
Zentgraf and Rahmann ﻿
Algorithms for Molecular Biology (2025) 20:13
https://doi.org/10.1186/s13015-025-00286-6

RESEARCH Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Algorithms for
Molecular Biology

Swiftly identifying strongly unique k‑mers
Jens Zentgraf1,2,3 and Sven Rahmann1,2* 

Abstract 

Motivation  Short DNA sequences of length k that appear in a single location (e.g., at a single genomic position,
in a single species from a larger set of species, etc.) are called unique k-mers. They are useful for placing sequenced
DNA fragments at the correct location without computing alignments and without ambiguity. However, they are
not necessarily robust: A single basepair change may turn a unique k-mer into a different one that may in fact be
present at one or more different locations, which may give confusing or contradictory information when attempting
to place a read by its k-mer content. A more robust concept are strongly unique k-mers, i.e., unique k-mers for which
no Hamming-distance-1 neighbor with conflicting information exists in all of the considered sequences. Given a set
of k-mers, it is therefore of interest to have an efficient method that can distinguish k-mers with a Hamming-dis-
tance-1 neighbor in the collection from those that do not.

Results  We present engineered algorithms to identify and mark within a set K of (canonical) k-mers all elements
that have a Hamming-distance-1 neighbor in the same set. One algorithm is based on recursively running a 4-way
comparison on sub-intervals of the sorted set. The other algorithm is based on bucketing and running a pairwise
bit-parallel Hamming distance test on small buckets of the sorted set. Both methods consider canonical k-mers (i.e.,
taking reverse complements into account) and allow for efficient parallelization. The methods have been imple-
mented and applied in practice to sets consisting of several billions of k-mers. An optimized combined approach run-
ning with 16 threads on a 16-core workstation yields wall times below 20 seconds on the 2.5 billion distinct 31-mers
of the human telomere-to-telomere reference genome.

Availability  An implementation can be found at https://​gitlab.​com/​rahma​nnlab/​strong-​k-​mers.

Keywords  k-mer, Hamming distance, Strong uniqueness, Parallelization, Algorithm engineering

Introduction
Alignment-based biological sequence analysis methods
are increasingly being replaced by alignment-free, or
at least partially alignment-free, methods. One reason
behind this development is the relatively high computa-
tional cost for sequence alignments. An early example of

this development was the replacement of overlap-con-
sensus based genome assembly by DeBruijn graph based
assembly methods, subdividing the sequenced DNA
fragments further into overlapping pieces of length k, so-
called k-mers [1]. Another example is pseudo-alignment
based transcript quantification from RNA-seq data, pio-
neered by kallisto [2], which assigns a transcript to each
read not by computing alignments, but directly from the
k-mer content of the reads.

More recently, an alignment-free solution was pub-
lished for xenograft sorting [3], where one wants to
separate reads in a mixed sample from two species; a
typical application is to separate human tumor DNA
reads from mouse tissue DNA reads in patient-derived
xenograft experiments. This had previously been done

*Correspondence:
Sven Rahmann
sven.rahmann@uni-saarland.de
1 Algorithmic Bioinformatics, Department of Computer Science, Saarland
University, Campus E2.1, Saarbrücken 66123, Saarland, Germany
2 Center for Bioinformatics Saar, Saarland Informatics Campus, Campus
E2.1, Saarbrücken 66123, Saarland, Germany
3 Saarbrücken Graduate School of Computer Science, Saarland
Informatics Campus, Campus E2.1, Saarbrücken 66123, Saarland, Germany

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-025-00286-6&domain=pdf
https://gitlab.com/rahmannlab/strong-k-mers

Page 2 of 16Zentgraf and Rahmann ﻿Algorithms for Molecular Biology (2025) 20:13

by aligning all reads to both the human genome and
the mouse genome and picking the better alignment for
each read to assign the species of origin. However, it is
computationally much more efficient to build a k-mer
index (with k ≥ 25 ) with associated species information
and to classify reads according to their k-mer content.
This approach can save up to 80% of the CPU work
[3]. Similar ideas generalize to metagenomic profiling,
where one seeks to quantify the amount of different
species in a metagenomic sample, again not based on
alignments, but based on k-mer content [4–6].

More examples could be mentioned, but here we
want to focus on an important but so far underappreci-
ated aspect of alignment-free methods: the concept of
strongly unique k-mers, as opposed to (weakly) unique
k-mers and non-unique k-mers.

Given a collection of sequences, a k-mer is called
unique if it occurs only once as a length-k substring in
a single sequence within the collection. Unique k-mers
are both more useful and technically easier to handle
than non-unique k-mers: They unambiguously identify
a single sequence and a single position within the entire
collection. They also allow us to store some informa-
tion (a “value”) associated with the k-mer (the “key”)
in a simple way, because there is only a single value for
a unique k-mer, whereas for non-unique k-mers, we
would need to handle a variable-length list of values.

Uniqueness, as useful as it is, is not a robust prop-
erty: A single nucleotide change, such as a sequencing
error or an individual single-nucleotide variant, may
turn a unique k-mer x into a different k-mer x′ that
may either not exist at all in the indexed collection, or
exist as a unique k-mer somewhere else, or as a non-
unique k-mer in several other locations. The first case
(non-existence of x′ ) is usually not so critical; in any
case, one knows that there has been a modification. The
other cases are more problematic, because an existing
k-mer was transformed into an equally existing k-mer
x′ that however is (in terms of its location in the col-
lection) not related to x′ and could be anywhere or in
multiple places.

Therefore, a stronger concept than just uniqueness
is helpful. Consider a k-mer x and its Hamming-dis-
tance-1 neighborhood N(x) containing exactly the 3k
k-mers that differ from x at exactly one position. If none
of the x′ ∈ N (x) exists in the indexed collection, then
x is unique with a “safety margin” around it; no single
change can turn x into an x′ that might confuse us with
wrong information. We call such k-mers strongly unique.
Strong uniqueness is a useful concept for alignment-
free sequence analysis for the reasons stated above: If a
strongly unique k-mer is seen in a sequenced DNA frag-
ment, that fragment can be unambiguously and robustly

located within the indexed collection; a single substitu-
tion cannot give wrong information.

A technical complication arises from the dou-
ble-strandedness of DNA and from the equiva-
lence of a sequence s and its reverse complement.
Formal details and definitions are therefore presented in
Section Preliminaries.

The above explanation should sufficiently motivate us
to consider the weak k-mer identification problem, for-
mally stated as Problem 1 in Section Preliminaries: Given
a k-mer set K, identify those elements of K (called weak
k-mers) that have a Hamming-distance-1 neighbor in K.

After the formal preliminaries, we present two differ-
ent efficient algorithms for the weak k-mer identification
problem and an engineered hybrid form (Section Meth-
ods). Benchmarks follow in Section Benchmarking
Results, and some results on strongly and weakly unique
k-mers in the human genome in Section Uniqueness
within the Human Genome. We discuss two applications
that may benefit from our new algorithms (sequencing
error correction and xenograft sorting) in Section Appli-
cation Perspectives, and end with a concluding discus-
sion (Section Discussion and Conclusion).

This article is an extended version of preliminary work
published at Wonderful Algorithms in Bioinformatics
2024 [7]. We here additionally evaluate artificial extremal
datasets that only contain weak or strong k-mers. Our
benchmarking results are further enhanced by a more
detailed consideration of the interval length threshold
at which we switch to pairwise comparisons when run-
ning the FourWay algorithm, and we explore refined
parallelization by distributing the overall task into many
small chunks (Section Benchmarking Results). Beyond
benchmarks, we have added detailed insights into the
distribution of strongly and weakly unique k-mers across
the human genome (new Section Uniqueness within
the Human Genome). In addition, we discuss potential
applications of our algorithms in other alignment-free
methods, such as DNA sequencing error correction or
xenograft sorting (new Section Application Perspectives).

Preliminaries
We introduce several basic definitions: k-mers, their
(canonical) integer encoding, bit-parallel computation of
the Hamming distance between two k-mers, canonical
Hamming distance, and strong and weak k-mers in a set.

We only consider DNA sequences over the alpha-
bet � = {A,C,G,T} here (and in our current imple-
mentation), but the ideas generalize to other alphabets.
However, we take the double-stranded nature of DNA
molecules into account when considering Hamming dis-
tance between DNA sequences; this would and should
not be done with different alphabets.

