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A Comprehensive CYP2D6 Drug–Drug–Gene 
Interaction Network for Application in Precision 
Dosing and Drug Development
Simeon Rüdesheim1,2,† , Helena Leonie Hanae Loer1,†, Denise Feick1,3, Fatima Zahra Marok1,  
Laura Maria Fuhr1, Dominik Selzer1 , Donato Teutonico4, Annika R. P. Schneider5, Juri Solodenko5 , 
Sebastian Frechen5, Maaike van der Lee6 , Dirk Jan A. R. Moes6 , Jesse J. Swen6 , Matthias Schwab2,7,8

 and Thorsten Lehr1,*

Conducting clinical studies on drug–drug- gene interactions (DDGIs) and extrapolating the findings into clinical 
dose recommendations is challenging due to the high complexity of these interactions. Here, physiologically- 
based pharmacokinetic (PBPK) modeling networks present a new avenue for exploring such complex scenarios, 
potentially informing clinical guidelines and handling patient- specific DDGIs at the bedside. Moreover, they provide 
an established framework for drug–drug interaction (DDI) submissions to regulatory agencies. The cytochrome P450 
(CYP) 2D6 enzyme is particularly prone to DDGIs due to the high prevalence of genetic variation and common use 
of CYP2D6 inhibiting drugs. In this study, we present a comprehensive PBPK network covering CYP2D6 drug–gene 
interactions (DGIs), DDIs, and DDGIs. The network covers sensitive and moderate sensitive substrates, and strong 
and weak inhibitors of CYP2D6 according to the United States Food and Drug Administration (FDA) guidance. For the 
analyzed CYP2D6 substrates and inhibitors, DD(G)Is mediated by CYP3A4 and P- glycoprotein were included. Overall, 
the network comprises 23 compounds and was developed based on 30 DGI, 45 DDI, and seven DDGI studies, 
covering 32 unique drug combinations. Good predictive performance was demonstrated for all interaction types, 
as reflected in mean geometric mean fold errors of 1.40, 1.38, and 1.56 for the DD(G)I area under the curve ratios 
as well as 1.29, 1.43, and 1.60 for DD(G)I maximum plasma concentration ratios. Finally, the presented network 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
	; The cytochrome P450 (CYP) 2D6 enzyme, responsible for 

the metabolism of 20%–25% of clinically used drugs, is particu-
larly prone to drug–drug–gene interactions (DDGIs) due to the 
high prevalence of structural and allelic variants as well as its 
propensity to be affected by enzyme inhibition during drug–
drug interactions (DDIs).
WHAT QUESTION DID THIS STUDY ADDRESS?
	; This study presents the development of a comprehensive 

physiologically- based pharmacokinetic (PBPK) CYP2D6 
DD(G)I modeling network comprising various important 
CYP2D6 victim and perpetrator drug models. For selected 
CYP2D6 victim drugs, clinically untested DDGI scenarios 
were simulated, and model- based dose adjustments were calcu-
lated, following the matching- exposure principle.
WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
	; The newly established CYP2D6 DDGI network can pre-

dict interactions for a wide range of drugs, providing reliable 

forecasts for tested DDGIs and predictions of untested sce-
narios. This enhances our ability to make informed decisions 
regarding dose adjustments for untested DDGI scenarios in 
clinical settings, particularly for patients with varying CYP2D6 
enzyme activity.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
	; The approach presented in this study facilitates more pre-

cise model- informed dosing strategies considering both in-
dividual genetic profiles as well as multiple drug interactions. 
Additionally, it presents a robust framework for simulating and 
understanding complex DDGIs, supplementing knowledge 
gained from clinical DDGI trials and potentially accelerating 
drug development and regulatory processes.
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was utilized to calculate dose adaptations for CYP2D6 substrates atomoxetine (sensitive) and metoprolol (moderate 
sensitive) for clinically untested DDGI scenarios, showcasing a potential clinical application of DDGI model networks 
in the field of model- informed precision dosing.

Drug–drug interactions (DDIs) and drug–gene interactions 
(DGIs) are key drivers of adverse drug reactions (ADRs), sig-
nificantly contributing to hospitalizations and in- hospital 
mortality.1,2 DDIs arise when the perpetrator drug alters the phar-
macokinetics (PK) or pharmacodynamics of the victim drug. PK 
interactions frequently involve cytochrome P450 (CYP) isozymes 
or important drug- transporting proteins, such as P- glycoprotein 
(P- gp), which are essential in the absorption, distribution, metab-
olism, and excretion (ADME) processes of many clinically used 
drugs.3,4 In the case of DGIs, genetic variation of specific pharma-
cogenes can result in varying activities of the affected enzyme or 
transporter influencing a drug’s PK.

In clinical practice, DDIs and DGIs often occur simultaneously 
in the form of drug–drug–gene interactions (DDGIs).5 However, 
separate alerts arise in electronic prescribing systems for DDIs and 
DGIs, aggravating clinical decision making. Here, CYP2D6 is one 
of the most susceptible enzymes to DDGIs.4,6 This liability arises 
from two primary factors: the relatively high prevalence of struc-
tural and allelic variants of the CYP2D6 gene which can have sub-
stantial effects on enzymatic activity, and the enzyme’s propensity 
for DDIs due to its role in metabolizing an estimated 20%–25% 
of clinically used drugs.4,7 Genetic variants in the CYP2D6 gene 
result in different metabolizer phenotypes, ranging from poor 
metabolizers, carrying two loss- of- function alleles, to ultrarapid 
metabolizers, typically possessing more than two active CYP2D6 
alleles.3,8 In addition to the CYP2D6 genotype, administration of 
strong CYP2D6 inhibitors, such as paroxetine or bupropion, can 
markedly decrease CYP2D6 activity, often resulting in a change of 
the apparent phenotype commonly referred to as “phenoconver-
sion”.9 To improve the safety and efficacy of CYP2D6 substrates, 
it is essential to consider the influence of CYP2D6 activity and 
concomitant medications on the PK of substrates not only individ-
ually but also in their combined effect.

