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Abstract

Quantum computing holds the promise of addressing some particularly difficult problems
that are out of reach for classical computers, such as simulating many interacting quantum
particles. Instead of laboriously calculating the evolution of each particle, quantum com-
puters turn the problem itself into the computational system, allowing qubit dynamics to
mirror particle interactions. Calculating electron correlations through the Green’s function,
which demands exponential classical memory, becomes feasible in reasonable time with a
novel quantum algorithm based on linear response theory. This method, with two-qubit gate
scaling akin to the Hadamard test, goes beyond traditional mappings like Jordan-Wigner,
proving powerful for two-dimensional systems burdened by long Pauli strings. We also
contextualize its application to the exploration of the phase diagram of correlated electrons.

Another challenging area is combinatorial optimization, for which some problems are
representable in terms of Ising problems. The ground state spin configuration to the Ising
problem can be found via quantum annealing for which the minimum energy gap between the
lowest energy states limits the evolution rate. Our approach optimizes annealing schedules
to accelerate solution times for arbitrary Ising problems that can be mapped to the Lechner-
Hauke-Zoller architecture. We achieve an average speed-up by a factor of ∼3.5 in reaching
a ground state fidelity of 90%.
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Zusammenfassung

Quantencomputing verspricht, einige der Probleme zu lösen, die aufgrund von begrenztem
Rechenspeicher für klassische Computer unzugänglich sind. Ein Beispiel ist die Simula-
tion vieler wechselwirkender Quantenteilchen. Anstatt aufwendig die Evolution einzelner
Teilchen zu berechnen, werden diese in Form von Qubits Bestandteil des Rechensystems;
die Interaktionen zwischen den Teilchen werden durch die Dynamik der Qubits nachgebil-
det. Die Berechnung von Elektronenkorrelationen über die Green’sche Funktion wird durch
einen neuartigen Quantenalgorithmus auf Basis linearer Antwortfunktionen möglich. Unser
Verfahren skaliert vergleichbar mit dem Hadamard-Test in Bezug auf Zwei-Qubit Gatter
und kann adaptiert werden für zweidimensionale Systeme, für welche nicht-lokale Trans-
formationen über Jordan-Wigner hinaus vorteilhaft sind. Zudem stellen wir den Einsatz des
Algorithmus in den Kontext der Ermittlung des Phasendiagramms korrelierter Elektronen.

Ein weiteres anspruchsvolles Gebiet sind kombinatorische Optimierungsprobleme, die als
Ising-Probleme formuliert werden können. Die Grundzustandskonfiguration solcher Syste-
me kann mittels Quanten-Annealing gefunden werden, wobei die minimale Energiedifferenz
zwischen den niedrigsten Energiezuständen die Evolutionsgeschwindigkeit begrenzt. Unser
Ansatz optimiert den Treiber zur Beschleunigung von Annealing Zeiten für beliebige Ising-
Probleme, welche in der Lechner-Hauke-Zoller Architektur abgebildet werden können. Die
Zeit, die man benötigt um mit einer Wahrscheinlichkeit von 90% den Grundzustand zu
finden, wird durchschnittlich um den Faktor ∼3.5 reduziert.
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Preface





Quantum Computing in the NISQ era
If we were able to harness quantum computers effectively, they hold the promise of solving
some classically intractable problems efficiently. Traditionally, information is stored in bits,
which represent one of two possible states, 0 and 1. In contrast, quantum computers are
based on the principles of quantum mechanics, operating beyond binary logic.
The building block of quantum computers is the qubit, acting as the quantum analogue
to the classical bit. Until measured, qubits remain in a superposition of states 0 and 1,
which is one of the mechanism contributing to massive speed-ups in computation. The
state space in which qubits exist, the Hilbert space, is of dimension 2𝑛 for 𝑛 qubits. From
a classical perspective, this signifies a doubling in memory for each additional qubit. By
design, an 𝑛-qubit register can represent a superposition over all 2𝑛 classical bit strings.
This is important when it comes to encoding entangled states. Entanglement is an intrinsic
feature of quantum systems and necessary for quantum speed-ups over classical algorithms.
In first approximation, entanglement implies the dependence of one qubit state onto another
qubit state, creating a correlation between them.
Entangled states cannot be expressed as products of individual states. For such product
states, the memory requirement scales linearly with the number of qubits, e. g., 2𝑛 complex
numbers can represent the product state of 𝑛 qubits. However, accounting for entangled
states typically means that we need to classically store all 2𝑛 complex numbers. By con-
struction, the number of required qubits remains the same. Here, quantum computers
demonstrate a key advantage over classical computers. Superposition enables a quantum
state to represent a coherent linear combination of configurations, where each configura-
tion is associated with a complex probability amplitude. Any operation on that quantum
state affects all probability amplitudes. If that quantum state is also entangled, then those
operations can be used to exploit correlations between subsystems and enable constructive
or destructive interference between probability amplitudes. While constructive interfer-
ence leads to desired configurations becoming more probable as solutions to a problem,
destructive interference suppresses unwanted solutions.
This comes in handy especially if we were to simulate correlated quantum states, as can be
found in many-body systems. Electrons typically repel each other, which makes a quan-
titative description of many electrons interacting with each other cumbersome. Quantum
computers can mimic the behavior of such systems in a natural way without the need to
employ an exponential amount of computational resources. Advanced materials rely on the
investigation, understanding and utilization of such systems. Engineering high-temperature
superconducting materials is to this day an aspirational goal, which could lead to many
useful applications. Even better if we were able to deliberately turn on and off such features
within the same material, enabling a switch from superconducting to Mott-insulating phases
(a material that behaves as an insulator due to strong electron-electron interactions, even
though classical band theory would predict it to be conducting), and vice versa.
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For such correlated systems, the Green’s function (GF) [1] plays a significant role. It can be
seen as the propagator for many-body systems, containing information on correlations and
quasi-particle excitations such as Cooper pairing. Thus, at the starting point of many-body
studies involving complex particle interplays leading to exotic phases, evaluating the GF
is paramount. We show how to accurately evaluate the GF for small cluster systems on a
quantum computer, and how to extrapolate the results to larger systems. Put differently, we
showcase how many-body systems can be solved with a relatively small quantum chip.

In a different context, the superposition principle together with the ability of quantum
particles to tunnel through thin barriers can be leveraged. Some combinatorial optimization
problems [2] can potentially benefit from these quantum features as they can be addressed
by mapping them onto physical Ising models. The solution to these problems is the ground
state configuration of spins. The configuration space maps a given configuration of spins
onto an energy landscape. Depending on the problem to solve, these landscapes can take
on arbitrary forms and classical optimization algorithms, such as Monte-Carlo algorithms,
can get stuck in local minima.

Quantum annealing, yet a different form of quantum computation, enables a system to escape
such local minima. On the one hand, the superposition of configurations leads to an effective
parallel scouting for the optimal solution, for which energetically lower configurations will
be favored. On the other hand, the global state can tunnel through energy barriers, that
separate local minima. To this day, it is still an open question as to whether or not quantum
annealing can efficiently solve combinatorial optimization problems. If it does, however, it
will be attributed to these two features.

The landmark paper on quantum supremacy [3] has sparked great interest in the research
field of quantum computation, which has now advanced to a playground for sophisticated
hardware and algorithms. Before we get too excited, we need to acknowledge that currently
we exist in what is called the noisy intermediate-scale quantum (NISQ) era [4], implying
error prone machines. There are a handful of physical implementations of qubits; each
comes with its advantages and disadvantages. A large portion of today’s research evolves
around superconducting qubits [5], e. g., how to make them more robust against any
disturbance from the outside world. There are many endeavors to dampen the impact of
imperfect machines, both on hardware and software fronts.

This thesis puts emphasis on quantum algorithms, while acknowledging hardware con-
straints. To that end, we explore shortcuts to quantum advantage, that can be achieved
today. Academically, quantum advantage refers to the idea of solving classically intractable
problems in a reasonable time with quantum hardware. Although first demonstrations to-
wards quantum advantage were presented, a generalization to a broader range of problems is
still an aspirational goal of the research community. Shortcuts to quantum advantage lever-
age existing, physically motivated techniques. Abstract problems are mapped to physical
quantum systems that can evolve, be controlled and measured. Thus, classical calculations
gradually shift towards an assisting function such as stabilizing measurement outcomes or
updating variational parameters.
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0 Elements of quantum computation

The reader is provided with a repository of concepts, which are fundamental to the devel-
opment of this work.

0.1 Quantum Bits

Quantum computers do not work with bits, but their quantum counterpart: the qubit. While
bits take on only the binary values 0 and 1, a qubit, which is a shorthand notation for
quantum bit, is a construct with assigned probability amplitudes to the computational basis
states |0⟩ and |1⟩. In theory, these amplitudes stay alive as long as the qubit is not measured.
This turns out to be a huge advantage as it is possible to store working memory of the
largest supercomputers today in a quantum chip consisting of merely a couple dozen qubits.
Mathematically, a state of a qubit |Φ⟩ is defined via

|Ψ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ =
(
𝛼

𝛽

)
. (0.1)

Here, 𝛼 and 𝛽 are probability amplitudes associated with the states |0⟩ and |1⟩, respectively.
By virtue of being probability amplitudes, their squared values must add up to one, i. e.,
|𝛼 |2+|𝛽 |2= 1.

An alternative way of representing the state of a qubit is via the density matrix 𝜌̂. In its
most general form, the density matrix is defined as

𝜌̂ =
∑︁
𝑖

𝑝𝑖 |Ψ𝑖⟩⟨Ψ𝑖 |, (0.2)

where 𝑝𝑖 denote the weights of distinct quantum states |Ψ𝑖⟩. While a system that cannot
be reduced to a single projector is called a mixed state, a pure state consists only of
a single quantum state, collapsing the sum to 𝜌̂ = |Ψ𝑖⟩⟨Ψ𝑖 |. Hence, tracing over the
squared density matrix in a pure state gives one, whereas if the state is mixed, then the
trace is smaller than one. We can make use of the Bloch sphere representation, Fig. 0.1,
|Ψ⟩ = cos

(
𝜃
2
)
|0⟩ + 𝑒−𝑖Φ sin

(
𝜃
2
)
|1⟩ with angles 𝜃 ∈ [0, 𝜋],Φ ∈ [0, 2𝜋) being the latitude and

longitude on the sphere, respectively. A qubit in equal superposition is achieved for 𝜃 = 𝜋/2
(or likewise 𝜃 = 3𝜋/2), i. e.,

|Ψ⟩ = ( |0⟩ + 𝑒−𝑖Φ |1⟩)/
√

2, (0.3)

where we call Φ the relative phase between the basis states. Although not an observable
in the traditional sense (it cannot be measured directly, but it has measurable effects on
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Figure 0.1: The Bloch sphere represents the state space of a single qubit. The angles 𝜃 and Φ fully
describe a pure quantum state. Mixed states are points inside the sphere.

interference phenomena), this phase is key to exploiting interference and superposition in
quantum demonstrations. Operations on qubits then correspond to rotations of that sphere
with respect to 𝜃 and Φ. Pure quantum states correspond to a point on the surface of the
sphere. Mixed states however are points inside the sphere.

Transformation of such states is possible via unitary operations 𝑈̂. These are 2× 2 matrices
with 𝑈̂†𝑈̂ = 𝑈̂𝑈̂† = I that preserve the norm of a quantum state. For instance, the dynamics
of a quantum system are governed by the time-dependent Schrödinger equation

𝑖ℏ
d
d𝑡
|Ψ(𝑡)⟩ = 𝐻 |Ψ(𝑡)⟩, (0.4)

where 𝐻̂ is called the Hamiltonian, representing the energy of the system, and ℏ is the
reduced Planck’s constant. The solution to the time-dependent Schrödinger equation is the
the time-evolution operator, which evolves a quantum system from time 𝑡′ to time 𝑡 is given
by

𝑈̂ (𝑡, 𝑡′) = 𝑒− 𝑖
ℏ
𝐻 (𝑡−𝑡′) , (0.5)

i. e., 𝑈̂ |Ψ(𝑡′)⟩ = |Ψ(𝑡)⟩. For a system with a time-independent Hamiltonian (implying
energy conservation), the time-dependent Schrödinger equation admits separable solutions
whose spatial part satisfies the time-independent Schrödinger equation

𝐻̂ |Ψ⟩ = 𝐸 |Ψ⟩. (0.6)

The time-independent Schrödinger equation is hence an eigenvalue equation, where |Ψ⟩ is
an eigenstate to the Hamilton operator 𝐻̂, for which the eigenvalue is the energy 𝐸 . The
lowest energy eigenvalue is called the ground state energy, and the corresponding eigenstate
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is called the ground state. The eigenstate with the next highest energy is called the first
excited state. Many problems for which quantum computers are employed seek the ground
state configuration of a quantum system, for which classical diagonalization is not feasible
in reasonable time due to the size of the system and thereby due to classical memory
limitations.

0.2 Quantum processing units and emulators

The system in which qubits live is the quantum processing unit (QPU). We face major
challenges in the engineering thereof [6]. For instance, even slight mistakes in the production
process can render a superconducting quantum chip useless. One of the metrics that is
steadily increased is the number of qubits on a chip. More qubits mean more computational
power, but they come with their own set of challenges, too. Given the limited space of
quantum chips, crosstalk [7], i. e., the unwanted interaction between qubits due to close
proximity amongst each other, is one of the challenges that need to be considered. Another
challenge is the engineering of connection lines between the qubits. Clever ways of arranging
qubits into a qubit layout are needed to address these challenges. Likewise, given a qubit
layout, quantum algorithms need to be adjusted such that they target qubits that resemble
high connectivity and low error rates.

Maintaining quantum computers is high effort, and that is why a reasonable testbed for
algorithms are quantum emulators. As the name suggests, a quantum chip is emulated by
classical hardware and is then used to demonstrate what could be expected, if a problem was
to be solved on actual quantum hardware. On the other hand, quantum simulators physically
mimic a quantum device in terms of qubit layout, interconnectivity, error rates for certain
operations, execution time of those operations and lastly coherence times. While emulators
are often implemented on CPUs, simulators are mainly implemented as QPUs.

To that end, simulators come with specifications, that gives the user an idea of the types
of algorithms, that can be run on a quantum computer. The most prominent ones are gate
errors as well as 𝑇1 and 𝑇2 times, referred to as the relaxation time and dephasing time,
respectively. While 𝑇1 indicates how long it takes the qubit to return to thermal equilibrium
with the environment, 𝑇2 gives an upper limit on how long a qubit can remain coherent, i. e.,
how long the state of a qubit can be described by the time-dependent Schrödinger equation.
Not to forget the execution time of given gates, which in accumulation shall stay well below
𝑇2 to guarantee for coherent calculations.

0.3 Gate-based quantum computation

In order to perform calculations on quantum hardware, one needs to perform operations
on qubits. One way to perform such operations is in form of quantum gates. The latter
are capable of rotating qubits in the Bloch sphere, Fig. 0.1, altering their states. Quantum
algorithms can be described by a sequence of quantum gates acting on qubits. These gates
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are different in their implementation, purpose, execution speed and accuracy. Often, one
can combine several basic gates into more complicated gates, that serve very specific tasks.
Depending on the technical nature of the quantum computation platform, a realization of
quantum gates can take different forms. For instance, if we were to look at superconducting
qubits, then carefully designed microwave pulses are responsible for qubit rotations.

0.3.1 Elementary gate operations and universal quantum computation

Universal quantum computing is the ability to approximate any unitary transformation to
arbitrary precision using a finite set of natively available quantum gates. Information is
manipulated via operations in form of qubit rotations. In a gate based quantum computing
approach, the sequence of operations applied to a register of qubits is called a quantum
circuit. The register itself can be understood as the computation platform, as it encompasses
all the qubits drafted for the execution of a given task. Many gates target only one qubit. We
call them single-qubit gates. Such gates typically have a short execution time and generate
fewer errors per operation, than multi-qubit gates. These gates target two or more qubits
simultaneously and thereby are capable of generating entanglement. Multi-qubit gates take
significantly longer execution time, and the errors dominate over single-qubit operation
errors. As such, it is more often than not advisable to reduce the number of multi-qubit
operations to improve the quality of results.

0.3.2 Jordan-Wigner mapping and Majorana fermions

Assume we wish to investigate fermion systems, say a group of electrons in a confined
region. Not only do electrons repel each other. By virtue of being fermions, they obey to
the Pauli exclusion principle; it states that no two fermions can occupy the same quantum
state in a given quantum system at the same time. Hence, we need to find a way to map the
physics of such particles onto the computational elements, the qubits, such that synchronized
qubits behave as if they were fermions. Pauli exclusion or repulsion is encoded in the states
of the qubits, which can be read out to extract the fermionic properties one wishes to study.

For the study of time-dependent correlators, fermionic operators can be represented by Her-
mitian Majorana operators. The latter obey to the anti-commutation relations (see Eqs. (0.7)
and (0.8) below) as well and can be subject to the Jordan-Wigner (JW) transformation.

0.3.2.1 Jordan-Wigner mapping

The JW mapping [8] is the simplest, straight forward mapping from fermionic operators to
qubit operators, imposing fermionic behavior onto how qubits react to specific operations.
For instance, the wave function associated with two fermions changes its sign, if two
fermions are being exchanged, cf. Eq. (0.7). Moreover, two fermions are not allowed to
occupy the same quantum state simultaneously, known as the Pauli exclusion principle,
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cf. Eq. (0.8). Consequently, qubit algebra obeys to the anti-commutation relations. The
mathematical formulation of stated fermion behavior reads

{𝑐𝑖, 𝑐†𝑗 } = 𝑐𝑖𝑐
†
𝑗
+ 𝑐†

𝑗
𝑐𝑖 = 𝛿𝑖 𝑗 , (0.7)

and

{𝑐𝑖, 𝑐 𝑗 } = 𝑐𝑖𝑐 𝑗 + 𝑐 𝑗𝑐𝑖 = 0,
{𝑐†
𝑖
, 𝑐

†
𝑗
} = 𝑐†

𝑖
𝑐
†
𝑗
+ 𝑐†

𝑗
𝑐
†
𝑖
= 0, (0.8)

where 𝑐𝑖, 𝑐†𝑖 are the fermionic annihilation and creation operators, respectively. The JW
mapping is one of the simplest ways to map fermionic creation and annihilation operators
onto Pauli matrices, that satisfy the above anti-commutation relations Eqs. (0.7) and (0.8).
This transformation is achieved via

𝑐𝑖 =

( 𝑖−1∏
𝑘=1

𝜎𝑧
𝑘

)
𝜎−
𝑖 ,

𝑐
†
𝑖
=

( 𝑖−1∏
𝑘=1

𝜎𝑧
𝑘

)
𝜎+
𝑖 , (0.9)

where 𝜎−
𝑖
= (𝜎𝑥

𝑖
− 𝑖𝜎𝑦

𝑖
)/2 is the spin-lowering operator and 𝜎+

𝑖
= (𝜎𝑥

𝑖
+ 𝑖𝜎𝑦

𝑖
)/2 is the spin-

raising operator. The string of 𝜎𝑧 matrices acts on qubits with index 𝑘 = 1, 2, · · · , 𝑗 − 1,
i. e., on all qubits that come before the target qubit 𝑗 .

0.3.2.2 Majorana fermions

Majorana fermions are distinctive fermions as they are their own anti-particles. They can
be written as 𝑥𝑖𝜎 = 𝑐𝑖𝜎 + 𝑐†

𝑖𝜎
and 𝑦𝑖𝜎 = 𝑖(𝑐𝑖𝜎 − 𝑐†

𝑖𝜎
). In topological quantum computers,

two spatially separated Majorana fermions combine to a highly robust qubit.

Importantly, single Majorana operators are, in stark contrast to single fermion operators,
Hermitian. Per definition, they square to identity 𝑥2

𝑖𝜎
= 1, which implies that they are their

own inverses and consequently unitary. This renders them suitable for an evaluation of
correlators of the form ⟨𝑐(†)

𝑖
(𝜏 > 0)𝑐(†)

𝑗
(𝜏 = 0)⟩. Thereby, they are a powerful tool to study

correlated systems on gate based quantum computing platforms.

0.4 Applied Quantum Error Mitigation

As long as quantum computers remain prone to errors, we need routes how to increase the
quality of results. To that end, we distinguish between error mitigation and error correction.
Error mitigation [9] effectively decreases the noise stemming from quantum machines; error
correction [10] removes that noise up to small, yet non-zero error target at the expense of a
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large qubit overhead. As of today, error correction remains an engineering challenge, albeit
recent works [11] showcase significant progress on the road towards error corrected qubits.
Here, we will put our focus on error mitigation schemes, which are relatively simple to
implement and harness. Specifically, we will outline four techniques, that will reappear in
this thesis later on, as they were utilized to raise the fidelity of our computations.

0.4.1 Dynamical decoupling

Dynamical decoupling (DD) is a quantum control technique employed to mitigate decoher-
ence, particularly on idle qubits during quantum computations. The core idea behind DD
is to suppress the effects of slow, quasi-static noise that typically arise from low-frequency
environmental fluctuations by systematically decoupling the qubit from its environment
through carefully timed control pulses.

In practice, DD involves applying sequences of Pauli gates, such as repeated applications of
𝑋 , 𝑍 , or combinations like 𝑋𝑌𝑋𝑌 , to idle qubits. These sequences are engineered so that the
net effect of environmental interactions, particularly those that induce phase-flip (dephasing)
or bit-flip errors, averages out over time. The choice of gate types and the structure of
the sequence depend on the dominant noise sources and the spectral characteristics of
the environment. In essence, DD restores coherence by enforcing a controlled evolution
that aligns with the unitary dynamics prescribed by the Schrödinger equation, thereby
counteracting unwanted environmental perturbations.

0.4.2 Zero-noise extrapolation

Zero-noise extrapolation (ZNE) [12] is a noise mitigation technique that embraces inherent
noisiness by systemically amplifying the noise in a quantum circuit, thereby enabling a
systematic extrapolation to the zero-noise limit. The standard approach to ZNE involves
augmenting the circuit with additional noisy operations, typically by inserting redundant
two-qubit gates such as controlled-NOT (CNOT) or controlled-Z (CZ) gates. These gates
function by flipping (CNOT) or entangling (CZ) the target qubit conditional on the control
qubit being in the |1⟩ state. From this point forward, we refer to these simply as CNOT or
CZ gates, respectively.

Importantly, applying a pair of consecutive CNOT gates on the same qubits theoretically
implements the identity operation, leaving the quantum state unchanged. However, in prac-
tice, each physical gate introduces some level of noise. ZNE leverages this by deliberately
introducing such redundant gates to scale the overall noise level in the circuit by a factor 𝑓 .
For instance, an extrapolation factor of 𝑓 = 3 corresponds to replacing each CNOT with
three sequential CNOTs. Typical values used in experiments include 𝑓 = 1 (no noise ampli-
fication), 𝑓 = 3, and 𝑓 = 5. After executing the circuit at various noise amplification levels,
one can perform an extrapolation (commonly linear, polynomial, or exponential depending
on the circuit’s depth) to estimate the observable of interest in the ideal zero-noise limit.
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Shallow circuits often admit accurate linear extrapolations, whereas deeper circuits require
higher-order fitting models due to the compounded effects of noise.

0.4.3 Pauli twirling

Pauli twirling is a technique used in quantum error mitigation to approximate an arbitrary
noise channel by a stochastic Pauli channel, simplifying modeling and error mitigation.