Page 3 of 16Zentgraf and Rahmann ﻿Algorithms for Molecular Biology (2025) 20:13 	

Definition 1  (k-mer) Given an alphabet � , a k-mer
is a sequence of length k over � . Given a (long) string s
over � . A k-mer of s is any substring of length k of s.

Definition 2  (reverse complement) The reverse comple-
ment rc(s) of a DNA sequence s is obtained by reversing
the sequence and substituting A ↔ T and C ↔ G.

Canonical integer encoding of k‑mers
To represent and store a DNA k-mer x efficiently, it can
be bijectively encoded as an integer 0 ≤ enc(x) < 4k for
fixed k: Each base is encoded as a number in {0, 1, 2, 3}
(e.g. lexicographically), and the resulting sequence of k
numbers is interpreted as a base-4 integer with k “dig-
its”. Equivalently, and relevant for the bit-parallel Ham-
ming distance test described below, we may write the
same integer in its 2k-bit representation. For example,
enc(TACG) = (3012)4 = (11|00|01|10)2 = 198.

To ensure that a k-mer x and its reverse comple-
ment rc(x), which both represent the same DNA
molecule, are encoded by the same integer value,
we define the canonical integer encoding or canoni-
cal code of x as cc(x) := max{enc(x), enc(rc(x))} . (In
most of the literature, the definition is given with the
minimum instead of the maximum; this does not mat-
ter. Both are equivalently valid ways to assign the
same integer to both k-mers x and rc(x).) For example,
cc(TACG) = cc(CGTA) = max{enc(TACG), enc(CGTA)} = max{198, 108} = 198.

Bit‑parallel Hamming distance computation between two
k‑mers
The Hamming distance d(x, y) between two k-mers x, y is
the number of positions in which x and y differ. For 2-bit
encoded DNA sequences, there is a fast bit-parallel way
to compute the Hamming distance and to test whether
d(x, y) ≤ 1.

Let p = (p2k−1, . . . , p0) and q = (q2k−1, . . . , q0) be the
2k-bit patterns of x and y, respectively. From p and q, we
compute a bit pattern h = (h2k−1, . . . , h0) that has hi = 0
for all odd i, and hi = 1 for even i if and only if the nucle-
otides encoded by (pi+1, pi) and (qi+1, qi) differ.

To achieve this, we first compute u := p⊕ q , where ⊕
is the bitwise exclusive-or (XOR) operation, setting those
bits ui = 1 where pi = qi . We then combine the two bits
of each nucleotide into the even bits of u and clear the
odd bits to indicate which nucleotides differ between x
and y by setting h := (u | (u ≫ 1))& (0101 . . . 01)2 . Here,
the operators |, & and ≫ represent bitwise or, bitwise
and, and bit shift right, respectively. The obtained h has
the desired properties. The population count (number of

1-bits) of h then equals the Hamming distance between
the k-mers x and y.

Testing whether the Hamming distance is at most 1
(i.e., whether h is zero or a power of 2) can be further
simplified by computing w := h& (h− 1) . We have w = 0
if and only if h has at most a single 1-bit, and w = 0 if and
only if the Hamming distance between the k-mers repre-
sented by x and y is at least 2.

Canonical Hamming distance
In the following, we interpret DNA k-mers as double-
stranded molecules, i.e., both x and rc(x) are represented
by either of them. This has to be considered for Hamming
distance computations.

For example, take x = AAAA and y = ATTT . Seen as
single-stranded k-mers, we have d(x, y) = 3 . However,
seen as double-stranded DNA molecules, ATTT is equiva-
lent to its reverse complement AAAT , and d(x, rc(y)) = 1 .
Therefore, we make the following definition.

Definition 3  (Canonical Hamming distance) Given
DNA k-mers x, y, their canonical Hamming distance is

Problem statement
As motivated in the introduction, our goal is to iden-
tify the strongly unique canonical k-mers in a collec-
tion of sequences. The uniqueness property is identified
by k-mer counting, for which there exist many efficient
methods and tools with different strength and weak-
nesses, such as KMC2 [8], KMC3 [9], Gerbil [10], Jel-
lyfish [11], hackgap [12], or Kaarme[13], among others.
In fact, being able to count up to 2 is sufficient for the
present purpose. The output of a k-mer counter is a set K
of distinct canonical k-mers, and a count value for each
x ∈ K  . The missing piece is to identify the weak canonical
k-mers in K in the following sense.

Definition 4  (Weak k-mer, strong k-mer) Given a set
K of distinct canonical DNA k-mers, a canonical k-mer
x ∈ K is called weak within K if there exists another
y ∈ K with H(x, y) = 1 . The other canonical k-mers are
called strong within K.

When we mark weak canonical k-mers in K and addi-
tionally have their counts, we have identified the strongly
unique canonical k-mers as those with a count of 1 that
are not weak in K. Therefore, we here focus on the fol-
lowing problem.

(1)H(x, y) := min{d(x, y), d(x, rc(y))} .

Page 4 of 16Zentgraf and Rahmann ﻿Algorithms for Molecular Biology (2025) 20:13

Problem 1  (Weak canonical k-mer identification)
Given a set K of canonical DNA k-mers, identify the sub-
set W ⊆ K of the weak canonical k-mers.

How a solution to this problem is implemented in a
concrete setting may vary with the representation of K.
In practice, the elements of K will typically be canonical
integer codes of k-mers, and we may use one more bit to
indicate the weak ones.

We point out two obvious algorithms (that are too inef-
ficient in practice) to solve the problem. Let K contain n
distinct k-mers.

1.	 Full pairwise comparison: Use the bit-parallel

method from above to test all
(

n
2

)

= n(n− 1)/2

pairs x = y whether they satisfy H(x, y) ≤ 1 , and if
yes, mark both x and y as weak.

2.	 Neighborhood generation: If K is given as a hash
table allowing efficient look-up, for each x ∈ K  , gen-
erate the canonical integer codes of the 3k Hamming-
distance-1 neighbors, and look them up in K. For
each neighbor found in K, mark both x and the dis-
covered neighbor as weak.

The first method is impractical because of its quadratic
running time. The second method has a running time
linear in n, but with a factor of 3k, and every memory
lookup is likely a cache miss. It is thus slow in practice,
but can still be useful as a baseline for comparison. In
the following section, we present more efficient practical
methods for identifying weak canonical k-mers.

Methods
We present two algorithms to identify weak k-mers
within a set K. Independently of the given form of input
(hash table based key-value store, or sorted or unsorted
list of distinct k-mers) and independently of the used
algorithm, we first create a lexicographically sorted list of
the k-mers and their reverse complements. If the original
input consists of canonical k-mers, or if the reverse com-
plements are not included, this step may double the input
size when we add the reverse complements explicitly.
This step is necessary for both algorithms to ensure that
we consider the canonical Hamming distance instead of
the (standard) Hamming distance for the original input.
Details concerning this pre-processing step are given in
Section Pre- and Post-Processing after a detailed descrip-
tion of the algorithms.

The first algorithm is based on 4-way comparisons,
similar to a multi-way mergesort. In the first round, the
sorted k-mer list is divided into 4 buckets based on the
k-mers’ first nucleotide (A, C, G, T). For each nucleotide

c, a pointer pc initially points to the start of the c-bucket.
In each step, we compare the four (or possibly less, once
entire buckets have been processed) elements pointed to
by the pc , c ∈ � , ignoring the bucket prefixes. (In the first
round, the bucket prefixes are single nucleotides, so we
compare the remaining (k − 1)-mers.) We identify the
set C∗ ⊆ � such that the pc , c ∈ C∗ , point to the mini-
mal element(s) of the examined (k − 1)-mers. If |C∗| = 1 ,
there is a unique minimal (k − 1)-mer, but if |C∗| ≥ 2 ,
we have found equal minimal (k − 1)-mers, i.e. k-mers
that differ only in their first nucleotide, and therefore a
group of weak k-mers. The pc , c ∈ C∗ , are incremented,
and the process is repeated until all buckets have been
fully processed. In the next round, each of the buckets is
subdivided into 4 sub-buckets, and the 4-way compari-
son is repeated recursively for each sub-bucket (with k
decreased by 1). Details are given in Section Recursive
4-way comparisons (FourWay).