Assessing DDGIs in clinical settings is inherently challenging due 
to the complexity of simultaneously occurring interactions given the 
vast number of potential combinations of genetically determined 
activity levels and relevant drug combinations. Thus, DDGIs pose a 
significant obstacle in clinical research and practice as it is impossible 
to perform formal studies covering all combinations.10 Additionally, 
applying the findings of published clinical DDGI trials to the real 
world is challenging, due to the limited transferability arising 
from the often narrow scope of these studies. These studies typi-
cally focus on a small selection of drugs and genetic variations and 
tend to include predominantly young, healthy male participants.5 

Here, physiologically- based pharmacokinetic (PBPK) modeling 
has become an indispensable tool in model- informed drug discov-
ery and development (MID3),11 providing a suitable approach to 
investigate and predict DDGIs.5 PBPK models offer a mechanis-
tic framework, integrating system- dependent parameters (e.g., age, 
sex, ethnicity, body weight, organ volumes, and perfusion rates) and 
drug- dependent parameters (e.g., solubility, permeability, transport, 
protein binding, and metabolic pathways). Moreover, they allow 
the detailed implementation of DDI processes. Hence, PBPK mod-
eling can be used to conduct virtual clinical DD(G)I trials, enabling 
the prediction of DD(G)I scenarios prior to conducting a dedicated 
clinical trial, potentially reducing time, cost and risks associated 
with such studies. Regulatory authorities, such as the US Food and 
Drug Administration (FDA) and the European Medicines Agency 
(EMA) advocate for the utilization of PBPK modeling to address 
various research challenges, such as the investigation of DDI or 
organ impairment, and regularly publish guidelines to support its 
application.12,13 Examining and predicting the DDI potential of 
investigational drugs requires a well- established library of PBPK 
models for index perpetrator and victim drugs. These libraries 
can facilitate the assessment of the DDI potential, and therefore, 
accelerate the process of MID3.14 Here, the FDA table of Drug 
Development and Drug Interactions provides comprehensive guid-
ance on the selection of substrates, inhibitors, and inducers for con-
comitant use in clinical DDI studies and drug labeling.15

The objectives of this work were to (i) establish and evaluate a 
comprehensive CYP2D6 DDGI network by extending and com-
bining previously published PBPK DD(G)I networks and models 
of CYP2D6 substrates and inhibitors, (ii) to apply the network to 
predict a selection of not yet clinically studied DD(G)I scenarios, 
(iii) to derive model- based dose adjustments for these DD(G)I sce-
narios. All model files will be made publicly available in the Clinical 
Pharmacy Saarland University PBPK model library (http:// mod-
els. clini calph armacy. me).

METHODS
Software
PBPK modeling, DD(G)I simulations and simulations of sensitivity anal-
yses were performed using PK- Sim® and MoBi® (version 11, OSP Suite, 
http:// www. open-  syste ms-  pharm acolo gy. org). Plasma concentration–
time profiles were digitized from the published literature using Engauge 
Digitizer 10.12 (© M. Mitchell, https:// marku mmitc hell. github. io/ 
engau ge-  digit izer). The R programming language version 4.3.0 was used 
for model evaluation purposes, including the generation of plots and the 
calculation of pharmacokinetic parameters and statistics.
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DD(G)I network development
A comprehensive literature review in PubMed was undertaken to gather 
clinical DD(G)I studies, adhering to the following criteria: (i) avail-
ability of corresponding PBPK models developed with the OSP suite 
for the compounds investigated in the DD(G)I studies; (ii) DD(G)Is 
involving CYP2D6 victim drugs; (iii) availability of plasma concen-
tration–time profiles of the victim drug, preferably measured during 
as well as prior to perpetrator co- administration, and (iv) stratification 
by CYP2D6 phenotype, genotype or activity score. Afterward, the 
CYP2D6 DD(G)I network was established by linking and combining 
published PBPK models with pre- existing networks16–18 to simulate 
the DD(G)I scenarios collected from the literature. In addition, a new 
PBPK model for the CYP2D6 substrate desipramine and its metabo-
lite 2- hydroxydesipramine was developed, as described in Section S1.

For each study cohort, a virtual population of 1,000 individuals was cre-
ated based on the reported study population characteristics. Specifically, 
age, weight, and height ranges, as well as ethnicity were considered to vary 
organ and tissue volumes and perfusion rates according to the PK- Sim® 
database. Additional variability was implemented by varying expressions 
of metabolizing enzymes, transport proteins, and protein binding part-
ners according to the PK- Sim® expression database as well as the parame-
ters reported in Table S8. Relative expressions of metabolizing enzymes, 
transport proteins, and protein binding partners used for the creation of 
virtual populations are given in Tables S9, S10. CYP2D6 activity levels 
were adjusted according to the respective study report. If no information 
on the CYP2D6 phenotype/genotype of a study population was avail-
able, a CYP2D6 normal metabolizer phenotype was assumed, as it is the 
most commonly reported phenotype in the included clinical studies.

Effect model evaluation
To evaluate the effects of DGIs, DDIs, and DDGIs, population pre-
dictions of victim drug concentrations were plotted alongside their re-
spective observed plasma concentrations alone and during perpetrator 
co- administration. Furthermore, predicted compared with observed 
DD(G)I ratios were calculated according to Eq. 1 and visually compared 
in goodness- of- fit plots.

where effect PK ratio = ratio of the PK parameter (area under 
the plasma concentration–time curve from the time of the first 
measurement to the time of the last measurement (AUClast) or 
maximum plasma concentration (Cmax)) for the investigated ef-
fect (variant CYP2D6 activity and/or drug co- administration), 
PKEffect = value of the PK parameter for the investigated effect and 
PKReference = value of the PK parameter for the respective reference 
(i.e., normal CYP2D6 activity and/or victim drug alone). Normal 
CYP2D6 activity was defined as the normal metabolizer pheno-
type or an activity score of 2 if genotypes or activity scores were 
reported.

DD(G)I ratios were assessed according to limits proposed by Guest  
et al. including 20% variability.19 Additionally, geometric mean fold errors 
(GMFEs) of DD(G)I AUClast and Cmax ratios were calculated according 
to Eq. 2.

where �̂i = predicted AUClast or Cmax value of study i, �i = corre-
sponding observed AUClast or Cmax value of study i, n = number 
of studies.

