
Meet my Expectations:
On the Interplay of Trustworthiness
and Deep Learning Optimization

Dissertation
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
Adrián Javaloy Bornás, M. Sc.

Saarbrücken
2024

Gedruckt mit Genehmigung der Fakultät für Mathematik und Informatik der Universität des Saarlandes.

Tag des Kolloquiums: 11. März 2025

Dekan: Prof. Dr. Roland Speicher

Prüfungsausschuss:

Vorsitz: Prof. Dr. Martina Maggio

1. Berichterstatter: Prof. Dr. Isabel Valera

2. Berichterstatter: Prof. Dr. Jilles Vreeken

3. Berichterstatter: Prof. Dr. Benjamin Bloem-Reddy

Akademischer Beisitzer: Dr. Kavya Gupta

Dedicated to Alfonso Bornás Bayonas.

Your family will never forget you.

Disclaimer. This style is a modified version of Felix Dangel’s thesis template, which in turn uses Federico

Marotta’s kaobook template based on Ken Arroyo Ohori’s doctoral thesis, and I am grateful to all of them for

their openness to share their LAT
E
X codes. Otherwise, this thesis would not look nearly the way it does.

Acknowledgments

It has been a week since I defended my thesis in front of an incredible crowd and no, I have not written

the acknowledgments until now. My procrastination has been so apparent that it made it into my PhD hat

(thanks), but I always struggle with this type of writing: I want it to be as perfect and sincere as humanly

possible, since that is the least the people that have supported me these years deserve. So here we go.

First and foremost, I want to express my deepest gratitude to Isabel Valera. When I joined the lab back in 2019

I knew nothing, I was a “monkey with a gun” as I jokingly used to say and, while I still have many things to

improve upon, it is unquestionable that I have gone a long way in every aspect since then. Not only Isabel has

taught me how to be a great researcher, but she has also taught me how to be a better person, and I am lucky

enough to have had her along my side all these years not only as my advisor and collaborator, but also as my

friend, and I hope it keeps being this way for a long time. Thank you for all the patience you have had with me,

and for adopting me as an early member of your lab and a foster member of your family. I am really proud of

what we have done and, if I had the opportunity, I would undoubtedly repeat this journey with you.

I am also grateful to those incredible scientists that I somehow fooled into agreeing on being part of my

examination committee: Jilles Vreeken, Benjamin Bloem-Reddy, Martina Maggio, and Kavya Gupta. While I

could have done better during the presentation Q&A, I can assure you that I enjoyed the questions, that I love

and have been following your works for quite some time, and that I fondly hope to collaborate with all of you

in the near future (I definitely have ideas to discuss when the occasion comes!).

I also would like to briefly acknowledge the work of the administration staff that has made my paperwork

bearable all these years and which usually goes unnoticed. Starting from Sabrina and Mara Cascianelli back

in Tübingen, to Mona, Asel and, especially, Natalia Weis in Saarbrücken. Probably they would have blocked

my (often silly) emails if it were not part of their duties, but I am really grateful anyways.

The work I present in this dissertation (and the one I unfortunately had to leave out) would have not been

possible without all the incredible people I was lucky enough to work with. Starting with my Master advisor,

Ginés García-Mateos, who agreed to work in Deep Learning with me despite both of us not knowing what a

neural network was, and who got me into computer science (and competitive programming) when I was only

fifteen and performed poorly at the local competitions. I also want to thank Luigi Gresele, Giancarlo Fissore,

Bernhard Schölkopf, and Aapo Hyvärinen, which gave me the opportunity to help on what it became my first

PhD publication, Pablo Sánchez-Martín, with whom I published two beautiful works, Maryam Meghdadi,

whose help was invaluable to make impartiality blocks work, and Amit Levi, as I was lucky to pick his brain

to work on proofs I would have never been able to develop myself. Finally, I am thankful to the Machine

Learning lab for bearing with me for so long: Amir, Ayan, Batuhan, Deborah, Jonas, Kavya, Nektarios, and

the newer members who do not have to cope with me. I also enjoyed supervising and interacting with all the

students that worked with us: Raj, Bao, Georgi, Sonya, Dilan, and those that I might be missing.

During this journey I met many people, some of which I am happy to call friends to this day, despite not being

as much in contact as I definitely would love to. My journey in Tübingen would have not being as memorable

without Pablo Moreno, Annalisa, Antonio, Luigi and Sabrina, Diego and Sofía, Julius and Ina, Federico, Ju

Young, Diego Fioravanti, Felix, Martina, Daniela, or José Carlos, to name a few. Similarly, Saabrücken would

have been just and only work had I not met Jonas, Luis, Maribel, or Yaiza, who gave me a fresh view outside

the laboratory. This paragraph would be incomplete if I did not mention those who left us and who I would

never forget, Alfonso (¡Ay!, Abuelo...) and Otto, as well as those who have come to take over the world after us

and who definitely make me hopeful: Carmen, Viola, Tomás, Adrián, Golfa, Nena, and Nano.

Finally, I am eternally grateful to my family who have supported me all these years despite having to accept

living thousands of kilometers away from me, especially to my parents, Aurora María and Francisco, my

little old kitty, Mica, as well as to my sister, Marina. Gracias por todo mamá, papá, y de nada, Marina.
Thank you!

Adrián Javaloy Bornás
Edinburgh, March 18, 2025

Abstract You cannot optimize what you do not account for.

Deep learning (DL) has emerged as a powerful and general-purpose framework for learning from data which,

as a result of the enormous amount of data and parallel computing available these days, has been capable of

obtaining exceptional outcomes in a wide range of real-world applications. However, as a consequence of

its fast adoption, there exist an increasing urge to develop trustworthy models for those applications where

high stakes are in play, i. e., where significant errors can entail severe consequences on individuals. In this

dissertation, we argue that a key aspect of model trustworthiness is our perception of control over the model,

i. e., whether the model meets the pre-existing expectations that we place on it, and thus whether we can

accurately predict its behaviour to our future requests.

In this thesis, we focus on the role that DL optimization has on training models matching ours expectations.

Intuitively, although there may exist valid parametrizations within the parameter space, the optimization

process usually has no mechanisms to prefer these optima over seemingly equal optima which do not fulfil

our expectations. In order to incorporate our preferences into the training pipeline, we reinterpret them as

optimization constraints, and revisit the concept of inductive bias as a way to guide the optimization towards

low-error solutions that meet our preconceived expectations. Naturally, our expectations change according to

the tasks we seek to solve with a model and, consequently, we explore in this thesis three families of models,

in increasing order of the complexity of the expectations we place on the models.

In the first part, we focus on multitask learning (MTL), where we seek to simultaneously solve multiple tasks.

In this context, we argue that the recent trend of casting MTL problems as multi-objective optimization (MOO)

problems conceals a fundamental obstacle: contrary to our expectations, tasks are usually not comparable,
leading to difficulties designing loss objectives, comparing models and, ultimately, optimizing our DL models.

To address these issues, we advocate for the importance of clearly defining an objective function to optimize a
priori, justify the use of ranking-based statistics to compare MTL models—grounded on probability theory

and no-preference MOO methods—and introduce novel metrics and algorithms to measure and manipulate

the interactions between task gradients in order to improve the optimization process.

In the second part, we shift to probabilistic generative models (PGMs), whose aim is to model the data

distribution to later solve different tasks (e.g., data generation, or missing-data imputation). PGMs not only

comprehend the same set of expectations as MTL models do, but also carry additional constraints (e.g.,
densities need to integrate to one) and expectations (e.g., the information from each modality should be

equally valid to infer any other data modality). We propose two approaches to meet these expectations: first,

a preprocessing algorithm whose aim is to make each modality log-likelihood have a similar optimization

landscape; and second, building strong connections between MTL and PGMs, an in-processing algorithm

that leverages existing MTL methods to aggregate modality gradients on different parts of the network that

are prone to comparability issues. We empirically show that the proposed methods are effective for modelling

the data modalities more uniformly, significantly increasing the overall model performance.

In the third part, we consider causal generative models (CGMs), where the goal is now to learn the underlying

causal mechanisms generating our data. In addition to those tasks solved by PGMs, CGMs can also be used

to perform causal inference—i. e., to respond what-if questions—which entails an additional set of causal

expectations that we place on the models. Remarkably, we present in this dissertation a novel family of

causal models, and prove that not only are they identifiable given a causal ordering between variables (i. e.,
that we can recover them from observational data), but also that any other causal model—under a fairly mild

set of assumptions—can also be reduced to an equivalent member of this family. Using the newly-developed

theory, we introduce a new family of CGMs, causal normalizing flows (Causal NFs), which meet our causal

expectations by design, and are the first-of-their-kind DL models to accurate perform causal inference while

providing strong theoretical guarantees on their causal capabilities.

By carefully studying the (often implicit) expectations that we place on different families of DL models, this

dissertation shows how we can incorporate this external knowledge into the training process, designing

effective inductive biases that guide the optimization process towards optima that better match these

expectations. As a result, we are able to consistently produce more reliable DL models, which we perceive to

be more in control of, and which we can confidently use to better assist us in real-world scenarios.

Zusammenfassung

Deep Learning (DL) hat sich als leistungsfähige und universelle Methode für das Lernen aus Daten

herauskristallisiert, der aufgrund der enormen Datenmengen und der heutzutage verfügbaren parallelen

Datenverarbeitung in der Lage ist, in einer Vielzahl von realen Anwendungen außergewöhnliche Ergebnisse

zu erzielen. Als Folge der schnellen Verbreitung besteht jedoch ein zunehmender Bedarf an der Entwicklung

vertrauenswürdiger Modelle für Anwendungen, bei denen viel auf dem Spiel steht, d. h. bei denen signifikante

Fehler schwerwiegende Folgen für den Einzelnen haben können. In dieser Dissertation argumentieren wir,

dass ein Schlüsselaspekt der Vertrauenswürdigkeit eines Modells darin besteht, dass wir die Kontrolle über

das Modell wahrnehmen, d. h. ob das Modell die Erwartungen erfüllt, die wir an es stellen, und ob wir daher

sein Verhalten in Bezug auf unsere zukünftigen Anfragen genau vorhersagen können.

In dieser Arbeit konzentrieren wir uns auf die Rolle der DL-Optimierung beim Training von Modellen,

welche unseren Erwartungen entsprechen. Intuitiv kann es zwar gültige Parametrisierungen innerhalb

des Parameterraums geben, aber der Optimierungsprozess hat normalerweise keine Mechanismen, um

diese Optima gegenüber scheinbar gleichwertigen Optima, die unsere Erwartungen nicht erfüllen, zu

bevorzugen. Um unsere Präferenzen in die Trainingspipeline zu integrieren, interpretieren wir sie als

Optimierungsbedingungen neu und greifen das Konzept der induktiven Verzerrung (inductive bias) wieder

auf, um die Optimierung auf Lösungen mit geringen Fehlern zu lenken, die unseren vorgefassten Erwartungen

entsprechen. Natürlich ändern sich unsere Erwartungen je nach den Aufgaben, die wir mit einem Modell zu

lösen versuchen, und daher untersuchen wir in dieser Arbeit drei Modellfamilien, die in der Reihenfolge der

Komplexität unserer Erwartungen an die Modelle aufgeführt werden.

Im ersten Teil konzentrieren wir uns auf das Multitasking-Lernen (MTL), bei dem wir versuchen, mehrere

Aufgaben gleichzeitig zu lösen. In diesem Zusammenhang argumentieren wir, dass der jüngste Trend,

MTL-Probleme als Mehrzieloptimierungsprobleme (MOO) zu betrachten, ein grundlegendes Hindernis birgt:

Entgegen unseren Erwartungen sind die Aufgaben in der Regel nicht vergleichbar, was zu Schwierigkeiten

beim Entwurf von Zielfunktionen, beim Vergleich von Modellen und letztlich bei der Optimierung unserer DL-

Modelle führt. Um diese Probleme anzugehen, plädieren wir für die Wichtigkeit einer klaren Definition einer

Zielfunktion, die a-priori optimiert werden soll, rechtfertigen die Verwendung von rangbasierten Statistiken

zum Vergleich von MTL-Modellen - basierend auf der Wahrscheinlichkeitstheorie und MOO-Methoden

ohne Präferenz - und stellen neuartige Metriken und Algorithmen vor, um die Interaktionen zwischen

Aufgabengradienten zu messen und zu manipulieren, um den Optimierungsprozess zu verbessern.

Im zweiten Teil wenden wir uns probabilistischen generativen Modellen (PGMs) zu, deren Ziel es ist, die

Datenverteilung zu modellieren, um später verschiedene Aufgaben zu lösen (zum Beispiel Datengenerierung

oder Imputation fehlender Daten). An PGMs werden nicht nur die gleichen Erwartungen wie an MTL-

Modelle gestellt, sondern auch zusätzliche Einschränkungen (z. B. müssen Dichten zu eins integriert

werden) und Erwartungen (z. B. sollten die Informationen aus jeder Modalität gleichermaßen gültig

sein, um auf jede andere Datenmodalität schließen zu können). Wir schlagen zwei Ansätze vor, um

diese Erwartungen zu erfüllen: erstens einen Vorverarbeitungsalgorithmus, der darauf abzielt, dass die

Log-Likelihood jeder Modalität eine ähnliche Optimierungslandschaft aufweist; und zweitens einen In-

Processing-Algorithmus, der starke Verbindungen zwischen MTL und PGMs herstellt und bestehende

MTL-Algorithmen nutzt, um Modalitätsgradienten auf verschiedenen Teilen des Netzwerks zu aggregieren,

die anfällig für Vergleichbarkeitsprobleme sind. Wir zeigen empirisch, dass die vorgeschlagenen Methoden

wirksam sind, um die Datenmodalitäten einheitlicher zu modellieren, was die Gesamtleistung des Modells

deutlich erhöht.

Im dritten Teil betrachten wir kausale generative Modelle (CGMs), bei denen das Ziel nun darin besteht,

die zugrunde liegenden kausalen Mechanismen zu erlernen, die unsere Daten erzeugen. Zusätzlich zu

den Aufgaben, die von PGMs gelöst werden, können CGMs auch zur Durchführung von Kausalschlüssen

verwendet werden, d. h. zur Beantwortung von Was-wäre-wenn-Fragen, was einen zusätzlichen Satz kausaler

Erwartungen an die Modelle voraussetzt. Bemerkenswerterweise stellen wir in dieser Dissertation eine

neuartige Familie von Kausalmodellen vor und beweisen, dass sie nicht nur unter der Voraussetzung einer

kausalen Ordnung zwischen den Variablen identifizierbar sind (d. h., dass wir sie aus Beobachtungsdaten

wiederherstellen können), sondern auch, dass jedes andere Kausalmodell - unter recht milden Annahmen -

ebenfalls auf ein äquivalentes Mitglied dieser Familie reduziert werden kann. Unter Verwendung der neu

entwickelten Theorie stellen wir eine neue Familie von CGMs vor, die Causal Normalizing Flows (Causal

NFs), die unsere kausalen Erwartungen von vornherein erfüllen und die ersten DL-Modelle ihrer Art sind,

die kausale Schlussfolgerungen genau durchführen und gleichzeitig starke theoretische Garantien für ihre

kausalen Fähigkeiten bieten.

Durch eine sorgfältige Untersuchung der (oft impliziten) Erwartungen, die wir an verschiedene Familien von

DL-Modellen stellen, zeigt diese Dissertation, wie wir dieses externe Wissen einbeziehen und wirksame

induktive Verzerrungen entwickeln können, um den Optimierungsprozess in Richtung von Optima zu lenken,

die diesen Erwartungen besser entsprechen. Dadurch sind wir in der Lage, durchgängig zuverlässigere

DL-Modelle zu erstellen, die wir besser zu beherrschen glauben und die wir vertrauensvoll nutzen können,

um uns in realen Szenarien besser zu unterstützen.

x

Publications

Plagiarism is the sincerest form of flattery.

Oscar Wilde

The following publications are at the core of my PhD research and covered in this dissertation:

[I] ‘Lipschitz standardization for multivariate learning.’

Javaloy, A., and Valera, I., in arXiv, 2020.

[II] ‘RotoGrad: Gradient Homogenization in Multitask Learning.’

Javaloy, A., and Valera, I., in ICLR (<), 2022.

[III] ‘Mitigating Modality Collapse in Multimodal VAEs via Impartial Optimization.’

Javaloy, A., Meghdadi, M., and Valera, I., in ICML (), 2022.

[IV] ‘Causal normalizing flows: from theory to practice.’

Javaloy, A., Sánchez-Martín, P., and Valera, I., in NeurIPS (Á), 2023.

The following publications originated during my time as a PhD student but are omitted from this thesis:

[V] ‘Text normalization using encoder–decoder networks based on the causal feature extractor.’

Javaloy, A., and García-Mateos, G., in Applied Sciences, 2020.

[VI] ‘Preliminary results on different text processing tasks using encoder-decoder networks and the causal

feature extractor.’

Javaloy, A., and García-Mateos, G., in Applied Sciences, 2020.

[VII] ‘Relative gradient optimization of the Jacobian term in unsupervised deep learning.’

Gresele, L., Fissore, G., Javaloy, A., Schölkopf, B., and Hyvärinen, A., in NeurIPS, 2020.

[VIII] ‘Learnable Graph Convolutional Attention Networks.’

Javaloy, A., Sánchez-Martín, P., Levi, A., and Valera, I., in ICLR (<), 2023.

*: Equal contribution; Á: Oral; : Spotlight; <: Another work plagiarized this one after publication.

Table of Contents

Acknowledgments v

Abstract vii

Zusammenfassung ix

Publications xi

Table of Contents xiii

Notation xvii

Acronyms xix

1. Trustworthy Deep Learning and User Expectations 1
1.1. Trustworthy deep learning as functional predictability . 1

1.2. From predictive to causal generative models: a motivating example 2

2. The Role of Optimization in Trustworthy Deep Learning 7
2.1. Weaknesses of deep learning optimization . 8

2.2. Expectations and optimization . 10

3. Thesis Outline and Contributions 17
3.1. Outline . 17

3.2. Main contributions . 17

I. Multitask Learning 21

4. Introduction to Multitask Learning 23
4.1. Historical overview . 23

4.2. Problem statement . 24

4.3. Network architectures . 25

4.4. Multitask learning as multi-objective optimization . 26

4.5. Task impartiality . 26

4.6. Gradient conflict . 28

5. Gradient Homogenization in Multitask Learning 31
5.1. Problem statement . 31

5.2. Gradient homogenization . 32

5.3. Illustrative examples . 36

5.4. Empirical validation . 37

5.5. Concluding remarks . 41

6. On Task Incomparability and its Effects in Multitask Learning 43
6.1. Motivation and background . 43

6.2. How to measure your multitask learning model . 47

6.3. Benchmark probing . 52

6.4. Empirical validation . 58

6.5. Concluding remarks . 62

II. Probabilistic Generative Models 65

7. Deep Learning and Probabilistic Modelling 67
7.1. Problem statement . 67

7.2. Exponential family . 68

7.3. Latent-variable models . 69

7.4. Modality collapse and multitask learning . 73

8. On Modality Collapse and Data Preprocessing 77
8.1. Problem Statement . 78

8.2. Multivariate impartial learning . 79

8.3. Data scaling and smoothness . 79

8.4. Lipschitz standardization . 82

8.5. Empirical evaluation . 84

8.6. Concluding remarks . 86

9. Mitigating Modality Collapse via Impartial Optimization 89
9.1. Preliminaries . 89

9.2. Impartial optimization in multimodal variational autoencoders 90

9.3. Extending our framework . 93

9.4. Experiments . 97

9.5. Concluding remarks . 101

III. Causal Generative Models 103

10. Introduction to Causal Inference in Deep Learning 105
10.1. Correlation does not imply causation . 105

10.2. Structural causal models . 106

10.3. Causal inference . 107

10.4. Problem statement . 109

10.5. Existing works . 109

11. Causal Identifiability Given a Causal Ordering 111
11.1. Solution characterization . 111

11.2. The multiple representations of structural causal models . 113

11.3. Causal identifiability . 116

11.4. Extension to real-world settings . 119

11.5. Reimplementing the do-operator . 122

11.6. Concluding remarks . 124

12. Effective Deep Causal Inference with Causal Normalizing Flows 125
12.1. Causal normalizing flows . 126

12.2. Causal inference queries . 129

12.3. Ablation study . 130

12.4. Model comparison . 133

12.5. Fairness auditing and classification . 133

12.6. Concluding remarks . 134

xiv

IV. Epilogue 137

13. Conclusion 139
13.1. Summary and impact . 139

13.2. Prospects . 141

V. Appendix 145

A. Additional Material for Chapter 5 147
A.1. Proofs . 147

A.2. Stackelberg games and RotoGrad . 147

A.3. Experiments . 149

B. Additional Material for Chapter 6 161
B.1. Experimental details . 161

C. Additional Material for Chapter 8 165
C.1. Basic properties of L-smoothness . 165

C.2. Exponential family . 165

C.3. Full description of Lipschitz standardization . 167

C.4. L-smoothness after standardizing . 170

C.5. Details on the experimental setup . 174

C.6. Additional experimental results . 176

D. Additional Material for Chapter 9 181
D.1. General algorithm . 181

D.2. Analysis by data type . 182

D.3. Model descriptions . 184

D.4. Experimental details . 187

E. Additional Material for Chapters 11 and 12 197
E.1. Interventions in previous works . 197

E.2. Experimental details and extra results . 198

E.3. Details on the fairness use-case . 205

Bibliography 207

xv

Notation

Some of the notation is influenced by Goodfellow et al. [67] and their book ‘Deep Learning.’

Set and number notation

𝑥 A scalar.

𝒙 A column vector.

𝑿 A matrix.

𝕏 or X A space.

𝑥𝑖 The 𝑖-th entry of the vector 𝒙 .

𝑥𝑖:𝑗 The elements 𝑥𝑖 , 𝑥𝑖+1 , . . . , 𝑥 𝑗 of the vector 𝒙, with 𝑖 < 𝑗 .

𝑥𝐴 The elements of the vector 𝒙 with indexes in 𝐴 .

[𝒙1 𝒙2 . . . 𝒙𝐷] Matrix made by stacking the vectors 𝒙1 , 𝒙2 , . . . , 𝒙𝐷 .

P(𝐷) The set of all possible sets with elements 1, 2, . . . , 𝐷 .

𝑰 Identity matrix.

0 and 1 Constant vectors full of, respectively, zeroes and ones.

General operations

1{𝑥∈𝐴} Indicator function on the set 𝐴 .

⌊𝑥⌋ Integer part of 𝑥 .

log(𝑥) Napierian logarithm, i. e., in base 𝑒 , of 𝑥 .

cos(𝒙 , 𝒚) Cosine similarity between 𝒙 and 𝒚 .

𝒙 ⊙ 𝒚 Hadamard or element-wise product of 𝒙 and 𝒚 .

𝑓 ◦ 𝑔 Function composition of 𝑓 and 𝑔 .

𝕏 × 𝕐 Cartesian product between the spaces 𝕏 and 𝕐 .

Real analysis

𝜕𝑥 𝑓 (𝑥) or
𝜕
𝜕𝑥 𝑓 (𝑥) Partial derivative of 𝑓 (𝑥)with respect to 𝑥 .

d

d𝑥 𝑓 (𝑥) Total derivative of 𝑓 (𝑥)with respect to 𝑥 .

∇x 𝑓 (𝒙) Jacobian matrix of 𝑓 (𝒙)with respect to 𝒙 .

Complexity theory

o(𝜖) Little-o of 𝜖 .

O(𝑛) Big-O of 𝑛 .

Relationships

𝑥 = 𝑦 ‘𝑥 equals 𝑦 .’

𝑥 B 𝑦 ‘𝑥 equals 𝑦 by definition.’

x

d

= y ‘x equals y in distribution.’

x

a.s.

= y ‘x equals y almost surely.’

𝑥 ← 𝑦 ‘𝑥 gets assigned the value 𝑦 .’

𝑥 ∼ 𝑦 ‘𝑥 relates to y .’

𝑥 ≈ 𝑦 ‘𝑥 approximates 𝑦 .’

𝑥 ∝ 𝑦 ‘𝑥 is proportionally equal to 𝑦 .’

𝑓
a.e.

= 𝑔 ‘ 𝑓 equals 𝑔 almost everywhere.’

𝑨 ≡ 𝑩 ‘𝑨 is structurally equivalent to 𝑩 .’ Defined in Chapter 11.

𝑨 ⪯ 𝑩 ‘𝑨 is structurally sparser than 𝑩 .’ Defined in Chapter 11.

Statistics

x A random scalar variable.

x A random vector variable.

X A random matrix.

𝑃x The distribution function of the variable x .

𝑃x(x | y; 𝜽) Distribution of x, given y, with parameters 𝜽 .

x ∼ 𝑃x ‘x is distributed according to 𝑃x .’

x i. i. d.∼ 𝑃x ‘x are independent and identically distributed according to 𝑃x .’

𝔼𝑃x
[𝑓 (x)] Expected value of 𝑓 (x)with respect to x ∼ 𝑃x .

𝕍𝑃x
[𝑓 (x)] Variance of 𝑓 (x)with respect to x ∼ 𝑃x .

KL(𝑝 ∥ 𝑞) Kullback-Leibler divergence between the densities 𝑝 and 𝑞 .

𝑓#𝑝 Push-forward measure of 𝑝 through 𝑓 .

𝛿𝒙∈𝐴 Dirac delta measure located in the set 𝐴 .

N (𝜇, 𝜎) Normal (or Gaussian) distribution with mean 𝜇 and standard deviation 𝜎 .

logN (𝜇, 𝜎) Log-normal distribution with mean 𝜇 and standard deviation 𝜎 .

U(𝑎, 𝑏) Continuous uniform distribution in the interval [𝑎, 𝑏] .
Cat(𝝅) Categorical distribution with probabilities 𝝅 .

Γ(𝑎, 𝑏) Gamma distribution with parameters 𝑎 and 𝑏 .

xviii

Acronyms

ANF Autoregressive normalizing flow. (Pages 19, 109, 110, 125–129, 131, 132, 134, 140, 205)

ATE Average treatment effect. (Pages 130, 131)

BBVI Black-box variational inference. (Pages 69, 70, 77, 78, 84, 87, 175)

BCE Binary cross-entropy. (Pages 39, 41, 52, 151–153, 162)

Causal NF Causal normalizing flow. (Pages vii, 14, 19, 109, 110, 125–135, 140, 143, 198, 201, 205, 206)

CDF Cumulative distribution function. (Pages 18, 43, 47–49, 62, 139)

CGM Causal generative model. (Pages vii, 2, 5, 6, 11, 17–19, 105, 109, 111, 125, 140)

DAG Directed acyclic graph. (Pages 112, 121)

DL Deep learning. (Pages vii, 1–3, 6–12, 14, 17–19, 27, 43, 45, 67, 69, 71, 73, 109, 110, 124–126, 139–143)

DM Decision maker. (Pages 12, 27, 49, 74)

DNN Deep neural network. (Pages 109, 110)

ELBO Evidence lower bound. (Pages 69, 70, 78, 90, 95, 185–187, 194)

GMM Gaussian mixture model. (Pages 189)

GNN Graph neural network. (Pages 110, 133, 197, 202)

HI-VAE Heterogeneous-incomplete VAE. (Pages 72, 93, 94, 175, 186, 188)

ICA Independent component analysis. (Pages 11, 111, 118)

IWAE Importance weighted autoencoder. (Pages 90, 185, 194)

KL Kullback-Leibler divergence. (Pages 69, 70, 132)

KR Knöthe-Rosenblatt. (Pages 117, 118, 120–122)

LVM Latent variable model. (Pages 78, 79, 89)

MAF Masked autoregressive flow. (Pages 130, 132, 201)

ML Machine learning. (Pages 8, 14, 23, 24, 67, 69, 79)

MLE Maximum likelihood estimation. (Pages 78, 81, 126, 127, 129, 135, 170)

MOO Multi-objective optimization. (Pages vii, 12, 17, 18, 26, 27, 32, 43, 47–50, 62, 74, 141, 142)

MSE Mean squared error. (Pages 38, 52, 60, 85, 86, 97, 150, 151, 154, 155, 162)

MTL Multitask learning. (Pages vii, 2–4, 12–14, 17, 18, 23–33, 37, 38, 40, 41, 43–48, 50, 52, 53, 55, 57, 58, 60–63,

67, 73–75, 89, 92–94, 101, 139, 141, 142, 150, 161, 189, 191)

NF Normalizing flow. (Pages 109, 126, 130, 131, 133)

NLL Negative log-likelihood. (Pages 52, 151, 162)

NSF Neural spline flow. (Pages 132, 134, 205)

PGM Probabilistic generative model. (Pages vii, 2, 4–6, 17, 18, 28, 67, 73–75, 77, 78, 84, 90, 105–108, 125, 126,

139)

RMSE Root mean squared error. (Pages 44, 130)

R.V. Random variable. (Pages 48, 49, 67, 68, 70, 75, 78, 81–83, 89, 96, 98, 105, 106, 109, 113, 119, 166, 182)

SCC Strongly connected component. (Pages 121, 122, 205)

SCM Structural causal model. (Pages 19, 106–118, 120, 122–134, 140, 197–199, 201, 203)

SGD Stochastic gradient descent. (Pages 8, 11)

SIWAE Self-importance weighted autoencoder. (Pages 194, 195)

SPL Semantic probabilistic layer. (Pages 14)

STL Single task learning. (Pages 23, 44, 53, 55, 58, 60, 154, 155, 159, 163)

TMI Triangular monotonically increasing. (Pages 19, 117, 118, 120–122, 124, 125, 127, 129, 132, 134)

VAE Variational autoencoder. (Pages 71–73, 75, 77, 84, 86, 89–101, 109, 140, 175, 176, 184, 185, 189, 192, 193)

Trustworthy Deep Learning
and User Expectations 1.

1.1 Functional predictability . 1
1.2 From predictive to causal

generative models 2

El privilegio de ser mayoría

te hace responsable sobre la minoría.

Mafalda; Haw Haw!

The impact of deep learning (DL) in recent years is undeniable. With

the establishment of the Internet, the massive use of personal devices

(e.g., smartphones), and the vast amount of parallel computing offered

by modern processing units, we have created a perfect storm where

data-hungry methods, such as those from DL, are able to truly shine.

The impact is such that Christopher M. Bishop, a renowned figure in the

field, starts his latest book [13] with a chapter titled ‘The Deep Learning [13] Bishop and Bishop (2024), ‘Deep

Learning: Foundations and Concepts.’
Revolution’, stating that ‘DL has emerged as an exceptionally powerful

and general-purpose framework for learning from data.’

DL is indeed an extremely general-purpose framework when successfully

Figure 1.1: Logs of the live training of

DALL·E. Each colour represents a different

set of hyperparameters manually set by

a human in-the-loop.

applied, but we should not underestimate the amount of manual work

that goes into designing DL models, and the difficulties encountered in

the way. One noteworthy example is the use of live training, which has

become the norm to train extremely large models released to the general

public, such as DALL·E [43]. When training such models (see Figure 1.1)

[43] Dayma (2022), DALL·E Mega - Train-
ing Journal

a human expert supervises the optimization process, recovering the

model parameters when the training diverges, and resuming it with a

different set of hyperparameters chosen based on their personal expertise.

Unfortunately, examples like this one are rarely released to the public.

While live training is a clear reflection of how brittle DL optimization

can be, even when successfully trained, DL models can still behave

in mysterious and unexpected ways (e.g., in path routing applications,

occasionally providing invalid routes that form a disconnected path). This

becomes specially relevant when DL is employed in high-stake applications,
such as medical, planning, or industrial applications, where significant

errors from the model can entail severe consequences in the real world.

As a result, there exists an increasing urge to improve the trustworthiness
of DL models, so that we can safely rely on them.

The end goal of this dissertation is to set grounds for more trustworthy DL

models, for which we will delve in the importance that DL optimization

can have towards this goal. In the following, we describe what we

understand by trustworthy here, and motivate our perspective by showing

how different expectations are placed on different families of DL models

depending on the complexity of their attributed tasks.

1.1 Trustworthy DL as functional predictability

In this section, we try to convey the idea that, perhaps counter-intuitively,

we must be able to predict the functionality of a model in order to trust it.

To this end, let us first paraphrase an example extracted from Hyvärinen

[79, Chapter 11] on a system which we naturally trust: our own body. [79] Hyvärinen (2022), ‘Painful intelli-

gence: What AI can tell us about human

suffering.’

https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-Mega-Training-Journal--VmlldzoxODMxMDI2
https://arxiv.org/abs/2205.15409

2 Chapter 1 Trustworthy Deep Learning and User Expectations

It is undeniable that we, as humans, generally feel in control of our bodies,

and that we can do things as natural as raising an arm. We trust our

bodies: if we need to run an errand, we blindly trust that our legs will

effortlessly give one step after the other to reach our final destination;

we control our legs. Consequently, a common belief is that there exists a

central executive unit that controls our bodies. However, there is a more

interesting take: what if we do not have control, but we instead perceive
that we have it because we can predict the received outcome? That is, ‘I

trust my legs, because whenever I want them to walk, they comply.’

This is not always the case (e.g., my knee may hurt at a certain moment),

but as long as the difference between outcomes and expectations
1

stays1: I. e., the prediction error.

relatively low, we still feel that we are in control. One extreme example of

this control perception is the rubber hand illusion [155]. In this experiment,[155] Petkova and Ehrsson (2008), ‘If I

Were You: Perceptual Illusion of Body

Swapping.’

a subject’s arm is hidden from plain sight, and a rubber one is attached

to the subject, with the shoulder joint covered by a piece of cloth. Then,

a series of stimuli (e.g., pinching, touching, or caressing with a feather)

are simultaneously performed on the real and rubber arms. When these

actions are conducted for enough time, the subject ‘learns to trust’ the

rubber arm, as the expected feelings meet the subject’s visual perception,

to the point that when new actions are now performed only on the rubber

arm, they are truly ‘felt’ by the subject for a moment.

In this dissertation, we argue that we can apply a similar logic to DL

models: if, when I request the model to solve a certain task, the outcome

always meets my preconceived expectations, up to a certain tolerable error,

then I will start considering the model trustworthy, as the predictability

of its functionality will make me feel that I am in control of the model.

This is up to this date, unfortunately, a far-fetched desire, if we take into

account the weaknesses and expectations that we will introduce later

in Sections 1.2 and 2.1. To make DL more trustworthy, we need to make

DL optimization more robust, and ensure that the optima we find during
training do indeed match our expectations in practice.

1.2 From predictive to causal generative models:
a motivating example

1.2.1 MTL approach 3
1.2.2 Probabilistic approach . . 4
1.2.3 Causal approach 5

The set of expectations that we place on a model change according to

the complexity and diversity of the tasks we design it to solve. We now

illustrate this idea with a small motivating example, which we tackle with

the three DL frameworks discussed in each part of this dissertation, in

order of appearance: multitask learning (MTL), probabilistic generative

models (PGMs), and causal generative models (CGMs).

Our hypothetical scenario is set at the heart of an important international

video-on-demand company, which provides uncountable hours of en-

tertainment to millions of people around the globe. Working remotely

in a tiny apartment of New Yorkshire we find Paul, the head manager

of the data-centric research department of the company. Paul has been

tasked with an extremely important task: he is in charge of overhauling

the existing recommendation system of the platform.

The company has experienced a decrease in expected revenue growth

and number of active users in the platform—which is inconceivable—and

https://doi.org/10.1371/journal.pone.0003832

1.2 From predictive to causal generative models: a motivating example 3

they thus want you to incorporate the latest DL technology to reverse the

situation. To this end, Paul has to design a single DL model (maintenance

is expensive), and he has been promised as much historical data as

needed for the following set of attributes:

▶ User information:

g User data: number of subscriptions, current-video topics, etc.

 Sensitive attributes of the user, e.g.: sex, age, etc.

 Location from which the user is connected to the platform.

▶ Recommendations to the platform:

 Total duration of advertisements for the current video.

 Attributes of the incoming suggested video.

▶ Predictions on the user’s reaction:

 Whether the user will finish watching the current video.

 User engagement, i. e., whether the user will stay (or return)

to watch the suggested videos.

The DL model needs to provide recommendations to the platform to

maximize revenue, while keeping the users engaged to ensure future

interactions, based on the information of the user and the current video

they are watching. To the surprise of Paul, successfully designing such a

system can be more complicated than initially expected.

1.2.1 Multitask learning approach

The first attempt of Paul is to use an MTL approach, i. e., to train a

DL model that can solve several tasks simultaneously. An schematic of

the model can be found in Figure 1.2. Here, the model takes as input

g

MTL model

Figure 1.2: Illustrative sketch of Paul’s

MTL approach. User information works

as the input of the model, and the rest of

variables compose the output its output.

information about the user and the current video, and learns during

training to simultaneously predict the other quantities, i. e.:

𝑓𝜽(g,,) = [] , (1.1)

where 𝑓 is the MTL model with parameters 𝜽 . This first model can just

perform one fixed task: take the user information as input, and provide

all the recommendations and predictions.

Consequently, the additional expectations that Paul places on this model

are simple, and regard the interaction between tasks. First, Paul needs to

decide what trade-off he is comfortable doing, as the model might not

be able to perfectly predict all targets always. In this case, Paul takes an

uninformed standpoint and decides that all tasks are equally important, i. e.,
the model should be impartial towards learning one task over another.

A second and more subtle expectation that Paul places on the model is

that, during training, the model can tell whether one task is being learnt

more than another, i. e., that the tasks are comparable.

Unfortunately, even if the model meets Paul’s initial expectations, its

functionality soon falls short for a number of scenarios. For example:

4 Chapter 1 Trustworthy Deep Learning and User Expectations

▶ The platform has a queue functionality, for which the user can

append videos to watch after the current one. Therefore, the model

should be flexible enough to predict the rest of outcomes, having

observed the attributes of the next ‘suggested’ video.

▶ In order to understand and improve the recommendation system,

data scientists would like to consult the likelihood of different

outcomes and find out, e.g., the average duration of the shown

advertisements, or whether there exists a correlation between this

same variable and the user location.

The company quickly urges Paul to find a different approach, increasing

the range of queries that the model can answer.

1.2.2 Probabilistic generative approach

After considering different approaches, Paul comes up with the idea of

using probabilistic generative modelling. This is a major change in the

way he was tackling the problem in two different aspects:

1. Instead of predicting some variables using the rest as the input, he

will now train a model that will be able to generate all variables at

the same time, imitating the observed data distribution.

2. PGMs are generally more flexible than MTL models, allowing for

different types of conditional and marginal queries.

While we gross over the details for now,
2

Figure 1.3 illustrates the new2: PGMs will be fully covered in Part II.

model, which now takes all variables as input and output. In mathematical

terms, this means that the model now models the joint distribution of

the data, i. e., the model is of the form:

𝑝𝝓(g,, ,,,,) , (1.2)

where 𝑝𝝓 denotes the joint density of the data, parametrized by 𝝓 .

g

PGM

Figure 1.3: Illustrative sketch of Paul’s

PGM approach. The model learns the

joint distribution and can generate all

observed variables.

In order to generate new data, the model relies on a latent variable z which

ties together the dependencies between all observed variables, i. e., the

joint density in Equation 1.2 is actually of the form:∫
𝑝𝝓(g,, ,,,, | z)𝑝𝝓(z)dz , (1.3)

and, in order to conditionally generate new data, the model also learns

the posterior distribution of z as

𝑝𝜽(z | g,, ,,,,) , (1.4)

where 𝜽 is another set of parameters and, for simplicity, we can safely

assume that the model can adapt to any of the conditional variables in

the equation above to be missing.

With the increased complexity of the model, the expectations placed on

it become more complex as well. Just as before, Paul expects the model

to be impartial towards learning to model one variable over another, as

he has no preference in that regard and, again, this implies that Paul

expects the model to be able to compare these variables during training

to meet the first expectation. Now, additionally, Paul expects the model

1.2 From predictive to causal generative models: a motivating example 5

to also be well-behaved when it comes to the new conditional queries,

i. e., the model predictions should be equally good irrespectively of which

variables are used for conditioning.

Despite the improvements made to the model, the list of scenarios for

which the model should provide a compelling solution keeps increasing.

Specifically, Paul has found that the new PGM cannot be satisfactorily

applied in the following scenarios:

1. In order to further increase revenue, the company has been testing

case-specific algorithms only for the duration of advertisements.

Unfortunately, while the model can use this variable as input

through conditioning, the new predictions given by the system

largely differ from those observed in reality during AB testing.

2. The company has also been warned by the authorities that their

recommendations has been shown to be biased against some

protected groups. To avoid legal problems, Paul needs to make sure
that the recommendations made by the model are not using any

information from the sensitive attributes of the users.

Unfortunately, a probabilistic approach does not seem enough to over-

come these further issues and, once again, Paul needs to go back to the

drawing board and come up with a better approach.

1.2.3 Causal approach

After doing his homework, Paul realizes that the conditional predictions

given by the previous model did not match the real experiments since

these were not conditional, but interventional queries. In short,
3

there 3: We will go into detail in Part III.

exist a cause-and-effect relationship between variables which the PGM

does not take into account. As a result, the answers provided by the PGM

only reflect the passive observational world, but do not actually simulate

the downstream effect that externally changing a variable would have. In

mathematical terms, this is expressed as

𝑃(|) ≠ 𝑃(| 𝑑𝑜()) . (1.5)

Probability of observing . . .

. . . given that I observed
 having this value.

. . . given that I forced
 to have this value.

 g

CGM

Figure 1.4: Illustrative sketch of Paul’s

CGM approach. The model learns the

underlying data-generating process, re-

specting the cause-effect relationships

between variables.

To take causality into account, and thus perform accurate simulations,

Paul replaces the previous probabilistic model by a causal one. The

new model attempts to imitate the underlying causal data-generating

process governing the observational data. For this reason, in addition

to training data, Paul needs to provide the CGM with a causal graph
during training, i. e., a graph describing the cause-and-effect relationships

between variables. Figure 1.4 illustrates the new CGM, where the arrows

indicate the variable-generation order, i. e., that the joint distribution is

modelled according to the following factorization:

𝑝𝜽(g,, ,,,,) =𝑝𝜽(g)𝑝𝜽()𝑝𝜽() (1.6)

𝑝𝜽(| g,)𝑝𝜽(| g,)
𝑝𝜽(| g,,)𝑝𝜽(| g,,,,) .

6 Chapter 1 Trustworthy Deep Learning and User Expectations

Not only this model can answer all the queries that the previous models

could, but now it can also answer causal inference queries, i. e., questions

about what-if scenarios of how the world would have been, had some-

thing else happened. Additionally, structural constraints are trivial to

ensure, e.g., if the model follows the causal graph provided, the sensitive

attributes are then ensured not to cause the recommendations, yet they

can still be used to predict the user’s behaviour.

Unfortunately, CGMs not only undergo the same set of expectations as

the previous PGMs do, but they also need to meet causal expectations.

Namely, they need to make sure the data is generated according to the

causal graph provided, e.g., the model needs to make sure that the

location, , does not directly affect the user engagement variable, , but

only indirectly through the recommendation variables, and .

This is a significantly more challenging expectation to meet, especially

if Paul’s aim is to use a single DL model that can perfectly learn the

underlying causal system. In Part III of this dissertation, we will introduce

a novel family of models which will be able to meet these expectations,

while providing theoretical guarantees that they can actually learn the

causal data-generating process.

The Role of Optimization in
Trustworthy Deep Learning 2.

2.1 Weaknesses of DL
optimization 8

2.2 Expectations and
optimization 10

Por allí viene Durruti con las tablas de la ley,

pá que sepan los obreros que no hay patria, dios, ni rey.

Chicho Sánchez Ferlosio; Romancero de Durruti

In the previous chapter, we argued on the importance of having deep

learning (DL) models that are trustworthy, i. e., models for which we

feel in control as they comply with our expectations on how they should

behave. This way, every real-world application (and, especially, high-stake

ones) could safely benefit from the many advantages of DL models. To

near this goal, we consider in this thesis the role that optimization has

on producing trustworthy models and, as this chapter is focused on DL

optimization, we need to first introduce some initial formulation.

In general, we can define any DL model as the result of a constrained

optimization process that tries to solve a problem of the following form,

defined over a training population x ∼ 𝑃x :

minimize

𝜽∈Θ
𝔼x∼𝑃x[𝐿(x, 𝜽)] , (2.1)

s.t. 𝑔(x, 𝜽) = 0 (2.2)

∀x with 𝑝(x) > 0 ,

i. e., we search for the optimal parameters 𝜽, in the parameter space

Θ, that minimize the average objective 𝐿, while fulfilling the constraints
described by 𝑔 for every plausible element of the population (i. e., 𝑝(x) > 0).

To make this optimization process amenable, the gold-standard in DL is

to use unconstrained first-order optimization. That is, an iterative process

which updates the model parameters using gradient information:
1

1: We have opted here for a simplified

notation that does not include all possible

algorithms, since the goal is to provide

an intuition on the role of the gradient

in the model parameters.𝜽𝑡+1 = 𝜽𝑡 − 𝛼𝑡 ∇𝜽 𝔼x∼𝑃x[𝐿(x, 𝜽)] . (2.3)

new parameters current parameters

direction in Θ to followstep size

In this chapter, we argue that the lack of robustness in DL, meaning that

they do not meet our expectations during deployment, can be understood

as the result of converging to ‘undersired’ local optima. One of the main

arguments supporting this view is that, using an universal-approximation

point-of-view [76], any large-enough DL model should be able to reach [76] Hornik, Stinchcombe and White

(1989), ‘Multilayer feedforward networks

are universal approximators.’

the optima that meet our expectations. However, during training, the

optimization algorithm has no mechanisms to prefer these optima over

other ones whose final properties do not suit our needs.

The main methodological contribution of this dissertation is to interpret
our expectations as optimization constraints (i. e., as 𝑔 in Equation 2.2),

and therefore to argue that the optimization process should be aware of

these constraints during training. Put differently, you cannot optimize
what you do not account for. To incorporate our expectations to the

optimization process, we revisit in this chapter the concept of inductive

bias, and reinterpret it as such a mechanism to inform the optimization

process about the expectations placed on the model behaviour.

8 Chapter 2 The Role of Optimization in Trustworthy Deep Learning

2.1 Weaknesses of DL optimization

Despite DL models being powerful when properly trained, their optim-

ization can be difficult, tedious, and brittle. We present now a number

of examples to illustrate the existing difficulties on training DL models,

connecting the lack of robustness of DL models at deploy time, with the

use of uninformed optimization processes that reach undesired local

optima which do not meet our expectations. This idea defies contem-

porary practices, where optimization problems are often downplayed,

as practitioners try to be overcome them with sheer brute-force using,

e.g., over-parametrized models, post-hoc model-selection approaches,

tailored hand-crafted training processes, or mere trial-and-error.

Training divergence. Stochastic optimization processes as the one in

Equation 2.3 converge under fairly mild assumptions [163]. However,[163] Robbins and Monro (1951), ‘A

stochastic approximation method.’
this is often not the case in practice and, while we do not cover training

divergence in this thesis, we consider it important to stress the numerical

issues of training DL models even to this date. One big factor is the model

architecture: when composed of many layers, it can lead to vanishing

and exploding gradients, where the gradients become too small or large,

respectively, leading to uninformative or unstable gradient directions [67,

Chapter 8.2.5]. Although there exist practical solutions (e.g., by using[67] Goodfellow, Bengio and Courville

(2016), ‘Deep Learning.’
tailored weight-initialization techniques [66], or by clipping the norm of

[66] Glorot and Bengio (2010), ‘Under-

standing the difficulty of training deep

feedforward neural networks.’

the gradients [150]), it is still a common practice to use live training with

[150] Pascanu, Mikolov and Bengio

(2013), ‘On the difficulty of training re-

current neural networks.’

extremely large models (see Figure 1.1).

Unfortunately, even if the training does converge, we have in general

no guarantees on the properties that the DL model with that particular

parametrization will have. That is, while we know that the desired optima

exist in our parameter space (e.g., by using universal-approximator

arguments [76]), it is often the case that the optimization ends up in

undesired local optima with adverse consequences. Some relevant examples

of this undesired behaviour are the following:

Generalization problems. Another fundamental issue of DL is the lack

of generalization, i. e., obtaining DL models whose performance does

not transfer well to slightly different scenarios from the ones they were

trained on, opposite of what we would generally expect. In other words,

these models cannot generalize to different environments. While this is

ubiquitous in all machine learning (ML), the case of DL is particularly

interesting as classical arguments, such as the bias v.s. variance trade-off,

seem to generally not apply to these settings [9].[9] Belkin, Hsu, Ma and Mandal (2019),

‘Reconciling modern machine-learning

practice and the classical bias–variance

trade-off.’

Instead, over-parametrized DL models can actually generalize quite well

if trained accordingly, i. e., if they find the correct local optima. While there

are post-hoc techniques to select such models (e.g., cross-validation), we

can as well use inductive biases to guide the optimization algorithm

towards optima with better generalization capabilities. One particularly

interesting example is that of stochastic gradient descent (SGD), for

which recent work found that it carries implicit inductive biases favouring

solutions with flatter local optima [190]. Intuitively, solutions with flatter[190] Smith, Dherin, Barrett and De

(2021), ‘On the Origin of Implicit Regular-

ization in Stochastic Gradient Descent.’

neighbourhoods are more robust (and, therefore, generalize better) since

small changes in the input provide similar outputs.

http://www.deeplearningbook.org/
https://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v28/pascanu13.html
https://openreview.net/forum?id=rq%5C_Qr0c1Hyo

2.1 Weaknesses of deep learning optimization 9

There are, however, other notions of generalization that are harder to

address. For example, during optimization, DL models solely focus on

Figure 2.1: Two images of: (top) a

cow; and (bottom) something that

we were told is a cow. Images were

taken from tinyurl.com/clearly-a-cow

and tinyurl.com/maybe-a-cow.

solving one task given the training data, which can make them pick up

on spurious correlations that are simple and predictive of the target at

hand, but that do not transfer at all. One common example is that of

image classification. Say that you train a DL model to classify different

animals and, since cows are usually pictured in a green meadow, one

simple way of quickly achieving high accuracy is to predict the presence

of a cow if the picture contains lots of green. However, there is no need

to say that a cow is not defined by the surrounding scenery, and so it is

futile to rely on observing a green meadow if we want to learn what is a

cow, and how to predict if there is one in any given picture.