The implementation involves inserting randomly chosen Pauli gates before and after two-
qubit Clifford gates (typically CNOT or CZ gates) as follows. For a given two-qubit gate
𝑈, one applies a gate sequence of the form 𝑃1 ⊗ 𝑃2 · 𝑈 · 𝑃′1 ⊗ 𝑃′2, where the Pauli gates
𝑃𝑖, 𝑃′𝑖 are selected such that the overall transformation is equivalent to 𝑈. This preserves
the logical action of the quantum circuit while randomizing coherent error contributions.
This randomized gate dressing is performed across an ensemble of equivalent quantum
circuits: each of them is structurally distinct in terms of gate composition, but operationally
identical in the ideal, noiseless setting. Measurements from these randomized circuits are
then averaged to produce a final result.

0.4.4 Measurement error mitigation

Readout error mitigation aims to reduce errors in measurements of bit strings. In its
standard form, one prepares the computational states of a given system size and measures
the frequency of associated bit strings. Looking at just one qubit for demonstration purposes,
we write the conditional probabilities into a calibration matrix 𝑀 of the form

𝑀 =

(
𝑃(0|0) 𝑃(0|1)
𝑃(1|0) 𝑃(1|1)

)
. (0.10)

The elements 𝑃(𝑚 |𝑛), with 𝑚, 𝑛 ∈ {0, 1}, are the probabilities of measuring the qubit in
state 𝑚, if we have prepared the qubit in state 𝑛. This matrix is then inverted and applied to
the experimental readout results.

0.5 Quantum annealing

Quantum annealing [13–16] is a technique used for finding a target eigenstate of a given
Hamiltonian. In the context of quantum computing, combinatorial problems (prominent
examples are the traveling salesman problem [17] and the maximum cut problem [18])
can be cast into the form of a transverse-field Ising model [19], where the goal is to find
the minimum energy configuration of spins. There is no known classical polynomial-time
algorithm that can solve either the maximum cut or the traveling salesman problem.
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0.5.1 Combinatorial optimization problems

Combinatorial optimization is an area of mathematics that seeks to find an optimal solution
from the set of possible solutions. The optimal solution is such that it minimizes a given
objective function associated with a given problem. This is done by introducing optimiza-
tion parameters, that are updated according to a metric representing the goodness of the
corresponding solution. One famous example is that of the traveling salesman, who needs
to travel to different locations efficiently, i. e., seeks the shortest path possible to visit 𝑁
cities exactly once and end up at the starting city. The stated problem belongs to the com-
plexity class NP-hard; its decision variant belongs to NP-complete. Similar to the quantum
mechanical Hilbert space, which doubles with the introduction with each successive spin,
any additional vertex representing a city increases the number of possible solutions. For
the traveling salesman problem, the number of possible ways is (𝑁 − 1)!. Those types of
problems can be cast into the form of a transverse-field Ising model. In its general form,
such a problem reads

𝐻 = −
∑︁
⟨𝑖, 𝑗⟩

𝐽𝑖, 𝑗𝜎
𝑧
𝑖
𝜎𝑧
𝑗
−

∑︁
𝑖

ℎ𝑖𝜎
𝑥
𝑖 , (0.11)

for which the first part corresponds to the Ising term, with the interaction matrix 𝐽 repre-
senting the coupling between spins, and the second with ℎ𝑖 being local fields acting on spin
𝑖 is the transverse-field term, enabling spin flips. The original combinatorial optimization
problem is encoded in the couplings between spins, such that the best solution is the lowest
energy eigenstate to the Ising term. One way to solve such problems is quantum annealing,
a method that uses quantum mechanics to explore the solution space of combinatorial op-
timization problems by exploiting superposition and quantum tunneling. Going full circle,
when the optimal solution is finally found, it is mapped back to the solution to the original,
combinatorial optimization problem.

0.5.2 Adiabatic quantum annealing

In quantum annealing, the transverse-field Ising model defines a time-dependent Hamil-
tonian that interpolates between a transverse-field driver and a problem Hamiltonian 𝐻̂𝑝,
whose ground state |Φ𝑝⟩ encodes the solution to the optimization problem. Typically,
one performs a population transfer between two quantum states |Φ𝑖⟩, |Φ𝑝⟩, where |Φ𝑖⟩
is the lowest energy eigenstate of 𝐻̂𝑖, via the annealing protocols 𝐴(𝜏), 𝐵(𝜏) as 𝐻̂ (𝜏) =

𝐴(𝜏)𝐻̂𝑖 + 𝐵(𝜏)𝐻̂𝑝, with 𝜏 = 𝑡/𝑇 ∈ [0, 1]. In adiabatic quantum annealing [20–22] the
population of the instantaneous ground state at any time 𝜏 stays constant, given the mini-
mum instantaneous energy gap min𝜏 Δ𝐸 (𝜏) = min𝜏 |𝜖𝑚 (𝜏) − 𝜖𝑛 (𝜏) |≡ Δ𝐸 between the two
lowest instantaneous eigenstates |𝑚(𝜏)⟩, |𝑛(𝜏)⟩ is non-zero at all times. The drawback is its
slowness, as the adiabatic condition [14]

𝑇 ≫ max
𝜏∈[0,1]

|⟨𝑚(𝜏) |𝜕𝜏𝐻̂ (𝜏) |𝑛(𝜏)⟩|
Δ𝐸2 (0.12)
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states that experimental time 𝑇 scales at best as O(Δ𝐸−2). The default schedule is more
often than not a linear ramp, e. g., 𝐴(𝜏) = 1 − 𝜏 and 𝐵(𝜏) = 𝜏, which is convenient as
such choice enables the complete transfer from 𝐻̂𝑖 to 𝐻̂𝑝. Optimal adiabatic ramps [23]
have a slightly different shape. As linear ramps show no bias towards system dynamics
with respect to suspected energy gaps, optimal adiabatic schedules are typically slower in
close proximity to the minimum gap, however allow for faster evolution at a distance from
the gap as compared to linear ramps. Yet, due to the slowness in adiabaticity, the protocols
𝐴(𝜏), 𝐵(𝜏) are often subject to more complex adaptations, providing a faster route to achieve
results similar to adiabatic annealing [24].

0.5.3 Shortcuts to adiabaticity

Shortcuts to adiabaticity [25] include counterdiabatic driving protocols [26], that prevent the
system from leaping onto higher energy states. Another, more recent approach encompasses
the suppression of errors stemming from decoherence and diabatic transitions [27]. Alter-
natively, optimal control theory [28, 29] can be used to allow (and enforce) leaps to higher
energy levels, whereby large overlap between simulated or experimental quantum state with
the analytic ground state can be achieved even in a non-adiabatic regime. Consequently,
recent studies include the automation process of designing annealing protocols [30] as well
as optimizing them based on ground state fidelities [31], [32]. Lastly, not to forget the
recent experiment on a D-Wave annealing device [33] giving proof of the scaling behavior
of kinks within the Kibble-Zurek [34] framework for both open and closed quantum systems.
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Simulation of correlated electrons
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the direct measurement scheme to the bosonization framework was conducted by D. Bagrets and is not laid
out in this thesis.





Overview

In many-body physics, interactions and collective effects are central to the intricacy of phase
diagrams observed in correlated systems. Under certain conditions, those systems can
exhibit high-temperature superconductivity, i. e., a state of matter at which electric current
flows without resistance, while tuning the same system can just as well yield a Mott-insulator,
i. e., an insulating state induced by electron-electron interactions. Electrons, naturally
correlated due to their repulsive forces amongst each other, promote the emergence of exotic
phenomena. Advanced materials that can be tuned deliberately to induce superconducting
or insulating phases need to be engineered so that quantum effects responsible for the
desired properties can manifest. The superconducting phase emerges around the critical
point controlled by doping. At lower doping level the Mott insulating phase re-emerges,
at high doping one obtains the Fermi-liquid phase (, i. e., ordinary metal). Investigation
of such systems and under which conditions certain phenomena arise is thus not only an
academic, but a practical problem to solve [35].

The Fermi-Hubbard model (FHM) comprehensively describes the behavior of correlated
electrons in a lattice, and is formally introduced in Ch. 1. Electrons are assigned a kinetic
energy that allows them to hop to nearest neighbor sites. The sites themselves can be thought
of as two orbitals, where each of them can contain an electron, with the spin anti-aligned
as per Pauli exclusion principle. Additionally, the model introduces a repulsive force onto
electrons, given two electrons occupy the same site. The competition between kinetic energy
terms allowing electrons to propagate through a lattice and the repulsive forces amongst
them leads to long range effects.

Real-world problems and the vast number of electrons associated with them render exact
diagonalization infeasible. A more practical way of solving such systems is by means of the
retarded GF. From the Lehmann representation, we obtain the analytic form

𝐺𝑅
𝑚,𝑛 (𝜔) =

∑︁
𝑘

(
⟨Ψ0 |𝑐𝑚 |Ψ𝑘⟩⟨Ψ𝑘 |𝑐†𝑛 |Ψ0⟩
𝜔 − (𝐸𝑘 − 𝐸0) + 𝑖𝜂

− ⟨Ψ0 |𝑐†𝑛 |Ψ𝑘⟩⟨Ψ𝑘 |𝑐𝑚 |Ψ0⟩
𝜔 + (𝐸𝑘 − 𝐸0) + 𝑖𝜂

)
. (0.13)

Here, 𝜔 is the frequency, |Ψ0⟩ is the ground state with ground state energy 𝐸0, |Ψ𝑘⟩ is the
𝑘th eigenstate with energy 𝐸𝑘 , 𝑐(†)𝑛 is the fermion lowering (raising) operator on orbital 𝑛
and 𝜂 is an infinitesimally small parameter preventing singularities. It is a powerful tool in
quantum chemistry, condensed matter and quantum field theory as it captures information
about electronic interactions and excitations within the system. Having the exact GF of
a given system at hand allows to deduce from it long-range order parameters. These can
include s-wave and d-wave superconducting gaps or magnetic phases across a crystal. There
are many forms of Green’s functions, and in the case of many-body fermion systems, one
often leverages the retarded GF, that describes the behavior of a system after it is perturbed.
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In time-domain, we find the relation

𝐺𝑅
𝑚𝑛 (𝜏, 𝜏′) = −𝑖𝜃 (𝜏 − 𝜏′)⟨{𝑐𝑚 (𝜏), 𝑐†𝑛 (𝜏′)}⟩, (0.14)

where 𝜏 > 𝜏′, 𝑐(†)𝑚 (𝜏) is the fermion lowering (raising) operator on orbital 𝑚 at time 𝜏
and 𝜃 (𝜏 − 𝜏′) is the Heaviside step function enforcing causality. This seemingly innocent
equation turns out to be surprisingly hard to evaluate. As it is stated, one could falsely
assume that the simple accumulation of two-point time GFs is straightforward and rewards
us with the full system GF. In practice however, to render the evaluation of this equation
accurate, one needs to incorporate all of the orbitals, and all of their correlations, in a given
crystal. Clearly, this is not practical. One way of circumventing the memory hazard is by
stamping out subsystems, that are easier to handle with the computational resources at hand.
Surely, a smaller system is easier to solve; however what is solved is a poor approximation
of physical reality. All of the terms in Eq. (0.14) are influenced by orbitals outside the cutoff
range in 𝑚, 𝑛, and thus outside our calculation. We have trapped ourselves in a dilemma:
Real systems cannot be solved, and what is solvable is not real.
The discrepancy in accuracy of the latter approach is due to the influence of the self-energy
Σ. We interpret the self-energy as a correction to the energy of a system and, for that
matter, to the GF, cf. Eq. (0.13). The correction stems from the influential orbitals, that are
neglected. The relation between self-energy and GF is established via the Dyson equation

Σ(𝜔) = 𝐺−1
0 (𝜔) − 𝐺−1(𝜔), (0.15)

where

𝐺0(𝜔) =
1

𝜔 − 𝐸𝑘 + 𝑖𝜂
, 𝐺 (𝜔) = 1

𝜔 − 𝐸𝑘 − Σ(𝜔) + 𝑖𝜂 (0.16)

are the non-interacting GF and the interacting GF with the energy correction in the denom-
inator with 𝐸𝑘 being the energy of a particle with momentum 𝑘 . The ground state energy
is set to zero (𝐸0 = 0). While 𝐺0 is relatively easy to obtain via single-particle physics,
evaluation of the self-energy is still subject to many different approaches, underlining the
difficulty in obtaining it [36].
In this thesis, we discuss a route based on the variational cluster approach. It is a perturbative,
non-stochastic approach, that does not require the direct evaluation of the self-energy.
Instead, the self-energy is implicitly included throughout the calculations. In the following,
the variational cluster approach (VCA) is qualitatively outlined. Later on in Ch. 6 we will
dive into mathematical detail.
Within the VCA, the central idea is to divide a computationally demanding system into
two subsystems, which are tied together by the Dyson equation. As stated earlier, one of
the major benefits of this method is that there is no need for explicit calculation of the
self-energy of a system. What are these two subsystems?
One of them is coined the reference system and is a collection of duplicates of clusters,
e. g., subsystems of the larger system, which are disconnected from each other. In fact,
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evaluating Eq. (0.14) on such a cluster renders the calculation exact, since orbitals that could
in principle influence the calculation are isolated. Albeit, the exactness only applies to the
very restricted area of the solid.

The other system is then the interactions between the clusters, which we call 𝑉 . This
perturbation shall act as the effect of other orbitals which were neglected. We have on the
one hand the exact GF of a cluster, which is per design not exact with respect to the full
system. On the other hand, to make the cluster GF asymptotically exact for the full system,
we do need to account for the orbitals outside the cluster — and we do so indirectly.

The relation between the two subsystems, and how they are woven together to form the full
system, is once again described by a special case of the Dyson equation. Indeed, we simply
exchange the self-energy with the perturbative potential𝑉 and exchange the non-interacting
Green’s function with the cluster Green’s function 𝐺′(𝜔), since the potential is meant to
simulate the environmental influence on a small region. The reformulated Dyson equation
is now

𝑉 = 𝐺′−1(𝜔) − 𝐺−1(𝜔), (0.17)

Careful administration of perturbative terms targeting the cluster system allows to treat only
a tiny fraction as the equivalent of the full system. Michael Potthoff has found a relation
between the grand potentials of both the objective (, i. e., a large lattice system) and the
reference system (, i. e., a small cluster system) [37]. It states, that the grand canonical
potential (GCP) of the large system depends on the GF and the GCP of the reference system.
Thereby, in a self-consistent fashion, we can vary perturbation parameters to the cluster
reference system until a saddle-point with respect to the objective system’s GCP is found.
It can be shown that finding the saddle-point of the large system is equivalent to satisfying
the Dyson equation. Having found that saddle-point thus means that the cluster system in
first approximation is a good representative of the large system.

Why, even after solving the Dyson equation, does it remain only an approximation? If
a cluster is very small, then the majority of correlations amongst all orbitals needs to be
captured by the perturbation 𝑉 , whereas if the cluster is large enough, a good fraction of
interactions is already taken into account in the cluster. For a cluster of similar size as the
system, the perturbation would not be needed at all. Consequently, small clusters imply
relatively poor agreement of the simulated and physical environment. Surely, two ways
of increasing the quality of results is extending the clusters, and making good guesses on
the perturbative terms, specifically, which long range parameters they cover. It may sound
like a tedious task, however the rewards are staggering. The more careful a perturbation
is designed, i. e., the more long range parameters are meaningfully integrated into the
perturbation Hamiltonian, the easier it will be later on to deduce the superconducting gap,
magnetic phases, density of states and on-site chemical potentials or impurities. All of that
becomes a simple algebraic task, once the saddle-point is found. We have established the
importance of the Green’s function, but do not yet know how to evaluate it.

Since the Green’s function captures all of the two-point time correlation functions, evaluating
it on classical platforms is only feasible for relatively small systems. For more interesting,
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t = 0 t = τ0 < t < τ
t

Figure 0.2: One of many possible scattering processes. At time 𝑡 = 0, an electron is injected
into a system. At 𝑡 > 0, the added electron interacts (zigzag line) with another electron, lifting
it out of its place. A hole emerges at the vacancy of the displaced electron. The presence of the
hole alongside the rearrangement of electrons in the nearest vicinity results in the injected electron
becoming dressed by the influences of these interactions. Finally, at 𝑡 = 𝜏 the additional electrons
once again interacts with the displaced electron, drawing it back to its old place, thus annihilating
the hole. Image is reproduced from [38].

real world scenarios, quantum routines offer immense scaling benefits. In fact, the scaling
in the number of evaluations reduces from exponential to quadratic in number of lattice
sites, if we were to evaluate the Green’s function on a quantum computer, cf. Sec. 3.4. One
way to evaluate the Green’s function is by means of the Hadamard test.
The Hadamard test is laid out in operational detail in Sec. 3.2.1. Qualitatively, it can be
seen as a straight forward approach to perturb a system in a way as to inject (at time 𝑡) and
extract (at time 𝜏 > 𝑡) from it a fermion and check, how the system is influenced by the
sudden presence and absence of a fermion. One possible process is depicted in Fig. 0.2.
However, the Hadamard test does have one drawback: It only works in the context of the
JW transformation, a highly non-local transformation that comes with the cost of long Pauli
strings, Fig. 3.3.
The JW transformation is necessary since the Hadamard test involves single Majorana
operators as introduced in Sec. 0.3.2. In anticipation of subsection 3.2.1 the circuit repre-
sentation of the Hadamard test involves a control on single fermion operators as they appear
in Eq. 0.14. Since the ancilla qubit controlling the evolution is not part of the fermionic
system Hilbert space, the Majorana operations remain single-fermion (non-pairwise) oper-
ators. Typically, mappings that aim to preserve locality often explicitly require the insertion
of pairs of fermions in contrast to single fermions [39]. Note, that in the compact encoding
by Derby and Klassen [40] the odd fermionic subspace can be either accessible or not for
the open boundary conditions depending on particular implementation details within this
scheme. In general, if we were to use more advanced, locality-preserving mappings, then a
different algorithm needs to be used for the Green’s function. In scattering experiments one
often investigates the response of a system to a given perturbation. If the perturbation is
sufficiently small, then the response is expected to be linear. It turns out, that an algorithm
based on linear response theory allows for the injection of pairs of fermions.
What is a perturbation? To study single-particle GF, one could introduce a hopping per-
turbation. It alters the distribution of fermions, probing their individual ability to react to
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potential changes in the nearest environment. One then measures the change in the parity
expectation value over time, scaling proportionally to a response function. At last, the
response function of a system is the retarded GF. Since we measure the response function
in terms of a change in expectation values, we call this protocol the direct measurement
scheme.

A two-site dimer shall serve as our toy model, for which we demonstrate the direct measure-
ment of the Green’s function and pave the way to combine it with the VCA for determining
the phase diagram of such a dimer. The isolated cluster (e. g., a dimer) thus consists of two
correlated 𝑐 orbitals, for which each is coupled to a bath site 𝑏 that promotes delocalization.
Carefully tuning the ratio of hopping to interaction strength within the VCA reveals the
transition from a metallic state to a Mott insulator.
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1 Fermi-Hubbard model

Strongly correlated electron materials exhibit exotic phenomena such as high-temperature
superconductivity [41] and Mott-insulating phases [42]. Investigating these effects and
their origins is therefore crucial for promoting sophisticated material design [43], magnetic
levitation systems [44] and advanced energy storage [45]. Strong correlation arises due
to Coulomb interaction between electrons and can be captured within the Fermi-Hubbard
model [46]. With adding strong disorder, this model demonstrates yet another intriguing
phenomenon, the many-body localization (MBL), both in one- and two-dimensions [47–49].
All these effects are captured by the Fermi-Hubbard. Its Hamiltonian reads

𝐻̂ = −𝑡
∑︁
⟨𝑖, 𝑗⟩,𝜎

(
𝑐
†
𝑖𝜎
𝑐 𝑗𝜎 + 𝑐†

𝑗𝜎
𝑐𝑖𝜎

)
+𝑈

∑︁
𝑖

𝑛̂𝑖↑𝑛̂𝑖↓, (1.1)

where 𝑡 is the hopping, 𝑐†
𝑖𝜎

, 𝑐𝑖𝜎 are the fermionic creation and annihilation operators, 𝑈
is the Coulomb repulsion and 𝑛̂𝑖↑, 𝑛̂𝑖↓ are the fermion number operators for spin-up and
spin-down, respectively. In Fig. 1.1, the behavior of electrons is depicted. Electrons can
hop to neighboring sites, if and only if the associated orbital is not occupied, yet (see green
dashed arrows). If two electrons sit on the same site, they are subject to a repulsive force
(see red squares). Solid lines represent a possible form of a small cluster.

1

t′ 

t′ 

U′ 

w

U′ 

U′ 

U′ 

Figure 1.1: 2D lattice representing the Fermi-Hubbard model at half-filling. Each site can be
occupied by at most two fermions. Dashed and solid lines show the allowed hopping to neighboring
sites. Two fermions occupying a single site are subject to a Coulomb repulsion 𝑈′. Solid lines
indicate a possible arrangement of two-site clusters, that aggregate to a larger system. Spin orbitals
are either black (filled) or white (not filled).
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1.1 Known properties

The Fermi-Hubbard model is considered exactly solvable in 1D in the thermodynamic limit
[50–52]. Yet in higher dimensions, such a solution does not exist, which renders the FHM
not exactly solvable beyond 1D (at least, in reasonably short time).

The absence of an analytical solution is partly offset by known properties associated to
model parameter limits. We provide a summary thereof in Tab. 1.1. Four cases are being
distinguished: Firstly, the non-interacting limit,𝑈 = 0, secondly the strong interacting limit
𝑈 → ∞, thirdly 𝑡 = 0 and lastly 𝑡 ≈ 𝑈.

Limit Description

𝑈 = 0

Tight-binding regime. The electrons are not interacting,
the self-energy is zero. Mott-insulation is not possible.
The ground state is a Fermi gas with energy levels filled
up to the Fermi energy.

𝑈 → ∞

Strong correlation regime. The system becomes a Mott
insulator at half-filling. Electrons are localized, and no
two electrons can occupy the same site. For below
half-filling, mobility is in principle possible, albeit
highly restricted.

𝑡 = 0
Mott insulator. Electrons are fully localized with no
possibility of hopping to other sites. The ground state is
highly degenerate.

𝑡 ≈ 𝑈

Moderate correlation regime. The competition between
kinetic energy and on-site repulsion creates Mott
insulating, superconducting, and magnetic states,
contributing to the richness in the phase diagram.

Table 1.1: Known properties of the Fermi-Hubbard model in various limits.

1.2 Strategies to solve the Fermi-Hubbard model

In continuation of the previous section, the FHM is not exactly solvable beyond one di-
mension. Numerical methods face an inherently exponential demand in computational
resources, when transitioning to larger system sizes.

A common approach to think about the Fermi-Hubbard model is by means of Feynman
diagrams [53], which is a diagrammatic perturbation theory approach. In a nutshell, one
sums up all interaction processes amongst the particles, as well as exchange interactions,
virtual excitations, and their infinite series of possibilities in generating such diagrams —
albeit knowing that more complex diagrams are less likely to play out in reality, giving
it a lesser probability amplitude. This is approach quickly becomes intractable for more
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effective correlations, as the number of possible diagrams, i. e., those with probability
amplitudes significant enough to be included in a series, grows exponentially.

In practice there exist a handful of methods dealing with the evaluation of the GF and/or
self-energy [54]. Stochastic methods such as Quantum Monte Carlo [55] (QMC) do not
require the evaluation of the self-energy as they are mainly used for finding the minimum
energy state. Not to forget the sign problem, arising from the sign change in the wave
function due to exchange of particles.