The second algorithm does pairwise Hamming dis-
tance tests, but on small buckets. If H(x, y) = 1 , then the
one difference must be either in the first, second, third,
or fourth quarter of the sequence (rounding the bounda-
ries arbitrarily for now). Because the input contains all
reverse complements, it is sufficient to consider the third
and the fourth quarter: If x, y differ in the first (second)
quarter, then rc(x), rc(y) differ in the fourth (third) quar-
ter, respectively. If the difference is in the fourth quarter,
the first 3k/4 nucleotides are equal, and we can linearly
scan the sorted k-mer list, divide it into corresponding
buckets of equal 3k/4 first nucleotides and run a bit-
parallel pairwise Hamming test within each bucket. The
overall efficiency of this approach depends on the rela-
tion between n and 43k/4 and not having large buckets.
If k is sufficiently large, many of the buckets will con-
tain only a few elements, and the process is indeed very
fast. It remains to deal with pairs x, y that differ in one
nucleotide in their third quarter. Details are given in Sec-
tion Pairwise comparisons in small buckets (Quarter).

Recursive 4‑way comparisons (FourWay)

Basic algorithm
The algorithm FourWay works similarly to 4-way
merges. The input is a set K of canonical k-mers, which
are “unpacked” into twice as many forward and reverse
complement k-mers, which are then sorted lexicographi-
cally. This yields a sorted k-mer array A of length n.

The algorithm FourWay is recursive. It is called with
a depth parameter d ∈ {1, . . . , k − 1} and a list of start
pointers q = (qc) with c ∈ � ∪ {$} . Each invocation
FourWay(A, d, q) identifies weak k-mers in an interval
I = [qA, q$[of A, where the first (d − 1) nucleotides of
the contained k-mers are equal, and qc (for c ∈ � ) points

Page 5 of 16Zentgraf and Rahmann ﻿Algorithms for Molecular Biology (2025) 20:13 	

to the start of the sub-interval of I where the d-th nucleo-
tide is c (Fig. 1). The sentinel pointer q$ points beyond the
end of the interval I. In the initial call, d = 1 (no common
prefix, the first nucleotide is compared), qA = 0 points to
the first (smallest) element in A (with indexing starting at
zero) and q$ = n points past the end of A. The initial val-
ues of the other pointers qc , c ∈ {C,G,T} are determined
by linearly scanning the sorted array once.

First, we create working copies p = (pc) of q = (qc)
for c ∈ � . While q will stay unchanged, the pc increase
towards larger elements as the algorithm proceeds. Ini-
tially, all the pc pointers are active. When pc moves
beyond the end of its sub-interval (i.e., it reaches a qc′ for
a character c′ > c , where the sentinel is larger than any
character in � ), the pointer becomes inactive. If only a
single pointer or no pointer is active, we are done and
proceed to the recursive calls; see below.

In each step, the algorithm examines the k-mers at the
locations pointed to by the active pointers pc . We call
these the active k-mers. They jointly have the following
properties:

1.	 Their first d − 1 characters are equal (true for all
k-mers in interval I),

2.	 their d-th characters are distinct,

3.	 their suffixes of length b = k − d are arbitrary, but
examined in increasing order;

4.	 they are the smallest k-mers in I that have not yet
been but still may be identified as weak based on a
single difference at their d-th character.

The comparison is visualized in Fig. 2. We look at the
b-suffixes of the active k-mers and find the smallest
one(s). Let C∗ be the character set such that exactly
the k-mers at pc , c ∈ C∗ , have the minimal b-suffixes
among the active k-mers. If |C∗| ≥ 2 , we have identified
a group of k-mers of size |C∗| that differ only at their
d-th position; hence all of them are marked as weak. (If
|C∗| = 1 , nothing happens.) Then, all pc for c ∈ C∗ are
incremented. These steps are repeated until a single (or
no) active pc remains.

After processing interval I, if d < k , the sub-intervals
are processed recursively, so there are |�| = 4 recur-
sive calls, each with increased d ← d + 1 (and reduced
b = k − d ). The initial pointers q for each subinterval
are obtained by a linear scan through the sub-interval.
The recursive call is not performed if the length of the
subinterval is at most 1, as there is nothing to compare
then.

Fig. 1  Recursive 4-way comparison at different depths d = 1, 2, 3 , from left to right. At depth d, the first d − 1 characters of all k-mers
within the considered interval are equal, and the d-th character is compared. Let b := k − d . The (at most) four b-mer suffixes of the k-mers pointed
to by pointers pc , c ∈ � are compared, and the minimal b-mer(s) are identified among the four elements. The k-mers with equal minimal b-mers
are marked as weak if there are at least two equal minimal b-mers. The pointers of minimal b-mers are incremented (or inactivated, if their bucket
has been completely scanned). After the 4-way comparison of an interval is completed, it is repeated recursively with increased depth d + 1 on its 4
sub-intervals (only the first such recursive call for the A-subinterval is shown)

Page 6 of 16Zentgraf and Rahmann ﻿Algorithms for Molecular Biology (2025) 20:13

Implementation on 2k‑bit encoded integers
The current implementation uses a 2k-bit encoded repre-
sentation of k-mers and is restricted to k ≤ 31 , leaving at
least one bit for marking weak k-mers within the 64-bit
integer encoding.

In order to compute C∗ , and to keep track of the small-
est k-mers, a 4-bit vector v is used. Iterating over the
active k-mers only, if the b-suffix is a new minimum
(and also initially), a single bit is set in v, corresponding
to the nucleotide at position d (using A = (0001)2 = 1 ,
C = (0010)2 = 2 , G = (0100)2 = 4 , T = (1000)2 = 8 ). If
another b-suffix is equal to the current minimum, the bit
corresponding to the character at position d is addition-
ally set in v (using bitwise or).

We test whether |C∗| ≥ 2 by checking if the popula-
tion count of v is at least 2, which is done by testing if
v& (v − 1) �= 0.

Optimizations and parallelization
In principle, the depth d is recursively increased up to k,
so each character in the k-mer is checked for being the
single different one. However, since the array contains
both all forward and all reverse-complement k-mers, we
identify each pair {x, y} with a Hamming distance of 1
twice, both as {x, y} and as {rc(x), rc(y)} . In one case, the
difference is in the first half; in the other case, the differ-
ence is in the second half of the k-mers. Therefore, we
could stop the recursion after checking the first half of
the k-mers, at depth ⌈k/2⌉.

However, there are advantages in processing only the
second half of the k-mers instead of the first half, i.e.
start at depth d = ⌊k/2⌋ and do recursive steps until

the depth k is reached. With an increasing depth d, the
number of elements in an interval decreases until it is
reduced to only one or zero element(s). Even before we
reach the point at which only one element is left, the
book-keeping for the recursion creates more work than
the actual comparison of the elements. Therefore, if the
interval length drops below a certain value (we evaluate
good thresholds in Section ’’Interval length thresholds
for FourWay+Pairwise’’), we switch to the direct bit-
parallel pairwise comparison. We call this optimization
the FourWay+Pairwise method. Since we process the
second half of the k-mers, each interval has a fixed con-
stant prefix of length at least ⌊k/2⌋ , yielding already rela-
tively short intervals in the first step. We then typically
switch to the pairwise comparison after just a few recur-
sions. In practice, this results in a noticeable speedup. To
partition the sorted k-mer set into blocks with the same
length-⌊k/2⌋ prefix, we do a single linear scan over the
whole set of k-mers and identify block boundaries where
any of the first ⌊k/2⌋ characters change.