In contrast, if the model is properly trained using, e.g., external causal

knowledge describing the relationship between a cow and its surround-

ings to help us guide the optimization, it is possible to teach the model

robust features that generalize well when presented with similar data,

yet recollected from different environments. We will explore this idea in

Part III of the dissertation.

Incomparable objectives. Let us imagine a multitask setup similar

to that we presented in Subsection 1.2.1, where we aim to learn two

tasks with different loss objectives, 𝐿1 and 𝐿2, respectively. Let us further

imagine that the first loss, in general, takes values orders of magnitude

larger than those from the second one, 𝐿1 ≫ 𝐿2. To optimize the DL

model, we combine both losses by adding them up, i. e.:

𝐿(x, 𝜽) B 𝐿1(x, 𝜽) + 𝐿2(x, 𝜽) . (2.4)

As we will discuss later in Part I, a common side effect of aggregating

losses this way is that the optimization lands on local optima that learn to

solve the first task, but that largely disregard solving the second one. The

mathematical intuition is that the differences in magnitude are generally

transferred to the task gradients, i. e.,

∇𝜽 𝔼x∼𝑃x[𝐿(x, 𝜽)] = ∇𝜽 𝔼x∼𝑃x[𝐿1(x, 𝜽)] + ∇𝜽 𝔼x∼𝑃x[𝐿2(x, 𝜽)] , (2.5)

≫

and, as a result, the optimization prioritizes learning the first task.
2

Once 2: Remember the update rule we intro-

duced in Equation 2.3.
the model has learned the first task such that its gradient norm converges

to zero, it is fairly difficult to start learning the second task, as the first one

will pull the optimization back to the local optima upon straying away.

In this scenario, even though we have converged, we have no guarantees

on the performance of the DL model on individual tasks, not meeting our

expectations on the trade-off between tasks.

Inconsistent trade-off solutions. Unfortunately, we may have no guar-

antees on the performance of individual tasks even if the task objectives

were comparable. Following on the previous example, assume now

that both losses are comparable, i. e., 𝐿1 ≈ 𝐿2 . Say that you train three

identical models with different random initializations using the loss in

Equation 2.5, and that they follow the training trajectories depicted in

https://tinyurl.com/clearly-a-cow
https://tinyurl.com/maybe-a-cow

10 Chapter 2 The Role of Optimization in Trustworthy Deep Learning

Figure 2.2, obtaining three different loss vectors:

𝐿𝑎 = [0.23 0.974] 𝐿𝑏 = [0.573 0.55] 𝐿𝑐 = [0.985 0.15] .

0.5 1

0.5

1 𝑳𝑎

𝑳𝑏

𝑳𝑐

𝐿1

𝐿2

0

Figure 2.2: Illustrative example of how

different initializations lead to different

trade-off solutions. Dashed lines repres-

ent the trajectories followed during op-

timization, which end up in three trade-

off optimal solutions.

Why did this happen? In short, different model initializations start with

different initial losses, which can create an artificial imbalance between

objectives, just as in the previous example. Combined with the local,

stochastic nature of DL optimization, we have that the models ended

up in different non-dominated solutions. Interestingly, note that all three

loss vectors approximately sum to 1.15, i. e., we could consider all three

of them as quantitatively similar solutions, yet they exhibit extremely

different results when tasks are considered individually.

Again, the optimization process is unaware of a more important question:

which model do you prefer? If we took an impartial point-of-view as

in Subsection 1.2.1, 𝐿𝑏 clearly looks like the most impartial solution.

In that case, while we can tell which solution comes closest to meet

our expectations,
3

we often leave the optimization blind to this known3: And we could choose it a posteriori,
again, brute-forcing the problem.

expectation, and thus we have no control on the trade-off solution that the

optimization will converge to.

2.2 Expectations and optimization

2.2.1 Specificity 11
2.2.2 Taxonomy 12

We now formally revisit the concept of inductive bias, and argue that

it can be used to incorporate our expectations in the optimization pro-

cess, helping us guide the model towards more preferable local optima.

However, we should ask first: what is an inductive bias?

The traditional definition of inductive bias is vague and leaves room for

interpretation. For example, Caruana defined it as follows [16]:[16] Caruana (1993), ‘Multitask Learning:

A Knowledge-Based Source of Inductive

Bias.’

“An inductive bias is anything that causes an inductive

learner to prefer some hypotheses over others.”

In other words, an inductive bias is a (or, rather, any) mechanism that

introduces some external knowledge in the model or its training process,

such that it biases the optimization towards more preferable solutions.

Perfectly unbiased models. If we agree on qualifying DL as a general-

purpose framework: why would we then want to add inductive biases?
The truth is that, even if we disregard for a moment the weaknesses

discussed in Section 2.1, the idea of having a truly unbiased model sounds

great at first, but it is actually undesirable. In words of T. M. Mitchell, an

unbiased model renders ‘nearly useless’ in practice [133], as it needs to[133] Mitchell (1980), ‘The need for biases

in learning generalizations.’
consider as plausible any hypothesis that agrees with the observational

data, irrespectively of how exotic this hypothesis is.

Moreover, we should realize that there are no unbiased systems: any
conceivable algorithm makes assumptions, either explicit or implicit, and

biases our models towards a subset of solutions. One notorious example

is the explicit use of the (piecewise) differentiable assumption, i. e., in DL

we always assume that the solution to our problem is a differentiable

function, since the networks we construct are of such a kind. Another

https://doi.org/10.1016/b978-1-55860-307-3.50012-5

2.2 Expectations and optimization 11

example is the aforementioned implicit bias of SGD, which regularizes

the network towards solutions with flatter, more uniform optima [190]. [190] Smith, Dherin, Barrett and De

(2021), ‘On the Origin of Implicit Regular-

ization in Stochastic Gradient Descent.’In other cases, it is unrealistic to guide the optimization towards preferred

solutions solely with data. Expanding on the causality example from

Section 2.1, it is well-known that the underlying causal system generating

the input data cannot be learnt solely from observational data, but that

stronger assumptions are indeed required. This result can be proved as a

direct consequence of the results in Part III.

2.2.1 Expectations and their specificity

Does this mean that, in order to make DL more efficient and trustworthy,

we always need to sacrifice generality? No, or at least not to a large degree.

For example, when we standardize a dataset, everyone would agree that

we do not make the model using this dataset less general, yet by applying

this transformation we ease the work of many common algorithms which

expect the data to be standardized. As mentioned before, every algorithm

and user places expectations, and it is our awareness about these that can

serve us as sources of external knowledge to design effective inductive

biases. More specifically, in this dissertation we classify expectations

within the following levels of specificity:

Optimization-specific. Some expectations do not affect the generality

of the methods in use, as they can be related to the algorithms we apply,

and not to the problem at hand. For example, if we attempt to solve an

independent component analysis (ICA) problem, a common expectation

is that the data has been whitened beforehand and, in other cases, that the

data has been centred as well. In this cases, however, these expectations

can be easily met by preprocessing the input dataset.

In other cases, implementing an inductive bias is not as straight-forward.

Take as an example the multitask setup presented in Section 2.1, where

we had two tasks objectives that were not comparable. In that case, the

underlying expectation that we did not meet is that the optimizer was able

to compare both objectives, such that we could aggregate their gradient

information in an informed manner and meet the expected trade-off

solution. We explore different ways of incorporating this expectation as

an inductive bias in Parts I and II of this dissertation.

Problem-specific. Sometimes, our expectations regard the type of

solutions we seek within a problem family. These expectations involve the

nature of the problem at hand, and typically exploit specific symmetries

and structure present in any valid problem solution.

A famous example is that of translational symmetries in image classific-

ation, which gave birth to the architectural inductive bias that we now

know as convolutional layers [101]. In this example, if we were to detect a [101] LeCun, Bottou, Bengio and Haffner

(1998), ‘Gradient-based learning applied

to document recognition.’

cow in a given picture, the expectation we place is that the model should

be invariant to the position of the cow, i. e., it should produce the same

output if the cow appears in the left- or right-side of the image.

Another example, this one introduced in Part III of this dissertation, is

that of causal consistency in causal generative models (CGMs). In this

https://openreview.net/forum?id=rq%5C_Qr0c1Hyo

12 Chapter 2 The Role of Optimization in Trustworthy Deep Learning

case, we know that any valid solution of the problem needs to be causally

consistent w.r.t. the true causal system, i. e., it needs not to exploit any

spurious correlation. Similar to the case of convolutional networks, we

implement this inductive bias by forcing the network structure to match

the causal dependencies between variables.

Case-specific. Nevertheless, we often have specific expectations related

to the current instance of the problem we are trying to solve. This is

the most tailored knowledge that we can exploit and, while hurting

the generality of the DL model for other problem instances, they can be

essential if we want to solve the one instance we have.

A clear example, presented in Section 2.1, is that of finding the correct

trade-off solution.
4

In said example, we saw that the model could select4: This is, as we will see in Part I, an

instance of multi-objective optimization

(MOO) where we select a specific scalar-

ization function.

different solutions with identical loss sums, depending on the initial

network initialization (recall Figure 2.2), and that it was us who should

select which of them we preferred. Here, our preference on the trade-off to

commit between the two objectives is a case-specific expectation, which

can serve as an inductive bias to find solutions meeting this expectation.

We will implement several of these biases in Parts I and II, and denote

their related external knowledge as impartiality expectations.

Other better-known examples can be found in the fairness literature,

where it is usually possible to threshold the ‘amount of fairness’ required

by the decision maker (DM) for that specific use-case [229], as it can[229] Zafar, Valera, Gomez-Rodriguez

and Gummadi (2017), ‘Fairness Con-

straints: Mechanisms for Fair Classifica-

tion.’

entail a trade-off with other measures such as differential privacy [39].

[39] Cummings, Gupta, Kimpara and

Morgenstern (2019), ‘On the Compatibil-

ity of Privacy and Fairness.’

2.2.2 Inductive bias taxonomy

At the beginning of this section, we defined an inductive bias as anything.

How can we, then, classify different types of inductive biases? Instead

of focusing on how these biases are implemented, in this dissertation

we propose to focus on the way they change the constrained optimization
problem we initially posed in Equation 2.1. This way, we can get a better

understanding on the effect that different inductive biases have on the

optimization process. More specifically, in this dissertation we classify

inductive biases as follows:

New objective. Sometimes, inductive biases can be as simple as chan-

ging the objective function we optimize. This new objective can enhance

the optimization by incorporating our expectations into the problem

formulation, helping us guide the optimization towards that part of the

parameter space that contains more favourable local optima. Whilst this

perspective is new, there are indeed many common examples of such

inductive biases in the literature:

As we discuss later in Chapter 4, multitask learning (MTL) was first

introduced in 1993 as an inductive bias for learning related tasks better.

Here, the intuition is that information from one task can used by the

model to learn another task and, to this end, the objective in Equation 2.1

is substituted by the sum of the task losses, i. e.:

𝔼x∼𝑃x

[
𝐿(x, 𝜽)

]
=⇒ 𝔼x∼𝑃x


𝐾∑
𝑘=1

𝐿𝑘(y𝑘 , x, 𝜽)
 , (2.6)

http://proceedings.mlr.press/v54/zafar17a.html
https://doi.org/10.1145/3314183.3323847

2.2 Expectations and optimization 13

where y𝑘 is the target for the 𝑘-th task, as MTL is usually a supervised

problem. One way of understanding this bias is to use a probabilistic

perspective. If we consider the target of each task as a random variable,

y𝑘 ∼ 𝑃y𝑘 , and the input x as a common random covariate, x ∼ 𝑃x, then

each objective above could be interpreted
5

as the (negative) conditional 5: With a bit of care, we gloss over the

details here for brevity.
log-likelihood of the target prediction given the input, i. e.,

𝐿𝑘(y𝑘 , x, 𝜽) ≡ − log 𝑝𝜽(y𝑘 | x) . (2.7)

If we agree on this interpretation, then the sum of task losses can be seen

as the (negative) joint likelihood of the targets given the input, since
6

6: We assume here a mean-field factor-

ization of the targets given x .

log 𝑝𝜽(y1 , y2 , . . . , y𝐾) = 𝔼x∼𝑃x

[
𝐾∑
𝑘=1

log 𝑝𝜽(y𝑘 | x)
]
, (2.8)

which is equivalent to minus Equation 2.6 given Equation 2.7. From

this perspective, solving the MTL problem is equivalent to learning a

joint distribution, while solving 𝐾 individual problems is equivalent to

learning𝐾marginal distributions. Clearly, the former is a more expressive

objective, as it takes into account all the dependencies between target

variables, and exploits this information to make better predictions.

A more tangible example can be adapted from the partial information

decomposition literature [71], which studies how information can be de- [71] Gutknecht, Wibral and Makkeh

(2021), ‘Bits and pieces: understanding

information decomposition from part-

whole relationships and formal logic.’

composed in three types: i) exclusive information, which solely describes

one variable; ii) redudant information, which appears in several variables;

and iii) synergetic information, which can only be obtained by jointly

observing the variables.

Table 2.1: Truth table that the input vari-

able and targets of the XOR example can

take. See accompanying text.

y1 y2 x

0 0 0

0 1 1

1 0 1

1 1 0

For this example, assume a toy experiment where

we have two binary targets, whose XOR output works as our input x, as

described in Table 2.1. In this case, the best we could do to predict each y𝑘
individually would be to predict zero or one at random. However, if we

predict both targets simultaneously, we know that both should be equal

if x is zero, and that they should be opposite otherwise. In other words,

the synergetic information of the target variables helps the model make

better prediction when jointly predicted.

A different example, this time from the fairness literature, is that of

class resampling [87]. Here, we assume that there exists a mismatch [87] Kamiran and Calders (2012), ‘Data

preprocessing techniques for classifica-

tion without discrimination.’

between the distribution that we are interested in learning and the

observed one, which is imbalanced across classes (e.g., male v.s. females).

In class resampling, the population is divided by classes (i. e., stratified),

and the frequency at which a member of each population is sampled

is equalized, so that all classes are equally represented in the dataset.

In mathematical terms, if we could write the initial population as a

mixture, i. e., 𝑝(x) = ∑𝐷
𝑑=1

𝛼𝑑𝑝𝑑(x)with

∑
𝑑 𝛼𝑑 = 1 , then the re-balanced

population would have a density of the form �̃�(x) = 1

𝐷

∑𝐷
𝑑=1

𝑝𝑑(x), and

we would re-write the initial objective of Equation 2.1 as

𝔼
x∼ 𝑃x

[𝐿(x, 𝜽)] =⇒ 𝔼
x∼ �̃�x

[𝐿(x, 𝜽)] , (2.9)

where we change the objective by changing the data distribution.

Hard constraints. Inductive biases can also encode expectations re-

garding the constraints 𝑔 in Equation 2.2 that the model should fulfil.

https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2021.0110
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2021.0110

14 Chapter 2 The Role of Optimization in Trustworthy Deep Learning

Depending on the specific case, we sometimes can design inductive biases

that help the optimization completely disregard those solutions that do

not meet these expectations, typically through the network design.

One example from the probabilistic ML literature is that of semantic

probabilistic layers (SPLs) [2]. In this setting, the SPL encodes domain-[2] Ahmed, Teso, Chang, Broeck and Ver-

gari (2022), ‘Semantic Probabilistic Lay-

ers for Neuro-Symbolic Learning.’

specific constraints as a density defined over the points that fulfil these

constraints, 𝛿SPL(x, y) , which multiplies the conditional distribution

learned by the DL model, 𝑝𝜽(y | x) , resulting in a probabilistic model

whose domain is by design those points that satisfy the constraints

described by the user, i. e., �̃�𝜽(y | x) ∝ 𝛿SPL(x, y) · 𝑝𝜽(y | x) .

Two other clear examples are the architectural inductive biases related

to problem-specific expectations that we introduced in the examples

from the previous subsection. In the case of translational invariance in

image classification, convolutional neural networks [101] were introduced[101] LeCun, Bottou, Bengio and Haffner

(1998), ‘Gradient-based learning applied

to document recognition.’

as architectures which, by design, will always be translation invariant.

Similarly, in Part III we introduce causal normalizing flows (Causal NFs)

whose design is such that they will always be causally consistent with

respect to the provided causal graph, i. e., they will meet our causal

expectations and have no spurious correlations. In short, this is done

by ensuring that the information flows through the network the same

way as we expect it to flow, by dropping all connections which could

potentially break this constraint.

Soft constraints. Other times, implementing inductive biases that

enforce our expectations to be always satisfied is not as straight-forward.

We can, however, design biases that guide the optimization towards those

solutions that meet our expectations, by providing information during

training of what parameters directions to follow.

This is the case for any constraint that is introduce into the optimization

pipeline using Lagrange multipliers, i. e., by re-writing the problem in

Equation 2.1 as

𝔼x∼𝑃x

[
𝐿(x, 𝜽)

]
=⇒ 𝔼x∼𝑃x

[
𝐿(x, 𝜽) + 𝜆𝑔(x, 𝜽)

]
, (2.10)

with 𝜆 being a positive value that regulates the ‘importance’ we give to

the model meeting our expectations. This type of inductive biases are

ubiquitous in all ML research, e.g., to regularize the model to find sparse

solutions [137, Chapter 11.4], but also appear in more concrete scenarios[137] Murphy (2022), ‘Probabilistic Ma-

chine Learning: An introduction.’
such as, e.g., for introducing fairness constraints to DL models [229].

[229] Zafar, Valera, Gomez-Rodriguez

and Gummadi (2017), ‘Fairness Con-

straints: Mechanisms for Fair Classifica-

tion.’

A less typical example is that of gradient manipulation in MTL, which

we cover in detail in Part I of this thesis. Taking again the example from

Section 2.1, where we had two tasks to learn, and where we wanted

the model to meet our expectations in terms of the trade-off between

tasks,
7

these algorithms work by taking the vector of tasks gradients, and7: In this particular case, that both tasks

were equally important.
aggregating them according to the user expectations. That is, the update

rule in Equation 2.3 is re-written to be of the form

𝜽𝑡+1 = 𝜽𝑡 − 𝛼𝑡 𝑓 ([𝒈
1
𝒈

2
]) ,

vector of task gradients

gradient-manipulation algorithm

(2.11)

http://papers.nips.cc/paper%5C_files/paper/2022/hash/c182ec594f38926b7fcb827635b9a8f4-Abstract-Conference.html
probml.ai
http://proceedings.mlr.press/v54/zafar17a.html

2.2 Expectations and optimization 15

where 𝑓 is a predetermined algorithm. For example, in the case of

RotoGrad (introduced in Chapter 5), 𝑓 is a function that equalizes the

gradients in magnitude by re-scaling them in each iteration, while slowly

rotating them during training to match their directions as well. While

these algorithms do not ensure that the solution found will meet the

given expectations in terms of their trade-off, they make the optimization

process move towards solutions that we expect are closer to meeting our

trade-off expectations.

Thesis Outline and Contributions 3.
3.1 Outline 17
3.2 Contributions 17

Yugos os quieren poner

gentes de la hierba mala,

yugos que habéis de dejar

rotos sobre sus espaldas.

Miguel Hernández

3.1 Outline

This dissertation is organized in three main parts. The first part is devoted

to multitask learning (MTL) and the problem of negative transfer. The

second, to probabilistic generative models (PGMs) and the problem of

modality collapse. The third part is instead devoted to the theoretical and

practical design of effective causal generative models (CGMs). One last

part concludes the dissertation and outlines future research directions

that build on the results and insights presented here. Every part starts

with an introductory section introducing all the relevant background.

For the curious reader, all the chapters contain plenty of complementary

remarks, side notes, figures, and references on the page margins, that

supplement the content of the main text. Any other detail omitted in

the main text can be found in the appendices of the manuscript and are

properly referenced when necessary.

3.2 Main contributions

In this section, we briefly describe the main contributions presented in

this dissertation. The most general contributions follow the same ideas

and arguments described in the previous two chapters, attempting to

formalize and make explicit different ideas in deep learning (DL), as

well as expectations that we place on models and assume to universally

hold, even if that is not the case in practice. Through this careful form-

alization, we are then able to develop more specific contributions built

on solid foundations for each considered framework. Namely, the main

contributions of this dissertation can be summarized as follows:

Part I - MTL. We provide in Chapter 4 a thorough introduction to

MTL, its original motivation as an inductive bias, and the problem of

negative transfer, which materializes as gradient conflict issues during

training. More importantly, we identify two fundamental problems in

the MTL methodology. First, we stress the importance of having a clear

scalarization function to optimize a priori, i. e., to know the trade-off

solution that we expect the model to achieve. This is especially important

in the trending interpretation of MTL as a multi-objective optimization

(MOO) problem. Within this context, we question the utility and reliability

of seeking Pareto optimal solutions, given the impossibility to test their

18 Chapter 3 Thesis Outline and Contributions

optimality in practice. Second, we unveil the oft-implicit expectation of

task comparability, i. e., that the optimization algorithm can reasonably

compare quantities from different tasks, and attribute many issues in

MTL to this expectation not being met in practice.

In light of these fundamental issues, we introduce in Chapter 5 RotoGrad,

a gradient-conflict method that simultaneously homogenizes gradients

across tasks both in direction and magnitude, guiding the optimization

towards task-impartial solutions, i. e., solutions where all tasks are equally

important. RotoGrad is composed of two complementary sub-routines for

each type of gradient conflict, and ensures convergence by interpreting the

training process as a differentiable Stackelberg game. Chapter 6 focuses

instead on methodological problems of MTL and, more specifically, in

providing metrics that account for the incomparability of quantities

across tasks. To this end, we motivate the use of ranking statistics to

compare MTL models, interpreting them as finite-sample approximations

of MOO global methods over cumulative distribution functions (CDFs),

overcoming all comparability issues. Second, we provide metrics to

measure gradient conflict and, using these new tools, show how to probe

existing MTL benchmarks to better suit them for testing MTL methods.

Part II - PGMs. The main contribution of this part is the strong con-

nection that we draw between multimodal PGMs and MTL. We start

building these connections in Chapter 7, where we present the problem

of modality collapse which, just like negative transfer, arises mainly as

a result of the incomparability between modalities. Again, we as users

place expectations on the models regarding the trade-off between mod-

alities, and in this thesis we introduce the concept of task impartiality

as a specific trade-off to pursue. Unlike in MTL, we note that additional

expectations are placed on PGMs as a natural consequence of the different

tasks they can solve, as we briefly introduced already in Section 1.2.

We start exploiting these connections in Chapter 8, where we propose

Lipschitz-standardization, an optimization-inspired preprocessing al-

gorithm that attempts to equalize the optimization landscape of each

modality, such that they enjoy similar convergence guarantees. While

improving training robustness, preprocessing algorithms can only go

thus far. Then, we propose in Chapter 9 to leverage existing MTL al-

gorithms for gradient conflict and, to this end, we introduce the concept

of impartiality blocks, which are subsets of the network’s computational

graph that are prone to suffer from modality collapse. Crucially, the

presented methodology expands on the usual MTL case as it can be

applied to non-linear loss functions and to several impartiality blocks

simultaneously, as we show that complex multimodal PGMs have several

impartiality blocks due to their additional expectations. We empirically

demonstrate that the proposed methodology improves the robustness

and impartiality of different PGMs in a wide range of scenarios.

Part III - CGMs. We then go one step further, and attempt to learn the

underlying causal data-generating process producing our data, instead

of their joint distribution. That is, our goal is to have a single DL model

that we can reliably use to perform causal inference, i. e., to answer

what-if queries regarding the modelled generating process. To this end,

we introduce all relevant causality concepts to the reader in Chapter 10,

3.2 Main contributions 19

study the problem theoretically in Chapter 11, and apply the resulting

knowledge to effectively design CGMs in Chapter 12.

More specifically, the main contribution of Chapter 11 is to find a family of

generating processes, TMI SCMs, that it is causally identifiable, meaning

that we can recover the one member that generated the data we observe,

up to a tolerable error. We do this under quite common assumptions,
1

1: Namely, having bĳective generators,

no cycles, and no hidden confounders.
and simply requiring the causal ordering between variables as an ex-

ternal input. Also crucially, we prove that any other model meeting our

assumptions can be reduced to an equivalent member of the TMI SCM

family, greatly increasing the applicability of our results. Finally, we

provide an alternative implementation of the do-operator for our family

of models, enabling their use for causal inference tasks, and extend our

results to handle mixed-type data as well as partial causal knowledge.

We take these theoretical results and put them into practice in Chapter 12.

By realizing that autoregressive normalizing flows (ANFs) are members of

the TMI SCM family and universal density approximators, we introduce

causal normalizing flows (Causal NFs), DL models that can provably

learn causal data-generating processes and accurately perform causal

inference. In practice, however, it is difficult for Causal NFs to meet their

causal expectations solely from data. For this reason, we study different

model parametrizations and conclude that, if we have access to the causal

graph, we can design Causal NFs that are causally consistent by design,

i. e., that they meet our causal expectations. As a result, Causal NFs

are the first-of-their-kind models to provide theoretical guarantees in

such a broad family of causal models, which we empirically validate by

showing that they accurately model the observational, interventional,

and counterfactual distributions of a wide variety (e.g., linear, non-linear,

synthetic, and semi-synthetic) causal models.

Part IV - Epilogue. We conclude this dissertation by summarizing the

main results introduced herein, as well as presenting the initial impact

of the works published alongside this thesis. Finally, we provide a short

discussion on the high-level topics that this dissertation has gone over,

sharing with the reader our prospect on open questions and research

directions that we consider important researching in the future.

Part I.

Multitask Learning

Introduction to Multitask Learning 4.
4.1 Historical overview 23
4.2 Problem statement 24
4.3 Network architectures . . 25
4.4 MTL as MOO 26
4.5 Task impartiality 26
4.6 Gradient conflict 28

Venceréis, pero no convenceréis.

Miguel de Unamuno, 1936

Multitask learning (MTL) aims at learning several tasks with a single

model, amortizing parameters, and using common information about

tasks to boost its performance. In the context of this thesis, it serves as the

initial grounds to study the interactions between inductive biases and

machine learning (ML) optimization. In this chapter, we briefly introduce

the most relevant aspects of MTL, as well as a historical overview of the

field to better contextualize this part of the dissertation.

4.1 Historical overview

To look back at the origins of MTL, we need to go as back as 1993 to

the pioneering work of Caruana [16]. Back then, ML research followed a [16] Caruana (1993), ‘Multitask Learning:

A Knowledge-Based Source of Inductive

Bias.’

reductionist perspective, in which large problems were first reduced into

smaller separated pieces that could be solved and then recombined. As a

result, the main focus was to train models that could first solve a single

task satisfactorily
1

before considering more complex scenarios. Caruana 1: That is, single task learning (STL).

challenged this methodology, and introduced MTL under the following

premise:

“If an inductive learner is given several related tasks at the

same time, these tasks can be used as valuable sources of

inductive bias for each other. This may make learning faster

or more accurate, and may allow hard tasks to be learned

that are not learnable in isolation.”

The work of Caruana had a lasting impact on the ML community, and

nowadays MTL is considered a first-class citizen within ML. Moreover,

MTL has experienced notorious success in a number of domains such

as computer vision [69, 115], robotics [227], and natural language pro-

cessing [207, 208], to name a few. To this day, perhaps the best example

of such success is GATO [162], a generalist MTL agent that ‘can play [162] Reed, Zolna, Parisotto, Colmen-

arejo, Novikov, Barth-maron, Giménez,

Sulsky, Kay, Springenberg, Eccles, Bruce,

Razavi, Edwards, Heess, Chen, Hadsell,

Vinyals, Bordbar and Freitas (2022), ‘A

Generalist Agent.’

Atari, caption images, chat, stack blocks with a real robot arm and much

more, deciding based on its context whether to output text, joint torques,

button presses, or other tokens.’

Intuitively, what characterizes and differentiates MTL from other ap-

proaches in ML is the very notion of tasks biasing tasks, which has more

recently being popularized under the term information transfer [214]. We [214] Wu, Zhang and Ré (2020), ‘Un-

derstanding and Improving Information

Transfer in Multi-Task Learning.’

discussed this idea in Section 2.2, and interpret it as an inductive bias

re-defining our objective function where, by adding all task losses to-

gether, we introduce additional information about joint dependencies

between tasks. However, despite the success of MTL, we should note that

this transfer of information does not necessarily translate into improved

performance and, depending on whether the effect of this bias improved

https://doi.org/10.1016/b978-1-55860-307-3.50012-5
https://openreview.net/forum?id=1ikK0kHjvj
https://openreview.net/forum?id=SylzhkBtDB

24 Chapter 4 Introduction to Multitask Learning

or degraded the performance of the model with respect to a baseline,

information transfer is further particularized as positive transfer or negative
transfer, respectively.

Therefore, it should come as no surprise that a significant amount of the

effort in MTL research has focused on ways of promoting positive transfer

and, consequently, on ways of discouraging and alleviating the effects of

negative transfer. While we will focus on specific approaches later, here

we provide a brief taxonomy of the types of approaches developed over

the years to improve information transfer:

▶ Task clustering. These approaches follow the simple idea of

grouping those tasks that ‘work well together’ while keeping those

that interfere with each other apart,
2

and where the gist is on2: As we want to study the interaction

between tasks, our focus on this thesis

will be on other approaches.

providing a good notion of task similarity that captures information

transfer well. This idea dates back as much as of 1996 with the

task clustering algorithm [201], but the field is still active and new[201] Thrun and O’Sullivan (1996), ‘Dis-

covering Structure in Multiple Learning

Tasks: The TC Algorithm.’

approaches are proposed each year [59, 118, 149, 184, 193, 232].

▶ Adaptive architectures. Instead of restricting which tasks are put

together, here the idea is to use a single architecture with some

selection mechanism, such that it can adaptively adjust which

parameters—and thus, which inductive biases—are shared or

exclusive across different tasks [115, 131, 195]. This approach is

further explained in Section 4.3.

▶ Optimization algorithms. These methods look at information

transfer from an optimization standpoint, i. e., they consider it a

result of the interaction between task gradients during training. Con-

sequently, these approaches propose variations on the optimization

process—usually by explicitly altering each task gradient—such

that the training converges towards solutions that exhibit positive

transfer. We cover these methods in detail in Section 4.6 and present

one in Chapter 5.

Despite the success of MTL, and its consolidation as a field of ML,

there exists still a significant gap between the empirical success of MTL

and our understanding of information transfer. There has recently been

voices among the community questioning how effective MTL approaches

really are [99, 106, 167, 220] and, as we will see in Chapter 6, inadequate

benchmarking and the lack of metrics can account for quite a fair bit

of this criticism. In said chapter, we focus on task incomparability as a

cause of negative transfer, where information coming from heterogeneous

sources cannot be a priori meaningfully aggregated.

4.2 Problem statement

In this thesis, we restrict our MTL setting to that where all 𝐾 tasks

share the same input features.
3

Specifically, we consider an input dataset3: The same assumption appears in

Caruana’s thesis [17]. As noted there, this

is without loss of generality, as one could

always take the concatenation of each

task’s input features as the shared input.

𝑿 composed of 𝑁 i. i.d. samples from a 𝐷-dimensional random vector

x ∈ ℝ𝐷
with distribution𝑃x , i. e.,𝑿 = {𝒙𝑛}𝑁𝑛=1

i. i. d.∼ 𝑃x . For each sample 𝒙𝑛 ,

we consider a 𝐾-dimensional vector of targets that we aim to predict,

𝒚𝑛 = [𝒚
1
𝒚

2
. . . 𝒚𝐾] , one per task. More compactly, we have a target

dataset 𝒀 =
{
𝒚𝑛

}𝑁
𝑛=1

⊂ ℝ𝐾
.

4.3 Network architectures 25

Together with the targets, for each task we also have a task-specific loss

𝐿𝑘 : ℝ × ℝ→ ℝ which evaluates how close the model prediction, �̃�𝑘 ,

is to the actual solution, 𝒚𝑘 . Without loss of generality, we assume that

our objective is to minimize the output of 𝐿𝑘 .
4

With a slight abuse of 4: Note that max 𝑓 (𝑥) = min− 𝑓 (𝑥) .
notation, we will write 𝐿𝑘(�̃�𝑘 , 𝒚𝑘) to refer to the loss of the 𝑘-th task on a

single element of the dataset, and with

𝐿𝑘(�̃� 𝑘 ,𝒀 𝑘) B
1

𝑁

𝑁∑
𝑛=1

𝐿𝑘(�̃�𝑛𝑘 , 𝒚𝑛𝑘) (4.1)

to the sample average loss of the k-th task.

We therefore have a vector of 𝐾 losses that we want to minimize. However,

minimizing a vector is not well-defined and, while we will discuss later

in Section 4.4 the implications of this vector-minimization problem, it

is a widespread solution to minimize a linear combination of the task

losses [182], i. e.,

𝐿(�̃� ,𝒀) B
𝐾∑
𝑘=1

𝐿𝑘(�̃� 𝑘 ,𝒀 𝑘) . (4.2)

4.3 Network architectures

Naturally, the neural-network architecture used to learn multiple tasks

plays an important role on how well we can capture these tasks and,

inherently, on the information transfer that the model experiences during

training. In order to provide some context, here we present a broad

taxonomy
5

of the different classes of MTL architectures that can be found 5: The taxonomy is an adaption of that

from [169] Ruder (2017), ‘An Overview

of Multi-Task Learning in Deep Neural

Networks.’

in the literature.

Within the network, we distinguish in general two types of components:

i) backbones, which are parametrized by a set of common parameters and

produce a shared intermediate representation, 𝒛 B 𝑓𝜽(𝒙) ; and ii) heads,
which have task-exclusive parameters and transform the intermediate

representation into the prediction for their task, 𝒚𝑘 B ℎ𝜙𝑘 (𝒛) . In essence,

different architectures differ in the way that they define these shared

parameters, 𝜽 , and the extent of what sharing means.

We distinguish the following types of architecture:

▶

𝒚
1

𝒙 𝒛 𝒚
2

𝒚𝐾

𝑓𝜽

ℎ𝝓
1

ℎ𝝓
2

ℎ𝝓𝐾
...

Figure 4.1: Hard parameter-sharing MTL

architecture consisting of a shared back-

bone and 𝐾 task-specific heads.

Hard parameter-sharing. Despite being the original architecture

proposed by Caruana in 1993 [16], it is still the de-facto MTL ar-

chitecture in the literature [169] and the one we will focus on. As

depicted in Figure 4.1, in hard parameter-sharing all tasks share

the same backbone network, and each task has a specific head to

make predictions based on z . As a result, information transfer

occurs exclusively in the backbone, and z is identical for every task,

thus behaving as the last shared representation that contains all the

necessary information to predict all tasks. That is, z behaves as a

bottleneck of all the predictive information.

▶

𝒙 𝒛1 𝒚
1

𝒙 𝒛2 𝒚
2

𝒙 𝒛𝐾 𝒚𝐾

𝑓𝜽
1

ℎ𝝓
1

𝑓𝜽
2

...

ℎ𝝓
2

...
𝑓𝜽𝐾 ℎ𝝓𝐾

Figure 4.2: Soft parameter-sharing MTL

architecture with 𝐾 backbones and task-

specific heads. Double-arrows represent

soft constraints that relate backbone para-

meters across tasks.

Soft parameter-sharing. Instead of completely sharing the back-

bone, in soft parameter-sharing we have one backbone per task,

𝑓𝜽𝑘 . To encourage information transfer, the most common ap-

proach is to consider all the backbone parameters as a single tensor,

[𝜽1 𝜽2 . . . 𝜽𝐾] , and place some type of structural constraint,

https://arxiv.org/abs/1706.05098

26 Chapter 4 Introduction to Multitask Learning

e.g., a particular matrix factorization [98, 165, 225], or to apply some

regularization to the tensor via, e.g., the 𝑙2-norm [49], or the trace

norm [226]. While soft parameter-sharing offers more flexibility—

parameters across tasks are allowed to differ to some extent—the

increase in number of parameters is significant,
6

which could6: Namely, linear in the number of tasks.

explain why they are not as widely-used as their counterparts.

𝑘 𝜽

𝒙 𝒛𝑘 𝒚𝑘
𝑓𝜽𝑘 ℎ𝝓𝑘

parameter

selection

Figure 4.3: Adaptive MTL architecture

with a single backbone whose paramet-

ers are selected from a shared set of

parameters, 𝜽 , the task index, and a

architecture-specific selection algorithm.

▶ Adaptive architectures. Last, we have networks which do not

define a priori which backbone parameters will be used by each task.

Instead, they learn some sort of ‘parameter selection’ algorithm that

distils a set of task-specific backbone parameters for each task, 𝜽𝑘 .

Many selection algorithms have been proposed in the literature

using, e.g., reinforcement learning [195], branching algorithms [69],

neural networks [3, 131, 194], or attention-based networks [115].

While we abstractly depict these networks in Figure 4.3, note that

there is no set rule on how to define them and, e.g., Long et al. [118]

proposed a shared backbone with soft parameter-sharing heads.

4.4 MTL as multi-objective optimization

In Section 4.2, we mentioned that the most widespread training loss in

MTL is a weighted sum of the task losses, i. e., 𝐿(�̃� ,𝒀) in Equation 4.2.

However, this choice of loss function is rather arbitrary, since there is

nothing in the conception of MTL (i. e., solving 𝐾 tasks simultaneously)

suggesting how to combine the tasks losses.

An alternative approach is to strip away this implicit choice for the loss

function, and instead formulate MTL as a more general multi-objective

optimization (MOO) problem.
7

From this perspective, MTL attempts to7: This alternative formulation was first

proposed in the context of MTL by Sener

and Koltun in 2018 [182].

solve the following optimization problem:

min 𝑳(�̃� ,𝒀) B [𝐿1(�̃�1 ,𝒀1) 𝐿2(�̃�2 ,𝒀2) . . . 𝐿𝐾(�̃�𝐾 ,𝒀𝐾)] , (4.3)

where the outcome 𝑳(�̃� ,𝒀) ∈ ℝ𝐾
is now a vector of 𝐾 losses.

Unfortunately, the problem in Equation 4.3 is undefined without further

assumptions. While the real numbers with the usual order (ℝ,≤) is

a totally ordered vector space, its 𝐾-dimensional extension with the

product order, i. e., (ℝ𝐾 ,≤𝐾) where 𝒂 ≤𝐾 𝒃 iff 𝑎𝑖 ≤ 𝑏𝑖 ∀𝑖 , forms just a

partially ordered vector space. As a result, two elements in ℝ𝐾 may not be
comparable, and thus we cannot choose between a pair of outcomes.

Two important and related notions in MOO are those of dominance and

Pareto optimality. We call the set of Pareto-optimal outcomes the Pareto

front, which represents the set of best possible outcomes. The goal of
MOO is to achieve Pareto optimality, i. e., to reach an element in the Pareto

front.

4.5 Task impartiality

While mathematically appealing, the Pareto front, i. e., the (possibly

infinite) set of all trade-off solutions of the MOO problem in Equation 4.3,

is not that useful from a practitioner perspective: at some point in the

4.5 Task impartiality 27

training-and-deployment process, we need to select a specific model to use,
hopefully within the Pareto front and with the advice of a decision maker

(DM), who knows which trade-offs they are willing to make.

MOO has been extensively studied in diverse research areas, and thus

a considerable amount of model selection approaches (i. e., those that

select a model within the Pareto set) have been considered.
8

All of them, 8: For a more in-depth review, refer to

[130] Miettinen (1999), ‘Nonlinear mul-

tiobjective optimization.’.

however, come down to defining a way of imposing a total order across

outcomes, either by i) transforming ℝ𝐾
to ℝ with the usual order ≤ ; or

by ii) replacing≤𝐾 with a total order forℝ𝐾
. Some important approaches

within the literature are the following:

▶ No-preference methods expect the absence of a DM or preference

information, and thus look for a compromise solution impartial to

any loss function. For example, the global criterion method [231]

selects the outcome closest to the ideal solution,

min ∥𝑳(�̃� ,𝒀) − 𝑳ideal∥𝑝 , (4.4)

where 𝑝 ≥ 1 defines a p-norm, and 𝑳ideal
is the best possible

outcome for each individual objective, i. e.,

𝑳ideal B [min 𝐿1 min 𝐿2 . . . min 𝐿𝐾] , (4.5)

and where we have removed the arguments of each loss function

to avoid clutter. However, Equation 4.4 is sensitive to the scaling of

the loss functions [130, Chapter 2.1], as we will discuss in Chapter 6. [130] Miettinen (1999), ‘Nonlinear mul-

tiobjective optimization.’

▶ Scalarization methods assume the existence of a scalarization
function, 𝜓 : ℝ𝐾 → ℝ , that maps the vector outcome to a scalar

value, and select the model that solves min𝜓(𝑳(�̃� ,𝒀)) .
Of special importance is linear-scalarization, where 𝜓 is a linear

combination of the outcome elements, weighted by a set of weights,

𝜓(𝑳) = ∑𝐾
𝑘=1

𝛼𝑘𝐿𝑘 . Linear scalarization is broadly used in prac-

tice,
9

and enjoys important theoretical results. For example, it is 9: Indeed, we introduced the objective

of MTL as a linearly scalarized problem

in Equation 4.2.

known [14] that any (static) linear combination of outcomes can

[14] Boyd and Vandenberghe (2004),

‘Convex optimization.’

only reach the elements of the Pareto front that intersect with its

convex hull. In the case where the set of achievable outcomes is

convex, linear scalarization can reach any Pareto optimal outcome.

▶ A posteriori methods take a different approach, and attempt to

recover the entire Pareto front, which is afterwards presented to

the DM to select the preferred outcome. While we focus on other

methods in this thesis, it is worth-noting that there have been efforts

within the deep learning (DL) community to provide a posteriori
solutions [107, 108, 121, 168].

The main take-away from the paragraphs above is that, independently

of how we choose it, having a clear scalarization function is vital. In

other words, while the goal of MOO theory is to reach a Pareto-optimal

outcome, for all practical purposes we need to have a clear image of the objective
we are trying to achieve and, to this end, we must induce a total ordering

between the outcomes through a scalarization function.

This is specially important in the interpretation of MTL as a MOO

problem (Section 4.4). Under the premise of having foundations in MOO

theory, a recent trend in MTL literature is to propose approaches that

reach Pareto-stationarity, without specifying any scalarization function

28 Chapter 4 Introduction to Multitask Learning

to follow [27, 110, 111, 114, 227]. As a result, their utility and reliability

are questionable, as any outcome trade-off achieved could be a valid solution,
unless we specifically find a dominant outcome, making it hard to test in

practice.

In this thesis, we adopt task impartiality as our objective. Tightly related

to no-preference methods, task impartiality assumes the absence of any

preference towards learning one task over another, and thus looks for a

compromise solution that performs well on all tasks without overlooking

any of them. While still loosely defined, task impartiality provides a clear

objective to achieve, and thus to evaluate and compare MTL approaches.

Task impartiality was first mentioned by Liu et al. [112] and, in this thesis,[112] Liu, Li, Kuang, Xue, Chen, Yang,

Liao and Zhang (2021), ‘Towards Impar-

tial Multi-task Learning.’

we provide an MTL approach to encourage task impartiality in Chapter 5,

a way of measuring task-impartiality performance in Chapter 6, and we

extend the concept of impartial solutions to the context of probabilistic

generative models (PGMs) in Part II.

4.6 Gradient conflict

4.6.1 Existing approaches . . . 29 One important concept in this thesis is that of gradient conflict which,

in short, describes the negative effects that considering several tasks

simultaneously can have on the total gradient computation, making it

a bad direction to update the network parameters. Again, the seminal

work of Caruana [16] provided many relevant insights ahead of its time.[16] Caruana (1993), ‘Multitask Learning:

A Knowledge-Based Source of Inductive

Bias.’

Specifically, Caruana said back in 1993:

“Because the MTL net is doing several potentially competing

jobs at the same time, the gradients computed from the error

signal for each task may interfere (i. e., cause the aggregate

gradient to be flatter or less directional), so learning might

be slower for some MTL tasks.”

However, most of the efforts in MTL research did go towards better

task clustering and more sophisticated architectures.
10

Starting in 201810: See Section 4.1 for a quick description

of these other MTL solutions.
with the works of Chen et al. [26], Kendall et al. [89], Sener and Koltun

[182] and Sinha et al. [189], the MTL community started to focus on

the interaction between gradient coming from different tasks during

training, and the interest on alleviating gradient conflict has increased

since then [21, 27, 110–112, 114, 142, 183, 211, 227]. These solutions, which

modify the gradient direction to follow, can be interpreted as inductive

biases that drive the optimizer towards certain solutions that meet our

trade-off expectations, as discussed in Section 2.2.

For ease of exposition, let us focus here on the linearly scalarized MTL

loss in Equation 4.2, and suppose we use a hard parameter-sharing

architecture as in Figure 4.1, so that all tasks share the parameters 𝜽 from

the backbone.
11

Moreover, since the gradient is a linear function, we can11: We cover non-linear scalarization and

complex architectures in Chapter 9.
quite easily compute the gradient of the MTL loss w.r. t. 𝜽 :

∇𝜽𝐿(𝒀) =
𝐾∑
𝑘=1

∇𝜽𝐿𝑘(�̃� 𝑘 ,𝒀 𝑘) , where �̃� 𝑘 B ℎ𝝓𝑘
(𝑓𝜽(𝑿)) . (4.6)

From the expression above, it is clear how conflicts between the different

task gradients can occur: if there exist big disparities between task

https://openreview.net/forum?id=IMPnRXEWpvr
https://doi.org/10.1016/b978-1-55860-307-3.50012-5

4.6 Gradient conflict 29

gradients, then the sum can be dominated by a subset of tasks, and these

tasks can take over the backbone parameters, 𝜽 .

To avoid clutter, let us use 𝒈 𝑘 to refer to the gradient w.r. t. 𝜽 of the 𝑘-th

task, 𝒈 𝑘 B ∇𝜽𝐿𝑘(�̃� 𝑘 ,𝒀 𝑘) , and similarly to the total gradient w.r.t. 𝜽 as

𝒈 B ∇𝜽𝐿(𝒀) . Given that 𝒈 𝑘 is a |𝜽|-dimensional vector, a taxonomy for

gradient conflict naturally arises from the vectorial nature of 𝒈 𝑘 :

𝒈 𝑖
𝒈 𝑗

½𝒈 𝑖 + ½𝒈 𝑗

Figure 4.4: Pictorial description of mag-

nitude gradient conflict.

▶ Magnitude conflict. If two gradients differ significantly in their

norm, i. e., if ∥𝒈 𝑖∥ ≫ ∥𝒈 𝑗∥ for two different tasks, then the task with

bigger magnitude will dominate the total gradient computation

and, as a result, the network will prioritize learning the dominant

task. While the magnitude of a task gradient in isolation contains

useful information about the progress in the optimization of that

task, in general tasks are not comparable, and thus their magnitude

should not be comparable either, as we will see in Chapter 6.

𝒈 𝑖
𝒈 𝑗

½𝒈 𝑖 + ½𝒈 𝑗

Figure 4.5: Pictorial description of direc-

tion gradient conflict.

▶ Direction conflict. Even if two task gradients have equal mag-

nitude, their direction could still be completely different. Therefore,

when computing the total gradient in Equation 4.6, their sum

could cancel out, and the network explore potentially poor update

directions that deteriorate model performance. Intuitively, the dir-

ection of 𝒈 𝑘 indicates where to explore to immediately improve the

performance of the 𝑘-th task and, therefore, direction conflict can

be understood as the disagreement of two tasks on which parts of

the parameter space to explore. However, the direction of 𝒈 𝑘 can

be highly influenced by the parameters of the task heads, as we

will describe and exploit later in Chapter 5.

It is worth noting that other sources of conflict have also been pointed

out in the previous literature. For example, Yu et al. [227] considered the

curvature of the optimization landscape. However, the two sources above

are the most common ones, and to this date little work exists exploring

second-order information of gradient conflict in MTL.

4.6.1 Existing approaches

As we have mentioned above, the number of approaches to tackle gradient

conflict have significantly increased since 2018 in the context of MTL. In

order to get a better understanding of the type of approaches considered

in the existing literature, here we provide a non-exhaustive taxonomy of

methods to alleviate gradient conflict:

▶ Magnitude-aware. These algorithms seek a set of task weights

𝝎 B {𝜔𝑘}𝐾𝑘=1
∈ ℝ𝐾

to re-scale each gradient, 𝜔𝑘 · 𝒈 𝑘 . Moreover,

these weights are typically constrained to add up to one,

∑
𝑘 𝜔𝑘 = 1 .

We call them magnitude-aware since scaling 𝒈 𝑘 only changes

its norm and, therefore, only immediately address magnitude

conflict.
12

Examples of these approaches are: 12: Note, however, that they can also

alleviate direction conflict over time.

• GradNorm [26], which treats the weights as parameters to

optimize along the network parameters, so that they equalize

the gradient magnitudes over training. To reduce overhead,

GradNorm considers the gradients w.r. t. the last-shared layer.

• MGDA seeks for a convex combination of weights, such that the

norm of the total gradient is minimized. Its dual and primal

30 Chapter 4 Introduction to Multitask Learning

formulations were first introduced by Fliege and Svaiter [61]

in 2000, and by Schäffler et al. [178] in 2002, respectively, and

later reintroduced by Désidéri [44] in 2012. In 2018, Sener and

Koltun [182] adapted it to MTL, under the name of MGDA-UB,

by applying the algorithm to the gradients w.r.t. the shared

representation, z , rather than w.r. t. the shared parameters, 𝜽 .