Model- informed dose adaptations
The final DDGI network was used to simulate drug exposure for the 
sensitive CYP2D6 substrate atomoxetine and the moderately sen-
sitive CYP2D6 substrate metoprolol in untested D(D)GI scenarios. 
The analysis evaluated the exposures of both victim drugs during the 
co- administration of one or multiple perpetrator drugs (CYP2D6 
and CYP3A4 inhibitors), considering the range of CYP2D6 activity 
scores evaluated during DD(G)I network development, that is, from 
0 (poor metabolizer) to 3 (ultrarapid metabolizer). For each activity 
score group, a virtual European male, aged 30, weighing 73 kg and 
measuring 176 cm of height, was created based on the International 
Commission on Radiological Protection (ICRP) database for use in 
the simulations. CYP2D6 activity for the different virtual individuals 
was adjusted based on the respective activity score.20 Administration 
protocols for the victim and perpetrator drugs were simulated accord-
ing to the standard doses stated in the respective prescribing infor-
mation, as listed in Section S8. Subsequently, dose adjustments were 
performed for the simulated D(D)GI scenarios matching the expo-
sure of victim monotherapy for activity score 2 (normal metabolizer, 
wild- type). Since simulated DD(G)I scenarios were expected to typi-
cally result in dose reductions, victim doses were adjusted more finely, 
using 1% steps for doses <100% of the original. For doses exceeding 
100%, adjustments were simulated in 10% steps to optimally align the 
steady- state AUC (AUCss) with the reference exposure following the 
matching- exposure principle.

RESULTS
DD(G)I network development
The presented network includes a total of 23 drugs, eight of 
which are CYP2D6 substrates. Of these substrates, atomoxe-
tine, desipramine, and dextromethorphan are categorized by 
the FDA as sensitive substrates, and metoprolol as a moderately 
sensitive substrate of CYP2D6. Four drugs ((E)- clomiphene, 
mexiletine, paroxetine, and risperidone) are currently not 
yet classified as substrates of CYP2D6 by the FDA but show 
a considerable susceptibility to CYP2D6 DDGIs.16,17,20 
Additionally, to cover DD(G)Is mediated by CYP3A4 and P- gp 
involving substrates or inhibitors of CYP2D6, various perpetra-
tors and victims of CYP3A4 and P- gp were included in the net-
work. Figure 1a provides an overview of the modeled DD(G)I 
network. Figure 1b,c shows an overview of model compounds 
and drug combinations included in the network as well as their 

(1)Effect PK ratio =
PKEffect

PKReference

(2)
GMFE = 10x; x =

∑n

i=1

��
�
�
log10

�
�̂i
�i

���
�
�

n

Figure 1 (a) Physiologically- based pharmacokinetic drug–drug–gene interaction network. Schematic illustration of the modeled interactions of 
CYP2D6 perpetrator and victim drugs. Black arrows indicate metabolism or transport, green arrows indicate induction, red solid lines indicate 
competitive inhibition, red dashed lines down- regulation (bupropion), noncompetitive inhibition (verapamil P- gp inhibition), or mechanism- 
based inactivation (others). (b, c) Drug–drug- (gene) interaction matrix for modeled interactions mediated by (a) CYP2D6 and (b) CYP3A4 and 
P- gp. Colors indicate categories according to the FDA’s Examples of Drugs that Interact with CYP Enzymes and Transporter Systems.41 Height of 
the gray ribbons indicates the number of clinical studies for the respective interaction covered by the network, numbers in brackets indicate 
the number of clinical interaction studies for the corresponding compound. CYP, cytochrome P450; P- gp, P- glycoprotein.

ARTICLE
 15326535, 2025, 6, D

ow
nloaded from

 https://ascpt.onlinelibrary.w
iley.com

/doi/10.1002/cpt.3604 by U
niversitätsbibliothek D

er, W
iley O

nline L
ibrary on [11/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 117 NUMBER 6 | June 2025 1721

ARTICLE
 15326535, 2025, 6, D

ow
nloaded from

 https://ascpt.onlinelibrary.w
iley.com

/doi/10.1002/cpt.3604 by U
niversitätsbibliothek D

er, W
iley O

nline L
ibrary on [11/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



VOLUME 117 NUMBER 6 | June 2025 | www.cpt-journal.com1722

FDA substrate, inhibitor, or inducer category alongside the cor-
responding number of modeled clinical studies.

Previously published models of paroxetine,20 quinidine,18 
dextromethorphan,21 (E)- clomiphene,16 mexiletine,17 carba-
mazepine,18,22 rifampicin,14 clarithromycin,23 erythromycin,24 
itraconazole,14 ketoconazole,25 verapamil,26 omeprazole,17 di-
goxin,23 midazolam,23 alprazolam, and risperidone20 were used 
without modifications to the model structure. The bupropion 
model25 was modified to include down- regulation and compet-
itive inhibition of CYP2D6 by bupropion and its metabolites 
as described in the literature.27,28 CYP2D6 competitive inhibi-
tion was implemented in the fluvoxamine29, cimetidine,26 and 
atomoxetine20 models using published values.30–32 Competitive 
inhibition of CYP2C19 was additionally implemented in 
the fluvoxamine model, as well as competitive inhibition of 
CYP3A4 in the atomoxetine model, both according to litera-
ture reports.32,33 A CYP3A4- mediated clearance of metoprolol 
was incorporated as a surrogate pathway in the corresponding 
model34 to account for the inducible residual metabolism of me-
toprolol.35 All parameters implemented in the respective models 
related to the inhibition/induction of as well as metabolism/
transport by CYP2D6, CYP3A4, and P- gp are listed in Tables 
S11, S12. Detailed results for the building and evaluation of the 
newly developed desipramine model are presented in Sections 
S2 and S3.