For parallelizing the algorithm, we define a prefix
length g ≤ ⌊k/2⌋ to divide the k-mers into 4g distinct
chunks based on their first g characters. By an initial lin-
ear scan, we identify the start and end of each chunk and
divide them among parallel threads, as each such interval
can be processed independently. Inside each chunk, the
k-mers are processed starting at depth d = ⌊k/2⌋ . This
allows for almost trivial parallelization among threads.
Any number of threads t can be combined with any num-
ber of chunks 4g ≥ t . Larger values of g lead to smaller
chunks and better load balancing over the threads until g
becomes so large that the scheduling overhead cancels

Fig. 2  Weak k-mer identification by 4-way comparison at depth d = 6 . The first d − 1 = 5 characters are identical. Pointers pc , c ∈ {A,C,G,T} ,
point at k-mers whose d-th character is c. Considering the b := (k − d)-suffixes, we identify the smallest suffix among the pointed-to k-mers.
Left panel: The smallest suffix is TATAA​ at pC , as indicated by the bit vector (0010). As a single b-suffix is minimal, no weak k-mers are identified,
and pC is increased. Middle panel: The smallest b-suffix is TATCA​ at pA and pG . Therefore, the two k-mers pointed to by pA and pG are identical
except for their d-th characters, and we have found a weak pair. Both pA and pG are incremented. Right panel: The smallest b-suffix is TATCG​ at pA
only. No weak k-mers are identified, and pA is incremented

Page 7 of 16Zentgraf and Rahmann ﻿Algorithms for Molecular Biology (2025) 20:13 	

the advantages of the fine-granular jobs. Benchmarks
concerning the effect of the number of threads and the
choice of g can be found in Section Parallelization bench-
marks after the overall algorithm benchmarks (Sec-
tion Benchmarks on the human genome–Benchmarks on
artificial data with extremal properties) and benchmarks
about the threshold for switching to pairwise comparison
(Section 4.3).

Running time analysis

Theorem 1

(Time complexity of FourWay) The running time of basic
FourWay is O(n k2) , where n is the number of k-mers
in the sorted input array A, assuming constant alphabet
size. If k-mers are integer-encoded, which is possible for
k ∈ O(log n) , the time reduces to O(nk).

Proof
The initial call is FourWay(A, d, q) with the full array
of length |A| = n , depth d = 1 and initial start pointers
q = (qc)c∈� . It performs a number of steps that is O(n)
because in each step, at least one of the |�| = O(1) point-
ers pc is incremented. In each step, the smallest of the
|�| length-b = k − d < k suffixes are found, so each step
takes O(k) time, which reduces to O(1) if the suffix is rep-
resented as a machine word sized integer. Then, we recurse
into |�| subproblems FourWay(Ac, d + 1, qc) for c ∈ � of
total size

∑

c |Ac| = n . If T(n, k) denotes the total time, we
have

which solves to T (n, k) = O(nk2) . Assuming constant-
time comparisons, we obtain

which solves to T (n, k) = O(nk) . 	� �

Overall, the FourWay and FourWay+Pairwise algo-
rithms mainly perform (4-way) linear scans of intervals
of the array, and therefore have excellent cache local-
ity. Hardware prefetching takes care of moving required
k-mers into the CPU caches before they are needed for
comparison, so there is very little memory latency and
high memory throughput for these algorithms by design.

T (n, k) = O(nk)+
∑

c∈�

T (nc, k − 1) with
∑

c∈�

nc = n ,

T (n, 1) = O(n) ,

T (n, k) = O(n)+
∑

c∈�

T (nc, k − 1) with
∑

c∈�

nc = n ,

T (n, 1) = O(n) ,

Pairwise comparisons in small buckets (Quarter)

Basic algorithm
With the Quarter algorithm, we reduce the number of
pairs for which we calculate the Hamming distance. If
two canonical k-mers x = y have a canonical Hamming
distance of H(x, y) = 1 , then at least one of the four pairs
from {(x, y), (x, rc(y)), (rc(x), y), (rc(x), rc(y))} have their
single difference in the third quarter s1 or last quarter
s2 of their sequences; in the case of odd k, the middle
position m must be included in the third quarter s1 (see
Fig. 3).

If the difference is in the last quarter s2 , then pairwise
comparisons can be restricted to within buckets that
share a common ℓ := ⌊k/2⌋-prefix and a common s1 sec-
tion (for an overall shared 3k/4-prefix of the k-mer). For
example, for k = 25 = (6+ 6+ 7+ 6) , we partition the
sorted k-mer array into intervals that share the same
(6+ 6+ 7) = 19-mers. As already many 19-mers are
unique in a mammalian genome, the 25-mer intervals are
often small or even contain just a single 25-mer, requiring
no further comparisons at all.

If the difference is in the third quarter s1 , then pairwise
comparisons can be restricted to sets of k-mers that share
both their ℓ-prefix and the sequence in the last quarter s2 .
These sets may be conveniently constructed by local
re-sorting within blocks that share a common ℓ-pre-
fix: Swap the nucleotides belonging to sections s1 with
those in s2 and re-sort locally within the ℓ-block (Fig. 4);
then apply the same interval partitioning as above. In
the 25-mer example, we would then be using common
(6+ 6+ 6) = 18-mers.

Implementation and parallelization
To keep track of which k-mers are marked as weak, we
use one of the 64 bits of the k-mers. This limits the imple-
mentation to k ≤ 31 . For the Quarter algorithm, we use
the least significant bit for marking weak k-mers. In the
sorting step after swapping s1 and s2 it is not necessary to
special case the bit. Since it is the least significant bit, the
k-mers are sorted correctly.

Fig. 3  All k-mers are split into blocks based on the ℓ := ⌊k/2⌋

-prefix and further separated into sections based on third quarter s1
and last quarter s2 . For odd k, the middle position m must be
included in the third quarter s1 . We either have |s1| = |s2| or take care
that |s1| = |ss| + 1 , making the third quarter the longer one if their
lengths differ by 1. For example, 25 = 12+ 7+ 6 with k = 25 , ℓ = 12 ,
|s1| = 7 and |s2| = 6

Page 8 of 16Zentgraf and Rahmann ﻿Algorithms for Molecular Biology (2025) 20:13

As for FourWay and FourWay+Pairwise, the Quar-
ter algorithm can also be easily parallelized over 4g
chunks, where a chunk is defined as the group of k-mers
that start with a common prefix of length g ≤ ⌊k/2⌋.

Pre‑ and post‑processing
Optionally chunked input
As presented here, the algorithms start with an already
sorted k-mer set K that contains both forward and
reverse-complemented k-mers. In practice, one often has
an unsorted collection of canonical k-mers available, e.g.,
from a key-value store such as a hash table or file on disk.

However, it may take considerable time and additional
memory to convert the available representation into the
required input of the algorithms presented here. For
example, the k-mer counter hackgap can represent the
roughly 2.39 billion distinct human canonical 25-mers
and counts up to 255 in less than 12 GB of memory, using
bit packing and quotienting [12]. However, expanding
these into twice as many (4.78 billion) 64-bit integers
takes an additional 38 GB of memory (of unpacked data)
for identifying the weak 25-mers.

On smaller-memory systems, the input data can be cre-
ated and processed in smaller chunks (at the expense of
speed): Select a small number s ≤ ⌊k/2⌋ of initial nucle-
otides; often s = 1 or s = 2 is sufficient in practice. Split
up the input set K into 4s chunks, Kj , j = 0, . . . , 4s − 1 ,
where chunk Kj is defined as the sorted subset of K that
has an integer-encoded length-s prefix with value j (i.e.,
enc(x[: s]) = j ). Each chunk is generated by linearly scan-
ning over the existing representation and extracting only
k-mers and reverse complements that start with the cor-
rect prefix; this is repeated for each of the 4s chunks. The
default case (everything is one big chunk) corresponds to
s = 0 . All presented algorithms can be run on each chunk
sequentially (and then parallelized based on sub-chunks
with more common initial characters).

Post‑processing and result interpretation
The presented algorithms only identify one pair with
canonical Hamming distance 1, say x = y , with their dif-
ference in the second half of the sequences, but not the
other pair, rc(x) = rc(y) , with their difference in the first

half of the sequences. It is this property that gives us
chunks and parallelization essentially for free.

However, this means that post-processing is required.
This is typically required anyway, as the weak k-mers
must be annotated in the original (canonical) represen-
tation (say, the hash table). This involves a linear scan of
the annotated sorted set K and a look-up of the canoni-
cal form in the original representation. In the following
benchmarks, times for pre- and post-processing are not
considered, since they are the same for all approaches.

Benchmarking results
We evaluate FourWay, FourWay+Pairwise and
Quarter on real genomic data and on artificial data with
extremal properties. We report wall clock times (“wall
times”; real number of seconds passed for weak marking).
The benchmarking equipment consists of a workstation
with AMD Ryzen 9 5950X 16-core processor with 128
GB of main memory.