In this thesis, we put emphasis on cluster perturbation methods [56–58]. They are capable
of mitigating computational demands by dividing a lattice system into arbitrarily small,
identical and disjoint clusters. The idea is to solve one of the many clusters and extrapolate
the result to the full system in a self-consistent fashion.

The VCA [59] can be used to relate the free energy of a microscopic cluster to the GCP of a
macroscopic system. When the latter is found, it provides an access to the phase diagram of
a given material. As the crucial step, the VCA scheme involves an evaluation of the Green’s
function which describes one-particle correlations in the interacting system. In practical
terms it amounts to an evaluation of the Green’s function using relatively small quantum
chips, which are build up of as many qubits as the number electronic orbitals contained in
a cluster, plus at least one ancilla qubit.

A common strategy to evaluate the cluster’s GF of a correlated system is based on the
Hadamard test [60–64]. As the core ingredient, it requires an implementation of controlled
single-particle fermionic operators. The latter is not problematic, provided the most well-
known mapping, the JW transformation, is used to encode fermion degrees of freedom on
a quantum computer. On the other hand, local fermion-to-qubit mappings, using additional
ancilla qubits, have been gaining popularity recently [40, 65, 66], which are beneficial in two-
or higher dimensions. A special feature of all these methods is that they construct products
of an even number of fermionic operators, in particular bilinears, while single fermionic
operators remain inaccessible. As the result, though above advanced constructions can be
used to efficiently generate an evolution operator of the Fermi-Hubbard model, they pose
an evident problem to implement the Hadamard test.

In this work, we propose a new quantum algorithm, which is rooted in the Kubo formula
of linear response theory [67], and adapted here for quantum circuits (the linear response
approach finds it application in a variety of classical scattering [68] and transport measure-
ment experiments [69]). This algorithm allows to access the Green’s function directly using
only bilinears of fermionic operators. Its construction is based solely on the algebra of Ma-
jorana operators and as such it is applicable to any local fermion-to-qubit mapping schemes.
Provided the Jordan-Wigner encoding is used, the complexities of our new algorithm and
the Hadamard test match.

The following chapters shall lay the foundation to measure the GF. The quantum circuits
that represent the FHM are shown (Ch. 2) and put together (Ch. 3) to showcase the new
algorithm on a toy model (Ch. 4).
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2 Circuit representation of the Fermi-
Hubbard Model

We start this section by outlining the Jordan-Wigner transformation (for simplicity, any op-
erator 𝑂̂ maps to 𝑂̂ ↦→ 𝑂) and present the GF in terms of fermions. A unitary transformation
is used to pivot to Hermitian Majorana fermions.
It is followed by a review of well known results in the literature [57] on how a unitary time
evolution of the Fermi-Hubbard model can be represented by a quantum circuit. This is used
to introduce an algorithm for the Green’s function measurement based on linear response
theory in the subsequent chapter 3.

2.1 Jordan-Wigner mapping

To construct an evolution operator of the cluster Hubbard Hamiltonian related to a single
Trotter step, one needs to map fermionic operators to the qubit ones. This can be achieved
in two stages. First, we introduce Majorana fermions, 𝑥𝑖𝜎 = 𝑐𝑖𝜎 +𝑐†𝑖𝜎 and 𝑦𝑖𝜎 = 𝑖(𝑐𝑖𝜎−𝑐†𝑖𝜎),
which are Hermitian operators. They obey to the anti-commutation relations

{𝑥𝑖𝜎, 𝑥 𝑗𝜎′} = {𝑦𝑖𝜎, 𝑦 𝑗𝜎′} = 2𝛿𝑖 𝑗𝛿𝜎𝜎′ ,

{𝑥𝑖𝜎, 𝑦 𝑗𝜎′} = 0. (2.1)

At the second stage, the Jordan-Wigner transformation is used to represent 𝑥𝑖𝜎 and 𝑦𝑖𝜎 via
the following sequences of 𝑋-, 𝑌 and 𝑍-gates:

𝑥𝑖↑ = I
⊗2(𝑁𝑐−𝑖)+1 ⊗ 𝑋 ⊗ 𝑍⊗2(𝑖−1) ,

𝑥𝑖↓ = I
⊗2(𝑁𝑐−𝑖) ⊗ 𝑋 ⊗ 𝑍⊗2𝑖−1,

𝑦𝑖↑ = −I⊗2(𝑁𝑐−𝑖)+1 ⊗ 𝑌 ⊗ 𝑍⊗2(𝑖−1) ,

𝑦𝑖↓ = −I⊗2(𝑁𝑐−𝑖) ⊗ 𝑌 ⊗ 𝑍⊗2𝑖−1,

(2.2)

which guarantees satisfiability of the anti-commutation relations Eq. (2.1). Consequently,
we define the correlation function for original fermions,

𝑖𝐺𝜎𝜎′
𝑖 𝑗 (𝜏) =

(
⟨{𝑐𝑖𝜎 (𝜏)𝑐†𝑗𝜎′ (0)}⟩ ⟨{𝑐𝑖𝜎 (𝜏)𝑐 𝑗𝜎′ (0)}⟩
⟨{𝑐†

𝑖𝜎
(𝜏)𝑐†

𝑗𝜎′ (0)}⟩ ⟨{𝑐†
𝑖𝜎
(𝜏)𝑐 𝑗𝜎′ (0)}⟩

)
, (2.3)

and for Majorana ones

𝑖𝑔𝜎𝜎
′

𝑖 𝑗 (𝜏) =
(
⟨{𝑥𝑖𝜎 (𝜏)𝑥 𝑗𝜎′ (0)}⟩ ⟨{𝑥𝑖𝜎 (𝜏)𝑦 𝑗𝜎′ (0)}⟩
⟨{𝑦𝑖𝜎 (𝜏)𝑥 𝑗𝜎′ (0)}⟩ ⟨{𝑦𝑖𝜎 (𝜏)𝑦 𝑗𝜎′ (0)}⟩

)
. (2.4)
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The two representations are related by a unitary transformation

𝐺𝜎𝜎′
𝑖 𝑗 (𝜏) = 1

2
𝑀†𝑔𝜎𝜎

′
𝑖 𝑗 (𝜏)𝑀, 𝑀 =

1
√

2

(
1 1
𝑖 −𝑖

)
. (2.5)

For the sake of generality, we do not imply any time ordering in the definition of the Green’s
functions.

2.2 Quantum circuits representations

Following [57], we present quantum circuits for a time step Δ𝜏 for both hopping and
repulsion as per the Fermi-Hubbard model, Eq. (1.1). Their representation are taken as
ingredients for both the interacting ground state preparation as well as for the Trotterized
time evolution.

We also present the notation of gates alongside their matrix representation. The notation is
kept throughout the thesis.

2.2.1 Hopping circuit

For our subsequent discussion of the Green’s function measurement scheme (see Sec. 3.2.2)
it is instructive to rationalize the circuit behind the hopping term, shown in Fig. 2.1. Here,
the gate 𝑋𝜋/2 refers to the Y-basis change gate.

qiσ

⋯

H

qjσ Z H Zθ H

H X+
π
2

X+
π
2 Zθ Xπ

2

Xπ
2

Z

Figure 2.1: Hopping circuit to evaluate the term 𝑡𝑖 𝑗 (𝑐†𝑖,𝜎𝑐 𝑗 ,𝜎 + h.c.) for a time step Δ𝜏 with angle
𝜃 = 𝑡𝑖 𝑗Δ𝜏.

To this end we note that its representation in terms of Majorana fermions reads

ℎ𝜎𝜎𝑖 𝑗 = 𝑐
†
𝑖𝜎
𝑐 𝑗𝜎 + h.c =

𝑖

2
(
𝑦𝑖𝜎𝑥 𝑗𝜎 − 𝑥𝑖𝜎𝑦 𝑗𝜎

)
. (2.6)

The Jordan-Wigner transformation (Eq. (2.2)) reduces the above operator to

ℎ𝜎𝜎𝑖 𝑗 =
1
2
(𝑋𝑚𝑋𝑛 + 𝑌𝑚𝑌𝑛) 𝑍JW(𝑚, 𝑛), (2.7)
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where 𝑚 = 2𝑖 + (1−𝜎)/2, 𝑛 = 2 𝑗 + (1−𝜎)/2 and 𝑍JW(𝑚, 𝑛) stands for the Jordan-Wigner
string,

𝑍JW(𝑚, 𝑛) =
𝑛−1⊗
𝑘=𝑚+1

𝑍𝑘 , (2.8)

with Pauli operators 𝑋𝑘 , 𝑌𝑘 and 𝑍𝑘 acting on 𝑘th qubit. We can then introduce unitary
Clifford gates 𝑆𝑚𝑛 acting on all qubits 𝑘 with 𝑚 < 𝑘 < 𝑛 (its equivalent circuit is shown in
Fig. 2.2), for which the role is to eliminate the Jordan-Wigner string and simplify Eq. (2.7)
to

ℎ𝜎𝜎𝑖 𝑗 =
1
2
𝑆†𝑚𝑛 (𝑋𝑚𝑋𝑛 + 𝑌𝑚𝑌𝑛) 𝑆𝑚𝑛. (2.9)

qm

qn

⋯

Smn

qm

qn

⋯=
Z

Figure 2.2: Definition of the operator 𝑆𝑚𝑛, for which the purpose is to remove Jordan-Wigner
strings. It is non-trivial for 𝑚 − 𝑛 ≥ 2 and we set 𝑆𝑛+1,𝑛 = 1.

The 𝑋𝑋- and 𝑌𝑌 -terms above commute, so that an evolution operator generated by ℎ𝜎𝜎
𝑖 𝑗

naturally splits into the product of two. Subsequent unitary transformations using single
qubit gates 𝐻 and 𝑋𝜋/2 transform each term of the sum in Eq. (2.9) to the product 𝑍𝑚 ⊗ 𝑍𝑛.
After that, the unitary evolution corresponding to a single Trotter step of a hopping operator
with an angle 𝜃 = 𝑡𝑖 𝑗Δ𝜏 is realized with the help of Z-rotations and additional similarity
transformations with CNOT gates, as shown in Fig. 2.1.

2.2.2 Repulsion circuit

A circuit for the repulsion is shown in Fig. 2.3.
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qi,↑

⋯

qi,↓ Z+
θ
2

Zθ
2

Z+
θ
2

Figure 2.3: Repulsion circuit to evaluate the term𝑈𝑖𝑛𝑖,↑𝑛𝑖,↓ for a time step Δ𝜏 with angle 𝜃 = 𝑈𝑖Δ𝜏.

2.2.3 Gate set

The following gate notation has been used for circuit design.

Gate Symbol Matrix

Hadamard H 1√
2

(
1 1
1 −1

)
X X

(
0 1
1 0

)
Z Z

(
1 0
0 −1

)
Z-rotation Zθ

(
𝑒−𝑖𝜃/2 0

0 𝑒𝑖𝜃/2

)
Y-basis change Xπ

2
1√
2

(
1 −𝑖
−𝑖 1

)
Phase Tθ

(
1 0
0 𝑒𝑖𝜃

)
Controlled-Not

©­­­«
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®®¬
Controlled-Z

Z

©­­­«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

ª®®®¬
Table 2.1: Full list of applied gates in matrix representation. Note, that a superscript ’+’ refers to
the Hermitian conjugate.
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3 Evaluation of the Green’s function on
a quantum computer

This chapter aims to put all the pieces together, that are necessary to evaluate the GF. We
start with showing an approach to generate an equilibrium ground state. With this at hand,
we present two routes, the Hadamard test and the direct measurement scheme, and showcase
the composition of quantum circuits representing the associated quantum algorithms.

3.1 Preparing the ground state

Both of the to-be-presented routes ask for the ground state as the starting point for the
quantum routines. The variational Hamiltonian ansatz [70] is a variational algorithm that
provides the minimum energy angles needed to rotate an initial non-interacting ground state
to the interacting ground state. To that end, energy measurements need to be performed.

3.1.1 Variational Hamiltonian ansatz (VHA) for the ground state

The correlation functions defined by Eq. (2.3) presume the average over the equilibrium
density matrix. At zero temperature one is required to start from the ground state of the
cluster at time 𝜏 = 0. For this reason we will briefly review the variational Hamiltonian
ansatz (VHA), which is used to construct the ground state.
The defining idea of VHA is to find a unitary operator 𝑈 (𝜃), such that under varia-
tions of the parameters 𝜃𝑖 from the set 𝜃 one minimizes the energy expectation value
⟨Ψ0 |𝑈†(𝜃)𝐻𝑈 (𝜃) |Ψ0⟩, where |Ψ0⟩ is a guess state which can be prepared easily. Identify-
ing an underlying operator 𝐻 as the sum of 𝑝 independent terms 𝐻 =

∑𝑝

𝑗=1 𝐻 𝑗 , the operator
𝑈 (𝜃) is defined over 𝑛 steps as

𝑈 (𝜃) =
𝑛∏
𝑘=1

𝑝∏
𝑗=1

𝑒−𝑖𝜃 𝑗 ,𝑘𝐻 𝑗 . (3.1)

In each step 𝑘 , the 𝑝 parameters are updated until energy measurements on |Ψ⟩ = 𝑈 (𝜃) |Ψ0⟩
yield minimum values. An example for a rule set governing the update of 𝜃 𝑗 ,𝑘 can be found
in [71].

3.1.2 Measuring ground state energy

Finding the minimum expectation value ⟨Ψ0 |𝑈†(𝜃)𝐻𝑈 (𝜃) |Ψ0⟩ requires energy measure-
ments. From Eq. (1.1) we find terms for hopping and repulsion, which in the following
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we refer to as 𝐻0 and 𝐻𝑈 , respectively. Hence, schedules for measurement of hopping and
repulsion energy, cf. [56], are reviewed.

Energy measurements of repulsion are done by measuring each qubit in the computational
basis. Since we operate within the Jordan-Wigner framework, repulsion terms are mapped
to the matrix |11⟩⟨11|𝑚𝑛, where 𝑚, 𝑛 correspond the inspected orbitals. It comes from the
representation of the number operators, 𝑛𝑖𝜎 = 1

2 (I − 𝑍𝑖𝜎). A term 𝑛𝑖↑𝑛𝑖↓ (cf. Eq. (1.1)) is
thus equal to 1

4 (I − 𝑍𝑖↑ − 𝑍𝑖↓ + 𝑍𝑖↑𝑍𝑖↓), which in turn can be implemented (𝑛 = 𝑖 ↑, 𝑚 = 𝑖 ↓)
such that the energy equals the probability to find both qubits to be in state |1⟩.

Measurements of kinetic energies depend on the hopping direction, which is rooted in the
way how the Jordan-Wigner strings are chosen in the mapping (2.2). For one of the possible
choices (see snake pattern in Fig. 3.3) horizontal hoppings are considered less costly in terms
of gate depth since Jordan-Wigner strings can be neglected, whereas vertical hoppings may
lead to long Jordan-Wigner strings.

Following [56], horizontal hopping map to the matrix 1/2(𝑋𝑛𝑋𝑛+1+𝑌𝑛𝑌𝑛+1). The eigenstates
are |𝜓±⟩ = 1/

√
2( |01⟩ ± |10⟩). In order to perform computational basis measurements, the

unitary that diagonalizes 1
2 (𝑋𝑛𝑋𝑛+1 + 𝑌𝑛𝑌𝑛+1) into |01⟩⟨01|−|10⟩⟨10| is shown in Fig. 3.1.

Desired energy expectation is thus the probability of measuring |01⟩ minus the probability
of measuring |10⟩.

qn

qn+1

H

Figure 3.1: Circuit for diagonalizing 1
2 (𝑋𝑛𝑋𝑛+1 + 𝑌𝑛𝑌𝑛+1) into |01⟩⟨01|−|10⟩⟨10|.

On the other hand, a kinetic energy term ℎ𝜎𝜎
𝑖 𝑗

describing vertical hopping is mapped to the
operator (Eq. (2.7)), which contains an additional Jordan-Wigner string. As discussed in
subsection 2.1, the latter can be eliminated by similarity transformation via the unitary 𝑆𝑚𝑛
shown in Fig. 2.2. Afterwards, one can measure two terms in ℎ𝜎𝜎

𝑖 𝑗
separately. The quantum

circuit to implement the measurement of the first term, 𝑖𝑦𝑖𝜎𝑥 𝑗𝜎, is given in Fig. 3.2.

It is based on the following similarity transformation of this operator, i. e.,

𝑖𝑦𝑖𝜎𝑥 𝑗𝜎 = S†
𝑚𝑛 (𝑍𝑚𝑍𝑛)S𝑚𝑛,

S𝑚𝑛 = (H𝑚H𝑛) 𝑆𝑚𝑛. (3.2)

The expectation value of this operator is then reduced to the average parity of qubits (𝑚, 𝑛).
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qiσ

qjσ

⋯

Smn

H

H

Figure 3.2: Measurement of 𝑖𝑦𝑖𝜎𝑥 𝑗 𝜎 term reducing to ⟨𝑍𝑖𝜎𝑍 𝑗 𝜎⟩ after a similarity transformation.

A measurement of the second term in the hopping term, −𝑖𝑥𝑖𝜎𝑦 𝑗𝜎, is implemented along
the same lines with the only difference that the Hadamard gate is replaced by 𝑋𝜋/2.

nx

ny

c↑c↓

c↓c↑

c↑c↓ c↑c↓ c↑c↓

c↓c↑c↓c↑c↓c↑

c↑c↓c↑c↓ c↑c↓ c↑c↓

c↓c↑ c↓c↑c↓c↑c↓c↑

c↓c↑

c↑c↓

c↓c↑ c↓c↑ c↓c↑

c↑c↓c↑c↓c↑c↓

c↓c↑c↓c↑ c↓c↑ c↓c↑

c↑c↓ c↑c↓c↑c↓c↑c↓

nz

Figure 3.3: Worst case hopping between two neighbored orbitals (highlighted in blue ovals) in 3D
with maximum distance from each other. The dashed blue line is the route which gives rise to the
longest Jordan-Wigner string. Note, that in general there are more than one of such routes. Red
circles represent a heat bath, which is coupled to the corresponding 𝑐-fermion. Coordinate numbers
𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 count the number of clusters (dimers) in 𝑥, 𝑦, 𝑧-direction. Here: 𝑛𝑥 = 4, 𝑛𝑦 = 4, 𝑛𝑧 = 2.
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3.2 Green’s function measurement

We present two routes to measure the Green’s function. The orthodox way goes back to the
Hadamard test circuit originally proposed in Ref. [60], see Fig. 3.5. Another one makes use
of linear response theory, particularly the Kubo formula, which we present afterwards.

3.2.1 The Hadamard test

This section benefits structurally from describing the evolution of the Hadamard test in
terms of three stages, starting with the textbook example (first stage) and ending at the
optimized applicable circuit (third stage).

3.2.1.1 First stage

The simplest possible Hadamard test [72] is a blueprint for measuring observables. Given
a unitary qubit operator Û with eigenvalues {+1,−1}, we wish to measure the associated
observable. The quantum circuit for this endeavor is depicted in Fig. 3.4.

H H

𝒰|Ψ*⟩
|0⟩

Figure 3.4: Simplest Hadamard test to measure an observable𝑈.

Over many runs, the mean value of random binary variables (±1) gives Re⟨Ψ∗ |U|Ψ∗⟩.
Here, |Ψ∗⟩ denotes an initial quantum state and U is an arbitrary unitary acting on |Ψ∗⟩.

3.2.1.2 Second stage

The shown circuit can become more elaborate, given the observable one wishes to measure.
For instance, in application to the Green’s function measurement within the VCA framework,
the wave function |Ψ∗⟩ represents an (approximate) ground state of a Hubbard cluster and
one sets U = 𝑈†(𝜏)𝜎𝜈𝑈 (𝜏)𝜎𝜇 ≡ 𝜎𝜈 (𝜏)𝜎𝜇, where 𝜎𝜇 may refer to any of the Hermitian
Majorana operators 𝑥𝜇, 𝑦𝜇. The averaged real part of U then coincides with the retarded
correlator of two Majoranas, that is

Re[𝑖𝑔𝜇𝜈 (𝜏)] =
1
2
⟨Ψ∗ |{𝜎𝜈 (𝜏), 𝜎𝜇}|Ψ∗⟩. (3.3)

The corresponding circuit to evaluate the Green’s function within the above scheme is given
in Fig. 3.5.
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q0

q1

q2

q3

|0⟩ H

σμ U(τ) σν U†(τ)

H

Figure 3.5: Quantum circuit for measuring the correlation functions 𝐶𝜇𝜈 . The first four qubits
𝑞0, · · · , 𝑞3 represent the physical system, whereas the last qubit in state |0⟩ represents the control
qubit.

Here 𝑞0, · · · , 𝑞3 are qubits representing a small physical system (e. g., the four qubit cluster),
while the last qubit is an ancilla whose initial state is |0⟩. Within the logic of Hadamard test
the correlation function 𝑔𝜇𝜈 (𝜏) can be then estimated as

Re[𝑖𝑔𝜇𝜈 (𝜏)] = 𝑃𝜇𝜈 (M = 0, 𝜏) − 𝑃𝜇𝜈 (M = 1, 𝜏), (3.4)

where 𝑃𝜇𝜈 (M, 𝜏) denotes the empirical probability of measuring the ancilla in the state M
at time 𝜏.

As for the analogy from the Overview, see Fig. 0.2, a perturbation is induced to the system,
which we denote as 𝜎𝜇, acting on qubit 𝑞𝜇. Those perturbations may represent the injection
of an electron at time 𝜏 = 0 at later extraction thereof. An inverse time evolution is needed
to measure the change in the expected system dynamics.

The Hadamard test circuit requires four blocks of controlled evolution, which include
computationally costly two-qubit gates.

3.2.1.3 Third stage

Recently, Endo et al., [73], presented a more elegant version of the Hadamard test (it finds
its roots in the pioneering work [60]), whose circuit is presented in Fig. 3.6. For the recent
realization of such scheme, we refer to the work [64].

If the average is performed over the ground state, then one evolution operator can be omitted
thereby reducing the amount of gates by a factor of two. Additionally, the time evolution is
not controlled. Single-qubit gates in the evolution are not rendered to two-qubit gates, as is
the case in the second stage.

While the two-qubit gate scaling is clearly the most favorable, the necessity of employing a
JW transformation is a defining feature of this algorithm.
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H H

σμ σνU(τ)

q0

q1

q2

q3

|0⟩
Figure 3.6: Quantum circuit for the (third stage) Hadamard test. The main advantage is that it does
not require a controlled unitary evolution𝑈 (𝜏).

In the following subsection we discuss the new direct measurement scheme which is
more physical in that the latter can be applied to more sophisticated, particularly locality-
preserving mappings (e. g., the one pointed to in Sec. 3.3), that do not allow for single
Majorana fermion operators.

3.2.2 Direct measurement

In this subsection we propose an alternative approach to evaluate the Green’s function on
a quantum computer, which we refer to in what follows as the direct measurement. It
requires no assumption on the initial density matrix 𝜌0 of a simulated many-body system
and, in contrast to the second stage Hadamard test, relies merely on the forward uncontrolled
evolution operator𝑈 (𝜏). Furthermore, we use the two-site dimer toy model to demonstrate
the direct measurement and probe its potential for being a superior method for accessing
the system’s Green’s function.