The overall CYP2D6 DGI model performance of CYP2D6 
substrates was evaluated using a total of 30 clinical DGI stud-
ies in which subjects had been stratified by CYP2D6 activity 
score or phenotype. The effect of varying CYP2D6 activity 
was assessed for 85 DGI scenarios involving 17 compounds 
(parent drug and respective metabolites or enantiomers), com-
prising atomoxetine, clomiphene (including metabolites (E)- 
4- hydroxy- N- desethylclomiphene, (E)- N- desethylclomiphene 
and (E)- 4- hydroxyclomiphene), desipramine (including me-
tabolite 2- hydroxydesipramine), dextromethorphan (including 
metabolite dextrorphan), metoprolol (including enantiomers 
(S)- metoprolol and (R)- metoprolol, as well as their metabolite 
α- hydroxymetoprolol), mexiletine, paroxetine, and risperidone 
(including metabolite 9- hydroxyrisperidone).

Furthermore, DD(G)I network modeling was performed 
using 45 clinical DDI and seven clinical DDGI studies cover-
ing 121 DDI and 42 DDGI scenarios as well as 32 unique drug 
combinations. In total, six CYP2D6 perpetrator drugs were 

included with bupropion, paroxetine, and quinidine being cat-
egorized as strong CYP2D6 inhibitors and cimetidine and 
fluvoxamine as weak CYP2D6 inhibitors. Additionally, atom-
oxetine was included as an inhibitor of CYP2D6 as it has been 
reported to inhibit CYP2D6 in vitro.32 Moreover, DD(G)Is me-
diated by CYP3A4 and P- gp involving substrates or inhibitors of 
CYP2D6 were added to the presented network due to their rele-
vance for predicting complex DD(G)Is. For instance, the model 
of the CYP2D6 substrate risperidone also includes metabolism 
by CYP3A4 and transport via P- gp,36 warranting the inclu-
sion of CYP3A4 and P- gp inhibitor models in the network to 
cover the respective DDIs. Conversely, the model of the strong 
CYP2D6 inhibitor paroxetine includes inhibition of CYP3A4.20 
Therefore, the PBPK models of CYP3A4 victims were included 
in the network to describe the corresponding DDIs reported in 
the literature. Here, eight victim drugs cover one substrate of 
P- gp (digoxin), one sensitive substrate of CYP3A4 (midazolam), 
one moderate sensitive substrate of CYP3A4 (alprazolam) as 
well as five currently uncategorized substrates of CYP3A4 ((E)- 
clomiphene, metoprolol, paroxetine, quinidine, and risperi-
done). Perpetrators include one inhibitor of P- gp (quinidine), 
five strong inhibitors of CYP3A4 (clarithromycin, erythromy-
cin, itraconazole, ketoconazole, and verapamil), one moderate 
inhibitor of CYP3A4 (fluvoxamine, also a strong inhibitor of 
CYP2C19), one weak inhibitor of CYP3A4 (cimetidine), two 
strong inducers of CYP3A4 (carbamazepine and rifampicin) as 
well as three uncategorized inhibitors of CYP3A4 (atomoxetine, 
omeprazole, and paroxetine). Detailed information on all mod-
eled DD(G)I studies is provided in Section S6.

DGI model evaluation
Predicted DGI AUClast and Cmax ratios were in good agree-
ment with observed DGI ratios as depicted in Figure 2a,b. 
Mean GMFEs for predicted DGI AUClast and Cmax ratios for all 
CYP2D6 substrates were 1.40 and 1.29, respectively, as listed in 
Table 1. Predicted and observed DGI AUClast and Cmax ratios for 
all studies are presented in Section S5.

DDI model evaluation
The developed network showed good predictive performance 
regarding DDI AUClast and Cmax ratios, as demonstrated in 
Figure 2c–f. Mean GMFE values of 1.40 and 1.45 were obtained 
for the predicted DDI AUClast and Cmax ratios of the CYP2D6 

Figure 2 Predicted vs. observed DGI (a) AUClast and (b) Cmax ratios as well as DDI (c, e) AUClast and (d, f) Cmax ratios, stratified by (c, d) 
CYP2D6- mediated DDIs and (e, f) non- CYP2D6- mediated DDIs, of CYP2D6 substrates included in the network. Colored symbols represent 
the victim drugs; their shape corresponds to the respective perpetrator and their colored borders correspond to the respective phenotype 
or genotype as well as the reference genotype or phenotype. The solid straight black line marks the line of identity. Curved black lines show 
prediction success limits according to Guest et al.19, including 1.25- fold variability. Black dotted lines show the 1.25- fold range, dashed black 
lines indicate the twofold range. ALP, alprazolam; AS, CYP2D6 activity score; ATO, atomoxetine; AUClast, area under the plasma concentration–
time curve from the time of the first measurement to the time of the last measurement; BUP, bupropion; CBZ, carbamazepine; CIM, 
cimetidine; CLA, clarithromycin; CLO, (E)- clomiphene; Cmax, maximum plasma concentration; DDI, drug–drug interaction; DES, desipramine; 
DEX, dextromethorphan; DGI, drug–gene interaction; DIG, digoxin; DTT, total dextrorphan; DXT, dextrorphan; ERY, erythromycin; FLV, 
fluvoxamine; HDC, (E)- 4- hydroxy- N- desethylclomiphene; IM, intermediate metabolizer; ITR, itraconazole; KET, ketoconazole; MET, metoprolol 
racemate; MEX, mexiletine; MID, midazolam; NDC, (E)- N- desethylclomiphene; NM, normal metabolizer; OHC, (E)- 4- hydroxyclomiphene; OHD, 
2- hydroxydesipramine; OHM, α- hydroxymetoprolol; OHQ, 3- hydroxyquinidine; OHR, 9- hydroxyrisperidone; OME, omeprazole; PAR, paroxetine; 
PM, poor metabolizer; QUI, quinidine; RIF, rifampicin; RIS, risperidone; RME, (R)- metoprolol; SME, (S)- metoprolol; VER, verapamil.
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DDIs, respectively, while for the non- CYP2D6 DDIs, GMFE 
values were 1.33 and 1.38 for DDI AUClast and Cmax ratios, re-
spectively. Table 1 shows the mean GMFE values and ranges strat-
ified by mechanisms of interaction. Additionally, Table 2 shows 
mean GMFE values and ranges for the different DDIs grouped 
by CYP2D6 perpetrator and victim drugs, respectively. Plasma 
concentration–time profiles in semilogarithmic and linear repre-
sentation as well as predicted vs. observed DDI AUClast and Cmax 
ratios of all DDI scenarios are provided in Section S6.

