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Abstract 

Motivation  Short DNA sequences of length k that appear in a single location (e.g., at a single genomic position, 
in a single species from a larger set of species, etc.) are called unique k-mers. They are useful for placing sequenced 
DNA fragments at the correct location without computing alignments and without ambiguity. However, they are 
not necessarily robust: A single basepair change may turn a unique k-mer into a different one that may in fact be 
present at one or more different locations, which may give confusing or contradictory information when attempting 
to place a read by its k-mer content. A more robust concept are strongly unique k-mers, i.e., unique k-mers for which 
no Hamming-distance-1 neighbor with conflicting information exists in all of the considered sequences. Given a set 
of k-mers, it is therefore of interest to have an efficient method that can distinguish k-mers with a Hamming-dis-
tance-1 neighbor in the collection from those that do not.

Results  We present engineered algorithms to identify and mark within a set K of (canonical) k-mers all elements 
that have a Hamming-distance-1 neighbor in the same set. One algorithm is based on recursively running a 4-way 
comparison on sub-intervals of the sorted set. The other algorithm is based on bucketing and running a pairwise 
bit-parallel Hamming distance test on small buckets of the sorted set. Both methods consider canonical k-mers (i.e., 
taking reverse complements into account) and allow for efficient parallelization. The methods have been imple-
mented and applied in practice to sets consisting of several billions of k-mers. An optimized combined approach run-
ning with 16 threads on a 16-core workstation yields wall times below 20 seconds on the 2.5 billion distinct 31-mers 
of the human telomere-to-telomere reference genome.

Availability  An implementation can be found at https://​gitlab.​com/​rahma​nnlab/​strong-​k-​mers.
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Introduction
Alignment-based biological sequence analysis methods 
are increasingly being replaced by alignment-free, or 
at least partially alignment-free, methods. One reason 
behind this development is the relatively high computa-
tional cost for sequence alignments. An early example of 

this development was the replacement of overlap-con-
sensus based genome assembly by DeBruijn graph based 
assembly methods, subdividing the sequenced DNA 
fragments further into overlapping pieces of length k, so-
called k-mers [1]. Another example is pseudo-alignment 
based transcript quantification from RNA-seq data, pio-
neered by kallisto [2], which assigns a transcript to each 
read not by computing alignments, but directly from the 
k-mer content of the reads.

More recently, an alignment-free solution was pub-
lished for xenograft sorting [3], where one wants to 
separate reads in a mixed sample from two species; a 
typical application is to separate human tumor DNA 
reads from mouse tissue DNA reads in patient-derived 
xenograft experiments. This had previously been done 
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by aligning all reads to both the human genome and 
the mouse genome and picking the better alignment for 
each read to assign the species of origin. However, it is 
computationally much more efficient to build a k-mer 
index (with k ≥ 25 ) with associated species information 
and to classify reads according to their k-mer content. 
This approach can save up to 80% of the CPU work 
[3]. Similar ideas generalize to metagenomic profiling, 
where one seeks to quantify the amount of different 
species in a metagenomic sample, again not based on 
alignments, but based on k-mer content [4–6].

More examples could be mentioned, but here we 
want to focus on an important but so far underappreci-
ated aspect of alignment-free methods: the concept of 
strongly unique k-mers, as opposed to (weakly) unique 
k-mers and non-unique k-mers.

Given a collection of sequences, a k-mer is called 
unique if it occurs only once as a length-k substring in 
a single sequence within the collection. Unique k-mers 
are both more useful and technically easier to handle 
than non-unique k-mers: They unambiguously identify 
a single sequence and a single position within the entire 
collection. They also allow us  to store some informa-
tion (a “value”) associated with the k-mer (the “key”) 
in a simple way, because there is only a single value for 
a unique k-mer, whereas for non-unique k-mers, we 
would need to handle a variable-length list of values.

Uniqueness, as useful as it is, is not a robust prop-
erty: A single nucleotide change, such as a sequencing 
error or an individual single-nucleotide variant, may 
turn a unique k-mer  x into a different k-mer x′ that 
may either not exist at all in the indexed collection, or 
exist as a unique k-mer somewhere else, or as a non-
unique k-mer in several other locations. The first case 
(non-existence of x′ ) is usually not so critical; in any 
case, one knows that there has been a modification. The 
other cases are more problematic, because an existing 
k-mer was transformed into an equally existing k-mer 
x′ that however is (in terms of its location in the col-
lection) not related to x′ and could be anywhere or in 
multiple places.

Therefore, a stronger concept than just uniqueness 
is helpful. Consider a k-mer  x and its Hamming-dis-
tance-1 neighborhood N(x) containing exactly the 3k 
k-mers that differ from x at exactly one position. If none 
of the x′ ∈ N (x) exists in the indexed collection, then 
x is unique with a “safety margin” around it; no single 
change can turn x into an x′ that might confuse us with 
wrong information. We call such k-mers strongly unique. 
Strong uniqueness is a useful concept for alignment-
free sequence analysis for the reasons stated above: If a 
strongly unique k-mer is seen in a sequenced DNA frag-
ment, that fragment can be unambiguously and robustly 

located within the indexed collection; a single substitu-
tion cannot give wrong information.

A technical complication arises from the dou-
ble-strandedness of DNA and from the equiva-
lence of a sequence  s and its reverse complement. 
Formal details and definitions are therefore presented in 
Section Preliminaries.

The above explanation should sufficiently motivate us 
to consider the weak k-mer identification problem, for-
mally stated as Problem 1 in Section Preliminaries: Given 
a k-mer set K, identify those elements of K (called weak 
k-mers) that have a Hamming-distance-1 neighbor in K.

After the formal preliminaries, we present two differ-
ent efficient algorithms for the weak k-mer identification 
problem and an engineered hybrid form (Section Meth-
ods). Benchmarks follow in Section  Benchmarking 
Results, and some results on strongly and weakly unique 
k-mers in the human genome in Section  Uniqueness 
within the Human Genome. We discuss two applications 
that may benefit from our new algorithms (sequencing 
error correction and xenograft sorting) in Section Appli-
cation Perspectives, and end with a concluding discus-
sion (Section Discussion and Conclusion).

This article is an extended version of preliminary work 
published at Wonderful Algorithms in Bioinformatics 
2024 [7]. We here additionally evaluate artificial extremal 
datasets that only contain weak or strong k-mers. Our 
benchmarking results are further enhanced by a more 
detailed consideration of the interval length threshold 
at which we switch to pairwise comparisons when run-
ning the FourWay algorithm, and we explore refined 
parallelization by distributing the overall task into many 
small chunks (Section  Benchmarking Results). Beyond 
benchmarks, we have added detailed insights into the 
distribution of strongly and weakly unique k-mers across 
the human genome (new Section  Uniqueness within 
the Human Genome). In addition, we discuss potential 
applications of our algorithms in other alignment-free 
methods, such as DNA sequencing error correction or 
xenograft sorting (new Section Application Perspectives).

Preliminaries
We introduce several basic definitions: k-mers, their 
(canonical) integer encoding, bit-parallel computation of 
the Hamming distance between two k-mers, canonical 
Hamming distance, and strong and weak k-mers in a set.