Moreover, generalizations of MGDA such as CAGrad [111] and,

more recently, FAMO [110], have been proposed to better deal

with the specifics of optimizing MTL architectures.

• IMTL-G [112] finds the task weights under a closed-form solu-

tion, such that the projection of the total gradient to each

of the task gradient is equal. Similar to MGDA-UB, IMTL-G is

applied to the gradients w.r. t. z .

• Nash-MTL [142] interprets the problem of gradient conflict as

a Nash game, and looks for a set of weights such that they

achieve a Nash equilibrium. AuxiNash [183] extends Nash-MTL

to the case where we seek an asymmetric Nash equilibrium,

i. e., where we treat some tasks as auxiliary tasks.

• RGW [106] proposes to randomly sample the task weights ac-

cording to a given distribution, and then renormalize them so

that they add up to one. The intuition here is that the random

weighting can serve as a regularization for the network to not

be dominated by a subset of the tasks.

▶ Direction-aware. This type comprehends all other methods in

which task gradients are modified in a way other than scaling, such

that their directions are explicitly modified. For example:

1. GradDrop [27] drops individual elements of the task gradients

randomly, according to how much each task gradient conflicts

in direction with the total gradient. Here, the intuition is that

GradDrop makes each task gradient to self-correct, and thus

to align with the rest of task gradients.

2. PCGrad [227] is a popular method due to its simplicity. In

short, if there exists some direction conflict between two tasks,

PCGrad selects one randomly, and removes its conflicting part

by computing the projection of this gradient onto the other,

i. e., it removes the orthogonal component that would cancel

out when computing the sum of both task gradients. More

recently, GradVac [208] was proposed as a generalization of

PCGrad which, even if there is no direction conflict, it modifies

the gradients to encourage positive transfer.

The list above is an incomplete but representative view of the type of

approaches proposed to deal with gradient conflict in the MTL literature.

Other interesting works have considered the use of, e.g., adversarial

training [189], or meta-learning [114]. Moreover, in Chapter 5 we will

introduce RotoGrad, an approach to gradient conflict that tackles both

magnitude and direction conflict simultaneously.

Gradient Homogenization
in Multitask Learning 5.

5.1 Problem statement 31
5.2 Gradient homogenization . 32
5.3 Illustrative examples 36
5.4 Empirical validation 37
5.5 Concluding remarks 41

La dignidad es la pieza clave para poder vivir bien.

Y cuando un pueblo no tiene dignidad,

se pone de rodillas y termina sin comer.

Porque sin dignidad no se come.

Julio Anguita

�
github.com/adrianjav/rotograd

This chapter is based on the content of

[II]: Javaloy and Valera (2022), ‘RotoGrad:

Gradient Homogenization in Multitask

Learning.’

As discussed previously in Chapter 4, despite multitask learning (MTL)

being increasingly adopted in applications domains such as computer

vision and reinforcement learning, optimally exploiting its potential

remains a major challenge as a consequence of negative transfer. Previous

works have tracked down this issue to gradient conflict, i. e., to the

disparities between task gradients in their magnitude and direction

across tasks, when optimizing the shared network parameters. However,

while previous works have acknowledged that gradient conflict is a two-

fold problem, existing approaches fall short as they only focus on either

i) homogenizing the gradient magnitude across tasks; or ii) heuristically

modifying the gradient directions, overlooking future interactions.

In this chapter, we introduce RotoGrad, an algorithm that tackles gradient

conflict as a whole by homogenizing both gradient magnitudes and

directions across tasks. Specifically, RotoGrad: i) addresses magnitude

discrepancies by re-weighting task gradients at each step of the training

process, promoting learning those tasks that have converged the least thus

far;
1

and ii) instead of directly modifying gradient directions, RotoGrad 1: In that way, it attempts to not overlook

any task, i. e., to achieve task impartiality.
smoothly rotates the shared feature space for each task, seamlessly

aligning gradients
2

in the long run. 2: And thus, local optima.

Additionally, as shown by our theoretical insights, the cooperation

between gradient magnitude- and direction-homogenization algorithms

ensures the stability of the overall learning process. Finally, we run

extensive experiments to empirically demonstrate that RotoGrad leads

to a stable (convergent) learning process, scales up to complex network

architectures, and outperforms competing methods in multi-label classi-

fication settings on CIFAR10 and CelebA, and in computer vision tasks

on the NYUv2 dataset.

5.1 Problem statement

In this section, we introduce the MTL setting assumed in this chapter,

and recap some concepts previously introduced in Chapter 4.

𝒚
1

𝒙 𝒛 𝒚
2

𝒚𝐾

𝑓𝜽

ℎ𝝓
1

ℎ𝝓
2

ℎ𝝓𝐾
...

Figure 5.1: Hard parameter-sharing ar-

chitecture assumed in this chapter.

First, we assume a common input dataset 𝑿 ∈ ℝ𝑁×𝐷
, and our goal is to

simultaneously learn 𝐾 mappings from 𝑿 to a task-specific set of labels

𝒀 𝑘 ∈ 𝕐 𝑁
𝑘

. We consider a hard parameter-sharing architecture, as it is

broadly adopted in practice, with: i) a backbone 𝑓 parametrized by 𝜽 ; ii) a

shared output 𝒛 = 𝑓𝜽(𝒙) ∈ ℝ𝑑
, where 𝑑 is the dimensionality of 𝒛 ; and

iii) 𝐾 head networks with exclusive parameters 𝝓𝑘 , that output the task

prediction based on 𝒛 , ℎ𝝓𝑘
(𝒙) = �̃�𝑘 .

https://github.com/adrianjav/rotograd

32 Chapter 5 Gradient Homogenization in Multitask Learning

Although MTL is a priori a multi-objective optimization (MOO) problem,
3

3: See Section 4.4 in Chapter 4.

in this chapter we adopt the common practice of assuming as loss a

linear combination of the task losses, 𝐿 =
∑
𝑘 𝐿𝑘 . While this assumption

leads to a simpler optimization problem, it may also hurt the overall task

performance due to an imbalanced competition among task gradients

for the shared parameters, a problem we know as gradient conflict.
4

4: See Section 4.6 in Chapter 4.

Specifically, since 𝜽 is updated according to ∇𝜽𝐿 =
∑
𝑘 ∇𝜽𝐿𝑘 , we may

face significant differences across: i) task magnitudes, leading to a subset

of tasks dominating the learning process; and ii) task directions, leading

to poor update directions that may not benefit any of the tasks.

In this chapter, we tackle negative transfer as a whole by homogenizing

tasks gradients both in magnitude and direction. To reduce overhead,

we adopt the usual practice of homogenizing gradients with respect to

the shared feature 𝒛 (rather than 𝜽), as all tasks share gradient up to

that point, ∇𝜽𝐿𝑘 = ∇𝜽𝒛 · ∇𝒛𝐿𝑘 . Therefore, in this chapter we focus on

feature-level task gradients, ∇𝒛𝐿𝑘 .

5.2 Gradient homogenization

5.2.1 Gradient magnitudes . . 32
5.2.2 Gradient directions . . . 34
5.2.3 The full picture 35
5.2.4 Practical considerations . 35

In this section, we introduce RotoGrad, an algorithm to homogenize

task gradients during training, thus palliating the effect of gradient

conflict. Specifically, RotoGrad consists of two building blocks which

homogenize task-gradient magnitudes and directions, respectively. These

blocks address orthogonal problems, and they complement each other

while providing convergence guarantees of the network training.

Next, we detail each of these building blocks and show how they are

combined towards an effective MTL learning process. First, we address

magnitude homogenization, proposing a parameter-less algorithm that

equalizes gradient magnitudes at each iteration. Then, as gradient dir-

ections cannot be freely manipulated, we provide an algorithm which

smoothly homogenizes gradient directions via task-specific rotations of

the shared intermediate feature, 𝒛 .

5.2.1 Gradient magnitudes

We aim to homogenize gradient magnitudes across tasks, as large mag-

nitude disparities can lead to a subset of tasks dominating the learning

process. Thus, the first goal of RotoGrad is to homogenize the magnitude

of the gradients across tasks at each step of the training.

First, let us denote the feature-level task-gradient for the 𝑘-th task and

Dimensions

x ∈ ℝ𝐷 z ∈ ℝ𝑑

𝒈𝑛𝑘 ∈ ℝ𝑑 𝑮𝑘 ,𝑼 𝑘 ∈ ℝ𝐵×𝑑

𝐶 ∈ ℝ+

𝑛-th sample by 𝒈𝑛𝑘 B ∇𝒛𝐿𝑘(ℎ𝑘(𝒙𝑛), 𝒚𝑛𝑘) . Similarly, let us write the

batched gradient as 𝑮⊤𝑘 B [𝒈1𝑘 𝒈
2𝑘 . . . 𝒈𝐵𝑘] , where 𝐵 is the batch

size. Then, equalizing gradient magnitudes amounts to finding a set of

weights 𝜔𝑘 that normalizes and scales each gradient 𝑮𝜔 , i. e.,

∥𝜔𝑘𝑮𝑘∥ = ∥𝜔𝑖𝑮𝑖∥ ∀𝑖 ⇐⇒ 𝜔𝑘𝑮𝑘 =
𝐶

∥𝑮𝑘∥
𝑮𝑘 = 𝐶𝑼 𝑘 ∀𝑘 , (5.1)

where 𝑼 𝑘 B 𝑮𝑘/∥𝑮𝑘∥ denotes the normalized task gradient, 𝐶 the

common target magnitude, and where we assume ∥𝑮𝑘∥ > 0 . Note that,

in the above expression, 𝐶 is a free parameter that we need to pick.

5.2 Gradient homogenization 33

In RotoGrad, we select 𝐶 such that all tasks converge at a similar rate, in

aims of having an impartial learning process across tasks. We motivate

this choice by the fact that, by scaling all gradients, we change their

individual step size, interfering with the convergence rates associated

with their Lipschitz-smoothness [144]. Therefore, we seek for the value For an introduction to optimization see

[144] Nesterov (2004), ‘Introductory Lec-

tures on Convex Optimization - A Basic

Course.’

of 𝐶 providing the best step size for those tasks that have converged the

least up to the current iteration, 𝑡 . To this end, we set 𝐶 to be a convex

combination of the task-wise gradient magnitudes, 𝐶 B
∑
𝑘 𝛼𝑘∥𝑮𝑘∥,

where the weights 𝛼1 , 𝛼2 , . . . , 𝛼𝐾 measure the relative convergence of each

task and sum up to one, i. e.,

𝛼𝑘 =
∥𝑮𝑘∥/∥𝑮0

𝑘
∥∑

𝑖∥𝑮𝑖∥/∥𝑮0

𝑖 ∥
with

𝐾∑
𝑘=1

𝛼𝑘 = 1 , (5.2)

where 𝑮0

𝑘
is the initial gradient of the 𝑘-th task, i. e., its gradient at the

training iteration 𝑡 = 0 . The resulting algorithm is summarized below:

1 function: ComputeWeights

2 input: gradients {𝑮𝑘}𝐾𝑘=1

3 begin

4 𝛼𝑘 ← ∥𝑮𝑘∥ / ∥𝑮0

𝑘
∥ for 𝑘 = 1, 2, . . . , 𝐾

5 𝛼𝑘 ← 𝛼𝑘 /
∑
𝑖 𝛼𝑖 for 𝑖 = 1, 2, . . . , 𝐾

6 𝐶 ← ∑
𝑘 𝛼𝑘∥𝑮𝑘∥

7 𝜔𝑘 ← 𝐶 / ∥𝑮𝑘∥ for 𝑘 = 1, 2, . . . , 𝐾
8 return 𝝎
9 end

Algorithm 5.1: Function to compute the

task weights in RotoGrad. The algorithm

takes the batched task-gradients w.r. t. z ,

𝑮𝑘 , and returns a set of weights, 𝝎 , to

scale each of these gradients.

Algorithm 5.1 is a parameter-free algorithm that equals gradient mag-

nitudes across tasks to encourage learning the slow-converging tasks.

Notably, the proposed approach resembles a multitask version of Nor-

malized Gradient Descent [36], which has been previously proved to

quickly escape saddle points during optimization [138]. Consequently, we [138] Murray, Swenson and Kar (2019),

‘Revisiting Normalized Gradient Des-

cent: Fast Evasion of Saddle Points.’

would expect a similar behaviour for RotoGrad, where slow-converging

tasks will force quick-converging tasks to escape from saddle points.

However, the simplicity of Algorithm 5.1 also makes it prone to errors in a

number of degenerated settings, e.g., in the presence of: i) noisy tasks that

do not progress; ii) tasks that have fully converged; or iii) opposing tasks

where, as one task improves, another task deteriorates. In the following

proposition
5

we show that, if task gradients do not excessively conflict in 5: Proved in Appendix A.1.

direction, then following the gradient 𝐶
∑
𝑘 𝑼 𝑘 improves all tasks for the

given batch. This result, while simplistic—e.g., we assume a gradient step

in feature space—provides insights in favour of having as desideratum of

an efficient MTL pipeline the absence of gradient conflict.

Proposition 5.1 If, at one iteration, the task gradients are such that

cos(𝑮𝑖 ,𝑮 𝑗) > −1/(𝐾 − 1) for every pair of tasks 𝑖 , 𝑗 ∈ {1, 2, . . . , 𝐾} ,

then for a small-enough 𝜖 > 0 we have that

𝐿𝑘

(
ℎ𝝓𝑘

(
𝒁 − 𝜖𝐶

𝐾∑
𝑘=1

𝑼 𝑘

)
, 𝒀 𝑘

)
< 𝐿𝑘

(
ℎ𝝓𝑘
(𝒁) , 𝒀 𝑘

)
(5.3)

for every 𝑘 ∈ {1, 2, . . . , 𝐾} and where 𝐶 > 0 .

https://doi.org/10.1007/978-1-4419-8853-9
https://doi.org/10.1109/TAC.2019.2914998
https://doi.org/10.1109/TAC.2019.2914998

34 Chapter 5 Gradient Homogenization in Multitask Learning

5.2.2 Gradient directions

We just motivated the need of reducing direction conflict, so that Al-𝒓1 𝒚
1

𝒙 𝒛 𝒓2 𝒚
2

𝒓𝐾 𝒚𝐾

ℎ𝝓
1

𝑓𝜽

𝑹1

𝑹2

𝑹𝐾

...

ℎ𝝓
2

...
ℎ𝝓𝐾

Figure 5.2: Hard parameter-sharing ar-

chitecture, extended with the rotation

matrices 𝑹𝑘 from RotoGrad.

gorithm 5.1 could improve the performance of all tasks. In this section,

we introduce the second building block of RotoGrad: an algorithm to ho-

mogenize gradient directions, thus complementing the previous scaling

algorithm. The idea behind this approach is to smoothly rotate for each

task the feature z to reduce the conflict between tasks in the following

iterations, by bringing the (local) optima of different tasks closer to each

other.
6

In simple words, RotoGrad uses current local information to

6: Closer in the parameter space.

seemingly reduce the direction conflict at the following steps.

In order to homogenize gradient directions, for each task 𝑘 , RotoGrad
Dimensions

𝑹𝑘 ∈ ℝ𝑑×𝑑 𝒓 𝑘 ∈ ℝ𝑑

introduces a matrix 𝑹𝑘 at the beginning of each task head so that, instead

of optimizing 𝐿𝑘(𝒛) with 𝒛 being the last shared representation, we

optimize an equivalent
7

loss function 𝐿𝑘(𝑹𝑘𝒛) . Since our sole interest is to
7: As it is a bĳective mapping.

change gradient directions, we choose 𝑹𝑘 ∈ SO(𝑑) to be a rotation matrix
8

8: The special orthogonal group, SO(𝑑) ,
denotes the set of all (proper) rotation

matrices of dimension 𝑑 .

leading to task-specific representations 𝒓 𝑘 B 𝑹𝑘𝒛 . Therefore, RotoGrad

extends the usual hard parameter-sharing architecture by adding task-

specific rotations before each head, as depicted in Figure 5.2.

Remark 5.1 While we keep the ex-

pression in Equation 5.4 as in the

original publication [II], it is direct to

check that this is equivalent to optim-

izing direction conflict instead, as we

later define it in Chapter 6.

Unlike the network parameters, the matrices 𝑹𝑘 do not seek to improve

the performance of their task. Instead, these additional parameters are

optimized to reduce the direction conflict of the gradients across tasks.

To this end, for each task we optimize 𝑹𝑘 to maximize the batch-wise

cosine similarity or, equivalently, to minimize

L𝑘
rot
B −

∑
𝑛

⟨𝑹⊤𝑘 �̃�𝑛𝑘 , 𝒗𝑛⟩ , (5.4)

where �̃�𝑛𝑘 B ∇𝒓 𝑘𝐿𝑘(𝒛𝑛 , 𝒚𝑛𝑘)) is the gradient w.r.t. 𝒓 𝑘 ,
9

and 𝒗𝑛 is the9: Which holds that 𝒈𝑛𝑘 = 𝑹⊤
𝑘
�̃�𝑛𝑘 .

target direction that we want all task gradients to follow. In practice, we

set the target vector 𝒗𝑛 to be the gradient we would have followed if all

task gradients weighted the same, i. e., 𝒗𝑛 B 1

𝐾

∑
𝑘 𝒖𝑛𝑘 , where 𝒖𝑛𝑘 is the

n-th row of the normalized batch gradient matrix 𝑼 𝑘 , as defined before.

The resulting algorithm can be written as follows:

Algorithm 5.2: Function to update the ro-

tation matrices introduced by RotoGrad
to homogenize the gradient directions

across tasks.

1 function: UpdateRotations

2 input: gradients {𝑮𝑘}𝐾𝑘=1

(with respect to 𝒛)
3 begin

4 �̃�𝑘 ← 𝑹𝑘𝑮𝑘 for 𝑘 = 1, 2, . . . , 𝐾 # treated as a constant

5 𝑽 ← 1

𝐾

∑
𝑘 𝑮𝑘/∥𝑮𝑘∥

6 for 𝑘 = 1, 2, . . . , 𝐾 do

7 L𝑘
rot
← −∑

𝑛⟨𝑹⊤𝑘 �̃�𝑛𝑘 , 𝒗𝑛⟩
8 𝑹𝑘 ← 𝑹𝑘 − 𝜂rot∇𝑹𝑘L𝑘rot

9 done
10 end

As a result of the extra loss function, in each training step with RotoGrad

we simultaneously optimize the following two problems:

Remark 5.2 In this interpretation,

the player learning the rotations intro-

duced by RotoGrad plays the role of

the leader since, as a result of optim-

izing Equation 5.4, it has first-order

information of the next ‘move’ of the

network parameters via the gradient

information.

N etwork: minimize

𝜽, {𝝓}𝑘

∑
𝑘

𝜔𝑘 𝐿𝑘 , Rotation: minimize

{𝑹𝑘}𝑘

∑
𝑘

L𝑘
rot
. (5.5)

A key insight is that the above problem can be interpreted as a Stackelberg

game: a two-player game in which a leader and a follower make alternate

moves in order to minimize their respective losses, and where the leader

knows in advance how the follower will respond to their moves. This

5.2 Gradient homogenization 35

game-theoretical interpretation enables simple guidelines to guaran-

tee training convergence—i. e., guarantees that the network loss will not

oscillate indefinitely as a result of optimizing two different objectives.

Specifically, we can leverage the results of Fiez et al. [58], and ensure that [58] Fiez, Chasnov and Ratliff (2020), ‘Im-

plicit Learning Dynamics in Stackelberg

Games: Equilibria Characterization, Con-

vergence Analysis, and Empirical Study.’

the problem in Equation 5.5 converges as long as we learn the rotations

(leader) more slowly than the network parameters (follower). That is, if

we make the learning rate for the rotations, 𝜂rot , decrease faster than that

of the network parameters, 𝜂 , then we know that RotoGrad will converge

to a local optimum for both objectives.
10

10: A more extensive discussion can be

found in Appendix A.2.

5.2.3 The full picture

After describing the two main blocks of RotoGrad in the previous sections,

we can now provide a full picture of the proposed algorithm, summarized

in Algorithm 5.3. At each step: i) RotoGrad homogenizes the gradient

magnitudes such that no task dominates the learning dynamics of the

shared parameters, 𝜽 , and the step size is set according to the slow-

converging tasks; in addition, ii) RotoGrad smoothly updates the rotation

matrices
11

to seamlessly align task gradients in the following steps, thus 11: Using the local information given by

the task gradients.
preventing future direction conflicts.

1 input: samples 𝑿, labels {𝒀 𝑘}𝐾𝑘=1

2 begin
3 𝒁 ← 𝑓 (𝑿 ;𝜽)
4 for 𝑘 = 1, 2, . . . , 𝐾 do
5 𝒁𝑘 ← 𝑹𝑘𝒁
6 𝐿𝑘 ←

∑
𝑛 𝐿𝑘 (ℎ𝝓𝑘 (𝒛𝑛𝑘), 𝒚𝑛 𝑘)

7 𝑮𝑘 ← ∇z𝐿𝑘
8 done
9 UpdateRotations({𝑮𝑘}) # Algorithm 5.2

10 𝝎← ComputeWeights({𝑮𝑘}) # Algorithm 5.1
11 𝜽← 𝜽 − 𝜂∇𝜃 ·

∑
𝑘 𝜔𝑘𝑮𝑘

12 𝝓𝑘 ← 𝝓𝑘 − 𝜂∇𝝓𝑘 𝐿𝑘 for 𝑘 = 1, 2, . . . , 𝐾

13 end

Algorithm 5.3: One training iteration

of RotoGrad. In the forward pass, the

only additional step is the rotation of the

shared features in line 5. In the backward

pass, there are two additional steps: i) the

re-weighting of task gradients in line 9;

and ii) the update of the rotation matrices

in line 10.

5.2.4 Practical considerations

In this section, we discuss the main practical considerations to account

for when implementing RotoGrad, and propose how to address them.

Unconstrained optimization. As previously discussed, the parameters

𝑹𝑘 are defined as rotation matrices, and thus Rotation in Equation 5.5 is

a constrained optimization problem. While this would typically require

the use of costly algorithms like Riemannian gradient descent [1], we

can leverage recent work on manifold parametrization [18, 19] and,

instead, apply unconstrained optimization methods by automatically

parametrizing 𝑹𝑘 via exponential maps on the Lie algebra of SO(𝑑) .12
12: E.g., libraries like Geotorch [18] make

this process transparent to the user.

Memory and time complexity. As we need one rotation matrix per

task, we have to store O(𝐾𝑑2) additional parameters. In practice, we only

need 𝐾𝑑(𝑑 − 1)/2 parameters due to the aforementioned parametrization

and, in most cases, this amounts to a small fraction of the total number

of network parameters. Moreover, parametrizing 𝑹𝑘 enables efficient

http://proceedings.mlr.press/v119/fiez20a.html

36 Chapter 5 Gradient Homogenization in Multitask Learning

computations compared with traditional methods [19], with a time[19] Casado and Martínez-Rubio (2019),

‘Cheap Orthogonal Constraints in Neural

Networks: A Simple Parametrization of

the Orthogonal and Unitary Group.’

complexity of O(𝑑3) independently of the batch size. In our case, the

time complexity is of O(𝐾𝑑3) , which scales better with respect to the

number of tasks than existing methods, e.g., the O(𝐾2𝑑) time complexity

of PCGrad [227]. Moreover, other techniques such as forward-pass caching

and GPU parallelization can further reduce training time.

Scaling-up RotoGrad. Despite being able to efficiently compute and

optimize the rotation matrix 𝑹𝑘 , in domains like computer vision, where

the shared representation size, 𝑑 , is extremely large, the time complexity

for updating the rotation matrix may become comparable to that of the

network updates. In those cases, we propose to only rotate a subspace of

the feature space, e.g., to rotate only the first𝑚 ≪ 𝑑 dimensions of 𝒛 . Then,

we can simply apply a transformation of the form 𝒓 𝑘 = [𝑹𝑘𝒛1:𝑚 , 𝒛𝑚+1:𝑑] ,
where 𝒛𝑎:𝑏 denotes the elements of 𝒛 with indexes 𝑎, 𝑎 + 1, . . . , 𝑏 . While

there exist other possible solutions, such as using block-diagonal rotation

matrices 𝑹𝑘 , we defer them to future work.

5.3 Illustrative examples

In this section, we illustrate the behaviour of RotoGrad in two synthetic

scenarios, providing clean qualitative results about its effect on the

loss landscape. Appendix A.3.1 provides a detailed description of the

experimental setups.

Namely, we consider two multitask regression problems of the form

𝐿(𝒙) = 𝐿1(𝒙) + 𝐿2(𝒙) = 𝜑(𝑹1 𝑓𝜽(𝒙), 0) + 𝜑(𝑹2 𝑓𝜽(𝒙), 1) , (5.6)

where𝜑 is a test function
13

with a single global optimum whose position is13: Also known as artificial landscape.

See https://w.wiki/878L.
parametrized by the second argument, i. e., both tasks are identical—and

thus related—up to a translation. We use a single input 𝒙 ∈ ℝ2
and drop

all task-specific parameters. For the backbone, we take a simple network

of the form 𝒛 = 𝑾 2 max(𝑾 1𝒙 + 𝒃1 , 0) + 𝒃2 with 𝒃1 ∈ ℝ10 , 𝒃2 ∈ ℝ2
, and

𝑾 1 ,𝑾⊤
2
∈ ℝ10×2

.

Remark 5.3 For the avocado-shaped

experiment we use

𝜑((𝑥, 𝑦), 𝑠) = (𝑥 − 𝑠)2 + 25𝑦2 ,

while for the non-convex experiment

we instead take

𝜑((𝑥, 𝑦), 𝑠) = − sin(3𝑥 + 4.5𝑠)
𝑥 + 1.5𝑠

− sin(3𝑦 + 4.5𝑠)
𝑦 + 1.5𝑠

+ |𝑥 + 1.5𝑠|
+ |𝑦 + 1.5𝑠| .

For the first experiment we choose a simple convex avocado-shaped

objective function and, for the second one, we opt for a non-convex

function with several local optima and a single global optimum. Figure 5.3

shows the training trajectories in the presence (and absence) of RotoGrad

for both experiments, depicted as level plots in the space of 𝒛 and 𝒓 𝑘 ,

respectively. To provide a clear comparison, we compare with the vanilla

case with the same fixed initial rotations as RotoGrad, since the matrices

are not initialized to the identity matrix.

Remark 5.4 The duality depicted in

Figure 5.3 between rotating the fea-

ture 𝒛 and rotating the loss landscape

corresponds in geometry to the con-

cepts of active and passive transform-

ations. These are two perspectives of

the same transformation.

See https://w.wiki/878H.

For the first experiment, we can observe in Figure 5.3a, thatRotoGradfinds

both optima by rotating the feature space and matching the (unique) local

optima of the tasks. Similarly, for the second experiment in Figure 5.3b—as

we have two symmetric tasks and a non-equidistant starting point—the

optimization for the vanilla case is dominated by the task closer to

an optimum. In contrast, RotoGrad avoids this problem by equalizing

gradient magnitudes and, by aligning gradients, it is able to find the

optima of both functions.

http://proceedings.mlr.press/v97/lezcano-casado19a.html
https://w.wiki/878L
https://w.wiki/878H

5.4 Empirical validation 37

t 1 2 3 4 5
Va

ni
lla

Ro
to

Gr
ad

0

(a) Convex avocado-shaped experiment. (b) Non-convex experiment.

Figure 5.3: Level plots showing the evolution of two regression MTL problems with and without RotoGrad, see Section 5.3. RotoGrad is

able to reach the optimum (⋆) for both tasks. (a) In the space of 𝒛 , RotoGrad rotates the loss landscapes to align task gradients (blue and

orange arrows), finding shared features 𝒛 (green arrow) closer to the (matched) optima. (b) In the space of 𝒓 𝑘 , RotoGrad rotates the

shared feature 𝒛 , providing task-specific features 𝒓 𝑘 that better fit each task.

5.4 Empirical validation

5.4.1 Training stability 37
5.4.2 RotoGrad’s blocks 38
5.4.3 Subspace rotations . . . 38
5.4.4 Methods comparison . . 39

In this section, we assess the performance of RotoGrad on a wide range

of MTL settings. First, we check the effect that learning rates have on

the rotation and network updates for the stability of RotoGrad. Then,

with the aim of applying RotoGrad to scenarios with high-dimensional

𝒛 , we explore the effect of rotating only a subspace of 𝒛 . Finally, we

compare RotoGrad with existing MTL solutions, showing that it consist-

ently outperforms them. Refer to Appendix A.3 for more details on the

experiments and additional results.

Relative task improvement. Throughout this section, we resort to the

relative task improvement [124] to group task performances. Given the

test metrics obtained by a model, 𝑀𝑘 , and by a baseline model, 𝐵𝑘 , the

relative task improvement for the 𝑘-th task is

Δ𝑘 B 100 · (−1)𝑙𝑘 𝑀𝑘 − 𝐵𝑘
𝐵𝑘

, (5.7)

where 𝑙𝑘 = 1 if 𝑀𝑘 < 𝐵𝑘 means that the baseline is worse, and 𝑙𝑘 = 0

otherwise. Since Δ𝑘 can be quite sensitive, we show different statistics

such as the mean (avg𝑘 Δ𝑘), maximum (max𝑘 Δ𝑘), and median (med𝑘 Δ𝑘)

across tasks. Refer to Chapter 6 for an in-depth discussion on relative

task improvement and more robust alternatives.

Statistical significance. We highlight significant improvements accord-

ing to a one-sided paired t-test (𝛼 = 0.05), with respect to MTL with

vanilla optimization (marked with † in each table).

5.4.1 Training stability

At the end of Subsection 5.2.2 we discussed that, by casting the problem of

Equation 5.5 as a Stackelberg game, we can enjoy convergence guarantees

as long as the rotation optimizer is the slow learner. Next, we empirically

verify this statement.

38 Chapter 5 Gradient Homogenization in Multitask Learning

Experimental setup. We follow a similar setup to that of Sener

and Koltun [182], where we use Multi-MNIST, a multitask version of[182] Sener and Koltun (2018), ‘Multi-

Task Learning as Multi-Objective Optim-

ization.’

MNIST [102] composed of a left and right digit, and use as backbone a

reduced version of LeNet [101] with light-weight heads. Since the original

Multi-MNIST does not exhibit enough conflict,
14

we consider three other14: See Subsection 6.1.2 in Chapter 6.

tasks besides the original left- and right-digit classification tasks: i) sum

of digits; ii) parity of the digit product; and iii) number of active pixels.

The idea here is to enforce all digit-related tasks to cooperate, while

the (orthogonal) image-related task should not disrupt these learning

dynamics.

Results. Figure 5.4 shows the effect, averaged over ten independent

Figure 5.4: Test error on the sum-of-digits

task for different values of RotoGrad’s

learning rate, 𝜂rot , on Multi-MNIST.

runs, that changing the learning rate 𝜂rot has on the test error of the

sum-of-digits task, while the rest of tasks are shown in Appendix A.3.2.

We observe that, the bigger the learning rate is (in comparison to the

network learning rate, 𝜂 = 1e−3), the larger and noisier the test error

becomes. Mean squared error (MSE) keeps decreasing as we lower the

learning rate, reaching a sweet spot at half the network learning rate,

𝜂rot = 5e−4 . For smaller values, the rotations are learnt too slowly and

results start to resemble those of Vanilla, in which no rotations are

applied (leftmost box in Figure 5.4).

5.4.2 RotoGrad’s building blocks

In this section, we evaluate to which extent each of RotoGrad’s compon-

ents, which we call Scale (Algorithm 5.1) and Rotate (Algorithm 5.2),

contribute to the performance gains of RotoGrad.

Experimental setup. We test each component on three different tasks

on the NYUv2 dataset [37]: i) 13-class semantic segmentation; ii) depth

estimation; and iii) normal surface estimation. Following the setup by

Liu et al. [115], we resize all images to a resolution of 288 × 384 px to[115] Liu, Johns and Davison (2019), ‘End-

To-End Multi-Task Learning With Atten-

tion.’

speed up training, and apply data augmentation to alleviate overfitting.

As MTL architecture, we use SegNet [5] as backbone, where the decoder

is split into three convolutional heads.

Results. The three top rows of Table 5.4 show the performance of

RotoGrad and its both components in isolation, all of them using the

same number of parameters. Compared to Vanilla (4th row), Rotate

improves all metrics by homogenizing gradient directions. Scale avoids

overlooking the normal estimation task and improves on semantic seg-

mentation by homogenizing gradient magnitudes, at the expense of

higher depth estimation error. Remarkably, RotoGrad exploits its scaling

and rotation components to obtain the best results in semantic segmenta-

tion and depth estimation, while still achieving comparable performance

in the normal estimation task.

5.4.3 Subspace rotations

We now evaluate the effect of applying subspace rotations as described

at the end of Subsection 5.2.4, assessing the trade-off between avoiding

negative transfer and the subspace size rotated by RotoGrad.

https://proceedings.neurips.cc/paper/2018/hash/432aca3a1e345e339f35a30c8f65edce-Abstract.html
http://openaccess.thecvf.com/content%5C_CVPR%5C_2019/html/Liu%5C_End-To-End%5C_Multi-Task%5C_Learning%5C_With%5C_Attention%5C_CVPR%5C_2019%5C_paper.html

5.4 Empirical validation 39

Table 5.4: Median results, over five runs, on the NYUv2 dataset. RotoGrad obtains great performance in segmentation and depth tasks,

and significantly improves the results on normal surfaces. Δ𝑆 , Δ𝐷 , and Δ𝑁 denote the relative task improvement for each task.

Relative

improvement ↑
Segmentation ↑ Depth ↓ Normal Surfaces

Angle Dist. ↓ Within 𝑡◦ ↑
Method Δ𝑆 Δ𝐷 Δ𝑁 mIoU Pix Acc Abs. Rel. Mean Median 11.25 22.5 30

Single 0.0 0.0 0.0 39.21 64.59 0.70 0.27 25.09 19.18 30.01 57.33 69.30

W
i
t
h
𝑹
𝑘
(𝑚

=
1
0
2
4
) Rotate 3.3 20.5 −6.6 39.63 66.16 0.53 0.21 26.12 20.93 26.85 53.76 66.50

Scale −0.3 20.0 −7.9 38.89 65.94 0.54 0.22 26.47 21.24 26.24 53.04 65.81

RotoGrad 1.8 24.0 −6.1 39.32 66.07 0.53 0.21 26.01 20.80 27.18 54.02 66.53

Vanilla −2.7 20.6 −25.7 38.05 64.39 0.54 0.22 30.02 26.16 20.02 43.47 56.87

GradDrop −0.9 14.0 −25.2 38.79 64.36 0.59 0.24 29.80 25.81 19.88 44.08 57.54

PCGrad −2.7 20.5 −26.3 37.15 63.44 0.55 0.22 30.06 26.18 19.58 43.51 56.87

MGDA-UB −31.2 −0.7 0.6 21.60 51.60 0.77 0.29 24.74 18.90 30.32 57.95 69.88

GradNorm −0.6 19.5 −10.5 37.22 63.61 0.54 0.22 26.68 21.67 25.95 52.16 64.95

IMTL-G −0.3 17.6 −7.5 38.38 64.66 0.54 0.22 26.38 21.35 26.56 52.84 65.69

W
i
t
h

o
u

t
𝑹
𝑘

Vanilla† −0.9 16.8 −25.0 37.11 63.98 0.56 0.22 29.93 25.89 20.34 43.92 57.39

GradDrop −0.1 15.7 −27.0 37.51 63.62 0.59 0.23 30.15 26.33 19.32 43.15 56.59

PCGrad −0.5 20.0 −24.6 38.51 63.95 0.55 0.22 29.79 25.77 20.61 44.22 57.64

MGDA-UB −32.2 −8.2 1.5 20.75 51.44 0.73 0.28 24.70 18.92 30.57 57.95 69.99

GradNorm 2.2 20.6 −10.2 39.29 64.80 0.53 0.22 26.77 21.88 25.39 51.78 64.76

IMTL-G 1.9 21.4 −6.7 39.94 65.96 0.55 0.21 26.23 21.14 26.77 53.25 66.22

Experimental setup. We test RotoGrad on a 10-task classification prob-

0 10k 20k 30k 40k 50k 60k 70k 80k
Iterations

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

Co
sin

e
sim

ila
rit

y Vanilla 0
RotoGrad 64
RotoGrad 128
RotoGrad 256
RotoGrad 512

Figure 5.5: Cosine similarity between the

task gradients and the update gradient,

cos(𝒈 𝑘 , 𝒈) on CIFAR10. Results are aver-

aged over tasks and five runs. Shaded

areas show 90 % confidence intervals.

lem on CIFAR10 [97], using for all tasks binary cross-entropy (BCE) and

F1-score as loss and metric, respectively. We use ResNet-18 [74] (without

pre-training) as backbone (𝑑 = 512), and linear layers with sigmoid

activation functions at the output as task-specific heads.

Results. The top part of Table 5.5 shows that rotating the entire space

provides the best results, and that these worsen as we decrease the size of

𝑹𝑘 , i. e., as we decrease𝑚. Rotating only 128 features already outperforms

Vanilla with no extra task-specific parameters (1st row); and rotating

256 features already yields comparable results to Vanilla with extra

capacity (6th row) despite its larger number of task-specific parameters.

These results can be further explained by Figure 5.5, which shows a

positive correlation between the size of 𝑹𝑘 and cosine similarity.

5.4.4 Methods comparison

We now compare RotoGrad with the different existing approaches to

gradient conflict (for both magnitude and direction) in different real-

world datasets, showing that RotoGrad outperforms existing methods

while being on par with them in training time.

Experimental setup. In order to provide fair comparisons among

methods, all experiments use identical configurations and random initial-

izations. For each experiment, we performed a hyperparameter search

and chose the best configuration based on validation error. Unless other-

wise specified, all baselines use the same architecture (and thus, number

of parameters) as RotoGrad,
15

using each rotation matrix 𝑹𝑘 as extra 15: That is, using the extended architec-

ture shown in Figure 5.2.

40 Chapter 5 Gradient Homogenization in Multitask Learning

Table 5.5: Median and standard devi-

ation results over 5 runs. (Top) Relat-

ive task improvement on CIFAR10 for

RotoGradwith different sizes of𝑹𝑘 . (Bot-
tom) Comparison with existing methods,

extended with rotation matrices as extra

task-specific parameters.

Method 𝑑 avg𝑘 Δ𝑘 ↑ med𝑘 Δ𝑘 ↑ max𝑘 Δ𝑘 ↑
Vanilla† 0 2.58 ± 0.54 1.90 ± 0.53 11.14 ± 3.35

RotoGrad 64 2.90 ± 0.49 1.79 ± 0.57 13.16 ± 2.40

RotoGrad 128 2.97 ± 1.08 2.25 ± 1.07 12.64 ± 3.56

RotoGrad 256 3.68 ± 0.68 2.16 ± 0.72 14.01 ± 3.22

RotoGrad 512 4.48 ± 0.99 3.67 ± 1.40 15.57 ± 3.99

W
i
t
h
𝑹
𝑘

(𝑚
=

5
1
2
)

Vanilla 3.12 ± 0.79 3.10 ± 1.29 14.23 ± 2.86

GradDrop 3.54 ± 1.10 3.27 ± 1.61 13.88 ± 2.95

PCGrad 3.29 ± 0.46 2.67 ± 0.88 13.44 ± 1.86

MGDA-UB 0.21 ± 0.67 0.57 ± 0.62 4.78 ± 2.15

GradNorm 3.21 ± 1.04 3.10 ± 1.01 10.88 ± 4.73

IMTL-G 3.02 ± 0.69 1.81 ± 0.87 12.76 ± 1.77

task-specific parameters. Further experimental details can be found in

Appendix A.3.1, as well as extra experiments and complete results in

Appendix A.3.2.

NYUv2. Table 5.4 shows the performance of all baselines with and

without the extra capacity. RotoGrad significantly improves the perform-

ance on all tasks compared with Vanilla, and outperforms all other

baselines. Remarkably, we rotate only 1024 dimensions of 𝒛 (out of a

total of 7 millions) and, as a result, RotoGrad stays on par in training

time with the baselines.
16

We can also assert the importance of learning16: Around 4 h, see Appendix A.3.2.

the matrices 𝑹𝑘 properly by comparing the different baselines with and

without the extra task-specific rotations in Table 5.4.

Interestingly, we can observe that the extra parameters do not alleviate

negative transfer, but instead amplify biases—methods that overlook a

subset of tasks, keep overlooking them—and, in the best case, provide

trade-off solutions (also shown in Appendix A.3.2). Moreover, note that

RotoGrad (due to the Rotate component) is the only method to tackle

conflicting gradient directions that manages to not overlook the normal

surfaces task.

CIFAR10. We reuse the setting from Subsection 5.4.3 to compare dif-

ferent MTL baselines in terms of relative improvements (Table 5.5) and

cosine similarity (Figure 5.6), averaged over five different runs. We can ob-

serve in Table 5.5 that, similar to the results in NYUv2, both direction-aware

solutions (PCGrad and GradDrop) behave similar to Vanilla, marginally

increasing the average improvement. Unlike previous experiments, all

magnitude-aware methods substantially worsen (at least) one of the stat-

istics. And, in contrast, RotoGrad improves the relative task improvement

across all statistics using the same number of parameters.

Figure 5.6 shows the cosine similarity between task and update gradients,

i. e., cos(𝒈 𝑘 , 𝒈) , averaged over all tasks and runs (shaded areas correspond

to 90 % confidence intervals). RotoGrad obtains significantly better cosine

similarity than the rest of methods, yet direction-aware approaches

effectively align task gradients as well. This result, combined with the

low cosine similarity achieved by MGDA-UB, suggests that there exists a

positive correlation between cosine similarity and task performance.

5.5 Concluding remarks 41

Figure 5.6: Cosine similarity between

task and update gradients for different

methods on CIFAR10, averaged over all

tasks and 5 runs.

Table 5.6: F1-score statistics (median over 5 runs) in CelebA for two network architectures.

Conv. Net. with 𝑹𝑘 (𝑚 = 256)

Task F1-scores (%) ↑
Method min𝑘 med𝑘 avg𝑘 std𝑘 ↓
Vanilla 4.59 50.28 56.03 25.65

GradDrop 3.18 50.07 54.43 27.21

PCGrad 1.44 53.05 54.72 27.61

GradNorm 2.08 52.53 56.71 24.57

IMTL-G 0.00 37.00 42.24 33.46

RotoGrad 4.59 55.02 57.20 24.75

ResNet-18 with 𝑹𝑘 (𝑚 = 1536)

Task F1-scores (%) ↑
Method min𝑘 med𝑘 avg𝑘 std𝑘 ↓
Vanilla 19.71 63.56 63.23 21.16

GradDrop 12.33 62.40 62.74 21.74

PCGrad 14.71 63.65 62.61 22.22

GradNorm 9.05 60.20 60.78 22.31

IMTL-G 17.11 61.68 60.72 22.80

RotoGrad 9.96 63.84 62.81 21.80

CelebA. To conclude, we test all methods in a 40-class multi-classification

problem on CelebA [117] with two different architectures: i) one using

a convolutional network as backbone (𝑑 = 512); and ii) another using

a ResNet-18 [74] as backbone (𝑑 = 2048). Like before, we use BCE and

F1-score as loss and metric for all tasks, thus accounting for highly

imbalanced attributes. Results in Table 5.6 show that RotoGrad performs

great in all F1-score statistics and both architectures, specially with the

convolutional backbone, outperforming competing methods.

Moreover, RotoGrad achieves these results rotating 50 % of the shared

feature 𝒛 for the convolutional network, and 75 % for the residual network,

which further demonstrates that RotoGrad can scale-up to real-world

settings. We believe it is important to remark that, due to the high number

of tasks, this setup is specially demanding. Results in Appendix A.3.2

show the performance of all baselines without the rotation matrices,

demonstrating the negative effect that the extra capacity can have if

not learnt properly, and that RotoGrad stays on par with non-extended

baselines in terms of training time.

5.5 Concluding remarks

In this chapter, we have introduced RotoGrad, an algorithm that tackles

negative transfer in MTL by homogenizing task gradients in terms of both

magnitudes and directions. RotoGrad enforces a similar convergence

rate for all tasks, while at the same time smoothly rotates the shared

representation differently for each task in order to avoid conflicting

gradients. As a result, RotoGrad leads to stable and accurate MTL. Our

42 Chapter 5 Gradient Homogenization in Multitask Learning

empirical results have shown the effectiveness of RotoGrad in many

scenarios, staying on top of all competing methods in performance, while

being on par in terms of computational complexity with those that better

scale to complex networks.

We believe our work opens up interesting venues for future work. For

example, it would be interesting to study alternative approaches to further

scale up RotoGrad using, e.g., diagonal-block or sparse rotation matrices;

to rotate the feature space in application domains with structured features,

e.g., channel-wise rotations in images; and to combine different methods,

e.g., by scaling gradients using the direction-awareness of IMTL-G and

the ‘favor slow-learners’ policy of RotoGrad.

On Task Incomparability and its
Effects in Multitask Learning 6.

6.1 Motivation & background . 43
6.2 How to measure 47
6.3 Benchmark probing 52
6.4 Empirical validation 58
6.5 Concluding remarks 62

Tanto amor me confunde.

Isabel Valera, circa 1990

Multitask learning (MTL) poses unique challenges that remain largely

ignored to this day. First, as we explained in Section 4.4, the multi-

objective optimization (MOO) nature of MTL makes model comparison

ill-defined in the absence of a scalarization function. Moreover, designing

such a scalarization function becomes an arduous task in the presence

of heterogeneous tasks due to task incomparability, e.g.: would it be

preferable to have 10 % more accuracy on task A, or 0.5 less regression

error on task B? Task incomparability also contributes to the problem

of gradient conflict explained in Section 4.6 where, during training, task

gradients may not be comparable (e.g., having different magnitudes),

biasing the model towards learning a subset of all the tasks.

While prior works propose ways of addressing gradient conflict, only

a handful of them attempt to actually measure it, usually as the cosine

similarity between task gradients and the total gradient. Remarkably,

common MTL benchmarks have been inherited and adapted from deep

learning (DL) without ensuring that gradient conflict is indeed a problem

during training. Therefore, it is unclear whether these benchmarks are

well-suited to test MTL approaches specifically addressing gradient

conflict, despite having been used to cast doubts of the effectiveness of

gradient-conflict approaches [99, 220].

In this chapter, we first address the problem of model selection in MTL

by showing that simple statistics over task rankings are tightly connected

with non-preference scalarization methods over cumulative distribution

functions (CDFs), thus explicitly specifying a scalarization function over

statistics robust to task incomparability. Then, we provide more fine-

grained gradient conflict measures by showing that the usual cosine

similarity can be factorized in two quantities, each of them concerning

a different type of gradient conflict. To motivate the utility of these

metrics, we then take the broadly-used Multi-MNIST benchmark and

study how different design choices affect gradient conflict, probing the

benchmark, and resulting in a new Conflict benchmark better-suited

for MTL. Finally, we use Conflict to compare different methods in

the gradient conflict literature, showing that indeed different solutions

behave significantly different, in stark contrast with the results shown in

previous MTL benchmarks, empirically validating the proposed metrics

and methodology.

6.1 Motivation and background

6.1.1 Previous metrics 44
6.1.2 MTL benchmarks 45
6.1.3 Prior analyses 46

To better contextualize the chapter, in this section we motivate the need

for better metrics and benchmarks by summarizing the different findings

and results found in previous works. First, we will introduce the different

metrics used in the literature to measure both MTL performance and

44 Chapter 6 On Task Incomparability and its Effects in Multitask Learning

gradient conflict, then we will empirically show the absence of gradient

conflict in two popular MTL benchmarks, and finally we will briefly

introduce the main conclusions from previous analyses.

6.1.1 Previous metrics

Model performance. As previously mentioned, measuring model per-

formance is a challenging task due to task incomparability and the

absence of a clear scalarization function. Some relevant examples of MTL

model performance in the literature are the following:

▶ If the set of tasks are homogeneous—i. e., if they are indeed compar-
able—measuring model performance becomes much simpler, as we

can take any statistics of the task-metrics vector, e.g., the average.
1

1: Note, however, that we are selecting a

scalarization function when we choose

the statistic to measure performance.

While constraining, sticking to homogeneous tasks is quite a com-

mon practice in the existing literature, e.g., using F1-scores [208],

BLEU scores [208], perplexities [129], success rates [99, 110, 111, 227,

228], or accuracies [99, 111, 125, 182, 184, 227, 232].

▶ If we have heterogeneous tasks, there exist variations of common

metrics that attempt to normalize task performances. For example,

when dealing with classification and regression tasks, it is common

to replace the root mean squared error (RMSE) in regression tasks

by the normalized RMSE to match the domain of the classification

errors [8, 143, 232]:

nRMSE(𝒚) = 1√
𝐷𝒚

∥𝒚 − �̃�∥
max𝑛 𝒚𝑛 −min𝑛 𝒚𝑛

, (6.1)

where 𝐷𝒚 indicates the target dimensionality.

▶ Most remarkably, Maninis et al. proposed in 2019 the relative task
improvement metric [124] in the context of MTL, and it has been

widely adopted by the community [21, 110–112, 114, 194, 195]. This

metric, which we denote by avgΔ , is defined as

avgΔ B
1

𝐾

∑
𝑘

Δ𝑘 where Δ𝑘 B 100 · (−1)𝑙𝑘 𝑀𝑘 − 𝐵𝑘
𝐵𝑘

, (6.2)

with 𝑀𝑘 and 𝐵𝑘 being, respectively, the 𝑘-th task performances of

the model 𝑀 and a baseline model 𝐵.
2

Here, 𝑙𝑘 is a binary variable2: This baseline is usually the same ar-

chitecture solving only the 𝑘-th task, i. e.,
the single task learning (STL) model.

to change the sign depending on the semantics of the metric, i. e., it

is set to zero if a higher value of 𝑀𝑘 is better, and to one otherwise.