Our implementation is written in just-in-time-com-
piled Python 3.11 using typed numpy arrays [14] and
the numba compiler [15], which achieves execution
speeds comparable to those of C/C++ implementations.
Code is available at https://​gitlab.​com/​rahma​nnlab/​
strong-​k-​mers.

Benchmarks on the human genome
We compare the running times of the discussed algo-
rithms on the human telomere-to-telomere (t2t) refer-
ence genome [16] with roughly 3.1 billion base pairs and
2.5 billion distinct canonical 31-mers, expanded and
encoded into approximately 5 billion 64-bit integers,
stored in a 40 GB file on disk. Our comparison includes
several different values of k for the k-mer size and differ-
ent degrees of parallelization with varying numbers of
threads.

For benchmarking purposes, we pre-compute the
required input array from original genome DNA
sequences and read the pre-computed sorted numpy
array from disk. This array is pre-computed as follows:
We compute the set of all canonical k-mers by execut-
ing the k-mer counter hackgap [12]. This results in an in-
memory hash table with all canonical k-mers (encoded as
2k-bit integers) and their counts. The canonical k-mers

Fig. 4  After checking if the k-mers differ in a single position in the last quarter s2 , existence of a single difference in the third quarter s1 has to be
checked. For this, the nucleotides of s1 and s2 are swapped. Then, k-mers are locally re-sorted (within buckets of common ℓ = ⌊k/2⌋-prefixes),
and the algorithm for the last quarter is applied again

https://gitlab.com/rahmannlab/strong-k-mers
https://gitlab.com/rahmannlab/strong-k-mers

Page 9 of 16Zentgraf and Rahmann ﻿Algorithms for Molecular Biology (2025) 20:13 	

are expanded to 64-bit integer encodings of the k-mers
and their reverse complements, and stored in a large
uint64 numpy array, which is then sorted and writ-
ten to disk. The time for this preprocessing step is not
included in the measurements reported here.

We compare the running times of our implementa-
tions of algorithms FourWay, FourWay+Pairwise and
Quarter (Fig. 5 left). As a baseline, the neighborhood
generation method (looking up all 3k canonical neighbor
k-mers, or less until the first neighbor is found, for each
canonical k-mer in the input set; skipping k-mers already
marked as weak) for k = 25 using 8 threads needs 3937
s (approximately 65 min), using the multi-way Cuckoo
hash table of hackgap [12].

For k ∈ {13, . . . , 31} , each algorithm was executed three
times; individual wall times (points) and their means
(lines) are shown in Fig. 5 (left panel).

The wall time of FourWay correlates with the total
number of distinct k-mers. For k ≤ 22 , the running time
increases up to approximately 140 s. The running time
for k ≥ 22 remains nearly constant at 140 s.

The optimization of FourWay+Pairwise, stopping
the recursion early if the interval to be examined has at
most 24 elements (276 cache-friendly pairwise compari-
sons), yields a significant reduction of wall time, espe-
cially for large k. Using 8 threads, the longest wall time is
40 s for 19 ≤ k ≤ 21 . For longer k-mers, the running time
decreases down to below 20 s for k = 31.

The wall time of Quarter increases with the number
of distinct k-mers for k ≤ 17 . Interestingly, the algorithm
has its highest running time for k = 17 with approxi-
mately 110 s, even though the number of distinct k-mers
increases further for larger k, while the running time

decreases. We here start to see the benefit of longer and
more specific 3k/4 ( ≥ 13-mer) prefixes that for increasing
k yield smaller and smaller buckets for the quadratic-time
comparison. If k is increased further, this effect is even
more noticeable, as the buckets become smaller, while
the total number of k-mers stays approximately constant.
For k ≥ 24 , the wall time is nearly constant at approxi-
mately 30 s.

Thus, for k ≥ 24 , Quarter is approximately 4.5 times
faster than the purely recursive FourWay approach.
However, the optimized FourWay+Pairwise approach,
where the recursion stops early and intervals of length at
most 24 are examined with the bit-parallel pairwise Ham-
ming distance computation, is even faster than Quarter
for k ≥ 28 and for k ≤ 19 and comparable to Quarter
in-between ( 20 ≤ k ≤ 27).

To compare these times fairly to the baseline neigh-
borhood generation method, one should add 300 s of
pre- and post-processing time to the times shown in
Fig. 5. Nevertheless, this yields 330 s for Quarter and
FourWay+Pairwise against almost 4000 s for neigh-
borhood generation.

Benchmarks on artificial data with extremal properties
We compare the wall times for Quarter and
FourWay+Pairwise on pairs of artificial datasets for
different lengths k. In one dataset of each pair, all k-mers
are weak; in the other dataset, all k-mers are strong.
Both datasets of each pair have a size of 2 billion ( 2 · 109 )
k-mers. The datasets are generated in the form of k-mers
encoded as 64-bit integers, as for the human genome
data.

Fig. 5  Comparison of the wall times of FourWay, FourWay+Pairwise and Quarter. Left: Wall times for different values of k using 8 threads on the t2t
human reference genome with varying numbers of k-mers depending on k (cf. Fig. 8). Shown is the mean (line) over 3 repeated runs (dots).
For k = 25 and 8 threads, the naive neighborhood generation approach needs 3937 s ( ≈ 65 min), while all presented algorithms need less than 140
s, the best ones around 30 s (add 300 s for pre- and post-processing). Right: Wall times for different values of k using 8 threads on two artificial
datasets with 2 billion k-mers each, in which all k-mers are either strong (solid lines) or weak (dashed lines)

Page 10 of 16Zentgraf and Rahmann ﻿Algorithms for Molecular Biology (2025) 20:13

To generate a dataset containing only weak k-mers,
we first generate a set of random integers between
0 and 4k , which make up a quarter of the size of the
resulting set. In the next step, we add a Hamming-dis-
tance-1 neighbor for each element: We pick one nucle-
otide and replace it with its complement. After this, we
add the reverse complements of all k-mers and sort the
array. In the last step, we iterate over the sorted array
and ensure that all elements are unique. Duplicates are
unlikely, given the random generation, and if they hap-
pen, we ensure the desired target size even after their
removal by initially generating a slightly larger set.

To obtain a dataset that contains only strong k-mers,
we first generate a slightly larger set than the required
size, add the reverse complement of all elements, and
remove all duplicates via sorting. In the next step, we
run the FourWay+Pairwise algorithm to mark weak
k-mers and apply post-processing to ensure that the
weak k-mers are marked as weak in both orientations.
We then remove all weak k-mers; the remaining array is
cut to the desired size and sorted.

The wall times for Quarter and
FourWay+Pairwise on both the only weak and the
only strong dataset are shown in Fig. 5 (right panel)
for different values of k, using 8 threads and an inter-
val length threshold of 24 for switching to Pairwise in
FourWay+Pairwise.

Perhaps surprisingly, the wall time does not depend
strongly on the type of dataset, with only a few seconds
difference. We would have expected a longer running
time for the weak datasets in comparison to the strong
datasets, as marking weak k-mers requires writing to
memory, whereas this does not happen for the strong
datasets. This expected difference can be observed to
a small degree for the Quarter algorithm, but for the
FourWay+Pairwise algorithm, the relation is reversed,
and the weak dataset is processed slightly faster. Overall,
the differences are small between the datasets, and may
result from different effects, such as the different lengths
of the intervals with pairwise comparisons.

The Quarter algorithm’s speed on the artificial data
is slightly faster than, but similar to its performance on
the human genome data, and essentially constant for all
k ≥ 21 . FourWay+Pairwise, however, becomes faster
with increasing k, and in a more pronounced way than
for the human genome data. This can be explained with
the structure of the datasets, with the k-mers being ran-
domly chosen: For larger k, we essentially examine small
groups of 2 k-mers (weak dataset) or of a single k-mer
(strong dataset). The number of necessary recursion
steps to arrive at such a small cluster drops with k. We
note that the performance on genome data is more realis-
tic than the one on these artificial datasets.