We only consider DNA sequences over the alpha-
bet � = {A,C,G,T} here (and in our current imple-
mentation), but the ideas generalize to other alphabets. 
However, we take the double-stranded nature of DNA 
molecules into account when considering Hamming dis-
tance between DNA sequences; this would and should 
not be done with different alphabets.



Page 3 of 16Zentgraf and Rahmann ﻿Algorithms for Molecular Biology           (2025) 20:13 	

Definition 1  (k-mer) Given an alphabet � , a k-mer 
is a sequence of length k over � . Given a (long) string s 
over � . A k-mer of s is any substring of length k of s.

Definition 2  (reverse complement) The reverse comple-
ment rc(s) of a DNA sequence s is obtained by reversing 
the sequence and substituting A ↔ T and C ↔ G.

Canonical integer encoding of k‑mers
To represent and store a DNA k-mer x efficiently, it can 
be bijectively encoded as an integer 0 ≤ enc(x) < 4k for 
fixed  k: Each base is encoded as a number in {0, 1, 2, 3} 
(e.g. lexicographically), and the resulting sequence of k 
numbers is interpreted as a base-4 integer with k  “dig-
its”. Equivalently, and relevant for the bit-parallel Ham-
ming distance test described below, we may write the 
same integer in its 2k-bit representation. For example, 
enc(TACG) = (3012)4 = (11|00|01|10)2 = 198.

To ensure that a k-mer x and its reverse comple-
ment rc(x), which both represent the same DNA 
molecule, are encoded by the same integer value, 
we define the canonical integer encoding or canoni-
cal code of x as cc(x) := max{enc(x), enc(rc(x))} . (In 
most of the literature, the definition is given with the 
minimum instead of the maximum; this does not mat-
ter. Both are equivalently valid ways to assign the 
same integer to both k-mers x and  rc(x).) For example, 
cc(TACG) = cc(CGTA) = max{enc(TACG), enc(CGTA)} = max{198, 108} = 198.

Bit‑parallel Hamming distance computation between two 
k‑mers
The Hamming distance d(x, y) between two k-mers x, y is 
the number of positions in which x and y differ. For 2-bit 
encoded DNA sequences, there is a fast bit-parallel way 
to compute the Hamming distance and to test whether 
d(x, y) ≤ 1.

Let p = (p2k−1, . . . , p0) and q = (q2k−1, . . . , q0) be the 
2k-bit patterns of x and y, respectively. From p and q, we 
compute a bit pattern h = (h2k−1, . . . , h0) that has hi = 0 
for all odd i, and hi = 1 for even i if and only if the nucle-
otides encoded by (pi+1, pi) and (qi+1, qi) differ.

To achieve this, we first compute u := p⊕ q , where ⊕ 
is the bitwise exclusive-or (XOR) operation, setting those 
bits ui = 1 where pi  = qi . We then combine the two bits 
of each nucleotide into the even bits of  u and clear the 
odd bits to indicate which nucleotides differ between x 
and y by setting h := (u | (u ≫ 1))& (0101 . . . 01)2 . Here, 
the operators |, & and ≫ represent bitwise or, bitwise 
and, and bit shift right, respectively. The obtained h has 
the desired properties. The population count (number of 

1-bits) of h then equals the Hamming distance between 
the k-mers x and y.

Testing whether the Hamming distance is at most 1 
(i.e., whether h is zero or a power of 2) can be further 
simplified by computing w := h& (h− 1) . We have w = 0 
if and only if h has at most a single 1-bit, and w  = 0 if and 
only if the Hamming distance between the k-mers repre-
sented by x and y is at least 2.

Canonical Hamming distance
In the following, we interpret DNA k-mers as double-
stranded molecules, i.e., both x and rc(x) are represented 
by either of them. This has to be considered for Hamming 
distance computations.

For example, take x = AAAA and y = ATTT . Seen as 
single-stranded k-mers, we have d(x, y) = 3 . However, 
seen as double-stranded DNA molecules, ATTT is equiva-
lent to its reverse complement AAAT , and d(x, rc(y)) = 1 . 
Therefore, we make the following definition.

Definition 3  (Canonical Hamming distance) Given 
DNA k-mers x, y, their canonical Hamming distance is

Problem statement
As motivated in the introduction, our goal is to iden-
tify the strongly unique canonical k-mers in a collec-
tion of sequences. The uniqueness property is identified 
by k-mer counting, for which there exist many efficient 
methods and tools with different strength and weak-
nesses, such as KMC2 [8], KMC3 [9], Gerbil [10], Jel-
lyfish [11], hackgap [12], or Kaarme[13], among others. 
In fact, being able to count up to 2 is sufficient for the 
present purpose. The output of a k-mer counter is a set K 
of distinct canonical k-mers, and a count value for each 
x ∈ K  . The missing piece is to identify the weak canonical 
k-mers in K in the following sense.

Definition 4  (Weak k-mer, strong k-mer) Given a set 
K of distinct canonical DNA k-mers, a canonical k-mer 
x ∈ K  is called weak within K if there exists another 
y ∈ K  with H(x, y) = 1 . The other canonical k-mers are 
called strong within K.

When we mark weak canonical k-mers in K and addi-
tionally have their counts, we have identified the strongly 
unique canonical k-mers as those with a count of 1 that 
are not weak in  K. Therefore, we here focus on the fol-
lowing problem.

(1)H(x, y) := min{d(x, y), d(x, rc(y))} .
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Problem  1  (Weak canonical k-mer identification) 
Given a set K of canonical DNA k-mers, identify the sub-
set W ⊆ K  of the weak canonical k-mers.

How a solution to this problem is implemented in a 
concrete setting may vary with the representation of  K. 
In practice, the elements of K will typically be canonical 
integer codes of k-mers, and we may use one more bit to 
indicate the weak ones.

We point out two obvious algorithms (that are too inef-
ficient in practice) to solve the problem. Let K contain n 
distinct k-mers. 

1.	 Full pairwise comparison: Use the bit-parallel 

method from above to test all 
(

n
2

)

= n(n− 1)/2 

pairs x  = y whether they satisfy H(x, y) ≤ 1 , and if 
yes, mark both x and y as weak.

2.	 Neighborhood generation: If K is given as a hash 
table allowing efficient look-up, for each x ∈ K  , gen-
erate the canonical integer codes of the 3k Hamming-
distance-1 neighbors, and look them up in K. For 
each neighbor found in K, mark both x and the dis-
covered neighbor as weak.

The first method is impractical because of its quadratic 
running time. The second method has a running time 
linear in  n, but with a factor of 3k, and every memory 
lookup is likely a cache miss. It is thus slow in practice, 
but can still be useful as a baseline for comparison. In 
the following section, we present more efficient practical 
methods for identifying weak canonical k-mers.

Methods
We present two algorithms to identify weak k-mers 
within a set K. Independently of the given form of input 
(hash table based key-value store, or sorted or unsorted 
list of distinct k-mers) and independently of the used 
algorithm, we first create a lexicographically sorted list of 
the k-mers and their reverse complements. If the original 
input consists of canonical k-mers, or if the reverse com-
plements are not included, this step may double the input 
size when we add the reverse complements explicitly. 
This step is necessary for both algorithms to ensure that 
we consider the canonical Hamming distance instead of 
the (standard) Hamming distance for the original input. 
Details concerning this pre-processing step are given in 
Section Pre- and Post-Processing after a detailed descrip-
tion of the algorithms.