Despite its broad adoption, avgΔ has two main drawbacks: i) it

is expensive to compute, as it requires a baseline model for each

task; and ii) due to task incomparability, it can be quite sensitive to

certain metrics, as we show later in Table 6.6.

Gradient conflict. As briefly mentioned before, task incomparability

exacerbates gradient conflict as well: if task losses are not comparable,

neither are their gradients. This adds to the already difficult task of

measuring gradient conflict, as we attempt to summarize in a single

number the interactions of task gradients during all training.

Since tasks may not be comparable, and since the range of values that the

gradient norms take can change wildly, one sensible approach throughout

6.1 Motivation and background 45

the MTL literature is to use cosine similarities

Remark 6.1 The cosine similarity

between two vectors 𝒂 , 𝒃 ∈ ℝ𝑛
is

cos(𝒂 , 𝒃) B 𝒂 · 𝒃
∥𝒂∥∥𝒃∥ ,

where · is the usual dot product.

between task gradients to

measure gradient conflict [47, 104, 208, 227, 228], as it is invariant to the

scale of the gradients. In this chapter, instead of using these metrics to

measure gradient conflict, we repurpose them to help us have a better

understanding on the interaction between tasks. Namely:

▶ Parameter sharing. We estimate the extent to which two different

tasks share parameters, by measuring how much their gradients

align, cos(𝒈 𝑖 , 𝒈 𝑗) . For example, if two task gradients were ortho-

gonal,
3

then the parameters could effectively be divided in two 3: See, e. g., the Multi-MNIST benchmark

shown later in Table 6.1.
task-exclusive sets, up to a linear mapping.

▶ SGD agreement. To understand how much a task contributes to

the total gradient 𝜽 , we propose to measure the cosine similarity

of its gradient w.r.t. the total one, i. e., cos(𝒈 𝑘 , 𝒈) .4 This quantity 4: In Subsection 6.2.2, we show that the

average SGD agreement can be factor-

ized to provide fine-grained measure-

ments of gradient conflict.

describes how much the gradient used during training aligns with

that of a specific task, and therefore on its share during training.

The alignment between gradients is also important in other contexts

beyond MTL, and different metrics have been proposed in the literature.

Some relevant examples are:

▶ Cosine stiffness [62], which measures the pairwise alignment

between different gradients:

1

𝐾

1

𝐾 − 1

∑
𝑖≠𝑗

cos(𝒈 𝑖 , 𝒈 𝑗) . (6.3)

▶ Gradient coherence [23], that computes the average SGD agree-

ment up to a multiplicative factor:

1

𝐾

𝐾∑
𝑘=1

cos(𝒈 𝑘 , 𝒈)∥𝒈∥ . (6.4)

▶ Gradient confusion [175], that measures the worst alignment

between two task gradients:
5

5: Or, as we will see in Subsection 6.2.2,

the worst direction conflict.

min

𝑖 , 𝑗
cos(𝒈 𝑖 , 𝒈 𝑗) . (6.5)

In Subsection 6.2.2, we will see the connection between these existing

metrics and the ones we propose to measure gradient conflict.

6.1.2 MTL benchmarks

As previously mentioned at the beginning of the chapter, all commonly-

used MTL benchmarks
6

have been directly inherited and adapted from 6: Here, with the term benchmark we

mean a specific dataset, model, and hy-

perparameters values.

DL applications, without making sure that gradient conflict is indeed a

problem during training. In this section, we gather some empirical and

historical evidence suggesting that common MTL benchmarks may not

be well-suited to test MTL approaches.

Multi-MNIST.

Figure 6.1: Example samples from the

Multi-MNIST dataset.

First proposed by Sabour et al. [171] and brought to MTL

by Sener and Koltun [182], the Multi-MNIST benchmark is a widely-

adopted experiment to assert the effectiveness of MTL solutions [21, 99,

103, 167, 182, 220, 227]. Specifically, Multi-MNIST is a modified version

46 Chapter 6 On Task Incomparability and its Effects in Multitask Learning

of the MNIST dataset [102] where two digits are randomly placed (with

some overlap) on each side of the image, and the goal is to classify both

digits, treating them as two different classification tasks. LeNet [101] is

used as the backbone, with simple heads consisting of one or two layers,

and a shared representation, 𝒛 , of dimensionality 50.

In Table 6.1, we show the quantitative results from running the
Table 6.1: Model performance and gradi-

ent similarities on the Multi-MNIST
benchmark, averaged over 300 runs.

Single-task models achieved 96.45 ± 0.22

and 95.45 ± 0.20 on left- and right-digit

classification, respectively.

Metric Value

Left acc. (%) 96.40 ± 0.24

Right acc. (%) 94.94 ± 0.33

cos(𝒈𝐿 , 𝒈𝑅) 0.04 ± 0.02

𝔼𝑘[cos(𝒈 𝑘 , 𝒈)] 0.70 ± 0.00

Multi-MNIST benchmark 300 times: 30 for each gradient conflict method

considered in Subsection 6.4.2. In both tasks, the model performs on par

with single-task models. Averaged over all training, we can also observe

that the two task gradients (w.r.t. to the backbone parameters, 𝜽) are

completely orthogonal, as also indicated by the fact that their angle with

respect to the total gradient is of 45
◦
. In short, this evidence suggests

that there is no conflict in the Multi-MNIST benchmark, as the backbone

parameters are effectively not shared, but partitioned across both tasks.

In other words, the multitask model is effectively two single-task models.

CelebA. Another popular benchmark in the gradient conflict literat-

ure is the CelebA benchmark: directly inherited from Deep Learning,

CelebA [117] is a dataset consisting of booking photographs of celebrities,

each one accompanied by a set of 40 labels such as gender, or the presence

of glasses in the picture. In its MTL setting, the benchmark is treated

as a multi-class classification problem, where each of the 40 labels is

taken as a different classification task. Regarding the architecture, the

common practice [21, 99, 106, 114, 182, 220, 227] is to use ResNet-18 as

the backbone, and linear layers as heads. As a result, the backbone has

around 11 M parameters, and 𝒛 has a dimensionality of 2048.

To illustrate the amount of parameter sharing in the benchmark, we

took the official code of the work by Kurin et al. [99], and stored the

task gradients during training to measure the overlap in parameter

sharing. Figure 6.2 shows the minimum, average, and maximum pairwise

parameter sharing
7

while training the network. As it can be observed, after7: I. e., the cosine similarity, cos(𝒈 𝑖 , 𝒈 𝑗) .
a few epochs all tasks gradients become almost orthogonal, suggesting

that the overlap in network parameters is minimal, and thus each of them

has a big portion of task-specific backbone parameters.

Other benchmarks. In their work, Suteu and Guo [197] proposed a[197] Suteu and Guo (2019), ‘Regularizing

deep multi-task networks using ortho-

gonal gradients.’

method that, instead of aligning task gradients, encourages them to

be orthogonal. Interestingly, the authors empirically showed that the

two classification tasks in the Multi-MNIST benchmark are orthogonal,

despite no discussing it explicitly. Not only that, but they also showed

that by making gradients more orthogonal—and therefore sharing less

parameters—they could obtain competitive results on the NYUv2 [141]

and SUN RGB-D [191] benchmarks, which suggest that they could as well

be absent of any relevant gradient conflict, just as we showed above for

CelebA and Multi-MNIST.

6.1.3 Prior gradient-conflict analyses

To provide some context, we briefly discuss prior works analysing

gradient conflict approaches and trying to measure gradient conflict.

First, Yu et al. [227] introduced what they called ‘the tragic triad’, and[227] Yu, Kumar, Gupta, Levine, Haus-

man and Finn (2020), ‘Gradient Surgery

for Multi-Task Learning.’

https://arxiv.org/abs/1912.06844
https://proceedings.neurips.cc/paper/2020/hash/3fe78a8acf5fda99de95303940a2420c-Abstract.html

6.2 How to measure your multitask learning model 47

0 10 20 30 40 50

Epoch

−0.4

−0.2

0.0

0.2

0.4

0.6

Pa
ra

m
et

er
Sh

ar
in

g
Parameter sharing in CelebA

Maximum
Average
Minimum

Figure 6.2: Evolution of the pairwise

parameter sharing between the 40 tasks

of the CelebA benchmark during train-

ing, averaged over 5 different runs.

argued that it characterizes negative transfer. This triad is the combination

of: i) task gradients having negative cosine similarity; ii) task gradients

significantly differing in magnitude; and iii) the optimization landscape

having high curvature. Wang et al. [208] later extended this work, and [208] Wang, Tsvetkov, Firat and Cao

(2021), ‘Gradient Vaccine: Investigating

and Improving Multi-task Optimization

in Massively Multilingual Models.’

empirically showed that ‘task-gradient (cosine) similarities correlate

positively with model quality’. Remarkably, these experiments were

conducted in very large models in the context of language translation.

Also in the context of multilingual models, Li and Gong [104] similarly [104] Li and Gong (2021), ‘Robust Optim-

ization for Multilingual Translation with

Imbalanced Data.’

found that ‘imbalanced training data poses task interference between

high and low resource languages, characterized by nearly orthogonal

gradients for major parameters and the optimization trajectory being

mostly dominated by high resource ones.’

More works, however, analyse MTL approaches only via their perform-

ance. In this direction, recent works have risen some doubts on the

effectiveness of gradient-conflict approaches. Specifically, Kurin et al. [99] [99] Kurin, Palma, Kostrikov, Whiteson

and Mudigonda (2022), ‘In Defense of

the Unitary Scalarization for Deep Multi-

Task Learning.’

argued that many existing approaches can be reconsidered as regular-

ization methods, and showed in benchmarks such as Multi-MNIST and

CelebA that no method improved the model performance when it was

compared to a well-regularized baseline. Similarly, Xin et al. [220] argued [220] Xin, Ghorbani, Gilmer, Garg and

Firat (2022), ‘Do Current Multi-Task Op-

timization Methods in Deep Learning

Even Help?’

that gradient-conflict approaches do not work, as they usually cannot

beat their vanilla counterpart on usual MTL benchmarks such as CelebA

and NYUv2, when the baseline is properly fine-tuned.

However, we argue that while there is a priori no reason to doubt the

empirical results reported in these works, the problem may be as well a

selection of poorly-suited benchmarks to test MTL approaches, combined

with an unclear objective to achieve. Regardless, to make sure that we do

not follow this trend, in our experimental setup we perform an exhaustive

hyperparameter search where regularization methods (weight decay and

early stopping) are taken into account.

6.2 How to measure your MTL model

6.2.1 Model performance . . . 48
6.2.2 Gradient conflict 50

Previously, we have discussed the difficulties in measuring model per-

formance and gradient conflict, and the ways that prior work have tried

to overcome them. In this section, we first motivate the use of simple

ranking statistics as an approximation to global MOO methods over

CDFs, thus providing a sound metric to evaluate the performance of

https://openreview.net/forum?id=F1vEjWK-lH%5C_
https://proceedings.neurips.cc/paper/2021/hash/d324a0cc02881779dcda44a675fdcaaa-Abstract.html
http://papers.nips.cc/paper%5C_files/paper/2022/hash/4f301ae934f396086bfefd1139039dbd-Abstract-Conference.html
http://papers.nips.cc/paper%5C_files/paper/2022/hash/580c4ec4738ff61d5862a122cdf139b6-Abstract-Conference.html

48 Chapter 6 On Task Incomparability and its Effects in Multitask Learning

MTL models. Then, we show that the average SGD agreement can be

factorized into two quantities, each of them measuring a different type

of gradient conflict, and hence providing more fine-grained metrics to

measure gradient conflict.

6.2.1 Model performance

In this section, we demonstrate that simple statistics over the vector

of task rankings can be interpreted as finite-sample approximations of

MOO global-criterion solutions over CDFs,
8

and try to convey that these8: We refer to Section 4.4 for a brief in-

troduction to MOO.
statistics overcome two big problems in MTL model evaluation, namely,

task incomparability and the absence of a clear objective to optimize.

For ease of exposition, let us consider a concrete example where we have

0.001 0.01 0.1

0.5

1

1.5

𝑴 ideal

𝑀1

𝑀2

0

Figure 6.3: Pictorial representation of

a metric landscape, the set of Pareto-

optimal points, and the ideal point. Note

that the x-axis is in log-scale.

a 2-task MTL problem, where Figure 6.3 depicts the Pareto front for the

two metrics associated with each task. In this example, the tasks are not

comparable, as we can observe by noting the different scales of both

metrics. Therefore, if we were to, e.g., sum both metrics, those points on

the right side of the plot would be highly preferred. We show how to

overcome this issue in several steps:

CDFs do overcome incomparability. Taking a Bayesian perspective, we

can consider each metric as a random variable (R.V.), M𝑘 ∼ 𝑃M𝑘
. Since

they are r.v.s, they all have an associated CDF, which does not suffer

from incomparability issues since:

1. CDFs always exist, and are equally defined for any type of R.V.,
discrete or continuous, as 𝐹M𝑘

(a) = 𝑃M𝑘
(M𝑘 ≤ a) .

2. Their semantics, given by this definition, are easily interpretable:

‘the probability to obtain a value at most as large as a .’

3. They are always defined in the unit interval, are right-continuous,

and always reach both ends, i. e., 𝐹M𝑘
(−∞) = 0 and 𝐹M𝑘

(∞) = 1 .

As a consequence, if we have access to the true CDF, we have a way of

universally normalizing our metrics, so that they have the same domain

and semantics. That is, we can safely compare the r.v.s UM𝑘
B 𝐹M𝑘

(M𝑘)
for all 𝑘 if we know 𝐹𝑀𝑘

. In the case that all r.v.s are continuous, this is

known as the probability integral transform, and it can be shown that

every U𝑘 then follows a standard uniform distribution [20].[20] Casella and Berger (2021), ‘Statistical

inference.’

The ideal point is the origin. From the previous paragraph, it is clear

0.2 0.4 0.6

0.2

0.4

0.6

𝑼 ideal

𝑈1

𝑈2

0

Figure 6.4: Pictorial representation of the

CDF landscape after normalizing each

point in Figure 6.3.

that it is preferable to use U𝑘 instead of M𝑘 . What is not as clear is the

location of our ideal point, i. e., the best point that we can reach under

utopian circumstances. Recall from Equation 4.5 in Section 4.4 that 𝑴 ideal

is the vector composed of the minimum metric value of each task when

individually optimized, i. e., the smallest value plausible for each metric:

𝑀ideal

𝑘
= inf

{
𝑀𝑘 ∈ ℝ

�� 𝐹M𝑘
(𝑀𝑘) > 0

}
, (6.6)

where if we, just as before, transform the ideal (continuous) metrics using

their CDFs,𝑈 ideal

𝑘
= 𝐹M𝑘

(𝑀ideal

𝑘
) , the equation above becomes

𝑈 ideal

𝑘
= inf {𝑈𝑘 ∈ [0, 1] | 𝑈𝑘 > 0} = 0 .

𝐹M𝑘
is right-continuous

(6.7)

6.2 How to measure your multitask learning model 49

We depict in Figure 6.4 the result of normalizing the example from

Figure 6.3 where now the ideal point is the origin.

Rankings approximate CDFs. Unfortunately, we usually have no access

to the true CDF, but only to the metric evaluations for different models

as a sequence of i. i.d. samples, i. e., {M𝑘1 ,M𝑘2 , . . . ,M𝑘𝑛} i. i. d.∼ 𝑃M𝑘
. We are

going to show now that their rankings can asymptotically approximate

the value of their CDF. To this end, we can sort these samples and define

their order statistics, i. e., M𝑘𝑅𝑘 (1) ≤ M𝑘𝑅𝑘 (2) ≤ · · · ≤ M𝑘𝑅𝑘 (𝑛) . Here, 𝑅𝑘(𝑖)
denotes the ranking of the i-th R.V.,9 i. e., its index after sorting the 9: We use the uprank and thus, if there

is a tie, both elements get the maximum

ranking.

variables, which we can define as 𝑅𝑘(𝑖) B
∑𝑛
𝑗=1

1{𝑀𝑘 𝑗≤M𝑘𝑖} . Similarly, the

empirical CDF can be defined by simply counting the number of elements

smaller than the input, i. e., �̂�M𝑘
(𝑡) B 1

𝑛

∑𝑛
𝑗=1

1{𝑀𝑘 𝑗≤𝑡} .

Remark 6.2 Since 𝑅𝑘 (𝑖) ∼ Bin(𝑛, 𝑝),
we have that �̂�M𝑘

(𝑀𝑘𝑖) has mean

𝔼[�̂�M𝑘
(𝑀𝑘𝑖)] =

1

𝑛
𝔼[𝑅𝑘 (𝑖)] = 𝑝 ,

and variance

𝕍 [�̂�M𝑘
(𝑀𝑘𝑖)] =

1

𝑛2

𝕍 [𝑅𝑘 (𝑖)]

=
𝑝(1 − 𝑝)

𝑛
,

and thus 𝕍 [�̂�M𝑘
(𝑀𝑘𝑖)]

𝑛→∞−−−−→ 0 .

Therefore, if the input to �̂�M𝑘
is one of the samples,𝑀𝑘𝑖 , it is direct to check

that �̂�M𝑘
(𝑀𝑘𝑖) = 𝑅𝑘(𝑖)/𝑛 , which we can show that it is an unbiased estim-

ator of the true CDF evaluated at that point, 𝐹M𝑘
(𝑀𝑘𝑖) . Specifically, since

1{𝑀𝑘 𝑗≤𝑀𝑘𝑖} is a Bernoulli R.V. with 𝑝 = 𝐹M𝑘
(𝑀𝑘𝑖) , then 𝑅𝑘(𝑖) is a Binomial

R.V. with mean 𝑛𝐹M𝑘
(𝑀𝑘𝑖) and variance 𝑛𝐹M𝑘

(𝑀𝑘𝑖)(1 − 𝐹M𝑘
(𝑀𝑘𝑖)) . It is

important to remark that the relative order between elements is always

preserved, i. e., if 𝐹M𝑘
(𝑀𝑘𝑖) < 𝐹M𝑘

(𝑀𝑘 𝑗) , then �̂�M𝑘
(𝑀𝑘𝑖) < �̂�M𝑘

(𝑀𝑘 𝑗) for

any sequence containing both samples.

Connection to global methods. We can now put all the results together.

Assume that we were to solve a MOO global-criterion problem, i. e.,

minimize

𝑴
∥𝑴 −𝑴 ideal∥𝑝 , (6.8)

then, after replacing M𝑘 by UM𝑘
, Equation 6.8 simply becomes

minimize

𝑼
∥𝑼∥𝑝 , (6.9)

where 𝑝 is the value of the 𝑝-norm chosen by the decision maker (DM).
10

10: I. e., the person making decisions on

the model behaviour, see Section 4.4.
Moreover, we have seen above that we can approximate each element of

the random vector using the ranking between samples, i. e.,

𝑈𝑘𝑖 = 𝐹M𝑘
(𝑀𝑘𝑖) ≈

1

𝑛
𝑅𝑘(𝑖) , (6.10)

reducing the initial problem in Equation 6.8 to

minimize

𝑖∈{1,2,...,𝑛}
∥𝑹(𝑖)∥𝑝 = ∥ [𝑅1(𝑖) 𝑅2(𝑖) . . . 𝑅𝐾(𝑖)] ∥𝑝 , (6.11)

i. e., to finding the model whose ranking vector has the smallest statistic.

Statistics and 𝑝-norms.
0.2 0.4 0.6

0.2

0.4

0.6

𝑈1

𝑈2 𝑹
1/2

𝑹1

𝑹2

𝑹∞

0

Figure 6.5: CDF landscape, and the 𝑝-

balls that intersect with the set of plaus-

ible metrics for 𝑝 ∈ {1/2, 1, 2,∞} . The

points selected for any of the scalariza-

tion functions are marked with a star.

We are left with how to choose a value for 𝑝 .

While this is a task for the DM, we can interpret Equation 6.11 similar to

𝐿𝑝-regularization [67]. That is, the optima are the first points intersecting

with a ball centred at the origin and with growing radius, where the

shape of the ball depends on the choice of 𝑝 (see Figure 6.5). In other

words, our choice of 𝑝 indicates which solutions we prefer.

Conveniently, certain values of 𝑝 are connected with easy-to-interpret

statistics. For example, with 𝑝 = 1 we have ∥𝑹(𝑖)∥1 =
∑𝐾
𝑘=1

𝑅𝑘(𝑖) , which

50 Chapter 6 On Task Incomparability and its Effects in Multitask Learning

equals up to a 𝐾 factor the mean rank statistic previously used in the MTL

literature [142, 183].

Remark 6.3 The solution selected by

our choice of 𝑝may not be unique. For

example, if we use mean rank (𝑝 = 1)

and the Pareto front is a diagonal line

(almost as in Figure 6.5), then all the

front intersects with the 𝑝-ball, i. e.,
all points have equal mean rank.

Similarly, a value of 𝑝 = ∞ results in the maximum

rank, i. e., in ∥𝑹(𝑖)∥∞ = max𝑘∈{1,2,...,𝐾} 𝑅𝑘(𝑖) , turning Equation 6.11 into a

minimax problem to find the most robust model across all tasks.

Robust ranking.

Remark 6.4 Note that the weights in

Equation 6.12 can be seen as a vari-

ation of the Leximin weights [222],

making the problem equivalent to a

lexicographic MOO problem where

our first priority is to optimize 𝑹∞,

and then 𝑹1.

Because of the finite number of samples, if we were

interested in selecting robust models using𝑹∞, the likelihood of obtaining

ties can be quite high, specially as the number of tasks increases. To

untie elements, we propose what we call a robust ranking, 𝑹𝑹, which

we define as a combination of two ranking statistics:

∥𝑹(𝑖)∥𝑹 B ∥𝑹(𝑖)∥∞ +
1

𝑛 + 1

∥𝑹(𝑖)∥1 . (6.12)

In the expression above, the second term is always smaller than the

smallest increment in the first term. As a result, we have an estimator

that still converges to ∥𝑼∥∞ as 𝑛 →∞ , but that it prefers the model that

performs better on average in case of ties.

6.2.2 Gradient conflict

The following quantities help us understand how much a task shares

parameters and contributes to learning them during training. To measure

both types of conflict individually, we propose the following:

Magnitude conflict. To measure the gradient drift caused by magnitude

∢
𝒈 𝑖

𝒈 𝑗

𝒈
𝒖

Figure 6.6: Pictorial description of the

proposed metric for magnitude conflict.

differences between task gradients, we propose to use the cosine similarity

of the average task gradient and the average unitary task gradient, i. e.,
cos(𝒈 , 𝒖) . Specifically, to make the metric lie in the unit interval, and such

that zero and one represent the absence and total presence of conflict, we

use instead (1 − cos(𝒈 , 𝒖))/2 .

Direction conflict. To discard the effect of the gradient magnitudes, we
𝒈 𝑖 𝒈 𝑗

𝒖
∥𝒖∥

Figure 6.7: Pictorial description of the

proposed metric for direction conflict.

propose to measure the norm of the average unitary gradient, i. e., ∥𝒖∥ .

This quantity also lies in the unit interval, and we propose to measure

1 − ∥𝒖∥ so that intuitively measures the strength of the average gradient

in the absence of magnitude conflict. Like the previous metric, in the

absence of direction conflict it has a value of one, and zero in the case

where gradients are opposite to each other.

Gradient confusion [175]. The previous metrics summarize the inter-[175] Sankararaman, De, Xu, Huang

and Goldstein (2020), ‘The Impact of

Neural Network Overparameterization

on Gradient Confusion and Stochastic

Gradient Descent.’

actions between all tasks. Sometimes, we find useful to use gradient

confusion as a finer metric, since it measures the worst direction conflict

between all pairs of tasks gradients, min𝑖 𝑗 cos(𝒈 𝑖 , 𝒈 𝑗) .

Training dynamics. With metrics as the ones presented above, we are

interested in summarizing their values during all training, and not a single

iteration. To this end, we propose to measure their signed area under

the curve, normalized by the number of training iterations, to take early

stopping into account. In practice, we approximate the integral using

the trapezoidal rule, and compute the metrics w.r. t. 𝜽 every 50 iterations

http://proceedings.mlr.press/v119/sankararaman20a.html

6.2 How to measure your multitask learning model 51

to reduce computational overhead. Every training metric shown in this

chapter is thus an average over training.

Relationship to other metrics. The metrics above can look unusual at

first. However, we show that they are actually not that exotic, and that

they can be related with other metrics from the literature, thus providing

them with a richer context and different interpretations. Specifically:

▶ The average SGD agreement, which measures how much on aver-

age the total gradient differs from the direction of each task gradient,

can be factorized in the product of magnitude and direction conflict,

1

𝐾

∑
𝑘

cos(𝒈 𝑘 , 𝒈)︸ ︷︷ ︸
Avg. SGD

Agreement

=
1

𝐾

∑
𝑘

𝒈 𝑘 · 𝒈
∥𝒈 𝑘∥∥𝒈∥

=

(
1

𝐾

∑
𝑘

𝒈 𝑘
∥𝒈 𝑘∥

)
· 𝒈

∥𝒈∥

=
𝒖 · 𝒈
∥𝒈∥ =

𝒖 · 𝒈
∥𝒖∥∥𝒈∥︸ ︷︷ ︸
Magnitude

Conflict

· ∥𝒖∥︸︷︷︸
Direction

Conflict

. (6.13)

▶ Similarly, we can show that the average unitary SGD agreement
is exactly the same as direction conflict, thus providing another

interpretation for this metric,

1

𝐾

∑
𝑘

cos(𝒖𝑘 , 𝒖) =
1

𝐾

∑
𝑘

𝒖𝑘 · 𝒖
∥𝒖𝑘∥∥𝒖∥

=
(1

𝐾

∑
𝑘 𝒖𝑘) · 𝒖
∥𝒖∥

=
∥𝒖∥2

∥𝒖∥ = ∥𝒖∥ . (6.14)

▶ Maybe more surprisingly, we can also show that the average
pairwise cosine similarity between all tasks gradients equals the

square direction conflict,

1

𝐾2

∑
𝑖 𝑗

𝒈 𝑖 · 𝒈 𝑗
∥𝒈 𝑖∥∥𝒈 𝑗∥

=
1

𝐾

∑
𝑖

𝒈 𝑖 ·
(

1

𝐾

∑
𝑗

𝒈 𝑗
∥𝒈 𝑗∥

)
∥𝒈 𝑖∥

=
1

𝐾

∑
𝑖

𝒈 𝑖 · 𝒖
∥𝒈 𝑖∥

= ∥𝒖∥ · 1

𝐾

∑
𝑖

𝒈 𝑖 · 𝒖
∥𝒈 𝑖∥∥𝒖∥

= ∥𝒖∥ · 1

𝐾

∑
𝑖

𝒖 𝑖 · 𝒖
∥𝒖 𝑖∥∥𝒖∥

= ∥𝒖∥2 , (6.15)

where we have used the previous result for the last step.

▶ Lastly, we also demonstrate that the cosine stiffness introduced by

Fort et al. [62] is also fully described by the direction conflict, [62] Fort, Nowak, Jastrzebski and Naray-

anan (2019), ‘Stiffness: A new perspective

on generalization in neural networks.’

1

𝐾

1

𝐾 − 1

∑
𝑖≠𝑗

𝒈 𝑖 · 𝒈 𝑗
∥𝒈 𝑖∥∥𝒈 𝑗∥

=
1

𝐾

1

𝐾 − 1

(∑
𝑖≠𝑗

𝒈 𝑖 · 𝒈 𝑗
∥𝒈 𝑖∥∥𝒈 𝑗∥

+ 𝐾 − 𝐾
)

=
1

𝐾

1

𝐾 − 1

(∑
𝑖 𝑗

𝒈 𝑖 · 𝒈 𝑗
∥𝒈 𝑖∥∥𝒈 𝑗∥

− 𝐾
)

https://arxiv.org/abs/1901.09491

52 Chapter 6 On Task Incomparability and its Effects in Multitask Learning

=
1

𝐾

1

𝐾 − 1

∑
𝑖 𝑗

𝒈 𝑖 · 𝒈 𝑗
∥𝒈 𝑖∥∥𝒈 𝑗∥

− 1

𝐾 − 1

=
𝐾

𝐾 − 1

1

𝐾2

∑
𝑖 𝑗

𝒈 𝑖 · 𝒈 𝑗
∥𝒈 𝑖∥∥𝒈 𝑗∥

− 1

𝐾 − 1

=
𝐾

𝐾 − 1

∥𝒖∥2 − 1

𝐾 − 1

, (6.16)

where, again, we have used the prior result for the last equality.

6.3 Benchmark probing

6.3.1 Experimental setup . . . 52
6.3.2 Adding additional tasks . 53
6.3.3 Changing the dataset . . 54
6.3.4 Resizing 𝒛 55
6.3.5 Increasing the backbone 56
6.3.6 The Conflict benchmark 57

In this section, we demonstrate how the metrics from Section 6.2 can be

used to probe the existence of gradient-conflict in an existing benchmark,

and refine the benchmark to increase the amount of conflict encountered.

To this end, we take the Multi-MNIST benchmark introduced in Subsec-

tion 6.1.2 as an example, and refer to its refined version as Conflict.

Additional details can be found in Appendix B.1.

6.3.1 Experimental setup and methodology

𝒙 Subsection 6.3.3

𝜽 Subsection 6.3.5

𝒛 Subsection 6.3.4

𝒚 Subsection 6.3.2

Figure 6.8: Schematic of the components

present in the considered MTL pipeline

(as in Section 4.3), and the subsections

where we probe each of them.

Methodology. To refine the existing benchmark, we consider a number

of design choices, see Figure 6.8, and study how each of them affect

gradient conflict during training. Specifically, since the number of design

options grows exponentially, we keep computations tractable by proceed-

ing as follows: i) choose the key design elements we wish to evaluate and

an order to follow; and ii) iteratively ablate each design choice, keeping

at each step the one that increases gradient conflict the most.

Experimental setup. Following prior works, we use LeNet [101] as

Table 6.2: Loss and performance metric

considered for each type of task.

Type Loss Metric

Class. NLL Acc.

2-Class. BCE F1-score

Regress. MSE MSE

the network backbone, which takes the common input 𝒙 and produces

the last-shared representation 𝒛 , and simple ReLU networks as task-

specific heads, which take 𝒛 and predict the target 𝒚𝑘 . We use Adam [92]

as optimizer, train every model for 300 epochs to ensure convergence,

and repeat each experiments 30 times. We consider the following types

of tasks: i) classification, with negative log-likelihood (NLL) as loss

and accuracy as task metric; ii) binary classification, with binary cross-

entropy (BCE) as loss and F1-score as metric; and iii) regression, with

mean squared error (MSE) as both loss and task metric.

Hyperparameter tuning. We use BOHB [55], a state-of-the-art gray-box

algorithm, to tune the hyperparameters of each model in our exper-

iments.
11

Specifically, during tuning we run each configuration three11: Meaning, a specific network with a

gradient-conflict algorithm.
times to avoid poor generalization across runs, and tune the learning

rate, weight decay, decay rate, and the learning-rate scheduler. Every

experiment has a budget of 6 h, and we take the configuration of hyper-

parameters with the best validation loss.

6.3 Benchmark probing 53

6.3.2 Adding additional tasks

It is broadly-known that different task combinations can have a large

impact on the individual task performance in MTL [193, 201] e.g., in

task clustering, whose sole purpose is to find the optimal combination

of tasks, was covered in Section 4.1. Therefore, it is sensible to think

that different task combinations also have different effects on gradient

conflict and, in fact, the cosine similarity between task gradients has been

previously used as a task clustering criterion [59]

[59] Fifty, Amid, Zhao, Yu, Anil and

Finn (2021), ‘Efficiently Identifying Task

Groupings for Multi-Task Learning.’

.

To explore the effect of having different tasks combinations, we consider
Table 6.3: Type and mathematical de-

scription of the tasks considered for the

Multi-MNIST dataset.

Name Type Expression

Left Class. 𝒚𝐿
Right Class. 𝒚𝑅
Odd 2-Class. 𝒚𝐿𝒚𝑅 mod 2

Density Regress.

∑
𝑖 𝑗 1{𝒙 𝑖 𝑗>0.5}

Number Regress. 10𝒚𝐿 + 𝒚𝑅
Both Class. 10𝒚𝐿 + 𝒚𝑅

new tasks for the Multi-MNIST benchmark. Specifically, we consider the

following: i) the original classification tasks, L and R; ii) classifying

the parity of the product of digits, O; iii) predicting the number of

active pixels in the image, D; and iv) predicting the two-digit number

in the image as a regression or classification task, N and B, respectively.

Additionally, we normalize the two regression tasks (N and D) so that

the predictions always lay in the unit interval. As a result, the losses of all

classification tasks (L, R, O, and B) are of the same order of magnitude

on average, while N and D are, respectively, one and two order of

magnitudes smaller. See Appendix B.1.3 for further details.

Effect of a third task. First, we study the effect that adding another Table 6.4: Performance on the Both

and Number tasks when included in

the Multi-MNIST benchmark, compared

with the STL baseline.

Both ↑ Number ↓
STL 89.38 ± 0.33 7.08 ± 0.43

LRB 91.06 ± 0.25 -

LRN - 10.38 ± 0.36

task has on the gradient conflict of the original Multi-MNIST benchmark.

We observe in Figure 6.9 that, despite all experiments achieving similar

accuracy on the two original tasks (numbers in parentheses), each extra

task has a different effect on gradient conflict. Specifically, Figure 6.9

shows a clear difference between adding a classification or regression task.

In other words, having a heterogeneous set of tasks increases gradient conflict.
This effect is also reflected in the task performance of the additional

tasks, as we show in the Table 6.4 where, despite solving the exact same task,

the performance on B improves over single-task learning, and that of

N worsens instead. This result strengthens the importance that the loss

landscape has on task conflict.

Effect of adding more tasks. Now, we investigate the effect of adding

several tasks to the original Multi-MNIST dataset. Interestingly, Figure 6.9

shows that adding B as a third task reduces both types of conflict, a trend

10−2 10−1

Magnitude Conflict

0.20

0.25

0.30

0.35

0.40

D
ir

ec
tio

n
C

on
fli

ct

→
regression

←
classification

(95.80, 94.33)

(96.26, 94.92)

(96.24, 94.87)

(96.34, 94.97)

(96.24, 94.89)

Extra task on Multi-MNIST

Extra task
None
Odd
Density
Number
Both

Figure 6.9: Gradient conflict (higher is

more conflict) on the Multi-MNIST data-

set when an extra task is added. Numbers

in parentheses represent performance on

the Left and Right tasks, averaged over

30 runs.

https://proceedings.neurips.cc/paper/2021/hash/e77910ebb93b511588557806310f78f1-Abstract.html

54 Chapter 6 On Task Incomparability and its Effects in Multitask Learning

Figure 6.10: Gradient conflict of different

extra tasks in the Multi-MNIST bench-

mark, and the effect of adding the Both

task as well. Dashed lines connect both

cluster pairs to help the reader.

0.00 0.02 0.04 0.06 0.08 0.10

Magnitude Conflict

0.20

0.25

0.30

0.35

0.40

0.45

0.50

D
ir

ec
tio

n
C

on
fli

ct

Tasks combinations on Multi-MNIST

Combination
LR
LRO
LRN
LRD
LROD
LRODN

Append task B?
No
Yes

which is consistent with every task combination shown in Figure 6.10.

However, the effect of adding additional tasks seems to be in general

context-dependent, e.g., adding O to the combination LRD reduces the

magnitude conflict but increases the direction conflict, while adding N
on top of that increases both types of gradient conflict.

In summary, these results suggest that: i) the dynamics of different

task combinations during training are rather complex, ii) that task

performance may not provide enough information to study these effects,

and iii) that the properties of the loss landscape—determined by the task

type and loss function, among others—are an important factor to take into

account. For the following experiments, we keep the task combination

LRODN (white circles in Figure 6.10) as the default choice.

6.3.3 Changing the dataset

Now, we focus on the effect that different data distributions have on gradi-

ent conflict. To this end, we take Multi-MNIST with the tasks LRODN,

and swap the MNIST dataset with other drop-in replacements. Namely,

we consider: i) the FMNIST [219] and KMNIST [31] datasets, composed of

𝐶 = 10 classes representing clothes and kanji characters, respectively;

and ii) the Letter and Balanced splits from the EMNIST dataset [33],

both composed of letters and, in the case of Balanced, also digits. Since

the input size remains the same, we simply replace MNIST by one of the

aforementioned datasets, changing the last layer of the L and R tasks to

match the number of classes when necessary.

It is important to remark that, since the EMNIST splits have a slightly

different format, we need to take these differences into account when

running the experiments. Firstly, these datasets contain more training

samples, and thus we make sure that all experiments have converged by

running a sufficiently large number of epochs. Similarly, we normalize

all training metrics by the number of total iterations to make them

comparable (see Subsection 6.2.2). Secondly, since the Letter dataset has

𝐶 = 37 and Balanced 𝐶 = 47 classes, we normalize the regression task

N by the total number of classes. See Appendix B.1.4 for details.

Relationship between problem complexity and gradient conflict. We

summarize the results in Figure 6.11. Namely, Figure 6.11a shows that

6.3 Benchmark probing 55

Left ↑Right ↑Odd ↑Density ↓Number ↓

70

75

80

85

90

95

Task performances

MNIST FMNIST KMNIST Letter Balanced

70

75

80

85

90

95

40

60

80

0.001

0.002

0.003

0.01

0.02

0.03

0.04

0.07 0.08 0.09 0.10 0.11

Magnitude Conflict

0.44

0.46

0.48

0.50

0.52

D
ir

ec
tio

n
C

on
fli

ct

(a) Gradient conflict.

Left ↑ Right ↑ Odd ↑ Density ↓ Number ↓

70

75

80

85

90

95

Task performances

70

75

80

85

90

95

40

50

60

70

80

90

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.01

0.02

0.03

0.04

(b) Tasks performances.

Figure 6.11: Effect on the Multi-MNIST benchmark when changing the dataset on: (a) gradient conflict during training; and (b) task

performances. Marker size on (a) are proportional to 𝑹𝑹 values across datasets (bigger means better performance), and markers on (b)
represent the performance of STL in each dataset. Confidence ellipses on (a) cover points two standard-deviations away from the average.

KMNIST and FMNIST exhibit less conflict than MNIST, while Balanced

shows significantly more gradient conflict than any other considered

dataset. Moreover, the marker sizes in Figure 6.11a represent the perform-

ance of each experiment with respect to the rest,
12

and we can observe 12: Measured via 𝑹𝑹 over the task rel-

ative performance, more details in Ap-

pendix B.1.5.

that there is no apparent relationship between problem difficulty and

the amount of gradient conflict: best and worst-performing experiments

are scattered all across the gradient-conflict spectrum. More in detail, if

we look at the gap between STL and MTL for each task and dataset in

Figure 6.11b, we see that each dataset is particularly difficult for particular

tasks, e.g., FMNIST on D, Letter on N, or Balanced on O.

Other determining factors. We hypothesize that, just as shown in

Subsection 6.3.2, two factors determine the amount of conflict in these

experiments: i) the loss landscape, which is affected by the data distri-

bution; and ii) the number of tasks, which is affected by the number of

classes in the dataset. To expand more on the latter, Figure 6.11a shows a

correlation between number of classes and gradient conflict and, similar

to the CelebA setup, we can interpret each 𝐶-classification task (L and R)

as 𝐶 binary-classification tasks. Therefore, Letter and Balanced would

increase conflict by introducing additional tasks.

In short, this experiment reinforces again the idea that the loss landscape

is a key factor in the amount of conflict present during training, and

hints at architectural changes
13

as another important component to better 13: As a result from increasing the num-

ber of classes, 𝐶.
understand gradient conflict. From here onward, we consider Balanced

as the default dataset for every experiment.

6.3.4 Resizing the last shared representation

We explore now explicit architectural changes on the network and,

specifically, in this section we study how changing the dimensionality

of the last shared representation affects gradient conflict. To this end,

we take the most conflictive experiment from the previous section, and

56 Chapter 6 On Task Incomparability and its Effects in Multitask Learning

Figure 6.12: Gradient conflict and confu-

sion as we change the dimension of 𝒛 ,

the last shared representation, averaged

over 30 runs. Marker size represents 𝑹𝑹
performance (bigger markers perform

better). Confidence ellipses cover two

standard-deviations from the average.

0.09 0.10 0.11 0.12

Magnitude Conflict

0.46

0.48

0.50

0.52

D
ir

ec
tio

n
C

on
fli

ct

Shared-representation size (d)

Size
12
25
50
75
100

Gradient
Confusion

−0.32 0

consider a shared representation, 𝒛 , of size 𝑑 ∈ {12, 25, 50, 75, 100} ,

where 𝑑 = 50 is the value used in previous experiments.

Effect of 𝑑 on gradient conflict. Figure 6.12 shows the gradient conflict

and confusion as we increase 𝑑, and where the marker size indicates

its 𝑹𝑹 performance w.r. t. the rest of experiments. First, we observe that

there is a clear positive correlation between the size of 𝑑 and model

performance, and a negative one on the variance of all measurements.

As for gradient conflict, we observe a consistent decrease in gradient

confusion as we increase 𝑑, and an interesting non-linear relationship

with respect to both magnitude and direction conflict: as we increase 𝑑,

both measures increase to then decrease.

These observations suggest the existence of a ‘sweet spot’ where gradient

conflict is maximized. However, reducing 𝑑 could render the network

unable to learn the tasks at all. In the extreme case where 𝑑 = 1 , we would

have a direction conflict of either 1 or −1, but all the shared information

would be reduced to a single number. If, instead, 𝑑 is sufficiently large,

the network could distribute the information for each task in different

components of 𝒛 , effectively having independent subnetworks, as we saw

in Subsection 6.1.2. Therefore, we continue the following experiments

with 𝑑 = 25 as a good compromise between gradient conflict and model

performance.

6.3.5 Increasing the backbone size

Lastly, we study how the number of shared parameters affect gradi-

ent conflict. To this end, we follow the same parametrization for the

backbone as Ruchte and Grabocka [167], where a multiplicative factor[167] Ruchte and Grabocka (2021), ‘Multi-

task problems are not multi-objective.’ 𝑐 determines the number of backbone parameters. We provide a de-

tailed explanation of the architecture in Appendix B.1.2. Following up

the setup from the last section, we consider now backbones with capa-

city 𝑐 ∈ {0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.50} , being 𝑐 = 1.0 the value in

previous experiments.

Results. Figure 6.13 shows the gradient conflict and confusion as

we change the backbone capacity. We observe a clear difference in

https://arxiv.org/abs/2110.07301
https://arxiv.org/abs/2110.07301

6.3 Benchmark probing 57

0.10 0.12 0.14 0.16

Magnitude Conflict

0.48

0.50

0.52

0.54

D
ir

ec
tio

n
C

on
fli

ct
Backbone capacity (c)

Size
0.1
0.25
0.5
0.75
1.0
1.25
1.5

Gradient
Confusion

−0.46 0

Figure 6.13: Gradient conflict and confu-

sion as we change the backbone-capacity

parameter, 𝑐 , averaged over 30 runs.

Marker size represents 𝑹𝑹 perform-

ance (bigger means better performance).

Confidence ellipses cover two standard-

deviations from the average.

gradient conflict and performance (marker sizes) between the two smallest

backbones, 𝑐 ∈ {0.1, 0.25} , and the rest. However, once that the backbone

has enough capacity, we do not observe any clear differences, i. e., the

larger cluster seems to not follow any particular pattern with respect to 𝑐 .

Interestingly, we observe that the biggest backbone, 𝑐 = 1.5 , performs

poorly in terms of model performance, and exhibits relatively high

gradient conflict among well-performing models. As little difference as

there is, we choose to ensure that the model has enough capacity to learn

all tasks appropriately, and use 𝑐 = 1.5 for the rest of experiments.

6.3.6 The Conflict benchmark

We collect all the changes carried out in the Conflict benchmark, a
Table 6.5: Summary of the differences

between Multi-MNIST and Conflict.

Parameter Multi-MNIST Conflict

Tasks LR LRODN
Dataset MNIST Balanced

𝑑 50 25

𝑐 1 1.5

refinement of the Multi-MNIST benchmark, result of probing the effect

of different design choices on the metrics from Section 6.2. Therefore,

Conflict serves as a practical example on how to systematically increase

the gradient conflict on an existing benchmark, making it more suitable for

testing MTL approaches, as we corroborate later in Section 6.4. Moreover,

we have also obtained insights on gradient conflict that, although not

necessarily generalizable to every scenario, help us better understand

the role of gradient conflict. As a summary of Conflict:

▶ Tasks: LRODN. We observed in Subsection 6.3.2 that the loss

landscape can be as important as the relationship between tasks,

since highly correlated tasks can still increase conflict (e.g., tasks

O and N). Moreover, having heterogeneous tasks seems crucial to

increase gradient conflict.

▶ Dataset: Balanced. In Subsection 6.3.3 we found no correlation

between gradient conflict and the complexity of the problem to

solve. Again, the loss landscape
14

seemed to be the main factor 14: Via the input distribution and the

number of output classes.
behind gradient conflict.

▶ Size of 𝒛: 𝑑 = 25 . Working as a bottleneck, we found in Sub-

section 6.3.4 that the size of z is an important factor for gradient

conflict, and that there seems to follow a non-linear relationship.

We therefore chose a compromise option with significant conflict

and good performance.

58 Chapter 6 On Task Incomparability and its Effects in Multitask Learning

▶ Backbone capacity: 𝑐 = 1.5 . We found in Subsection 6.3.5 that

the number of shared parameters does not have a clear effect

on gradient conflict, once that the backbone is large enough. To

ensure that this is the case, we took the largest backbone in our

experiments.

6.4 Empirical validation

6.4.1 Benchmark comparison . 58
6.4.2 GC approaches 59
6.4.3 Homogenizing 𝜽 v.s. z . . 61

In Section 6.3, we took the Multi-MNIST benchmark, and showed how to

systematically modify it to make it more suitable for MTL benchmarking,

which we summarized in the Conflict benchmark. In this section, we

empirically validate Conflict, and show the advantages of evaluating

gradient conflict approaches with Conflict instead of Multi-MNIST.

We follow the same experimental setup as in Section 6.3. However, it

is important to remark that we tune all the hyperparameters for each

gradient-conflict approach independently, to make sure that tuning bias

is not an issue [99].[99] Kurin, Palma, Kostrikov, Whiteson

and Mudigonda (2022), ‘In Defense of

the Unitary Scalarization for Deep Multi-

Task Learning.’ 6.4.1 Comparing Multi-MNIST and Conflict

First, we show the extent to which Conflict is different from the ori-

ginal Multi-MNIST benchmark. That is, we want to verify that Conflict

provides richer interactions between tasks during training, and therefore

that it is better suited for testing MTL approaches.

In Figure 6.14, we provide a summary of the quantitative differences

between both benchmarks, showing that the improvement margin in com-

parison with STL is bigger in Conflict and, moreover, Conflict exhibits

more magnitude and direction conflict, despite having more parameter

sharing than Multi-MNIST. It is important to recall that Conflict have

three additional tasks, which are also used to compute the three last

metrics on the figure.

We further explore the interactions between tasks in terms of parameter

sharing
15

in Figure 6.15, showing the pairwise interactions at the para-15: Or, equivalently, in terms of gradient

cosine similarities.
meter level (𝜽 , upper diagonal), at the shared-representation level (𝒛 ,

lower diagonal), as well as the individual SGD agreement (𝜽 , diag-

onal), as we defined them in Subsection 6.1.1. We show these metrics

Figure 6.14: Summary of task perform-

ance and conflict measures for the

Multi-MNIST andConflictbenchmarks.

Each coloured tick represents task per-

formance of a single-task model.

Left
Accuracy

Right
Accuracy

Magnitude
Conflict

Direction
Conflict

Parameter
Sharing

40

50

60

70

80

90

100

Task performances and gradient metrics

40

50

60

70

80

90

100

Multi-MNIST

Conflict 0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

9e-03

2e-02

4e-02

9e-02

2e-01

4e-01

http://papers.nips.cc/paper%5C_files/paper/2022/hash/4f301ae934f396086bfefd1139039dbd-Abstract-Conference.html

6.4 Empirical validation 59

L R O D N

L

R

O

D

N

Vanilla-multiMNIST (d = 50)
θ sharing z sharing SGD agreement

-0.023

0.005

0.000

0.117

0.692

(a)
L R O D N

L

R

O

D

N

Vanilla-Conflict (d = 25)
θ sharing z sharing SGD agreement

-0.023

0.005

0.000

0.117

0.692

(b)
L R O D N

L

R

O

D

N

PCGrad-Conflict (d = 25)
θ sharing z sharing SGD agreement

-0.023

0.005

0.000

0.117

0.692

(c)

Figure 6.15: Interaction of different tasks during training in the Multi-MNIST (a) and Conflict benchmarks, (b) and (c). Both size and

colour represent the magnitude of the metric. Specifically, diagonal elements represent SGD agreement, i. e., the contribution of each task

in the gradient followed; upper diagonal elements represent parameter sharing w.r. t. the shared parameters 𝜽 ; and lower diagonal

elements w.r. t. the last shared representation, 𝒛 . We observe that Multi-MNIST shows no conflict at all, and PCGrad reduces the conflict

compared with the vanilla approach in Conflict. Best viewed in colour.

for three different experiments: (a) the original Multi-MNIST benchmark

with the LRODN tasks;
16 (b) the proposed Conflict benchmark; and 16: As in Subsection 6.3.2.

(c) Conflict using PCGrad [227], a gradient-conflict approach.