Interval length thresholds for FourWay+Pairwise

For the FourWay+Pairwise algorithm, an important
parameter is the threshold at which we switch from the
recursive comparison to the pairwise comparison. In
Fig. 6, we evaluate the running time (wall time using 8
threads) of the FourWay+Pairwise algorithm on the
t2t-reference for k ∈ {23, 27, 31} using different thresh-
olds. If the threshold is set to 1, we do not use the pair-
wise comparison at all and continue the recursive
approach until we obtain intervals with a single element
or empty intervals. In this case, we need between 120
and 140 s, depending on k. Even a small increase of the
threshold above 1 reduces the running time drastically:
A threshold of 10 more than halves the running time. The
optimal threshold appears to be between 20 and 40 for
k = 23 , 30 and 50 for k = 27 , and 30 and 70 for k = 31 .
Overall, a threshold of roughly 30 seems to be best for a
wide range of k, and the exact choice is less important as
long as the threshold is not chosen too small.

Parallelization benchmarks
We examine the effect of parallelization for an increas-
ing number of threads (Fig. 7 left), using the t2t refer-
ence genome with k = 25 and 1, 2, 4, 8 and 16 threads.
We compute the speedup for T threads as usual, divid-
ing the time used by a single thread by the time used
by T threads, which ideally would give a ratio of T.
We see that for two threads, the speedup is nearly
the desired factor of 2 for all algorithms. For T = 4 ,
the speedup for Fourway and Quarter is closer to
3 than to 4, but for FourWay+Pairwise, it reaches
almost 4. For 8 threads, the result is similar: a speedup
of roughly 6 emerges for Fourway and Quarter,
but almost 7 for FourWay+Pairwise. The effect is
even more pronounced for 16 threads, where Quar-
ter achieves a speedup of 8, FourWay a speedup of

Fig. 6  Wall times (using 8 threads) of the FourWay+Pairwise algorithm
on the t2t human reference genome with different k-mers sizes
and thresholds at which we switch to the pairwise comparison

Page 11 of 16Zentgraf and Rahmann ﻿Algorithms for Molecular Biology (2025) 20:13 	

nearly 9, but FourWay+Pairwise yields a speedup
of almost 12. Overall, the parallelization scales quite
well for all algorithms, with a distinct advantage for
FourWay+Pairwise.

We also evaluated the effect of different prefix
lengths g to define chunks that are submitted as inde-
pendent jobs. For a given value of g ≥ 0 , there are 4g
chunks; each chunk contains k-mers that start with the
same length-g prefix (see algorithm descriptions). With
g = 0 , there is no parallelization. For this benchmark,
we used the human t2t reference genome with k = 25
and 1, 4, 8 and 16 threads. Figure 7 (right) shows the
resulting wall times. Once we can use all 16 threads
( g ≥ 2 ), a further increase of g has a small but ben-
eficial effect on the running time because of the more
fine-granular load balancing of more chunks (4096 for
g = 6 or 16 384 for g = 7 ) between the threads. For fur-
ther increasing values of g (even from g = 6 to g = 7 ),
no further benefit is obtained, and the administrative
costs of managing the jobs grow exponentially. It seems
advisable to use g = 5 , or g = 6 on large datasets with
16 threads.

Uniqueness within the human genome
We apply our algorithms to the human telomere-to-tel-
omere reference genome [16] and compute the fraction of
weakly unique, strongly unique and non-unique k-mers
in the whole genome for different values of k. We then
check whether the distribution of the different 25-mer
types is different in regions with genes and in exons. We
finally examine the local distribution of the three unique-
ness categories across all chromosomes for 25-mers.

Whole genome statistics
As shown in Fig. 8, the total number of distinct k-mers
in the t2t reference genome increases with increasing
k. Since the t2t reference genome contains ≈ 3.1 billion
nucleotides, for k ≤ 15 , most of the approximately 4k/2
canonical k-mers are present in the DNA sequence. Con-
sequently, almost all of these k-mers are weakly unique
or occur multiple times. For k ≥ 18 , the k-mers get
more unique and specific, and the increase of distinct
k-mers in the sequence flattens out for k ≥ 21 . At the
same time, the number of strong k-mers increases. For
k = 18 , only approximately 4% of the k-mers are strong.
For k = 23 , already more than 80% of the k-mers are
strong. For k ≥ 24 , the number of strong k-mers gradu-
ally approaches 90% of the distinct k-mers.

Uniqueness in genes and exons
In Fig. 9, we examine how 25-mers are classified in inter-
genic regions, in gene regions, and specifically in exons.
A k-mer is considered to be part of a gene or an exon, if
it is completely contained in the corresponding interval
(starts and ends in the gene or exon, respectively). The
intervals are extracted from the annotation file of the t2t
reference genome [16]. For the genes, we have limited the
selection to protein coding genes by extracting only genes
with the attribute protein_coding. The genes are
the complete intervals annotated as genes, including the
coding exons, but also the untranslated 5’ and 3’ regions
and (sometimes very long) introns. The intergenic region
is the remaining part of the genome after excluding the
genes.

Figure 9 shows that most of the t2t-reference-genome
consists of intergenic regions. In these regions, we have

Fig. 7  Comparison of the wall time of FourWay, FourWay+Pairwise and Quarter with different parallelization strategies. Left: Speedup as a function
of the number of threads used for parallelization, for fixed k = 25 . Right: Wall times for different prefix lengths g (x-axis) and number of threads
(color). Each choice of g ≤ ⌊k/2⌋ divides the k-mers into 4g chunks that can be processed independently in parallel. With g = 0 , the whole array
is processed as one chunk and only one thread is used. If 4g is less than the number of threads, only 4g threads can be used

Page 12 of 16Zentgraf and Rahmann ﻿Algorithms for Molecular Biology (2025) 20:13

the highest proportion of non-unique k-mers. Within the
genes, the fraction of strongly unique k-mers is at about
75%. When focusing on protein coding exons, the frac-
tion of strongly unique k-mers is > 80% . This enables
applications with a focus on exons to be based on strongly
unique k-mers. For example, the typical (protein-coding)
gene should be uniquely identifiable by a large number of
strongly unique 25-mers.

Fine‑grained uniqueness distribution
We have taken a closer look at which positions strongly
unique 25-mers are present in the human genome. In
Fig. 10, we visualize the distribution of the different
types of 25-mers in the reference genome, excluding the
Y chromosome and the mitochondrial DNA, at a resolu-
tion of 100 000 basepair blocks.

As expected, the centromeres of all chromosomes
mainly consist of non-unique k-mers. The strongly
unique k-mers (green) are spread over all chromosomes.

Weakly unique k-mers are rare in general but can also be
found in most parts of the chromosomes, but are concen-
trated around the centromeres and in the X chromosome.

Application perspectives
Among the many possibilities, we discuss two possible
applications of strongly unique k-mers that are enabled
by the new efficient algorithms to identify weak k-mers
presented in Section Methods: sequencing error correc-
tion and xenograft sorting.

Sequencing error correction
Different types of errors can occur during DNA sequenc-
ing. While insertions and deletions are rather rare,
substitutions are the most common, at least for typi-
cal high-throughput sequencing technologies [17, 18].
Several approaches to correct reads that may contain
sequencing errors are based on k-mer frequencies in the
sequenced dataset. If a read includes a sequencing error,

Fig. 8  Left: Absolute number of strongly unique, weakly unique and non-unique (multi) k-mers in the t2t reference genome for different values
of k (stacked bar chart). The total number of k-mers rapidly increases for k between 13 and 19. For k ≥ 21 , there are only a few more new k-mers
with increasing k. Right: Percentage of strongly unique k-mers among the distinct k-mers. For k > 25 , almost 90% of the distinct k-mers are strong

Fig. 9  Comparison of 25-mers in intergenic regions, coding genes and exons. A 25-mer is part of a gene/exon if it is completely contained
in the corresponding annotated interval. Top plot: relative fractions. Bottom plot: absolute number of positions

Page 13 of 16Zentgraf and Rahmann ﻿Algorithms for Molecular Biology (2025) 20:13 	

all of the k-mers that overlap the erroneous position are
changed. As these errors are rare, the same error typically
does not happen twice or at least not very often; this is
a common assumption. Therefore, sequencing errors are
expected to generate a number of unique or rare k-mers
in the sequenced dataset that have a Hamming distance
of 1 to a much more frequent (actually present) k-mer in
the dataset.