The first algorithm is based on 4-way comparisons, 
similar to a multi-way mergesort. In the first round, the 
sorted k-mer list is divided into 4 buckets based on the 
k-mers’ first nucleotide (A, C, G, T). For each nucleotide 

c, a pointer pc initially points to the start of the c-bucket. 
In each step, we compare the four (or possibly less, once 
entire buckets have been processed) elements pointed to 
by the pc , c ∈ � , ignoring the bucket prefixes. (In the first 
round, the bucket prefixes are single nucleotides, so we 
compare the remaining (k − 1)-mers.) We identify the 
set C∗ ⊆ � such that the pc , c ∈ C∗ , point to the mini-
mal element(s) of the examined (k − 1)-mers. If |C∗| = 1 , 
there is a unique minimal (k − 1)-mer, but if |C∗| ≥ 2 , 
we have found equal minimal (k − 1)-mers, i.e. k-mers 
that differ only in their first nucleotide, and therefore a 
group of weak k-mers. The pc , c ∈ C∗ , are incremented, 
and the process is repeated until all buckets have been 
fully processed. In the next round, each of the buckets is 
subdivided into 4 sub-buckets, and the 4-way compari-
son is repeated recursively for each sub-bucket (with k 
decreased by 1). Details are given in Section  Recursive 
4-way comparisons (FourWay).

The second algorithm does pairwise Hamming dis-
tance tests, but on small buckets. If H(x, y) = 1 , then the 
one difference must be either in the first, second, third, 
or fourth quarter of the sequence (rounding the bounda-
ries arbitrarily for now). Because the input contains all 
reverse complements, it is sufficient to consider the third 
and the fourth quarter: If x, y differ in the first (second) 
quarter, then rc(x), rc(y) differ in the fourth (third) quar-
ter, respectively. If the difference is in the fourth quarter, 
the first 3k/4 nucleotides are equal, and we can linearly 
scan the sorted k-mer list, divide it into corresponding 
buckets of equal 3k/4 first nucleotides and run a bit-
parallel pairwise Hamming test within each bucket. The 
overall efficiency of this approach depends on the rela-
tion between n and 43k/4 and not having large buckets. 
If k is sufficiently large, many of the buckets will con-
tain only a few elements, and the process is indeed very 
fast. It remains to deal with pairs x,  y that differ in one 
nucleotide in their third quarter. Details are given in Sec-
tion Pairwise comparisons in small buckets (Quarter).

Recursive 4‑way comparisons (FourWay)

Basic algorithm
The algorithm FourWay works similarly to 4-way 
merges. The input is a set K of canonical k-mers, which 
are “unpacked” into twice as many forward and reverse 
complement k-mers, which are then sorted lexicographi-
cally. This yields a sorted k-mer array A of length n.

The algorithm FourWay is recursive. It is called with 
a depth parameter d ∈ {1, . . . , k − 1} and a list of start 
pointers q = (qc) with c ∈ � ∪ {$} . Each invocation 
FourWay(A, d, q) identifies weak k-mers in an interval 
I = [qA, q$[ of A, where the first (d − 1) nucleotides of 
the contained k-mers are equal, and qc (for c ∈ � ) points 
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to the start of the sub-interval of I where the d-th nucleo-
tide is c (Fig. 1). The sentinel pointer q$ points beyond the 
end of the interval I. In the initial call, d = 1 (no common 
prefix, the first nucleotide is compared), qA = 0 points to 
the first (smallest) element in A (with indexing starting at 
zero) and q$ = n points past the end of A. The initial val-
ues of the other pointers qc , c ∈ {C,G,T} are determined 
by linearly scanning the sorted array once.

First, we create working copies p = (pc) of q = (qc) 
for c ∈ � . While q will stay unchanged, the pc increase 
towards larger elements as the algorithm proceeds. Ini-
tially, all the pc pointers are active. When pc moves 
beyond the end of its sub-interval (i.e., it reaches a qc′ for 
a character c′ > c , where the sentinel is larger than any 
character in � ), the pointer becomes inactive. If only a 
single pointer or no pointer is active, we are done and 
proceed to the recursive calls; see below.

In each step, the algorithm examines the k-mers at the 
locations pointed to by the active pointers  pc . We call 
these the active k-mers. They jointly have the following 
properties: 

1.	 Their first d − 1 characters are equal (true for all 
k-mers in interval I),

2.	 their d-th characters are distinct,

3.	 their suffixes of length b = k − d are arbitrary, but 
examined in increasing order;

4.	 they are the smallest k-mers in I that have not yet 
been but still may be identified as weak based on a 
single difference at their d-th character.

The comparison is visualized in Fig.  2. We look at the 
b-suffixes of the active k-mers and find the smallest 
one(s). Let C∗ be the character set such that exactly 
the k-mers at pc , c ∈ C∗ , have the minimal b-suffixes 
among the active k-mers. If |C∗| ≥ 2 , we have identified 
a group of k-mers of size |C∗| that differ only at their 
d-th position; hence all of them are marked as weak. (If 
|C∗| = 1 , nothing happens.) Then, all pc for c ∈ C∗ are 
incremented. These steps are repeated until a single (or 
no) active pc remains.

After processing interval I, if d < k , the sub-intervals 
are processed recursively, so there are |�| = 4 recur-
sive calls, each with increased d ← d + 1 (and reduced 
b = k − d ). The initial pointers q for each subinterval 
are obtained by a linear scan through the sub-interval. 
The recursive call is not performed if the length of the 
subinterval is at most 1, as there is nothing to compare 
then.

Fig. 1  Recursive 4-way comparison at different depths d = 1, 2, 3 , from left to right. At depth d, the first d − 1 characters of all k-mers 
within the considered interval are equal, and the d-th character is compared. Let b := k − d . The (at most) four b-mer suffixes of the k-mers pointed 
to by pointers pc , c ∈ � are compared, and the minimal b-mer(s) are identified among the four elements. The k-mers with equal minimal b-mers 
are marked as weak if there are at least two equal minimal b-mers. The pointers of minimal b-mers are incremented (or inactivated, if their bucket 
has been completely scanned). After the 4-way comparison of an interval is completed, it is repeated recursively with increased depth d + 1 on its 4 
sub-intervals (only the first such recursive call for the A-subinterval is shown)
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Implementation on 2k‑bit encoded integers
The current implementation uses a 2k-bit encoded repre-
sentation of k-mers and is restricted to k ≤ 31 , leaving at 
least one bit for marking weak k-mers within the 64-bit 
integer encoding.

In order to compute C∗ , and to keep track of the small-
est k-mers, a 4-bit vector v is used. Iterating over the 
active k-mers only, if the b-suffix is a new minimum 
(and also initially), a single bit is set in v, corresponding 
to the nucleotide at position  d (using A = (0001)2 = 1 , 
C = (0010)2 = 2 , G = (0100)2 = 4 , T = (1000)2 = 8 ). If 
another b-suffix is equal to the current minimum, the bit 
corresponding to the character at position d is addition-
ally set in v (using bitwise or).