As we observed in Subsection 6.1.2, we see in Figure 6.15a that

Multi-MNIST exhibits no conflict anywhere, i. e., either tasks share

parameters, or they do not interact at all. In contrast, we see in Fig-

ure 6.15b that in Conflict there are more interactions between tasks,

e.g.: i) D now conflicts at the parameter level with the O and N tasks;

and ii) the positive interactions between gradients have lost strength

with respect to Multi-MNIST. Additionally, we observe in Figure 6.15c

that PCGrad works as intended, i. e., we observe that PCGrad has: i) re-

moved any conflict between D and the other tasks; and ii) increased the

cooperation of, e.g., tasks L and R.

Therefore, Figure 6.15 shows that the gradient dynamics in Conflict are

richer than those in the original Multi-MNIST benchmark. Additionally,

it also empirically shows that these dynamics do not need to match

when we compute them w.r.t. 𝜽 or 𝒛 , e.g., the negative interactions in

Figure 6.15b only appear in one side of the diagonal. This suggests that

working with the gradients w.r. t. 𝒛 to reduce computational overhead [26,

27, 182] may not always produce the expected results.

6.4.2 Gradient-conflict approaches in Conflict

We now turn our attention to gradient-conflict approaches, which we

briefly reviewed in Subsection 4.6.1. Specifically, we explore whether

existing approaches are significantly different from the baseline (that we

call the Vanilla approach), when applied to the Conflict benchmark.

Considered methods and metrics. Here, we focus on gradient-conflict

methods that dynamically modify the gradients during training, as

it requires minimal changes to Conflict, and consider the following

approaches: GradNorm [26]; GradDrop [27]; PCGrad [227] and its extension,

GradVac [208]; IMTL-G [112]; MGDA [45] and its extension, CAGrad [111];

RGW [106]; and RotoGrad from Chapter 5. For each specific method,

we accordingly apply them to modify the gradient w.r.t. the shared

parameters, 𝜽 , or w.r.t. the last-shared representation, 𝒛 , depending

60 Chapter 6 On Task Incomparability and its Effects in Multitask Learning

Figure 6.16: Gradient conflict of different

approaches on the Conflict benchmark,

averaged over 30 runs. Marker size rep-

resents 𝑹𝑹 performance (larger means

better performance).

0.06 0.08 0.10 0.12 0.14

Magnitude Conflict

0.42

0.44

0.46

0.48

0.50

D
ir

ec
tio

n
C

on
fli

ct

Conflict across methods −0.34 −0.11

Gradient
Confusion

GradDrop

Vanilla

RotoGrad

GradVac

MGDA

IMTL-G

RGW

GradNorm

CAGrad

PCGrad

on their original implementation. Regarding MTL performance metrics,

we consider those discussed in Subsection 6.1.1 and Section 6.2: robust

ranking, 𝑹𝑹 ; average ranking, 𝑹1; relative task improvement, avgΔ ; and

we additionally consider medΔ , where we take the median across tasks

to make it more robust.

Results. Figure 6.16 shows the gradient conflict and confusion for

each method, and where the marker size indicates 𝑹𝑹 performance.

Table 6.6, instead, presents the quantitative performance of each method

per task. First, note that Vanilla performs significantly worse than other

approaches (e.g., PCGrad) which is consistent with their reduction in

gradient conflict, as shown in Figure 6.16. However, RotoGrad reduces

the most conflict, yet it obtains average results; after inspecting Table 6.6,

we see that it performs great on the two dominated regression tasks at

the expense of the digit-classification tasks, which we can attribute to

the aggressive behaviour of its scaling algorithm.
17

Overall, we observe17: This ill-behaviour was previously

mentioned in Subsection 5.2.2.
that with Conflict different methods result in distinguishable gradient-

conflict and MTL performance values with respect to Vanilla.

With Conflict, we can now compare also different approaches and their

follow-ups. We observe that CAGrad consistently beats MGDA in conflict

and MTL performance, by not focusing solely on the O task. Interestingly,

PCGrad instead significantly outperforms GradVac, and that this is also

reflected in the gradient conflict from Figure 6.16. Moreover, in both cases,

the best method also has the least gradient conflict.

Table 6.6: Task and MTL performance of existing gradient-conflict approaches when applied to the Conflict benchmark. Highlighted

numbers indicate that their average ± one standard deviation do not overlap with the average ± one standard deviation of Vanilla. The

MSE values of Density and Number are scaled by 10
4

and 10
3
, respectively. Average and standard deviation over 30 runs.

Task Metrics MTL Performance

Method Left ↑ Right ↑ Odd ↑ Density ↓ Number ↓ 𝑹𝑹 ↓ 𝑹1 ↓ medΔ ↑ avgΔ ↑
STL 75.68 ± 0.44 75.02 ± 0.80 53.83 ± 2.62 0.22 ± 0.00 46.67 ± 2.73 - - - -

PCGrad [227] 64.22 ± 2.62 65.34 ± 2.72 44.42 ± 2.71 0.61 ± 0.10 51.59 ± 2.11 5.13 ± 1.31 3.45 ± 1.10 −15.47 ± 3.39 −46 ± 9

CAGrad [111] 63.90 ± 4.13 64.46 ± 5.12 41.39 ± 3.32 0.28 ± 0.03 52.46 ± 3.37 6.01 ± 1.84 3.47 ± 1.79 −15.79 ± 5.81 −18 ± 6

GradNorm [26] 60.78 ± 2.99 62.11 ± 2.03 40.04 ± 3.89 5.85 ± 1.18 55.34 ± 2.36 7.27 ± 1.02 5.85 ± 1.09 −20.98 ± 5.35 −524 ± 107

RGW [106] 65.44 ± 1.49 66.51 ± 1.36 38.18 ± 3.26 6.54 ± 1.07 54.43 ± 1.89 7.65 ± 0.76 4.65 ± 0.69 −18.23 ± 4.99 −585 ± 98

IMTL-G [112] 55.00 ± 7.15 58.25 ± 6.07 51.68 ± 3.23 0.30 ± 0.05 48.78 ± 4.09 7.76 ± 2.30 3.90 ± 1.42 −19.39 ± 8.08 −18 ± 8

MGDA [45] 56.41 ± 6.94 64.38 ± 3.40 52.38 ± 3.73 7.88 ± 1.54 55.23 ± 4.87 8.27 ± 1.38 5.17 ± 1.74 −18.80 ± 6.61 −703 ± 141

RotoGrad 55.52 ± 8.51 51.32 ± 11.46 48.74 ± 4.28 0.49 ± 0.39 48.88 ± 4.86 8.31 ± 2.09 4.45 ± 1.45 −23.61 ± 7.85 −38 ± 36

GradVac [208] 61.99 ± 2.26 63.18 ± 2.26 39.24 ± 3.87 2.56 ± 5.19 62.55 ± 2.30 8.82 ± 0.71 5.89 ± 0.93 −25.80 ± 6.99 −228 ± 463

Vanilla 62.13 ± 4.61 65.89 ± 3.24 37.95 ± 6.87 8.79 ± 0.83 51.80 ± 3.21 8.98 ± 0.71 5.28 ± 1.93 −18.08 ± 6.50 −788 ± 76

GradDrop [27] 57.96 ± 3.51 60.50 ± 2.61 29.09 ± 4.60 7.93 ± 1.58 64.35 ± 3.45 9.57 ± 0.42 8.00 ± 0.64 −36.60 ± 7.49 −721 ± 138

6.4 Empirical validation 61

PC
Gr
ad

CA
Gr
ad

IM
TL
-G

Ro
to
Gr
ad RG

W
MG
DA

Va
ni
ll
a

Gr
ad
No
rm

Gr
ad
Va
c

Gr
ad
Dr
op

0

2

4

6

8

10

R
1

PC
Gr
ad

CA
Gr
ad

IM
TL
-G RG

W

Ro
to
Gr
ad

MG
DA

Va
ni
ll
a

Gr
ad
No
rm

Gr
ad
Va
c

Gr
ad
Dr
op

0

2

4

6

8

10

R
2

PC
Gr
ad

CA
Gr
ad RG

W

IM
TL
-G

Gr
ad
No
rm

Ro
to
Gr
ad

MG
DA

Gr
ad
Va
c

Va
ni
ll
a

Gr
ad
Dr
op

0

2

4

6

8

10

R
5

PC
Gr
ad

CA
Gr
ad

Gr
ad
No
rm RG

W

IM
TL
-G

MG
DA

Ro
to
Gr
ad

Gr
ad
Va
c

Va
ni
ll
a

Gr
ad
Dr
op

0

2

4

6

8

10

R
R

Figure 6.17: Box plots of different gradient-conflict approaches applied to the Conflict benchmark, averaged over 30 runs, according to

four different rankings from Subsection 6.2.1.

MTL performance metrics. These experiments also validate the use of

𝑹𝑹 over the widely adopted avgΔ . Besides the theoretical motivation

introduced in Subsection 6.2.1, we can observe in Table 6.6 and Fig-

ure 6.16 that it also positively correlates with performance improvement

and reduction in gradient conflict, respectively.
18

Table 6.6 also shows 18: Beyond exceptions like RotoGrad,

which can be understood by looking at

the gradient confusion.

important shortcomings of Δ , e.g.: avgΔ clearly focuses on D task per-

formance (since it has comparatively small values), whereas medΔ shows

no significant differences between most methods.

As discussed in Subsection 6.2.1, it is important to have a clear objective to

achieve. To emphasize this point, we show in Figure 6.17 the performance

of all methods in Table 6.6 according to four rankings: 𝑹1, 𝑹2, 𝑹5, and 𝑹𝑹 .

As we discussed, the differences between rankings (and thus, objectives)

can be dramatic, e.g., GradNorm is among the worst methods based on

mean rank, 𝑹1, but among the best according to 𝑹𝑹 and, in contrast, the

high variance of RotoGrad in this benchmark makes it a solid method on

average, but a weak one if we care about best worst performance.

Combining the evidence gathered in the experiments above, we can

clearly see that, when tested on an appropriately designed benchmark,

different well-tuned gradient-conflict approaches do have distinguishable

characteristics on both gradient conflict and MTL performance, which is in

stark contrast to those analyses previously discussed in Subsection 6.1.3.

6.4.3 Where to solve the gradient conflict

To complete the previous results, we now show how a benchmark like

Conflict can be used to shed light on unanswered questions. Specifically,

we are interested in understanding whether, by solving the conflict of the

gradients w.r. t. z instead of 𝜽 , we can obtain similar improvements while

reducing the overhead, as we discussed in Subsection 4.6.1. To the best

62 Chapter 6 On Task Incomparability and its Effects in Multitask Learning

Figure 6.18: Probability of different ap-

proaches to obtain better MTL perform-

ance when applied to the gradients w.r. t.
the shared parameters, 𝜽, or the shared

feature, 𝒛 , measured using 𝑹𝑹 and com-

puted over 30 different runs. Gr
ad
No
rm

Ro
to
Gr
ad

CA
Gr
ad

MG
DA

IM
TL
-G

PC
Gr
ad

Gr
ad
Va
c

0.0

0.2

0.4

0.6

0.8

1.0

P
(w

in
)

θ vs. z (w.r.t. RR)

θ z

of our knowledge, there is still no experiment in the existing literature

trying to answer which of the two approaches is preferable, if any.

To this end, we consider most methods from previous section
19

and19: Except for GradDrop and RGW .

benchmark them once more, this time applying them on the opposite

gradients from those they were initially conceived to work with. Then,

we compare the original method and its counterpart according to 𝑹𝑹

performance, and average the number of times each method wins over

30 runs. In the case of RotoGrad, we keep the rotation matrices on the

heads, and only change the scaling algorithm (see Chapter 5).

Results. Figure 6.18 summarizes the results for each approach. First, we

can observe that there are methods on all the spectrum of probabilities,

so we can say that no approach is preferred, and that there is a priori
no way of knowing whether a new method will work better in 𝜽 or 𝒛 .

However, there seems to exist some trend, as the two projection-based

methods (PCGrad and GradVac) are consistently better when applied on z .

Similarly, all scaling methods work better when directly applied to the

gradients w.r. t. 𝜽 . Of holding this trend on other benchmarks, this could

be a strong indicator that solving direction conflict at the shared-feature

level is more effective, and that solving magnitude direction is more

beneficial at the parameter level, which would certainly expand our

understanding on the nature of gradient conflict.

6.5 Concluding remarks

In this chapter, we have drawn our attention to the problem of measuring

and benchmarking in MTL, heavily exacerbated by task incomparability,

i. e., to the difficulty of making meaningful comparisons across tasks,

both at evaluation and training time. To overcome these issues, we have

provided better metrics to compare the performance of MTL models at

evaluation time, and to measure the conflict among tasks gradients at

training time. We have connected rank metrics to MOO global methods

over CDFs, hence addressing task incomparability while making explicit

the goal we attempt to achieve.

Moreover, we have shown that this inability to perform meaningful com-

parisons can have a significant impact on our conclusions, as benchmarks

6.5 Concluding remarks 63

and methods are developed without accounting for gradient conflict.

With the proposed metrics at hand, we have shown through a practical

example how to probe an existing benchmark, systematically increas-

ing the amount of gradient conflict found during training by studying

how different design choices affect gradient conflict. Finally, to validate

the resulting Conflict benchmark, we have empirically shown that it

presents richer relationships between tasks, and that gradient-conflict

approaches are quantitatively different when tested on it, defying recent

analyses on existing MTL benchmarks.

We consider the construction of Conflict an illustrative example, and we

are aware that the insights obtained here may not generalize to all settings.

Therefore, to tackle fundamental MTL problems such as gradient conflict,

we consider it important to revisit existing benchmarks and experiments,

gaining a deeper understanding on the design factors to address, and

thus enabling more effective MTL benchmarking.

While we have proven the proposed gradient conflict metrics to be useful

tools towards these goals, one should be aware that we still summarize

all training interactions to a pair of values, inevitably losing information

in the process, and thus finer future analyses will ultimately require more

accurate metrics. One way to alleviate this issue is to complement the

proposed metrics with others, such as the recently proposed rAU [223] [223] Yang, Pan, Wang, Yu, Shen, Chen,

Xiao, Jiang and Guo (2023), ‘AdaTask:

A Task-Aware Adaptive Learning Rate

Approach to Multi-Task Learning.’

which measures the conflict between tasks with respect to individual

model parameters, greatly enriching the MTL toolbox.

https://doi.org/10.1609/aaai.v37i9.26275

Part II.

Probabilistic Generative Models

Deep Learning and
Probabilistic Modelling 7.

7.1 Problem statement 67
7.2 Exponential family 68
7.3 Latent-variable models . . 69
7.4 Modality collapse & MTL . 73

Hay, empero, otra noción de patria.

No la tierra de los padres, como decía

Nietzsche, sino la tierra de los hĳos.

José Ortega y Gasset

In this part, we consider the problem of modelling the joint distribution

of the observed dataset. This is a significant change with respect to Part I,

as we have moved from a supervised to an unsupervised, probabilistic

setting. However, we will see in these next chapters that the two settings

are not only related, but that we can draw strong connections between both

formulations, and that we can indeed reuse from multitask learning (MTL)

the terminology, knowledge, and approaches, to significant improve the

performance of probabilistic generative models (PGMs).

In this chapter, we first describe the problem statement, then lay the

foundations necessary to understand the following chapters and, lastly,

provide a first view on the connections between MTL and PGMs. Upon

understanding this connection, we will see that they are indeed quite

similar, and that they share many inductive biases.

7.1 Problem statement
Dimensions

x ∈ ℝ𝐷 X ∈ ℝ𝑁×𝐷
Similar to the problem statement from Part I, we assume that there is a𝐷-

dimensional random variable (R.V.) x B [x1 x2 . . . x𝐷] ∼ 𝑃x . Again,

we assume access to an input dataset X = {𝒙𝑛}𝑁𝑛=1

i. i. d.∼ 𝑃x composed of

𝑁 i. i.d. samples from x . Note that we do not make any assumptions on

the modalities, allowing for x𝑑 of different shapes (e.g., images and their

labels) and types (e.g., continuous v.s. discrete variables).

Remark 7.1 The notation 𝑝𝜽(x) and

𝑝(x; 𝜽) are equivalent and we use

them interchangeably, depending on

whether we want to emphasize the

role of the parameters or not.

The goal of this part of the thesis is to have a deep learning (DL) model

(generally a neural network) with parameters 𝜽 that models the joint

distribution of the R.V. x , i. e.,

𝑝x(x1 , x2 , . . . , x𝐷) ≈ 𝑝𝜽(x1 , x2 , . . . , x𝐷) , (7.1)

where 𝑝x is ground-truth density followed by x , and 𝑝𝜽 the approximation

obtained by our probabilistic model with parameters 𝜽 .

Multimodal data. In this part, we focus on multimodal data, i. e., on

data that contains information coming from different sources. That is,

we consider each x𝑑 to represent the data coming from the d-th modality.

Furthermore, we refer to x as a heterogeneous R.V. when each modality

x𝑑 in x is unidimensional. Thus, we consider heterogeneous data as a

special case of multimodal data.
1

In a slight abuse of notation, we use 𝐷 1: In the literature, however, heterogen-

eous and multimodal problems are often

studied independently [143, 185].

for both the number of modalities and the input size, as it will be clear

from the context and it does not change the results presented here.

In probabilistic machine learning (ML), the usual practice when modelling

the joint distribution 𝑝x is to assume a fixed family of distributions for

68 Chapter 7 Deep Learning and Probabilistic Modelling

𝑝𝜽—e.g., Gaussian distributions—while a neural network outputs the

values for the distributional parameters, 𝜼 . Moreover, as we make no

assumptions on the modality types, the usual practice is to assume that

the joint likelihood fully factorizes across modalities, i. e.,

𝑝(x; 𝜽) =
𝐷∏
𝑑=1

𝑝𝑑(x𝑑; 𝜼𝑑(𝜽)) , (7.2)

where 𝜼𝑑(𝜽) is the output of the network parametrized by 𝜽 , and 𝑝𝑑
describes the likelihood of the R.V. x𝑑 .

Selecting the proper likelihood for a modality is, in general, a difficult task

that requires specific domain knowledge for each use case. For example, in

the multimodal applications in Chapter 9, we choose multivariate Laplace

distributions for the image modalities. In an attempt to automatize

likelihood selection, when working with heterogeneous data in Chapters 8

and 9, we select the likelihood by looking at easy-to-check properties of

the modality domain. Namely:

Property Distribution of x𝑑

Real-valued: N (𝜇, 𝜎)
Positive real-valued: Log-normal(𝜇, 𝜎)
Count data: Poiss(𝜆)
Binary: Bern(𝑝)
Categorical: Cat(𝜋1 ,𝜋2 , . . . ,𝜋𝐷)

7.2 Exponential family

In this section, we provide a quick introduction to the exponential

family, as it appears ubiquitously in the rest of this thesis. Indeed, every

distribution we consider will be a member of the exponential family.

The exponential family is a parametric set of distribution functions whose

densities have the following form:
2

2: For simplicity, we introduce the uni-

dimensional case.

𝑝(𝑥; 𝜼) = ℎ(𝑥) exp

[
𝜼⊤𝑻(𝑥) − 𝐴(𝜼)

]
, (7.3)

where: i) 𝜼 ∈ ℝ𝐼
are the natural parameters of size 𝐼 ;

3 ii) 𝑻(𝑥) ∈ ℝ𝐼
are3: Note that additional constraints on

the values that 𝜼 can take are possible.
the sufficient statistics, which contain all the information of 𝜼 in the data;

iii) ℎ(𝑥) ∈ ℝ is the base measure, which restricts the space where x can

take values; and iv) 𝐴(𝜼) ∈ ℝ is the log-partition function, which ensures

that the distribution integrates to one.

One parametric member of the exponential family is fully determined by

the selection of 𝑻 and ℎ , whereas 𝜼 determines one specific distribution

of the family. For example, the Normal distribution forms an exponen-

tial family with 𝑻(𝑥) = [𝑥 𝑥2] and ℎ(𝑥) = 1/
√

2𝜋 and, similarly, the

truncated Normal distribution within the interval [𝑎, 𝑏] also forms an

exponential family with same 𝑻 and ℎ(𝑥) = 1{𝑎≤𝑥≤𝑏}/
√

2𝜋 .

The exponential family is the most-studied family of distributions in

statistics, as it enjoys uncountable nice properties such as: i) forming

the ‘probability manifold’ that lies the foundations of information geo-

metry [4]; ii) having conjugate priors, vital for the development of[4] Amari and Nagaoka (2000), ‘Methods

of information geometry.’

7.3 Latent-variable models 69

Bayesian statistics; or iii) being the only family in the real line with

sufficient statistics of finite dimension, given infinite amount of data

(Pitman-Koopman-Darmois theorem). For our purposes, however, it

suffices to say that it is a family analytically nice to work with, as well as

flexible enough to model most real-world observed data.

In statistics, it is a common practice to not work with 𝜼 directly, but rather

use an alternative parametrization 𝜽 , e.g., the mean 𝜇 and standard

deviation 𝜎 in the Normal distribution, such that 𝜼 = 𝜼(𝜽) . Therefore, it

is also common in ML to work with these alternative parametrizations

directly, e.g., having a neural network that outputs the mean. It is worth

noting, however, that sometimes it is more convenient to work directly

with 𝜼 , and indeed we will use neural networks to parametrize the

natural parameters in Chapter 8 and part of Chapter 9.

7.3 Latent-variable models

7.3.1 Mixture model 70
7.3.2 Matrix factorization . . . 70
7.3.3 Variational autoencoders 71

In this part, we focus on the broad class of latent-variable models, which

assume that each of the i. i.d. observed variables x𝑛 are generated as a

stochastic function after observing: i) a local latent variable, z𝑛 ; and ii) a

global latent variable, 𝜷 . Namely, the joint distribution takes the form:

𝑝𝜽(X,Z, 𝜷) = 𝑝(𝜷)
𝑁∏
𝑛=1

𝑝(z𝑛)𝑝𝜽(x𝑛 | z𝑛 , 𝜷) , (7.4)

x𝑛z𝑛
𝑁

𝜷

Figure 7.1: Graphical model of a general

latent-variable model.

where Z = {z𝑛}𝑁𝑛=1
is the random matrix composed of all the local latent

variables. As the name indicates, latent variables are unobserved, and

their prior distributions in Equation 7.4 needs then to be fixed beforehand.

Moreover, different choices for the latent variables and the observed

likelihood define different latent-variable models.

Inference. To perform model inference, i. e., to learn the parameters

of the model that explain the data, in this part we focus on black-box

variational inference (BBVI) [160]. In BBVI we solve two problems at [160] Ranganath, Gerrish and Blei (2014),

‘Black Box Variational Inference.’
once: besides learning the parameters that explain the likelihood of our

data in Equation 7.4, we also learn an approximation to the posterior
distribution of our latent variables, Z and 𝜷 . In other words, we have

an additional model 𝑞𝝓 with parameters 𝝓 such that

𝑞𝝓(Z, 𝜷 | X) ≈ 𝑝𝜽(Z, 𝜷 | X) =
𝑝𝜽(X,Z, 𝜷)
𝑝𝜽(X)

, (7.5)

where 𝑝(X) is the marginal distribution of the joint in Equation 7.4. BBVI

learns the parameters 𝜽 and 𝝓 by performing stochastic gradient ascent
4

4: In practice, using any DL optimizer

over stochastic gradients.
to maximize the evidence lower bound (ELBO), i. e.,

ELBO(𝜽,𝝓) = 𝔼𝑞𝝓(Z,𝜷)[log 𝑝𝜽(X | Z, 𝜷)] − KL(𝑞𝝓(Z, 𝜷) ∥ 𝑝(Z, 𝜷)) , (7.6)

where KL denotes the Kullback-Leibler divergence (KL). The intuition

here is that the first term of Equation 7.6 serves as a ‘reconstruction loss’,

whereas the second term works as a regularization term to keep the

approximation to the posterior close to the prior distribution.

http://proceedings.mlr.press/v33/ranganath14.html

70 Chapter 7 Deep Learning and Probabilistic Modelling

The ELBO is far from the only loss to use within the BBVI framework,

and we will explore more complex loss functions in Chapter 9. Now, we

briefly review the models that we will use in Chapters 8 and 9.

7.3.1 Mixture model

First, we introduce mixture models [54], which build arbitrarily complex[54] Everitt (1996), ‘An introduction to

finite mixture distributions.’
distributions by combining 𝑀 simple distributions. In other words, given

a datapoint x𝑛 , a mixture model assumes that it was generated from one

of the 𝑀 simple distributions, chosen at random.

Remark 7.2 From a Bayesian stand-

point, 𝑝(𝜷) is usually the conjugate

prior of the likelihood. However, as

we will select the likelihood of each

x𝑛𝑑 based on the properties of the

d-th modality, we keep the prior as a

standard normal.

This is not a big setback, as we only

use the priors to numerically com-

pute the KL in Equation 7.6.

A mixture model defines the global latent R.V. 𝜷 as the parameters of all

the distributions, and given an element of the dataset x𝑛 , it chooses the

specific cluster via the cluster-assignment local latent R.V. z𝑛 . Therefore,

a mixture model defines the priors of 𝜷 and z𝑛 as

𝑝(𝜷) B N (0, 𝑰) , and 𝑝(𝜋𝑛) B U(1, 𝑀) , (7.7)

and the likelihood function as

𝑝𝜽(x𝑛 | z𝑛 , 𝜷) B 𝑝(x𝑛 ; z⊤𝑛 𝜷) , (7.8)

where z𝑛 is a one-hot vector encoding the selected cluster. For the posterior

distributions, a mixture model assumes the following factorization

𝑞𝝓(Z, 𝜷 | X) = 𝑞𝝓(𝜷 | X)
𝑁∏
𝑛=1

𝑞𝝓(z𝑛 | x𝑛) , (7.9)

where

𝑞𝝓(𝜷 | X) B N (𝜇,Σ) , and 𝑞𝝓(z𝑛 | x𝑛) B Cat(𝜋𝑛) , (7.10)

and where 𝝓 B [𝜇 Σ 𝜋1 𝜋2 . . . 𝜋𝑁] are the parameters we need to

learn using the ELBO. Moreover, note that in this model 𝜽 B ∅ , i. e., we

do not have likelihood parameters to learn.

Optimizing discrete variables. In order to learn the parameters 𝜋𝑛
with automatic differentiation, we need to approximate the sampling

from a categorical distribution, since it is a non-differentiable function.

To this end, we replace the categorical distribution during training with

a Gumbel-Softmax distribution [81] to learn the parameters 𝜋𝑛 , and use[81] Jang, Gu and Poole (2017), ‘Categor-

ical Reparameterization with Gumbel-

Softmax.’

a regular categorical distribution during evaluation.

7.3.2 Matrix factorization

Following the previous section, maybe the best way of understanding the

matrix factorization model [172] is as an extension of the clustering model,[172] Salakhutdinov and Mnih (2007),

‘Probabilistic Matrix Factorization.’
in which we replace the discrete cluster assignments for continuous

variables. Specifically, we now define the priors of 𝜷 and z𝑛 as

𝑝(𝜷) B N (0, 𝑰) , and 𝑝(𝜋𝑛) B N (0, 𝑰) , (7.11)

and with the same form for the likelihood as before,

𝑝𝜽(x𝑛 | z𝑛 , 𝜷) B 𝑝(x𝑛 ; z⊤𝑛 𝜷) , (7.12)

https://openreview.net/forum?id=rkE3y85ee
https://proceedings.neurips.cc/paper/2007/hash/d7322ed717dedf1eb4e6e52a37ea7bcd-Abstract.html

7.3 Latent-variable models 71

where, as mentioned before, z𝑛 is now a continuous vector of the same

size as 𝜷 . We assume the same posterior factorization as in the mixture

model, i. e.,

𝑞𝝓(Z, 𝜷 | X) = 𝑞𝝓(𝜷 | X)
𝑁∏
𝑛=1

𝑞𝝓(z𝑛 | x𝑛) , (7.13)

but this time with

𝑞𝝓(𝜷 | X) B N (𝜇𝜷 ,Σ) , and 𝑞𝝓(z𝑛 | x𝑛) B N (𝜇𝑛 , 𝜎) , (7.14)

where we note that the standard deviation 𝜎 is shared across samples.

Again, we have that the likelihood has no parameters to optimize, 𝜽 B ∅ ,

and therefore we only need to learn the parameters for the posterior

approximation, 𝝓 B [𝜇𝜷 Σ 𝜎 𝜇1 𝜇2 . . . 𝜇𝑁] .

7.3.3 Variational autoencoders

Variational autoencoders (VAEs), popularized by Kingma and Welling

[93] in 2014, are a well-established class of DL probabilistic models. In [93] Kingma and Welling (2014), ‘Auto-

Encoding Variational Bayes.’
short, they are a class of probabilistic models that heavily rely on neural

networks, and that are able to easily scale up to a million of samples.

x𝑛z𝑛
𝑁

Figure 7.2: Graphical model of a VAE.

Compared with the previous models, VAEs show two main differences.

First, VAEs lack global latent variables, so they only model the local

variables, z𝑛 . Second, unlike the previous models, VAEs have a more

flexible linking function describing how the latent variables influence the

likelihood function. Namely, it is usually assumed to have a standard

Gaussian as prior, i. e.,
𝑝(z𝑛) B N (0, 𝑰) , (7.15)

and the likelihood is of the form

𝑝𝜽(x𝑛 | z𝑛) B 𝑝(x𝑛 ; 𝜼𝜽(z𝑛)) , (7.16)

where 𝜼𝜽 is a neural network with parameters 𝜽 that takes z𝑛 as input,

and outputs the parameters of the likelihood function. Once again, the

approximation to the posterior is assumed to factorize per sample, i. e.,

𝑞𝝓(Z | X) B
𝑁∏
𝑛=1

𝑞𝝓(z𝑛 | x𝑛) , (7.17)

Remark 7.3 VAEs share many

similarities with classical autoen-

coders [65] and, hence, it is common

in the literature to refer to 𝑞𝝓 and 𝑝𝜽
as encoder and decoder, respectively.

where, similar to the likelihood function, we assume the posterior for

each local variable to be a Gaussian distribution parametrized by a neural

network, i. e.,
𝑞𝝓(z𝑛 | x𝑛) B N (𝜇𝝓(x𝑛),Σ𝝓(x𝑛)) , (7.18)

where 𝜂𝝓 = [𝜇𝝓 Σ𝝓] is a neural network with parameters 𝝓 that takes

x𝑛 as input, and outputs the mean and covariance of the Gaussian

posterior. In practice, the specific way that the posterior is parametrized

can slightly change, e.g., by keeping the covariance matrix fixed, shared

across samples, or by modelling only the diagonal.

In the following, we present different extensions of the vanilla VAE

architecture introduced above, that will become relevant in Chapter 9.

http://arxiv.org/abs/1312.6114

72 Chapter 7 Deep Learning and Probabilistic Modelling

Heterogeneous-Incomplete VAE

The heterogeneous-incomplete VAE (HI-VAE) [143] is a model specialized[143] Nazabal, Olmos, Ghahramani and

Valera (2020), ‘Handling incomplete het-

erogeneous data using VAEs.’

on handling heterogeneous data.
5

While HI-VAEs differ from a standard

5: Remember, in the heterogeneous case

we assume each x𝑑 to be unimodal.

VAE in several technical aspects, e.g., including a data normalization

layer for each type of likelihood, here we present the main differences in

terms of the probabilistic model it defines. Specifically, the main change

in HI-VAE is the introduction of an additional local latent variable, s𝑛 ,

that renders a hierarchical structure in the probabilistic model. Similar to

x𝑛z𝑛

s𝑛

𝑁

Figure 7.3: Graphical model of a HI-VAE.

the mixture model introduced in Subsection 7.3.1, the pair (s𝑛 , z𝑛) forms

a uniform Gaussian mixture model prior, i. e.,

𝑝(s𝑛) B U(1, 𝑀) , and 𝑝(z𝑛 | s𝑛) B N (s⊤𝑛𝜇z , 𝑰) , (7.19)

where s𝑛 is a one-hot encoding of the same size as the vector of mixture

means, 𝜇z . Now, the complete joint distribution is of the form

𝑝𝜽(X,Z, S) =
𝑁∏
𝑛=1

𝑝𝜽(x𝑛 | z𝑛 , s𝑛)𝑝(z𝑛 | s𝑛)𝑝(s𝑛) , (7.20)

where S = {s𝑛}𝑁𝑛=1
, and where the likelihood is parametrized by a neural

network with parameters 𝜽 , i. e.,

𝑝𝜽(x𝑛 | z𝑛 , s𝑛) B 𝑝𝜽(x𝑛 ; 𝜂𝜽(z𝑛 , s𝑛)) . (7.21)

For the posterior approximation, HI-VAEs factorize it akin to the prior,

𝑞𝝓(𝒁 , 𝑺 | 𝑿) =
𝑁∏
𝑛=1

𝑞𝝓(z𝑛 | s𝑛 , x𝑛)𝑞𝜙(s𝑛 | x𝑛) , (7.22)

where the posteriors for z𝑛 and s𝑛 are, respectively, Gaussian and cat-

egorical distributions whose parameters are given by neural networks,

𝑞𝝓(z𝑛 | s𝑛 , x𝑛) B N (𝜇𝝓(s𝑛 , x𝑛),Σ𝝓(s𝑛 , x𝑛)) , and (7.23)

𝑞𝝓(s𝑛 | x𝑛) B Cat(𝜋𝝓(x𝑛)) , (7.24)

where we use the Gumbel-Softmax distribution [81] during training.[81] Jang, Gu and Poole (2017), ‘Categor-

ical Reparameterization with Gumbel-

Softmax.’

Mixture-based multimodal VAEs

In the context of multimodal data,
6

one recurrent application researchers6: Where the variables x𝑑 are, in general,

multidimensional.
seek for is conditional generation, i. e., the ability of sampling a modality

having observed a different one, while representing the same underlying

concept.
7

However, if we have a single encoder that takes all modalities7: For example, sample the caption for a

given image, or vice versa.
as input, handling a missing modality is not straight-forward.

Mixture-based multimodal VAEs solve this problem by fully factorizing

the network architecture: instead of using one VAE, these type of models

create 𝐷 VAEs—one per modality, as we described at the beginning of

Subsection 7.3.3—and connect them through the local latent variables by

considering the posterior approximation a mixture model of the form:

𝑞𝝓(z𝑛 | x𝑛) =
1

𝑀

∑
𝐴∈A

𝑞𝐴(z𝑛 | x𝑛𝐴) , (7.25)

https://openreview.net/forum?id=rkE3y85ee

7.4 Modality collapse and multitask learning 73

where A ⊂ P(𝐷) is a subset of all the possible subsets of modalities, and

𝑞𝐴(Z | X𝐴) is known as an expert, and it is defined as the product of all

the posteriors of the modalities in 𝐴 ⊂ {1, 2, . . . , 𝐷} , i. e.,

Remark 7.4 The notation ∝ means

‘proportional to’ and, in general, it

is not guaranteed that 𝑞𝐴 exists ex-

cept, e. g., in a product of Gaussian

distributions.

𝑞𝐴(z𝑛 | x𝑛𝐴) ∝
∏
𝑑∈𝐴

𝑞𝝓𝑑
(z𝑛 | x𝑛𝑑) . (7.26)

Recently, a number of works have proposed multimodal VAEs following

this structure, and we can specify them by choosing a specific value for

the ‘mixture of experts’ set A. For example, we employ the following

multimodal VAEs in Chapter 9:

MVAE [213]: A = {{1, 2, . . . , 𝐷}} ,

MMVAE [185]: A = {{1}, {2}, . . . , {𝐷}} ,

MoPoE [199]: A = P(𝐷) ,

which consider, respectively, a single joint expert, all unimodal experts,

and every possible expert we can define by combining modalities.

7.4 Modality collapse and MTL

In this section, we introduce the concept of modality collapse, and draw

the initial connections between probabilistic modelling in DL and MTL.

Inductive biases. Similar to MTL, PGMs change their objective through

an inductive bias. However, in this case, the probabilistic setting makes

it clear: as we discussed in Chapter 2, PGMs exploit the synergetic

information across modalities by optimizing the joint density, rather

than the 𝐷 marginals individually. In this way, they can also model the

dependencies between modalities.

Modalities as tasks. For the purposes of this discussion, let us start

with a concrete example to get a feeling on the commonalities between

modalities and tasks. If we recall from Part I, we had a set of 𝐾 tasks who

were commonly optimized by adding up their losses, i. e.,
∑
𝑘 𝐿𝑘 . Now,

instead, we have a set of 𝐷 modalities, and we learn to model the joint

likelihood in Equation 7.2 by optimizing the ELBO in Equation 7.6 and,

putting both equations together,

ELBO(𝜽,𝝓) =
𝐷∑
𝑑=1

𝔼𝑞𝝓(Z,𝜷)[log 𝑝𝑑(X𝑑; 𝜼𝑑(Z, 𝜷; 𝜽))]

− KL(𝑞𝝓(Z, 𝜷) ∥ 𝑝(Z, 𝜷)) . (7.27)

We can now see in the first term a ‘sum of losses’ with shared parameters

𝜽 similar to that from MTL. From Equation 7.27, the initial connection

between probabilistic modelling and MTL should be clear. Therefore, it

is sensible to expect more similarities in terms of similar issues, concepts,

and solutions, between both frameworks and, indeed, we will see in the

following chapters that to be the case.

74 Chapter 7 Deep Learning and Probabilistic Modelling

Comparability. In Chapter 6, we introduced the concept of task incom-

parability within the context of MTL. In short, we a priori cannot directly

compare quantities coming from different sources, as they have disparate

ranges and semantics, especially if the set of tasks is heterogeneous.
8

This8: E.g., classification v. s. regression.

very same comparability issue exists in probabilistic modelling, where we

cannot a priori compare the (log-)likelihoods of two different modalities.

Far from obscure, this is a well-known concept, and it is particularly

clear if one modality is continuous and the other discrete; in that case,

we would be comparing two completely different objects, respectively, a

probability density and a probability mass function.

Impartiality. In Section 4.5 from Part I, we discussed that, without

any knowledge on the preferences of the decision maker (DM), one

sensible approach in multi-objective optimization (MOO) was to consider

a no-preference method which, in layman terms, means that we remain

impartial towards the importance of the individual objectives. Moreover,

we also introduced task impartiality, an analogue objective in MTL which

refers to the desire of learning all tasks together, without overlooking any

of them. Therefore, it should be of no surprise to find a similar concept

in probabilistic modelling.

If we consider the analogies drawn above, the natural approach would be

to think of ‘modality impartiality’, in which we want to remain impartial

toward which modality we learn. While intuitively true, it is an overly

vague definition, as PGMs are usually built with a purpose or application

in mind. For example, in the basic use-case in which we want to perform

joint generation,
9

it is vital that we achieve a good likelihood fit for all9: I. e., sampling x by first sampling z
and 𝜷 from the prior distribution.

modalities during training. If, instead, we want to perform more complex

tasks such as imputing missing modalities given the observed ones, our

impartiality goals would not only concern being impartial towards the

likelihood terms, but also towards their posteriors and the modalities we

use for conditioning. We will expand this idea later in Chapter 9.

We encompass all these cases under the common adjective impartial.
Therefore, we want in general to achieve modality impartiality and, to

this end, the PGMs should go through an impartial learning process

via impartial optimization. Whether our goal is to achieve likelihood

impartiality (Chapters 8 and 9), or more involved variants of these

concepts such as expert impartiality (Chapter 9), should be explicitly

stated and will be clear throughout the thesis.

Modality collapse. The paragraphs above should already make us raise

an eyebrow: ‘If, as in MTL, we have a sum of incomparable quantities,

should we not observe some form of negative transfer?’ We indeed should

and, only recently, a number of works have explicitly talked about the

difficulties of training PGMs in this setting [120, 143, 185]. For example,

quoting Nazabal et al. [143]:

“Preventing a few dimensions of the data dominating the

training is a crucial aspect to effectively deploy deep generat-

ive models suitable for heterogeneous data.”

In this thesis, we refer to this limitation of PGMs as modality collapse
where, similar to negative transfer, the model focuses on a subset of

7.4 Modality collapse and multitask learning 75

the modalities, overlooking the rest of them (e.g., by fitting the image

while neglecting the caption).

0 1 2 3 4 5 6 7 8 9 10

Original
Generated

0 1 2 3 4 5 6 7 8 9 10

Original
Generated

Figure 7.4: Histogram of a categorical

R.V. showing the effects of modality col-

lapse on a tabular dataset (top), and the

same histogram of a model without mod-

ality collapse (bottom).

To better exemplify the effects of modality

collapse, we show in Figure 7.4 a real example on a VAE extracted from

the experiments in Chapter 9.

Gradient conflict and probabilistic constraints. Equation 7.27 hints us

that gradient conflict will appear in the first term of the loss, and this

is indeed the case. However, it should also be apparent that there exist

additional challenges and constraints that should be taken into account.

First, Equation 7.27 has an additional regularization term which does not

directly involve any modality. Moreover, it is a common practice to train

PGMs with more sophisticated losses than the ELBO which, e.g., involve

the use of non-linear scalarization functions. Second, the probabilistic

setting imposes additional constraints. For example, the joint likelihood of

x should always integrate to one and, thus, naively multiplying each log-

likelihood in Equation 7.27, e.g., employing a gradient-conflict approach

like GradNorm [26], would break this constraint.

We deepen into these connections to MTL and how to overcome the

aforementioned challenges in the following chapters. In Chapter 8, we

attempt to achieve likelihood impartiality by pre-processing the data, and

thus preserving probability constraints. In Chapter 9, instead, we identify

the sub-computational graphs of the training process where gradient

conflict is located, and leverage existing MTL solutions to palliate the

effects of gradient conflict.

On Modality Collapse
and Data Preprocessing 8.

8.1 Problem Statement 78
8.2 Impartial learning 79
8.3 Scaling & smoothness . . . 79
8.4 Lipschitz standardization . 82
8.5 Empirical evaluation 84
8.6 Concluding remarks 86

Des einen Einsamkeit ist

die Flucht des Kranken;

des anderen Einsamkeit

die Flucht vor den Kranken.

Friedrich Wilhelm Nietzsche

�
github.com/adrianjav/lipstd

This chapter is based on the content of:

[I]: Javaloy and Valera (2020), ‘Lipschitz

standardization for multivariate learn-

ing.’

In the previous chapter, we discussed how approaches like black-box

variational inference (BBVI) have enabled probabilistic generative models

(PGMs) to scale up, and are widely-used to learn the joint likelihood of

our data, being variational autoencoders (VAEs) a remarkable example.

However, we also argued that modality collapse is a common problem,

where the model fits only a subset of the observed variables, leading to

poor results in real-world applications. In this chapter, we investigate

how data-preprocessing affects modality collapse.

To motivate the chapter, let us go through an illustrative example in

Figure 8.1, where we want to model the Adult dataset [48] using a simple

VAE. First, we follow the textbook and standardize the continuous vari-

ables as a preprocessing step. The final model (std) does a reasonable

job fitting the variable Final weight, but a poor one with the discrete

variable Occupation. We relax the constraint across the categorical vec-

tors, and model each as Bernoulli distributions (std-bern),
1

which works 1: Introduced in Subsection 8.4.1 as the

Bernoulli trick.
much better. As discrete data cannot be standardized, we relax them even

further, and treat them as continuous variables (std-gamma) that can be

standardized.
2

Unexpectedly, when we reconstruct data, the log-normal 2: Again, introduced in Subsection 8.4.1

as the Gamma trick.
variable is really poorly modelled. If we were to use Lipschitz standard-

ization instead (lip-gamma), introduced in Section 8.4, then we would be

able to preprocess all variables and capture them significantly better.

In this chapter, we first show that data standardization often helps

impartial learning with common continuous distributions, such as the

Gaussian distribution (Section 8.3). Unfortunately, often is not always.

Hence, we propose Lipschitz standardization to scale the data such that

the Lipschitz smoothness of the log-likelihood is comparable across vari-

ables (Section 8.4). As illustrated in Figure 8.1, Lipschitz standardization

facilitates a more accurate fitting across all variables. Finally, our results

in Section 8.5 show the effectiveness of the proposed method as a step

forward towards impartial learning in PGMs.

Figure 8.1: Marginals of continuous (left)
and discrete (right) variables from the

Adultdataset reconstructed from trained

VAEs with different preprocessing. All

plots are drawn in the original data space.

See the accompanying text for a descrip-

tion of the methods.

https://github.com/adrianjav/lipstd

78 Chapter 8 On Modality Collapse and Data Preprocessing

8.1 Problem Statement

8.1.1 Data preprocessing . . . 78 In this chapter, we assume the same setup as in Chapter 7. That is, we

assume that there is a multimodal 𝐷-dimensional random variable (R.V.)
x B [x1 x2 . . . x𝐷] ∼ 𝑃x whose distribution we want to model using a

PGM, as well as an input dataset X = {𝒙𝑛}𝑁𝑛=1

i. i. d.∼ 𝑃x of 𝑁 i. i.d. samples.

Moreover, we take a heterogeneous modelling perspective, in which

we make no assumptions on the distribution of each unidimensional

modality, x𝑑 , and thus we factorize the likelihood model, i. e.,

𝑝(x; 𝜽) =
𝐷∏
𝑑=1

𝑝𝑑(x𝑑; 𝜼𝑑(𝜽)) , (8.1)

where 𝑝𝑑 is a member of the exponential family,
3

and 𝜼𝑑 denotes their3: See Section 7.2 in Chapter 7.

natural parameters as a function of 𝜽 . Our goal then is to learn values

for the parameters 𝜽 that properly fit each modality likelihood.

We consider latent variable models (LVMs) as our PGMs, and BBVI [160]

as our training framework.
4

In short, LVMs assume that each observed4: However, we are positive that the res-

ults should translate to others frame-

works such as maximum likelihood es-

timation (MLE).

variable is generated after a local latent variable, z𝑛 , and a global one, 𝜷 ,

whose joint distribution is of the form

𝑝𝜽(X,Z, 𝜷) = 𝑝(𝜷)
𝑁∏
𝑛=1

𝑝(z𝑛)𝑝𝜽(x𝑛 | z𝑛 , 𝜷) . (8.2)

BBVI is then used to jointly learn the likelihood 𝑝𝜽(X,Z, 𝜷) and the

x𝑛z𝑛
𝑁

𝜷

Figure 8.2: Graphical model of a general

latent-variable model.

posterior distribution over the latent variables 𝑞𝝓(Z, 𝜷 | X) , where 𝝓 are

the set of parameters for the posterior. Namely, BBVI finds the values for

𝜽 and 𝝓 by maximizing the evidence lower bound (ELBO),

ELBO(𝜽,𝝓) = 𝔼𝑞𝝓(Z,𝜷)[log 𝑝𝜽(X | Z, 𝜷)] − KL(𝑞𝝓(Z, 𝜷) ∥ 𝑝(Z, 𝜷)) , (8.3)

using stochastic gradient optimization over the parameters.

As discussed in Section 7.4, each modality contributes additively to

the gradient computation in Equation 8.3, whereas the data do not

directly affect the second term. Therefore, LVMs can suffer from gradient

conflict, and thus from modality collapse. Similarly, to study the effect of

data preprocessing, we only need to study its effect on the first term of

Equation 8.3, i. e., on the (scaled) log-likelihoods.

8.1.1 Data preprocessing

In this chapter, we focus on data-scaling preprocessing algorithms of

the form �̃� = 𝜔𝑥 since they: i) preserve important properties of the

data distribution, such as tails; and ii) are broadly used in practice [73].[73] Han, Pei and Kamber (2011), ‘Data

mining: concepts and techniques.’
Besides, we assume that no method shifts data,

5
as it can violate data

5: However, as a first step we centre any

(log-)normal R.V. in the experiments.

constraints (e.g., non-negativity). Our main focus is on three broadly-used

data scaling methods:

▶ Standardization: �̃� = 𝑥 / std𝑑 (std)

▶ Normalization: �̃� = 𝑥 /max𝑑 (max)

▶ Interquartile range: �̃� = 𝑥 / iqr𝑑 (iqr)

8.2 Multivariate impartial learning 79

where we divide, in order, by the empirical standard deviation, absolute

maximum, and interquartile range of the 𝑑-th modality.

Notation. To avoid clutter, in this chapter we use the shorthand ℓ𝑑(𝜽)
for the log-likelihood of the 𝑑-th modality, ℓ𝑑(𝜽) B log 𝑝𝑑(𝑥𝑑; 𝜼𝑑(𝜽)) .
Similarly, we use a tilde as a shorthand to refer to the scaled counterpart

of, e.g., a variable (�̃�), a parameter (�̃�), or a log-likelihood (ℓ̃).

8.2 Multivariate impartial learning

As discussed above, our goal is to prevent modality collapse in LVMs

by properly scaling the data as a preprocessing step, i. e., we want to

incentivize an impartial learning process. We could express this objective

by saying that we want, at each step 𝑡, that the normalized log-likelihood

improvement is the same across modalities, i. e.,

ℓ𝑑(𝜽𝑡+1) − ℓ𝑑(𝜽𝑡)
ℓ𝑑(𝜽0)

= 𝐶𝑡 for every 𝑑 ∈ {1, 2, . . . , 𝐷} , (8.4)

where 𝜽0

denotes the parameters at initialization, and 𝐶𝑡 the shared

constant improvement at step 𝑡. At first, however, Equation 8.4 seems like

a hard objective to work with. By looking instead at the learning process

through the gradients, we can make our goal more amenable.

Lipschitz-smoothness. To this end, let us first introduce the class of

𝐿-smooth functions, which are a class of functions extensively studied

in machine learning (ML) optimization as they enjoy convergence guar-

antees in gradient descent [144]. Specifically, a function ℓ (𝜽) is called [144] Nesterov (2004), ‘Introductory Lec-

tures on Convex Optimization - A Basic

Course.’