3.2.2.1 Brief review of linear response theory

Exploiting Green’s functions for calculating observables and order parameters is motivated
by linear response theory (cf. Appendix A.1). Let 𝐻′(𝜏) = 𝐻 + 𝑉 (𝜏) be our system
of interest, with 𝐻 being the stationary, time-independent part and 𝑉 (𝜏) =

∑
𝑖 Φ𝑖 (𝜏)𝐴𝑖

being the time-dependent perturbation, whose exact form we specify momentarily. Linear
response theory describes how the system reacts to a given perturbation 𝑉 (𝜏), where Φ𝑖 (𝜏)
is the interaction strength of operator 𝐴𝑖. If we assume a sufficiently weak perturbation, the
change in an expectation value of any Heisenberg operator 𝐴̃𝑖 (𝜏) defined relative to the full
Hamiltonian 𝐻′(𝜏) is linear in the perturbing source Φ(𝜏). This is formulated as

𝛿⟨𝐴̃𝑖 (𝜏)⟩ =
∫

d𝜏′𝜒𝑖 𝑗 (𝜏; 𝜏′)Φ 𝑗 (𝜏′), (3.5)
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where 𝜒𝑖 𝑗 (𝜏; 𝜏′) is the response function given by

𝜒𝑖 𝑗 (𝜏, 𝜏′) = −𝑖𝜃 (𝜏 − 𝜏′)⟨[𝐴𝑖 (𝜏), 𝐴 𝑗 (𝜏′)]⟩. (3.6)

Here, operators 𝐴 𝑗 (𝜏) evolve under the action of the non-perturbed Hamiltonian 𝐻 and,
as before, is averaged over an initial density matrix 𝜌0. In particular, for the perturbation
localized in time at time 𝜏′, one writes Φ 𝑗 (𝜏) = Φ 𝑗 𝛿(𝜏 − 𝜏′), and arrives at the relation

𝛿⟨𝐴𝑖 (𝜏)⟩ =
∑︁
𝑗

𝜒𝑖 𝑗 (𝜏; 𝜏′)Φ 𝑗 . (3.7)

which can be used to extract the response function in the demonstration. One assumes here
that Φ 𝑗 is relatively small so that non-linear effects can be disregarded.

3.2.2.2 Adaptation to the Green’s function measurement

To adapt this general idea to the Green’s function measurement of 𝑐-fermions in our system,
we couple them to an auxiliary spinless 𝑑-fermion with the Hamiltonian 𝐻𝑑 = 𝜖𝑑𝑑

†𝑑 and
introduce the hopping operator

𝐴𝜎𝑗 = 𝑑†𝑐 𝑗𝜎 + 𝑐†
𝑗𝜎
𝑑 (3.8)

acting on the 𝑗 th fermion, while the ancilla qubit stores the state of the 𝑑-fermion. The
explicit form of the perturbation 𝑉 (𝜏) then reads

𝑉 (𝜏) =
∑︁
𝑗

Φ𝜎
𝑗 (𝜏)𝐴𝜎𝑗 =

∑︁
𝑗

Φ𝜎
𝑗 (𝜏) [𝑑†𝑐 𝑗𝜎 + 𝑐†

𝑗𝜎
𝑑], (3.9)

where again Φ𝜎
𝑗
(𝜏) is the external field acting on the 𝑗 th fermion with spin 𝜎. Furthermore,

considering the response function Eq. (3.6) we may assume 𝜏′ = 0 and 𝜏 > 𝜏′ such that we
can neglect the 𝜏′-dependence. The commutator then becomes

𝜒𝜎𝜎
′

𝑖 𝑗 (𝜏) = −𝑖
(
⟨𝐴𝜎𝑖 (𝜏)𝐴𝜎

′
𝑗 ⟩ − ⟨𝐴𝜎′

𝑗 𝐴
𝜎
𝑖 (𝜏)⟩

)
. (3.10)

Using Eq. (3.8), this leads to

𝜒𝜎𝜎
′

𝑖 𝑗 (𝜏) = − 𝑖
〈(
𝑑†(𝜏)𝑐𝑖𝜎 (𝜏) + 𝑐†𝑖𝜎 (𝜏)𝑑 (𝜏)

)
·
(
𝑑†𝑐 𝑗𝜎′ + 𝑐†

𝑗𝜎′𝑑
)〉

+ 𝑖
〈(
𝑑†𝑐 𝑗𝜎′ + 𝑐†

𝑗𝜎′𝑑
)
·
(
𝑑†(𝜏)𝑐𝑖𝜎 (𝜏) + 𝑐†𝑖𝜎 (𝜏)𝑑 (𝜏)

)〉
.

If we assume the 𝑑-fermion orbital to be occupied, it follows that ⟨𝑑†(𝜏)𝑑⟩ ≠ 0 and
⟨𝑑 (𝜏)𝑑†⟩ = 0. Hence, the above equation simplifies to

𝜒𝜎𝜎
′

𝑖 𝑗 (𝜏) = −𝑖
〈
𝑑†(𝜏)𝑑 𝑐𝑖𝜎 (𝜏)𝑐†𝑗𝜎′

〉
+ 𝑖

〈
𝑑†𝑑 (𝜏)𝑐 𝑗𝜎′𝑐

†
𝑖𝜎
(𝜏)

〉
. (3.11)
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Wick’s theorem [74] can be used to write the four-point correlators in terms of a combination
of two-point correlators. The only non-zero two-point correlators are ⟨𝑑†(𝜏)𝑑⟩, ⟨𝑐𝑖 (𝜏)𝑐†𝑗 ⟩,
⟨𝑑†𝑑 (𝜏)⟩ and ⟨𝑐 𝑗𝑐†𝑖 (𝜏)⟩. It then follows that

𝜒𝜎𝜎
′

𝑖 𝑗 (𝜏) = −𝑖
〈
𝑑†(𝜏)𝑑

〉〈
𝑐𝑖𝜎 (𝜏)𝑐†𝑗𝜎′

〉
+ 𝑖

〈
𝑑†𝑑 (𝜏)

〉〈
𝑐 𝑗𝜎′𝑐

†
𝑖𝜎
(𝜏)

〉
, (3.12)

where
〈
𝑑†(𝜏)𝑑

〉
and

〈
𝑑†𝑑 (𝜏)

〉
equal 𝑒𝑖𝜖𝑑𝜏 and 𝑒−𝑖𝜖𝑑𝜏, respectively. Finally, we arrive at

𝜒𝜎𝜎
′

𝑖 𝑗 (𝜏) = −𝑖𝑒𝑖𝜖𝑑𝜏
〈
𝑐𝑖𝜎 (𝜏)𝑐†𝑗𝜎′

〉
+ 𝑖𝑒−𝑖𝜖𝑑𝜏

〈
𝑐 𝑗𝜎′𝑐

†
𝑖𝜎
(𝜏)

〉
. (3.13)

The above relation can be represented in the equivalent form:

𝜒𝜎𝜎
′

𝑖 𝑗 (𝜏) = sin𝜆⟨{𝑐𝑖𝜎 (𝜏), 𝑐†𝑗𝜎′}⟩ − 𝑖 cos𝜆⟨[𝑐𝑖𝜎 (𝜏), 𝑐†𝑗𝜎′]⟩, (3.14)

where 𝜆 = 𝜖𝑑𝜏. Since the energy of the 𝑑-fermion 𝜖𝑑 is arbitrary, one may vary the phase 𝜆
to recover two independent Green’s functions. By setting 𝜆 = 𝜋/2 one obtains the retarded
Green’s function given by the anti-commutator, while the choice 𝜆 = 0 leads to the so-called
Keldysh correlator expressed via the commutator of two fermion operators. Thereby, 𝜖𝑑
reflects a flexible control parameter used to interpolate between different correlators via the
phase 𝜆 = 𝜖𝑑𝜏.

From here one may find a formal expression the anti-commutator in the form of a derivative
with respect to 𝜖𝑑 , namely

⟨{𝑐𝑖𝜎 (𝜏), 𝑐†𝑗𝜎′}⟩ =
1
𝜏

𝜕

𝜕𝜖𝑑
𝜒𝜎𝜎

′
𝑖 𝑗 (𝜏)

���
𝜖𝑑=0

. (3.15)

However, for a practical realization of the Green’s function quantum circuit (see Sec. 4) we
use the following trick: one measures 𝜒𝑖 𝑗 (𝜏) both for 𝜖𝑑 and (−𝜖𝑑) successively. Then a
combination of those two measurements yields

⟨{𝑐𝑖𝜎 (𝜏), 𝑐†𝑗𝜎′}⟩ =
𝜒𝜎𝜎

′
𝑖 𝑗

(𝜏, 𝜖𝑑) − 𝜒𝜎𝜎
′

𝑖 𝑗
(𝜏,−𝜖𝑑)

2 sin(𝜖𝑑𝜏)
, (3.16)

with 𝜖𝑑 being a free parameter which can be adjusted to optimize the quality of the mea-
surement. In the limit 𝜖𝑑 → 0 one also recovers Eq. (3.15). Note, that Eq. (3.16) becomes
exact under the assumption of a weak perturbation, Φ → 0, at any 𝜖𝑑 , which as we have
found can be relaxed to Φ ≲ 1/2 in practical implementations.

When it comes to the actual measurement protocol using the outlined linear response
scheme, it is advantageous to perform the measurements in the Majorana basis and use the
relation Eq. (2.3) to reconstruct the Green’s function of complex fermions afterwards. As
an example, let us consider the measurement of the correlator of two Hermitian operators
𝑥𝑖𝜎 (𝜏) and 𝑦 𝑗𝜎′ . To this end we introduce two Majorana fermions, 𝑥𝑑 = 𝑑 + 𝑑† and
𝑦𝑑 = 𝑖(𝑑 − 𝑑†), associated with the auxiliary 𝑑-fermion and define hopping operators as
follows, cf. Eq. (2.6)

𝐴𝜎𝑖 = 𝑖
2𝑥𝑖𝜎 𝑥𝑑 , 𝐴𝜎

′
𝑗 = 𝑖

2 𝑦 𝑗𝜎′ 𝑥𝑑 . (3.17)
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Repeating the steps leading to the intermediate result Eq. (3.12), one finds that for such
choice of hopping operators 𝜒𝜎𝜎′

𝑖 𝑗
(𝜏) changes to

𝜒𝜎𝜎
′

𝑖 𝑗 (𝜏) = − 𝑖
4
〈
𝑥𝑑 (𝜏)𝑥𝑑

〉〈
𝑥𝑖𝜎 (𝜏)𝑦 𝑗𝜎′

〉
+ 𝑖4

〈
𝑥𝑑𝑥𝑑 (𝜏)

〉〈
𝑦 𝑗𝜎′𝑥𝑖𝜎 (𝜏)

〉
. (3.18)

Additionally, the correlator of an auxiliary Majorana fermion becomes ⟨𝑥𝑑 (𝜏)𝑥𝑑⟩ = 𝑒𝑖𝜖𝑑𝜏.
This means that for the Green’s functions of Majorana operators we can use exactly the
same final relation Eq. (3.14). In particular, the retarded correlator reads

1
4
⟨{𝑥𝑖𝜎 (𝜏), 𝑦 𝑗𝜎′}⟩ = 𝜒𝜎𝜎′

𝑖 𝑗 (𝜏)
���
𝜖𝑑𝜏=𝜋/2

. (3.19)

For the later purpose it is advantageous to rewrite the above relation as

1
2
⟨{𝑥𝑖𝜎 (𝜏), 𝑦 𝑗𝜎′}⟩ = ⟨𝑖𝑥𝑖𝜎𝑥𝑑⟩Φ(𝑡, 𝜖𝑑)

sinΦ𝜎′
𝑗

�����
𝜖𝑑𝜏=𝜋/2

, (3.20)

where ⟨. . . ⟩Φ refers to an average in the presence of a perturbation. Within the linear
response theory framework the denominator needs to be substituted by just Φ𝜎′

𝑗
. In this case

the relation Eq. (3.20) follows from Eqs. (3.7) and (3.19), where ⟨𝐴𝜎
𝑖
⟩ = 𝑖

2 ⟨𝑖𝑥𝑖𝜎𝑥𝑑⟩Φ plus
we note that ⟨𝐴𝜎

𝑖
⟩ vanishes in the absence of perturbation. The equation becomes exact

under weak perturbations as sinΦ𝜎′
𝑗
→ Φ𝜎′

𝑗

��
Φ𝜎′

𝑗
=0. Stronger perturbations bring us into the

non-linear regime, in which Eq. (3.20) can be recovered for arbitrary Φ𝜎′
𝑗

([75]).
We are now in a position to present the quantum circuit (see Fig. 3.7), which accomplishes
the measurement of the correlator, Eq. (3.20).

q0

|1⟩d

⋯
qNc−1

qiσ⋯
Sjσ′ , Nc

H

H Zθ

H

H

S†
jσ′ , Nc

Ut

Z+
tϵd

Siσ, Nc

H

Xπ
2

qjσ′ 

τ

ϵdτ

q2Lc−1

⋯

Figure 3.7: Measurement of the correlator ⟨{𝑥𝑖𝜎 (𝜏), 𝑦 𝑗 𝜎′ (0)}⟩. The unitary 𝑈𝜏 refers to the
Trotterized evolution under the Hubbard cluster Hamiltonian Eq. (1.1). While the 𝑍-rotation with
the angle 𝜃 = Φ𝜎′

𝑗
is due to perturbation, the 𝑍†-rotation with the angle 𝜖𝑑𝜏 accounts for a free

evolution of the 𝑑-fermion. The number of sites is 𝐿𝑐.

3.2.2.3 Quantum circuit to the direct measurement

Right after the initialization of a quantum computer to the ground state with the help of
VHA (not shown), we apply the perturbation with the potential 𝑉 (𝜏). It can be achieved in
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one Trotter step yielding the unitary

exp
(

1
2Φ

𝜎′
𝑗 𝑦 𝑗𝜎′ 𝑥𝑑

)
= 𝑆

†
𝑗𝜎′,𝑁𝑐

exp
(
− 𝑖

2Φ
𝜎′
𝑗 𝑋 𝑗𝜎′𝑋𝑁𝑐

)
𝑆 𝑗𝜎′,𝑁𝑐

. (3.21)

Its circuit representation is analogous to the one describing the evolution under the hopping
term, see Fig. 2.1. In this context, it entangles the ancilla qubit used to represent the 𝑑-
fermion with the qubits’ states representing the cluster. Subsequent independent evolutions
of the cluster and the 𝑑-fermion are then followed by the measurement of an operator
𝐴𝜎
𝑖
= 𝑖

2𝑥𝑖𝜎𝑥𝑑 . The way to average such operator has been described in subsection 3.1.2:
via a few unitary transformations ⟨𝐴𝜎

𝑖
⟩ can be related to the average parity of two qubits,

⟨𝑍𝑖𝜎𝑍𝑁𝑐
⟩, see Fig. 3.2.

Our primary focus in this works is on the retarded Green’s function given by the anti-
commutator Eq. (3.20), since the latter eventually enters into the VCA scheme outlined
in Sec. 6. However, the full set of possible Green’s functions can be evaluated using the
proposed algorithm. For instance, for the Keldysh correlator of Majoranas one can write

− 𝑖
2
⟨[𝑥𝑖𝜎 (𝜏), 𝑦 𝑗𝜎′]⟩ = ⟨𝑖𝑥𝑖𝜎𝑥𝑑⟩Φ(𝑡, 𝜖𝑑)

sinΦ𝜎′
𝑗

�����
𝜖𝑑𝜏=0

. (3.22)

Then other correlators, such as 𝑔𝜎𝜎′
𝑖 𝑗

(𝜏) defined in Eq. (2.4), can be reconstructed from the
retarded and Keldysh Green’s functions. Additionally, the best choice for the strength of the
perturbation is Φ𝜎′

𝑗
= 𝜋/2, which leads to the strongest (non-linear) response and is used

for demonstrating the quantum algorithm in Ch. 4.

3.3 Comparing applicability of fermionic mappings

Amongst all known mappings that encode fermions into qubits, the Jordan-Wigner scheme is
one of the more prominent examples. It is known for its simplicity, straightforwardness and
Pauli strings. In low-dimensional, small systems, the latter hardly emerge. Yet, unfortunate
cases of nearest neighbor interactions, cf. Fig. 3.3, may trigger local interactions that
propagate through the full system in form of 𝑍-strings.

As these additional terms contribute to the error of quantum demonstrations, it is often
advised to find a mapping that balances out qubit overhead, the ability to preserve locality
and the overall adequacy of a particular mapping to a particular problem.

For the direct measurement method that is being presented, the Jordan-Wigner mapping
works fine. Not only that, but other, more locality-preserving mappings, [40, 65], work
as well. Famously, the Bravyi-Kitaev mapping, [39], is less prone to non-locality. In this
landmark paper, it was discussed that only products (or sums thereof) of an even number
of fermionic operators spans the algebra of physical operators. It follows that for a number
of more advanced mappings, single Majorana fermion operators — as required by the
Hadamard test — cannot be constructed.
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It is this fact that renders the method of a direct measurement of a response function more
versatile as it can be applied to mappings beyond Jordan-Wigner. Larger systems can benefit
from this scheme by suppressing the emergence of Pauli strings. Note, that the math is not
carried out in this thesis. The interested reader is encouraged to view the detailed algebra
and the adapted quantum circuits in Ref. [75].

3.4 Quantum advantage

The complete matrix for the Green’s function, made up of two-point time correlations func-
tions Eq. (0.14), has a dimension of 2𝐿𝑐 × 2𝐿𝑐, where 𝐿𝑐 is the number of sites in a cluster.
While the final matrix size remains agnostic to either classical or quantum platforms, the
classical approach incurs a drastic overhead in matrix multiplication, significantly outpaced
by its quantum analog.
To showcase the quantum advantage, we start off with the classical case. Following [76],
the Lehmann representation Eq. (0.13) is broken down to

𝐺′(𝜔) = 𝑄′𝑔(𝜔)𝑄′†. (3.23)
Here, 𝑄′ holds the electron-like and hole-like amplitudes with dimension 2𝐿𝑐 × 16𝐿𝑐 and
𝑔(𝜔) is a square matrix of dimension 16𝐿𝑐 × 16𝐿𝑐 , cf. Fig. 3.8.
The multiplication of exponentially scaling matrices necessary to evaluate the full clus-
ter GF makes the classical case impractical. In contrast, the quantum schemes require
measurements that scale quadratically in the number of sites 𝐿𝑐.

7

5. Quantum advantage 
       Lehmann representation with exponential scaling

Ĝ (σ) = Q̂ g(σ)Q̂ †

Qe−
imn = ⟨⟩m|c†

i−|⟩n↑

Qh↓
imn = ⟨⟩m|ci↓|⟩n↑

Qe−1mn

Qe−2mn
Ψ

Qe−
Lcmn

Qh↓1mn

Qh↓2mn
Ψ

Qh↓
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Ĝ (σ) = 1
σ1 ′ t̂ ′ Σ
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 combinations 
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(22Lc)2 = 16Lc
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Lc = 2Nc
Number of  orbitals equals two 
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Again,  combinations for  16Lc σmn

Square matrix: dimg(σ) = 16Lc Φ 16Lc

g(σ)Q̂ 

}

Take-home message
• Classical evaluation of  Greens function via Lehmann 

representation, quantum evaluation via direct measurement
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of  orbitals  for full Greens function

16Lc Q̂ , g (σ)
Lc

• Quantum linear response: measure only  correlators 
for full Greens function

4N 2
c = L2

c
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Quantum : measurement of  quadratic number in 

Lc
Lc

iGθθ̂ 
ij (δ) =

⟨c1−(δ)c†1−(0)↑ ⟨c1−(δ)c†2−(0)↑ ⟨c1−(δ)c1↓(0)↑ ⟨c1−(δ)c2↓(0)↑
⟨c2−(δ)c†1−(0)↑ ⟨c2−(δ)c†2−(0)↑ ⟨c2−(δ)c1↓(0)↑ ⟨c2−(δ)c2↓(0)↑
⟨c†1↓(δ)c†1−(0)↑ ⟨c†1↓(δ)c†2−(0)↑ ⟨c†1↓(δ)c1↓(0)↑ ⟨c†1↓(δ)c2↓(0)↑
⟨c†2↓(δ)c†1−(0)↑ ⟨c†2↓(δ)c†2−(0)↑ ⟨c†2↓(δ)c1↓(0)↑ ⟨c†2↓(δ)c2↓(0)↑

Example: Two sites, i. e. four orbitals: {1 − ,1 ↓ ,2 − ,2 ↓ }

2Lc

16Lc

https://arxiv.org/abs/0806.2690

Figure 3.8: Anatomy of exponentially scaling matrices 𝑄′ and 𝑔(𝜔). 𝑄′ is a 2𝐿𝑐 × 16𝐿𝑐 matrix,
𝑔(𝜔) is a 16𝐿𝑐 × 16𝐿𝑐 matrix. Not to mention that the eigenstates in 𝑄′ need to be extracted as well.
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4 Two-site dimer model

In this section we introduce a two-site dimer [77] (, i. e., a four-orbital dimer) that serves as
our toy model for which we evaluate the Green’s function. Following the general framework
outlined in Sec. 6, it can be seen as the smallest non-trivial cluster, so that the VCA is able
to deliver physically reasonable results. Specifically, such minimal cluster is sufficient to
reproduce the Mott insulating transition in the Hubbard model. On the other hand, in order
to recover the d-wave superconducting phase, one needs at least four sites per cluster [76].

The two-site dimer model consists of a Hubbard site that is coupled to a bath site. Its
Hamiltonian at half-filling given by

𝐻′ = 𝐻0 + 𝐻𝑈 = −𝑡
∑︁
𝜎

(𝑐†𝜎𝑏𝜎 + 𝑏†𝜎𝑐𝜎) +
𝑈

2
(𝑛2
𝑐 − 2𝑛𝑐), (4.1)

where 𝑡 is the hopping energy and 𝑈 is the Coulomb repulsion. The field operators 𝑐†𝜎, 𝑐𝜎
respectively create or destroy a fermion with spin 𝜎 at the Hubbard site, while 𝑏†𝜎, 𝑏𝜎
respectively create or destroy a fermion with spin 𝜎 at the bath site and 𝑛𝑐 =

∑
𝜎 𝑐

†
𝜎𝑐𝜎.

Lastly, the linear 𝑛𝑐 term in 𝐻𝑈 stems from a chemical potential 𝜇 = 𝑈 at half-filling. A
qubit ordering is shown in Fig. 4.1 and is chosen in a way that allows for decreasing circuit
depth, see section 4.1.

Investigating the dimer at half-filling (two out of four orbitals are occupied) allows us to
concentrate on just six out of 16 possible state configurations. With |0⟩ being the vacuum
state, following states |1⟩, |2⟩, . . . , |6⟩ are possible as two electrons reside at the dimer:

|1⟩ = 𝑐†↓𝑐
†
↑ |0⟩, |2⟩ = 𝑐†↓𝑏

†
↑ |0⟩, |3⟩ = 𝑏†↓𝑏

†
↑ |0⟩

|4⟩ = 𝑏†↓𝑐
†
↑ |0⟩, |5⟩ = 𝑏†↑𝑐

†
↑ |0⟩, |6⟩ = 𝑏†↓𝑐

†
↓ |0⟩.