DDGI model evaluation
Figure 3a,b shows the predicted vs. observed DDGI AUClast and 
Cmax ratios of the included DDGI scenarios, demonstrating overall 
good predictive performance of the network. Mean GMFE values 
of 1.61 and 1.64 were obtained for the predicted DDGI AUClast and 
Cmax ratios of the CYP2D6 DDGIs, respectively, while for the non- 
CYP2D6 DDGIs values of 1.49 and 1.54 were calculated. Table 1 
lists the mean GMFE values and range stratified by mechanism of 
interaction. A selection of simulated DDGIs involving the CYP2D6 
victim drugs atomoxetine and desipramine as well as perpetrator 
drugs bupropion and paroxetine for different CYP2D6 phenotypes 
is presented as plasma concentration–time profiles in Figure 3c–f. 
Plasma concentration–time profiles in semilogarithmic and linear 
representation as well as predicted vs. observed DDGI AUClast and 
Cmax ratios of all DDGI scenarios can be found in Sections S6 and S7.

Model- informed dose adaptations
The final network was applied to simulate D(D)GI scenarios 
involving the CYP2D6 victim drugs atomoxetine and metop-
rolol with various combinations of strong and weak inhibitors 
of CYP2D6 and CYP3A4 across different CYP2D6 activity 
scores. Paroxetine and quinidine were selected as CYP2D6 per-
petrators and itraconazole as CYP3A4 inhibitor. Cimetidine 
was selected as a weak inhibitor of both CYP2D6 and CYP3A4. 
Moreover, activity scores of 0, 0.25, 0.5, 1, 1.25, 1.5, 2 (wild- type) 
and 3 were assumed for simulated D(D)GI scenarios. Model ex-
posure simulations revealed that co- administration of the perpe-
trator drugs may result in AUCss increases of up to 14.8- fold and 
8.5- fold as well as reductions of up to 0.5- fold and 0.6- fold of the 
reference AUCss for atomoxetine and metoprolol, respectively. 
Fold changes in AUCss for the different scenarios compared with 
the reference AUCss are presented in Figure 4. All simulated 
D(D)GI scenarios including administration protocols of the 
respective victim and perpetrator drugs are listed in Figure 5. 
Simulations to match the respective model- simulated monother-
apy AUCss for the CYP2D6 activity score 2 yielded a dose range 
of 2.4–72 mg (6%–180% of the original dose) for atomoxetine 
and 12–160 mg (12%–160% of the original dose) for metoprolol 
(Figure 5). As shown in Figures S68 and S69, dose adjustments 
resulted in simulated exposures well within the bioequivalence 
criteria (80%–125%) compared with the reference exposure.

DISCUSSION
In this study, we present a newly established DD(G)I network cen-
tered around the highly polymorphic CYP2D6 enzyme, prone to 

DDIs, DGIs, and DDGIs. The presented network was built based 
on various previously published models and compound- specific 
DD(G)I networks, combining and expanding them for a total of 
32 distinct drug combinations involving 23 different compound 
models, also including 18 metabolites. The research presented in 
this study introduces a comprehensive CYP2D6 DDGI network 
that significantly advances beyond prior efforts. Specifically com-
pared with the previously published quinidine DDGI modeling 
study by Feick et al.,18 the CYP2D6 network expands the scope to 
include eight additional CYP2D6 drugs—three victims and five 
perpetrators—encompassing a broader spectrum of interaction 
mechanisms, such as CYP2D6 down- regulation by bupropion 
and mechanism- based inactivation by paroxetine. The com-
prehensive coverage of CYP2D6 victim and perpetrator drugs, 
interaction scenarios, and interaction mechanisms within the 
developed network allows for a more nuanced understanding of 
CYP2D6 interactions. The good predictive performance of the 
network was evaluated using established graphical and quantita-
tive measures. Subsequently, model- based dose adjustments for 
simulated clinically untested D(D)GI scenarios were performed 
for the CYP2D6 substrates atomoxetine and metoprolol.

Previous studies have outlined the potential of PBPK DDGI net-
works in clinical applications and how these models may be used 
to generate model- guided dose adaptations even in highly complex 
situations. For instance, Türk et al. provided dose adaptations cover-
ing the combined effect of genetic variants in two pharmacogenes 
(CYP2C8 and SLCO1B1) and co- administration of perpetrator 
drugs, such as gemfibrozil and itraconazole.37 Similarly, Wojtyniak 
and colleagues presented a DD(G)I network centered around sim-
vastatin highlighting the combinatorial complexities occurring from 
DDGIs.10 The presented network was established based on a large 
number of CYP2D6 victim and perpetrator drugs as well as ob-
served clinical data to provide a comprehensive foundation for the 
prediction of clinically untested CYP2D6 DD(G)I and even mul-
tiple DD(G)I scenarios with more than one perpetrator. To demon-
strate the multitude of combinatorial possibilities of interactions, 
the effect of several CYP2D6 and CYP3A4 perpetrators on the 
exposure of the sensitive CYP2D6 substrate atomoxetine and the 
moderately sensitive CYP2D6 substrate metoprolol was predicted 
for different CYP2D6 activity scores. In a next step, model- based 
dose adjustments were performed to demonstrate the translation 
of the model predictions into patient- relevant information for clin-
ical application. However, the applicability of this approach for 
patient- individual dose adaptations is constrained by the extensive 
interindividual variability in the CYP2D6 enzyme activity, even 
when accounting for CYP2D6 activity scores.21 Like the population 
approach, individual predictions using PBPK models could be sub-
stantially improved with the integration of patient- specific PK mea-
surements and individual PK data.38 Here, hybrid population PBPK 
approaches may increase the confidence in individual PBPK model 
predictions, especially when used for clinical decision making.38 Our 
presented network can serve as a basis for such hybrid approaches.