We test whether |C∗| ≥ 2 by checking if the popula-
tion count of v is at least 2, which is done by testing if 
v& (v − 1) �= 0.

Optimizations and parallelization
In principle, the depth d is recursively increased up to k, 
so each character in the k-mer is checked for being the 
single different one. However, since the array contains 
both all forward and all reverse-complement k-mers, we 
identify each pair {x, y} with a Hamming distance of 1 
twice, both as {x, y} and as {rc(x), rc(y)} . In one case, the 
difference is in the first half; in the other case, the differ-
ence is in the second half of the k-mers. Therefore, we 
could stop the recursion after checking the first half of 
the k-mers, at depth ⌈k/2⌉.

However, there are advantages in processing only the 
second half of the k-mers instead of the first half, i.e. 
start at depth d = ⌊k/2⌋ and do recursive steps until 

the depth k is reached. With an increasing depth d, the 
number of elements in an interval decreases until it is 
reduced to only one or zero element(s). Even before we 
reach the point at which only one element is left, the 
book-keeping for the recursion creates more work than 
the actual comparison of the elements. Therefore, if the 
interval length drops below a certain value (we evaluate 
good thresholds in Section  ’’Interval length thresholds 
for FourWay+Pairwise’’), we switch to the direct bit-
parallel pairwise comparison. We call this optimization 
the FourWay+Pairwise method. Since we process the 
second half of the k-mers, each interval has a fixed con-
stant prefix of length at least ⌊k/2⌋ , yielding already rela-
tively short intervals in the first step. We then typically 
switch to the pairwise comparison after just a few recur-
sions. In practice, this results in a noticeable speedup. To 
partition the sorted k-mer set into blocks with the same 
length-⌊k/2⌋ prefix, we do a single linear scan over the 
whole set of k-mers and identify block boundaries where 
any of the first ⌊k/2⌋ characters change.

For parallelizing the algorithm, we define a prefix 
length  g ≤ ⌊k/2⌋ to divide the k-mers into 4g distinct 
chunks based on their first g characters. By an initial lin-
ear scan, we identify the start and end of each chunk and 
divide them among parallel threads, as each such interval 
can be processed independently. Inside each chunk, the 
k-mers are processed starting at depth d = ⌊k/2⌋ . This 
allows for almost trivial parallelization among threads. 
Any number of threads t can be combined with any num-
ber of chunks 4g ≥ t . Larger values of  g lead to smaller 
chunks and better load balancing over the threads until g 
becomes so large that the scheduling overhead cancels 

Fig. 2  Weak k-mer identification by 4-way comparison at depth d = 6 . The first d − 1 = 5 characters are identical. Pointers pc , c ∈ {A,C,G,T} , 
point at k-mers whose d-th character is c. Considering the b := (k − d)-suffixes, we identify the smallest suffix among the pointed-to k-mers. 
Left panel: The smallest suffix is TATAA​ at pC , as indicated by the bit vector (0010). As a single b-suffix is minimal, no weak k-mers are identified, 
and pC is increased. Middle panel: The smallest b-suffix is TATCA​ at pA and pG . Therefore, the two k-mers pointed to by pA and pG are identical 
except for their d-th characters, and we have found a weak pair. Both pA and pG are incremented. Right panel: The smallest b-suffix is TATCG​ at pA 
only. No weak k-mers are identified, and pA is incremented
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the advantages of the fine-granular jobs. Benchmarks 
concerning the effect of the number of threads and the 
choice of g can be found in Section Parallelization bench-
marks after the overall algorithm benchmarks (Sec-
tion Benchmarks on the human genome–Benchmarks on 
artificial data with extremal properties) and benchmarks 
about the threshold for switching to pairwise comparison 
(Section 4.3).

Running time analysis

Theorem 1

(Time complexity of FourWay) The running time of basic 
FourWay is O(n k2) , where n is the number of k-mers 
in the sorted input array A, assuming constant alphabet 
size. If k-mers are integer-encoded, which is possible for 
k ∈ O(log n) , the time reduces to O(nk).

Proof
The initial call is FourWay(A,  d,  q) with the full array 
of length |A| = n , depth d = 1 and initial start pointers 
q = (qc)c∈� . It performs a number of steps that is O(n) 
because in each step, at least one of the |�| = O(1) point-
ers pc is incremented. In each step, the smallest of the 
|�| length-b = k − d < k suffixes are found, so each step 
takes O(k) time, which reduces to O(1) if the suffix is rep-
resented as a machine word sized integer. Then, we recurse 
into |�| subproblems FourWay(Ac, d + 1, qc) for c ∈ � of 
total size 

∑

c |Ac| = n . If T(n, k) denotes the total time, we 
have

which solves to T (n, k) = O(nk2) . Assuming constant-
time comparisons, we obtain

which solves to T (n, k) = O(nk) . 	�  �

Overall, the FourWay and FourWay+Pairwise algo-
rithms mainly perform (4-way) linear scans of intervals 
of the array, and therefore have excellent cache local-
ity. Hardware prefetching takes care of moving required 
k-mers into the CPU caches before they are needed for 
comparison, so there is very little memory latency and 
high memory throughput for these algorithms by design.

T (n, k) = O(nk)+
∑

c∈�

T (nc, k − 1) with
∑

c∈�

nc = n ,

T (n, 1) = O(n) ,

T (n, k) = O(n)+
∑

c∈�

T (nc, k − 1) with
∑

c∈�

nc = n ,

T (n, 1) = O(n) ,

Pairwise comparisons in small buckets (Quarter)

Basic algorithm
With the Quarter algorithm, we reduce the number of 
pairs for which we calculate the Hamming distance. If 
two canonical k-mers x  = y have a canonical Hamming 
distance of H(x, y) = 1 , then at least one of the four pairs 
from {(x, y), (x, rc(y)), (rc(x), y), (rc(x), rc(y))} have their 
single difference in the third quarter s1 or last quarter 
s2 of their sequences; in the case of odd k, the middle 
position m must be included in the third quarter s1 (see 
Fig. 3).

If the difference is in the last quarter s2 , then pairwise 
comparisons can be restricted to within buckets that 
share a common ℓ := ⌊k/2⌋-prefix and a common s1 sec-
tion (for an overall shared 3k/4-prefix of the k-mer). For 
example, for k = 25 = (6+ 6+ 7+ 6) , we partition the 
sorted k-mer array into intervals that share the same 
(6+ 6+ 7) = 19-mers. As already many 19-mers are 
unique in a mammalian genome, the 25-mer intervals are 
often small or even contain just a single 25-mer, requiring 
no further comparisons at all.

If the difference is in the third quarter s1 , then pairwise 
comparisons can be restricted to sets of k-mers that share 
both their ℓ-prefix and the sequence in the last quarter s2 . 
These sets may be conveniently constructed by local 
re-sorting within blocks that share a common ℓ-pre-
fix: Swap the nucleotides belonging to sections s1 with 
those in s2 and re-sort locally within the ℓ-block (Fig. 4); 
then apply the same interval partitioning as above. In 
the 25-mer example, we would then be using common 
(6+ 6+ 6) = 18-mers.

