop,
e.g., the Requester can request a certificate and authenticate the same Responder’s certificate on
repeat.

2. Message ordering lemmas that help the prover when reasoning about the order of events,
3. certificate and key origin lemmas that help close the branches with artificially created secrets in the

proof search, e.g., the accepted certificates can only be signed by the root Certificate Authority, and
4. structure lemmas that verify the format of certain terms, e.g., the format of a certificate’s digest.
In general, these classes of lemmas can be useful when verifying future protocols to provide structure

to the protocol sequences and the possible sources of secrets.

Example 4. As an example, to prove mutual authentication for the certificate mode, we needed to guide
the proof with some helper lemmas. At a high level, we wrote six helper lemmas where we prove that all
stored digests of certificates adhere to the same format across the protocol, that the certificates were created
by a root authority, and this authority existed before. Below we give the helper lemmas for the Requester
and indicate to which category they belong. The lemmas are written analogously for the Responder.
Initially we prove that any digest the Requester has received and stored should be signed by a root authority
and have the defined structure. This helper lemma falls into category 4. structure lemmas.

∀ tidI oidI oidR pkR digestR ♯i ♯j .

IStoredCert(tidI , oidI , oidR, pkR, digestR )@♯i
∧ CreateRootCert(rootkey)@♯j ∧ ♯j < ♯i
∧ ¬(pkR = NULL)
⇒ digestR = h(sign(< oidR, pkR >, rootkey))
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Then, we show that root authority should have been created before storing the digest. This helper lemma
falls in category 2. message ordering lemma.

∀ tidI oidI oidR pkR digestR ♯i ♯j .

IStoredCert(tidI , oidI , oidR, pkR, digestR )@♯i
∧ CreateRootCert(rootkey)@♯j
∧ ¬(pkR = NULL)
⇒ ♯j < ♯i

Lastly, we show that the certificate of the digest stored should have been created before. This helper lemma
falls in category 3. certificate and key origin lemmas.

∀ tidI oidI oidR pkR digestR ♯i .

IStoredCert(tidI , oidI , oidR, pkR, digestR )@♯i
∧ ¬(pkR = NULL)
⇒ ∃(someoid ♯j .GenDeviceCert(someoid, pkR )@♯j ∧ ♯j < ♯i )

Custom Proof Search Heuristics We noticed that Tamarin was not able to automatically prove some
helper lemmas reasoning about the origin of certificates. While investigating the proving attempts of
Tamarin, we observed that the proof search would explore branches that unrolled looping behaviors. To
guide the tool, we created a custom heuristic with Tamarin’s built-in tactic feature, prioritizing sources
which, e.g., model attacker knowledge of signatures and certificates.

Domain Separation of Keys The design of SPDM deviates from modern designs like TLS 1.3 in that
it does not explicitly use tags in the key derivation functions to provide domain separation between keys.
Such tags simplify proof construction. Fortunately, the key derivation functions in SPDM include the
transcripts. From the SPDM 1.2 specification, we establish that the transcripts of the key exchanges
consistently differ between the three modes: (i) the PSK mode includes the psk exchange request code,
while the other two modes include the key exchange request code, and (ii) the latter modes differ because
of the slot_id value, where 0xFF is used explicitly for preshared mode, and a value between 0x00 -0x07
for the certificate mode. Thus, in practice, there is domain separation for the different keys in SPDM 1.2.
Since these differences occur deep within the transcript, we aided Tamarin to find this separation earlier
during its proof search by tagging the keys.

9.5 SPDM Analysis

We analyzed the previously defined properties for the models of the both the modular and monolithic
approaches. For the modular approach, we were able to automatically prove all desired security properties.
For the monolithic model, however, we did find an attack on the mutual authentication of SPDM. We will
present that attack first in Section 9.5.1, before proposing fixes. We will then present all results for both,
the modular and the fixed monolithic models, in Section 9.5.2.

9.5.1 Mode-Switch Attack

During our analysis using Tamarin, we discovered a mode switch attack that compromises mutual
authentication in the key exchange protocol when using pre-shared symmetric keys (PSK). This attack
allows a network attacker – without knowledge of secret keys or malicious certificates – to establish a
secure session with the responder by exploiting missing state separations. Essentially, the attacker initiates
the key exchange using certificate mode and then switches to PSK mode mid-handshake. The responder
mistakenly believes it has authenticated an honest partner and establishes session keys, which are fully
known to the attacker.
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Breaking Authentication
As the attack relies on starting a key exchange in certificate mode and ending in the mode of the key
exchanges that uses pre-shared keys, we coin this attack mode-switch attack. To illustrate the attack, we
provide a message sequence chart in Figure 9.8, and we will look into how to execute this attack based
on the SPDM 1.2.1 standard [96]. The attacker starts the key exchange in certificate mode, causing

Attacker Responder

VCA phase

KEY_EXCHANGE, v, nonce1 , sid1 , ga

• Compute and store hand-
shake and fk.

KEY_EXCHANGE_RSP, v, nonce2 , sid2 , gb, sign(T1 ′, ltkResp), hmac(T1 , fkResp), ...

• Compute and store handshake and fk.
• Verify hmac of T1 ′ and authenticate

Responder.

enc(PSK_FINISH, v, hmac(T2 , fkReq), handshakeReq)

• Verify hmac of T2 and authenticate
Requester

• Derive session secret from handshake

enc(PSK_FINISH_RSP, v, handshakeResp)

• Derive session secret from
handshake

Figure 9.8: Message sequence diagram of the discovered mode switch attack. Messages in red highlight the attack
behavior.

the Responder to compute and store keys derived from the Diffie-Hellman. After receiving the answer,
the attacker switches to PSK mode by sending a PSK_FINISH request. The Responder accepts the
request, believing it authenticated an honest initiator using PSK, but the session keys remain based on
the Diffie-Hellman output of the attacker.

This attack on mutual authentication occurs because: (i) the responder (Responder) fails to verify the
consistency of the protocol mode being executed, and (ii) the keys for PSK mode are precomputed and
stored during the earlier certificate mode handshake. The attacker takes advantage of the differences in
how authentication is handled between the two modes. By switching the protocol’s context mid-handshake,
the attacker influences the use of the generated keys. As a result, a session that should only achieve
one-sided authenticated is mistakenly interpreted as a mutually authenticated session by the Responder
and thereby compromising the security guarantees of SPDM.

Attacking the Implementation In addition to the standard, we inspected SPDM’s open-source reference
implementation libspdm [99]. We confirmed the attack on libspdm version 2.3.1 (released on January 10,
2023) [100] which propagates back to versions as far back as 1.0.0 (released on December 21, 2021).

Fixing Authentication
To address the mode-switch vulnerability in the SPDM protocol and its reference implementation, we
recommend solutions that involve stricter protocol state management and explicit mode verification.