𝐿-smooth on 𝑄 w.r. t. 𝜽 if it is twice-differentiable and, for any 𝒂 , 𝒃 ∈ 𝑄 ,

it holds that

∥∇𝜽ℓ (𝒂) − ∇𝜽ℓ (𝒃)∥ ≤ 𝐿 ∥𝒂 − 𝒃∥ . (8.5)

Then, instead of looking at the log-likelihood differences as in Equa-

tion 8.4, we can focus on the gradient differences, i. e.,

∥∇𝜽ℓ𝑑(𝜽𝑡+1

𝑑
) − ∇𝜽ℓ𝑑(𝜽𝑡𝑑)∥

∥∇𝜽ℓ𝑑(𝜽0

𝑑
)∥

= 𝐶𝑡 for every 𝑑 ∈ {1, 2, . . . , 𝐷} , (8.6)

and, if we were to force equal (tightest) 𝐿-smoothness across modalities,

then we would have that

∥∇𝜽ℓ𝑑(𝜽𝑡+1) − ∇𝜽ℓ𝑑(𝜽𝑡)∥ ≤ 𝐿 ∥∇𝜽ℓ𝑑(𝜽0

𝑑
)∥︸ ︷︷ ︸

𝐶𝑡

∥𝜽𝑡+1 − 𝜽𝑡∥ . (8.7)

In practice, we presume a good initialization for 𝜽 such that the initial

gradient magnitudes are comparable across modalities, and thus we can

blend the term ∥∇𝜽ℓ𝑑(𝜽0

𝑑
)∥within 𝐶𝑡 .

6
6: Alternatively, we could always make

𝐶𝑡 depend on the initial value of each

modality, i. e., 𝐶𝑡
𝑑
B 𝐶𝑡 · ∥∇𝜽ℓ𝑑𝜽0

𝑑
∥ .

8.3 Data scaling and smoothness

8.3.1 Exponential family 80
8.3.2 Smoothness computation 81
8.3.3 Standardization 82

In this section, we first analytically study the impact that data scaling has

https://doi.org/10.1007/978-1-4419-8853-9

80 Chapter 8 On Modality Collapse and Data Preprocessing

Table 8.1: Multiplicative and additive

factors for some common continuous

distributions, see Proposition 8.1. When

𝑓𝑖 or 𝑔𝑖 are omitted, they are the con-

stant functions 1 and 0 , respectively. To-

gether with the distributions, we print

their traditional parametrization to help

the reader.

Distribution [Params] 𝑇1(𝑥) 𝑇2(𝑥)
(Log-)Normal [𝜇 𝜎] 𝑓1 = 𝜔 𝑓2 = 𝜔2

Gamma [𝛼 𝛽] 𝑔1 = log 𝜔 𝑓2 = 𝜔
Inverse Gaussian [𝜇 𝜆] 𝑓1 = 𝜔 𝑓2 = 1/𝜔
Inverse Gamma [𝛼 𝛽] 𝑔1 = log 𝜔 𝑓2 = 1/𝜔
Exponential [𝜆] 𝑓1 = 𝜔
Rayleigh [𝜎] 𝑓1 = 𝜔2

on the log-likelihood 𝐿-smoothness. Then, we compute the effect of data

standardization in specific, and find that, while if often helps to even the

𝐿-smoothness across modalities, in some cases it can also be harmful.

Similar to the way Santurkar et al. showed that batch normalization [80]

smooths out the optimization landscape [177], we show that data stand-[177] Santurkar, Tsipras, Ilyas and Madry

(2018), ‘How Does Batch Normalization

Help Optimization?’

ardization often smooths out the log-likelihood optimization landscape,

and it does so similarly across a wide range of log-likelihood choices.

Remark 8.1 This is a similar argu-

ment to the one of homogenizing

gradients w.r. t. 𝜽 or 𝒛 that we dis-

cussed in Part I. However, as we do

preprocessing, this is the only option.

Given that we work on preprocessing data and thus have no access

to the parameters, in the following we focus on the data-dependent

part of the gradient computation, i. e., on ∇𝜼ℓ (𝜼) . Assuming that the

model-dependent part ∇𝜽𝜼 is similar across modalities, we can see equal

𝐿-smoothness w.r.t. them implies equal 𝐿-smoothness w.r.t. the full

gradient, since ∇𝜽ℓ (𝜼(𝜽)) = ∇𝜼ℓ (𝜼) · ∇𝜽𝜼 .

8.3.1 Scaling the exponential family

We consider each observed modality 𝑥𝑑 to follow some distribution of

the exponential family,
7 i. e.,7: See Section 7.2 for an introduction.

𝑝(𝑥; 𝜼) = ℎ(𝑥) exp

[
𝜼⊤𝑻(𝑥) − 𝐴(𝜼)

]
, (8.8)

where𝜼 and𝑻(𝑥) are vectors of the same size 𝐼 . Most importantly, working

with the exponential family let us analytically relate the gradients of the

scaled and original log-likelihoods. Namely:

Proposition 8.1 Let 𝑝(𝑥; 𝜼) be a member of the exponential family

with 𝑥 ∈ ℝ and 𝜼 ∈ ℝ𝐼
, and let 𝜔 > 0 be the weight to scale the data,

i. e., �̃� B 𝜔𝑥 . Then, if every sufficient statistic can be factorized as

𝑇𝑖(�̃�) = 𝑓𝑖(𝜔)𝑇𝑖(𝑥) + 𝑔𝑖(𝜔) , it holds that:

𝜕
𝑗

�̃�𝑖
ℓ̃ (�̃�) = 𝑓𝑖(𝜔)𝑗 𝜕 𝑗𝜂𝑖ℓ (𝜼) , (8.9)

where 𝜕
𝑗
𝜂𝑖 and 𝜕

𝑗

�̃�𝑖
denote the 𝑗-th partial derivatives with respect to 𝜂𝑖

and �̃�𝑖 B 𝜂𝑖 / 𝑓𝑖(𝜔) , respectively.

Although the requirements of Proposition 8.1 look restrictive at first, many

common distributions fulfil them, as we report in Table 8.1. Note that,

in the case of the log-normal distribution, we can apply the proposition

using the scaling function 𝑥 ↦→ 𝑥𝜔 , instead of 𝑥 ↦→ 𝜔𝑥 . A complete

version of the proposition and its proof can be found in Appendix C.2.

https://proceedings.neurips.cc/paper/2018/hash/905056c1ac1dad141560467e0a99e1cf-Abstract.html

8.3 Data scaling and smoothness 81

8.3.2 Computing the local smoothness

As discussed at the beginning of the chapter, during preprocessing

we assume no knowledge on the model parameters, and therefore the

weights 𝝎 B [𝜔1 𝜔2 . . . 𝜔𝐷] cannot depend on them. Therefore,

in this chapter we consider that our transformations are performed

around the MLE estimator of the marginal natural parameters, which we

denote by �̂� . As an example, if we had a Gaussian R.V. with empirical

mean �̂� and standard deviation �̂� , we would consider �̂�1 = �̂� / �̂�2
and

�̂�2 = −1/2 �̂�2
.

We justify this unorthodox take on data preprocessing methods by noting

that standardization (std) scales the data such that it has unit variance

evaluated on the empirical parameters. That is, if we let std𝜼(𝜼) = �̃� be the

function scaling the natural parameters with the standardization weights,

then

Remark 8.2 We use 𝕍 𝑝[𝑓 (x)] to de-

note the variance of 𝑓 (x)when x ∼ 𝑝 ,

i. e., 𝔼𝑝[(x − 𝔼𝑝[x])2] .

𝕍 𝑝(x̃; std𝜼(�̂�))[x̃] = 1 , but this does not hold as we evaluate std𝜼
far from �̂� . To understand how data scaling affects the log-likelihood

𝐿-smoothness, we first need to introduce a similar local concept.

Infinitesimal 𝐿-smoothness. We introduce a suitable definition of 𝐿-

smoothness for an infinitesimally-small region centred around a point.

Namely, we say that ℓ is (infinitesimally) 𝐿-smooth around 𝜼 with respect

to 𝜂𝑖 if, for any 𝜖 > 0 , we can find a neighbourhood of 𝜼 such that ℓ is

locally 𝐿-smooth with respect to 𝜂𝑖 , up to an error of 𝜖 . In other words,

if we can find a neighbourhood 𝑄 of 𝜼 such that, for any 𝒂 , 𝒃 ∈ 𝑄 ,

∥∇𝜼ℓ (𝒂) − ∇𝜼ℓ (𝒃)∥ ≤ 𝐿 ∥𝒂 − 𝒃∥ + 𝜖 . (8.10)

Remark 8.3 Indeed, any 𝐿-smooth

function on 𝑄 is (infinitesimally) 𝐿-

smooth around any point in 𝑄 .

Note that this is a relaxation of the (local) 𝐿-smoothness in Equation 8.5.

Moreover, we have that ℓ is always ∥∇𝜼 𝜕𝜂𝑖ℓ (𝜼)∥-smooth around𝜼w.r. t.𝜂𝑖 .
Indeed, if we consider the first-order Taylor expansion of ℓ around 𝜼 (i. e.,
if we linearize ℓ at 𝜼), we have that

𝜕𝜂𝑖ℓ (𝜼 + 𝒉) − 𝜕𝜂𝑖ℓ (𝜼) = ∇𝜼 𝜕𝜂𝑖ℓ (𝜼) · 𝒉 + o(∥𝒉∥) , (8.11)

where 𝒉 ∈ ℝ𝐼
, and ∥𝒉∥ = 𝜖 for an arbitrarily small 𝜖 > 0 . Then, by

taking norms and using the Cauchy-Schwarz inequality, we obtain that

∥𝜕𝜂𝑖ℓ (𝜼 + 𝒉) − 𝜕𝜂𝑖ℓ (𝜼)∥ ≤ ∥∇𝜼 𝜕𝜂𝑖ℓ (𝜼)∥ · ∥𝒉∥ + ∥o(𝜖)∥ , (8.12)

that is, we have that ℓ is ∥∇𝜼 𝜕𝜂𝑖ℓ (𝜼)∥-smooth around 𝜼 w.r. t. 𝜂𝑖 .

Using this result and Proposition 8.1, we can then write the 𝐿-smoothness

of ℓ̃ around its scaled empirical parameters, �̂� ,
8

in terms of ∇𝜼 𝜕𝜂𝑖ℓ (�̂�) : 8: We abuse notation here and call �̂� the

scaled empirical parameters.

𝐿𝑖(𝜔) = ∥∇�̃� 𝜕�̃�𝑖 ℓ̃ (�̂�)∥ = | 𝑓𝑖(𝜔)| ∥∇�̃� 𝜕𝜂𝑖ℓ (�̂�)∥
= | 𝑓𝑖(𝜔)| ∥ 𝒇 (𝜔) ⊙ ∇𝜼 𝜕𝜂𝑖ℓ (�̂�)∥ , (8.13) Remark 8.4 For the exponential fam-

ily, the sum

∑
𝑖 𝐿𝑖 =

∑
𝑖∥∇𝜼 𝜕𝜂𝑖 ℓ (𝜼)∥

corresponds to the 𝐿2,1-norm of the

covariance of sufficient statistics, i. e.,
∥Cov(𝑻(x),𝑻(x))∥2,1 .

where 𝒇 (𝜔) B [𝑓1(𝜔) 𝑓2(𝜔) . . . 𝑓𝐼(𝜔)] , and ⊙ is the element-wise

(or Hadamard) multiplication. It is important to remark that, if ℓ is 𝐿𝑖-

smooth for each 𝜂𝑖 , then it is

∑
𝑖 𝐿𝑖-smooth with respect to 𝜼 . Similarly, if

a function ℓ1 is 𝐿1-smooth w.r. t. 𝜼 , and another function ℓ2 is 𝐿2-smooth

w.r.t. 𝜼 , then their sum ℓ1 + ℓ2 is (𝐿1 + 𝐿2)-smooth w.r.t. 𝜼 .
9

These 9: Note that, in that case, there could still

exist a tighter bound.
properties are proved in Appendix C.1.

82 Chapter 8 On Modality Collapse and Data Preprocessing

Figure 8.3: Log-scale plot of the 𝐿-

smoothness for different continuous log-

likelihoods around their true original

parameters, after standardizing. Dashed

lines correspond to discrete distributions.

To unify the distributions, we plot each

one as a function 𝜉 of their traditional

parameters.

0 2 4 6 8 10

ξ

100

102

104

106

L̃
st

d

Likelihoods and parametrization ξ

(Log)Normal µ/σ

Gamma α

Inv. Gaussian µ/σ

Inv. Gamma α− 2

Exponential λ

Rayleigh σ

Poisson λ

Bernoulli p

8.3.3 Smoothness and standardization

For the particular case of data standardization (std), we consider the

distributions shown in Table 8.1, and compute their 𝐿-smoothness around

�̂� after standardizing the data.

Figure 8.3 shows their 𝐿-smoothness as a function of their traditional

parameters.
10

The plot sheds some light on the reason why standardizing10: The full derivations are presented in

Appendix C.4.
works well in many cases, as it makes the 𝐿-smoothness around �̂�
comparable across modalities for many common log-likelihoods. For

example: i) the exponential and Rayleigh distributions have constant

values; ii) a centred (log-)normal distribution (𝜇 = 0) is 3-smooth; and

iii) the Gamma distribution is (approximately) 2-smooth as long as its

shape parameter 𝛼 (which is scale-invariant) is larger than one.

However, Figure 8.3 shows other cases where the Lipschitz constants

are not comparable. First, we see that some discrete distributions (e.g.,
Poisson) can have arbitrarily large 𝐿-constants. Besides, standardization

does not work well for all continuous variables. For example, suppose

that we have two variables following a standard normal and an inverse

Gamma with �̂� = 10, respectively. After standardizing, the normal R.V. is

one order of magnitude smoother.
11

However, it is possible to show using11: Concretely, the normal is 3-smooth

and the inverse Gamma 0.16-smooth.
Equation 8.13 that, by scaling the inverse Gamma variable by 𝜔2 = 2

instead of 𝜔2 = 1/std , both log-likelihoods would have been 3-smooth.

This is the key motivation for the proposed Lipschitz standardization.

8.4 Lipschitz standardization

8.4.1 Discrete data 83
8.4.2 In practice 84

Leveraging the insights from the previous section, we propose Lipschitz
standardization, a novel data-scaling algorithm that homogenizes the

𝐿-smoothness of each modality around their empirical parameters, thus

encouraging impartial learning. Intuitively, our algorithm puts the data

into a region of the parameter space where each dimension has similar

convergence rate guarantees.

Lipschitz standardization finds, for the 𝑑-th modality, the optimal weight

8.4 Lipschitz standardization 83

𝜔∗
𝑑

that makes the 𝐿-smoothness match a target smoothness 𝐿∗ , i. e.,

𝜔∗𝑑 B arg min

𝜔𝑑

(
𝐼𝑑∑
𝑖=1

𝐿𝑑𝑖(𝜔𝑑) − 𝐿∗
)

2

, (8.14)

where 𝐿𝑑𝑖(𝜔𝑑) are the scaled Lipschitz constants in Equation 8.13. We set

𝐿∗ = 1/(𝐷𝛼) , where 𝛼 is the initial learning rate set by the practitioner.

We motivate this choice following classical results on convex optimiza-

tion [144] which states that, given an 𝐿-smooth function ℓ (𝜽) , the optimal [144] Nesterov (2004), ‘Introductory Lec-

tures on Convex Optimization - A Basic

Course.’

step-size for gradient descent is 𝛼∗ = 1/𝐿 . As we fit multiple functions,

each one being 𝐿𝑑-smooth—each with different optimal learning rates,

we set the target smoothness such that the joint log-likelihood is both bal-

anced across modalities, and close to the one optimal for a given learning

rate,
12 i. e., 𝐿∗ = 1/(𝐷𝛼) and thus 𝐿 =

∑
𝑑 𝐿𝑑 ≈

∑
𝑑 1/(𝐷𝛼) = 1/𝛼 . 12: Set by the practitioner.

8.4.1 Discrete data

Up to this point, our algorithm only suits continuous data, as we can-

not scale discrete variables. However, real-world data often present

mixed continuous and discrete data types. Here, we extend Lipschitz

standardization to Bernoulli, Poisson, and categorical distributions.

Gamma trick. Our approach can be summarized in four steps:

i) dequantize the discrete data 𝑥 with additive noise, i. e., 𝑥 = 𝑥 + (1+ 𝜖) ;
ii) model 𝑥 as a Gamma R.V., and scale it with Lipschitz standardization

to ease impartial learning, �̃� = 𝜔𝑥 ; iii) train the model with �̃� to learn the

model parameters �̃� ; and iv) obtain the original distribution parameters,

𝜼 , from the unscaled continuous ones, 𝜼 .
13

13: A full description can be found in

Appendix C.3.1.

Additive noise. In the dequantization step above, we add a constant 1

to promote that the shape parameter 𝛼 of the Gamma likelihood is far

from zero, so that 𝐿1 does not become arbitrarily large.
14

Moreover, we 14: See Figure 8.3 and Appendix C.4 for

more details about the Gamma case.
select the noise 𝜖 such that its domain is a non-zero measure subset of the

unit interval, so that the original value is identifiable, and its distribution

preserves the original data shape as much as possible.

Recovering the original parameters. Bernoulli and Poisson distribu-

tions are characterized by their expected value. Hence, to recover their

distributional parameters on evaluation, we perform mean matching

between the original distribution and its unscaled Gamma counterpart.

Note that the mean of the discrete variable x is given by 𝜇 = 𝜇−𝔼[𝜖] − 1 ,

where 𝜇 is the mean of x , i. e., 𝛼 / 𝛽 under the unscaled Gamma distri-

bution with parameters 𝛼 and 𝛽 . Therefore, we estimate the mean of

the Bernoulli distribution as 𝑝 = max(0,min(1, 𝜇)), and the rate of the

Poisson as 𝜆 = max(𝛿, 𝜇), where 0 < 𝛿 ≪ 1 to ensure that 𝜆 is positive.

As the categorical distribution has several parameters, a Bernoulli trick
is applied first. Namely, we adopt a one-hot representation of the 𝑀-class

categorical distribution, and treat each class as independent Bernoulli

distributions, which are suitable for the Gamma trick. To recover the

categorical parameters, 𝝅 = [𝜋1 𝜋2 . . . 𝜋𝑀] , we take the mean of

https://doi.org/10.1007/978-1-4419-8853-9

84 Chapter 8 On Modality Collapse and Data Preprocessing

each Bernoulli variable, 𝜇𝑚 , and normalize them to sum up to one, i. e.,
𝜋𝑚 = 𝜇𝑚 /

∑
𝑖 𝜇𝑖 . Note that, when we apply Lipschitz standardization to

a categorical variable, we account for the fact that it has been divided into

𝑀 Gamma distributions, by setting their smoothness target to 𝐿∗ /𝑀 so

the total target remains unchanged, i. e.,
∑
𝑚 𝐿
∗
𝑚 = 𝐿∗ .

8.4.2 Lipschitz standardization in practice

Figure 8.4 summarizes the pipeline employed in this chapter, where wex𝑑 −→ x̃𝑑

𝜼𝑑 ←− �̃�𝑑

l
e
a
r
n

i
n

g

e
v
a
l
u

a
t
i
o
n

(a) Continuous data.

x𝑑 −→ x𝑑 −→ x̃𝑑

𝜼𝑑 ←− 𝜼𝑑 ←− �̃�𝑑

l
e
a
r
n

i
n

g

e
v
a
l
u

a
t
i
o
n

(b) Discrete data.

Figure 8.4: Pipeline in this chapter. For

training, data is transformed and their

natural parameters inferred. To evaluate,

the original parameters are recovered

from the transformed ones.

distinguish between the learning and evaluation steps.

First, in the learning step we use the scaled data �̃� , where we dequantize

the discrete modalities beforehand with the Gamma trick so that we can

scale them as well. During training, we optimize 𝜽 by using �̃� as input

data and infer the scaled likelihood parameters �̃� .

During the evaluation step, we need to undo the entire process. Specifically,

we recover the original likelihood parameters by transforming �̃� back

into 𝜼 , or in 𝜼 if the original variable were discrete. For the considered

likelihood functions, the mapping is given by 𝜼 = 𝒇 (𝜔) ⊙ �̃� , as described

in Proposition 8.1. For discrete variables, we then recover the original

parameters with a mapping 𝜼 ↦→ 𝜼 as described in Subsection 8.4.1.

Finally, we can use 𝜼 together with the original distributions.

Remark. We use Equation 8.13 and automatic differentiation to effi-

ciently compute the 𝐿-smoothness around �̂� , as well as root-finding

methods to find the optimal scaling factors 𝜔∗
𝑑

.
15

However, gradient15: Details in Appendix C.3.

descent and backpropagation can be used out-of-the-box to solve Equa-

tion 8.14 using 𝐿𝑑𝑖(𝜔𝑑) = ∥∇�̃� 𝜕�̃�𝑖 ℓ̃ (�̂�)∥ instead of Equation 8.13. As a

result, Lipschitz standardization is easily applicable to other distributions.

We defer other models and frameworks to future work.

8.5 Empirical evaluation

In this section, we ablate the individual components that form Lipschitz

standardization. Since preprocessing methods entirely rely on data, we

test them on missing data imputation problems, and show that Lipschitz

standardization reduces the overall imputation error without overlooking

any variable, which is especially clear in the more demanding settings.

Experimental setup. We consider six datasets from the UCI reposit-

ory [48] and apply BBVI to fit three PGMs: i) a mixture model, MM; ii) a[48] Dua and Graff (2017), ‘UCI Machine

Learning Repository.’
matrix factorization model, MF; and iii) a variational autoencoder, VAE.

We pick each modality distribution based on their observable proper-

ties
16

and, to provide a fair initialization across all methods and datasets,16: E.g., real positive or categorical data,

see Section 7.1 for a description.
continuous variables are always standardized beforehand. Appendix C.5

contains further details and the full tabular results.

http://archive.ics.uci.edu/ml

8.5 Empirical evaluation 85

−0.04 −0.02 0.00 0.02 0.04

−0.04

−0.02

0.00

0.02

0.04

max iqr std lip std-bern lip-bern std-gamma lip-gamma

0.00

0.50

1.00

MM MF VAE

Adult

0.00

0.50

1.00

MM MF VAE

Credit

0.00

0.50

1.00

MM MF VAE

spam

0.00

0.50

1.00

MM MF VAE

Wine

0.00

0.50

1.00

MM MF VAE

letter

0.00

0.50

1.00

MM MF VAE

Breast

Figure 8.5: Ranking across methods based on mean ranking (𝑹1, see Subsection 6.2.1) for different datasets and models (lower is better).

Each method appears only when applicable to the dataset, and it is shown in the same order as in the legend.

5
4

7

8

3

6
9

1

2

11

12

10

(a) Adult.

2
10

11

6

7

9

12 8

5

13

3

1

4

(b) Wine.

1110
8

7

9

6

3

4

1

16
17

13 14 15
12

24

21

22

23

20

18

19
5

2

(c) Credit.

−0.04 −0.02 0.00 0.02 0.04

−0.04

−0.02

0.00

0.02

0.04

mi

std

std-bern

std-gamma

lip-gamma

Figure 8.6: Per-modality rankings (farther from the centre is better) for different methods on the Adult, Wine, and Credit datasets. Solid

lines apply the Gamma trick, dashed lines the Bernoulli trick, and dash-dotted lines apply none. Green and blue numbers represent

discrete and continuous modalities.

Methods. We consider different combinations of preprocessing meth-

ods, which we clearly reflect in our naming nomenclature. Namely, we

scale continuous variables with: i) std, standardization; ii) max, normal-

ization; iii) iqr, divides by the interquartile range; and iv) lip, Lipschitz

standardization. If we treat discrete variables, we add the following

suffixes: i) bern, for the Bernoulli trick; and ii) gamma, if we add the

Gamma trick on top of that. For example, the proposed Lipschitz stand-

ardization applies the Bernoulli and Gamma tricks, and then Lipschitz

standardization to all the data, so we denote it as lip-gamma.

Metrics. Similar to Nazabal et al. [143], we evaluate the performance of [143] Nazabal, Olmos, Ghahramani and

Valera (2020), ‘Handling incomplete het-

erogeneous data using VAEs.’

missing-data imputation tasks using the normalized MSE for numerical

variables, and the error rate for nominal ones. In Figure 8.5 we compute

their mean ranking, 𝑹1, as described in Subsection 6.2.1, and show their

per-modality rankings in Figure 8.6.

Results. Figure 8.5 summarizes the results, averaged over three missing

rates of 10, 20, and 50 %, over 10 independent runs each.
17

We distinguish 17: More detailed results can be found

in Appendix C.6.
two main groups: i) the methods that keep discrete data unaltered, which

perform either equal or worse than the rest, with max performing signific-

antly worse in some cases, and lip providing comparable results to the

best counterpart; and ii) the methods which treat the categorical distribu-

tions in some way, performing equal or better than the former, and with

86 Chapter 8 On Modality Collapse and Data Preprocessing

0

1

M
F

Adult dataset

std-gamma

std-bern

std

lip

lip-bern

lip-gamma

1 2 3 4 5 6 7 8 9 10 11 12
0

1

V
A
E

Figure 8.7: Per-modality error (normalized MSE for numerical variables, and error rate for nominal ones) on the Adult dataset. (Top)
Matrix factorization. (Bottom) VAE. Note that all methods but lip-gamma overlook a subset of the variables. Green and blue numbers

represent discrete and continuous modalities, respectively.

those methods applying the Gamma trick being more robust in general.

These trends become particularly clear on the most demanding datasets

(Credit and Adult), where it clearly shows that applying Lipschitz stand-

ardization with the Bernoulli trick (lip-bern) beats standardization

(std-bern), even if we scale only continuous variables.

We study these results more closely in Figure 8.6, where we show the

average ranking per modality for a subset of the datasets and methods,

with the addition of mean imputation (mi) as a baseline. First, we observe

that mi tends to rank really well in one of the modalities, while performing

significantly bad in all the others. Interestingly, we find a lesser but similar

trend in both std and std-bern, where there are really long spikes in

their rankings, namely, std in Credit, and std-bern in Adult. Finally,

we find that both std-gamma and lip-gamma rank similarly well on most

of the modalities, and that lip-gamma covers the most area and more

uniformly than any other considered method, showing that indeed

Lipschitz-standardization helps towards an impartial learning.

To study robustness, we go more in detail, and focus on the Adult dataset

for the MF and VAEmodels, with Figure 8.7 showing the modality errors for

every std and lip variant. Remarkably, we find that lip-gamma improves

the overall imputation error across dimensions without overlooking any
variable. On the other hand, all std variants overlook some modalities,

including std-gamma, where we see that the 3rd modality of Adult

is completely ignored by the VAE model. More importantly, we note

that this behaviour is not exclusive of this particular case, as we find

similar trends in all experiments as numerically shown in Figures C.3

and C.4 and Tables C.4 to C.6 in Appendix C.5. These additional results

support the effectiveness of Lipschitz standardization, which improves

the performance across modalities on most settings, and does not completely
overlook a modality in any of the 540 independent runs.

8.6 Concluding remarks

In this chapter, we have studied how to tackle modality collapse from

the perspective of preprocessing methods, specifically using data-scaling

approaches. We have shed new insights on the behaviour of data scaling

and, in particular, data standardization, analytically showing that it

8.6 Concluding remarks 87

makes the log-likelihood comparably smooth around their empirical

parameters, for a wide range of common distributions.

Finally, we have proposed Lipschitz standardization, a data-scaling

algorithm that eases an impartial learning process by making the in-

finitesimal 𝐿-smoothness equal across all (discrete and continuous)

data modalities around their empirical parameters. The application

of Lipschitz standardization can therefore be seen as a soft-constraint

inductive bias towards achieving modality-impartial solutions. Our ex-

periments show that Lipschitz standardization outperforms existing

methods, especially when the data is highly heterogeneous.

Interesting research directions include considering other probabilistic

learning settings different from BBVI (e.g., Hamiltonian Monte-Carlo

methods [10]), as well as to investigate how to adapt our implementa- [10] Betancourt (2017), ‘A conceptual in-

troduction to Hamiltonian Monte Carlo.’
tion into existing probabilistic programming pipelines such as Pyro [11].

Moreover, we would also like to extend the ideas of Lipschitz standardiz-

ation to the in-processing setting, in which we can adapt the modality

weights during optimization.

https://arxiv.org/abs/1701.02434

Mitigating Modality Collapse
via Impartial Optimization 9.

9.1 Preliminaries 89
9.2 Impartial optimization . . 90
9.3 Extending our framework 93
9.4 Experiments 97
9.5 Concluding remarks . . . 101

Si se calla el cantor, calla la vida.

Porque la vida, la vida misma, es todo un canto.

Mercedes Sosa; Si se calla el cantor

�
github.com/adrianjav/impartial-vaes

This chapter is based on the content of:

[III]: Javaloy, Meghdadi and Valera

(2022), ‘Mitigating Modality Collapse in

Multimodal VAEs via Impartial Optim-

ization.’

In previous chapters, we have seen how latent variable models (LVMs)

can occasionally fit solely a subset of all the modalities, a problem

we refer to as modality collapse, and that we have tackled with data

preprocessing. While variational autoencoders (VAEs) [93] enjoy great

success in domains such as images, text, and temporal data [127, 203,

221], their application to multimodal data remains being a challenge.

In recent years, a number of tailored models for tabular [120, 143] and

multimodal data [185, 199] have emerged to model this type of data, yet

they still seem to suffer from the same issues to different extents.

In this chapter, we go beyond data preprocessing and study modality

collapse as a result of experiencing gradient conflict in specific parts

of the computational graph, which we refer to as impartiality blocks,
and introduce in Section 9.2. Then, we propose a training pipeline that

leverages existing gradient-conflict solutions from multitask learning

(MTL) to encourage an impartial optimization process that does not

favour a subset of modalities over the rest.

We show the flexibility of our approach by applying this training pipeline

to several VAE models previously proposed in the literature to fit mul-

timodal and tabular data (Section 9.3). Our empirical results on different

datasets, models, and training losses (Section 9.4) show that impartial

optimization results in a more accurate fit of the marginal, joint, and

conditional distributions over all modalities.

Notation. We extensively use the set indexing notation 𝒙𝐴 , where 𝐴 is

a set of indexes, e.g., z1:𝐾 denotes a sequence with indices ranging from

1 to 𝐾 . Moreover, we denote by 1 the vector full of ones, and by [·] the

concatenation operator.

9.1 Preliminaries

9.1.1 State-of-the-art 90In this section, we briefly introduce the concepts needed for the chapter.

Refer to Chapter 7 for a more detailed introduction.

Multimodal data. We consider the input data to be multimodal, i. e.,
to be composed of variables coming from different sources. Namely, we

consider as input i. i.d. samples from a multimodal random variable (R.V.)
x = [x1 x2 . . . x𝐷] , where the 𝑑-th modality is fully described by x𝑑 .

Note that we do not make any assumptions on the modalities, allowing

for x𝑑 of different shapes (e.g., images and their labels) and types (e.g.,
continuous v.s. discrete). We refer to x as heterogeneous when each

modality x𝑑 in x is unidimensional. Thus, we consider heterogeneous

data as a special case of multimodal data.

https://github.com/adrianjav/impartial-vaes

90 Chapter 9 Mitigating Modality Collapse via Impartial Optimization

VAEs [93]. These probabilistic generative models (PGMs) that model[93] Kingma and Welling (2014), ‘Auto-

Encoding Variational Bayes.’
the data by assuming the existence of some latent variable z . Specifically,

they learn the likelihood function that best approximates the input (aka.
decoder), 𝑝𝜽(x | z) , and an approximation to the posterior distribution

of z (aka. encoder), 𝑞𝝓(z | x) . During training, VAEs maximize a function

of the following form:

𝐿(𝜽,𝝓) = 𝔼x

[
𝔼z1:𝐾∼𝑞𝝓

[
log

1

𝐾

𝐾∑
𝑘=1

𝑝𝜽(x, z𝑘)
𝑞𝝓(z𝑘 | x)

]]
, (9.1)

where 𝑝𝜽(x, z) = 𝑝𝜽(x | z)𝑝(z) , and z1:𝐾 is an i. i.d. sequence of length 𝐾.

This formulation includes the original evidence lower bound (ELBO) [93],

and others like the importance weighted autoencoder (IWAE) loss [15].

One important detail here is that the functional form of 𝑝𝜽 (and 𝑞𝝓) is

usually fixed beforehand—e.g., as a normal distribution—and a neural

network determines its parameters, 𝜼 . Also remarkably, when dealing

with multimodal data, the usual practice is to assume that the likelihood

fully factorizes across modalities, i. e.,

𝑝𝜽(x | z) =
𝐷∏
𝑑=1

𝑝𝑑(x𝑑; 𝜼𝑑(z; 𝜽)) , (9.2)

where 𝑝𝑑 accounts for the statistical properties of x𝑑 .

9.1.1 State-of-the-art

Heterogeneous data. To this date, the most prominent VAEs found in

the literature are HI-VAE [143],
1

originally designed for missing-data im-1: We introduced it in Subsection 7.3.3.

putation tasks, andVAEM [120], designed instead for active data-acquisition

tasks. More recently, SHIVAE [8] has been proposed as an extension of

HI-VAE that also deals with temporal data.

Multimodal data. In this chapter, we focus on mixture-based VAEs,
2

2: Also introduced in Subsection 7.3.3.

which are an active area of research. While MVAE [213], MMVAE [185], and

MoPoE [199] are the reference models, different extensions compatible

with our framework keep being proposed, e.g., using alternative training

functions [186, 198]. For a survey on other multimodal methods, refer to

the works of, e.g., Baltrušaitis et al. [7] and Guo et al. [70].

9.2 Impartial optimization in multimodal VAEs

9.2.1 Our approach 92 In this section, we investigate the standard assumptions and goals made

when designing multimodal VAEs, as well as discuss the optimization

challenges that cause modality collapse. Then, we propose a flexible

learning pipeline to mitigate modality collapse.

First, let us bring multimodal modelling into context. When we think

of multimodal applications (e.g., missing-data imputation, or joint data-

generation), these are tasks that not only involve explaining the different

data modalities, but jointly capturing the interactions and dependencies

between each pair of modalities. In other words, the main—and often

http://arxiv.org/abs/1312.6114

9.2 Impartial optimization in multimodal variational autoencoders 91

𝒘1 𝜼
1

x 𝝓 z 𝜽sh y 𝒘2 𝜼
2

𝑝𝜽(x | z) 𝐿(𝜽,𝝓)

𝒘𝐷 𝜼𝐷

𝑞𝝓(z | x)

... ...

LI

(a) Forward pass.

𝒘1 ∇𝜼
1

𝑝𝜽

𝝓 ∇z𝐿 𝜽sh

∑𝐷
𝑑=1

𝒈𝑑 𝒘2 ∇𝜼
2

𝑝𝜽 ∇𝑝𝜽𝐿 𝐿(𝜽,𝝓)

𝒘𝐷 ∇𝜼𝐷 𝑝𝜽

∇𝑞𝝓𝐿

... ...

(b) Modified backward pass.

Figure 9.1: Schematic computational graph of a basic multimodal VAE: (a) forward pass, taking x as input and producing the training

objective, 𝐿(𝜽,𝝓) ; (b) backward pass, taking 𝐿(𝜽,𝝓) , and applying the chain rule backwards along the network to generate the gradients.

The impartiality block, which encloses gradient conflict, is highlighted in blue.

implicit—goal of multimodal learning is to accurately approximate the

marginal, joint, and conditional distributions over all modalities.

Goal LI - Likelihood Impartiality To accurately approximate the mar-

ginal, joint, and conditional distributions, it is essential to accurately

fit the likelihood of all modalities without neglecting any of them.

We thus aim for a training process that it is impartial to learning the

likelihood of the different modalities.

In this chapter, we argue that the reason of LI being often unsatisfied when

training multimodal VAEs lies on the computational graph resulting

from the likelihood factorization in Equation 9.2. We illustrate this idea

in Figure 9.1, where we highlight in blue the problematic sub-graph of

the computational graph, which we refer to as impartiality block.

As an example, let us suppose that the last layer of the decoder is a

linear layer with parameter 𝑾 , and let us denote by 𝜽sh the remain-

ing decoder parameters, which are shared across all modalities. Then,

we can write the likelihood parameters as 𝜼 = 𝜎(y𝑾) , where y is

the output of the decoder up to the last layer, and 𝜎 is an element-

wise transformation to ensure that each parameter satisfies its distri-

butional constraints.
3

By making the modalities operations explicit, 3: E.g., having a positive variance.

[𝜼
1
𝜼

2
. . . 𝜼𝐷] = 𝜎(y[𝒘1 𝒘2 . . . 𝒘𝐷]) , it is clear that all modalities

share y , while the parameters 𝒘𝑑 are exclusive of the 𝑑-th modality.

An impartiality block (blue square in Figure 9.1a) encloses a sub-graph

in which a split-and-merge pattern across modalities appears, which

we will recurrently observe later in Section 9.3. In the forward pass, the

impartiality block takes a shared y as input, which is independently fed to

each modality-specific head to compute 𝜼𝑑 . Then, these computations are

collected to produce a common output, the total likelihood 𝑝𝜽(x | z) . Note

that, outside this block, all computations are shared across modalities.

Impartiality blocks play an essential role in explaining modality collapse

in multimodal VAEs. First, we need to understand the effect that the

split-and-merge pattern has on the update rule of the shared parameters

during optimization. That is, we need to compute the gradient of 𝐿(𝜽,𝝓)
w.r. t. 𝜽sh , passing through the computational block:

4
4: Similar computations follow in the

case of the encoder parameters, 𝝓 .

92 Chapter 9 Mitigating Modality Collapse via Impartial Optimization

∇𝜽sh
𝐿(𝜽,𝝓) = ∇𝜽sh

y∇y𝜼∇𝜼𝑝𝜽 ∇𝑝𝜽𝐿

= ∇𝜽
sh

y

(
𝐷∑
𝑑=1

∇y𝜼𝑑 ∇𝜼𝑑𝑝𝜽

)
∇𝑝𝜽𝐿

= ∇𝜽
sh

y
∑
𝑑

𝒈𝑑 , (9.3)

where 𝒈𝑑 B ∇y𝜼𝑑 ∇𝜼𝑑𝑝𝜽 ∇𝑝𝜽𝐿 is the gradient of the loss w.r. t. y through

the 𝑑-th modality, as it is computed during back-propagation [170].

Equation 9.3 reveals why modality collapse may occur during training.

Intuitively, each gradient 𝒈𝑑 represents the update direction that the

model should follow to better explain the 𝑑-th modality. However, if

there exist large discrepancies between different gradients, i. e., in the

presence of gradient conflict, the total gradient computation
5

can benefit5: Namely, the sum of gradients

∑
𝑑 𝒈𝑑 .

some modalities more than others, leading to an update of the shared

parameters that prioritizes a subset of the modalities.

Therefore, our goal is to ensure impartiality across modalities in the

computations that output the impartiality block, such that no modality is

neglected, hence the name. Gradient conflict is however not an exclusive

problem of multimodal VAEs. We recall that gradient conflict played a

central role in Part I and we extensively discussed it in the context of

MTL, and refer the reader to Chapter 4 for an overview.

9.2.1 Our approach

In this section, we propose to prevent modality collapse by modifying

the backward pass of the impartiality block during training—since all

outer computations are shared across modalities. To achieve this, we

leverage existing MTL solutions to enforce impartial optimization.

We illustrate the proposed approach in Figure 9.2 and Algorithm 9.1,
𝒘1 ∇𝜼

1

𝐿

1⊤ 𝒇𝝍(𝒈1:𝐷) 𝒘2 ∇𝜼
2

𝐿 ∇𝑝𝜽𝐿

𝒘𝐷 ∇𝜼𝐷𝐿

×𝜷1

... ...

×𝜷2

×𝜷𝑫

Figure 9.2: Modified backward pass

within the impartiality block from Fig-

ure 9.1b to tackle gradient conflict and

thus mitigate modality collapse.

highlighting in blue those parts that differ from usual back-propagation.

We propose two modifications within the impartiality block to bring

impartiality with respect to the modalities:

▶ Local step. While back-propagating, we re-weight the gradients

w.r.t. the likelihood parameters 𝜼𝑑 by a factor of 𝛽𝑑 ∈ ℝ+ to keep

them at a comparable scale. In this chapter, we let 𝛽𝑑 simply be one

over the dimensionality of x𝑑 , as it works well in practice, similar

to other works in the literature [185]. However, more complex

approaches could also be adapted to our framework [28, 89, 112].

Note, however, that in prior work re-weighting was an ad-hoc fix

in the forward pass (rather than in the backward pass), despite

breaking probabilistic assumptions.
6

This step draws similarities6: Specifically, that the likelihood needs

to integrate to one.
to loss balancing in MTL [89].

▶ Global step. Instead of propagating to the shared parameters,

𝜽sh and 𝝓 , the gradient w.r.t. the common representation y , we

leverage existing MTL solutions to alleviate gradient conflict. These

approaches can be commonly represented as a (parametrized)

function 𝒇 𝜓 that takes a sequence of gradients 𝒈
1:𝐷 , and returns

another of equal length �̃�
1:𝐷 B 𝒇 𝜓(𝒈1:𝐷) , where the function 𝒇 𝜓

is selected to mitigate conflicts in the impartiality block. Thus,

we apply 𝒇 𝜓 to the gradients w.r.t. y , and back-propagate

∑
𝑑 �̃�𝑑

9.3 Extending our framework 93

instead of

∑
𝑑 𝒈𝑑 . Note that the specific form of 𝒇 𝜓 is determined

by the MTL method that is being applied.

To sum up, we address modality collapse within each impartiality block

by: i) scaling by 𝛽𝑑 the local gradients w.r.t. 𝜼𝑑 to make them more

comparable; and ii) leveraging existing MTL solutions to modify the

gradients w.r. t. y such that they do not conflict, propagating these impar-

tial gradients further into the network towards the shared parameters.

We need to make two important remarks. First, the local character of

impartiality blocks is in stark contrast with traditional MTL; we do not

make any assumption on the outer computational graph, nor the number

of blocks in the graph. Second, the optimal choice of 𝒇 𝜓 depends on the

problem setting, with no clear winner among existing MTL solutions.
7

7: Similarly, in Subsection 6.4.3 we saw

that there is a priori no winner between

modifying the gradients w.r. t. the com-

mon features or parameters.

Therefore, we treat the selection of algorithm 𝒇 𝜓 as a hyperparameter,

which we need to cross-validate.

1 input: Gradient ∇𝑝𝜽𝐿
2 begin
3 for 𝑑 = 1, 2, . . . , 𝐷 do
4 𝒉𝑑 ← 𝜷𝑑∇𝜼𝑑 𝑝𝜽 ∇𝑝𝜽𝐿
5 𝒈𝑑 ← ∇y𝜼𝑑 · 𝒉𝑑
6 done
7 �̃�

1:𝐷 ← 𝒇 𝜓(𝒈1:𝐷)
8 return

∑
𝑑 �̃�𝑑

9 end

Algorithm 9.1: Algorithm for the mod-

ified backward pass within an imparti-

ality block. The proposed additions are

highlighted in blue.

Finally, while we explain our approach for the impartiality block shown

in Figure 9.1, we provide in Appendix D.1 a general formulation that

allows for the more complex cases we will see in Section 9.3.

MTL gradient-conflict solutions. For the choice of 𝒇𝝍 we consider the

same solutions as those considered in Part I, and refer to Subsection 4.6.1

for a brief introduction on this type of approaches. Note that the contri-

bution of this chapter is identifying where to modify gradients, rather

than how to do it. As a result, our approach is orthogonal to the choice of

𝒇 𝜓 , and new algorithms can be easily included.

9.3 Extending our framework

9.3.1 Heterogeneous VAEs . . 93
9.3.2 Multimodal VAEs 94

Next, we revisit different VAEs from Subsection 7.3.3 tailored to handle

multimodal data, and show how to apply the ideas from Section 9.2 to

them in order to prevent modality collapse.

9.3.1 Heterogeneous VAE models

The HI-VAE [143] is a model specialized on handling heterogeneous data. [143] Nazabal, Olmos, Ghahramani and

Valera (2020), ‘Handling incomplete het-

erogeneous data using VAEs.’

Two differences with the vanilla VAE model are particularly relevant for

this chapter. First, HI-VAE introduces a Gaussian mixture prior which,

according to Nazabal et al., helps to ‘overcome the limitations of having

assumed a generative model that fully factorizes for every dimension’.
8

8: Recall Equation 9.2.

Second, the authors also pointed out to gradient conflict as a potential

issue, and introduced a normalization layer to palliate its effects. Quoting

Nazabal et al.:

94 Chapter 9 Mitigating Modality Collapse via Impartial Optimization

𝒘1 𝜼
1

x 𝝓z z 𝜽sh y [𝒚 s] 𝒘2 𝜼
2

𝑝𝜽(x | z) 𝐿(𝜽,𝝓)

𝝓s s 𝒘𝐷 𝜼𝐷

KL(𝑞𝝓 ∥ 𝑝)

... ...

LI

Figure 9.3: Computational graph of the forward pass of a HI-VAE, with the impartiality block highlighted in blue.

“The heterogenous nature of the data [...] results in broadly

different likelihood parameters, leading in practice to hetero-

genous (and potentially unstable) gradient evaluations. To

avoid that the gradient evaluations are dominated by a subset

of attributes, we apply a batch (de-)normalization layer at

the input (resp. output) of the model.”

HI-VAE introduces an additional latent variable s that makes the compu-

tational graph of the model a bit more complex. However, as we show in

Figure 9.3, we can still identify an impartiality block and, similar to the

example in Section 9.2, the last layer of the model is linear, such that the

parameters are obtained as 𝜼 = 𝜎([y s]𝑾) . Therefore, the derivations

we made in Equation 9.3 remain being valid for 𝒚 . Moreover, s also

suffers from gradient conflict:

∇𝝓s
𝑝𝜽∇𝑝𝜽𝐿(𝜽,𝝓) = ∇𝝓s

s

(
𝐷∑
𝑑=1

∇s𝜼𝑑 ∇𝜼𝑑𝑝𝜽

)
∇𝑝𝜽𝐿 . (9.4)

Therefore, HI-VAE contains an impartiality block with two different

inputs, y and s . We propose to tackle modality collapse by applying

our approach (Algorithm 9.1) to both inputs, which implies using MTL

methods twice, one for 𝒇 𝜓y
and another for 𝒇 𝜓s

.

9.3.2 Multimodal VAE models

As we mentioned in Subsection 7.3.3, one desirable application for

multimodal VAEs is performing conditional generation, i. e., sampling

a modality having observed a different one, while representing the

same underlying concept. For example, sample the caption for a given

image, or vice versa. Mixture-based multimodal VAEs ease this task by

introducing 𝐷 modality-exclusive encoders (and decoders), using as

posterior approximation a mixture model of the form:

𝑞𝝓(z | x) =
1

𝑀

∑
𝐴∈A

𝑞𝐴(z | x𝐴) , (9.5)

where 𝑞𝐴(z | x𝐴) is an expert composed of the modalities in 𝐴 ,

𝑞𝐴(z | x𝐴) ∝
∏
𝑑∈𝐴

𝑞𝝓𝑑
(z | x𝑑) , (9.6)

and where A ⊂ P(𝐷) is a subset of all the possible combinations of

modalities. Moreover, this generic formulation allow us to recover existing

9.3 Extending our framework 95

models from the literature by selecting different values for A : [213] Wu and Goodman (2018), ‘Mul-

timodal Generative Models for Scalable

Weakly-Supervised Learning.’

[185] Shi, Narayanaswamy, Paige and

Torr (2019), ‘Variational Mixture-of-

Experts Autoencoders for Multi-Modal

Deep Generative Models.’

[199] Sutter, Daunhawer and Vogt (2021),

‘Generalized Multimodal ELBO.’

MVAE [213]: A = {{1, 2, . . . , 𝐷}} ,

MMVAE [185]: A = {{1}, . . . , {𝐷}} ,

MoPoE [199]: A = P(𝐷) .

One setback of considering 𝑞𝝓 a mixture model is that sampling from it

is no longer differentiable. However, we can overcome this issue by using

stratified sampling on the ELBO [134, 185] (Equation 7.6):

𝐿(𝜽,𝝓) =
∑
𝐴∈A

𝔼x, z𝐴
1:𝐾

[
log

𝐾∑
𝑘=1

𝑝𝜽(x, z𝐴𝑘)
𝑞𝝓(z𝐴𝑘 | x)

]
. (9.7)

We refer to Equation 9.7 as a loose loss since a tighter objective, SIWAE,

can be derived using Jensen’s inequality after stratifying [134, 185]:

𝐿(𝜽,𝝓) = 𝔼x,{z𝐴
1:𝐾}𝐴∈A

[
log

∑
𝐴∈A

𝐾∑
𝑘=1

𝑝𝜽(x, z𝐴𝑘)
𝑞𝝓(z𝐴𝑘 | x)

]
. (9.8)

Despite being tighter, this objective is notoriously known for suffering

from modality collapse. For example, Shi et al. [185] discarded using it,

showing empirical evidence of modality collapse and arguing that ‘it

leads to situations where the joint variational posterior collapses to one

of the experts in the mixture.’

Impartial optimization

Recall that our main goal is to accurately approximate the marginal, joint,

and conditional distributions over all modalities (LI). To achieve this

objective, we now identify in mixture-based multimodal VAEs different

impartiality blocks that may stray us from our goal.

Looking at their computational graph in Figure 9.4, we find an upper

impartiality block which corresponds once again to the evaluation of

the factorized likelihood (Equation 9.2). For each expert 𝐴, we find

such an impartiality block, having each decoder as a head and its latent

variable z𝐴 as the common input. Hence, we can improve LI by applying

Algorithm 9.1 to each of these blocks.

Next, we focus on specific problems of these models that may also

contribute to modality collapse. Just as in Section 9.2, we first describe

the goals to pursue towards enabling conditional generation.