Error correction methods may exploit this as follows:
For each unique or rare k-mer x, one may ask whether
there is a single frequent Hamming-distance-1 neigh-
bor y in the dataset. If several such rare k-mers overlap
the same basepair in a read and agree on the same base-
pair in the respective frequent neighboring k-mers, the
read can be reliably corrected at this position. Our algo-
rithms would need to be modified to report the pairs
(x, y) if one wanted to use them for error correction, but
they are good candidates to speed up existing error cor-
rection tools [19, 20

However, we were wondering if the usual assump-
tion that most rare k-mers are Hamming neighbors of
frequent k-mers is actually true, as this is an assump-
tion of many error correction methods, and has, to our
knowledge, never been systematically examined. One
would expect that almost all of the rare k-mers (especially
unique k-mers) in a whole genome sequencing (WGS)
dataset are weak, and that there are few strongly unique
k-mers.

We therefore applied the FourWay+Pairwise method
to the 25-mers of two WGS datasets. The first one is from
an Ossabaw pig (SRA accession SRR19175873) with
a high mean coverage of 80× . The second one are the
NIST_Stanford_Illumina_6kb_matepair reads
of the son of the GIAB Ashkenazi Trio (HG002). For each
dataset, the 25-mer frequency histogram (orange y-axis;
log scale) and the fraction of strong 25-mers (green
y-axis; linear scale) are overlaid in Fig. 11 for every k-mer
occurrence count up to 200.

Fig. 10  Distribution of strongly unique, weakly unique and non-unique k-mers in the t2t reference genome. We split the genome into blocks
of 100 000 base pairs. For each block, we computed the relative fraction of strongly unique (green), weakly unique (blue) and non-unique (orange)
k-mers that start in it. Each block is represented by a small vertical stroke; the relative fractions are encoded by the transparency from 0.0 (invisible)
to 1.0 (solid color). Regions with repetitive DNA become visible, in particular the centromeres, but also other repeats

Page 14 of 16Zentgraf and Rahmann ﻿Algorithms for Molecular Biology (2025) 20:13

In the high-coverage dataset (left, 80× coverage), the
fraction of strong 25-mers is always below 10%, except for
rarely occurring 25-mers, and especially unique 25-mers,
where is rises up to 37%. This is an unexpectedly high
fraction if we assume that the unique and rare 25-mers
are erroneous versions of the frequent ones. Nonethe-
less, 63% of the unique 25-mers are weakly unique and
can potentially be used for error correction. It is unclear
where the strong rare 25-mers originate from: Are they
modified versions of more frequent 25-mers derived by
an insertion or deletion, which we do not detect, or are
they modified by more than a single substitution? Do
they originate from non-human DNA (contamination),
or from a different unknown source?

For the standard-coverage dataset (Fig. 11 right,
25× ), the picture is different, and a substantial frac-
tion (between 40% to 50%) of frequent k-mers with
their occurrence frequency around the main peak of 25
is strong, i.e., without a Hamming-distance-1 neighbor
in the dataset. Interestingly, of the very rare and unique
k-mers, also a large fraction of close to 40% is strong,
which is a similar fraction as in the high-coverage dataset.

These results suggest that a close investigation of the k-
mer dynamics in WGS datasets may be warranted, espe-
cially concerning commonly made assumptions for error
correction.

Xenograft sorting
The concept of weakly unique and strongly unique k-mers
can be adjusted to different applications by slightly modi-
fying the definition of unique. When indexing a reference
genome, as exemplified in our results, a k-mer is naturally
unique if it occurs at a single position on a single chro-
mosome, considering both strands of all chromosomes.

However, in a transcript quantification task, it should
be considered as unique if it occurs in a single transcript,

but it may occur several times in that transcript. In a
metagenomics species identification or quantification
task, it should be considered as unique if it occurs in a
single species (possibly several times).

As a concrete example, we now have a closer look at
the xenograft sorting problem briefly mentioned in the
Introduction. The aim is to classify a set of reads accord-
ing to their species of origin (e.g., human tumor or mouse
tissue). The alignment-free xenograft sorting tool xeng-
sort [3] initially builds an index of all canonical 25-mers
in the human and mouse reference genome and associ-
ates species information (only human, only mouse, both)
with each canonical 25-mer. In this application, a k-mer is
unique if it is only part of one species (human or mouse,
but possibly occurs several times in the same species).
A k-mer is marked as weakly unique if it is unique for
human [mouse] but has a Hamming-distance-1 neighbor
that occurs in mouse [human], or in both species.

For marking weak k-mers in this application, our algo-
rithms have to be modified to take the associated species
information (“values”) into account: Even if a neighbor-
ing k-mer x′ exists for some k-mer x in the k-mer set of
human and mouse, the pair x, x′ would only be consid-
ered as weak if they were part of different species (or one
of them part of both species).

The published xengsort application contains such a
method, which is run on the union of the genomes, con-
taining 4 496 607 845 ≈ 4.5 billion 25-mers. As reported
in the original publication [3], this takes 158 wall-time
minutes overall, even though it is at least partially par-
allelized with 8 threads. This reported time on a 64 GB
machine does include severaled chunk passes through
the array and pre- and post-processing.

We have replaced this method in xengsort by
Quarter and run it under the same circumstances on the
same machine, with the same number of passes, the same

Fig. 11  25-mer frequency histogram (orange right y-axis; log-scale) and fraction of strong 25-mers (green left y-axis; linear scale) for two datasets.
Left panel: An Ossabaw pig with a high average coverage of 80× . A high number of the distinct 25-mers in this sample is unique. Of these, 37% are
strongly unique and 63% are weakly unique. Right panel: The son of the GIAB Ashkenazi Trio (HG002). The average coverage is 25× . Again, a high
number of the distinct k-mers in this sample is unique. Of these, 39% are strongly unique and 61% are weakly unique

Page 15 of 16Zentgraf and Rahmann ﻿Algorithms for Molecular Biology (2025) 20:13 	

number of threads, and with the same pre- and post-pro-
cessing. The total time using the Quarter algorithm is
6.1 min instead of the original 158 min, a speedup fac-
tor of 25.9. This illustrates the potential of our new algo-
rithms for real-world applications in DNA sequence
analysis.

Discussion and conclusion
We have introduced the weak (canonical) k-mer iden-
tification problem, which does not seem to have been
considered at a large scale elsewhere, even though the
identification of strongly unique k-mers is useful in many
different contexts in alignment-free sequence analysis.
We have developed and evaluated engineered algorithms
to identify weak k-mers that require a sorted array of
k-mers and their reverse complements as input. The best
method FourWay+Pairwise needs at most 40 s to iden-
tify weak k-mers for any k = 13, . . . , 31 on the human
t2t reference genome, using 8 threads. All methods need
less than 2.5 min for each of these tasks. These times are
much faster than for querying all 3k canonical neighbors
for each canonical k-mer in a fast hash table (65 min for
25-mers on the same dataset), even when adding the ini-
tial sorting time for the k-mer array (below 300 s).

The FourWay recursive comparison based algorithm
benefits from its cache-friendly design and from hard-
ware prefetching, but suffers from book-keeping over-
head once the examined intervals become small. The
improved FourWay+Pairwise method that switches
to pairwise Hamming distance tests on small intervals is
always faster, for any reasonable interval length threshold
to switch to pairwise comparisons. The Quarter group-
ing algorithm shows comparably good performance to
FourWay+Pairwise for k ≥ 21 , but suffers from large
buckets for smaller k. Overall, FourWay+Pairwise is
the method of choice with overall best performance and
excellent parallelization performance.

The new algorithms have practical relevance in applica-
tions, as shown by the the xenograft sorting example in
Section Xenograft sorting. Moreover, our results on the
classification of rare and frequent k-mers in WGS data-
sets suggest further research to better understand poten-
tial improvements for error correction methods on raw
DNA sequence data.

From a practical point of view, it is of high interest to
develop methods that do not require a sorted expanded
array of k-mers as input but that instead work directly on
a compact hash table representation of the input set, sim-
ilar to neighborhood generation, but with performance
comparable to the methods presented here.

The algorithms in this work have been engineered for a
Hamming distance of 1. It would be interesting to extend
the problem for Hamming distances ≥ 2 , as this would

increase the tolerance against a combination of sequenc-
ing errors and SNPs in a small interval. However, one
would most likely need a different approach, perhaps a
transformation to eulertigs [21] and branching on their
FM index, or an approach based on search schemes [22].