The mode switch attack is enabled by the lack of separation between protocol states for different key
exchange modes and missing checks on valid transitions. We propose two key fixes:
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1. Separate Storage of Keys: Store handshake secrets and finished keys separately for each mode to
prevent improper reuse across modes.

2. Mode Verification: Explicitly verify the key exchange mode during every handshake transition to
ensure consistency.

Proposed Implementation To fix the implementation, we require the protocol to store and verify
the key exchange mode throughout the session. The Responder should only accept a finish request if it
matches the mode initiated. For this we utilize the existing use_psk flag in the SPDM implementation to
enforce mode-specific checks before accepting finish requests:

1. Allow PSK_FINISH only when use_psk is true, and
2. allow FINISH only when use_psk is false.

To improve long-term robustness, we suggest replacing the simple boolean flag with a detailed state
representation of the key exchange mode.

Impact on our Monolithic Tamarin Model We modeled these changes in Tamarin by introducing
variables representing the protocol mode and enforcing mode-specific constraints before finish requests
are accepted. These constraints ensure that mode consistency is maintained throughout the handshake,
avoiding unauthorized transitions.

Responsible Disclosure We shared our findings, proof-of-concept attack on libspdm, and our proposed
fixes with the SPDM development team in March 2023. The issue was classified as a critical vulnerability
(CVE with CVSS score of 9.0) [84] and fixed in SPDM specification version 1.3.0 [94]. A patch was also
released for the reference implementation. For more details on the attack implementation, the implemented
fix, and the interaction with DMTF, we refer the reader to Cremers, Dax, and Naska [75].

9.5.2 Final Analysis Results

In Table 9.1 we summarize the main security guarantees that we proved in our modular models and our
monolithic model. Tamarin automatically proves all guarantees in this section and their helper lemmas.
By applying the proposed fix and modeling it in Tamarin, we successfully verified all main properties
related to our monolithic SPDM model, and summarize the results in Table 9.1. Our analysis implies the
absence of the previously discovered mode switch attack.

We ran our models on an Intel(R) Xeon(R) CPU E5-4650L 2.60GHz machine with 756GB of RAM,
and 4 threads per Tamarin call. For the modular models, the execution time per property proven spans
from 3s (Device Attestation, responder authentication) to 4m09s (certificate model, handshake secrecy).
It is important to note that due to the substantial size of our monolithic Tamarin SPDM model, each
lemma execution required between 3 and 20 minutes. All the main properties with their helper lemmas
are proven in under 3 hours.

To ensure transparency and reproducibility, we have made the models, the results, and the necessary
resources to reproduce all findings publicly available [77, 78].
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Model Property #Helper Lemma Result Runtime (s)

Device Attestation Responder Authentication 1 - ✓ 3
Measurement Integrity Cert 7 ✓ 6
Measurement Integrity PK 7 ✓ 6

Certificates Responder Authentication 2 - ✓ 53
Mutual Authentication PK - ✓ 91
Handshake Secrecy (Init/Resp) - ✓ 249

Pre-shared Public Keys Mutual Authentication PK - ✓ 33
Handshake Secrecy (Init/Resp) - ✓ 18

Pre-shared Symmetric Keys Mutual Authentication PSK - ✓ 13
Handshake Secrecy (Init/Resp) - ✓ 10

Monolithic Model Responder Authentication 1 - ✓ 324
Measurement Integrity Cert 9 ✓ 251
Measurement Integrity PK 7 ✓ 232
Responder Authentication 2 - ✓ 352
Mutual Authentication Cert 6 ✓ 516
Mutual Authentication PK - ✓ 444
Mutual Authentication PSK - ✓ 267
Handshake Secrecy Cert (Init/Resp) - ✓ 900
Handshake Secrecy PK (Init/Resp) - ✓ 931
Handshake Secrecy PSK (Init/Resp) - ✓ 538

Table 9.1: Summary of formal analysis results of the modular and monolithic approaches in Tamarin. The listed
properties and their helper lemmas are proven automatically. The runtime shows the time it takes for the tool to
prove the main property.
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Previously, we evaluated the SPDM protocol based on our detailed models and state machines developed –
using the Tamarin prover. Our work aimed to provide better understanding on the protocol’s mechanisms
and add trust and insight during the time of specification before the protocol becomes widely deployed.
Additionally, we believe that our detailed models as well as our state machines can support future research
and aid implementation efforts.

Discovering a critical design flaw in SPDM’s implementation and specification did not only help to
improve the protocol but also highlighted the importance of formal security analysis. We have invested
considerable effort into modeling the protocol, leading to the discovery of even more potential flaws within
the SPDM standard. Here, we will discuss these design flaws, reflect on our analytical efforts, and suggest
directions for further research to refine and enhance protocol security.

First, we will report the effort that went into our analysis in Section 10.1. Afterwards, we will discuss
the specific design flaws these efforts have revealed, and consider how they might affect the protocol
in Section 10.2. We will then discuss the current limitations of our approach in Section 10.3. With
Section 10.4, we will include suggestions for further research and adjustments needed to improve SPDM,
while also discussing the current state of symbolic tools like Tamarin.

10.1 Modeling Effort

We spent about 6-7 person-months modeling SPDM in our modular approach as we carefully double-
checked each step to ensure everything matched the specified standards. The detailed models developed
through this process consist of between 1000 to 1800 lines of code. Additionally, modeling and analyzing
the monolithic model of SPDM took about 3-4 more person-months of work. This contains the time
needed to uncover the mode switch attack, which then required us to go back and make substantial
revisions to the model. Our final model alone includes roughly 3800 lines of code.

#Lemmas
LoC #Rules #Sources secrecy attestation authentication sanity

Pre-shared Symmetric Keys 1109 33 101 2 / 2 9
Pre-shared Public Keys 1412 32 106 7 / 5 9
Certificates 1798 41 129 2 / 6 14
Device Attestation 981 29 91 / 9 / 12
Monolithic Model 3768 71 371* 6 12 15 15

Table 10.1: SPDM models from prior analysis [76] compared to our holistic model. Tamarin uses a backward
search method to identify the origins of all protocol facts. The term “sources” in this context refers to the specific
partial executions that result in the generation of a given protocol fact. “Sanity” lemmas refer to lemmas that
check that the protocol model can be executed correctly.
* = Loading the sources for our SPDM model in the browser required over one hour, indicative of the greater
computational demands associated with our models expanded scope.

Table 10.1 highlights a significant increase in the number of rules and proof steps in the monolithic
SPDM model compared to the modular models. Notably, the monolithic SPDM model incorporates 71
rules producing 371 unique sources derived from 28 cases. Sources are precomputations performed by
Tamarin to enable its backwards search. This makes it one of the biggest Tamarin models up until now in
the literature.