Goal EEI - Encoder Expert-Impartiality In order to enable conditional

generation, we need interchangeable encoders, so that we can replace

them when modalities are missing. In other words, we need the ability

to generate encoder samples that are impartial to the expert used.

Given a latent sample from an expert, z𝐴 , we can compute how likely

is of coming from an expert 𝐴′ by computing 𝑞𝐴′(z𝐴 | x𝐴′) . Similar to

the way y could receive gradients from 𝑝𝜽(x | z) benefiting a subset of

modalities (see Section 9.2), z𝐴 can receive gradients from the mixture

𝑞𝝓(z | x) that favour a subset of modalities. This impartiality block can be

96 Chapter 9 Mitigating Modality Collapse via Impartial Optimization

Figure 9.4: Forward pass of a mixture-

based multimodal VAE. Here we only

represent one z𝑑 from A, i. e., only one

term of the sum in Equation 9.5.

𝜽1 𝜼
1

𝑝𝜽(x | z𝐴)

x1 𝝓
1

𝜽𝐷 𝜼𝐷

A z𝐴 𝑝𝜽(z𝐴) 𝐿(𝜽,𝝓)

x𝐷 𝝓𝐷 𝝓
1

𝑞1

𝑞𝝓(z𝐴 | x)

𝝓𝐷 𝑞𝐷

. . .

. . .

LI

. . .

EEI

observed in the bottom part of Figure 9.4, or by computing the gradients

of 𝐿(𝜽,𝝓) w.r. t. z𝐴 passing through 𝑞𝝓(z𝐴 | x) , i. e.:

∇𝝓𝑑
z𝐴∇z𝐴 𝑞𝝓∇𝑞𝝓𝐿(𝜽,𝝓) = ∇𝝓𝑑

z𝐴

(∑
𝐴′∈A
∇z𝐴 𝑞𝐴′

)
∇𝑞𝝓𝐿 . (9.9)

Modality collapse can thus appear as a consequence of gradient conflict

in Equation 9.9, having experts whose samples can only substitute a

subset of other experts. We can again prevent it by applying Algorithm 9.1

to these impartiality blocks.

Finally, we identify a third source of gradient conflict:
9

9: As the computational graphs become

convoluted, we defer it to Figure D.2 in

Appendix D.1.

Goal DEI - Decoder Expert-Impartiality To have proper conditional

generation, similar to EEI, we need interchangeable decoders that can

generate their modality using any latent sample. That is, we need

decoders that are impartial to the expert generating the sample.

DEI relates to the passive role of the latent samples, where the decoder

parameters are optimized taking these samples as input.
10

In particular,10: We do not consider the encoder para-

meters, since in practice we use the

sticking-the-landing estimator [164].

each decoder 𝑝𝜽𝑑 (x𝑑 | z) is optimized to explain the R.V. x𝑑 given the

samples from each expert, z𝐴 ∼ 𝑞𝐴(z | x𝐴), which is explicitly shown via

stratification in Equations 9.7 and 9.8.

In this case, modality collapse would lead to decoders that can only

generate their modality based on a subset of experts. Taking derivatives

again, we can find for each decoder 𝑝𝜽𝑑 (x𝑑 | z) an impartiality block:

∇𝜽𝑑𝐿(𝜽,𝝓) =
(∑
𝐴∈A
∇𝜽𝑑𝑝𝜽𝑑 (x𝑑 | z𝐴)∇𝑝𝐴𝜽𝑑

𝐿

)
. (9.10)

Note that the impartiality block in Equation 9.10 has as shared input the

decoder parameters, 𝜽𝑑 , and each sample z𝐴 as modality-specific head.

However, due to the flexibility offered by the impartiality blocks, we can

reason and tackle modality collapse just as we did in the other cases:

applying Algorithm 9.1 to each impartiality block.

In total, there are 2𝑀 + 𝐷 impartiality blocks in a mixture-based VAE,

for which we can use Algorithm 9.1 to palliate modality collapse. Extra

details on their application can be found in Appendix D.1.

9.4 Experiments 97

Table 9.2: Median test reconstruction errors over five seeds for different datasets and VAE models. Statistically different values according

to a corrected paired t-test (𝛼 = 0.1) are highlighted. Models trained with our approach outperforms the baseline in most cases.

Heterogeneous Homogeneous

Adult Credit Wine Diam. Bank IMDB HI rwm5yr labour ElNino Magic BooNE

S
t
a
n

d
a
r
d

V
A

E

ELBO
Vanilla 0.213 0.128 0.086 0.187 0.203 0.082 0.170 0.105 0.109 0.109 0.064 0.042

Ours 0.104 0.041 0.071 0.139 0.043 0.032 0.041 0.026 0.063 0.068 0.058 0.039

IWAE
Vanilla 0.226 0.134 0.075 0.185 0.199 0.090 0.155 0.094 0.098 0.086 0.053 0.037

Ours 0.129 0.051 0.066 0.125 0.076 0.035 0.042 0.032 0.066 0.061 0.048 0.035

DReG
Vanilla 0.234 0.132 0.077 0.176 0.191 0.088 0.153 0.094 0.096 0.085 0.050 0.037

Ours 0.168 0.075 0.065 0.139 0.103 0.055 0.042 0.026 0.076 0.069 0.046 0.036

HI-VAE
Vanilla 0.127 0.107 0.126 0.114 0.141 0.079 0.105 0.044 0.100 0.098 0.062 0.039

Ours 0.081 0.060 0.117 0.011 0.095 0.049 0.109 0.024 0.069 0.015 0.033 0.038

9.4 Experiments

9.4.1 Heterogeneous data . . . 97
9.4.2 Multimodal data 98

In this section, we assess the approaches discussed in Sections 9.2 and 9.3

for heterogeneous and multimodal settings. All results shown here are

averaged over 5 different seeds and bold numbers represent statistically

significant values according to a one-sided Student’s t-test with 𝛼 = 0.1 ,

unless stated otherwise. Additional details and results can be found in

Appendices D.3 and D.4.

9.4.1 Heterogeneous data

First, we focus on heterogeneous data modelling. While the setting may

look simple at first, we need to deal with plenty of modalities, each one

with unique properties. Moreover, models are comparatively simple,

forming a breeding ground for modality collapse.

For these experiments, we use VAEs as the one introduced in Section 9.2,

using as objectives the ELBO [93], IWAE [15], and DReG [202]. Addition-

ally, we include HI-VAE [143] as an example of tailored heterogeneous

model.
11

We consider 12 datasets collected from the UCI [48] and R [157] 11: See Subsection 7.3.3 and 9.3.1.

repositories, covering a wide range of dataset sizes and likelihoods. We

assign 4 likelihood types (normal, log-normal, Poisson, and categorical)

depending on the modality domain.
12

Since likelihoods are not compar- 12: Explained in Section 7.1.

able, we use the normalized mean squared error (MSE) as metric for

numerical data, and the error rate for categorical data, following the

work of Nazabal et al. [143]. [143] Nazabal, Olmos, Ghahramani and

Valera (2020), ‘Handling incomplete het-

erogeneous data using VAEs.’

Do we reconstruct better? Explaining the observed data explicitly

appears in the objective function in Equation 9.1. Hence, if our approach

works, reconstruction error should be reduced as a result of impartially

learning to explain all modalities. Table 9.2 (left) shows the reconstruction

error for 9 heterogeneous datasets, for which the models trained with

our approach improve over those without it, Vanilla, in a statistically

significant manner in 30 out of 36 cases. Interestingly, our approach

specially benefits the standard VAE model, outperforming HI-VAE 13
in 13: Trained with both Vanilla and Ours.

several datasets. Remarkably, for the majority of datasets, the performance

of HI-VAE is also significantly improved via impartial optimization,

outperforming the rest of VAE models, e.g., in Adult and Diam.

98 Chapter 9 Mitigating Modality Collapse via Impartial Optimization

Where does the improvement come from? Table 9.3 shows againTable 9.3: Error on the heterogeneous ex-

periments for the baseline and our frame-

work, aggregated by likelihood type.

Poiss Cat logN N

Vanilla 0.058 0.158 0.064 0.041

Ours 0.083 0.065 0.057 0.039

reconstruction error, but aggregated instead by data type. Here, we

observe that our approach improves across all data types (and especially

in categorical variables) by slightly worsening reconstruction on Poisson

variables.

Remark 9.1 The observation in the

text corroborates a similar observa-

tion shown in Figure 8.3 of Chapter 8,

where the 𝐿-constant of the Poisson

r. v. s were significantly higher than

for the rest of variables.

In Appendix D.2, we show that, in our data pipeline, the

gradient norm of the Poisson variables are one order of magnitude larger

than for the rest of variable types, and thus dominate the learning process

under standard optimization. Essentially, the trade-off we observe in

Table 9.3 is the result of preventing this dominance.

Remark 9.2 These results on the ho-

mogeneous setting defy the common

believe that equally-evaluated tasks

are less susceptive of suffering from

negative transfer.

Does impartial optimization help in homogeneous settings? One

could reasonably suspect that modality collapse only appears when each

modality uses a different likelihood type. Assigning now exclusively

normal likelihoods to all variables, we show in Table 9.2 (right) that

modality collapse also occurs in homogeneous settings, and that our

approach may significantly improve model training even if all modalities

share the same data type.

Can we generate faithful data? An important use case of heterogeneous

modelling is data generation. As a qualitative example, we train on the HI

dataset a VAE-ELBO using vanilla and impartial optimization. In Figure 9.5,

we show three modalities generated by the two models, compared

against ground-truth test data.
14

While both VAEs generate well the14: The same pair plot for all modalities

is shown in Figure D.3.
two continuous marginals, only our approach can properly generate the

categorical variable (middle), which concurs with the previous analysis

on data types. More importantly, the VAE trained with our framework is

able to faithfully recreate the dependencies between modalities, as it can

be observed in the off-diagonal figures.

9.4.2 Multimodal data

We focus now on mixture-based multimodal VAE models. Besides the

obvious architectural differences, these experiments are significantly

more demanding, involving millions of parameters and high-dimensional

modalities. We use SIWAE (Equation 9.8) for most of the results in the

main text, as it is specially prone to modality collapse.
15

15: The results for other losses are shown

in Appendix D.4.3.

We reproduce the setup of Sutter et al. [199], using the same architec-

tures, and taking MNIST-SVHN-Text as dataset, which randomly matches

positive pairs from MNIST [102] and SVHN [145], and a one-hot-encoded

text generated from the common label.

Remark 9.3 Specifically, SVHN has a

dimensionality of 1024, MNIST of 784,

and Text of only 10.

This is a well-suited dataset

for our purposes, since the high disparity in dimensionality between

modalities should exacerbate modality collapse during training. Note

that in all experiments we divide the log-likelihood by the number of

dimensions (local step, see Subsection 9.2.1), to offer fair comparisons, as

it is a common practice in the field.

We consider MVAE, MMVAE, and MoPoE as models, which differ in the choice

of experts A ⊂ P(𝐷) for the posterior approximation,
1

𝑀

∑
𝐴∈A 𝑞𝐴 , as

explained in Subsection 9.3.2.

9.4 Experiments 99

Figure 9.5: Pair plot of three dimen-

sions of HI, generated from different VAE

models. The diagonal shows marginals,

upper-diagonals are scatter plots, and

lower-diagonals are kernel density estim-

ates. The VAE trained with our approach

is able to generate faithful samples.

Table 9.4: Reconstruction coherence for

each modality 𝐴 ∈ {M, S, T} and model,

trained with SIWAE as loss function.

x𝑑 M S T

MVAE
Van. 97.37 87.47 98.83

Ours 97.42 87.63 99.20

MMVAE
Van. 58.95 61.27 63.27

Ours 74.16 68.93 78.17

MoPoE
Van. 75.10 67.16 76.61

Ours 96.91 89.01 99.28

Do we reconstruct better? As a sanity check, we check again how well

we are able to reconstruct each modality. Following the existing literature,

we measure reconstruction capabilities in terms of generative coherence.
Specifically, we generate latent samples using all the modalities as input,

and reconstruct each modality x𝑑 . Then, we feed the reconstructions

to modality-specific digit classifiers, and compute the accuracy w.r.t.
the ground-truth digit. Table 9.4 shows that our framework improves

reconstruction coherence for all cases and models, sometimes by a

statistically significant margin. It is also worth-noting that, in the case

of MoPoE, the statistical test is inconclusive as the vanilla case has large

variances.

Do we improve conditional generation? One desirable ability of a

multimodal VAE model is that of generating coherent samples based on

other modalities. In our case, this translates to generating samples of the

same digit as the input. We use again generative coherence as metric. This

time, given an expert 𝐴 ⊂ P(𝐷) , and an output modality x𝑑 , we impute

x𝑑 ∼ 𝑝𝜽𝑑 (x𝑑 | z𝐴) and check if the imputed value matches the original

digit. Besides, for each modality we distinguish between self coherence,

where we compute the average accuracy of samples conditioned on

that same modality (𝑑 = {𝑑}); and cross coherence, where samples are

instead conditioned on experts not containing that modality (i. e., on

every 𝐴 ∈ P(𝐷) such that 𝑑 ∉ 𝐴).

100 Chapter 9 Mitigating Modality Collapse via Impartial Optimization

Table 9.5: Self and cross generation coherence results (%) for different models on MNIST-SVHN-Text, trained using SIWAE and averaged

over five different seeds. Models trained with our framework are able to sample more coherent modalities.

Self coherence Cross coherence

𝒙𝑑 M S T M S T

𝐴 M S T S T ST M T MT M S MS

MVAE
Vanilla 82.06 12.08 36.67 10.34 17.12 19.19 49.99 19.31 31.19 62.50 10.82 64.25

Ours 87.63 12.47 78.88 10.75 25.99 27.85 50.02 33.13 29.62 61.17 11.67 63.63

MMVAE
Vanilla 95.90 48.30 53.02 28.43 52.52 40.45 84.44 51.08 67.77 96.80 39.96 68.38

Ours 95.90 58.20 88.70 49.33 79.32 64.30 87.29 76.17 81.71 96.70 57.86 77.28

MoPoE
Vanilla 92.32 11.60 69.05 10.13 51.02 34.67 41.93 46.39 51.58 85.19 10.57 67.54

Ours 90.99 12.00 83.82 10.63 62.75 52.08 28.19 46.91 43.34 79.64 10.81 90.33

Figure 9.6: Generation coherence of

MMVAE with ELBO, IWAE, and SIWAE. We

improve most metrics w.r. t. the baseline.

Table 9.5 shows the self and cross coherence results for all models and

both approaches. While there are trade-offs, we can observe that our

framework in general improves both self and cross coherence across all

models. For example, Text (T) and SVHN (S) were overlooked in MVAE

and MMVAE, respectively, and the impartial VAE model increased self

coherence for those modalities, as well as cross coherence when they

appear in the expert 𝐴. Also, while SIWAE is prone to modality collapse,

we note that all objectives benefit from our framework. Figure 9.6 shows

a parallel coordinate plot with the generative coherence results for MMVAE,

evaluated on all objectives. While SIWAE significantly improves with

impartial optimization (as expected), we also improve all the different

metrics for all losses.

Table 9.6: Self and cross latent classific-

ation accuracy (%) for different models

and losses on MNIST-SVHN-Text.

Self latent classification

ELBO IWAE SIWAE

MVAE
Van. 69.68 69.14 68.58

Ours 69.95 69.06 69.75

MMVAE
Van. 71.81 87.55 71.30

Ours 87.83 90.78 85.55

MoPoE
Van. 89.85 87.23 67.58

Ours 91.47 90.74 69.26

Cross latent classification

ELBO IWAE SIWAE

MVAE
Van. 33.60 39.15 38.36

Ours 35.25 49.73 46.23

MMVAE
Van. 44.25 76.81 40.60

Ours 71.42 84.80 60.50

MoPoE
Van. 66.14 83.71 40.36

Ours 84.52 90.48 53.24

Do we generate more informative latent spaces? One key aspect of

latent-space generative models is that the latent space should be rich and

informative. Following the existing literature, we evaluate the quality of

the latent space by training a linear classifier to predict the ground-truth

label, taking samples of z as input.

Another key aspect, this time of mixture-based multimodal VAE models,

is that the encoder outputs should be as similar as possible (EEI), and

thus their latent spaces. Just as before, here we distinguish between self

and cross latent classification accuracy. For each expert 𝐴, self latent

classification refers to classifying test samples from the same expert

the classifier was trained with, while cross latent classification refers to

classifying test samples coming from an expert different from the one

the classifier was trained with.

We show in Table 9.6 the classification accuracies, averaged over experts.

We can observe that MMVAE and MoPoE significantly improve self latent

classification accuracy when they are trained with our framework. More

importantly, all models significantly improve the cross latent classification

accuracy, independently of the loss they were trained with, indicating

that the latent spaces between experts are more similar between them

(i. e., that the models satisfy EEI better).

Does impartial optimization add a lot of overhead? Table 9.7 shows

the training times for MMVAE as we change the number of blocks for which

9.5 Concluding remarks 101

we apply Algorithm 9.1.

Table 9.7: Training times of MMVAE when

addressing different goals, and the num-

ber of times Algorithm 9.1 is applied.

LI EEI DEI hours #

10.06 0

✓ 11.42 𝐷

✓ ✓ 11.64 2𝐷

✓ ✓ ✓ 11.89 3𝐷

As expected, the training time increases as we

apply more MTL algorithms during training. In the case of MMVAE, we

have 9 different impartiality blocks, and yet the training time increases

only by 18 %, going from 10 h of training to 11.89 h. Each additional

step increased in 25 min the training time, which makes us believe that

the extra overhead in the second row is due to our implementation to

manipulate the backward pass for Algorithm 9.1.

9.5 Concluding remarks

In this chapter, we have studied the problem of modality collapse in

multimodal VAEs, showing that it can be understood as a consequence

of the conflict between gradients of different modalities during training,

similar to negative transfer in Part I of the thesis. Therefore, we argued

in this chapter that similar inductive biases as those from MTL could be

leveraged to overcome modality collapse.

We confined this conflict to a sub-graph of the computational graph, the

impartiality block, and proposed a general pipeline to enforce impartial

optimization across modalities. We have analysed different tailored

models that contained several impartiality blocks, proving the flexibility

of our modular approach. Finally, we have empirically shown that our

approach can significantly improve the performance of these models on

a range of datasets, losses, and metrics.

We believe the results of this chapter open interesting venues for future

research. First, as our method relies on off-the-shelf solutions from MTL,

it would be interesting to develop gradient-conflict solutions tailored to

multimodal VAEs. Second, we believe that exploring extensions of the

introduced impartiality blocks for specific applications, e.g., non-modular

designs that reduce the current overhead, or impartiality blocks that take

into account missing patterns in real-world data, could lead to exciting

future works.

Part III.

Causal Generative Models

Introduction to Causal Inference
in Deep Learning 10.

10.1 Correlation↛ causation 105
10.2 SCMs 106
10.3 Causal inference 107
10.4 Problem statement . . . 109
10.5 Existing works 109

A ti Señor te encomiendo unas preguntas,

por aquí abajo dudan sobre tu existencia,

por no ayudar cuando el mundo está en ayunas.

Titó; Mis palabras al cielo

In the previous parts, we have discussed how to introduce inductive biases

that steer the model towards impartial solutions. In Part I, we focused

on jointly predicting different tasks whose measurements may not be

comparable. In Part II, we extrapolated this knowledge to probabilistic

generative models (PGMs) which try to capture the joint likelihood of

heterogeneous random variables (r.v.s), i. e., to model 𝑝(x) . In this part,

we go one step further and consider causal generative models (CGMs)

which, in sort, try to capture the causal mechanisms defining the true

data-generating process, instead of their joint distribution.

This chapter serves as an introduction to key concepts of causality, where

we state the problem we aim to solve, as well as the relation of this part

with extant literature. Chapter 11 is a purely theoretical chapter, in which

we prove that causal identifiability is possible under a sensible set of

assumptions, if we provide just a causal ordering between the variables.

Then, Chapter 12 shows how to use these results to design effective hard-

constraint inductive biases for CGMs, such that we can guarantee that

they will capture arbitrarily well the underlying causal data-generating

process, and therefore that we can perform causal reasoning with them.

10.1 Correlation does not imply causation

‘Correlation does not imply causation’ is a remarkable quote that despite

Figure 10.1: ‘Correlation does not imply

causation’ meme. Despite what the im-

age suggests, the gull (most likely) did

not bend the fence. Found on Twitter:

https://twtr.to/F-WQG.

(or maybe, due to) its technical wording, has been adopted by the public

and that we can hear on TV series, debates, social media, or even depicted

on Internet memes (see Figure 10.1). This phrase perfectly summarizes the

fact that, just because we have observed a certain relationship between two

different events, it is not necessarily the case that there is a cause-and-effect
relationship between them.

Conceptually, causal analysis rests on these very same foundations, i. e.,
on going one step beyond studying the statistical relationship between

variables, and consider instead their cause-and-effect relationships. There

are notorious examples that help us introduce the field to the public, e.g.,
the positive correlation between chocolate consumption and the amount

of Nobel laureates per capita [128], or the amount of stork breeding [128] Messerli (2012), ‘Chocolate con-

sumption, cognitive function, and Nobel

laureates.’

pairs and human birth rates across Europe [126]. Far from exceptional

[126] Matthews (2000), ‘Storks deliver

babies (p= 0.008).’

cases, there are thousands of these spurious correlations showing, e.g.,
that the per-capita consumption of margarine in the US almost-perfectly

correlates with the divorce rate in the state of Maine.
1

1: You can find more examples, along

with artificial intelligence made-up ex-

planations, at https://tylervigen.c

om/spurious-correlations.

While it is easy to explain why causal analysis is important, formalizing

a mathematical framework to model causal systems is a more complex

https://twtr.to/F-WQG
https://tylervigen.com/spurious-correlations
https://tylervigen.com/spurious-correlations

106 Chapter 10 Introduction to Causal Inference in Deep Learning

matter. In this thesis, we will take a pragmatic approach when it comes to

causality, and adopt the framework that works best for us. In particular,

we consider the framework of structural causal models (SCMs) by Pearl,

which is built on a notion of causality based on manipulability [212].[212] Woodward (2023), ‘Causation and

Manipulability’
However, it is worth-noting that there are other causal frameworks such

as the Neyman–Rubin model based on potential outcomes [181].

10.2 Structural causal models

In this part, we model causal systems using SCMs [152]. In stark contrast[152] Pearl (2009), ‘Causality.’

with the PGMs that we saw in Part II, which model the (symmetric)

statistical relationship between two observed variables through the joint

distribution: ‘If I observe that x𝑖 is high, x𝑗 is likely to be high as well;’

with SCMs we model the (asymmetric) data-generating process that

generated the observed data: ‘If x𝑖 is set to a high value, it will make x𝑗

have a high value as well.’

Mathematically, we can define a SCM as a tuple M = (f, 𝑃u) ∈ F × Pu
that takes a 𝐷-dimensional exogenous R.V., u ∼ 𝑃u , and generates

another 𝐷-dimensional (observed) endogenous R.V., x , according to f .

Specifically, the endogenous variables are computed as follows:

u B [u1 u2 . . . u𝐷] ∼ 𝑃u , and x𝑑 = 𝑓𝑑(xpa𝑑
, u𝑑) , (10.1)

for every 𝑑 ∈ {1, 2, . . . , 𝐷} , and where each x𝑑 is generated after all

its causal dependencies, xpa𝑑
, have been instantiated as well. In other

words, each 𝑑-th component of the vector function f maps the 𝑑-th

exogenous variable to the 𝑑-th endogenous variable, given the subset of

the endogenous variables that directly cause it.
2

Intuitively, the exogenous2: Also known as the parents of x𝑑 .

variables u represent the stochastic component of each observed variable

that cannot be explained away by the causal effects with other variables.

Family of data-generating processes. In the definition above, the sets F
and Pu are crucial, as they describe the set of possible causal generators

and exogenous distributions, respectively, that we consider for the family

of data-generating processes described by the SCMs. Depending on our

choices for these two families, our SCMs will be more or less expressive,

as well as easier or more difficult to recover from data.

Induced causal graph. Generally, we can define a causal graph as a

directed graph G = (𝑉, 𝐸) with one node per variable, 𝑉 = {x𝑑}𝐷𝑑=1
,

and where two nodes are connected, x𝑖 → x𝑗 , if there exists a causal

dependency from x𝑖 to x𝑗 . In particular, a SCM M = (f, 𝑃u) induces a

causal graph where an edge x𝑖 → x𝑗 exists if x𝑖 is in the set of parents

of x𝑗 , i. e., x𝑖 ∈ xpa𝑗
. Note, however, that this definition incurs circular

dependencies, as it implies an a priori knowledge on the causal graph

through the set of parent nodes.

Instead, we can also define an edge x𝑖 → x𝑗 if there exists any functional
dependency of x𝑖 on x𝑗 through the 𝑗-th causal generator, i. e., if

𝜕
x𝑖
𝑓𝑗(x, u) ≠ 0 for any (x, u) such that x = f(x, u) . (10.2)

https://books.google.de/books?id=LLkhAwAAQBAJ

10.3 Causal inference 107

Note that, while this definition relies on checking all the set of valid (x, u)
pairs, it only assumes that f is a valid causal generator to induce the set

of parents.
3

More compactly, we can define the adjacency matrix of the 3: I. e., that there is a correct way of ap-

plying f as in Equation 10.1, yet we do

not know how to do it exactly.

induced causal graph as 𝑨 B ∇xf(x, u) ≠ 0 , where 0 is the constant zero

function, and the comparisons are made elementwise.

x1 x2 x3

𝜋 =
(
1 2 3

)
𝑨 =

©­«
0 0 0

1 0 0

0 1 0

ª®¬
Figure 10.2: The causal graph, causal

ordering 𝜋 , and adjacency matrix 𝑨 , of

a 3-node SCM. Note that the exogenous

variables were omitted.

Following the graph analogy, the direct causes of the 𝑑-th variable are

called the parents of x𝑑 , as it corresponds to the parent nodes of the 𝑑-th

node in G . Similarly, all the causes of a variable (direct or indirect) are

referred to as its ancestors, and we denote them as an𝑑. As an example,

Figure 10.2 shows the causal graph of a simple 3-chain with adjacency

matrix 𝑨, where x1 , x2 ∈ an3 and x2 ∈ pa
3

.

Moreover, if G is acyclic, a topological ordering of the graph is called a

causal ordering, and describes which variables do not cause others, and

which ones may cause them. Specifically, a 𝐷-permutation 𝜋 is said to be

a causal ordering of M if, for every x𝑖 that directly causes x𝑗 , we have

that 𝜋(𝑖) < 𝜋(𝑗) . Without loss of generality, in this part we assume that

the variables are ordered according to a causal ordering.

10.3 Causal inference

10.3.1 Do-operator 107
10.3.2 Ladder of causation . 108

In the previous sections, we have made clear the differences between

correlation and causation. However, it still remains unclear what would

a causal system offer that a probabilistic one would fail to provide.

PGMs are powerful tools to answer statistical questions about the ob-

served variables that describe a system but, quoting Schölkopf and

Kügelgen [179], they ‘exploit that some of the variables allow the pre- [179] Schölkopf and Kügelgen (2022),

‘From statistical to causal learning.’
diction of others as long as the experimental conditions do not change.’

In other words, if the data-generating process remains the same, then a

probabilistic model can make good predictions.

If the data-generating process experiences some type of change, however,

PGMs fall sort. By modelling the causal mechanism f that generated

the data, SCMs enable causal inference, i. e., they allow us to answer

interventional queries.
4

This is a significant change with respect to 4: Which we can also call hypothetical

or what-if questions.
PGMs, as we now can simulate and predict hypothetical scenarios where

an external agent performed an intervention on the system.

There are many ways in which we could modify the data-generating

process. However, in this thesis we focus on (perfect) hard interventions,

in which we assume that we can fix the value of an endogenous variable,

nullifying any causal effect that other variables could have on it, while

keeping the rest of the data-generating process intact. These types of

interventions are plausible, e.g., in clinical-trial scenarios, where we get

to set the drug that test subjects take.

10.3.1 Do-operator

We simulate the effect of interventions by means of the do-operator [154]. [154] Pearl (2012), ‘The Do-Calculus Re-

visited.’
Specifically, if we want to intervene on the variable x𝑖 by fixing it to the

value 𝛼 , the do-operation
5 𝑑𝑜(x𝑖 B 𝛼) simulates a physical intervention 5: The symbol B stresses that x𝑖 is the

variable being modified.
on the SCM M, inducing another model MI

that fixes the endogenous

variable x𝑖 = 𝛼 , and removes any causal dependency on x𝑖 .

https://arxiv.org/abs/2204.00607
https://arxiv.org/abs/2204.00607
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=2330%5C&proceeding%5C_id=28

108 Chapter 10 Introduction to Causal Inference in Deep Learning

Traditionally, the do-operator is implemented by yielding a SCM of the

form MI = (fI , 𝑃u) , result of replacing the i-th component of f by a

constant function, 𝑓 I
𝑖
B 𝛼 , reflecting the data-generating process after

an external intervention.

It is important to note that, as a result of modifying the causal mechanism

that generated the endogenous variable x𝑖 , we have in general that

the induced distribution by MI
do not correspond to the conditional

distribution given that we observed x𝑖 = 𝛼 , i. e.,

Remark 10.1 The equality holds if

and only if the variable x𝑖 happens

to be a root node, i. e., if it does not

have any parent nodes.

𝑃M(x | x𝑖 = 𝛼) ≠ 𝑃M(x | 𝑑𝑜(x𝑖 B 𝛼)) C 𝑃MI (x) . (10.3)

We will revisit the do-operator later in Chapters 11 and 12.

10.3.2 Pearl’s ladder of causation

Equipped with the do-operator, Pearl’s ladder of causation [152] is a[152] Pearl (2009), ‘Causality.’

hierarchical classification of the types of queries that a SCM can respond.

These three levels (or rungs) correspond to semantically different ques-

tions that require different levels of knowledge on the causal mechanisms

that generated the data to be answered. Specifically, these levels are:

1. Observational. They correspond to the passive action of seeing,

and answer questions that only involve raw observational data.

These are the queries answered by PGMs of the form 𝑃M(x) , e.g.,
‘How likely am I of being sick given that I have pimples?’

2. Interventional. They relate with the active action of doing, i. e.,
these are questions involving the effect that a certain intervention

has in a population, 𝑃M(x | 𝑑𝑜(x𝑖 B 𝛼)) . For example, ‘How likely

am I of being sick if I decide to pop my pimples?’. Intuitively,

removing your pimples this way will not have an effect on the

sickness that produced them in the first place.

3. Counterfactual. These are the most complex queries, associated

with the action of imagining, and answer retrospective questions

with respect to an existing situation, e.g., ‘Would have been sick

now, had I take this medicine a week ago?’ Mathematically, this is

represented as 𝑃M(xcf | 𝑑𝑜(x𝑖 B 𝛼), xf) , where xf
is the observed

factual and xcf
is the counterfactual variable. Counterfactuals in

SCMs are a bit more involved, and they are computed following a

three-step procedure. Namely:

a) Abduction. Replace the exogenous distribution 𝑃M(u) by

the posterior of u given xf
, i. e., by 𝑃M(u | xf) .

b) Action. Perform an external intervention 𝑑𝑜(x𝑖 B 𝛼) on M
to obtain the intervened SCM MI

.

c) Prediction. Generate xcf
using the modified SCM and the

posterior distribution from the abduction step.

Both, interventional and counterfactual queries, leverage knowledge

about the causal model, and thus enable causal reasoning.

https://books.google.de/books?id=LLkhAwAAQBAJ

10.4 Problem statement 109

10.4 Problem statement

We briefly formalize the problem to tackle in the next two chapters. In

short, our goal is to approximate arbitrarily well the SCM generating our

observations, such that we can then manipulate it to answer queries on

all levels of the ladder of causation.

Specifically, we assume the existence of an underlying causal model

M that describes the data-generating process of a 𝐷-dimensional R.V.
x B [x1 x2 . . . x𝐷] ∼ 𝑃M . Similar to the problem statements of Parts I

and II, we only have access to a dataset of 𝑁 i. i.d. samples from M, i. e.,
𝑿 = {x𝑛}𝑁𝑛=1

i. i. d.∼ 𝑃M .

Remark 10.2 As we will prove later

in Chapter 11, this assumption is ne-

cessary as otherwise we cannot learn

M using only observational data.

However, in this case we also assume that some

knowledge on the induced causal graph is provided. Namely, we always

know at least the causal ordering, 𝜋 , and at most we have knowledge

about the entire adjacency matrix, 𝑨 .

Our objective in this part is to design and learn a CGM that is guaranteed

to approximate the underlying M in all three rungs of Pearl’s ladder

of causation given enough resources,
6

so that we can use it later to 6: I. e., data, time, and parameters.

perform causal inference. Specifically, for the most complex case of

counterfactual queries, this implies that the model provides a way of

faithfully performing the abduction-action-prediction steps w.r.t. the

underlying ground-truth causal model M.

10.5 Existing works

In this section, we briefly review the existing body of work on learning

the underlying SCM that generated the data using deep learning (DL).

The most common approach is to individually estimate the conditional

distribution of each endogenous variable given its causal parents, i. e.,
to learn the mapping x𝑑 B 𝑓𝑑(xpa𝑑

, u𝑑) , thus using an independent

model per observed variable. Previous works have relied on different

deep neural networks (DNNs) to learn this mapping, e.g.: normalizing

flows (NFs) [140, 148, 151], generative adversarial networks [96, 218],

variational autoencoders (VAEs) [88, 224], Gaussian processes [88], or

denoising diffusion probabilistic models [22]. These approaches follow

the recursive formulation of SCMs, so they are guaranteed to be causally

consistent and easily intervened upon. However, they may also suffer

from error propagation
7

and a high parameter count, which is addressed 7: Which worsens the longer the causal-

graph diameter becomes.
in practice with ad-hoc parameter amortization techniques [148, 151].

Moreover, several approaches also rely on implicit distributions [22, 96,

151, 173], and thus do not allow evaluating the learnt distribution.

In contrast, and similar to previous works, in this thesis we aim at learning

the full causal data-generating process using a single DNN.
8

To the best 8: Namely, using a causal normalizing

flow (Causal NF) in Chapter 12.
of our knowledge, the closest works to ours are those from Khemakhem

et al. [91], Sánchez-Martín et al. [174] and Zečević et al. [230], as they all [91] Khemakhem, Monti, Leech and

Hyvärinen (2021), ‘Causal Autoregress-

ive Flows.’

[174] Sánchez-Martín, Rateike and Valera

(2022), ‘VACA: Designing Variational

Graph Autoencoders for Causal Quer-

ies.’

[230] Zečević, Dhami, Velivcković and

Kersting (2021), ‘Relating Graph Neural

Networks to Structural Causal Models.’

capture the whole causal data-generating process using a single DNN.

In particular, Khemakhem et al. [91] connected affine autoregressive

normalizing flows (ANFs) with additive noise models [77], and proposed

the use of affine ANFs to learn this type of SCMs, providing identifiability

results for Gaussian exogenous variables. As such, the work carried out

in Chapters 11 and 12 can be seen as a strict generalization of that of

http://proceedings.mlr.press/v130/khemakhem21a.html
https://ojs.aaai.org/index.php/AAAI/article/view/20789
https://arxiv.org/abs/2109.04173

110 Chapter 10 Introduction to Causal Inference in Deep Learning

Khemakhem et al. [91], as it provides significantly more general causal

identifiability results and connects them with general ANFs.

Another relevant set of works is that of Sánchez-Martín et al. [174] and

Zečević et al. [230], which connect SCMs with graph neural networks

(GNNs) and, while making little assumptions on the underlying SCM,

they also lack any theoretical guarantees, e.g., interventions on the GNN

are performed by severing the graph, which we show in Appendix E.1 do

not work in the general case. Nevertheless, it is worth noting that the way

we introduce inductive biases in the architecture of ANFs in Chapter 12

is inspired by these previous works.

Our work significantly extends this line of research. More specifically, in

the following chapters we study how to learn the underlying causal data-

generating process using a single DNN, both theoretically and in practice.

In Chapter 11, we show how to transform a broad family of SCMs into a

reduced family that is causally identifiable from observational data and

a causal ordering. Moreover, we extend these results to handle discrete

data and partial-knowledge about the causal ordering, and equip this

family of SCMs with an implementation of the do-operator well-suited

for them. Then, we show in Chapter 12 how to put these results into

practice, proving that the family of ANFs can be naturally understood

as parametric members of the aforementioned reduced family of SCMs,

and that we can effectively learn the underlying SCMs with them if we

introduce inductive biases that exploit our knowledge about the causal

graph. As a result, Causal NFs are the first-of-their-kind DL models to

provably approximate such a broad family of SCMs.

Causal Identifiability
Given a Causal Ordering 11.

11.1 Solution characterization 111
11.2 SCM representations . 113
11.3 Causal identifiability . . 116
11.4 Real-world extensions . 119
11.5 Do-operator 122
11.6 Concluding remarks . . 124

Meto el dedo en la llaga y me escuece por dentro

porque también es mi llaga y no soy el mejor ejemplo.

Y no me des la razón si no la tengo,

pero no permitiré que vengan a fisgar mi templo.

Santiuve; Oración

This chapter is based on the content of:

[IV]: Javaloy, Sánchez-Martín and Valera

(2023), ‘Causal normalizing flows: from

theory to practice.’

In the previous chapter, we have discussed that our final objective is

to train a causal generative model (CGM) that can approximate an

unknown structural causal model (SCM) using only observational data,

and information about the causal graph induced by the true SCM. In

this chapter, we focus entirely on the theory of causal identifiability, and

study how to constraint the family of possible CGMs, such that the causal

models become causally identifiable from the known information,
1

while 1: I. e., that we can recover them from

data and a causal ordering.
keeping the type of data-generating processes that we can model as

broad as possible.

To this end, we will first make a number of common sensible assumptions

on the causal generators and the distribution of the exogenous variables,

which will allow us to specify our final goal (see Section 10.4) as a set of

clearly defined objectives to achieve. Then, we exploit the fact that SCMs

can be algebraically modified to reduce the set of possible SCMs, thus

restricting the family of causal generators. Under this family of SCMs,

we then formally prove causal identifiability from observational data

and a causal ordering by leveraging existing results from the non-linear

independent component analysis (ICA) literature.

Finally, we make these results better suited for real-world scenarios in

two ways. First, we extend our identifiability results to more realistic

settings where the data could be discrete, and where we might have

only partial knowledge about the causal ordering. Second, we provide a

re-implementation of the do-operator tailored to our assumptions that

can be deployed on any SCM without modifying the causal generators,

enabling general CGMs to solve causal inference tasks.

Additional notation. To ease the notation and focus on reasoning about

the causal dependencies between variables, we introduce the notion

of structural equivalence. Namely, we say that two matrices 𝑺 and 𝑹
are structurally equivalent, denoted 𝑺 ≡ 𝑹 , if both matrices share the

same zero entries, i. e., if they have zeroes exactly in the same positions.

Similarly, we say that 𝑺 is structurally sparser than 𝑹 , denoted as 𝑺 ⪯ 𝑹 ,

if whenever an element of 𝑹 is zero, the same element of 𝑺 is zero.
2

2: This is reminiscent of the notion of

absolute continuity in measure theory.
Moreover, we use similar definitions for linear functions (e.g., the Jacobian

map) and talk instead of constant zero functions.

11.1 Solution characterization

11.1.1 Assumptions 112
11.1.2 Characterization . . . 112

Our final goal is, under the assumption that there is an underlying causal

model M that generated our input dataset 𝑿 , and of which we know

112 Chapter 11 Causal Identifiability Given a Causal Ordering

its causal ordering, to find a parametric model that approximates M
as closely as possible. In this chapter, however, we relax this goal and

assume directly that our approximation of M is another member of

the same family of SCMs, M̃ ∈ F × Pu . Our focus is then on causal
identifiability, i. e., on whether we can identify the member of F × Pu
that generated the observational distribution, and which admits a causal

ordering equal to the observed one.

11.1.1 Assumptions

First, we restrict the family of SCMs we consider by imposing some

regularity conditions that ensure a well-behaved data-generating process,

ruling out unobserved variables in the system. Specifically, we make the

following assumptions:

1. Real-valued noise. We consider the exogenous variables to be in

the real domain, i. e., u ∈ ℝ𝐷
, such that the causal generators can

be continuous and differentiable.

2. Diffeomorphic generators. We therefore assume the generator f
to be invertible, and that both f and its inverse are differentiable. As

a consequence, we can differentiate the data-generating process and

go back and forth between exogenous and endogenous variables.

3. Acyclic graphs. We assume that there are no feedback loops in

the data-generating process. This is equivalent to saying that the

induced causal graph is a directed acyclic graph (DAG), or that

there exists at least one way of sampling endogenous variables

from the SCM following Equation 10.1.

4. Causal sufficiency. We also consider that there are no hidden con-

founders, i. e., that there are no unobserved endogenous variables

that may be having a causal effect in two or more of the considered

endogenous variables. This is equivalent to saying that the endo-

genous distribution fully factorizes, i. e., that 𝑃u(u) =
∏

𝑑 𝑃u𝑑
(u𝑑) .

Far from exotic, this set of assumptions turn out to be quite common in the

literature: the first two assumptions in the identifiability literature [90, 140,

216], as it allows to unambiguously invert the generative process and to

use real analysis tools; and the last two assumptions, are commonly made

in the causality literature to have a ‘well-defined, unique observational

distribution’ [64, 179].

11.1.2 Characterization

While we have a clear goal in terms of the functionality that our approx-

imation to M should provide,
3

we do not have a clear characterization3: I. e., make the same predictions as the

original model in all three levels of the

ladder of causation.

of how such an approximation should be. It turns out that, in order to

successfully answer each type of query in the ladder, we need to impose

extra constraints on the set of valid solutions. Namely:

1. Expressive. In order to match the observational queries, we need

to make sure that our space of solutions is expressive enough to

approximate arbitrarily well the joint observational distribution of

M, i. e., 𝑃M(x) . However, this is not a concern for this chapter, as

we directly consider the space of SCMs, F × Pu .

11.2 The multiple representations of structural causal models 113

2. Causally consistent. While the observational distribution can

be matched using spurious correlations,
4

in order to match any 4: As probabilistic models do in general.

interventional distribution, the model approximation M̃ should ex-

hibit the same causal dependencies as the original model between

variables. Intuitively, since interventions modify the causal graph,

if the two models induce different graphs, then their intervened dis-

tributions cannot match: i) either information would leak between

variables; or ii) necessary information would be cut off.

3. Identifiable. Due to the abduction step (see Subsection 10.3.2), the

approximation M̃ from x should be able to isolate the exogenous

variables in order to match counterfactual distributions, i. e., the

random variable (R.V.) ũ𝑑 recovered by M̃ should contain only

information about the original u𝑑 .
5

Similar to the previous case, we 5: Recovering the exact exogenous vari-

ables is not necessary, as we care about

the information the variable contains,

and not its representation.

would otherwise find that information between variables would

be intertwined, even if we were successfully removing their causal

connections during the intervention.

Therefore, in order for a causal model to faithfully approximate the

underlying SCM in all three levels of causal inference queries, the model

should be identifiable, causally consistent and, in the case of the para-

metric models considered in Chapter 12, expressive enough to match the

observational distribution.

11.2 The multiple representations of SCMs

11.2.1 Illustrative example . 113
11.2.2 Non-linear case . . . 115

In this section, we present one of the core ideas of this part of the thesis.

Specifically, we exploit the fact that SCMs are a special case of a system of

equations, and thus we can perform algebraic manipulations to the right

side of the equations to come up with alternative representations of the

same causal system that, as we will shortly see, bring us new perspectives

and enable the theory presented below.

11.2.1 Illustrative linear example

Let us start with an illustrative linear example, which will help us build

an intuition on the different representations that any SCM can have.

Recursive SCM. First, assume that we are given a linear SCM described

in the same way as we introduce them in Equation 10.1, where the 𝑑-th

equation explicitly depends on u𝑑 , and the rest of dependencies with

the exogenous variables are implicitly stated through the direct causes of

x𝑑 , i. e., through xpa𝑑
. In our particular example,

x1 = u1

x2 = 2x1 + u2

x3 = 3x2 + u3

(11.1)

which we can compactly write as x = 𝑮x + 𝑰u . While this recursive

formulation is intuitive for understanding the causal dependencies

between endogenous variables (see Figure 11.1a), it is also computationally

inconvenient, as it entails iteratively solving the system according to the

causal dependencies for tasks such as sampling new data.

114 Chapter 11 Causal Identifiability Given a Causal Ordering

x = 𝑮x + 𝑰u x = 𝑮3(𝑮2(𝑮1u)) x = (𝑮2 + 𝑮 + 𝑰)u u = (𝑰 − 𝑮)x
u x

1

2

1

3

1

(a) Recursive.

u x
1

0 2

1

0

1

1

0 0

1

3

1

1 1 1

(b) Unrolled.

u x
1

2

6

1

3

1

(c) Compacted.

u x
1

−2

1

−3

1

(d) Inverted.

Figure 11.1: Example of the linear SCM {x1 B u1 ; x2 B 2x1 + u2 ; x3 B 3x2 + u3} written (a) in its usual recursive formulation;

(b) without recursions, with each step made explicit; (c) without recursions, as a single step; and (d) writing u as a function of x .

Red dashed arrows show the influence of u1 on x3 for all u ↦→ x systems. Note that in the linear case we have 𝑨 B 𝑮 ≠ 0 , and that

𝑮1 ,𝑮2 ,𝑮3 ⪯ 𝑮 + 𝑰 are any three matrices such that their product equals 𝑮2 + 𝑮 + 𝑰 .

Unrolled SCM. Instead, we can write the equations as a function from

u to x by removing the recursive dependencies iteratively, substituting

each x𝑑 on the right-hand side by their current expression. That is, we

can unroll the equations:
x1 = u1

x2 = 2x1 + u2

x3 = 3x2 + u3

⇒


x1 = u1

x2 = 2u1 + u2

x3 = 3(2x1 + u2) + u3

⇒


x1 = u1

x2 = 2u1 + u2

x3 = 6u1 + 3u2 + u3

(11.2)

We can define this process as a multi-step function
z

1

1
= u1

z
1

2
= u2

z
1

3
= u3

⇒


z
2

1
= z

1

1

z
2

2
= 2z

1

1
+ z

1

2

z
2

3
= z

1

3

⇒


x1 = z
2

1

x2 = z
2

2

x3 = 3z
2

2
+ z

2

3

(11.3)

which we can compactly write as three linear operations x = 𝑮3(𝑮2(𝑮1u)) .
Note that the matrices 𝑮1 ,𝑮2 ,𝑮3 are not unique, and that they are valid

as long as 𝑮𝑖 ⪯ 𝑮 and produce the same final output. Despite removing

the recursions, we have now as many functions as the recursion depth of

the original system of equations (see Figure 11.1b).

Compacted SCM. Therefore, a natural step here is to compress this

sequence of operations into a single linear function. That is, we can

directly use the linear operation described at the end of Equation 11.2:
x1 = u1

x2 = 2u1 + u2

x3 = 6u1 + 3u2 + u3

(11.4)

Remark 11.1 This derivation can help

us get an intuition of what happens

in the non-linear case, where the Jac-

obian plays the role of 𝑮 .

Moreover, we can derive the same compacted linear form by directly

unrolling the equations in matrix form:

x = 𝑮x + 𝑰u
x = 𝑮(𝑮x + 𝑰u) + 𝑰u
x = 𝑮(𝑮(𝑮x + 𝑰u) + 𝑰u) + 𝑰u

x =��>
0

𝑮3x + 𝑮2u + 𝑮u + 𝑰u = (𝑮2 + 𝑮 + 𝑰)u ,

11.2 The multiple representations of structural causal models 115

where 𝑮3

is a zero matrix as the induced causal graph has a diameter

of two. Now, we have a single function that directly maps exogenous

to endogenous variables, u ↦→ x , with the caveat that we cannot longer

distinguish direct and indirect paths: all paths have collapsed into one.

Inverted SCM. Last, we can take any of these different representations

and solve the system of equations to get the inverse map, x ↦→ u . In this

case, the simplest approach is to take the recursive formulation:
x1 = u1

x2 = 2x1 + u2

x3 = 3x2 + u3

⇒


u1 = x1

u2 = x2 − 2x1

u3 = x3 − 3x2

(11.5)

and, in vectorial form,

x = 𝑮x + 𝑰u⇒ u = (𝑰 − 𝑮)x . (11.6)

This turns out to be a convenient SCM representation to work with, as

we can easily perform the abduction step needed for counterfactuals.

11.2.2 Non-linear SCM representations

In this section, we discuss how we can manipulate non-linear SCMs

similarly to their linear counterparts, and generalize the reasoning about

the causal relationships of a SCM carried out in the previous section to

the general case.

To this end, let us suppose that we have a non-linear SCM M of the form

x = f(x, u) , which induces the same causal graph as the linear example

in Figure 11.1, so that the reader can use Figure 11.1 as a reference again,

i. e., let us assume that

∇xf(x, u) ≡ 𝑨 B
©­«
0 0 0

1 0 0

0 1 0

ª®¬ , ∇uf(x, u) ≡ 𝑰 B
©­«
1 0 0

0 1 0

0 0 1

ª®¬ . (11.7)

We omit the recursive representation in the following, as we defined

SCMs using this formulation in Equation 10.1.

Unrolled SCM. As in the linear case, we can unroll the equations

by having multiple functions z𝑙 = f𝑙(z𝑙−1) , and at each step unroll the

equations for which we already know the non-recursive formulation of

its parents. Again, we can write these operations in multiple ways, as

long as they produce the same final function,
6

and that they respect the 6: After composing the functions, f1 ◦
f2 ◦ · · · ◦ f𝐿 = f .

causal dependencies provided by 𝑰 + 𝑨 .