The dose adjustments performed for atomoxetine and metopr-
olol resulted in substantial increases or decreases in the respective 
dose, highlighting the need for individual dose adaptations. Model 
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simulations indicate that to match the exposure of atomoxetine in 
poor metabolizers (activity score 0) with the reference exposure 
(activity score 2, no co- medication), a dose reduction to 6% of the 
original atomoxetine dose is required. Additionally, simulations 
reveal that co- administrations of strong CYP2D6 inhibitors qui-
nidine and paroxetine either alone or in combination with other 
CYP2D6 or CYP3A4 inhibitors resulted in a significant reduc-
tion in CYP2D6 activity across all activity scores above 0. This re-
sults in atomoxetine exposures similar to those simulated in poor 
metabolizers (activity score 0). Consequently, similarly extensive 
dose reductions are necessary to match their exposure levels to the 
reference group. The observed phenoconversion is consistent with 
the FDA- approved label for STRATTERA®, stating that atomox-
etine blood levels are increased ~10- fold in poor metabolizers or 
those taking strong CYP2D6 inhibitors.39 Accordingly, the label 
recommends a dose reduction to 40% of the target dose for these 
individuals, with an optional subsequent dose escalation to 100% 
if symptoms fail to improve after four weeks and the initial dose 
is well- tolerated. This recommendation is likely based on the ob-
servation of only modest differences in the frequency of ADRs 
between normal and poor metabolizers of CYP2D6 alongside the 
generally well- tolerated atomoxetine doses. Additionally, while 
the label recommendations use traditional CYP2D6 phenotype 
categories, dose adjustments derived from our model simulations 

utilize the more detailed activity score categories.8 The broad 
normal metabolizer category used as the reference in label dosing 
contrasts with the specific activity score of 2 used in model- based 
adjustments, explaining the variance in recommended dose reduc-
tions for poor metabolizers and patients on strong CYP2D6 in-
hibitors. For metoprolol, the Dutch Pharmacogenetics Working 
Group (DPWG) provides dose adjustments based on CYP2D6 
phenotypes.40 Model- derived dose recommendations for metop-
rolol in DGI scenarios have been found to be largely consistent 
with DPWG recommendations.34 The current study extends these 
recommendations to DDGI scenarios, incorporating the isolated 
and combined effects of strong CYP2D6 inhibitors paroxetine and 
quinidine, the effect of strong CYP3A4 inhibitor itraconazole, as 
well as the effect of weak CYP2D6 and CYP3A4 inhibitor cimeti-
dine on the PK of metoprolol. Here, the most significant effect 
was observed with the co- administration of quinidine and itracon-
azole, necessitating a reduction of the metoprolol dose to 12% of 
the original dose. While the presented dose adjustments were per-
formed based on AUCss, dose adjustments using PBPK models can 
also be performed for other PK parameters, such as trough concen-
tration (Ctrough) or Cmax, when appropriate for the drug of interest.

In the future, the network can be expanded by developing novel 
PBPK models of victims or perpetrators within the OSP frame-
work enabling the prediction of an even broader range of clinically 
relevant DD(G)I scenarios. The PBPK approach facilitates the 
prediction of concomitant medications and generation of individ-
ual optimizations, as highlighted in this work. While PBPK mod-
els are versatile and beneficial for clinical applications, such as dose 
optimizations, their adoption in clinical practice remains limited. 

Table 1 Summary of geometric mean fold errors (GMFEs) for 
DGI, DDI, and DDGI predictions

Scenario n

Mean GMFE (range)

AUClast Cmax

CYP2D6 DGIs 85 1.40 (1.00–6.19) 1.29 (1.00–2.95)

CYP2D6 DDIs 72 1.40 (1.00–3.64) 1.45 (1.01–3.41)

Competitive 
inhibitors

21 1.32 (1.04–2.33) 1.39 (1.01–3.03)

MBI/other 
inhibitors

51 1.43 (1.00–3.64) 1.48 (1.02–3.41)

Other DDIs 49 1.33 (1.02–2.75) 1.38 (1.00–2.96)

Competitive 
inhibitors

15 1.28 (1.09–1.97) 1.31 (1.00–2.27)

MBI 26 1.34 (1.02–2.75) 1.40 (1.00–2.59)

Inducers 8 1.40 (1.02–2.02) 1.41 (1.01–2.96)

All DDIs 121 1.38 (1.00–3.64) 1.43 (1.01–3.41)

CYP2D6 
DDGIs

26 1.61 (1.01–3.55) 1.64 (1.05–3.71)

Competitive 
inhibitions

3 1.61 (1.09–1.96) 1.30 (1.17–1.40)

MBI/other 
inhibitors

23 1.61 (1.01–3.55) 1.68 (1.05–3.71)

Other DDGIs 
– MBI

16 1.49 (1.02–2.42) 1.54 (1.02–3.31)

All DDGIs 42 1.56 (1.01–3.55) 1.60 (1.02–3.71)

AUClast, Area under the plasma concentration–time profile from the time of 
the first measurement to the time of the last measurement; Cmax, maximum 
plasma concentration; DDGIs, Drug–drug–gene interactions; DDIs, drug–drug 
interactions; DGIs, drug–gene interactions; GMFE, geometric mean fold error; 
MBI, mechanism- based inhibition; n = number of investigated interaction 
scenarios.

Table 2 Summary of geometric mean fold errors (GMFEs) for 
CYP2D6 DDI predictions by perpetrator and victim

Compound n

Mean GMFE (range)

AUClast Cmax

CYP2D6 
perpetrators

Atomoxetine 1 1.09 1.06

Bupropion 3 1.30 (1.27–1.36) 1.18 (1.02–1.36)

Cimetidine 4 1.24 (1.10–1.49) 1.31 (1.10–1.48)

Fluvoxamine 1 1.04 1.17

Paroxetine 48 1.44 (1.00–3.64) 1.50 (1.02–3.41)

Quinidine 15 1.37 (1.08–2.33) 1.44 (1.01–3.03)

CYP2D6 victims

Atomoxetine 8 1.41 (1.04–1.77) 1.22 (1.02–1.43)

(E)- Clomiphene 20 1.56 (1.00–3.64) 1.72 (1.04–3.41)

Desipramine 11 1.35 (1.04–2.86) 1.38 (1.06–2.68)

Dextromethorphan 8 1.62 (1.11–2.33) 1.94 (1.20–3.03)