Implementation and parallelization
To keep track of which k-mers are marked as weak, we 
use one of the 64 bits of the k-mers. This limits the imple-
mentation to k ≤ 31 . For the Quarter algorithm, we use 
the least significant bit for marking weak k-mers. In the 
sorting step after swapping s1 and s2 it is not necessary to 
special case the bit. Since it is the least significant bit, the 
k-mers are sorted correctly.

Fig. 3  All k-mers are split into blocks based on the ℓ := ⌊k/2⌋

-prefix and further separated into sections based on third quarter s1 
and last quarter s2 . For odd k, the middle position m must be 
included in the third quarter s1 . We either have |s1| = |s2| or take care 
that |s1| = |ss| + 1 , making the third quarter the longer one if their 
lengths differ by 1. For example, 25 = 12+ 7+ 6 with k = 25 , ℓ = 12 , 
|s1| = 7 and |s2| = 6
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As for FourWay and FourWay+Pairwise, the Quar-
ter algorithm can also be easily parallelized over 4g 
chunks, where a chunk is defined as the group of k-mers 
that start with a common prefix of length g ≤ ⌊k/2⌋.

Pre‑ and post‑processing
Optionally chunked input
As presented here, the algorithms start with an already 
sorted k-mer set  K that contains both forward and 
reverse-complemented k-mers. In practice, one often has 
an unsorted collection of canonical k-mers available, e.g., 
from a key-value store such as a hash table or file on disk.

However, it may take considerable time and additional 
memory to convert the available representation into the 
required input of the algorithms presented here. For 
example, the k-mer counter hackgap can represent the 
roughly 2.39 billion distinct human canonical 25-mers 
and counts up to 255 in less than 12 GB of memory, using 
bit packing and quotienting [12]. However, expanding 
these into twice as many (4.78 billion) 64-bit integers 
takes an additional 38 GB of memory (of unpacked data) 
for identifying the weak 25-mers.

On smaller-memory systems, the input data can be cre-
ated and processed in smaller chunks (at the expense of 
speed): Select a small number s ≤ ⌊k/2⌋ of initial nucle-
otides; often s = 1 or s = 2 is sufficient in practice. Split 
up the input set  K into 4s chunks, Kj , j = 0, . . . , 4s − 1 , 
where chunk Kj is defined as the sorted subset of K that 
has an integer-encoded length-s prefix with value  j (i.e., 
enc(x[: s]) = j ). Each chunk is generated by linearly scan-
ning over the existing representation and extracting only 
k-mers and reverse complements that start with the cor-
rect prefix; this is repeated for each of the 4s chunks. The 
default case (everything is one big chunk) corresponds to 
s = 0 . All presented algorithms can be run on each chunk 
sequentially (and then parallelized based on sub-chunks 
with more common initial characters).

Post‑processing and result interpretation
The presented algorithms only identify one pair with 
canonical Hamming distance 1, say x  = y , with their dif-
ference in the second half of the sequences, but not the 
other pair, rc(x)  = rc(y) , with their difference in the first 

half of the sequences. It is this property that gives us 
chunks and parallelization essentially for free.

However, this means that post-processing is required. 
This is typically required anyway, as the weak k-mers 
must be annotated in the original (canonical) represen-
tation (say, the hash table). This involves a linear scan of 
the annotated sorted set K and a look-up of the canoni-
cal form in the original representation. In the following 
benchmarks, times for pre- and post-processing are not 
considered, since they are the same for all approaches.

Benchmarking results
We evaluate FourWay, FourWay+Pairwise and 
Quarter on real genomic data and on artificial data with 
extremal properties. We report wall clock times (“wall 
times”; real number of seconds passed for weak marking). 
The benchmarking equipment consists of a workstation 
with AMD Ryzen 9 5950X 16-core processor with 128 
GB of main memory.

Our implementation is written in just-in-time-com-
piled Python 3.11 using typed numpy arrays [14] and 
the numba compiler [15], which achieves execution 
speeds comparable to those of C/C++ implementations. 
Code is available at https://​gitlab.​com/​rahma​nnlab/​
strong-​k-​mers.

Benchmarks on the human genome
We compare the running times of the discussed algo-
rithms on the human telomere-to-telomere (t2t) refer-
ence genome [16] with roughly 3.1 billion base pairs and 
2.5 billion distinct canonical 31-mers, expanded and 
encoded into approximately 5  billion 64-bit integers, 
stored in a 40 GB file on disk. Our comparison includes 
several different values of k for the k-mer size and differ-
ent degrees of parallelization with varying numbers of 
threads.

For benchmarking purposes, we pre-compute the 
required input array from original genome DNA 
sequences and read the pre-computed sorted numpy 
array from disk. This array is pre-computed as follows: 
We compute the set of all canonical k-mers by execut-
ing the k-mer counter hackgap [12]. This results in an in-
memory hash table with all canonical k-mers (encoded as 
2k-bit integers) and their counts. The canonical k-mers 

Fig. 4  After checking if the k-mers differ in a single position in the last quarter s2 , existence of a single difference in the third quarter s1 has to be 
checked. For this, the nucleotides of s1 and s2 are swapped. Then, k-mers are locally re-sorted (within buckets of common ℓ = ⌊k/2⌋-prefixes), 
and the algorithm for the last quarter is applied again

https://gitlab.com/rahmannlab/strong-k-mers
https://gitlab.com/rahmannlab/strong-k-mers
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are expanded to 64-bit integer encodings of the k-mers 
and their reverse complements, and stored in a large 
uint64 numpy array, which is then sorted and writ-
ten to disk. The time for this preprocessing step is not 
included in the measurements reported here.

We compare the running times of our implementa-
tions of algorithms FourWay, FourWay+Pairwise and 
Quarter (Fig.  5 left). As a baseline, the neighborhood 
generation method (looking up all 3k canonical neighbor 
k-mers, or less until the first neighbor is found, for each 
canonical k-mer in the input set; skipping k-mers already 
marked as weak) for k = 25 using 8 threads needs 3937 
s (approximately 65 min), using the multi-way Cuckoo 
hash table of hackgap [12].

For k ∈ {13, . . . , 31} , each algorithm was executed three 
times; individual wall times (points) and their means 
(lines) are shown in Fig. 5 (left panel).

The wall time of FourWay correlates with the total 
number of distinct k-mers. For k ≤ 22 , the running time 
increases up to approximately 140 s. The running time 
for k ≥ 22 remains nearly constant at 140 s.

The optimization of FourWay+Pairwise, stopping 
the recursion early if the interval to be examined has at 
most 24 elements (276 cache-friendly pairwise compari-
sons), yields a significant reduction of wall time, espe-
cially for large k. Using 8 threads, the longest wall time is 
40 s for 19 ≤ k ≤ 21 . For longer k-mers, the running time 
decreases down to below 20 s for k = 31.

The wall time of Quarter increases with the number 
of distinct k-mers for k ≤ 17 . Interestingly, the algorithm 
has its highest running time for k = 17 with approxi-
mately 110 s, even though the number of distinct k-mers 
increases further for larger  k, while the running time 

decreases. We here start to see the benefit of longer and 
more specific 3k/4 ( ≥ 13-mer) prefixes that for increasing 
k yield smaller and smaller buckets for the quadratic-time 
comparison. If k  is increased further, this effect is even 
more noticeable, as the buckets become smaller, while 
the total number of k-mers stays approximately constant. 
For k ≥ 24 , the wall time is nearly constant at approxi-
mately 30 s.