121
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In addition to the increased model size compared to the smaller, modular models, the complexity of
proving each desired property also increased significantly. For instance, the monolithic model requires
significantly more proof steps to prove mutual authentication – 261 steps spread across 20,733 lines –
compared to 53 proof steps in the key_exchange model, which spanned 4,512 lines. This increase highlights
the expanded coverage and the increased complexity.

10.2 Potential Design Flaws

In the preceding chapter, we have focused on the positive results of properties that hold in SPDM as
shown by our formal analysis. However, our modeling and analysis did yield several other observations.
We will elaborate on potential flaws introduced by SPDM’s specification in the following. We group these
flaws into two major categories: Underspecified behavior and prudent design choices.

Underspecified Behavior Currently, the SPDM specification leaves many cryptographically relevant
aspects underspecified, which can lead to ambiguities and potential security risks. The underspecified
behaviors are: (i) inconsistent authentication properties due to unclear SPDM identifiers, (ii) unrestricted
vendor-defined request and response mechanisms, and (iii) insecure provisioning of protocol secrets.

(i) (Inconsistent authentication properties) The specification references multiple identifiers but does not
clearly specify which ones are used to uniquely identify devices. While communication relies on
UUIDs, the specification primarily focuses on OIDs. Furthermore, certificates typically bind only
the public key, with the OID being optional. Even if adding the OID would be mandatory, which
would effectively lift them into transcripts, this would only help in the certificate-based public key
setting. This leaves the pre-shared modes unsolved. As a result, the authentication process lacks a
clear and consistent definition.

(ii) (Vendor-defined behavior) To ensure flexibility, the standard explicitly permits vendor-defined
request/response mechanisms with minimal restrictions. None of those restrictions mentions
long-term or ephemeral secrets from the protocol. Reusing them could undermine the security
guarantees of the protocol. We recommend prohibiting the reuse of protocol secrets in vendor-defined
mechanisms. Instead, such requests should be treated as standard data transfers managed by the
SPDM core.

(iii) (Insecure secret provisioning) The provisioning and management of cryptographic secrets within
SPDM highlight several areas of concern for potential misuse. Initially, the SPDM 1.2.1 standard
allowed vendors to handle the provisioning of protocol secrets, with mechanisms to update certificates
after the initial setup. SPDM 1.3 extended this by allowing an indefinite number of pre-shared
public keys to be set after the devices are already deployed. However, without strict procedures,
this flexibility could lead to security vulnerabilities. We emphasize that provisioning and replacing
cryptographic secrets should be governed by well-defined, thoroughly analyzable protocol procedures.
In addition, the ability to remotely set trusted certificates raises another serious issue. Currently, the
standard does not include a default deny-all policy for remotely provisioning certificates, leaving this
feature susceptible to misuse without proper access controls. The current SPDM design also lacks
proper policies for handling old or expired certificates, which are maintained even after a protocol
reset, highlighting the need for policies governing deletion or active validity checks. Similarly, the
specification does not place sufficient restrictions on which initiators can provision certificates to
responders
Another critical aspect involves certificate management across SPDM connections. Discussions with
developers revealed that devices, particularly those with limited memory, may store certificates
across different connections in shared storage to avoid duplicates. However, this can create security
risks, especially since an Requester can choose which certificate to authenticate with, even if
that certificate does not strictly bind to a device identifier (i). An attacker could exploit this by
impersonating another device using a different OID while reusing certificates stored from prior
sessions. Furthermore, pre-shared public keys and certificates share the same identifier, increasing
the likelihood of cross-protocol attacks if certificates are accessible outside specific protocol runs.

Prudent Design Choices Protocols like SPDM are tailored to address specific use cases, balancing
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potential security guarantees with practical requirements dictated by the infrastructure or stakeholders.
However, such design choices can become problematic when they compromise or weaken the intended
security goals of the standard. Two notable design decisions that could potentially have impact on the
security of SPDM are: (i) the session ID size during the PSK key exchange and (ii) the use of counters
instead of random nonces.

(i) In certain scenarios, the replay protection of the protocol heavily relies on the uniqueness of
the session ID. However, the ID share assigned to each party is only two bytes in size, which is
cryptographically inadequate to reliably prevent replay attacks. This limitation opens the door to
practical attacks that exploit the small range of possible session IDs.

(ii) Instead of using random nonces, SPDM allows counters during specific phases of the protocol. The
standard emphasizes that (a) counters must not be reused or reset during the lifetime of the device
and (b) devices may undergo resets, typically erasing all volatile state. This presents as a conflict,
as maintaining counter uniqueness without non-volatile memory storage may be impractical. To
mitigate risks, it would be wise to minimize reliance on the uniqueness of counters.

10.3 Limitations

Achieving a cohesive, automated analysis of the full SPDM setup, device attestation and session establish-
ment as whole showed to be challenging, both for Tamarin and in terms of computing power. Due to this,
we needed to limit our scope in two ways: (i) Fix the number of certificates and pre-shared keys, and
(ii) limit the application data exchange to a single round.

(i) We performed our current analysis on a fixed amount of certificates and pre-shared keys. A first
attempt in lifting this to an arbitrary number showed to be extremely difficult for Tamarin to
handle. We leave it to future work to lift the current analysis to an arbitrary number of shared
secrets by finding better abstractions and/or improving the provers. Another future work would be
to lift the current analysis to allow for an arbitrary number of shared secrets.

(ii) We had to limit the application data exchange to a single round of exchange messages. Attempting
to increase the limit lead to an exponential growth of pre-computation time while several lemmas
started to diverge. Any attempt to inspect Tamarin’s sources or to inspect the traces of the
respective lemmas lead to Tamarin crashing.

Furthermore, we opted to model only a minimal version of a Public Key Infrastructure (PKI). Typically,
a PKI supports multiple root authorities and has several levels of certificate chains, but our analysis was
limited to a single root authority and certificate chains of size one. We believe that this simplification is
justified for the current scope of our work. However, as future iterations of SPDM evolve to include features
like certificate revocation and the issuance of new certificates – which are part of the current SPDM
specification that are underspecified – a more comprehensive model of PKIs will become necessary. This
future model will need to address the complexities of managing multiple layers of certificate authorities and
enhancing the robustness of the security framework. With the current state of tools and methodologies
we believe that this is out-of-scope.

Lastly, we included the VCA phase, but abstracted from the actual negotiation of versions, algorithms,
and capabilities. A more detailed modeling of this phase could provide insights into potential downgrade
attacks. While we tested an over-approximation model that incorporated compromised cryptographic
primitives to assess the robustness of security properties, a thorough analysis of downgrade attacks
remains a topic for future research. This is primarily because (i) the VCA negotiation is essential to every
part of the protocol model, and any modifications to it would complicate all associated lemmas, and (ii)
incorporating broken cryptographic primitives into a Tamarin model significantly increases the complexity
of proofs, as seen in the first part of the thesis (see Part I). This underscores the need for a novel approach
to address these challenges in future work.