Metoprolol 22 1.21 (1.00–1.66) 1.19 (1.01–1.48)

Mexiletine 2 1.13 (1.08–1.18) 1.19 (1.11–1.26)

Paroxetine 1 1.23 1.10

AUClast, Area under the plasma concentration–time profile from the time of 
the first measurement to the time of the last measurement; Cmax, maximum 
plasma concentration; DDIs, drug–drug interactions; GMFE, geometric mean 
fold error; n = number of investigated interaction scenarios.
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This is chiefly due to a lack of clinical acceptance caused by an ap-
parent lack of usability by the target user group or accountability 
issues.5 Here, our network can serve as the foundation for PBPK- 
driven clinical decision support systems (CDSS) for clinicians and 
patients. These CDSS aim to generate optimal model- based doses 
for an individual patient based on the underlying victim and perpe-
trator models of the relevant medication as well as patient- specific 
genetic and demographic input data. Additionally, CDSS can 
provide a more accessible way to leverage the potential of PBPK 
networks outside of dedicated modeling software, consequently 
lowering the barriers of access and improving clinical utility.5

In total, the presented CYP2D6 network was built and evalu-
ated based on 85 DGI, 121 DDI, and 42 DDGI scenarios demon-
strating good predictive performance for all interaction types. 
Moreover, the developed network shows good coverage of the 
FDA Table of Substrates, Inhibitors and Inducers for the CYP2D6 
enzyme with three strong inhibitors, two weak inhibitors, three 

sensitive substrates and one moderately sensitive substrate in-
cluded.41 Paroxetine, a strong clinical index inhibitor of CYP2D6 
is featured while desipramine and dextromethorphan provide two 
sensitive clinical index substrates of CYP2D6.15 However, due 
to the absence of compatible PBPK models in the published lit-
erature, no moderate CYP2D6 inhibitors listed by the FDA are 
currently represented in the network. Once such models become 
available, our network can be expanded accordingly. This modu-
larity is essential for incorporating new data and models, enhanc-
ing the network’s utility and accuracy over time. Additionally, 
good coverage of the FDA Table of Substrates, Inhibitors and 
Inducers ensures regulatory compliance and applicability to a 
broad range of clinical scenarios. Hence, our network may aid 
clinical decision- making, especially in the context of MID3, where 
previously published PBPK DD(G)I networks have shown to be 
of considerable interest complementing clinical studies. For in-
stance, extrapolations from moderate inhibitors to weak or strong 

Figure 4 Fold- change in AUCss relative to the reference AUCss (activity score 2, no DDI) across different D(D)GI scenarios before dose 
adaptations for (a) atomoxetine and (b) metoprolol. Colors indicate the extent and direction of the deviation from the reference AUCss. AUCss, 
area under the concentration–time curve during steady state; b.i.d., twice a day; D(D)GI, drug(−drug)–gene interaction; q.d., once daily; q.i.d., 
four times a day.

(a) (b)CYP2D6 Activity Score CYP2D6 Activity Score

0 0.25 0.5 1 1.25 1.5 2 3 0 0.25 0.5 1 1.25 1.5 2 3

+ Quinidine sulfate, 300 mg b.i.d.
 + Itraconazole, 100 mg b.i.d.

+ Paroxetine hydrochloride, 20 mg q.d.
 + Quinidine sulfate, 300 mg b.i.d.

+ Cimetidine, 200 mg q.i.d.
 + Quinidine sulfate, 300 mg b.i.d.

+ Quinidine sulfate, 300 mg b.i.d.

+ Paroxetine hydrochloride, 20 mg q.d.
 + Cimetidine, 200 mg q.i.d.

+ Paroxetine hydrochloride, 20 mg q.d.

+ Cimetidine, 200 mg q.i.d.
 + Itraconazole, 100 mg b.i.d.

+ Cimetidine, 200 mg q.i.d.

Metoprolol tartrate, 100 mg b.i.d.

+ Quinidine sulfate, 300 mg b.i.d.
 + Itraconazole, 100 mg b.i.d.

+ Paroxetine hydrochloride, 20 mg q.d.
 + Quinidine sulfate, 300 mg b.i.d.

+ Cimetidine, 200 mg q.i.d.
 + Quinidine sulfate, 300 mg b.i.d.

+ Quinidine sulfate, 300 mg b.i.d.

+ Paroxetine hydrochloride, 20 mg q.d.
 + Cimetidine, 200 mg q.i.d.

+ Paroxetine hydrochloride, 20 mg q.d.

+ Cimetidine, 200 mg q.i.d.
 + Itraconazole, 100 mg b.i.d.

+ Cimetidine, 200 mg q.i.d.

Atomoxetine hydrochloride, 40 mg b.i.d.

Fold-change in AUCss relative to reference

0.5 1 2 4 8 16

Figure 3 Predicted vs. observed DDGI (a) AUClast and (b) Cmax ratios of CYP2D6 substrates included in the network. Colored symbols represent 
the victim drugs; their shape corresponds to the respective perpetrator; their colored borders correspond to the respective phenotype or 
genotype as well as the reference genotype or phenotype. The solid straight black line marks the line of identity. Curved black lines show 
prediction success limits according to Guest et al.,19 including 1.25- fold variability. Black dotted lines show the 1.25- fold range, dashed 
black lines indicate the twofold range. (c–f) Selection of modeled DDGIs. Predicted compared with observed plasma concentration–time 
profiles of the respective victim drug alone and after pretreatment with and/or concomitant administration of a perpetrator drug: (c, d) 
atomoxetine with and without bupropion pretreatment in (c) CYP2D6 normal metabolizers and (d) poor metabolizers and (e, f) desipramine 
with and without paroxetine pretreatment in (e) fast CYP2D6 normal metabolizers49 and (f) poor metabolizers. Predicted population geometric 
means are shown as lines (solid: victim drug alone, dashed: victim drug during DDGI), predicted geometric standard deviations are shown 
as shaded areas and observed data are shown as dots (parent compound) and triangles (metabolite, if available) (± standard deviation, if 
reported).43,49 AS, CYP2D6 activity score; ATO, atomoxetine; AUClast, area under the plasma concentration–time curve from the time of the 
first measurement to the time of the last measurement; b.i.d., twice daily; BUP, bupropion; CLA, clarithromycin; CLO, (E)- clomiphene; Cmax, 
maximum plasma concentration; DDGI, drug–drug–gene interaction; DES, desipramine; DEX, dextromethorphan; DXT, dextrorphan; HDC, 
(E)- 4- hydroxy- N- desethylclomiphene; IM, intermediate metabolizer; MET, metoprolol racemate; MEX, mexiletine; MID, midazolam; n, number of 
study participants; NDC, (E)- N- desethylclomiphene; NM, normal metabolizer; OHC, (E)- 4- hydroxyclomiphene; OHD, 2- hydroxydesipramine; OHQ, 
3- hydroxyquinidine; PAR, paroxetine; PM, poor metabolizer; po, oral; q.d., once daily; QUI, quinidine; s.d., single dose.
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inhibitors using a CYP3A4 DDI network have been successfully 
applied to support and accelerate clinical development.42 Here, 
PBPK interaction networks offer a robust framework for simulat-
ing and predicting drug interactions in silico, potentially reducing 
the need for early- phase clinical trials.5