Thus, for k ≥ 24 , Quarter is approximately 4.5 times 
faster than the purely recursive FourWay approach. 
However, the optimized FourWay+Pairwise approach, 
where the recursion stops early and intervals of length at 
most 24 are examined with the bit-parallel pairwise Ham-
ming distance computation, is even faster than Quarter 
for k ≥ 28 and for k ≤ 19 and comparable to Quarter 
in-between ( 20 ≤ k ≤ 27).

To compare these times fairly to the baseline neigh-
borhood generation method, one should add 300 s of 
pre- and post-processing time to the times shown in 
Fig.  5. Nevertheless, this yields 330 s for Quarter and 
FourWay+Pairwise against almost 4000 s for neigh-
borhood generation.

Benchmarks on artificial data with extremal properties
We compare the wall times for Quarter and 
FourWay+Pairwise on pairs of artificial datasets for 
different lengths k. In one dataset of each pair, all k-mers 
are weak; in the other dataset, all k-mers are strong. 
Both datasets of each pair have a size of 2 billion ( 2 · 109 ) 
k-mers. The datasets are generated in the form of k-mers 
encoded as 64-bit integers, as for the human genome 
data.

Fig. 5  Comparison of the wall times of FourWay, FourWay+Pairwise and Quarter. Left: Wall times for different values of k using 8 threads on the t2t 
human reference genome with varying numbers of k-mers depending on k (cf. Fig. 8). Shown is the mean (line) over 3 repeated runs (dots). 
For k = 25 and 8 threads, the naive neighborhood generation approach needs 3937 s ( ≈ 65 min), while all presented algorithms need less than 140 
s, the best ones around 30 s (add 300 s for pre- and post-processing). Right: Wall times for different values of k using 8 threads on two artificial 
datasets with 2 billion k-mers each, in which all k-mers are either strong (solid lines) or weak (dashed lines)
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To generate a dataset containing only weak k-mers, 
we first generate a set of random integers between 
0 and 4k , which make up a quarter of the size of the 
resulting set. In the next step, we add a Hamming-dis-
tance-1 neighbor for each element: We pick one nucle-
otide and replace it with its complement. After this, we 
add the reverse complements of all k-mers and sort the 
array. In the last step, we iterate over the sorted array 
and ensure that all elements are unique. Duplicates are 
unlikely, given the random generation, and if they hap-
pen, we ensure the desired target size even after their 
removal by initially generating a slightly larger set.

To obtain a dataset that contains only strong k-mers, 
we first generate a slightly larger set than the required 
size, add the reverse complement of all elements, and 
remove all duplicates via sorting. In the next step, we 
run the FourWay+Pairwise algorithm to mark weak 
k-mers and apply post-processing to ensure that the 
weak k-mers are marked as weak in both orientations. 
We then remove all weak k-mers; the remaining array is 
cut to the desired size and sorted.

The wall times for Quarter and 
FourWay+Pairwise on both the only weak and the 
only strong dataset are shown in Fig.  5 (right panel) 
for different values of  k, using 8  threads and an inter-
val length threshold of 24 for switching to Pairwise in 
FourWay+Pairwise.

Perhaps surprisingly, the wall time does not depend 
strongly on the type of dataset, with only a few seconds 
difference. We would have expected a longer running 
time for the weak datasets in comparison to the strong 
datasets, as marking weak k-mers requires writing to 
memory, whereas this does not happen for the strong 
datasets. This expected difference can be observed to 
a small degree for the Quarter algorithm, but for the 
FourWay+Pairwise algorithm, the relation is reversed, 
and the weak dataset is processed slightly faster. Overall, 
the differences are small between the datasets, and may 
result from different effects, such as the different lengths 
of the intervals with pairwise comparisons.

The Quarter algorithm’s speed on the artificial data 
is slightly faster than, but similar to its performance on 
the human genome data, and essentially constant for all 
k ≥ 21 . FourWay+Pairwise, however, becomes faster 
with increasing  k, and in a more pronounced way than 
for the human genome data. This can be explained with 
the structure of the datasets, with the k-mers being ran-
domly chosen: For larger k, we essentially examine small 
groups of 2  k-mers (weak dataset) or of a single k-mer 
(strong dataset). The number of necessary recursion 
steps to arrive at such a small cluster drops with  k. We 
note that the performance on genome data is more realis-
tic than the one on these artificial datasets.

Interval length thresholds for FourWay+Pairwise

For the FourWay+Pairwise algorithm, an important 
parameter is the threshold at which we switch from the 
recursive comparison to the pairwise comparison. In 
Fig.  6, we evaluate the running time (wall time using 8 
threads) of the FourWay+Pairwise algorithm on the 
t2t-reference for k ∈ {23, 27, 31} using different thresh-
olds. If the threshold is set to 1, we do not use the pair-
wise comparison at all and continue the recursive 
approach until we obtain intervals with a single element 
or empty intervals. In this case, we need between 120 
and 140 s, depending on k. Even a small increase of the 
threshold above 1 reduces the running time drastically: 
A threshold of 10 more than halves the running time. The 
optimal threshold appears to be between 20 and 40 for 
k = 23 , 30 and 50 for k = 27 , and 30 and 70 for k = 31 . 
Overall, a threshold of roughly 30 seems to be best for a 
wide range of k, and the exact choice is less important as 
long as the threshold is not chosen too small.

Parallelization benchmarks
We examine the effect of parallelization for an increas-
ing number of threads (Fig. 7 left), using the t2t refer-
ence genome with k = 25 and 1, 2, 4, 8 and 16 threads. 
We compute the speedup for T threads as usual, divid-
ing the time used by a single thread by the time used 
by T threads, which ideally would give a ratio of  T. 
We see that for two threads, the speedup is nearly 
the desired factor of 2 for all algorithms. For T = 4 , 
the speedup for Fourway and Quarter is closer to 
3 than to 4, but for FourWay+Pairwise, it reaches 
almost 4. For 8 threads, the result is similar: a speedup 
of roughly 6 emerges for Fourway and Quarter, 
but almost 7 for FourWay+Pairwise. The effect is 
even more pronounced for 16 threads, where Quar-
ter achieves a speedup of 8, FourWay a speedup of 

Fig. 6  Wall times (using 8 threads) of the FourWay+Pairwise algorithm 
on the t2t human reference genome with different k-mers sizes 
and thresholds at which we switch to the pairwise comparison
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nearly 9, but FourWay+Pairwise yields a speedup 
of almost 12. Overall, the parallelization scales quite 
well for all algorithms, with a distinct advantage for 
FourWay+Pairwise.