(4.2)

c↑ c↓b↑ b↓
q0 q1 q2 q3

Qubit order

Figure 4.1: Indexing qubits over two Hubbard orbitals and two bath orbitals.
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In matrix form, the Hamiltonian (Eq. (4.1)) thus reads

𝐻′ = −

©­­­­­­­«

0 −𝑡 0 𝑡 0 0
−𝑡 𝑈

2 −𝑡 0 0 0
0 −𝑡 0 𝑡 0 0
𝑡 0 𝑡 𝑈

2 0 0
0 0 0 0 𝑈

2 0
0 0 0 0 0 𝑈

2

ª®®®®®®®¬
, (4.3)

with the ground state energy

𝐸0 = −1
4
(𝑈 +

√︁
𝑈2 + 64𝑡2), (4.4)

corresponding to the eigenstate

|Ψ⟩ ∝ 𝐶 ( |1⟩ + |3⟩) + |2⟩ + |4⟩), 𝐶 =

√
𝑈2 + 64𝑡2 −𝑈

8𝑡
, (4.5)

up to a normalization factor. Lastly, we find the expectation values of 𝐻0 and 𝐻𝑈 to be

⟨𝐻0⟩ = − 16𝑡2
√
𝑈2 + 64𝑡2

(4.6)

and
⟨𝐻𝑈⟩ = −𝑈

4

(
1 + 𝑈

√
𝑈2 + 64𝑡2

)
. (4.7)

As required by linear response theory, we need to start from an equilibrium state, e. g., the
ground state. Consequently, we present a route to find the ground state via the VHA.

4.1 Ground state preparation

For the sake of finding the ground state of the dimer system, we employ a technique known
as the variational Hamiltonian ansatz [70]. Starting from the ground state of the cluster
|Ψ0⟩ in the non-interacting limit𝑈 = 0, we aim to find the interacting system’s ground state
|Ψ⟩ as

|Ψ(𝛼, 𝛽)⟩ =
𝑝∏
𝑗=1

𝑒𝑖𝛽𝑘𝐻0𝑒−𝑖𝛼𝑘𝐻𝑈 |Ψ0⟩ (4.8)

where 𝛼 𝑗 , 𝛽 𝑗 ∈ R are the variational parameters.

The ground state |Ψ0⟩ is a Slater determinant. For instance, Eq. (4.5) at 𝑈 = 0 can be
written in terms of two 𝑓 -fermions,

|Ψ0⟩ = 𝑓
†
↓ 𝑓

†
↑ |0⟩, 𝑓 †𝜎 =

1
√

2
(𝑐†𝜎 + 𝑏†𝜎), (4.9)
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which are linear superpositions of operators 𝑏 and 𝑐.
An initialization of the quantum chip in a Slater determinant state most generally can be
constructed from an initial one, |0, 0, ..., 0⟩, by the so-called Given’s rotation [57]. However,
for the two-fermion state (Eq. (4.9)) a much simpler circuit is sufficient. One can verify by
direct inspection that the circuit shown in Fig. 4.2 transforms the vacuum state into |Ψ0⟩.

|0⟩0

|0⟩1

|0⟩2

|0⟩3

H

H

X

X

Figure 4.2: Quantum circuit to prepare a Slater determinant as a trial ansatz for the VHA.

Moreover, it is possible to find the exact matching between the trial and actual ground
state functions already for the minimal depth VHA, i. e., with 𝑝 = 1. Therefore, Fig. 4.3
shows the full circuit to prepare the ground state is a single sequence of the circuit shown
in Fig. 4.2, followed by a variation of the hopping circuit, cf. Fig. 2.1 and finalized by a
simpler variation of the repulsion circuit, Fig. 2.3.

|0⟩0

|0⟩1

|0⟩2

|0⟩3

H

H

X

X

T+
α

H

H

H

H

H

H

H

H

X+
π
2

X+
π
2

X+
π
2

X+
π
2

Xπ
2

Xπ
2

Xπ
2

Xπ
2

Zα
2

Zα
2

Zβ

Zβ

Zβ

T+
2β

Zβ

Zβ

Zβ

Zβ

ZβT+
2β

T+
2β

T+
2β

Figure 4.3: Reduced quantum circuit for finding the ground state of a correlated system. At the end
of the circuit we are left with the interacting ground state of the two-site dimer.

At this point, we note that the evolution operator over a time step Δ𝜏 under the interaction
Hamiltonian 𝐻𝑈 , see Eq. (4.1), reads

𝑈 (𝜃) = CNOT(13) · R(3)
z (𝜃/2) · CNOT(13) , (4.10)

with angle 𝜃 = 𝑈 · Δ𝜏. A difference from the repulsion circuit on Fig. 2.3 comes from the
extra term 𝑈𝑛𝑐 in the present choice of 𝐻𝑈 , which effectively leads to the reduction of two
single-qubit 𝑍-rotation gates.
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Zθ
2

=
T+

θ

Zθ
2

Zθ
2

Figure 4.4: Circuit identity as used in the two-site dimer.

Furthermore, if one of the natural two-qubit gates on the hardware is a controlled-phase
gate, CT(𝜃), then the unitary in Eq. (4.10) can be simplified to

𝑈 (𝜃) = R(1)
z (𝜃/2) · R(3)

z (𝜃/2) · CT(13) (−𝜃), (4.11)
up to a global phase. The equivalence of the two circuits in Eqs. (4.10) and (4.11) for𝑈 (𝜃)
is presented in Fig. 4.4.
Comparing Fig. 4.3 to Figs. 2.1 and 2.3, we reach a reduction of two two-qubit gates mainly
based on the transformation shown in Fig. 4.4 and the choice of the qubit ordering, Fig. 4.1,
further suppressing Pauli strings to enter the circuit. Finally, the variational energy reads

𝐸 (𝛼, 𝛽) = −2𝑡 cos
𝛼

2
− 𝑈

4

(
1 − sin

𝛼

2
sin 4𝛽

)
, (4.12)

which depends on just two parameters, 𝛼 and 𝛽. Fig. 4.5 shows the corresponding (numer-
ical) energy landscape alongside the analytic energies in Fig. 4.6.

-1.6 -0.8 0 0.8 1.6
-6

-3

0

3

6

-2

-1

0

1

Figure 4.5: Energy landscape for the two-site dimer for finding its ground state via the variational
Hamiltonian ansatz with angles 𝛼 and 𝛽 shown for 𝑡 = 1 and 𝑈 = 4. The energies were evaluated
on Qiskit’s noisy Aer simulator of the FakeKolkataV2() backend, an open-access simulator of the
corresponding superconducting device ibmq_kolkata provided by IBM. The optimum is lying very
close to theoretical values 𝛼∗ = −0.92 and 𝛽∗ = 0.39 found from Eq. (4.12).
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The analytical landscape is shown in Fig. 4.6. A direct comparison shows slight discrep-
ancies in the amplitudes. The circuit is shallow, yet the noise from the few gates affect the
energy measurements. More importantly, the qualitative direction is accurate. After all,
one seeks the angles that yield the interacting ground state.
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1

Figure 4.6: Analytical energy landscape for the two-site dimer according to Eq. (4.12).

4.2 Analytical formulae for the Green’s function

Next we discuss the analytical results for the Green’s functions of the two-site model in
order to benchmark them with our circuit simulations, reviewed in the next subsection.
Following the ordering of fermion states under Jordan-Wigner mapping shown in Fig. 4.1,
we introduce a set of eight Majorana operators {𝑥𝑛, 𝑦𝑛} so that

𝑐↑ = 1
2 (𝑥0 − 𝑖𝑦0), 𝑏↑ =

1
2 (𝑥1 − 𝑖𝑦1),

𝑐↓ = 1
2 (𝑥2 − 𝑖𝑦2), 𝑏↓ =

1
2 (𝑥3 − 𝑖𝑦3), (4.13)

with 𝑛 being a composite index accounting for both site and spin. Correlation functions of
interest take the form given by Eqs. (2.3) and (2.4). Because of spin symmetry we find them
to be block-diagonal w. r. t. spin indices,

𝑖𝑔↑↑(𝜏) =
(
⟨𝑥0(𝜏)𝑥0(0)⟩ ⟨𝑥0(𝜏)𝑦1(0)⟩
⟨𝑦1(𝜏)𝑥0(0)⟩ ⟨𝑦1(𝜏)𝑦1(0)⟩

)
, (4.14)

and
𝑖𝑔↓↓(𝜏) =

(
⟨𝑥2(𝜏)𝑥2(0)⟩ ⟨𝑥2(𝜏)𝑦3(0)⟩
⟨𝑦3(𝜏)𝑥2(0)⟩ ⟨𝑦3(𝜏)𝑦3(0)⟩

)
, (4.15)
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with two blocks being mutually equal, 𝑔↑↑(𝜏) = 𝑔↓↓(𝜏). Other non-zero correlators follow
from the symmetries

⟨𝑥𝑖 (𝜏)𝑥𝑖 (0)⟩ = ⟨𝑦𝑖 (𝜏)𝑦𝑖 (0)⟩, ∀ 𝑖
⟨𝑥𝑖 (𝜏)𝑦𝑖+1(0)⟩ = ⟨𝑥𝑖+1(𝜏)𝑦𝑖 (0)⟩, 𝑖 = 0, 2.

(4.16)

Additionally, the self-adjoint property of Majorana operators implies that

⟨𝑥𝑖 (𝜏)𝑦 𝑗 (0)⟩∗ = ⟨𝑦 𝑗 (0)𝑥𝑖 (𝜏)⟩, (4.17)

and the same for 𝑥−𝑥 and 𝑦−𝑦 correlators. Therefore, the retarded correlator reads

⟨{𝑥𝑖 (𝜏), 𝑦 𝑗 (0)}⟩ = 2Re ⟨𝑥𝑖 (𝜏)𝑦 𝑗 (0)⟩, 𝜏 > 0. (4.18)

We can evaluate the above correlation functions exactly using the Lehmann representa-
tion. Starting from 𝑖𝐺> (𝜏) = ⟨Ψ∗ |𝑈†(𝜏)𝑥𝑖𝑈 (𝜏)𝑦 𝑗 |Ψ∗⟩, where |Ψ∗⟩ is the ground state, we
use the eigenstate decomposition of the evolution operator, 𝑈 (𝜏) =

∑2𝐷
𝑚 |𝑚⟩𝑒−𝑖𝐸𝑚𝑡 ⟨𝑚 |,

with 𝐷 = 4𝐿𝑐 being the Hilbert space dimension of a cluster. It then follows that
𝑖𝐺> (𝜏) =

∑𝐷
𝑚 𝑒

−𝑖𝐸0𝑡 ⟨Ψ∗ |𝑥𝑖 |𝑚⟩𝑒−𝑖𝐸𝑚𝑡 ⟨𝑚 |𝑦 𝑗 |Ψ∗⟩. The eigenstates |𝑚⟩ can be obtained by
exact diagonalization of 𝐻′, cf. Eq. (4.1), which renders the two-site dimer Green’s function
amenable to analytic treatment. The correlation functions evaluated in this manner read

⟨𝑥0(𝜏)𝑥0(0)⟩ = 𝑒−
𝑖
4 𝜏𝑈2

(
cos

𝜏𝑈1
4

−
𝑖
(
𝑈2 − 32𝑡2

)
𝑈1𝑈2

sin
𝜏𝑈1
4

)
, (4.19)

⟨𝑥1(𝜏)𝑥1(0)⟩ = 𝑒−
𝑖
4 𝜏𝑈2

(
cos

𝜏𝑈1
4

+
𝑖
(
𝑈2 + 32𝑡2

)
𝑈1𝑈2

sin
𝜏𝑈1
4

)
(4.20)

and
⟨𝑥0(𝜏)𝑦1(0)⟩ = 4𝑒−

𝑖
4 𝜏𝑈2

(
2𝑖𝑡
𝑈2

cos
𝜏𝑈1
4

− 𝑡

𝑈1
sin

𝜏𝑈1
4

)
, (4.21)

where two additional energy scales,

𝑈1 =
√︁
𝑈2 + 16𝑡2, 𝑈2 =

√︁
𝑈2 + 64𝑡2, (4.22)

were introduced to shorten the results.

4.3 Quantum circuits for the direct measurement of the
two-site dimer Green’s function

In accordance to section 3.2.2, we provide quantum circuits for the direct measurement
of the Green’s function. To implement the unitary evolution operator 𝑈𝜏, one applies the
Trotterization scheme with a duration of a single step being Δ𝜏. The one-step evolution
operator can be constructed following the same sequence of gates used in the VHA circuit,
see Fig. 4.5, with angles 𝛼 = 𝑈Δ𝜏 and 𝛽 = −𝑡Δ𝜏.
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4.3.1 Correlator circuits

The 𝑦2−𝑦2 correlator is directly measured when employing the circuit shown in Fig. 4.7. In
turn, circuits for measuring 𝑦3−𝑦3 and 𝑦3−𝑥2 correlators are shown in Fig. 4.8 and Fig. 4.9,
respectively.
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Figure 4.7: Circuit for evaluating the ⟨{𝑦2(𝜏), 𝑦2(0)}⟩ correlator.
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Figure 4.8: Circuit for evaluating the ⟨{𝑦3(𝜏), 𝑦3(0)}⟩ correlator.
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Figure 4.9: Circuit for evaluating the ⟨{𝑥3(𝜏), 𝑦2(0)}⟩ correlator.
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The input state to the circuits is the interacting ground state as per variational Hamiltonian
ansatz. The common feature is the application of a perturbative hopping to the input state,
which is supposed to be weak enough to expect a linear response in the parity measurement.

4.3.2 Complete evaluation of the dimer Green’s function

We start off by presenting the full set of tools to evaluate the GF, from initializing the trial
wave function to the parity measurement in Fig. 4.10. This shall serve as a recipe for the
evaluation of any correlator of the form 𝑥𝑖𝜎 (𝜏)𝑦 𝑗𝜎′ (0).
Subsequently, we present the evaluation for one particular correlator 𝑥3(𝜏)𝑥3(0) from
scratch. The subscript corresponds to the the fourth orbital, cf. Fig. 4.1, e. g., to the
spin-down bath orbital.
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Figure 4.10: The complete tool set for evaluating the cluster’s Greens function. Initialization stage (left): A non-interacting trial wave function is
engineered. Variational Hamiltonian Ansatz gives the interacting ground state of the two-site dimer. Finally, the system is perturbed via a hopping
process. Time evolution (center): The system is evolved in time via Trotterization. To that end, we alternate between applications of hopping and
repulsion circuits. Measurement (right): Finally, a parity measurement of the target qubits 𝑖, 𝑗 is performed.
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Figure 4.11: The complete process of evaluating the cluster’s Greens function, exemplified on the 𝑥3(𝜏)𝑥3(0) correlator. Left: The interacting
ground state (teal) is prepared from a Slater determinant (gray box) and a single sequence of repulsion and hopping circuit (yellow boxes), according
to the optimal angles via variational Hamiltonian ansatz. Right: The ground state orbitals 3 and 𝑑 are target to a perturbation, representing a
hopping as per Eq. (3.20) (orange box, top right). Note, that while the 𝑑 orbital is always part of the perturbation and measurement, the perturbed
system orbital does not necessarily equal the measured system orbital, cf. Fig. 4.9. It follows a time evolution, done by pairwise applications
of repulsion and hopping circuits (see yellow box). The number of pairwise applications equals the number of Trotter steps. Finally, a parity
measurement on orbital 3 and orbital 𝑑 is performed. The result is the element 𝑥3(𝜏)𝑥3(0), that together with other correlators constitute the
Green’s function.
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4.4 Results and discussion

We show data points for the Green’s function after 25 Trotter steps and plot these against
the analytical Green’s function, see Eqs. (4.19)–(4.21). The chosen parameters are 𝑡 = 1,
𝑈 = 4𝑡, Φ = 𝜋/2 and 𝜖𝑑𝜏 = 𝜋/2. The results are shown in Fig. 4.12.

While a statevector simulation delivers exact results for any perturbation, a discrepancy
in noisy quantum circuit simulation results and the analytical curves can be observed,
that grows larger with increased duration 𝜏. This is due to a combination of gate and
measurement errors (see Ch. 5) and Trotter errors that accumulate over time (not shown). In
practical simulations, the perturbation was set to Φ𝜎

𝑗
= 𝜋/2 as it has triggered the strongest

(non-linear) response.

It can be seen, that 25 Trotter steps are sufficient to have a decent overlap of measurement
points and the analytic correlator up to time 𝜏 ∼ 8. Single-qubit gates take typical oper-
ation times of 20ns, two- and three-qubit gates may be designed with operation times of
typically 100ns. It is thus crucial to reduce multi-qubit gates as much as possible to keep
operation time short and quantum state fidelity large. After all, such gates are the major
contributors to errors in the computation. In the subsequent chapter 5, the errors associated
with the one- and two-qubit gates are listed. The effective qubits were drafted such that
a practical balance of gate errors, qubit vicinity, readout errors and coherence times is
achieved, cf. Fig. 5.1.

In terms of the two-qubit gate count, the new algorithm is comparable to the third stage
of the Hadamard test, Sec. 3.2.1. The only variation in the number of such gates comes
from the time evolution, which is similar to both the Hadamard test as well as the direct
measurement ansatz. The number of Trotter steps determines the depth of the quantum
circuit associated with the unitary𝑈 (𝜏).
The second stage Hadamard test suffers from the evolution being controlled. In principle,
all 𝑛-qubit gates become 𝑛 + 1-qubit gates. In some cases, symmetry arguments lead to
identification of gates, that are not subject to an increase in gate complexity.

As outlined in 3.4, the number of sites on a cluster significantly affects the number of
required classical operations in the Lehmann Green’s function. A multiplication of matrices
that grow exponentially with respect to the number of sites 𝐿𝑐 is only possible for small
systems. A two-site dimer is sufficiently small to be analytically solvable, gifting us with the
analytic results Eqs. (4.19, 4.20, 4.21). On the contrary, the number of required quantum
measurements scales quadratically in the number of sites 𝐿𝑐 within the cluster and the
number of qubits scales linearly in 𝐿𝑐.
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Figure 4.12: Correlators 𝑦2−𝑦2, 𝑦3−𝑦3 and 𝑥3−𝑦2 (from left to right) evaluated in 25 Trotter steps (red dots) of the duration Δ𝜏 = 𝜋
10 . A shaded area

(gray) indicates the standard deviation stemming from gate errors, measurement errors and Trotter errors over 100 instances of executing quantum
circuits. The solid blue curves correspond to the analytical results, cf. Eqs. (4.19)–(4.21), where we account for the symmetry relations Eq. (4.16).
System parameters are chosen to be 𝑡 = 1 and 𝑈 = 4𝑡. The correlators were evaluated on Qiskit’s noisy Aer simulator of the FakeKolkataV2()
backend, an open-access simulator of the corresponding superconducting device ibmq_kolkata provided by IBM.
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5 Implementation details
In this section we give details on the simulated quantum processor used for showcasing
our proposed algorithm. Moreover, we give details on the execution and error mitigation
schemes for the presented quantum circuits. Throughout this work, we have worked solely
with Qiskit [78], an open-source software kit provided by IBM. Qiskit allows users to
design and execute quantum software on either simulated quantum hardware, or on quantum
hardware made available through IBM.

5.1 Simulated quantum processor

The demonstrations take place on the FakeKolkataV2() backend, resembling the character-
istics of the ibmq_kolkata quantum device, consisting of 27 superconducting qubits. The
layout of the chip as well as couplings between the qubits are depicted in Fig. 5.1. Five
qubits required for executing proposed algorithm are highlighted in green, alongside their
couplings.
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Figure 5.1: Layout of the ibmq_kolkata quantum device, consisting of 27 superconducting qubits
and their couplings. The set of physical qubits {18, 17, 21, 23, 24} (green) was used for demonstrating
our algorithm.

For the following analysis, we will denote the simulated qubits as 𝑞 (𝑙)𝑝 , for which the exponent
is the logical qubit number, and 𝑝 is the number of the physical qubit, which arises from
mapping logical to physical qubits. Let L = {0, 1, 2, 3, 4} be the set of logical qubits and
P = {18, 17, 21, 23, 24} be the set of physical qubits. Then, a mapping from logical to
physical qubits is performed via 𝑓 : L𝑖 ↦→ P𝑖, where 𝑖 points to the 𝑖th element of the
corresponding set.
At the time of performing the simulations, the device has the following set of basis gates:
𝐼𝐷, 𝑋, 𝑆𝑋, 𝑅𝑍 and 𝐶𝑋 . In Tab. 5.1 one finds qubit calibration data at the time of the
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Frequency [GHz] 𝑇1 [10−5s] 𝑇2 [10−5s]
𝑞
(0)
18 5.09 10.93 6.99
𝑞
(1)
17 5.24 9.08 3.53
𝑞
(2)
21 5.27 10.13 10.98
𝑞
(3)
23 5.14 8.45 10.78
𝑞
(4)
24 5.0 11.41 2.61

Table 5.1: Calibration data of simulated qubits 𝑞 (L𝑖 )
P𝑖

, at the time of the simulation.

simulation. Furthermore, Tab. 5.2 shows single-qubit gate errors and measurement errors.
Note, that 𝑅𝑍 is a virtual 𝑍 rotation and thereby has neither an error, nor a duration. Finally,
Tab. 5.3 gives the 𝐶𝑋 errors to qubit pairs (𝑞 (L𝑖)

P𝑖
, 𝑞

(L𝑖+1)
P𝑖+1

).

Single-qubit operation error (and duration)
{𝐼𝐷, 𝑋, 𝑆𝑋} Measurement

𝑞
(0)
18 1.98 · 10−4 (3.56 · 10−8s) 7.4 · 10−3 (6.76 · 10−7s)
𝑞
(1)
17 4.22 · 10−4 (3.56 · 10−8s) 6.1 · 10−3 (6.76 · 10−7s)
𝑞
(2)
21 2.59 · 10−4 (3.56 · 10−8s) 6.8 · 10−3 (6.76 · 10−7s)
𝑞
(3)
23 1.73 · 10−4 (3.56 · 10−8s) 7.9 · 10−3 (6.76 · 10−7s)
𝑞
(4)
24 1.65 · 10−4 (3.56 · 10−8s) 5.3 · 10−3 (6.76 · 10−7s)

Table 5.2: Gate errors and execution durations.

5.2 Quantum simulation details

For performing noisy simulations, we employ Qiskit’s Aer, a high performance simulator
for executing quantum circuits within Qiskit. Next, we chose the FakeKolkataV2() backend,
which is supposed to mimic the behavior of the quantum device ibmq_kolkata, as described
in 5.1. These two ingredients allow for noisy simulations based on the ibmq_kolkata device
with given gate fidelities, operations and durations. This is particularly useful to gauge the
accuracy of results, if demonstrations took place on the real quantum device.

qubit pair 𝐶𝑋 error (and duration)
(𝑞 (0)18 , 𝑞

(1)
17 ) 1.62 · 10−2 (5.05 · 10−7s)

(𝑞 (1)17 , 𝑞
(2)
21 ) 8.77 · 10−3 (4.91 · 10−7s)

(𝑞 (2)21 , 𝑞
(3)
23 ) 5.39 · 10−3 (3.63 · 10−7s)

(𝑞 (3)23 , 𝑞
(4)
24 ) 5.34 · 10−3 (2.84 · 10−7s)

Table 5.3: 𝐶𝑋 gate errors on qubit pairs (𝑞 (L𝑖 )
P𝑖

, 𝑞
(L𝑖+1 )
P𝑖+1

), at the time of the simulation.
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5.2.1 Employment of error mitigation techniques

We made use of several error mitigation techniques [9], some of them are implemented
natively in Qiskit. In particular, we have utilized

• measurement error mitigation,

• Pauli twirling,

• dynamical decoupling

• and zero-noise extrapolation.