10.4 Future Directions

There are two significant directions for future work based on the limitations of our current analysis and
the possible design flaws identified in SPDM. Firstly, there is considerable opportunity to enhance SPDM
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and strengthen its formal guarantees. Secondly, there is potential to improve the tools and methodologies
we employ in our analysis.

10.4.1 SPDM

The development of the SPDM protocol by the DMTF is ongoing, and regular updates to the protocol are
expected. It will be necessary to continually revise and improve the analysis and models to keep pace
with the protocol’s design evolution.
As mentioned in Section 9.5.2, our current modeling does not encompass all functionalities of SPDM.
While certain functions like sending messages in segments/chunks do not fit within the scope of our
symbolic model, there are other aspects that still require detailed specification. This includes, for instance,
provisioning of new certificates during protocol executions. For a complete list of not modeled request
and response codes, refer to Appendix B.

Domain separation In our analysis we identified that adding key domain separation in the protocol
modes helps the Tamarin prover in automatically finding proofs. This is especially relevant when having
to analyze large protocols at the scale of the composition of SPDM. Note that the key domain separation
is not part of the standard, however we recommend it to standardization developers. First, it clearly
divides the usage of keys and second, it can aid the automatic formal analysis of their protocols, ultimately
contributing to stronger security measures.

Security Properties Considering SPDM’s role as a foundational solution for trusted low-level communi-
cation, the specifics of the security properties it aims to provide are not well-defined. We believe that the
trust in DMTF’s SPDM will benefit from an open discussion regarding these security properties.

Additionally, existing specifics on the desired security properties are rather sloppily designed. For
instance, the specification suggests that it could be interesting to authenticate the Responder before
requesting its measurements as stated in:

Specification [96], Section 10.11, line 407:

Because issuing GET_MEASUREMENTS clears the M1/M2 message transcript, it is recommended that a
Requester does not send this message until it has received at least one successful CHALLENGE_AUTH response
message from the Responder. This ensures that the information in message pairs GET_DIGESTS / DIGESTS
and GET_CERTIFICATES / CERTIFICATES has been authenticated at least once.

However, our threat models indicate that this step may not be strictly necessary, as the integrity and
authentication of the measurements do not seem to depend on prior authentication of the Responder.
Notably, even with prior authentication, attestation can proceed without effective integrity protection.

10.4.2 Tooling and Methodologies

In modeling SPDM, we utilized Tamarin’s rewrite rules to faithfully represent the transitions of state
machines as described in the standard. Had we opted for a process-based specification language, such
as those used in ProVerif or SAPIC[+], it would have led us to model certain actions (like handling
PSK_EXCHANGE and PSK_FINISH ) as a continuous sequential process. This approach would likely
have missed our identified attack, highlighting how subtle differences in modeling can influence the
detection of potential vulnerabilities.

Our analysis underscores the importance of revisiting earlier formal verifications of protocols such as
EMV [22, 23, 88] or TLS [33, 80] to ensure that possible transitions within their state machines were not
overlooked due to modeling oversimplifications. The goal should be for models to accurately reflect the
true intent and decision-making processes of the parties involved, rather than simplifying these elements
to ease the modeling and verification process.

Additionally, we have used standard symbolic models for cryptographic primitives. SPDM utilizes
several cryptographic primitives like digital signatures, AEADs, and hashing throughout its phases. Future
efforts could aim to refine these models to more closely align with the specific cryptographic primitives
employed by SPDM, potentially employing the techniques from Part I of this thesis. Although we tested



10.4 future directions 125

an over-approximation model using compromised cryptographic primitives to check the robustness of
security properties, a comprehensive analysis remains a task for future research.

Lastly, overcoming many of the limitations mentioned in Section 10.3 can potentially be tackled by
optimizing our current tools. Developing such a complex model proved particularly challenging for several
reasons. Any minor modification required restarting Tamarin along with all pre-computations, which led
to several minutes of loading time for each change in the model. The interactive mode of Tamarin became
almost unmanageable due to the size of the computations. Traces and their corresponding image files
expanded drastically in size, loading gigabytes of images into RAM. This substantial load overwhelmed
the graphical user interface (GUI) to such an extent that it became impossible to effectively work with it.
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11Conclusion

In this thesis, we set out to advance the current state of security protocol verification. Our goals were
twofold: (i) to enhance current verification efforts by enabling more nuanced analysis that more closely
mirrors the actual behavior of protocols and primitives, and (ii) to explore the limits of size and complexity
that objects can possess while still being verifiable using state-of-the-art techniques – and to determine
what can be learned from pushing these boundaries.

In greater detail, we developed several symbolic models that enhance the state-of-the-art representa-
tions of cryptographic primitives, namely cryptographic hashes, authenticated encryption schemes with
associated data, and key encapsulation mechanisms. For each primitive, we examined both the crypto-
graphic definitions and real-world attacks, which enabled us to formulate multiple detailed representations.
Furthermore, we established methodologies for each primitive that automate the analysis of protocols
utilizing these primitives within the Tamarin prover. Additionally, we modeled and analyzed the Security
Protocol and Data Model (SPDM) using the Tamarin prover, resulting in one of the largest Tamarin
models and objects ever analyzed through monolithic symbolic verification.

Working on both goals, our approaches led to the discovery of attacks on deployed protocols. Utilizing
our hash function methodology, we were able to automatically re-identify known vulnerabilities in IKEv2,
SSHv2, and the Sigma protocol. Additionally, we discovered previously unknown attack variants for each
of these. In the case of AEAD, our automatic analysis confirmed known attacks on YubiHSM, SFrame, and
Facebook’s Message Franking, and we also uncovered novel security violations in WebPush, WhatsApp,
and Scuttlebutt. Furthermore, our comprehensive analysis of the SPDM revealed a critical flaw in its
session establishment. Addressing and reporting this flaw resulted in modifications to both the standard
and its reference implementation, adding our work to one of the few that got a CVE assigned to an attack
identified by the Tamarin prover.

While our research on hash functions and AEADs significantly advanced the state-of-the-art in
symbolic analysis by enabling the automatic detection of protocol flaws due to poor choices of primitives or
their incorrect usage, our work on KEMs differed slightly. In our study of KEMs, we identified a novel class
of attack which we named re-encapsulation attack. Intuitively, at the protocol level, a re-encapsulation
attack can often emerge as an unknown-key-share attack, where two parties compute the same key despite
having different perceptions of the identity of their respective partners. This type of attack was not
addressed by traditional KEM properties, prompting us to develop a new class of binding properties.
Unlike the models for hashes and AEADs, the symbolic models and methodologies we developed for KEMs
are specifically designed to investigate whether protocols employing KEMs depend on more than just the
IND-CCA security of the KEMs, but also on these essential binding properties.