We also evaluated the effect of different prefix 
lengths  g to define chunks that are submitted as inde-
pendent jobs. For a given value of g ≥ 0 , there are 4g 
chunks; each chunk contains k-mers that start with the 
same length-g prefix (see algorithm descriptions). With 
g = 0 , there is no parallelization. For this benchmark, 
we used the human t2t reference genome with k = 25 
and 1, 4, 8 and 16 threads. Figure  7 (right) shows the 
resulting wall times. Once we can use all 16 threads 
( g ≥ 2 ), a further increase of g has a small but ben-
eficial effect on the running time because of the more 
fine-granular load balancing of more chunks (4096 for 
g = 6 or 16 384 for g = 7 ) between the threads. For fur-
ther increasing values of g (even from g = 6 to g = 7 ), 
no further benefit is obtained, and the administrative 
costs of managing the jobs grow exponentially. It seems 
advisable to use g = 5 , or g = 6 on large datasets with 
16 threads.

Uniqueness within the human genome
We apply our algorithms to the human telomere-to-tel-
omere reference genome [16] and compute the fraction of 
weakly unique, strongly unique and non-unique k-mers 
in the whole genome for different values of  k. We then 
check whether the distribution of the different 25-mer 
types is different in regions with genes and in exons. We 
finally examine the local distribution of the three unique-
ness categories across all chromosomes for 25-mers.

Whole genome statistics
As shown in Fig.  8, the total number of distinct k-mers 
in the t2t reference genome increases with increasing 
k. Since the t2t reference genome contains ≈ 3.1 billion 
nucleotides, for k ≤ 15 , most of the approximately 4k/2 
canonical k-mers are present in the DNA sequence. Con-
sequently, almost all of these k-mers are weakly unique 
or occur multiple times. For k ≥ 18 , the k-mers get 
more unique and specific, and the increase of distinct 
k-mers in the sequence flattens out for k ≥ 21 . At the 
same time, the number of strong k-mers increases. For 
k = 18 , only approximately 4% of the k-mers are strong. 
For k = 23 , already more than 80% of the k-mers are 
strong. For k ≥ 24 , the number of strong k-mers gradu-
ally approaches 90% of the distinct k-mers.

Uniqueness in genes and exons
In Fig. 9, we examine how 25-mers are classified in inter-
genic regions, in gene regions, and specifically in exons. 
A k-mer is considered to be part of a gene or an exon, if 
it is completely contained in the corresponding interval 
(starts and ends in the gene or exon, respectively). The 
intervals are extracted from the annotation file of the t2t 
reference genome [16]. For the genes, we have limited the 
selection to protein coding genes by extracting only genes 
with the attribute protein_coding. The genes are 
the complete intervals annotated as genes, including the 
coding exons, but also the untranslated 5’ and 3’ regions 
and (sometimes very long) introns. The intergenic region 
is the remaining part of the genome after excluding the 
genes.

Figure 9 shows that most of the t2t-reference-genome 
consists of intergenic regions. In these regions, we have 

Fig. 7  Comparison of the wall time of FourWay, FourWay+Pairwise and Quarter with different parallelization strategies. Left: Speedup as a function 
of the number of threads used for parallelization, for fixed k = 25 . Right: Wall times for different prefix lengths g (x-axis) and number of threads 
(color). Each choice of g ≤ ⌊k/2⌋ divides the k-mers into 4g chunks that can be processed independently in parallel. With g = 0 , the whole array 
is processed as one chunk and only one thread is used. If 4g is less than the number of threads, only 4g threads can be used



Page 12 of 16Zentgraf and Rahmann ﻿Algorithms for Molecular Biology           (2025) 20:13 

the highest proportion of non-unique k-mers. Within the 
genes, the fraction of strongly unique k-mers is at about 
75%. When focusing on protein coding exons, the frac-
tion of strongly unique k-mers is > 80% . This enables 
applications with a focus on exons to be based on strongly 
unique k-mers. For example, the typical (protein-coding) 
gene should be uniquely identifiable by a large number of 
strongly unique 25-mers.

Fine‑grained uniqueness distribution
We have taken a closer look at which positions strongly 
unique 25-mers are present in the human genome. In 
Fig.  10, we visualize the distribution of the different 
types of 25-mers in the reference genome, excluding the 
Y chromosome and the mitochondrial DNA, at a resolu-
tion of 100 000 basepair blocks.

As expected, the centromeres of all chromosomes 
mainly consist of non-unique k-mers. The strongly 
unique k-mers (green) are spread over all chromosomes. 

Weakly unique k-mers are rare in general but can also be 
found in most parts of the chromosomes, but are concen-
trated around the centromeres and in the X chromosome.

Application perspectives
Among the many possibilities, we discuss two possible 
applications of strongly unique k-mers that are enabled 
by the new efficient algorithms to identify weak k-mers 
presented in Section Methods: sequencing error correc-
tion and xenograft sorting.

Sequencing error correction
Different types of errors can occur during DNA sequenc-
ing. While insertions and deletions are rather rare, 
substitutions are the most common, at least for typi-
cal high-throughput sequencing technologies [17, 18]. 
Several approaches to correct reads that may contain 
sequencing errors are based on k-mer frequencies in the 
sequenced dataset. If a read includes a sequencing error, 

Fig. 8  Left: Absolute number of strongly unique, weakly unique and non-unique (multi) k-mers in the t2t reference genome for different values 
of k (stacked bar chart). The total number of k-mers rapidly increases for k between 13 and 19. For k ≥ 21 , there are only a few more new k-mers 
with increasing k. Right: Percentage of strongly unique k-mers among the distinct k-mers. For k > 25 , almost 90% of the distinct k-mers are strong

Fig. 9  Comparison of 25-mers in intergenic regions, coding genes and exons. A 25-mer is part of a gene/exon if it is completely contained 
in the corresponding annotated interval. Top plot: relative fractions. Bottom plot: absolute number of positions
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all of the k-mers that overlap the erroneous position are 
changed. As these errors are rare, the same error typically 
does not happen twice or at least not very often; this is 
a common assumption. Therefore, sequencing errors are 
expected to generate a number of unique or rare k-mers 
in the sequenced dataset that have a Hamming distance 
of 1 to a much more frequent (actually present) k-mer in 
the dataset.

Error correction methods may exploit this as follows: 
For each unique or rare k-mer x, one may ask whether 
there is a single frequent Hamming-distance-1 neigh-
bor y in the dataset. If several such rare k-mers overlap 
the same basepair in a read and agree on the same base-
pair in the respective frequent neighboring k-mers, the 
read can be reliably corrected at this position. Our algo-
rithms would need to be modified to report the pairs 
(x, y) if one wanted to use them for error correction, but 
they are good candidates to speed up existing error cor-
rection tools [19, 20

However, we were wondering if the usual assump-
tion that most rare k-mers are Hamming neighbors of 
frequent k-mers is actually true, as this is an assump-
tion of many error correction methods, and has, to our 
knowledge, never been systematically examined. One 
would expect that almost all of the rare k-mers (especially 
unique k-mers) in a whole genome sequencing (WGS) 
dataset are weak, and that there are few strongly unique 
k-mers.

We therefore applied the FourWay+Pairwise method 
to the 25-mers of two WGS datasets. The first one is from 
an Ossabaw pig (SRA accession SRR19175873) with 
a high mean coverage of 80× . The second one are the 
NIST_Stanford_Illumina_6kb_matepair reads 
of the son of the GIAB Ashkenazi Trio (HG002). For each 
dataset, the 25-mer frequency histogram (orange y-axis; 
log scale) and the fraction of strong 25-mers (green 
y-axis; linear scale) are overlaid in Fig. 11 for every k-mer 
occurrence count up to 200.