The methods used for generating the results shown in Fig. 4.5 are readout error mitigation
and dynamical decoupling with 𝑋𝑋 sequences on idle qubits.

On the other hand, the evaluation of correlators, Fig. 4.12, requires a more extensive use of
described error mitigation techniques. The sequence of applied techniques is as follows.

One starts by Pauli twirling all of the two-qubit gates in a given circuit, and repeats this
99 times. We have now 100 Pauli twirled circuits associated with a given evolution time
𝜏. In the spirit of zero noise extrapolation, we denote the target scaling factors as 𝐹 =

[1.0, 1.5, 2.0, 2.5, 3.0]. In a given circuit, each CNOT gate is being copied twice with
respective probabilities 𝑃(𝐹) = [0, 0.25, 0.5, 0.75, 1]. For instance, a scaling factor of 2.0
implies that the count of CNOT gates doubles. Since however back-to-back CNOTs merge
into the identity (therefore altering the effective circuit), a practical route is to flip a coin
at each CNOT gate for the chance of copying it twice. Since we have in total 100 Pauli
circuits per experimental time 𝜏, the sample size is large enough to justify such strategy.
Of course, the empirical probabilities from the count of copied CNOT gates differs slightly
from the respective theoretical probabilities in 𝑃(𝐹). Later on, the extrapolation will take
the empirical probabilities as reference points, and not the ones from 𝑃(𝐹).
As a last step, the 𝑋𝑋 sequence on idle qubits is applied. All circuits are run and readout
error mitigation is applied.

The individual evaluations are then extrapolated to the zero-noise level via a second-order
polynomial. The 100 data points give rise to the standard deviations visible in Fig. 5.2.
Finally, the shot number for all demonstrations was set to 4096, as Fig. 5.2 suggests this
number balances out computational resources with accuracy of a result.
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Figure 5.2: Correlators 𝑦2−𝑦2, 𝑦3−𝑦3 and 𝑥3−𝑦2 evaluated in 25 Trotter steps of the duration Δ𝜏 = 𝜋
10 . The solid blue curves correspond to the

analytical results, cf. Eqs. (4.19)–(4.21). System parameters are chosen to be 𝑡 = 1 and 𝑈 = 4𝑡. Errors bars indicating the standard deviation of
outcomes decrease with greater number of shots. The correlators were evaluated on Qiskit’s noisy Aer simulator of the FakeKolkataV2() backend,
an open-access simulator of the corresponding superconducting device ibmq_kolkata provided by IBM.
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6 Variational Cluster Approach
In this introductory section we outline the basic idea behind the variational cluster approach
(VCA) [59]. This recapitulation mainly serves for the purpose of demonstrating the use-
fulness of the quantum algorithms aimed at finding the correlation functions of moderately
large clusters plus their potential speed-up over purely classical methods of computation.
We also briefly recap the Hamiltonian of the Fermi-Hubbard model, which is a prototypical
example where VCA can be successfully applied.
The VCA is a method that allows for solving many-body systems in a self-consistent manner.
In general, we assume that a many-body system is described by a lattice Hamiltonian 𝐻 of
macroscopic size. While the number of qubits needed to encode the full Hilbert space of
𝐻 scales linearly with the number of sites, the VCA enables one to reduce the number of
required qubits by investigating only a small, representative subset, i. e., a cluster, of the
full lattice. These clusters are disjoint, identical copies of each other, whose Hamiltonian is
denoted as 𝐻′. Since the cluster acts as a proxy to the full system, meaningful investigations
can be carried out with a relatively small quantum chip.
The Fermi-Hubbard model is described via a Hamiltonian of the form𝐻 = 𝐻0(t)+𝐻1(U). It
is a sum of a kinetic short-range hopping term characterized by amplitudes t and a repulsive
on-site interaction of strength U:

𝐻̂ = −t
∑︁
⟨𝑖, 𝑗⟩,𝜎

(
𝑐
†
𝑖𝜎
𝑐 𝑗𝜎 + 𝑐†

𝑗𝜎
𝑐𝑖𝜎

)
+ U

∑︁
𝑖

𝑛̂𝑖↑𝑛̂𝑖↓, (6.1)

Again, the operators 𝑐𝑖𝜎 and 𝑐†
𝑖𝜎

destroy or create an electron with spin 𝜎 on the 𝑖th site,
respectively, 𝑛̂𝑖𝜎 = 𝑐

†
𝑖𝜎
𝑐𝑖𝜎 are number operators, and the summation in the kinetic term goes

over nearest neighbors.
A microscopically small cluster described by 𝐻′ can not lead to long-range effects such as
magnetism and superconductivity, which arise in the macroscopic system described by the
full 𝐻. In order to impose these effects in the cluster, we can add symmetry breaking terms
to the Hamiltonian which may promote different superconducting, ferromagnetic or charge-
density orders. A connection between micro- and macroscopic systems is established via
their grand potentials. In particular, following Luttinger and Ward [79], one can consider
the grand canonical potential (GCP) of interacting fermions to be a functional of the Green’s
function G and the self-energy 𝚺,

Ωt [G,𝚺] = −Tr ln
(
G−1

0 − 𝚺
)
− Tr(G𝚺) +Φ[G], (6.2)

where G−1
0 is the non-interacting Green’s function and Φ[G] is the Luttinger-Ward func-

tional. Diagrammatically, the latter can be defined as a sum over all irreducible two-particle
diagrams, referred to as skeleton diagrams, Fig. 6.1.
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+ + + ⋯Φ =
Figure 6.1: The Luttinger-Ward functionalΦ[G] is a sum over closed two-particle skeleton diagrams.
The first summand is a particle-hole pair interacting with itself, the second summand are two particle-
hole pairs interacting with each other once, the third summand are two particle-hole pairs interacting
with each other twice.

In the expression above both the Green’s function, 𝐺𝛼𝛽
𝜏1𝜏2 , and the self-energy, Σ𝛼𝛽𝜏1𝜏2 , have

to be understood as matrices in position, spin and (Matsubara) time domains, with Greek
letters, 𝛼 = (𝑖, 𝜎), being used as combined indices in lattice and spin spaces. The functional
Ωt [G,𝚺] achieves its stationary value at the physical G and 𝚺. In particular, a functional
derivative of the Luttinger-Ward functional gives the diagrammatic expansion for the self-
energy,

𝛿Φ[G]/𝛿G = 𝚺[G] . (6.3)

This relation guarantees that 𝛿Ωt [G,𝚺]/𝛿G = 0. On the other hand, optimization over the
self-energy yields the exact Dyson equation,

𝛿Ωt [G,𝚺]
𝛿𝚺

= 0 ⇒ (G−1
0 − 𝚺)G = 1. (6.4)

The variational principle outlined above can be simplified if one assumes that one can
resolve (6.3) by defining the Green’s function G = G[𝚺] in terms of the self-energy. The
functional in (Eq. (6.2)) then reduces to

Ωt [𝚺] = −Tr ln
(
G−1

0 − 𝚺
)
+ 𝐹 [𝚺], (6.5)

where we have introduced the Legendre transform of the Luttinger-Ward functional,

𝐹 [𝚺] = Φ[G[𝚺]] − Tr(𝚺G[𝚺]), (6.6)

which satisfies 𝛿𝐹 [𝚺]/𝛿𝚺 = G[𝚺]. It follows that Ωt [𝚺] is stationary at the physical
self-energy, since the condition 𝛿Ωt [𝚺]/𝛿𝚺 = 0 constitutes the Dyson equation, Eq. (6.4).
An overview of this scheme is shown in Fig. 6.2.
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Figure 6.2: The variational cluster approach in practice. Within the vast space of t (blue stripe)
one cuts out a subspace of trial single-particle parameters t′ (dark blue box). Treating the latter as
variational parameters, a set of trial self-energies Σ[t′] (dark green box) can be proxied. Likewise,
these self-energies are a subset of the full Σ[t] space (green stripe). The grand potential as a
functional of the trial self-energies can then be scanned (gray box). The Dyson equation is solved as
soon as one finds a saddle-point in the Ω[Σ[t′]] space. It is sufficient to find one of the two (yellow)
saddle-points to satisfy the variational equation 𝛿Ωt’ [𝚺]/𝛿𝚺 = 0. Starting with a different set of
variational parameters t′ leads to different self-energies and finally to a different explorable subspace
for the grand potential.

The Luttinger-Ward functional, and hence 𝐹 [𝚺], is not known in general 1, cf. [80]. However
it is universal in the sense that it is defined only by the interaction part of the Hamiltonian,
𝐻1(U), and is independent of 𝐻0(t). This observation has motivated Potthoff to restrict
the class of variational self-energies to those which optimize the functional Ω′

t [𝚺] for the
reference system of disjoint clusters described by the Hamiltonian 𝐻 = 𝐻0(t′) + 𝐻1(U).
Denoting the (exact) solution of this optimization problem by 𝚺t′ , one can relate the original
functional Ωt [𝚺] of the physical system to the reference one, Ωt′ ≡ Ω′

t [𝚺t′], by a simple
relation

Ωt [𝚺t′] = Ωt′−Tr ln
(
G−1

0 − 𝚺t′
)
+ Tr ln

(
G−1

0 − 𝚺t′
)
,

where G′
0 represents the free fermion propagator of a cluster. The above approximate

functional can be rewritten in the Fourier space with the help of Matsubara sums and
treating a single cluster as a unit cell of the infinite size physical system,

Ωt [𝚺t′] = Ωt′−𝑇
∑︁
𝜔𝑛,𝒌

Tr ln (1 −𝑉𝒌G′(𝜔𝑛)) , (6.7)

1One exception is the so-called SYK model with random all-to-all two-body interaction, where the Luttinger
functional can be found on average, Φ[𝑮] = 𝐽

∫
𝑑2𝜏 𝐺4

𝜏1𝜏2 , with 𝐽 being an interaction strength.
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where G′(𝜔𝑛) =
(
𝑖𝜔𝑛− t′−𝚺t′ (𝜔𝑛)

)−1 is the cluster Green’s function expressed through the
corresponding self-energy and 𝑉𝒌 = t′ − t𝒌 being a matrix of inter-cluster hopping terms.

The self-consistency scheme of the VCA then substitutes the variational principle in Eq. (6.4)
by optimizing Ωt [𝚺t′] (Eq. (6.7)) over inter-cluster parameters t′. The latter may include
different mean-field order parameters related to expected patterns of symmetry breaking,
which are not a part of the microscopic Hamiltonian (Eq. (6.1)).

Such optimization procedure over t′ requires an efficient evaluation of the Green’s function
G, which was provided to the reader in Ch. 4. As soon as the saddle-point with respect
to the GCP in Eq. (6.7) is found, the approximate full system G𝒌 (𝜔) can be restored by
stitching together the twin clusters via

G𝒌 (𝜔) =
(
G′−1(𝜔) −𝑉𝒌

)−1
. (6.8)

We have already discussed the superiority of quantum routines versus classical routines in
Sec. 3.4. The following section taps into the application of the VCA onto the two-site dimer.
The efficient evaluation of the GF was established in Sec. 3.2.2. We go one step further and
parameterize the cluster GF under a variation in the Coulomb repulsion U, thereby altering
the effective relation between hopping and repulsion. This allows for a quick access to the
GF, rendering subsequent circuit evaluations obsolete.
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7 The variational cluster approach on
the two-site dimer

Lastly, we touch on embedding our direct measurement scheme into the VCA. The two-site
dimer as it was presented previously is investigated for Mott-transitions in Ref. [81]. For this
model, the reference provides us with simple analytical formulae for the GF in frequency
space.

The GF is part of the variational algorithm Eq. (6.7), with the variational parameter being
the repulsion 𝑈, effectively affecting the relation of kinetic energy to repulsion energy. It
can be similarly implemented as the quantum circuits for the repulsive term. With this in
mind, there is no need for explicit formulation of a perturbation Hamiltonian, but rather
adjust the inherent repulsion term𝑈 in the model Eq. (6.1) as a proxy accordingly.

According to [81], the analytical formulae for the GF read

𝐺 (𝑧) = 𝐴

𝑧 − 𝜖1
+ 𝐴

𝑧 + 𝜖1
+ 𝐵

𝑧 − 𝜖2
+ 𝐵

𝑧 + 𝜖2
, (7.1)

𝜖1 =
1
4

(√︁
𝑈2 + 64𝑡2 −

√︁
𝑈2 + 16𝑡2

)
, (7.2)

𝜖2 =
1
4

(√︁
𝑈2 + 64𝑡2 +

√︁
𝑈2 + 16𝑡2

)
, (7.3)

𝐴 =
1
4

(
1 − 𝑈2 − 32𝑡2√︁

(𝑈2 + 64𝑡2) (𝑈2 + 16𝑡2)

)
, (7.4)

and finally
𝐵 = 0.5 − 𝐴. (7.5)

7.1 Parameterization of the two-site dimer Green’s func-
tion

The benefit of parameterization of the simulated GF is firstly a check, if known analytical
results can be reproduced. Moreover, it allows for an easy engineering of the GF based on
previous simulations. Given a parameterization in 𝜖1, 𝜖2, 𝐴 and 𝐵 is sufficiently smooth,
scanning the repulsion space in𝑈 for probing the GF in Eq. (6.7) can be made practical via
interpolation between successive parameter data points.
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Naturally, the simulation results Fig. 4.12 from a noisy simulator will not match the analytical
results. The noise can be modeled by damping factors 𝛾1, 𝛾2, added in the corresponding
denominators of Eq. (7.1). This factor is already known to us from Eqs. (0.13), (0.16).
Given our hopping amplitude stays constantly at 𝑡 = 1, Eqs. (7.1)–(7.4) transform to

𝐺 (𝜔) = 𝐴

𝜔 − 𝜖1 + 𝑖𝛾1
+ 𝐴

𝜔 + 𝜖1 + 𝑖𝛾1
+ 𝐵

𝜔 − 𝜖2 + 𝑖𝛾2
+ 𝐵

𝜔 + 𝜖2 + 𝑖𝛾2
, (7.6)

𝜖1 =
1
4

(√︁
𝑈2 + 64 −

√︁
𝑈2 + 16

)
, (7.7)

𝜖2 =
1
4

(√︁
𝑈2 + 64 +

√︁
𝑈2 + 16

)
, (7.8)

𝐴 =
1
4

(
1 − 𝑈2 − 32√︁

(𝑈2 + 64) (𝑈2 + 16)

)
. (7.9)

To actuate a match between the simulation data in time-domain and the analytical frequency-
dependent GF from Eq. (7.6), an inverse Fourier transformation onto the analytical formula
yields

𝐺 (𝜏) = 2 (𝐴 exp(−𝛾1𝜏) cos (𝜖1𝜏) + 𝐵 exp(−𝛾2𝜏) cos (𝜖2𝜏)) . (7.10)

Following chapters 4 and 5, we have simulated the FHM for the interval 𝑈 ∈ [0, 20].
Simulation results were based on 26 Trotter steps with Δ𝜏 = 𝜋/10, leading to a full
simulation time of 𝑇 = 2.6𝜋. This is based on practical considerations, as it renders the
numerical frequency domain symmetric.

To achieve a parameterization to the retarded GF based on noisy simulator data, we fit𝐺 (𝜏)
in Eq. (7.10) to the simulated data. The results are presented in Fig. 7.1.

In some early instances of𝑈 < 1, discrepancies appear mostly in the energy value 𝜖2. At this
point, the amplitude 𝐵 of the Lorentzian peak is so small, that the position in the frequency
domain becomes blurry. This problem may be worked around by having higher resolution
in the frequency domain. Similarly, 𝛾2 spikes at weak 𝑈. Note, that larger values in 𝑈
progressively worsen the match in amplitudes 𝐴, 𝐵, plus relatively strong discrepancies in
values of 𝜖2. However, the parameters 𝛾1, 𝛾2 partially offset the discrepancies as they are
not accounted for in the analytic curve.

With the help of the parameter set 𝑝 = [𝐴, 𝐵, 𝜖1, 𝜖2, 𝛾1, 𝛾2], we can now engineer the
empirical GF directly. In snapshots of 𝑈 ∈ {0, 5, 10, 15}, we compare the empirical GF
against the analytical GF in Figs. 7.2–7.5.
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Figure 7.1: Amplitudes 𝐴, 𝐵 (left), energies 𝜖1, 𝜖2 (center) and damping factors 𝛾1, 𝛾2 (right) depending on the Coulomb repulsion𝑈.
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Figure 7.2: Parameterized Green’s function for𝑈 = 0.
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Figure 7.3: Parameterized Green’s function for𝑈 = 5.
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Figure 7.4: Parameterized Green’s function for𝑈 = 10.
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Figure 7.5: Parameterized Green’s function for 𝑈 = 15. The kink at 𝜔 = 0 stems from the overlap
of two peaks around 𝜖1, which is close to zero for𝑈 ≥ 15.

The images show an overall good approximation of the GF in terms of the parameters
𝑝 = [𝐴, 𝐵, 𝜖1, 𝜖2, 𝛾1, 𝛾2]. In the context of the two-site dimer, the quick access to the
Green’s function is guaranteed by a successful parameterization.
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Since the cluster GF is an input to the grand potential, Eq. (6.7), it would be of interest to
check, if the latter can be parameterized from the parameters 𝑝 in the toy study as well. If
this was the case, we could rapidly scout the Ω[𝑝] space to find a saddle-point in variations
of 𝑝.

7.2 Determination of the phase diagram

Satisfying the GCP relation Eq. (6.7) yields the system parameters 𝑝, that generate a cluster,
which in turn can be used to restore G𝒌 (𝜔) (Eq. (6.8)), i. e., the effective approximate full
system GF. For the optimal value of 𝑡/𝑈, which is found from optimizing the VCA free
energy Eq. (6.7), the cluster GF corresponds to the physical dynamics in the system. In this
case the cluster GF can be used for the construction of the single-particle density of states
𝜌(𝜔):

𝜌(𝜔) = −1
𝜋

Im
∫
𝒌

d𝒌
(2𝜋)𝑑

G𝒌 (𝜔). (7.11)

Negative frequencies 𝜔 < 0 corresponds to possible states below the Fermi energy 𝐸𝐹 ;
positive frequencies 𝜔 > 0 correspond to those above the Fermi energy. By convention,
at 𝜔 = 0 we set 𝐸𝐹 = 0. To distinguish if a large system is insulating or conducting, one
checks the amplitude of the density of states at the Fermi energy. If 𝜌(𝜔 = 0) = 0, we have
an insulator; a sharp peak around the Fermi energy (𝜌(𝜔 = 0) > 0) signifies a metal.

If we wish to determine magnetization or superconductivity, firstly we need to make sure
that the cluster is of appropriate size. Two sites are sufficient to study s-wave superconduc-
tivity, and also the transition from a metal to an insulator. If we wish to capture d-wave
superconductivity or magnetization, at least four sites are required. Plus, in the case of
d-wave superconductivity, a cluster should be at least of dimension two. For the study of
antiferromagnetism and superconductivity, we refer to the works [61, 76]. The basic idea
is to add symmetry breaking terms to the cluster Hamiltonian Eq. (1.1) to nudge the cluster
system into phases (e. g., magnetic), which would naturally occur in the large system. The
order parameter is then simply the amplitude of the added symmetry breaking term, which
led to the satisfaction of the GCP relation Eq. (6.7).
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Part II
Optimized quantum annealing

This part has been published as "Gino Bishop, Simone Montangero and Frank K. Wilhelm, A Set of Annealing
Protocols for Optimized System Dynamics and Classification of Fully Connected Spin Glass Problems",
arXiv:2310.10442 — Submitted on October 16th, 2023. It is an independent extension to the Master’s thesis
"Quantum annealing algorithms applied to infinite-range Ising problems", written under supervision of S.
Montangero and with practical advice of F. Tschirsich. One figure from the Master’s thesis was reproduced
here.





Overview

In continuation of Sec. 0.5, a target eigenstate of a Hamiltonian is often the lowest energy
state. For systems too large to be treated by exact diagonalization, quantum annealing can
in principle be used to find the spectrum of a given Hamiltonian. Here, we are interested
in the ground state as it represents the optimal solution to the Ising problem embodying
an underlying combinatorial optimization problem. Particularly, we aim to find the ground
state to problems associated with the Lechner-Hauke-Zoller (LHZ) [82] architecture, which
is an annealing scheme designed to overcome challenges related to embedding problems
into hardware graphs.

While specialized annealers exist for not-fully connected graphs, the intriguing advantage
of the LHZ architecture is the achievement of all-to-all connectivity via fully programmable
local interactions. A one-to-one mapping between local and full connectivity is established
via mapping 𝑁 logical qubits onto 𝐾 = 𝑁 · (𝑁 − 1)/2 physical qubits. Locally tunable
constraints need to be introduced to balance out the increase in the amount of degrees of
freedom. An implementation with Rydberg atoms in an optical lattice has been proposed
[83], where the key challenge is reportedly the implementation of the constraints. Lastly,
a generalization of the LHZ scheme within the stabilizer mechanism is possible [84]. The
authors show that their proposed stabilizer formulation can reduce the qubit count in specific
problems as well as map higher-order interactions in logical spins onto single physical qubits.

In this work, we explore the original LHZ proposal with 𝑁 = 5 fully connected logical
qubits. In particular, we aim to contribute to the process of finding optimal annealing
schedules by providing a set of fixed optimized protocols, applicable to arbitrary transverse-
field Ising instances within the LHZ scheme to ramp an initial Hamiltonian to the problem
Hamiltonian. This is done by analyzing a sample of 2400 instances, which will serve as
our training set. As these desired protocols are applied and evaluated on the basis of the
large sample, by design protocols in 𝑆 are not optimal for any individual instance, but
rather outperform linear ones on a large class of programmable problems. Moreover, the
protocols are deliberately different from each other, so that the variety of all protocols
cover a wide range of instances. Lastly, all protocols can further be used as a collection
of guess pulses for thorough optimization of system dynamics in any underlying problem
of similar size. Optimizing annealing protocols beyond the linear slope enables us to find
solutions for combinatorial optimization problems faster [85], especially if we allow for
detachment from the adiabatic regime. Prior use of optimization techniques is required to
find optimal protocols. For this task, we use the dressed Chopped RAndom Basis algorithm
(dCRAB) [86, 87] which is a bandwidth-limited optimal control technique capable of
exploring phase space in an ergodic fashion. It is part of the Quantum Optimal Control
Suite (QuOCS), [88]. We will choose the ground state infidelity as the cost function.

The adiabatic condition, Eq. (0.12), requires the simulation time 𝑇 to be sufficiently large to
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enable conversion between two quantum states, with Δ𝐸 denoting the minimum instanta-
neous spectral gap between the ground state and the first excited state. What is an appropriate
magnitude of 𝑇 to use for an arbitrary instance? The answer becomes increasingly difficult
to anticipate with more instances to be solved with the same strategy, not to forget that
extracting Δ𝐸 is itself generally a challenging problem [14].

One way to handle this is to cluster instances according to some shared traits. We call the
set that consists of groups of instances of similar kind 𝐺 ≡ {𝑔1, 𝑔2, . . . }. These kinds could
include the magnitude of the global minimum gap Δ𝐸 , the number of local minimum gaps
and their distribution throughout the annealing process. Intuitively, instances that share
certain traits are then put into a single group 𝑔𝑖. We argue, that the assignment of instances
to such groups simplifies the effort of finding optimal annealing protocols. Following this
notion, we present routes to group instances, find optimal protocols for the individual groups
𝑔𝑖 and probe their performance on a test set. The goal is to find a suitable protocol 𝑠𝑖 (𝜏) for
every group 𝑔𝑖, that in application yields average ground state fidelities of F 𝑔𝑖 ≥ 0.9.