Reflecting on our analysis of SPDM, we approached the symbolic analysis traditionally. Our objective
was to explore the current state of protocol verification and its limitations, which led us to rely on
established modeling techniques while also attempting to exploit many features of Tamarin. Following
this approach, we encountered multiple limitations: we frequently faced performance issues that caused
the tool to crash, and features like Tamarin’s built-in GUI became impractical due to the immense size of
the protocol states. Our work should not only be regarded as a success in terms of security improvements
to the SPDM protocol but should also serve as a catalyst for directing more research efforts toward
developing new methodologies that facilitate large-scale analysis.

We will now summarize the contributions of this thesis in Section 11.1, before concluding with our
perspectives on potential future work in Section 11.2.

11.1 Contributions

In the following, we will provide a brief summary of our contributions:
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In Chapter 4: Cryptographic Hash Functions
1. We develop the first systematic methodology to find protocol attacks that exploit weaknesses of

real-world hash functions. We achieve this by symbolically modeling cryptographic weaknesses
(i.e. the lack of desirable cryptographic properties) as well as real-world attack classes that are
not captured by classical security definitions for cryptographic hash functions.

2. We automate our methodology in Tamarin, by (i) proposing a dedicated modeling technique,
and (ii) by extending Tamarin with new required features that are of independent interest
beyond this work.

3. We apply our methodology to over 20 protocols, automatically rediscovering all previously
reported attacks on those protocols that exploit weak hash functions, as well as finding several
new variants. The main attacks can be seen in Table 11.1.

In Chapter 5: Authenticated Encryption with Associated Data
1. We develop the first systematic methodology for analyzing security protocols that takes the

subtle properties of specific AEAD instantiations into account.
2. We automate our methodology in Tamarin and provide details on how to choose the right

AEAD models for a given case study.
3. In case studies, we show our methodology effectively rediscovers known attacks on several

protocols, including YubiHSM [153], Facebook’s Message Franking [102], and SFrame [131].
We also rediscover a theoretical attack variant on Facebook’s Message Franking first mentioned
in [122]. Moreover, our analysis uncovers unexpected behavior in WebPush [211], Whatsapp
Group Messaging [130], and Scuttlebutt [201]. The main results can be seen in Table 11.1.

Protocol Attacked properties New? Status / Notes Primitive

Sigma [146]
Secrecy,Transcript Agreement [37] Hash
Secrecy,Transcript Agreement ∼[37] Variant Hash
Secrecy,Transcript/Role Agreement new Role-confusion Hash

SSHv2 [162]
Negotiation Data Agreement new See Figure 4.6 Hash
Negotiation Data Agreement [37] Hash
Negotiation Data Agreement new Variant Hash

IKEv2 [139]
Colliding Inputs (CI) new CI should be on the cookie Hash
Initiator Authentication [37] Hash
Transcript Agreement new Disagreement on cookies Hash

Flickr [106] Initiator Authentication [106] Hash

YubiHSM [221] Key secrecy [153] Fixed AEAD
SFrame [182] Authentication [131] Fixed AEAD
FB Message Franking [110] Content Agreement [102] Fixed AEAD
FB Message Franking [110] Framing [102, 122] Fixed AEAD

GPG SED [144] Content Agreement new Deprecated AEAD
GPG SEIPDv2 [144] Content Agreement new Infeasible AEAD
Saltpack [194] Content Agreement new Infeasible AEAD

WebPush [211] Server Accountability new Reported AEAD
WhatsApp [130] Content Agreement new Reported ‡ AEAD
Scuttlebutt [201] Content Agreement new Reported ∗ AEAD

∗ = Feasibility depends on the collision resistance of XSalsa20-Poly1305. See discussion in Section 5.5.6.
‡ = Reported to WhatsApp. Feasibility heavily relies on implementation details, which are not open source.
∼= New variant of an existing attack.

Table 11.1: Summary of the main analysis results from our case-studies.

In Chapter 6: Key Encapsulation Mechanisms
1. We introduce a novel hierarchy of computational binding properties for KEMs and position

existing notions within it; the remaining properties are new. KEMs that satisfy our key-binding
properties will leave fewer pitfalls for protocol designers.
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2. We develop a symbolic analysis methodology to automatically analyze the security of KEM-
based protocols, using fine-grained models of their KEMs, and implement them in the Tamarin
prover. Our methodology can also be used to automatically establish the KEM binding
properties that are needed for a protocol to be secure. In case studies, our automated analysis
finds new attacks and missed proof obligations.

In Chapter 9: Security Protocol and Data Model
1. We construct the first formal model of the SPDM 1.2.1 standard as a whole, which considers

the interaction between its main modes and sub-protocols, by a fine-grained modeling of
the SPDM 1.2.1 specification and its complex state machine interactions. As a first step
towards this goal, we developed models for the several components. Our models include device
initialization, the five phases of the protocol, its three modes of key exchange and session
setup, and the optional requests performed outside a secure session. Using the knowledge
and experience from constructing the component models, we construct a monolithic model of
SPDM 1.2.1, one of the largest and most complex Tamarin models to date.

2. Using our formal model, Tamarin finds a critical cross-protocol attack on SPDM 1.2.1. Our
attack completely breaks the mutual authentication guarantees of the pre-shared key mode.
We implemented the attack on the official SPDM reference implementation by the DMTF
consortium, and reported our findings and suggested fixes to its developers. DMTF reported
our attack as a CVE [84] with CVSS score 9.0 (critical). We formally prove that the fixed
version of SPDM 1.2.1 provides authentication for all modes and other basic security guarantees,
even in the presence of cross-protocol attacks and all mode interactions. Both the SPDM
standard and its reference implementation were updated based on our work.

In Chapter 10: Limitations and Discussion

1. Our formal modeling and analysis leads to several suggestions for next versions of the standard,
as well as potential design pitfalls. We list and discuss these design flaws, highlighting potential
future research efforts.

2. The formal analysis effort is very challenging, notably because none of the composition results
in the literature can be applied to SPDM, because its sub-protocols share complex state,
including long-term keys, short-term keys, keying material, and transcripts. We discuss the
current limitations of our approach and include suggestions for further research to guide future
research in tackling large-scale security protocol verification.

11.2 Future Work

Whereas Chapters 7 and 10 only hinted at potential future work, this section concretely outlines potential
research directions and talks about further primitives, modularity, and the human factor in security.