Fig. 10  Distribution of strongly unique, weakly unique and non-unique k-mers in the t2t reference genome. We split the genome into blocks 
of 100 000 base pairs. For each block, we computed the relative fraction of strongly unique (green), weakly unique (blue) and non-unique (orange) 
k-mers that start in it. Each block is represented by a small vertical stroke; the relative fractions are encoded by the transparency from 0.0 (invisible) 
to 1.0 (solid color). Regions with repetitive DNA become visible, in particular the centromeres, but also other repeats
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In the high-coverage dataset (left, 80× coverage), the 
fraction of strong 25-mers is always below 10%, except for 
rarely occurring 25-mers, and especially unique 25-mers, 
where is rises up to 37%. This is an unexpectedly high 
fraction if we assume that the unique and rare 25-mers 
are erroneous versions of the frequent ones. Nonethe-
less, 63% of the unique 25-mers are weakly unique and 
can potentially be used for error correction. It is unclear 
where the strong rare 25-mers originate from: Are they 
modified versions of more frequent 25-mers derived by 
an insertion or deletion, which we do not detect, or are 
they modified by more than a single substitution? Do 
they originate from non-human DNA (contamination), 
or from a different unknown source?

For the standard-coverage dataset (Fig.  11 right, 
25× ), the picture is different, and a substantial frac-
tion (between 40% to 50%) of frequent k-mers with 
their occurrence frequency around the main peak of 25 
is strong, i.e., without a Hamming-distance-1 neighbor 
in the dataset. Interestingly, of the very rare and unique 
k-mers, also a large fraction of close to 40% is strong, 
which is a similar fraction as in the high-coverage dataset.

These results suggest that a close investigation of the k-
mer dynamics in WGS datasets may be warranted, espe-
cially concerning commonly made assumptions for error 
correction.

Xenograft sorting
The concept of weakly unique and strongly unique k-mers 
can be adjusted to different applications by slightly modi-
fying the definition of unique. When indexing a reference 
genome, as exemplified in our results, a k-mer is naturally 
unique if it occurs at a single position on a single chro-
mosome, considering both strands of all chromosomes.

However, in a transcript quantification task, it should 
be considered as unique if it occurs in a single transcript, 

but it may occur several times in that transcript. In a 
metagenomics species identification or quantification 
task, it should be considered as unique if it occurs in a 
single species (possibly several times).

As a concrete example, we now have a closer look at 
the xenograft sorting problem briefly mentioned in the 
Introduction. The aim is to classify a set of reads accord-
ing to their species of origin (e.g., human tumor or mouse 
tissue). The alignment-free xenograft sorting tool xeng-
sort [3] initially builds an index of all canonical 25-mers 
in the human and mouse reference genome and associ-
ates species information (only human, only mouse, both) 
with each canonical 25-mer. In this application, a k-mer is 
unique if it is only part of one species (human or mouse, 
but possibly occurs several times in the same species). 
A k-mer is marked as weakly unique if it is unique for 
human [mouse] but has a Hamming-distance-1 neighbor 
that occurs in mouse [human], or in both species.

For marking weak k-mers in this application, our algo-
rithms have to be modified to take the associated species 
information (“values”) into account: Even if a neighbor-
ing k-mer x′ exists for some k-mer x in the k-mer set of 
human and mouse, the pair x, x′ would only be consid-
ered as weak if they were part of different species (or one 
of them part of both species).

The published xengsort application contains such a 
method, which is run on the union of the genomes, con-
taining 4 496 607 845 ≈ 4.5 billion 25-mers. As reported 
in the original publication [3], this takes 158 wall-time 
minutes overall, even though it is at least partially par-
allelized with 8  threads. This reported time on a 64 GB 
machine does include severaled chunk passes through 
the array and pre- and post-processing.

We have replaced this method in xengsort by 
Quarter and run it under the same circumstances on the 
same machine, with the same number of passes, the same 

Fig. 11  25-mer frequency histogram (orange right y-axis; log-scale) and fraction of strong 25-mers (green left y-axis; linear scale) for two datasets. 
Left panel: An Ossabaw pig with a high average coverage of 80× . A high number of the distinct 25-mers in this sample is unique. Of these, 37% are 
strongly unique and 63% are weakly unique. Right panel: The son of the GIAB Ashkenazi Trio (HG002). The average coverage is 25× . Again, a high 
number of the distinct k-mers in this sample is unique. Of these, 39% are strongly unique and 61% are weakly unique
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number of threads, and with the same pre- and post-pro-
cessing. The total time using the Quarter algorithm is 
6.1 min instead of the original 158 min, a speedup fac-
tor of 25.9. This illustrates the potential of our new algo-
rithms for real-world applications in DNA sequence 
analysis.

Discussion and conclusion
We have introduced the weak (canonical) k-mer iden-
tification problem, which does not seem to have been 
considered at a large scale elsewhere, even though the 
identification of strongly unique k-mers is useful in many 
different contexts in alignment-free sequence analysis. 
We have developed and evaluated engineered algorithms 
to identify weak k-mers that require a sorted array of 
k-mers and their reverse complements as input. The best 
method FourWay+Pairwise needs at most 40 s to iden-
tify weak k-mers for any k = 13, . . . , 31 on the human 
t2t reference genome, using 8 threads. All methods need 
less than 2.5 min for each of these tasks. These times are 
much faster than for querying all 3k canonical neighbors 
for each canonical k-mer in a fast hash table (65 min for 
25-mers on the same dataset), even when adding the ini-
tial sorting time for the k-mer array (below 300 s).

The FourWay recursive comparison based algorithm 
benefits from its cache-friendly design and from hard-
ware prefetching, but suffers from book-keeping over-
head once the examined intervals become small. The 
improved FourWay+Pairwise method that switches 
to pairwise Hamming distance tests on small intervals is 
always faster, for any reasonable interval length threshold 
to switch to pairwise comparisons. The Quarter group-
ing algorithm shows comparably good performance to 
FourWay+Pairwise for k ≥ 21 , but suffers from large 
buckets for smaller  k. Overall, FourWay+Pairwise is 
the method of choice with overall best performance and 
excellent parallelization performance.

The new algorithms have practical relevance in applica-
tions, as shown by the the xenograft sorting example in 
Section Xenograft sorting. Moreover, our results on the 
classification of rare and frequent k-mers in WGS data-
sets suggest further research to better understand poten-
tial improvements for error correction methods on raw 
DNA sequence data.

From a practical point of view, it is of high interest to 
develop methods that do not require a sorted expanded 
array of k-mers as input but that instead work directly on 
a compact hash table representation of the input set, sim-
ilar to neighborhood generation, but with performance 
comparable to the methods presented here.

The algorithms in this work have been engineered for a 
Hamming distance of 1. It would be interesting to extend 
the problem for Hamming distances ≥ 2 , as this would 

increase the tolerance against a combination of sequenc-
ing errors and SNPs in a small interval. However, one 
would most likely need a different approach, perhaps a 
transformation to eulertigs [21] and branching on their 
FM index, or an approach based on search schemes [22].
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