System dynamics to the use of those schedules display a trend: While some schedules
keep the adiabaticity intact, others lead to a violation of the adiabatic condition, triggering
non-adiabatic dynamics.
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8 LHZ architecture
We chose to work on the LHZ architecture for two main reasons. Firstly, albeit four-body
constraints need to be implemented which might pose a technical challenge, it is hardware-
aligned as interactions are implemented locally. Secondly, from [82] we learn that there
are discrepancies between the Ising spin glass and the programmable model in terms of
three key metrics: deviation of the lowest energy levels at 𝜏 = 1, the ratio of instantaneous
gaps during the sweep and the time of occurrence of the minimum gap. Although these
discrepancies can be damped depending on the choice of constraint strength 𝐶 against
interaction strength |𝐽 |, they will not vanish utterly. It is thus straightforward to argue that
system dynamics will differ in both models.
Following [82], we give a brief overview on the LHZ architecture. For a thorough description
we urge the interested reader to consult the original paper.
We start by describing the Hamiltonians and the mapping from logical to physical spins.

8.1 Fully connected annealer

We start from a classical Ising spin-glass type Hamiltonian

𝐻̂𝑝 =

𝑁−1∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

𝐽𝑖, 𝑗 𝜎̂
(𝑖)
𝑧 𝜎̂

( 𝑗)
𝑧 , (8.1)

where the interactions 𝐽𝑖, 𝑗 encode some problem we wish to solve by finding the lowest
energy configuration, and 𝑖, 𝑘 run over spin-1/2 sites. While sampling 𝐽𝑖, 𝑗 from the binary
configurations {0, 1} is already sufficient to encode a range of hard problems such as the
well known maximum cut problem [18], we follow LHZ by choosing 𝐽𝑖, 𝑗 ∼ 𝑈 (−𝐽, 𝐽), i. e.,
the interaction matrix elements being continuously, uniformly sampled with 𝐽 = 1.
We can obtain a quantum annealer by adding a local transverse field

𝐻̂𝑖 =
∑︁
𝑖

𝜎̂
(𝑖)
𝑥 , (8.2)

for which the initial ground state can be easily prepared, and then introduce two ramps 𝐴(𝜏)
and 𝐵(𝜏) as

𝐻̂ (𝜏) = 𝐴(𝜏)𝐻̂𝑖 + 𝐵(𝜏)𝐻̂𝑝 . (8.3)

In the adiabatic quantum annealing approach, the initial part is slowly ramped down from
𝐴(𝜏 = 0) = 1 to 𝐴(𝜏 = 1) = 0, while the final (problem) part is ramped up, 𝐵(𝜏 = 0) =

0, 𝐵(𝜏 = 1) = 1, over a timescale 𝑇 which is large enough to allow an adiabatic passage
such that at 𝑡 = 𝑇 (𝜏 ≡ 𝑡/𝑇 = 1) we arrive in the ground state of 𝐻̂𝑝.
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Figure 8.1: Mapping of the infinite-range interactions to local interactions as per [82]. a) Ising chain
with six logical qubits (red, solid frame). Lines mark the interactions between qubit pairs (𝑖, 𝑗). b)
Corresponding physical qubit (gray, dashed frame) architecture with local interactions (reduced to
four logical qubits due to space issues). Number of spin up in a given plaquette must be even. Two
cornered qubits (yellow, open frame) are fixed to protect the constraints in edge cases. c) Set of rules
for mapping logical (red, solid frame) to physical (gray, dashed frame) qubits.

8.2 LHZ architecture

We obtain the LHZ architecture by mapping the parity of every pair of two logical spins
(𝑖, 𝑗) from the fully connected, original problem, onto a single physical spin 𝑘 .

As a result, from 𝑁 logical spins, we obtain 𝐾 = 𝑁 (𝑁 − 1)/2 physical spins with local
fields 𝐽𝑘 = 𝐽𝑖, 𝑗 , and can directly map the final Hamiltonian onto

𝐻̃𝑝 =

𝐾∑︁
𝑘=1

𝐽𝑘 𝜎̃
(𝑘)
𝑧 , (8.4)

where 𝜎̃𝑥 , 𝜎̃𝑧 are the spin-1/2 Pauli operators acting on the physical spins. The mapping
is shown in Fig. 8.1. However, it is only invertible upon introduction of at least 𝐾 − 𝑁
constraints mapping from 𝐾 physical qubits back onto the 𝑁 logical qubits. In the LHZ
architecture, the logical state is resolved only up to global spin-flip parity. The latter can
be alleviated by one more addition to a total of 𝑁𝑐 = 𝐾 − 𝑁 + 1 constraints: The number
of spin up must be even in every plaquette 𝑝. These constraints can be implemented by
introducing an energy penalty of the form

𝐻̃
(𝑝)
𝑐 = −𝜎̃ (𝑝1)

𝑧 𝜎̃
(𝑝2)
𝑧 𝜎̃

(𝑝3)
𝑧 𝜎̃

(𝑝4)
𝑧 , (8.5)

where 𝑝1 . . . 𝑝4 label the spin in the four corners of plaquette 𝑝. Again, for an annealing
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process, we introduce a simple local initial Hamiltonian

𝐻̃𝑖 =

𝐾∑︁
𝑘=1

𝜎̃
(𝑘)
𝑥 . (8.6)

The full passage Hamiltonian then reads

𝐻̃ (𝜏) = 𝐴̃(𝜏)𝐻̃𝑖 + 𝐵̃(𝜏)
(
𝐻̃𝑝 +

𝑁𝑐∑︁
𝑝=1

𝐶 (𝑝) (𝜏)𝐻̃ (𝑝)
𝑐

)
. (8.7)

Aside from the ramps 𝐴̃(𝜏), 𝐵̃(𝜏), we have introduced time-dependent constraint strengths
𝐶 (𝑝) (𝜏) which can be tuned freely during the adiabatic passage but must ultimately become
large enough to make sure the ground state fulfills all constraints at 𝜏 = 1. This preserves
the one-to-one mapping between logical and physical qubits, i. e., the constraints ensure that
the solution to the problem in the LHZ scheme can be mapped to the solution to the original,
all-to-all connected problem. As LHZ point out, the constraints 𝐶 (𝑝) influence the value
of the minimal gap in the physical regime. It is therefore desired to find constraints that
preserve the mapping while simultaneously prevent the size of the minimum energy gaps to
drop significantly. There exist sweet spots in these functions𝐶 (𝑝) , which in principle can be
subject to an optimization routine. In the supplementary material of the work by Lechner
et al., the authors give quantitative suggestions for 𝐶 (𝑝) for 𝑁 ∈ {3, 4} logical qubits. Here,
we set the constraints equal across all plaquettes, i. e., 𝐶 (𝑝) = 𝐶 = 2.0.
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9 Optimization of annealing schedules

9.1 Design of fixed optimized schedules

The rate at which a system can be evolved in time is critically dependent on the size of the
minimum gap (and its occurrence within the sweep). As we vary the interaction matrix in
Eq. (8.4), we consequently change its energy landscape. Two Ising problems with arbitrary
interaction matrices may exhibit, for instance, similar energy landscapes and thus energy
gaps. Hence, the speed at which adiabatic time evolution can be performed should exhibit a
comparable upper bound. Systems of ten or fewer physical qubits do hardly exhibit multiple
minima in our training sample: For 𝐾 = 10 we find the ratio of instances that have at
least one local minimum alongside a global minimum is < 1%. Moreover, as can be seen
from Figs. 9.2, 9.3, the time of the emergence of the avoided crossing within the sweep is
correlated to the magnitude of Δ𝐸 . The larger Δ𝐸 becomes, the earlier the emergence of
the avoided crossing tends to occur. Since time of occurrence of the minimal gap is linked
to its magnitude, and the number of instances exhibiting local minima is insignificant, we
focus on the size of the minimal gap as our main metric used to generate problem groups.

The groups are designed such that if two instances are taken from the same group, they
will exhibit a comparable minimum gap value. If one instance is taken from one group 𝑔𝑖,
and another instance is taken from another group 𝑔𝑖′ , 𝑖 ≠ 𝑖′, then the discrepancy between
the two energy gaps grows. Consequently, for any two instances taken from 𝑔𝑖, we expect
the annealing time required for a successful transition into the desired output state to be of
similar order. This motivates the search for finite set of annealing protocols, where the idea
is to customize protocols according to the different groups.

Table 9.1 summarizes the notation used throughout the following.

9.1.1 Problem groups

We start from a large sample 𝑀 containing |𝑀 |= 4 · 104 programmable instances, which
are used to construct a training set of in total 2400 instances. Implementation and sampling
details can be found in appendix B.1. The first step is to perform an exact diagonalization on
all instances in order to obtain their individual minimum gap Δ𝐸 . We then sort all instances
according to Δ𝐸 , such that for all instances 𝑗 ∈ 𝑀

Δ𝐸 𝑗 ≤ Δ𝐸 𝑗+1 (9.1)

applies. Hence, the first instance ( 𝑗 = 1) has the smallest minimum gap, whereas the
instance indexed by 𝑗 = |𝑀 | has the largest gap. The next step is to choose |𝐺 |, i. e.,
the number of groups included in 𝐺. We choose the number of groups to be six. This is
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Symbol Summary
𝑗 Index of an instance.
𝑀 Raw sample of 4 · 104 instances 𝑗 .

Δ𝐸 𝑗
Minimal energy difference between
ground state and first excited state of
instance 𝑗 .

𝑔𝑖
Group, that includes many instances
𝑗 of similar Δ𝐸 𝑗 .

𝐺 = {𝑔1, 𝑔2, · · · , 𝑔6} Set of all groups.

Δ𝐸𝑔𝑖
Average minimum gap over all in-
stances 𝑗 in 𝑔𝑖.

𝑠𝑖 (𝜏)
Optimized schedule applied to all
instances 𝑗 in 𝑔𝑖.

𝑆 = {𝑠1, 𝑠2, · · · , 𝑠6} The set of optimized schedules.

|𝑀 |, |𝐺 |, |𝑆 | Cardinality of 𝑀 (4 ·104),𝐺 (6) and
𝑆 (6).

Table 9.1: Summary of notation used in Part II.

motivated by the notion, that less groups make the question of how large to choose 𝑇 for
all instances more difficult to solve, while too many groups render the applicability of all
protocols in 𝑆 too costly.

Afterwards, we put the first |𝑀 |/|𝐺 | instances in 𝑔1 and note the standard deviation
𝜎1(Δ𝐸1, · · · ,Δ𝐸 |𝑀 |/|𝐺 |) in terms of their energy gaps. We do this for all groups in 𝐺.
In this manner, we are able to assign a standard deviation 𝜎𝑖 to each group 𝑔𝑖. The goal is
to shift instances from 𝑔𝑖 to neighbored groups 𝑔𝑖±1 such that (i) 𝜎1 ≈ 𝜎2 ≈ · · · ≈ 𝜎|𝐺 | and
(ii) 𝜎𝑖 is as small as possible for all 𝑖. This approach has one major advantage: all Δ𝐸 from
individual instances in a given group 𝑔𝑖 are as similar as possible. This implies, that each
group 𝑔𝑖 is maximally different from the other groups 𝑔𝑖′≠𝑖. Hence, applying a group specific
optimized protocol 𝑠𝑖 (𝜏) onto any instance 𝑗 in 𝑔𝑖 yields meaningful results as opposed to
applying it to an instance 𝑗 ′ in 𝑔𝑖′ , 𝑖 ≠ 𝑖′ and 𝑗 ≠ 𝑗 ′. At this point six groups spanning
unique intervals of minimum energies exist. Our analysis suggests that 400 instances per
group are sufficient to represent it fully (i. e., 2400 instances in total), which is on par with
the analysis carried out in [82], where in total 400 instances were analyzed. Trimming down
the number of instances per group to |𝑔𝑖 |= 400 leaves us with the final groups accompanied
by the distribution of Δ𝐸 , Fig. 9.1.

The histogram of instances in the training set𝐺 is illustrated in Fig. 9.1. Groups of instances
𝑔𝑖 are shaded in gray and white. Their width span the interval of Δ𝐸 for all instances within
their corresponding group.
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Figure 9.1: Histogram of minimum gaps. Areas of alternating shades represent all instances within
a group 𝑔𝑖 , numbered in ascending order at the top. Their width indicate the range of values in Δ𝐸

for each group.

9.1.2 Optimized schedules

Given a set 𝐺, we are now able to find out the set of corresponding optimized annealing
protocols 𝑆 by employing the dCRAB algorithm (cf. introduction to Part II). The first step
is to define 𝐴(𝜏) ≡ 1 − 𝑠(𝜏) and 𝐵(𝜏) ≡ 𝑠(𝜏), Eq. (8.7). Moreover, we omit the explicit
time-dependence of the protocols 𝑠𝑖 (𝜏) to shorten equations and refining the figures, except
when it serves the purpose of clarity. From here on, optimized protocols are called 𝑠𝑖,
where 𝑖 indicates the corresponding group, the protocol was designed for. Furthermore,
due to the simple relation 𝐴(𝜏) = 1 − 𝐵(𝜏), it is sufficient to denote the set of protocols
as 𝑆 = {𝑠1, 𝑠2, . . . }. To measure the effect of a protocol 𝑠𝑖 onto the time-evolution of all
instances (indexed as 𝑗) in 𝑔𝑖, we take the average group fidelity F (𝑠𝑖, 𝑔𝑖) into account,
denoted by

F (𝑠𝑖, 𝑔𝑖) =
1
|𝑔𝑖 |

∑︁
𝑗∈𝑔𝑖

F (𝑠𝑖, 𝑗). (9.2)

It is the average ground state fidelity at 𝜏 = 1, which will be the figure of merit in the
optimization loop. Here, the fidelity for a single instance 𝑗

F (𝑠𝑖, 𝑗) = |⟨Ψsim(𝑠𝑖, 𝑗) |Ψexact( 𝑗)⟩|2 (9.3)

is the overlap of simulated state |Ψsim(𝑠𝑖, 𝑗)⟩ and exact ground state |Ψexact( 𝑗)⟩ of the final
Hamiltonian 𝐻̃𝑝, Eq. (8.4), respectively.
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The goal fidelity is chosen to be F (𝑠𝑖, 𝑔𝑖) ≥ 0.9. As the group-specific average minimum
gap Δ𝐸𝑔𝑖 heavily influences the required simulation time 𝑇 to reach a given target ground
state fidelity F (𝑠𝑖, 𝑔𝑖) > 0.9, we increase 𝑇 until the target fidelity is reached. Fig. 9.2
and Fig. 9.3 show for all groups 𝑔𝑖, 𝑖 ∈ {1, 2, 3, 4, 5, 6} the average energy gap Δ𝐸𝑔𝑖 for all
instances in 𝑔𝑖 along with the associated optimized schedule 𝑠𝑖.
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Figure 9.2: Instantaneous energies ⟨Δ𝐸 (𝜏)⟩𝑔𝑖 averaged over all instances in 𝑔𝑖 (solid line) along
with their corresponding optimized annealing protocols in 𝑠𝑖 (dashed line) numbered in ascending
order at the top.

Note, that by minimizing the annealing time 𝑇 , we implicitly assume sufficiently long
coherence times, allowing us to neglect them in the simulations. Realistically, quantum
devices have coherence times, which shall not be exceeded by annealing times in order
to allow for coherent dynamics. It is thereby reasonable to fix annealing times limited by
coherence time, and minimize the ground state infidelity or energy instead of fixing the goal
fidelity and minimizing annealing time. Results for the latter approach (fixed annealing
times) can be found in B.3. The approach we have chosen (minimize annealing times) is
motivated in Appendix B.2.

We report that when the average minimum gapΔ𝐸𝑔𝑖 over all instances in 𝑔𝑖 becomes smaller,
then the time of its occurrence shifts to the first half of the sweep, Fig. 9.2. The protocols
𝑠𝑖 are reminiscent of characteristics from an optimal adiabatic ramp [23] as the first time
derivative of 𝑠𝑖 (𝜏) reaches a saddle-point, when the energy gap gets close to its minimum.
Furthermore, the schedules do not necessarily start at zero, i. e., 𝑠𝑖 (𝜏 = 0) ≠ 0, 𝑖 = 5, 6, and

80



0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Figure 9.3: Optimized annealing schedules designed for groups 𝑔𝑖 numbered in ascending order at
the top.

do not necessarily end at unity by the end of the sweep, 𝑠𝑖 (𝜏 = 1) ≠ 0, 𝑖 = 1, · · · , 5. This
indicates the presence of non-adiabatic effects; a dedicated analysis can be found in 10.4.

Another form of diabatic dynamics can be achieved via quantum walks [89]. We like to
point the interested reader to literature, that dives deeper into the relation and potential
interplay of both methods. Specifically, optimized schedules 𝑠5 and 𝑠6 expose a flat ramp
in the region 𝜏 ∈ [0.0, 0.7], meaning that the Hamiltonian 𝐻̃ (𝜏) (Eq. (8.7)) hardly changes
in the time span. This can be linked to continuous-time quantum walks, and a combination
of using both adiabatic annealing in tandem with quantum walks has been proposed [90].
Furthermore, quantum walks can be helpful in understanding the formation of optimal
schedules in the non-adiabatic quantum regime [91, 92].
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10 Performance analysis

This chapter starts with presenting the single-instance fidelities to the optimized schedules.
The spread of fidelities is discussed, trending more narrow for instances that are considered
easy.

Further on, we discuss the speed-up gained from the optimization of schedules over linear
ramps. Interestingly, the speed-up is more apparent for instances that are easy to solve,
e. g., have a relatively large minimum gap Δ𝐸 . The irritation is addressed in the section
Sec. 10.4, investigating the nature of system dynamics to the schedules; it turns out, that
instances which are easy to solve are more prone to adiabatic dynamics.

Lastly, we check the schedules on a test set of instances, which were not part of the design
process of group-specific schedules 𝑠𝑖. The optimized schedules achieve similar fidelities,
demonstrating their robustness on a wide range of problems.
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Figure 10.1: Single-instance fidelities F (𝑠𝑖 , 𝑗 ∈ 𝑔𝑖) from optimal protocols {𝑠𝑖} onto all instances
𝑗 of corresponding groups {𝑔𝑖} separated by solid vertical lines and numbered in ascending order at
the bottom.
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10.1 Single-instance fidelities

We show the distribution of single-instance fidelities F (𝑠𝑖, 𝑗), Fig. 10.1, when the optimized
protocol 𝑠𝑖 is applied to its corresponding instances 𝑗 in 𝑔𝑖. Vertical lines separate the groups
in ascending order from left to right.

Clearly, the smaller the gaps become, the wider the spread of single-instance fidelities. This
is due to the fact that the smaller the average energy gap per group, the wider is the range
of required simulation time 𝑇 as 𝑇 ∼ Δ𝐸−1 (non-adiabatic) or 𝑇 ∼ Δ𝐸−2 (adiabatic). Ad-
ditionally, although the instance-dependent minimum gaps are correlated to their positions
(smaller minimum gaps tend to occur later in the annealing process), variations in their
locations further widen the spread in single-instance fidelities.

We find the ratio of instances with more than one energy minimum to be < 1% for 𝑁 = 5
logical qubits. It shall be pointed out, that for system sizes of 𝑁 > 5, multiple local minima
are more likely to occur [93], contributing further to the hardness of the problem.

10.2 Speed-up from optimizations

Next, we compare required annealing times of linear and optimized annealing protocols,
Fig. 10.2, needed to reach the mean goal fidelity F (𝑠𝑖, 𝑔𝑖) ≥ 0.9. For 𝑁 = 5 we have an
averaged reduction of annealing time of 71.6%, i. e., one needs 3.52 fold longer annealing
times with linear protocols compared to optimized ones. Raw numbers can be found in
Table 10.1.

𝑔𝑖 1 2 3 4 5 6
𝑇lin 326.72 123.05 74.71 53.05 39.59 30.63
𝑇opt 118.99 38.32 21.09 14.52 10.29 7.42

Table 10.1: Raw numbers for annealing times. For linear schedules, the average annealing time 𝑇lin
is 3.52 larger than annealing times 𝑇opt for optimized schedules.

Note, that the speed-up becomes more noticeable for problem instances with a larger
minimum gap. As 𝑇 scales linearly (or quadratically) in the reciprocal of the minimum
gap for non-adiabatic (or adiabatic) dynamics, one could expect the speed-up to be more
prominent for problem instances with small minimum energy gaps. In the frame of the
conducted simulations, those instances tend to prefer adiabatic dynamics. On the other
hand, instances which have larger minimum energy gaps are more prone to non-adiabatic
dynamics.
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Figure 10.2: Simulation time speed-up for 𝑁 = 5 from the set of optimized protocols 𝑠𝑖 relative to
a linear ramp to reach mean goal fidelity F (𝑠𝑖 , 𝑔𝑖) ≥ 0.9. Thick lines are group specific speed-ups,
thin lines represent average speed-up of factor ∼ 3.52.

10.3 Robustness test

Lastly, we probe optimized protocols in 𝑆 gathered by analysis of the training set onto a
different test set 𝐺 test of again 6 · 400 instances. Albeit no optimizations were performed
with respect to the test set, a tiling into different groups 𝑔test

𝑖
is required to verify, that the

protocols are applicable and useful for any transverse-field Ising instance within the LHZ
model and not a product of overfitting.
We find that ∀𝑖 ∈ {1, 2, 3, 4, 5, 6} it holds F (𝑠𝑖, 𝑔𝑖) ≈ F (𝑠𝑖, 𝑔test

𝑖
), cf. Fig. 10.3. This

indicates that optimized protocols 𝑠𝑖 indeed cover a wide range of programmable LHZ
problems and can successfully be applied to arbitrary instances sampled via a similar
distribution in 𝐽, cf. Appendix B.1.
Comparing with Fig. 10.4, we find that the lowest data point in fidelity F (𝑠𝑖, 𝑔test

𝑖
) is still

above the 0.5 line.
Investigations for larger systems (𝑁 > 5) need to be carried out in order to probe the
usability of the method and whether or not optimized protocols can be found, not to
mention the number of groups necessary to cover a wide range of programmable LHZ
problems. After all, larger systems are typically more relevant for real world applications,
but often come with multiple local energy minima [94], which makes the design process of
groups more complicated. Larger systems may pick up a Stückelberg phase when passing
through multiple avoided crossings [95], which disturbs the single-instance wave function
|Ψsim(𝑠, 𝑗)⟩ and thereby fidelity, Eq. (9.3), in a non-trivial way.
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Figure 10.3: Comparison of averaged fidelities F (𝑠𝑖 , 𝑔𝑖) and F (𝑠𝑖 , 𝑔test
𝑖

) for 𝑁 = 5 when applying
optimized protocols in {𝑠𝑖} to all instances 𝑗 in the training set {𝑔𝑖} and test set {𝑔test

𝑖
}. By design,

F (𝑠𝑖 , 𝑔𝑖) is just above the 0.9 line.
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Figure 10.4: Single-instance fidelities F (𝑠𝑖 , 𝑗 ∈ 𝑔test
𝑖

) in the test group from optimal protocols {𝑠𝑖}
onto all instances 𝑗 of corresponding groups {𝑔test

𝑖
} separated by solid vertical lines and numbered

in ascending order at the bottom.
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10.4 Adiabaticity Check

If we compare with Fig. 9.3, we see that for group 5 and group 6 the schedule starts from
a nonzero value, e. g., 𝑠𝑖 (𝜏 = 0) > 0, 𝑖 = 5, 6. This is the first hint to non-adiabaticity.
We further see that the schedules are not monotonically increasing. In of itself this is not
necessarily a violation of the Adiabatic Theorem [20], but in the context of minimizing the
annealing time to a given goal solution, it is. To investigate this further, the instantaneous
ground state probabilities |⟨Ψsim(𝑠(𝜏)) |Ψexact(𝑠(𝜏))⟩|2𝑔𝑖 , 𝑖 = 1, · · · , 6 (each line represents
one instance out of the associated group) are shown in Fig. 10.5.