More Primitives! Throughout this thesis, we studied cryptographic hashes, AEADs, and KEMs, and
developed new symbolic representations for them. Together with the works by [134] and [82], who explored
digital signatures and Diffie-Hellman groups, we have significantly advanced towards creating a more
detailed and robust symbolic model. Yet, this progress represents just the beginning of what is still to be
explored in this field.

Other Primitives Many deployed protocols continue to use primitives for which we either assume
“perfect” symbolic representations, like public key encryption and commitments, or lack adequate
default representations entirely, such as mix networks or homomorphic encryption. Developing
nuanced symbolic models for these primitives would be the straightforward next steps towards
enhancing the security analysis of complex systems.

Multiple Primitives A natural next step in this line of research would be to explore how analysis using
multiple advanced primitive models could become more computational feasible. Real-world security
protocols, in general, use more than a single cryptographic primitive. It would be interesting to
see, whether we are able to analyze protocols, like for instance SPDM, which uses both hashes and
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AEADs (and in the PQ variant even KEMs) with our fine-grained models. We conjecture that this
would require both advancements in the tools to handle the specific case explosion introduced by
the primitive model, and a novel modeling strategy to easily apply our primitive models to existing
case studies.

Why stop at Primitives? Going back to the idea why we even wanted to find better symbolic models
of primitives is the larger goal to push automated, formal verification closer to real-world behavior.
While our work on primitives brought us closer to this goal, we are far from done. Future directions
might start with a comprehensive exploration of vulnerabilities or attack vectors that current
symbolic analysis are not able to capture. This could include attacks based on low entropy as
symbolic frameworks abstract from probabilities or attacks based of fragmentation like seen in
SSH [7]. It could also include following Bursuc and Kremer’s [53] work on protocols for zero-
knowledge contingent payment. While they showed the first automated verification of symbolic
protocols using multi-party computations and zero-knowledge proofs, it would be interesting to
generalize their approach and potentially find better symbolic representation for these building
blocks.

Modularity One major issue with refining the symbolic model to be more detailed is that it causes the
size of the objects we can analyze to decrease. This happens because tools like Tamarin require additional
computational power and resources to manage the increased detail, on top of their existing workload.
This is problematic because, as discussed in the second part of the thesis, Tamarin already approaches its
limits with protocols like SPDM, even without a detailed representation of primitives. Consequently, this
implies two things: if we wish to analyze protocols like SPDM more thoroughly, or if we need to handle
more complex protocols than SPDM, we must develop a better approach.

While small-scale improvements can be achieved through code optimization or additional computational
resources, a long-term solution likely requires the development of a modular analysis framework. This can
be pursued by further advancing research in existing composition frameworks, e.g., [52, 54, 63, 120, 121,
125, 126] or by dedicating time and resources to exploring alternative approaches.

Progress in the area of composition has been limited since the early 2010s, with most results being
highly specific and not broadly applicable. Notably, the most successful results emerge when composition
requirements involve disjoint primitives – where protocols do not share any cryptographic primitives.
Further research in this direction could highlight the importance of mechanisms such as tagging and
domain separation. Investigating whether these mechanisms can be improved in practice may help bridge
the gap between theoretical composition results and their applicability for real-world protocols.

Moreover, as most constraints identified in symbolic composition research are syntactical, it could
be worthwhile to explore the implementation of these checks within popular tools. ProVerif could be a
good tool to start, as composition results are often defined over applied pi-calculus variants. Making these
checks automatic could be an important step to getting usable composition results in the symbolic model
for actual deployed protocols.

The Human Factor Let us shift our focus to a different aspect: the human factor in formally verifying
security. We are particularly concerned with usability and accessibility, which have posed significant
challenges throughout the process of working on this thesis. While the academic research itself is
demanding, the tools and methodologies designed to support this work often end up being barriers, even
though they were initially developed to facilitate research.

Academic Tools One significant challenge of formal verification tools is their lack of accessibility.
Typically, these tools are developed by researchers deeply engaged in solving complex theoretical
problems that resonate within their respective academic communities. This intense focus often leaves
little room for enhancing usability, developing comprehensive documentation, or gathering broad
feedback. Consequently, these tools tend to have a steep learning curve due to their sophisticated
nature and minimal user-oriented design, which restricts their user base to a niche group.
For more established tools like Tamarin or ProVerif, which have achieved considerable scientific
recognition and thus attract larger user communities, usability still poses a substantial challenge.
Developers have put efforts into improving the user experience by offering detailed documentation
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and tutorials and continuously updating features. Researchers also started to put more emphasize
on making results, models and descriptions more accessible through artifacts published together
with their papers. However, these enhancements are generally driven by a small group of developers
working within a somewhat closed community, limiting the diversity of feedback and the pace
of usability improvements. If we aim to make formal security verification more approachable for
new researchers and encourage its adoption by industry professionals, it is essential that these
tools become more accessible and user-friendly. A constructive approach would involve conducting
targeted user studies with both novice and seasoned users to identify and address the barriers that
hinder broader usage.

Generalizing Security Properties Accessibility in the field of formal security verification is not only
limited by the tools but also by the methodologies we use to approach analysis of protocols. When
dealing with real-world protocols, a significant challenge is that the desired security properties and
the corresponding threat models are often not well-defined. Common standards and specifications,
such as RFCs, drafts from the IETF, or drafts from NIST, typically provide only a basic outline of
the required security measures. This lack of specificity often leaves researchers who are modeling
these protocols with the responsibility to choose appropriate threat models and security properties,
both in the symbolic and computational model. This decision-making process depends heavily on
the researcher’s expertise and their communication with the protocol developers.
The complexity of this task is compounded by the fact that over the years, researchers have identified
hundreds of security properties, defined over hundreds of variations of threat models. Most of these
definitions originate from cryptographers working within the computational model of cryptography.
This leads to another challenge: translating these properties and models from the computational
context into the symbolic model, which is necessary for applying automated verification tools
effectively.
Looking ahead, there is a promising path for future research in this area. By gathering and
organizing security property definitions and threat models, we can create clear hierarchies that link
these different elements. We conjecture that this first step would on its own be very beneficial to
the whole field, but the main goal is to use this organized information to improve how we analyze
protocols.
One possible next step could involve building a framework based on these hierarchies. This
framework would help researchers choose the right security properties and threat models and show
them how to translate these into the symbolic model to be used in verification tools. We believe
that moving towards a more organized and clear approach would greatly enhance our ability to
handle and adapt to new security challenges, especially with the rise of more complex threat models,
protocols, and political requirements in the years ahead of us.
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ASPDM Transcripts

A.1 Transcripts for Challenge

For the challenge transcript the following traces are possible:

1. GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS ,
GET_DIGESTS , GET_CERTIFICATE , CHALLENGE

2. GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS ,
GET_DIGESTS , CHALLENGE

3. GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS ,
GET_CERTIFICATE , CHALLENGE

4. GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS ,
CHALLENGE

5. GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS ,
CHALLENGE

6. GET_DIGESTS , GET_CERTIFICATE , CHALLENGE (if stored VCA)
7. GET_DIGESTS , CHALLENGE (if stored VCA and cached previous certificate)
8. GET_CERTIFICATE , CHALLENGE (if stored VCA and cached previous certificate)
9. CHALLENGE (if stored VCA and cached previous certificate)

A.2 Transcripts for Measurement

The transcript for measurements is as follows:

VCA, GET_MEASUREMENTS .∗, MEASUREMENTS .∗ (A.1)

A.3 Transcripts during Key Agreement

Transcript for HMAC in Pre-shared Symmetric Keys In the pre-shared symmetric keys, the
parties do not include the digest of the certificates or public keys. In addition, some requests in the
VCA phase may also not be issued. The transcript can be read as the sequence from the start until
the current message to be sent, e.g. to authenticate the transcript in the PSK_EXCHANGE_RSP, the
Responder will include all the values of the request to be issued itself, except the HMAC field called
ResponderVerifyData. From the specifications, the transcript is defined as:

• GET_VERSION .*
• VERSION .*
• GET_CAPABILITIES .* (if issued)
• CAPABILITIES .* (if issued)
• NEGOTIATE_ALGORITHMS .* (if issued)
• ALGORITHMS .* (if issued)
• PSK_EXCHANGE .*
• PSK_EXCHANGE_RSP.* (- ResponderVerifyData)
• PSK_FINISH .* (- RequestorVerifyData)
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A.4 Transcript for HMAC in Key Exchange

The parties send the HMAC of the transcript during all messages except the KEY _EXCHANGE request
during key exchanges. In all cases, the transcript includes VCA, the available certificates, and the session
handshake messages up to and including the current one. In the following we show the message sequences:

• VCA
• Hash of the Responder certificate or provisioned public key
• KEY _EXCHANGE .*
• KEY _EXCHANGE_RSP.* (transcript for Key Exchange Response)
• (Hash of the Requester certificate or provisioned public keys) (if mutual authentication)
• FINISH .* (transcript for Finish Request)
• FINISH_RSP.Headers (transcript for Finish Response)

A.5 Transcript for Signature in Key Exchange

The signature appended in the KEY _EXCHANGE_RSP and FINISH messages, is computed by signing
a pre-defined transcript with the private key of the device’s certificate. The transcript to be signed is the
concatenation of the message sequence:

• VCA
• Hash of the Responder certificate/public key
• KEY _EXCHANGE .*
• KEY _EXCHANGE_RSP.* (transcript for Key Exchange Response, except the Signature and

HMAC field)
• (Hash of the Requester certificate/public key) (if mutual authentication)
• FINISH .Headers (transcript for Finish Request)

A.6 Transcript for Key Derivation

To compute session secrets, the parties also include the key agreement transcript in the key derivation
function. In the protocol we need to define two transcripts: 1. TH1-to derive role-directed secrets in the
handshake phase, and 2. TH2-to derive session secrets.

Transcript TH1 for Key-Exchange (and pre-shared keys):

• VCA
• Hash of the Responder certificate
• KEY _EXCHANGE .*
• KEY _EXCHANGE_RSP.* (- ResponderVerifyData)

Transcript TH1 for pre-shared Symmetric Keys:

• VCA
• PSK_EXCHANGE .*
• PSK_EXCHANGE_RSP.* (- ResponderVerifyData)

Transcript for TH2 for Key-Exchange:

• VCA
• Hash of the Responder certificate/public key
• KEY _EXCHANGE .*
• KEY _EXCHANGE_RSP.* (- ResponderVerifyData)
• (Hash of the Requester certificate/public key) (if mutual authentication)
• FINISH .*
• FINISH_RSP.*
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Transcript for TH2 for pre-shared Symmetric Keys:

• VCA
• PSK_EXCHANGE .*
• PSK_EXCHANGE_RSP.* (- ResponderVerifyData)
• PSK_FINISH .* (if issued)
• PSK_FINISH_RSP.* (if issued)

A.7 Transcripts for Verifying Data

During the key exchange ResponderVerifyData and RequestorVerifyData are computed by building the
HMAC of the transcript with the finished key. The transcript is composed of the VCA phase message
exchange and the key exchange messages sent and received up until that point in the protocol. In the
certificate mode, the transcript also includes the hash of the parties’ certificates, as shown below:

1. VCA
2. Hash of Requester certificate
3. KEY _EXCHANGE
4. KEY _EXCHANGE_RSP (T1)
5. Hash of Responder certificate
6. FINISH (T2)
7. FINISH_RSP only SPDM header fields (T3)

Note that the transcript for the signatures in certificates mode is computed similarly. The main difference
between the two is that HMAC includes signatures in its calculation and transcript, while T1 ′ in the
HMAC does not take into account the signature and ResponderVerifyData fields. However, T1 in the
HMAC includes the signature field in its computation. The transcripts in the PSK mode is constructed as
the concatenation of the following messages:

1. VCA (CA only if issued)
2. PSK_EXCHANGE
3. PSK_EXCHANGE_RSP (T1)
4. PSK_FINISH except ResponderVerifyData (T2)

A.8 Transcripts for Key Derivation

Parties compute two transcripts that are included in the key derivation functions, namely TH1 for
role-directed handshake secrets and TH2 for the application data secrets. TH1 is computed from
the concatenation from VCA up to and including the (key/psk) exchange response except for the
ResponderVerifyData field. TH2 is computed as the concatenation of all the listed messages with all of
their fields (including PSK_FINISH_RSP for the PSK mode).

A.9 Handshake Secrets

The handshake secret is computed from the initial shared secret between the parties keyinit and a zero-
filled array (Salt0 ): handshake = HMAC(Salt0 , keyinit). Note, that keyinit is the Diffie-Hellman output
for the certificate mode, and the provisioned PSK for the pre-shared symmetric key mode. From the
handshake secret the parties derive role-oriented handshake secrets by including in the parameters of the
key derivation a fixed string of their role, and the transcript of the VCA phase and key exchange until
that point, e.g., for the Requester, the requester handshake secret is handshakeReq = HKDF(handshake,
"req", TH1 , · · · ). The role oriented secrets serve to compute the HMAC keys, so-called finished keys fk, of
the ResponderVerifyData and RequestorVerifyData: fkReq = HKDF(handshakeReq, "finished", · · · ).