Acknowledgements
We thank Karl Bringmann for discussions about the FourWay algorithm. We
also thank the four reviewers of the WABI conference version of this manu-
script for their suggestions to improve its presentation.

Author contributions
Both J.Z. and S.R. wrote and revised the manuscript. J.Z. prepared the figures
and tables. S.R. provided an initial concept of the methods and suggested
optimizations. J.Z. contributed to algorithm development and performed the
implementation and optimizations. Both authors reviewed and approved the
final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Data availability
No datasets were generated or analysed during the current study.

Code Availability
See https://​gitlab.​com/​rahma​nnlab/​strong-​k-​mers.

Declarations

Competing interests
The authors declare no competing interests.

Received: 6 February 2025 Accepted: 4 June 2025

References
	1.	 Rizzi R, Beretta S, Patterson M, Pirola Y, Previtali M, Vedova GD, Boniz-

zoni P. Overlap graphs and de Bruijn graphs: data structures for de novo
genome assembly in the big data era. Quant Biol. 2019;7(4):278–92.
https://​doi.​org/​10.​1007/​S40484-​019-​0181-X.

	2.	 Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-
seq quantification. Nat Biotechnol. 2016;34(5):525–7.

	3.	 Zentgraf J, Rahmann S. Fast lightweight accurate xenograft sort-
ing. Algorithms Mol Biol. 2021;16(1):2. https://​doi.​org/​10.​1186/​
S13015-​021-​00181-W.

	4.	 Breitwieser FP, Baker DN, Salzberg SL. KrakenUniq: confident and fast
metagenomics classification using unique k-mer counts. Genome Biol.
2018;19(1):198.

	5.	 Hirsch P, Molano L-AG, Engel A, Zentgraf J, Rahmann S, Hannig M, Müller
R, Kern F, Keller A, Schmartz GP. Mibianto: ultra-efficient online micro-
biome analysis through k-mer based metagenomics. Nucl Acids Res.
2024;10:364.

	6.	 Brown C, Irber L. sourmash: a library for minhash sketching of DNA. J
Open Source Softw. 2016;1(5):27. https://​doi.​org/​10.​21105/​joss.​00027.

	7.	 Zentgraf J, Rahmann S. Swiftly identifying strongly unique k-mers. In:
Pissis, S.P., Sung, W. (eds.) 24th International Workshop on Algorithms
in Bioinformatics, WABI 2024, September 2-4, 2024, Royal Holloway,
London, United Kingdom. LIPIcs, vol. 312, pp. 15–11515. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, Germany 2024. https://​doi.​org/​10.​4230/​
LIPICS.​WABI.​2024.​15

	8.	 Deorowicz S, Kokot M, Grabowski S, Debudaj-Grabysz A. KMC 2: fast and
resource-frugal k-mer counting. Bioinformatics. 2015;31(10):1569–76.

	9.	 Kokot M, Dlugosz M, Deorowicz S. KMC 3: counting and manipulating k
-mer statistics. Bioinformatics. 2017;33(17):2759–61.

https://gitlab.com/rahmannlab/strong-k-mers
https://doi.org/10.1007/S40484-019-0181-X
https://doi.org/10.1186/S13015-021-00181-W
https://doi.org/10.1186/S13015-021-00181-W
https://doi.org/10.21105/joss.00027
https://doi.org/10.4230/LIPICS.WABI.2024.15
https://doi.org/10.4230/LIPICS.WABI.2024.15

Page 16 of 16Zentgraf and Rahmann ﻿Algorithms for Molecular Biology (2025) 20:13

	10.	 Erbert M, Rechner S, Müller-Hannemann M. Gerbil: a fast and memory-
efficient k-mer counter with GPU-support. Algorithms Mol Biol. 2017;12:9.

	11.	 Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics. 2011;27(6):764–70.

	12.	 Zentgraf J, Rahmann S. Fast gapped k-mer counting with subdivided
multi-way bucketed cuckoo hash tables. In: Boucher, C., Rahmann, S.
(eds.) 22nd International Workshop on Algorithms in Bioinformatics,
WABI 2022, September 5-7, 2022, Potsdam, Germany. LIPIcs, vol. 242, pp.
12–11220. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
2022. https://​doi.​org/​10.​4230/​LIPICS.​WABI.​2022.​12

	13.	 Díaz-Domínguez D, Leinonen M, Salmela L. Space-efficient computation
of k-mer dictionaries for large values of k . Algor Mol Biol. 2024;19(1):14.

	14.	 Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient
numerical computation. Comput Sci Eng. 2011;13(2):22–30. https://​doi.​
org/​10.​1109/​MCSE.​2011.​37.

	15.	 Lam SK, Pitrou A, Seibert S. Numba: a LLVM-based Python JIT compiler. In:
Finkel, H. (ed.) Proceedings of the Second Workshop on the LLVM Com-
piler Infrastructure in HPC, LLVM 2015, Austin, Texas, USA, November 15,
2015, pp. 7–176. ACM, New York, NY, USA 2015. https://​doi.​org/​10.​1145/​
28331​57.​28331​62

	16.	 Rhie A, Nurk S, Cechova M, Hoyt SJ, Taylor DJ, Altemose N, Hook PW,
Koren S, Rautiainen M, Alexandrov IA, et al. The complete sequence of a
human Y chromosome. Nature. 2023;621(7978):344–54.

	17.	 Schirmer M, D’Amore R, Ijaz UZ, Hall N, Quince C. Illumina error profiles:
resolving fine-scale variation in metagenomic sequencing data. BMC
Bioinform. 2016;17:1–15.

	18.	 Allhoff M, Schönhuth A, Martin M, Costa IG, Rahmann S, Marschall T. Dis-
covering motifs that induce sequencing errors. BMC Bioinform. 2013;14:1.

	19.	 Medvedev P, Scott E, Kakaradov B, Pevzner P. Error correction of high-
throughput sequencing datasets with non-uniform coverage. Bioinfor-
matics. 2011;27(13):137–41.

	20.	 Nikolenko SI, Korobeynikov AI, Alekseyev MA. Bayeshammer: Bayesian
clustering for error correction in single-cell sequencing. BMC Genom.
2013;14(Suppl 1):7.

	21.	 Schmidt SS, Alanko JN. Eulertigs: minimum plain text representation
of k-mer sets without repetitions in linear time. Algorithms Mol Biol.
2023;18(1):5. https://​doi.​org/​10.​1186/​S13015-​023-​00227-1.

	22.	 Renders L, Depuydt L, Rahmann S, Fostier J. Automated design of
efficient search schemes for lossless approximate pattern matching. In:
Ma, J. (ed.) Research in Computational Molecular Biology - 28th Annual
International Conference, RECOMB 2024, Cambridge, MA, USA, April 29 -
May 2, 2024, Proceedings. Lecture Notes in Computer Science, vol. 14758,
pp. 164–184. Springer, Berlin, Heidelberg 2024. https://​doi.​org/​10.​1007/​
978-1-​0716-​3989-4_​11

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.4230/LIPICS.WABI.2022.12
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1186/S13015-023-00227-1
https://doi.org/10.1007/978-1-0716-3989-4_11
https://doi.org/10.1007/978-1-0716-3989-4_11

	Swiftly identifying strongly unique k-mers
	Abstract
	Motivation
	Results
	Availability

	Introduction
	Preliminaries
	Canonical integer encoding of k-mers
	Bit-parallel Hamming distance computation between two k-mers
	Canonical Hamming distance
	Problem statement

	Methods
	Recursive 4-way comparisons (FourWay)
	Basic algorithm
	Implementation on 2k-bit encoded integers
	Optimizations and parallelization
	Running time analysis
	Pairwise comparisons in small buckets (Quarter)
	Basic algorithm
	Implementation and parallelization
	Pre- and post-processing
	Optionally chunked input

	Post-processing and result interpretation

	Benchmarking results
	Benchmarks on the human genome
	Benchmarks on artificial data with extremal properties
	Interval length thresholds for FourWay+Pairwise
	Parallelization benchmarks

	Uniqueness within the human genome
	Whole genome statistics
	Uniqueness in genes and exons
	Fine-grained uniqueness distribution

	Application perspectives
	Sequencing error correction
	Xenograft sorting

	Discussion and conclusion
	Acknowledgements
	References