We remind the reader that the annealing times of the distinct groups are given in Tab. 10.1.
The first group 𝑔1 is comprised of instances with the smallest minimum gaps, hence the
required annealing time is largest. Most of the instantaneous ground state probabilities
are close to one, hinting that time evolution of instances in 𝑔1 is dominated by adiabatic
dynamics.

Already for group 𝑔2, which includes the next hardest instances, we see a slight shift away
from probabilities of one. This trend continues to unfold as group 𝑔6 does not have a single
instance, that is being evolved with an adiabatic schedule.

One way to look at this is by noticing that required annealing times for 𝑔1 is large enough
to allow for adiabatic evolution, whereas the much shorter annealing time for 𝑔6 forces the
system dynamics into diabaticity. Another way to look at it follows when we acknowledge
that by employing optimal schedules 𝑠𝑖 (𝜏), which are not necessarily one at the end of the
sweep, Fig. 9.3, we effectively solve a slightly altered proxy problem in terms of a 𝐻̃ (𝜏),
Eq. (8.7), for which the solution directly maps to the original, diagonal problem Hamiltonian
𝐻̃𝑝, Eq. (8.4). In group 𝑔1 and 𝑔2 most of those proxy problems are solved adiabatically.
However for members of groups 𝑔4, 𝑔5 and 𝑔6 solutions to the proxy problems stem from
diabatic dynamics.

For further investigation, one could explore the energy landscapes of individual problems in
𝑔1 and 𝑔6. By design, problems situated in group 𝑔6 have a large minimum energy gap, e. g.,
⟨Δ𝐸𝑔6⟩ > ⟨Δ𝐸𝑔1⟩. Perhaps, a diabatic time-evolution is easier to navigate for problems with
a larger minimum gap, because on average the system passes through less energy levels as
compared to problems with very small minimum energy gaps.

Within the frame of our studies, arguably simpler instances benefit more from an optimiza-
tion speed-up than more difficult problem instances. Non-adiabatic dynamics that emerge
primarily for 𝑔5 and 𝑔6 benefit from shorter annealing times as 𝑇 ∼ Δ𝐸−2. This is in stark
contrast to adiabatic dynamics found in 𝑔1 and 𝑔2, for which 𝑇 ∼ Δ𝐸−1. This results in the
unexpected speed-up distribution in Fig. 10.2.
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Figure 10.5: Instantaneous ground state fidelities |⟨Ψsim(𝑠(𝜏)) |Ψexact(𝑠(𝜏))⟩|2𝑔𝑖 , 𝑖 = 1, · · · , 6 and corresponding annealing times. Each line
represents the probability trajectory of one instance in 𝑔𝑖 . While system dynamics mainly follow adiabatic passages in 𝑔1 and 𝑔2 (large 𝑇),
non-adiabatic patterns dominate in 𝑔4, 𝑔5 and 𝑔6 (small 𝑇).
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11 Summary & Takeaways

11.1 Part I: Simulation of correlated electrons

11.1.1 Summary

Chapter 1 introduces the Fermi-Hubbard model (FHM), which incorporates electronic
correlations and can be used to study long-range effects such as d-wave superconductivity.
This model is hard to solve classically, however there exist quantum routines that need much
less computational resources compared to its classical counterpart.
In chapter 2, we lay out the quantum circuits that evaluate correlation functions, that
constitude the system Green’s function (GF). With a Jordan-Wigner (JW) mapping, the
number of qubits scales linearly with the number of orbitals within the system. Chapter
3 presents the quantum routines to evaluate the GF and their complete quantum circuit
representations.
Chapter 4 showcases the algorithm on a small toy model: the two-site dimer. We show
data points for the GF ranging over 25 Trotter steps and plot these against the analytical
GF. The fidelity of the results were significantly improved through the use of quantum error
mitigation techniques. Full details on the conduction of the demonstration are to be found
in chapter 5.
The following chapter 6 briefly introduces the variational cluster approach (VCA). It is a
technique used to break down a full lattice system into smaller entities, which are easier to
solve, but require careful tuning to serve as an effective approximation.
Finally, in chapter 7, we evaluate the cluster GF for 26 time steps. For a parameter space
covering effective Coulomb repulsion, we show how a GF can quickly be parameterized in
good approximation for repulsion values 𝑈 ∈ [0, 20]. It can be achieved by introducing
damping, reflecting the natural decoherence of qubits. As for the VCA, the cluster GF is
an input parameter to an approximate large system’s grand potential (GCP), subject to the
variational principle with respect to the self-energy.

11.1.2 Takeaways

Part I lays out the complete path to solve the Fermi-Hubbard model (FHM) on a quantum
computer. Starting from the FHM and its reformulation into quantum circuits, we explore
two algorithms for evaluating the many-body GF. Both are equal in circuit depth. Yet, the
direct measurement scheme turns out to be a powerful candidate when dealing with larger
systems beyond one dimension due to its adaptability to a broader set of fermion-to-qubit
mappings.
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We provide the framework to prepare the ground state, its perturbation and finally the
measurement of a hopping term, as part of the linear response routine. In its application
to the toy model, we can recycle the simulated data to instantly engineer a GF via a
few characteristic parameters reflecting the shape of the Fourier domain GF. This can be
expanded to a quicker evaluation of the GCP, the key quantity for the Dyson equation to
be asymptotically satisfied with ever growing clusters. Only then can the phase diagram be
determined.

Lastly, the direct measurement algorithm in combination with the variational cluster ap-
proach can also be used to explore the phase diagram of more complex materials. For
instance, twisted bilayer graphene exhibits high-temperature superconducting and Mott in-
sulating phases. With current noisy intermediate-scale quantum (NISQ) devices, a six-site
cluster could be implemented several times on the qubit architecture of a superconducting
quantum chip. This makes the application of the VCA accessible even for a larger, unified
cluster system.

11.2 Part II: Optimized quantum annealing

11.2.1 Summary

On the Lechner-Hauke-Zoller (LHZ) annealing architecture [82], outlined in chapter 8, our
stated goal is to provide a set 𝑆 that consists of fixed optimized annealing protocols 𝑠(𝜏),
that outperform linear passage on a large class of transverse-field Ising problems. To that
end, the target is to minimize the annealing time over which a system evolves from an initial
Hamiltonian to a sampled problem Hamiltonian.

For 𝐾 = 10 physical qubits, the annealing time is critically dependent on the minimum
energy gap Δ𝐸 between ground state and first excited state within the instantaneous energy
spectrum. We will use the amplitude of the gap as a proxy for the difficulty of a given
problem.

Chapter 9 explores the idea to use pre-optimized ramps, that were designed for varying
difficulties of problem instances, ranked via their minimum energy gap value. Therefore, six
groups 𝑔𝑖, 𝑖 = 1, ..., 6,were established, that collect instances with similar traits, specifically,
with comparable Δ𝐸 per instance. This way, we can adjust required annealing times for
each individual group within 𝑔𝑖, paving the way for an optimization over all instances 𝑗 ∈ 𝑔𝑖
∀𝑖 ∈ {1, 2, 3, 4, 5, 6}. We find six optimized protocols 𝑠𝑖 (𝜏), 𝑖 = 1, ..., 6 that, when applied
to their corresponding groups 𝑔𝑖, yield an average ground state fidelity of ≥ 0.9. We further
showcase the robustness of the schedules in application to a wide range of programmable
problems.

Chapter 10 discusses results and reliability of the optimized schedules. Utilizing them for
their corresponding groups 𝑔𝑖 reduces required simulation time by an average of 71.6%
relative to linear protocols. In some cases, particularly for groups 𝑔5 and 𝑔6, the solution is
reached via non-adiabatic time evolution, leading to a more drastic speed-up. However, if
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the system is given more time, as is the case for solutions for groups 𝑔1, 𝑔2, 𝑔3, the evolution
is mainly governed by adiabatic dynamics.

A visual overview of the full process is given in Fig. B.2.

11.2.2 Takeaways

In Part II we find a set of optimal annealing schedules that lead to average ground state
fidelities of F ≥ 0.9 in the LHZ architecture, utilizing only local qubit couplings. We
provide a framework to generate such intermediate optimized schedules. For high-fidelity
optimizations of single-instances beyond F ≥ 0.99, they could be used as an initial guess,
potentially speeding up the search for suitable schedules.

Interestingly, instances with considerably large minimum energy gaps seem to benefit more
from a quantum speed-up than more difficult instances. In our studies, instances with small
minimam gaps are more prone to adiabatic dynamics, resulting in longer annealing times.
Problem instances with a relatively large minimum gap tend more towards non-adiabatic
dynamics, minimizing annealing times even further.

It is not yet clear if the strategy remains effective for systems consisting of more spins,
e. g., larger systems tend to exhibit multiple local minima. In this case, we should not
only group instances according to their Δ𝐸 , but also according to their number of local
minima. Further investigations are needed as to how many groups are required for a
beneficial tradeoff between correctness and cost. More groups mean more trial protocols.
This decreases applicability, but naturally increases the performance of protocols. More
generally, it needs to be verified, that one can expect similar results for larger systems.

On a different note, it would be interesting to study if the sole application of an optimized
schedule to a given problem yields information on the problem itself. For instance, can the
minimum gap of a given problem be inferred from its response to an applied schedule?

Lastly, the design of optimized protocols as presented in this paper requires knowledge of
the minimum gaps, which were found via exact diagonalization. As this strategy is not appli-
cable in a laboratory, we explore a method to generate optimized protocols experimentally
on annealers in Appendix B.4.
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Linear response experiments require the quantum system to be in equilibrium at time
zero. Only then, the system is poked and a response is provoked. Quantum annealing
can be utilized to prepare the equilibrium ground state of a strongly correlated many-
body quantum system. The latter can be viewed as an all-to-all connected system, for
which minor embedding can pose challenges. However, within the LHZ architecture, full
connectivity is broken down to local connectivity, which is straightforward to implement
on annealing platforms. Hence, at the intersection of both quantum annealing and linear
response experiments, we find the ingredients to solve strongly correlated quantum systems
from scratch.

Although the presented algorithms have been tailored to specific problems, a more general
perspective highlights their potential: Both the direct measurement scheme and the opti-
mized quantum annealing share the common goal of bringing quantum advantage closer to
applications on NISQ devices.

The former is a novel quantum algorithm that matches the Hadamard test in the scaling
of costly two-qubit gates. As a defining feature the new scheme can be extended to a
broader class of fermion-to-qubit mappings. Combined with the variational cluster approach
meaningful experiments can be conducted on relatively small quantum chips.

On the other hand, quantum annealing provides an approach for solving combinatorial
optimization problems. Leveraging non-adiabatic quantum dynamics can lead to rapid
convergence to the solution of a given problem. Since NISQ annealers are limited in their
applicability in terms of coherence time, a significant reduction in the annealing time widens
the range of problems, that can be effectively addressed.

The approaches benefit near-term applications on NISQ devices in that they are physically
motivated and readily implementable on existing quantum hardware. While mathemati-
cal models continue to guide what is controlled in quantum systems, the need for high
performance compute is reduced by delegating the most demanding tasks to nature itself.
A many-body Green’s function can be measured — not calculated. Annealers output the
solution to a combinatorial optimization problem naturally — not numerically. In summary,
the presented approaches offer ways to bring the break-even point for quantum advantage
closer to the present.
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A Appendix for Part I

A.1 Derivation of the Kubo formula

In this Appendix we summarize the basics of linear response theory and derive the gener-
alized susceptibility (3.10). Consider the Hamiltonian of a system, 𝐻′(𝑡) = 𝐻 + 𝑉 (𝑡), with
a perturbation 𝑉 (𝑡) = ∑

𝑗 Φ 𝑗 (𝑡)𝐴 𝑗 acting at times 𝑡 > 0 and given by the sum of hopping
operators 𝐴 𝑗 defined in Eq. (3.8). Let also 𝜌0 = 𝜌(𝑡 = 0) be an initial density matrix.
Presently, we have 𝜌0 = |Ψ(𝛼∗, 𝛽∗)⟩⟨Ψ(𝛼∗, 𝛽∗) |, with (𝛼∗, 𝛽∗) being the optimal parameters
of the VHA. However the exact form of 𝜌0 is not important for what follows.

By introducing the Heisenberg operators, 𝐴𝑖 (𝑡) = 𝑒𝑖𝐻
′𝑡𝐴𝑖𝑒

−𝑖𝐻′𝑡 , we are aiming to find how
their averages,

⟨𝐴𝑖 (𝑡)⟩Φ = Tr(𝜌0𝐴𝑖 (𝑡)), (A.1)

change in time in response to the perturbation𝑉 (𝑡). Here, a subscript in the average, ⟨. . . ⟩Φ,
indicates that the latter is a functional of generalized forces Φ 𝑗 (𝑡). To this end, we switch
to the interaction picture by defining 𝐴𝑖 (𝑡) = 𝑒𝑖𝐻𝑡𝐴𝑖𝑒−𝑖𝐻𝑡 such that the average in Eq. A.1
becomes

⟨𝐴𝑖 (𝑡)⟩Φ = Tr
[
𝜌0𝑈

+(𝑡)𝐴𝑖 (𝑡)𝑈 (𝑡)
]
, (A.2)

where
𝑈 (𝑡) = 𝑒𝑖𝐻𝑡𝑒−𝑖𝐻′𝑡 ≡ 𝑇𝑡 exp

{
−𝑖

∫ 𝑡

0
𝑉𝐼 (𝑡′)𝑑𝑡′

}
(A.3)

is an evolution operator in the interaction picture expressed via 𝑉𝐼 (𝑡) =
∑
𝑗 Φ 𝑗 (𝑡)𝐴 𝑗 (𝑡). At

this point we may expand𝑈 (𝑡) up to first order in perturbation 𝑉𝐼 (𝑡) and obtain

⟨𝐴𝑖 (𝑡)⟩Φ = ⟨𝐴𝑖 (𝑡)⟩ + 𝑖
𝑡∫

0

d𝑡′⟨[𝑉𝐼 (𝑡′), 𝐴𝑖 (𝑡)]⟩ + . . . , (A.4)

where ⟨. . . ⟩ denotes an average with the initial density matrix 𝜌0. For our choice of operators
𝐴𝑖 the 0th order term in Eq. A.4 vanishes. On introducing the response function

𝜒𝑖 𝑗 (𝑡, 𝑡′) = −𝑖Θ(𝑡 − 𝑡′)⟨[𝐴𝑖 (𝑡), 𝐴 𝑗 (𝑡′)]⟩, (A.5)

we finally find the Kubo formula. It states that in linear order the response of a system to
the perturbation Φ 𝑗 (𝑡) is given by

𝛿⟨𝐴𝑖 (𝑡)⟩ =
𝑡∫

0

𝜒𝑖 𝑗 (𝑡 − 𝑡′)Φ 𝑗 (𝑡′)𝑑𝑡′. (A.6)
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In particular, if the perturbation is localized in time at 𝑡 = 0, i.e. Φ 𝑗 (𝑡) = Φ 𝑗 𝛿(𝑡), then
Eq. A.6 yields

𝛿⟨𝐴𝑖 (𝑡)⟩ =
∑︁
𝑗

𝜒𝑖 𝑗 (𝑡)Φ 𝑗 . (A.7)

In this form it can be used to construct the corresponding quantum circuits as described in
the main text.
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B Appendix for Part II

B.1 Implementation details

We generated transverse-field Ising models according to 𝐻̃𝑝, cf. Eq. 8.4. Specifically, we
varied the interaction matrix 𝐽 in the uniform interval [-1,1]. Randomization was performed
by a Mersenne-Twister python implementation. The constraints𝐶 are equal for all plaquettes
𝑝 and ramped up linearly as 𝐶 (𝜏) = 𝜏 · 𝐶, i. e. decoupled from the problem Hamiltonian
(Eq. 8.7). The strength was chosen according to analysis by LHZ for 𝑁 ∈ {3, 4}. For five
logical qubits we set 𝐶 ≡ 𝐶 (𝑝) = 2.0.

Transverse-field Ising problems, which exhibit a ground state degeneracy at or critically
close to 𝑡 ≈ 𝑇 were discarded for simplification of ground state fidelity evaluations. If the
degeneracy appears at 𝑡 = 𝑇 − 𝛿, and 𝛿 is in the scale of the smallest numerical time step,
then the system has hardly time to emancipate from its degeneracy. Additionally, some
instances did violate the constraints and thus prevent a one-to-one mapping between logical
and physical qubits. Lastly, instances for which a fidelity F ≥ 0.9 can not be reached within
a reasonably large simulation time 𝑇 = 1000 were discarded.

The training set consists of 6 · 400 instances, whereas we start from in total 4 · 104 pro-
grammable problems. Constructing six groups leaves us with uneven numbers of instances
per group. How many instances do we need to represent a specific group? LHZ used in total
400, and we find that a histogram over the distribution of Δ𝐸 is not harmed by carefully
cutting off instances, such that we deem 400 instances per group sufficient to solve the stated
goals.

B.2 Justification of goal fidelity

Fixing the annealing time according to a given coherence time of a quantum device is
reasonable and intuitive. These simulations were carried out in B.3. Here, we want to make
the case for minimizing the annealing time for reaching a target fidelity.

We start by pointing out two structural benefits. Firstly, a ground state fidelity of 0.9
arguably implies that one has found a good solution to a given problem within the first
few repetitions. With this, we make sure that all problems we consider are being solved.
The question becomes how we can solve such problems even faster. Secondly, after the
fact it turns out that by setting the target fidelity, we are able to study the bulk transition
from adiabatic to non-adiabatic dynamics. A goal fidelity of 0.9 has shown to open up
possibilities for entering non-adiabatic regimes, particularly if the system is given little
annealing time, Fig. 10.5.
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The following is meant to additionally justify a goal fidelity of F (𝑠𝑖, 𝑔) > 0.9 on a numerical
basis.

1. The required fidelity drastically depends on the annealing time 𝑇 . Hence, as we fixate
the goal fidelity to 0.9, we can perform the task of finding optimized schedules much
quicker than if we were searching for fidelities close to unity.

2. Some instances in 𝑔1 demand excessive computational resources to be treated in an
adiabatic way. For those instances, we find the minimum gap Δ𝐸 to be close to zero
and the emergence of the avoided crossing to be around 𝜏 ≲ 1. This might indicate an
artifact of too small choice of 𝐶 (𝑝) . Still, as such instances contribute to the average
fidelity, this limits the upper bound of fidelity values that can be reached.

3. The protocols in {𝑆} are by design not optimal for any arbitrary single instance, but
can be used as guess pulses for single-instance protocol optimizations. If we were
to target group-specific average fidelities of F (𝑠, 𝑔𝑖) > 0.99, we might face the risk
of over-optimizing protocols and thereby hamper the single-protocol optimization for
arbitrary LHZ instances.

B.3 Fixed annealing times

While typical values for qubit coupling are on the order of 10−100MHz and coherence times
can be as low as tens of nanoseconds, coherence times of around 1𝜇s with a coupling strength
of |𝐽 |= 1GHz has been reportedly achieved [96, 97]. A dimensionless annealing time as a
product of time and energy scale is estimated to span the ranges of 𝑇 ∈ [1, 10, 100, 1000],
which is comparable to the annealing times found in the simulations, cf. Table 10.1. Results
are shown in Fig. B.1.

Naturally, a small 𝑇 = 1 leads to poor results in terms of ground state fidelity of at most 0.1.
For 𝑇 = 100 most of the instances even from the first group are above the 0.9 mark, and
for 𝑇 = 1000 the lowest ground state fidelity is still above 0.975. The most interesting case
we find for 𝑇 = 10. Here, the cross-section of fidelities span values from just below 0.2
to almost 1.0 and can well be used to gauge the hardness of a given problem. In this case,
the fidelity gives information of potential groups with a fixed annealing time. Yet, one is
advised to be careful, since for example a ground state value of ∼ 0.7 can be found in each
group. It is therefore useful as an additional cross-check to either as a first educated guess
for a group in which the problem is likely to be found — or as an approval of such a guess
based on different techniques, such as the response to a given, pre-optimized schedule 𝑠𝑖.

B.4 Optimized protocols from annealing experiments

Minimum gaps are not readily available in a real hardware environment, which means that
the strategy proposed can not be applied directly. However, as proof of concept the work
shows that in principle finding optimized protocols is possible that work well for a large class
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Figure B.1: Single-instance fidelities F (𝑠𝑖 , 𝑔𝑖) from optimization of the individual schedules for
fixed annealing times𝑇 ∈ [1, 10, 100, 1000] in accordance with typical coherence times of annealers.
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of programmable LHZ problems. The following method not only can be readily applied on
annealers. It also alleviates the problem of guessing the optimal number of groups as well
as the optimal number of instances within these groups as these quantities are output as
byproducts when executing the method. Most notably, a separative parameter (in our case
the minimum energy gap) is not required as well.

The first step is to define two threshold probabilities that proxy ground state fidelities, e. g.
F− ≡ 0.66 and F+ ≡ 0.99. Next, we sample a sufficiently large number of LHZ instances
and draw from this sample the first instance to perform an energy optimization. Again, the
annealing time needs to be varied until with large probability ≥ F+ the minimum energy
state of a final Hamiltonian is reached. Step two is to draw the second instance and apply
the previously found protocol with corresponding annealing time. If we do not find with
lower bound probability ≥ F− the minimum energy state, a single-protocol optimization
is again performed until with probability ≥ F+ we find the minimum energy state. In that
case, we would have two schedules to be applied to the successive problem instances being
drawn. Else, we simply draw the next instance.

This scheme is repeated until the number of protocols with corresponding annealing times
saturates. As energy landscapes become increasingly complex with larger systems, diabatic
evolution may become unique for each individual instance. The sample size and number of
protocols are then difficult to anticipate — in the worst case the number of protocols scales
linearly in the number of instances.

B.5 Visual overview

We provide the reader with the overview on the course of action taken to achieve average
group-specific fidelities of F 𝑔𝑖 ≥ 0.9 in Fig. B.2.
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Figure B.2: Full process of finding effective schedules that lead to average group-specific fidelities
of F 𝑔𝑖 ≥ 0.9. Sampling: We sample |𝑀 |= 4 · 104 problem instances constituted by their interaction
matrices 𝐽. Preparation: Instances 𝑖 from the large sample are ordered according to the amplitude of
the minimum gaps Δ𝐸𝑖 < Δ𝐸𝑖+1 and assigned to groups 𝑔 𝑗 , 𝑗 = 1, · · · , 6, that are comprised of 400
instances each. Optimization: Effective schedules are found by fidelity optimizations. Evaluation:
Effective schedules are tested against linear ramps. An average reduction of factor ∼3.5 in annealing
time is achieved. Validation: Effective schedules are tested on a different sample. Similarity in
fidelities indicates robustness of the schedules.
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