Most models within the network were utilized without modi-
fications to their original configurations. However, PBPK models 
for atomoxetine, bupropion, cimetidine, and fluvoxamine were 
extended to include additional interaction parameters that mech-
anistically describe DDIs mediated by these drugs. All interaction 
parameters implemented in the respective models were sourced 
from the published literature. For instance, the bupropion model 
was modified to reflect its unique interaction mechanism, a mix of 

competitive inhibition and down- regulation of CYP2D6 caused 
by bupropion and its metabolites hydroxybupropion, erythrohy-
drobupropion, and threohydrobupropion as described by Sager 
et al.27 These model extensions were necessary to accurately cap-
ture the interactions between bupropion and the CYP2D6 victim 
drugs atomoxetine and desipramine.28,43 In the case of metopro-
lol, the model was refined to include a CYP3A4- mediated clear-
ance pathway, replacing a previously implemented non- specific 
pathway. This adjustment aligns with in vitro evidence suggesting 
that metoprolol’s metabolism is partially mediated by CYP3A4.35 
Although CYP2D6 is generally considered non- inducible by pro-
totypical CYP inducers, such as carbamazepine and rifampicin, 
Bennett et al. have reported an increase of metoprolol AUC after 

Figure 5 Overview of model- based dose adaptations for (a) atomoxetine and (b) metoprolol within single and multiple D(D)GI scenarios 
based on the exposure matching principle, where points and squares show the percentage of the original dose that match the PBPK 
simulated monotherapy AUCss for activity score 2. Colored symbols depict dose reductions for the different activity scores. AUCss, area under 
the concentration–time curve during steady state; b.i.d., twice a day; D(D)GI, drug(−drug)–gene interaction; PBPK, physiologically- based 
pharmacokinetic; q.d., once daily; q.i.d., four times a day.
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rifampicin co- administration by ~30% indicating additional non- 
CYP2D6- mediated metabolism.44

Further adaptations of the network models may increase their 
predictive performance to cover various additional DDGI scenar-
ios. This includes incorporating in vitro interaction parameters for 
metabolites currently not included in the respective models, as me-
tabolites often contribute to the apparent interactions caused by 
their parent drug. For instance, Sauer and colleagues reported an 
additive effect of CYP3A4 inhibition caused by atomoxetine and its 
metabolites N- desmethylatomoxetine and 4- hydroxyatomoxetine, 
which are not included in the current atomoxetine model.32 In ad-
dition, models can be refined once new insights into the PK of a 
drug emerge. For instance, predicted desipramine profiles show a 
trend toward underprediction in DDI scenarios, although all in-
teraction PK ratios were within the limits proposed by Guest et 
al.19 This discrepancy may have been caused by possible transport 
processes that were not included in the desipramine model but 
may be targeted by perpetrators. For example, experiments with 
rats indicate that P- gp inhibitors can increase desipramine brain 
concentrations.45 However, since no broad knowledge and espe-
cially quantifying parameters on the potential transport of desip-
ramine by P- gp were available in the literature, P- gp- mediated 
transport was not included in the model. Should further data indi-
cating relevant transport by P- gp or other transporters in vivo be-
come available, the desipramine model can be refined accordingly. 
Overall, these adaptations showcase the mechanistic flexibility of 
PBPK models and their adaptability to describe complex DDGI 
scenarios.

Although a large amount of data was used for network develop-
ment and evaluation, the generalizability of the network predic-
tions may be limited to some extent caused by the design of the 
clinical studies used. For instance, most studies were conducted 
with European or American subjects, while data on Asian subjects 
were only available for the victim drugs atomoxetine, paroxetine, 
and risperidone. Hence, the predictive performance may vary 
for ethnicities not represented in the respective study cohorts. 
Moreover, as study participants typically were healthy men aged 
around 30, the predictive performance may differ for women and 
older patients. Finally, the predictive performance of the presented 
network in various other vulnerable patient populations, such as 
pediatric patients or patients with renal or hepatic impairment, 
remains unknown. Here, previous examples highlight how PBPK 
DD(G)I models can be adapted to cover these scenarios.46–48 
Additional studies covering a wider range of demographic charac-
teristics of study participants would be of interest to extend and 
evaluate the developed network, increasing its clinical utility in 
predicting real- world scenarios.

In conclusion, this work presents a comprehensive whole- body 
PBPK DDGI network that can describe and predict the simul-
taneous effects of CYP2D6 activities and concomitant adminis-
trations of various perpetrator drugs on the PK of victim drugs. 
Overall, the developed network not only provides a valuable basis 
for the realization of PBPK MIPD for CYP2D6 victim drugs, but 
also represents a well- suited foundation for applications within 
MID3 due to the broad coverage of CYP2D6 victim and perpe-
trator drugs. The modular nature of PBPK models supports this 

broad applicability of the network by facilitating future extensions 
through the inclusion of additional perpetrator or victim drugs. 
Therefore, all model files will be made publicly available (http:// 
models. clini calph armacy. me).

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).
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