BSPDM Request and Response Codes

Request/Response Codes Included Notes

GET_VERSION & VERSION ✓

GET_CAPABILITIES & CAPABILITIES ✓

NEGOTIATE_ALGORITHMS & ALGORITHMS ✓

GET_DIGESTS & DIGESTS ✓

GET_CERTIFICATE & CERTIFICATE ✓

CHALLENGE & CHALLENGE_AUTH ✓

GET_MEASUREMENTS & MEASUREMENTS ✓

ERROR out of scope for Tamarin
RESPOND_IF_READY out of scope for Tamarin
VENDOR_DEFINED_REQUEST &
VENDOR_DEFINED_RESPONSE See Discussion in Section 9.5.2
KEY _EXCHANGE & KEY _EXCHANGE_RSP ✓

FINISH & FINISH_RSP ✓

PSK_EXCHANGE & PSK_EXCHANGE_RSP ✓

PSK_FINISH & PSK_FINISH_RSP ✓

HEARTBEAT & HEARTBEAT_ACK out of scope for Tamarin
KEY _UPDATE & KEY _UPDATE_ACK ✓

GET_ENCAPSULATED_REQUEST &
ENCAPSULATED_REQUEST ✓

DELIVER_ENCAPSULATED_RESPONSE &
ENCAPSULATED_RESPONSE_ACK ✓

END_SESSION & END_SESSION_ACK ✓

GET_CSR & CSR See Discussion in Section 9.5.2
SET_CERTIFICATE & SET_CERTIFICATE_RSP See Discussion in Section 9.5.2
CHUNK_SEND & CHUNK_SEND_ACK out of scope for Tamarin
CHUNK_GET & CHUNK_RESPONSE out of scope for Tamarin

Table B.1: List of all Request and Response codes in SPDM. Details can be found in [96]

161




	Title Page
	Abstract
	Zusammenfassung
	Acknowledgements
	Statement of Originality
	Contents
	1 Introduction
	1.1 Publications
	1.2 Outline

	2 Background
	2.1 Security Protocols
	2.1.1 Security Properties
	2.1.2 Cryptographic Primitives
	2.1.3 Formal Proofs

	2.2 The Computational Model of Cryptography
	2.3 The Symbolic Model of Cryptography
	2.3.1 Symbolic Model: Term Algebra
	2.3.2 Symbolic Model: Tools


	Part I: Advancing Symbolic Models
	3 Advanced Cryptographic Primitives
	4 Cryptographic Hash Functions
	4.1 Introduction
	4.2 Background
	4.2.1 Hash Functions in Theory
	4.2.2 Hash Functions in Practice

	4.3 Generalizing Hash Function (In)Security for Systematic Analysis
	4.3.1 Lattice of Threat Models

	4.4 Automation Methodology
	4.4.1 Equational Theory – Modeling
	4.4.2 Extending Tamarin for a Full and Automatic Lattice Exploration

	4.5 Case Studies
	4.5.1 Equational Theory – Hash Models
	4.5.2 Fully Automated Analysis Methodology
	4.5.3 Results from Automated Analysis
	4.5.4 Additional Results for the Case Studies
	4.5.5 Detailed Timings for Benchmarks


	5 Authenticated Encryption with Associated Data
	5.1 Introduction
	5.2 Background
	5.2.1 Formal AEAD Syntax and Core Properties
	5.2.2 Historical Real-World Protocol Attacks Exploiting AEADs
	5.2.3 Theoretical AEAD Frameworks

	5.3 Generalizing Real-World AEAD (In)Security for Systematic Analysis
	5.3.1 Generalizing AEAD Collision Resistance and Relations

	5.4 Symbolic Models for Automated Verification
	5.4.1 Symbolic AEAD Models

	5.5 Case Studies
	5.5.1 Automated Analysis Methodology
	5.5.2 Choosing the Correct AEAD Model
	5.5.3 Key Secrecy
	5.5.4 Authentication
	5.5.5 Accountability
	5.5.6 Content Agreement


	6 Key Encapsulation Mechanisms
	6.1 Introduction
	6.2 Background
	6.2.1 Fujisaki-Okamoto (FO) Transform
	6.2.2 Re-encapsulation Attacks

	6.3 Generalizing New Security Notions for KEMs
	6.3.1 Design Choices
	6.3.2 Naming Conventions
	6.3.3 Generic Binding Notions of KEMs
	6.3.4 Relating Binding to Contributive Behavior
	6.3.5 Relationship to Other Properties
	6.3.6 Relations and Implications
	6.3.7 Implicitly Rejecting KEMs

	6.4 Symbolic Analysis of KEMs
	6.4.1 Symbolic Models for KEMs
	6.4.2 Tamarin Implementation

	6.5 Case Studies
	6.5.1 Methodology
	6.5.2 Discussion of Results
	6.5.3 One-Pass AKE
	6.5.4 0'-Protocol
	6.5.5 PQ-SPDM
	6.5.6 Kyber-AKE


	7 Limitations and Related Work
	7.1 Disclosure
	7.2 Related Work
	7.2.1 Cryptographic Hash Functions
	7.2.2 Authenticated Encryption with Associated Data
	7.2.3 Key Encapsulation Mechanism

	7.3 Limitations


	Part II: Exploring the Limits
	8 Exploring the Limits – Analyzing SPDM
	8.1 Outline
	8.2 Related Work

	9 Security Protocol and Data Model
	9.1 Security Protocol and Data Model 1.2.1
	9.1.1 Device Initialization
	9.1.2 VCA Phase
	9.1.3 Options Phase
	9.1.4 Key Exchange Phase
	9.1.5 Application Data Phase

	9.2 Formal Model of SPDM v1.2.1
	9.2.1 Modular Approach
	9.2.2 Monolithic Approach

	9.3 Security Properties and Threat Model
	9.3.1 Device Attestation
	9.3.2 Secure Session Establishment
	9.3.3 Threat Models

	9.4 Addressing Challenges
	9.5 SPDM Analysis
	9.5.1 Mode-Switch Attack
	9.5.2 Final Analysis Results


	10 Limitations and Discussion
	10.1 Modeling Effort
	10.2 Potential Design Flaws
	10.3 Limitations
	10.4 Future Directions
	10.4.1 SPDM
	10.4.2 Tooling and Methodologies



	Conclusion and Future Work
	11 Conclusion
	11.1 Contributions
	11.2 Future Work

	 List of Figures
	 List of Tables
	 Bibliography

	Appendices
	A SPDM Transcripts
	A.1 Transcripts for Challenge
	A.2 Transcripts for Measurement
	A.3 Transcripts during Key Agreement
	A.4 Transcript for HMAC in Key Exchange
	A.5 Transcript for Signature in Key Exchange
	A.6 Transcript for Key Derivation
	A.7 Transcripts for Verifying Data
	A.8 Transcripts for Key Derivation
	A.9 Handshake Secrets

	B SPDM Request and Response Codes