Remark 11.2 For functions, as struc-

tural equivalence needs to hold at

every point, we have for most cases

that, if 𝑨1 ≡ 𝑨2 and 𝑩1 ≡ 𝑩2 , then

𝑨1𝑩1 ≡ 𝑨2𝑩2 . Hence, we have that∏
𝑙 ∇z𝑙−1 𝑓𝑙(z𝑙−1) ≡∏

𝑙(𝑰 + 𝑨)which

equals 𝑰 +∑diam(𝑨)
𝑙

𝑨𝑙 .

Collapsed SCM. Just as before, we can collapse all operations into a

single function. Since all functions are structurally equivalent to 𝑰 + 𝑨 ,

it is straightforward to show that their composition has, in general, a

Jacobian matrix structurally equivalent to 𝑰 +∑diam(𝑨)
𝑙

𝑨𝑙
.

116 Chapter 11 Causal Identifiability Given a Causal Ordering

Reverse SCM. By assumption, each 𝑓𝑑(xpa𝑑
, u𝑑) is bĳective with respect

to u𝑑 , and we can thus always compute its inverse to obtain u𝑑 as a

function of the observed values, i. e., u𝑑 = 𝑓 −1

𝑑
(xpa𝑑

, x𝑑) . Then, since

∇xf ≡ 𝑨 , we have in general that ∇uf−1 ≡ 𝑰 − 𝑨 .

In summary, for any SCM we can always reason as we did with the

illustrative linear example, but using the Jacobian matrices to reason

about causal dependencies between variables through their structural

equivalence, independently of the complexity of the causal model.

11.3 Causal identifiability

11.3.1 SCM quotient space . 116
11.3.2 TMI SCM identifiability118

In this section, we prove causal identifiability for our family of SCMs. To

this end, we first show that we can reduce the space of all the considered

SCMs by removing all redundant models, i. e., those that generate the

same causal system. Then, we prove that this reduced set is causally

identifiable by showing that they are identifiable and causally consistent,

as we discussed before in Subsection 11.1.2.

11.3.1 SCM quotient space

First, we precisely formalize the meaning of two SCMs being equal, and

being causally equivalent. Specifically, we say that two SCMs M, M̃ ∈
F × Pu are equal if the tuple that defines them is the same, i. e.,

M = M̃ ⇐⇒ {f a.e.

= f̃ and 𝑃u = 𝑃ũ} , (11.8)

where

a.e.

= means ‘equal almost everywhere’ in the measure-theoretical

sense.
7

In contrast, we say that the two SCMs are causally equivalent if,7: That is, that the two functions only

differ in a set of measure zero.
with the same 𝑃u, they induce the same observational, interventional,

and counterfactual distributions. In mathematical terms,

M ∼ M̃ ⇐⇒ {𝑃M = 𝑃M̃} and {𝑃u = 𝑃ũ} and (11.9)

{𝑃M(· | 𝑑𝑜(x𝑑 B 𝛼)) = 𝑃M̃(· | 𝑑𝑜(x𝑑 B 𝛼))
∀𝑑 ∈ {1, 2, . . . , 𝐷}, ∀𝛼 ∈ ℝ} and (11.10)

{𝑃M(· | 𝑑𝑜(x𝑑 B 𝛼), xf) = 𝑃M̃(· | 𝑑𝑜(x𝑑 B 𝛼), xf)
∀𝑑 ∈ {1, 2, . . . , 𝐷}, ∀𝛼 ∈ ℝ, ∀xf ∈ ℝ𝐷} . (11.11)

Remark 11.3 In layman’s terms,

causal equivalence groups all the dif-

ferent ways of modifying the struc-

tural equations without changing the

causal model, e. g., as in Section 11.2.

Despite the similar nature of both definitions, note that they are not equi-

valent, i. e., different SCMs can generate the same causal data-generating

process. For example, if 𝑃u were an isotropic multivariate Gaussian

distribution, then (f, 𝑃u) and (f ◦ 𝑹, 𝑃u) , where 𝑹 is a rotation operation,

would generate the exact same causal data-generating process.

It is straightforward to show that causal equivalence is indeed an equi-

valence relation
8

and, therefore, we can define the quotient set of F ×Pu8: That is, that∼ is a reflexive, symmetric,

and transitive relation.
according to ∼ , i. e.,

F × Pu/∼ B {[M] : M ∈ F × Pu} , (11.12)

where [M] is the equivalence class of M, i. e., the set of all SCMs that are

causally equivalent to M,

[M] B {M̃ ∈ F × Pu : M ∼ M̃} . (11.13)

11.3 Causal identifiability 117

In other words, F × Pu/∼ is the reduction of all considered SCMs to

those that are not causally equivalent.What we have left to prove is that

the quotient set is isomorphic to a more practical set of SCMs.

Triangular monotonically increasing (TMI) maps. We consider the set

of TMI SCMs, i. e., causal data-generating processes where the structural

equations are TMI maps, TMI × Pu . In particular, we call f a TMI map

if the function is triangular, i. e., the 𝑑-th output depends only on the

first 𝑑 inputs, and monotonically increasing, i. e., the 𝑑-th output is

monotonically increasing w.r. t. the 𝑑-th input. In mathematical terms,

𝑓𝑑(x) = 𝑓𝑑(x1 , x2 , . . . , x𝑑) and 𝜕
x𝑑
𝑓𝑑(x) > 0 . (11.14)

Knöthe-Rosenblatt (KR) transport [95, 166]. If we have the densities

of two distributions, say 𝑃M and 𝑃u from a SCM M = (f, 𝑃u), the KR

transport from 𝑃u to 𝑃M is a function that maps the density of one

distribution to the other, i. e., KR#𝑝u = 𝑝M . Moreover, it can be shown

that the KR function is a TMI map and that, given an ordering for the

variables, this TMI map is unique almost everywhere [176]. [176] Santambrogio (2015), ‘Optimal

transport for applied mathematicians.’

In a slight abuse of notation, we define the KR transport of a SCM

M = (f, 𝑃u) as the TMI SCM where the KR transport that follows the

same causal ordering as M substitutes the structural equations, i. e.,

KR(M) B (KR, 𝑃u) where KR#𝑝u = 𝑝M . (11.15)

Remark 11.4 To prove Equation 11.16,

the ⊆ part is directly given by the

definition of KR transport, and the ⊇
is a consequence of the uniqueness

of the KR to map 𝑃u into 𝑃M .

Furthermore, the set of KR-transformed SCMs is the set of TMI SCMs,

{KR(M) : M ∈ F × Pu} = TMI × Pu , (11.16)

and it is also useful to note that KR(KR(M)) = KR(M) .

SCMs as TMI maps. Finally, we demonstrate that any SCM following

the assumptions in Subsection 11.1.1, M ∈ F ×Pu , is causally equivalent

to a single TMI SCM. To this end, we show that the quotient space of

causally equivalent SCMs is isomorphic to the set of TMI SCMs, i. e.,

F × Pu/∼ = TMI × Pu . (11.17)

First, given a SCM M = (f, 𝑃u)with f : 𝕏 × 𝕌→ 𝕏 as in Equation 10.1,

we can always unroll f by recursively replacing each x𝑖 in the causal

equation by its function 𝑓𝑖 , obtaining an equivalent non-recursive function

f : 𝕌→ 𝕏 .
9

Second, we always have that 9: See Figure 11.1b for an example.

M ∼ KR(M) ∈ TMI × Pu , (11.18)

which can be proved by noting that KR(M) produces the same observa-

tional distribution, and shares both the exogenous distribution and the

induced causal graph.
10

In other words, for every M we always have one 10: This is direct to prove using the defin-

ition of the KR map. Hence, KR(M) ful-

fils the conditions from Subsection 11.1.2.

TMI candidate for representative of the equivalence class [M] . Last, we

can show that this candidate is unique by recalling the uniqueness of the

KR transports in the TMI space, i. e., we have that

M ∼ M̃ ∈ TMI × Pu ⇒ KR(M) ∼ M̃⇒ KR(M) = M̃ .

by Equation 11.18 uniqueness in TMI space [176]

(11.19)

118 Chapter 11 Causal Identifiability Given a Causal Ordering

11.3.2 TMI causal identifiability

We have shown that, using the KR transport, we can reduce the space of

SCMs F × Pu to only those causally non-equivalent SCMs, and that this

set is exactly the set of TMI SCMs, TMI × Pu .

We can now leverage existing identifiability results from the context of

non-linear ICA to show that the set of TMI SCMs is causally identifiable.

Specifically, Xi and Bloem-Reddy [216] proved the following result, which[216] Xi and Bloem-Reddy (2023), ‘Inde-

terminacy in Generative Models: Charac-

terization and Strong Identifiability.’

we have re-stated to match our setting:

Theorem 11.1 (Identifiability) If two elements of the family TMI × Pu
produce the same observational distribution, then the exogenous

distribution of the two data-generating processes differ by an invertible,

component-wise transformation.

Proof. By Theorem 2.2 of Xi and Bloem-Reddy [216], TMI×Pu is identifi-

able up to TMI maps that transport exogenous distributions. The KR map

is the unique TMI map that does this and, since all 𝑃u are fully-factorized,

each component of the KR map is a composition of marginal cumulative

and quantile functions, i. e., it is a component-wise transformation.

Theorem 11.1 tell us that, if our approximation to the underlying SCM,

𝑃x

𝑃ũ𝑃u

f̃f̃−1f f−1

𝒉

𝒉−1

Figure 11.2: Theorem 11.1 shown as a

commutative diagram, M = (f, 𝑃u) and

M̃ = (f̃, 𝑃ũ) are two TMI SCMs.

M̃ = (f̃, 𝑃ũ) ∈ TMI × Pu , matches the observational distribution gener-

ated by M = (f, 𝑃u) ∈ F ×Pu , then we know that the exogenous distribu-

tion recovered byM̃differ from the real one by a function of each compon-

ent independently, i. e., f̃−1(f(u)) = 𝒉(u) = (ℎ1(u1), ℎ2(u2), . . . , ℎ𝐷(u𝐷)) ,
where u ∼ 𝑃u and each ℎ𝑖 is an invertible function. One direct con-

sequence of Theorem 11.1 is that the functional dependencies of M̃ must

match those of M, i. e., M̃ must be causally consistent w.r.t. M. We

formally present this result in the following corollary:

Corollary 11.2 (Causal consistency) If two elements of the family

TMI × Pu produce the same observational distribution, then they are

causally consistent.

Proof. Let M, M̃ ∈ TMI × Pu . By Theorem 11.1, we have that f̃−1 ◦ f = 𝒉
and 𝒉#𝑝u = 𝑝ũ , where 𝒉 is a component-wise transformation. Then,

∇uf(u) = ∇u(f̃ ◦ 𝒉)(u) = ∇ũf̃(ũ) · ∇u𝒉(u) ≡ ∇ũf̃(ũ) , (11.20)

where the last expression is a result of 𝒉 being a component-wise

transformation. Similarly, we have that

∇xf̃−1(x) = ∇x(𝒉 ◦ f−1)(x) = ∇u𝒉(u) · ∇xf−1(x) ≡ ∇xf−1(x) . (11.21)

That is, the SCMs are causally consistent.

To summarize, we have shown that if we find a SCM in the set TMI × Pu
that matches the observational distribution of M, then the causal model:

i) is causally consistent; and ii) can identify the exogenous distribution

up to component-wise transformations. In other words, we have proven

that the family of TMI SCMs is causally identifiable.

https://proceedings.mlr.press/v206/xi23a.html
https://proceedings.mlr.press/v206/xi23a.html

11.4 Extension to real-world settings 119

11.4 Extension to real-world settings

11.4.1 Discrete data 119
11.4.2 Partial knowledge . . 120

To bring theory closer to practice, we extend our theoretical results from

the previous section to two scenarios. Specifically, we consider the case

when we have mixed discrete-continuous observational data, and the

case when we possess only partial knowledge about the underlying causal

graph, which are both common properties of real-world problems.

11.4.1 Discrete data

To extend the results presented in Section 11.3 to the case where an

observed variable is discrete, we restate the more general data-generating

process assumed by Xi and Bloem-Reddy [216], which we adopted in [216] Xi and Bloem-Reddy (2023), ‘Inde-

terminacy in Generative Models: Charac-

terization and Strong Identifiability.’

previous sections.

Let us assume that the causal mechanism has been already unrolled, i. e.,
that we have a function f mapping u to x . Let us assume also, without

loss of generality, that only the 𝑑-th observed variable is discrete, and let

us focus on the way this particular R.V. is generated. Now, Xi and Bloem-

Reddy consider the additional existence of a (fixed) noise distribution 𝑃𝜖
and mechanism 𝑔 , such that the x𝑑 is generated as

u ∼ 𝑃u , 𝜖 ∼ 𝑃𝜖 , x = 𝑔(f(u, 𝜖)) , (11.22)

Remark 11.5 x d

= y means that x
and y are equal r. v. s in distribution,

meaning that, for every value 𝒂 ,

𝑃(x ≤ 𝒂) = 𝑃(y ≤ 𝒂) .

with 𝜖⊥⊥u , and where Xi and Bloem-Reddy focus on the noiseless case

under the following assumption: if we have two noise variables such that

𝜖
d

= �̃� , then 𝑔(f(u), 𝜖) d

= 𝑔(f(ũ), �̃�) if and only if f(u) d

= f(ũ) .
To accommodate the discrete observed variable x̃𝑑 to our setting, we

make the assumption that it is the transformation of a continuous

exogenous R.V., u𝑑 , with a function 𝑓𝑑 that fulfils our assumptions
11

11: I. e., that 𝑓𝑑 is a diffeomorphism.

and has undergone a quantization process, e.g., x𝑑 = 𝑓𝑑(uan𝑑
, u𝑑) B

⌊ 𝑓𝑑(uan𝑑
, u𝑑)⌋ . Therefore, it is clear that 𝑓𝑑 is no longer bĳective, as we

are clamping real numbers into integers, and that the observational

distribution of x𝑑 is discrete.

We take advantage of the noise assumption, and dequantize the observed

variable x𝑑 by assuming an additive noise mechanism of the form

x𝑑 B 𝑓𝑑(uan𝑑
, u𝑑) + 𝜖 , with 𝜖 distributed within [0, 1] according to any

continuous distribution.
12

As a result: i) x̃𝑑 is again a continuous R.V., as 12: For the experiments of Chapter 12,

we consider 𝑃𝜖 = U(0, 1) .
the sum of independent discrete and continuous r.v.s is a continuous R.V.;
and ii) the discrete distribution of the noiseless case is always recoverable

via 𝑃(x̃𝑑 = 𝑐) = 𝑃(𝑐 ≤ x𝑑 ≤ 𝑐 + 1) .
More importantly, all the theoretical insights from the work of Xi and

Bloem-Reddy [216] are preserved by working with the noisy case rather

than the noiseless one. Indeed, they assume in their analysis a single u in

the domain of the generator, for which we can merge the generator and

noise mechanism 𝑔 ◦ 𝑓𝑑 : ℝ𝐷 → ℝ ,
13

by mapping the non-injective part 13: Instead of 𝑔 ◦ 𝑓𝑑 : ℝ𝐷 × [0, 1] → ℝ .

of u to 𝜖 itself, i. e., by using the function

Remark 11.6 The intuition is that

Equation 11.23 embeds in the noise

𝜖 the distribution of the (unrecover-

able) error of 𝑓𝑑 .

(𝑔 ◦ 𝑓𝑑)(u) = 𝑓𝑑(u) + 𝐹−1

𝜖

(
𝑓𝑑(u) − 𝑓𝑑(u)

)
, (11.23)

where 𝐹−1

𝜖 is the quantile function of 𝑃𝜖. This new function is a diffeo-

morphism almost everywhere, as it is a composition of almost-everywhere

https://proceedings.mlr.press/v206/xi23a.html
https://proceedings.mlr.press/v206/xi23a.html

120 Chapter 11 Causal Identifiability Given a Causal Ordering

©­­­«
0 0 0 0

1 0 ? 0

1 ? 0 0

0 1 0 0

ª®®®¬
©­­­«
0 0 0 0

1 0 0 0

1 1 0 0

0 1 0 0

ª®®®¬
©­­­«
0 0 0 0

1 0 1 0

1 0 0 0

0 1 0 0

ª®®®¬
©­­­«
0 0 0 0

1 0 1 0

1 1 0 0

0 1 0 0

ª®®®¬
x3

x1 x2 x4

?

(a) Partial knowledge.

x3

x1 x2 x4

(b) Option 1.

x3

x1 x2 x4

(c) Option 2.

x3

x1 x2 x4

(d) Option 3.

Figure 11.3: Example of a SCM with partial knowledge about the causal graph (a) and three possible realities: (b) only the edge x2 → x3

exists; (c) only the edge x3 → x2 exists; and (d) both edges exist. We omit the case where no edge exists.

diffeomorphisms, and we have effectively replaced the noise variable by

the error of 𝑓𝑑(u) after quantization. In particular, note that if the noise is

uniformly distributed, 𝑃𝜖 = U(0, 1) , we have that 𝑔 ◦ 𝑓𝑑 = 𝑓𝑑 , if x𝑑 were

discretized by taking its integer part.

Intuitively, by adding noise to discrete variables while keeping them

recoverable, we learn a mapping between continuous variables that

represents ‘the generator function before the observed variables were

somehow discretized.’ Importantly, the observed discrete distribution is

always recoverable, independently of whether we learn the (unknown

and unrecoverable) underlying continuous distribution.

11.4.2 Partial knowledge

We now expand our results to the case in which we have partial knowledge

about the underlying causal graph, i. e., when we are certain about some

causal dependencies, but not all of them. To this end, we first introduce

the way we deal with partial knowledge, and then clarify the theoretical

implications that it has with respect to the theory of Section 11.3.

Illustrative example. Similar to Section 11.2, we motivate the method

with the illustrative example shown in Figure 11.3. Suppose that we

are given a SCM such as the one in Figure 11.3a, where we know all

relationships but the one between x2 and x3 . Note that, in this case, we

lack even information about the causal ordering. Then, there are four

possibilities: i) there is no edge; ii) the edge x2 → x3 exists; iii) the edge

x3 → x2 exists; or iv) both edges exist.
14

14: That is, there are cycles in the graph

or there exists a confounder.

Let us switch now to Figure 11.4. To solve the original problem in Fig-

ure 11.4a, one natural approach is to assume that all unknown edges may

exist and group the nodes with unknown relationships. This, effectively,

is equivalent to modelling the joint distribution of block variables with a

general function, and assuming block TMI generators. However, if we

want to keep the triangular structure for all variables (Figure 11.4c), we

can model the joint distribution within the blocks with a TMI map using

an arbitrary fixed ordering.
15

15: Which we can always do by applying

the KR map with that ordering.

One subtle detail is, however, that we need to increase the granularity of

all inter-block edges from node- to block-wise relationships, defining an

edge between blocks if there exists one for at least one pair of variables

11.4 Extension to real-world settings 121

©­­­«
0 0 0 0

1 0 ? 0

1 ? 0 0

0 1 0 0

ª®®®¬
©­­­«
0 0 0 0

1 0 1 0

1 1 0 0

0 1 0 0

ª®®®¬
©­­­«
0 0 0 0

1 0 0 0

1 1 0 0

0 1 1 0

ª®®®¬
x3

x1 x2 x4

?

(a) Partial-knowledge SCM.

x3

x1 x4

x2

(b) Modelled with block TMI maps.

x3

x1 x4

x2

(c) Modelled with TMI maps.

Figure 11.4: Illustrative example (same as in Figure 11.3) describing our method for partial information. First, we apply Tarjan’s

algorithm [200] to find the SCCs of the graph (rectangles) and build a new DAG where each node is a subset of the original nodes. (b) If,

for the SCCs, we consider block TMI maps, we keep the individual node edges unaltered. (c) If we instead use proper TMI maps, we pick

an arbitrary order within each SCC, and extend the node edges to SCC edges. Red represents intra-SCC edges, and green inter-SCC

edges. See Subsection 11.4.2 for more details.

between blocks. To see why, assume that the real graph of the example

is that of Figure 11.3c, yet we assume the ordering 𝜋 = [1 2 3 4] and

the graph 𝑨 without inter-block modifications.
16

In that case, we would 16: I. e., we assume the adjacency matrix

©­­­«
0 0 0 0

1 0 0 0

1 1 0 0

0 1 0 0

ª®®®¬ . (11.24)

have that x4 depends on x3 through x2 . However, a causally consistent

model would not be able to model this dependency, and thus x4 would

depend on u1 , u2 , and u4 but not on u3 .

Constructing a DAG. Therefore, to extend the results from Section 11.3

using TMI maps, the block adjacency matrix needs to be the one from

Figure 11.4c, which can be built as follows:

1. Run Tarjan’s algorithm [200] to group all nodes into their strongly

connected components (SCCs), forming a DAG.
17

17: Note that, unlike in the illustrative

example, there could be more than one

cluster of unknown relationships.2. Transform the node edges into SCC edges. That is, introduce edges

between every pair of nodes of two SCCs, if there exists at least one

edge between their nodes.

3. Choose an ordering consistent with the known inter-SCC edges.

Theoretical results. Extending the results of Section 11.3 to the partial-

knowledge case is rather simple. The reason is that these results require

a fixed ordering, not necessarily the causal one.
18

Therefore, the proves 18: Since the KR transports described in

Section 11.3 are unique given any variable

ordering.

of both Theorem 11.1 and Corollary 11.2 still apply to this fixed ordering,

and we only need to re-state their implications with respect to the true

causal data-generating process M.

Then, we only need to note that all the possible graphs, after reducing

them to a DAG using the SCCs-partition, are the same graph. In other

words, every possible graph shares the same causal dependencies between
SCCs. Hence, if we treat each SCC as a (multivariate) variable, calling

𝑺𝑑 ⊂ {1, 2, . . . , 𝐷} the SCC containing the 𝑑-th node, and defining pa𝑺𝑑
and an𝑺𝑑 as the union of parents and ancestors of every node in the

SCC, then it is clear that we can write, for every plausible graph �̃� , the

observed variables as x𝑑 = 𝑓𝑑(xpa𝑺𝑑
, u𝑺𝑑) . Moreover, we can write the

‘exogenous’ variables as a function of the true ones, i. e., ũ𝑺𝑑 = KR(u𝑺𝑑) ,
where KR is the KR transport such that KR#𝑝u = 𝑝ũ .

122 Chapter 11 Causal Identifiability Given a Causal Ordering

Theorem 11.3 (Identifiability – Partial knowledge) If we have two

SCMs M ∈ F × Pu , and M̃ ∈ F̃ × Pu , where F and F̃ are TMI

maps with equal inter-SCC orderings, and they generate the same

observational distribution, then the two SCMs are identifiable up to

an invertible SCC-wise transformation.

Proof. W.l.o.g. pick M , and apply a KR transport to write it down as a

member of F̃ × Pu , call it M̂ , with identical observational distribution

as both M and M̃ . Using Theorem 11.1, we know that the M̃ and M̂
differ by an invertible component-wise transformation 𝒉 . Moreover, we

can write û𝑺𝑑 as a function of u𝑺𝑑 , as argued above. Putting it all together,

we have that ũ𝑑 = ℎ𝑑(û𝑑) = ℎ𝑑(KR𝑑(u𝑺𝑑)) and, for each SCC 𝑺𝑑 ,

ũ𝑺𝑑 = 𝒉𝑺𝑑 (KR𝑺𝑑 (u𝑺𝑑)) = (𝒉𝑺𝑑 ◦ KR𝑺𝑑)(u𝑺𝑑) , (11.25)

which only depends on the elements of u within the SCC.

Corollary 11.4 (Causal consistency – Partial knowledge) If, as in the

previous theorem, we have two SCMs with equal inter-SCC ordering

producing the same observational distribution, then they are causally

consistent at the SCC level.

Proof. The proof is identical to the one for Corollary 11.4, but using the

SCC-wise transformation 𝒉 given by Theorem 11.3.

Theorem 11.3 and Corollary 11.4 extend the results from Subsection 11.3.2.

It is important to note, however, that causal consistency here refers to

the causal relationships between SCCs. The reason is simple: as we

fix an arbitrary ordering within each SCC, it might not correspond

to a causal ordering. In other words, when we reason about SCCs

instead of individual nodes,
19

we can safely talk about SCC-wise causal19: Note that if the whole causal graph

is known, then every SCC contains just a

single node, and we recover the results

from Subsection 11.3.2.

identifiability and consistency, and we can perform interventions and

compute counterfactuals on SCCs treated as a whole.

11.5 Reimplementing the do-operator

While we have reduced the space of SCMs to a subset that is causally

identifiable, the implementation of the do-operator described in Subsec-

tion 10.3.1 is not well-suited for other than the recursive SCM formulation

from Equation 10.1. In this section, we propose an implementation of the

do-operator that works for every considered SCM, independently of the

specific form of the structural equations, such that we can use them to

answer causal-inference queries.

Semantics. Recall from Subsection 10.3.1 that the do-operator [154],[154] Pearl (2012), ‘The Do-Calculus Re-

visited.’
denoted as 𝑑𝑜(x𝑖 B 𝛼) , is a mathematical operator that simulates a

physical intervention on a SCM M, inducing an alternative model MI

that fixes the observational value x𝑖 = 𝛼 , and thus removes any causal

dependency influencing x𝑖 .

https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article%5C_id=2330%5C&proceeding%5C_id=28

11.5 Reimplementing the do-operator 123

Usual implementation. Usually, the do-operator is implemented by

yielding a SCM MI = (fI , 𝑃u) result of replacing the i-th component of

f with a constant function, 𝑓 I
𝑖
B 𝛼 . Unfortunately, this implementation

only works for the recursive representation of the SCM, as otherwise the

sampling process is not iterative along the exogenous variables, and the

effect of replacing 𝑓 I
𝑖

is not reflected in the rest of variables.

Proposed implementation. Instead, we propose to manipulate the SCM

by modifying the exogenous distribution 𝑃u, while keeping the structural

equations f unaltered. Specifically, an intervention 𝑑𝑜(x𝑖 B 𝛼) constraints

𝑃u to place density only on those values that, when transformed to

endogenous variables, the intervened variable yields the expected value,

i. e., x𝑖 = 𝛼 , while keeping the distribution of the rest of variables

unaltered. In other words, we define the intervened SCM asMI = (f, 𝑃I
u) ,

where the density of the updated distribution 𝑃I
u is of the form

𝑝I(u) ∝ 𝑝(u) · 𝛿{ 𝑓𝑖 (u)=𝛼}(u) , (11.26)

and where the distributions of the rest of variables remain the same.

Using the acyclic assumption, we know that the only way of altering the

distribution of x𝑖 without altering those of its parents is through u𝑖 and,

using the causal sufficiency assumption, we can squeeze the Dirac delta

directly in the distribution of the i-th exogenous variable, such that:

𝑝I(u) = 𝑝I𝑖 (u𝑖 | u𝑗≠𝑖) ·
∏
𝑗≠𝑖

𝑝 𝑗(u𝑗) , with (11.27)

𝑝I𝑖 (u𝑖|u𝑗≠𝑖) ∝ 𝑝𝑖(u𝑖) · 𝛿{ 𝑓𝑖 (u𝑖 ,u𝑗≠𝑖)=𝛼}(u) . (11.28)

By assumption, the structural equations are bĳective, and thus the

set

{
𝑓𝑖(u𝑖 , u𝑗≠𝑖) = 𝛼

}
contains a single value given u𝑗≠𝑖 . Note that, to

be well-defined, the density at this point should be positive, i. e., the

element that yields 𝛼 (and therefore 𝛼) should be a plausible value.

Interestingly, this implementation resembles the implementations for

soft interventions [51] and backtracking counterfactuals [204]. Since this [51] Eberhardt and Scheines (2007), ‘In-

terventions and Causal Inference.’

[204] Von Kügelgen, Mohamed and Beck-

ers (2023), ‘Backtracking counterfactu-

als.’

implementation does not make any assumption in the functional form of

the structural equations, it can be used on any of the considered SCMs.

Next, we prove that the proposed implementation removes every depend-

ency of the ancestors on the descendants that go through the intervened

variable. For simplicity, we consider a 3-chain case with unidimensional

variables, but the proof works for the general case replacing derivatives

by differentials and taking uan2
instead of u1 .

Proposition 11.5 Assume that M ∈ F × Pu is a 3-chain model where

x1 indirectly causes x3 through x2 . Then, after applying 𝑑𝑜(x2 B 𝛼)
as described above, there is no causal dependency of x1 on x3 .

Proof. To check that there is no causal dependency is equivalent to show

no functional dependency in the structural equations. Since we are fixing

the value of u2 to produce x2 = 𝛼 , we can use implicit differentiation to

compute the influence of u1 (and therefore x1) on x2 via u2 :

𝛼 = x2(u1 , u2)
du1

==⇒ 0 =
𝜕x2

𝜕u1

+ 𝜕x2

𝜕u2

du2

du1

, (11.29)

http://www.jstor.org/stable/10.1086/525638

124 Chapter 11 Causal Identifiability Given a Causal Ordering

and any indirect influence of the ancestor, u1 , on the descendant, x3 ,

through this intermediate variable, x2 , cancels out:

𝜕x3

𝜕x2

dx2

du1

=
𝜕x3

𝜕x2

(
𝜕x2

𝜕u1

+ 𝜕x2

𝜕u2

du2

du1

)
=

𝜕x3

𝜕x2

· 0 = 0 . (11.30)

Along with Proposition 11.5, we also provide empirical evidence of the

validity of the implementation in Chapter 12 and Appendix E.2. This is

especially clear in the pair plots shown in Figures E.2 and E.3.

11.6 Concluding remarks

In this chapter, we have investigated the question of how to restrict the

class of considered SCMs to gain causal identifiability. We have shown

that, under a fairly general set of assumptions, this family of SCMs admits

a reduction to a subset of causally equivalent models, the set of TMI SCMs,

which we proved to be causally identifiable solely from observational

data and a causal ordering, up to component-wise transformations of

the original exogenous distribution.

As a consequence, we can provide causal identifiability guarantees in

data-driven approaches, e.g., deep learning (DL) models, by building

a sufficiently rich parametric family that lives in the TMI SCMs family.

That is, by reducing the hypothesis space of the models to those that

follow a given causal ordering. Moreover, the extensions provided in

this chapter for mixed-type data and impartial causal-graph knowledge

further improves the applicability of these results to real-world scenarios.

This is precisely what we do next in Chapter 12 yet, as we will see

soon, using the causal ordering as an inductive bias is not enough to

successfully model the underlying SCMs in practice.

The results in this chapter are inherently limited by the assumptions made

herein, and application domains that exhibit, e.g., hidden confounders,

or cycles in the induced causal graph, are not suitable to the framework

presented in this chapter. Therefore, future work relaxing any of these

assumptions are of special interest. Finally, this chapter implicitly relies

on the validity of the given causal ordering, and it is not clear to which

extent a mismatch between the real causal ordering and the one provided

deteriorates the presented results.

Effective Deep Causal Inference
with Causal Normalizing Flows 12.

12.1 Causal NFs 126
12.2 Causal inference queries 129
12.3 Ablation study 130
12.4 Model comparison . . . 133
12.5 Fairness use-case 133
12.6 Concluding remarks . . 134

El que está en lucha que sueñe,

el que sufra que se indigne,

el que no hace nada no merece nada,

así de simple.

Charly Efe; La Tuerka

�
github.com/psanch21/causal-flows

github.com/adrianjav/causal-flows

This chapter is based on the content of:

[IV]: Javaloy, Sánchez-Martín and Valera

(2023), ‘Causal normalizing flows: from

theory to practice.’

In the previous chapter, we have explored the theory of causal identifiabil-

ity, and found that the family of triangular monotonically increasing (TMI)

structural causal models (SCMs) provides us with causal-identifiability

guarantees at no cost in expressivity, since we can always reduce a SCM

to a causally-equivalent TMI SCM. In this chapter, we put the theory to

practice, and use these results to design causal generative models (CGMs)

that can learn the underlying causal data-generating process.

Specifically, we find autoregressive normalizing flows (ANFs) to be ideal

candidates for this task, as they are probabilistic generative models

(PGMs) and universal TMI approximators. We capitalize these findings

to introduce in this chapter causal normalizing flows (Causal NFs), a

variation of ANFs that use the knowledge about the underlying causal

ordering as an inductive bias to design the flow architecture. As a result,

Causal NFs are the first deep learning (DL) model in the existing literature

to provably approximate the underlying SCM from observational data

under general assumptions. This is clearly illustrated in Figure 12.1,

where the Causal NF is able to estimate the (unobserved) causal effect

of externally intervening on the sensitive attribute (red and yellow

distributions), using solely the observed data (blue distribution) and

(partial) information about the causal graph.

However, we often find that the model is not able to effectively approx-

imate the underlying SCM, as it gets stuck in local optima with spurious

causal dependencies. To address this issue, we analyse different design

and learning choices for Causal NFs, and using the causal graph as

another inductive bias, show how to build Causal NFs that are causally

consistent by design. As a result, the optimization process is significantly

eased, and we can efficiently train Causal NFs.

Negative Average High
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ili

ty

German Credit - Checking account

real data
estimated

observational
do(xS = 0)

do(xS = 1)

Figure 12.1: Observational and inter-

ventional distributions of the categor-

ical variable Checking account of the

Credit dataset [48], and their estimated

values according to a causal normalizing

flow. x𝑆 is a binary variable representing

the applicant’s sex.

https://github.com/psanch21/causal-flows
https://github.com/adrianjav/causal-flows

126 Chapter 12 Effective Deep Causal Inference with Causal Normalizing Flows

12.1 Causal normalizing flows

12.1.1 Intro to NFs 126
12.1.2 Connection with SCMs 127
12.1.3 Network design . . . 127

In this section, we introduce Causal NFs and explain their properties

and connections with the theory built in Chapter 11. Then, by exploiting

explicit causal knowledge, we study different network designs that

incorporate hard-constraint inductive biases to ease the optimization

process and effectively learn SCMs in practice.

12.1.1 Introduction to normalizing flows

Normalizing flows (NFs) [147] are a family of PGMs that express the joint[147] Papamakarios, Nalisnick, Rezende,

Mohamed and Lakshminarayanan

(2021), ‘Normalizing Flows for Prob-

abilistic Modeling and Inference.’

density of a set of observations by taking advantage of the change-of-

variables rule. Given an observed random vector x of size 𝐷, an NF is an

invertible neural network with parameters 𝜽 that takes x as input, and

outputs u B 𝑇𝜽(x) ∈ ℝ𝐷
, which we assume to be distributed as u ∼ 𝑃u .

Therefore, the log-likelihood of x according to 𝑇𝜽 is

log 𝑝(x) = log 𝑝u(𝑇𝜽(x)) + log|det∇x𝑇𝜽(x)| , (12.1)

where the second term is finite because 𝑇𝜽 is invertible, and where the

distribution of u , 𝑃u, is usually such that evaluating the log-likelihood

and sampling are cheap to compute. Since we can evaluate the log-

likelihood of the observed data, the usual practice is to perform maximum

likelihood estimation (MLE) [12] and learn the network parameters, 𝜽 ,[12] Bishop (2006), ‘Pattern Recognition

and Machine Learning (Information Sci-

ence and Statistics).’

by maximizing Equation 12.1 with gradient-based approaches.

One remarkable property of NFs is their compositionality. Similar to the

way that layers in a DL model can be stacked to construct highly complex

architectures, flow layers can also be composed to build multi-layered

flows that iteratively apply the change-of-variable rule. As a result, it is

common to have NFs with several flow layers.

In this chapter, we focus on a specific family of NFs called autoregressive

normalizing flows (ANFs) [94, 146]. Namely, ANFs factorize the joint[94] Kingma, Salimans, Jozefowicz,

Chen, Sutskever and Welling (2016),

‘Improved Variational Inference with

Inverse Autoregressive Flow.’

[146] Papamakarios, Murray and

Pavlakou (2017), ‘Masked Autoregress-

ive Flow for Density Estimation.’

distribution according to a given ordering 𝜋 such that

𝑃𝜽(x) =
𝐷∏
𝑑=1

𝑃𝜽(x𝜋𝑑 | x𝜋1
, x𝜋2

, . . . , x𝜋𝑑−1
) , (12.2)

which is achieved by designing a flow layer of the following form:

u𝑑 B 𝜏𝑑(x𝑑; h𝑑) , with h𝑑 B 𝑐𝑑(x1 , x2 , . . . , x𝑑−1) , (12.3)

where 𝜏𝑑 and 𝑐𝑑 are known in the literature as the transformer and

the conditioner, respectively. The transformer is a strictly monotonic

function of x𝑑 , while the conditioner can be arbitrarily complex and only

takes the variables preceding x𝑑 as input.

As a result, ANFs have triangular Jacobian matrices with positive diag-

onals, whose log-determinant can be computed in O(𝐷) instead of the

usual O(𝐷3) . Moreover, when we stack them and shuffle the ordering 𝜋
each layer, they become universal density approximators [147]. These two

properties make them a really appealing option for designing NFs.

http://jmlr.org/papers/v22/19-1028.html
http://jmlr.org/papers/v22/19-1028.html
https://proceedings.neurips.cc/paper_files/paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf
https://proceedings.neurips.cc/paper/2017/hash/6c1da886822c67822bcf3679d04369fa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6c1da886822c67822bcf3679d04369fa-Abstract.html

12.1 Causal normalizing flows 127

12.1.2 Connection with structural causal models

Another interesting way of looking at ANFs is as data-generating pro-

cesses. Similar to SCMs, we can see an ANF as a tuple (𝑇−1

𝜽 , 𝑃u) that

generates data by first sampling u ∼ 𝑃u and then transforming them

using the flow, x = 𝑇−1

𝜽 (u) . From this perspective, the connections of

ANFs with the results and SCMs seen in Chapter 11 are easy to draw.

First, we note that an ANF layer and its inverse are parametric TMI

maps, which is clear given that their Jacobian matrices are triangular

with positive diagonal. Moreover, if we fix the same ordering 𝜋 for all

layers, then the combination of ANF layers is still a TMI map defined

over the given ordering.

If, instead of any ordering, we choose 𝜋 to be the known causal ordering,

then it is clear that an ANF
1

is a TMI SCM as the ones we discussed in 1: Seen as a data-generating process.

Chapter 11. We call such a flow a causal normalizing flow. Not only are

Causal NFs a subset of this family of causal models, but it is direct to

prove that they are universal TMI SCM approximators as well.
2

In other 2: By fixing the ordering of the universal

density approximator proof in [147].
words, the family of Causal NFs is expressive and, as a consequence,

causally identifiable, as defined in Subsection 11.1.2.

To summarize, if we manage to match the observational distribution of

the underlying SCM M generating the input dataset, which we directly

incentivize by learning 𝜽 via MLE in Equation 12.1, then the flow will

be causally equivalent to M, i. e., it will generate the same observational,

interventional, and counterfactual distributions.

12.1.3 Effective network design

We just showed that Causal NFs are a natural choice to learn the underly-

ing SCM generating the data. In practice, however, we find that reaching

the optimal parameters may be tricky as: i) we only have access to a finite

amount of training data; and ii) the optimization process for Causal

NFs (like for any neural network) can converge to local optima. In this

section, we propose different design choices for Causal NFs to guide the

optimization towards solutions that do not only provide an accurate fit

of the observational distribution, but allow us to also accurately answer

to interventional and counterfactual queries.

x = 𝑮x + 𝑰u
u x

1

2

1

3

1

Figure 12.2: Illustrative example of a lin-

ear SCM in its recursive formulation.

Let us start by recalling the illustrative example from Subsection 11.2.1,

where we are given the linear SCM shown in Figure 12.2. On the one hand,

as we discussed in Section 11.3, we can algebraically modify the structural

equations to obtain causally equivalent SCMs which, crucially, preserve

the causal dependencies between variables. On the other hand, a usually

effective inductive bias when trying to approximate an object that obeys

a certain structure is to embed the same structure in our approximation

to the problem, significantly reducing the space of possible solutions.

Therefore, we follow this intuition to design Causal NFs architectures

that mimic the structure of specific SCM representations.

Generative model. In the first architecture, we define the Causal NF as

a function from u to x , hence the name, and it is designed to imitate the

unrolled equations (see Figure 12.3). To this end, using the knowledge

about the causal graph 𝑨 , we replicate the structural sparsity per layer

128 Chapter 12 Effective Deep Causal Inference with Causal Normalizing Flows

by adequately masking each flow layer with 𝑰 + 𝑨 . In this way, the

x = 𝑮3(𝑮2(𝑮1u))
u x

1

0 2

1

0

1

1

0 0

1

3

1

1 1 1

Figure 12.3: Illustrative example of a lin-

ear SCM in its unrolled formulation.

information from u to x is restricted to flow as if we were unrolling the

causal model [174]. As a result, each layer of a Causal NF is of the form:

z
𝑙−1

𝑑
= 𝜏𝑑(z𝑙𝑑; h𝑙−1

𝑑
) , where h𝑙−1

𝑑
= 𝑐𝑑(z𝑙pa𝑑

) , (12.4)

with 𝑙 = 1, 2, . . . , 𝐿 , and where z𝑙 is the output of the 𝑙-th layer, with

z0 B x and z𝐿 B u (note the reversed order). By restricting each layer

such that∇z𝑙𝝉(z𝑙) ≡ 𝑰+𝑨 , we discard all possible shortcuts. For example,

the (indirect) information of u1 to generate x3 by first generating x2 needs

to go through the middle nodes in Figure 12.3. However, as shown by

[174], we need at least 𝐿 = diam(𝑨) layers to ensure that the information[174] Sánchez-Martín, Rateike and Valera

(2022), ‘VACA: Designing Variational

Graph Autoencoders for Causal Quer-

ies.’

flows between the two furthest nodes.

In contrast, if we only know the causal ordering 𝜋 ,
3

then during training

3: That is, if 𝑰 + 𝑨 were a dense lower-

triangular matrix.

the Causal NF would need to rule out the spurious correlations by learn-

ing the necessary zeroes to fulfil causal consistency (see Corollary 11.2),

i. e., such that ∇x𝑇𝜽(x) ≡ 𝑰 + 𝑨 and ∇u𝑇
−1

𝜽 (u) ≡ 𝑰 +∑diam(𝑨)
𝑖=1

𝑨𝑖
.

Abductive model.
u = (𝑰 − 𝑮)x
u x

1

−2

1

−3

1

Figure 12.4: Illustrative example of a lin-

ear SCM in its inverted formulation.

Reminiscent to the abduction step, another natural

choice is to model the inverted equations of the SCM as in Figure 12.4,

hence defining a Causal NF from x to u . Using again the information

about the causal graph 𝑨 , we can use extra masking to force each layer

to be structurally equivalent to 𝑰 − 𝑨 , i. e.,

z
𝑙
𝑑
= 𝜏𝑑(z𝑙−1

𝑑
; h𝑙

𝑑
) , where h𝑙

𝑑
= 𝑐𝑑(z𝑙−1

pa𝑖
) . (12.5)

Remarkably, this architecture is capable of capturing all indirect de-

pendencies of u on x , even with a single layer. This is a result of the

autoregressive nature of the ANFs used to build Causal NFs, as their

inverse has the structure of the recursive formulation. In the example in

Figure 12.4, the indirect influence of u1 on x3 via x2 has to necessarily

generate x2 first, as seen in Figure 12.2. Similar to the previous case, when

we know only the causal ordering, the Causal NF would need to rely on

optimization to discard all spurious correlations.

Causal consistency by design. As stated in Corollary 11.2, the Causal

NF needs to share the causal dependencies of the underlying SCM at the

optima, i. e., needs to be causally consistent. This is equivalent to saying

that their Jacobian matrices need to be structurally equivalent, i. e.,

∇x𝑇𝜽(x) ≡ 𝑰 − 𝑨 , and ∇u𝑇
−1

𝜽 (u) ≡ 𝑰 +
diam(𝑨)∑
𝑙=1

𝑨𝑙 . (12.6)

Therefore, we can study their causal consistency by directly computing

their structural equivalence. On the one hand, given the (partial) causal

adjacency matrix 𝑨, the generative model in Equation 12.4 holds the

latter equivalence by design for any sufficient number of layers since

∇z𝑙−1𝝉(z𝑙−1) ≡ 𝑰 + 𝑨 and

𝐿∏
𝑙=1

(𝑰 + 𝑨) ≡ 𝑰 +
diam(𝑨)∑
𝑙=1

𝑨𝑙
(12.7)

https://ojs.aaai.org/index.php/AAAI/article/view/20789

12.2 Causal inference queries 129

Table 12.1: Summary of the considered design choices, their induced properties, and their time complexity for density evaluation and

sampling. See Subsection 12.1.3 for an in-depth discussion.

Design Choices Model Properties Time Complexity

Network Type

Causal

Asumption

Causal Consistency

Sampling Evaluation

u→ x x→ u

u ↦→ x
{

Generative Ordering 𝜋 ✗ ✗ O(𝐿) O(𝐷𝐿)
Generative Graph 𝑨 ✓ ✗ O(𝐿) O(𝐷𝐿)

x ↦→ u


Abductive Ordering 𝜋 ✗ ✗ O(𝐷𝐿) O(𝐿)
Abductive (𝐿 > 1) Graph 𝑨 ✗ ✗ O(𝐷𝐿) O(𝐿)
Abductive (𝐿 = 1) Graph 𝑨 ✓ ✓ O(𝐷𝐿) O(𝐿)

for 𝐿 ≥ diam𝑨 . Unfortunately, since in a SCM it is always the case that

𝑰 −𝑨 ⪯ 𝑰 +∑diam(𝑨)
𝑙=1

𝑨𝑙
, we have no guarantees that the first equivalence

holds in general: the model should remove these spurious dependencies

during training.

Remark 12.1 Intuitively, the map-

ping x → u is structurally sparser

than the mapping u→ x since in the

former u𝑖 depends on pa𝑖 , and the

latter x𝑖 depends on an𝑖 .

On the other hand, we run into a similar problem for

the abductive model in Equation 12.5 for the general case, i. e.,

∇z𝑙𝝉(z𝑙) ≡ 𝑰 − 𝑨 and

𝐿∏
𝑙=1

(𝑰 − 𝑨) . 𝑰 − 𝑨 , (12.8)

and spurious dependencies need to be removed during training. However,

we note that the abductive model is causally consistent by design for the

case 𝐿 = 1 . In those cases where the Causal NF does not ensure causal

consistency by design, but we still have access to the adjacency matrix,

we can use this extra information to regularize the MLE problem as

minimize

𝜽
𝔼x

[
− log 𝑝𝜽(x) + ∥∇x𝑇𝜽(x) ⊙ (1 − 𝑨)∥2

]
, (12.9)

where 1 is a matrix of ones, and thus penalizes spurious correlations

from x to 𝑇𝜽(x) . Table 12.1 summarises the properties of the design

choices considered in this chapter. Remarkably, the abductive model

with a single layer (𝐿 = 1) is expressive, as ANF layers are universal TMI

approximators, and causally consistent by design w.r.t. the provided

adjacency matrix 𝑨, greatly simplifying the optimization process.

12.2 Causal inference queries

In this section, we describe how to efficiently answer causal inference

queries with Causal NFs. To this end, we revisit the alternative imple-

mentation of the do-operator proposed in Section 11.5, as it works for

any SCM representation, and therefore for any of the architectures con-

sidered in Subsection 12.1.3. See Subsection 10.3.1 and Section 11.5 for an

introduction to the do-operator and its re-implementation, respectively.

As a summary, we can implement the do-operation 𝑑𝑜(x𝑖 B 𝛼) on a

Causal NF𝑇𝜽 by modifying the distribution𝑃u while keeping the network

unaltered. Namely, we restrict 𝑃u to the (unique) value of u𝑖 , given its

parents, that yields the intervened value 𝛼 when transformed with 𝑇−1

𝜽 ,

i. e., the new density is of the form

𝑝I(u) = 𝛿{𝑇−1

𝜽 (u𝑖 ,u𝑗≠𝑖)𝑖=𝛼}(u) ·
∏
𝑗≠𝑖

𝑝 𝑗(u𝑗) . (12.10)

130 Chapter 12 Effective Deep Causal Inference with Causal Normalizing Flows

Sampling algorithms. Using Equation 12.10, we can implement efficient

algorithms to exactly sample from the interventional and counterfac-

tual distributions with Causal NFs.

Remark 12.2 Both algorithms use the

bĳectivity of the NF to sample from

the delta. Importantly, note that only

u𝑖 is changed, as otherwise spurious

correlations would be introduced to

the descendants of x𝑖 .

Both algorithms can be found in

Algorithm 12.1 and 12.2 and follow a similar structure: i) obtain the

exogenous variable u B 𝑇𝜽(x) ; ii) replace the observational value by its

intervened value, x𝑖 B 𝛼 ; iii) set u𝑖 to the value of the i-th component of

𝑇𝜽(x) ; and iv) sample a new x with the resulting u . If the Causal NF has

successfully isolated the exogenous distributions (Section 11.3), and it is

causally consistent (Subsection 12.1.3), then Proposition 11.5 ensures that

the operation is equivalent to a hard intervention.

Algorithm 12.1: Algorithm to sample

with a Causal NF from the interventional

distribution, 𝑃𝜽(x | 𝑑𝑜(x𝑖 B 𝛼)) .

1 function: SampleIntervenedDist
2 input: index 𝑖, value 𝛼
3 begin
4 u ∼ 𝑃u
5 x← 𝑇−1

𝜽 (u) # Sample from the flow

6 x𝑖 ← 𝛼 # Set x𝑖 to the intervened value 𝛼
7 u𝑖 ← 𝑇𝜽(x)𝑖 # Change the 𝑖-th value of u
8 x← 𝑇−1

𝜽 (u)
9 return x # Return the intervened sample

10 end

Algorithm 12.2: Algorithm to sample

with a Causal NF from the counterfactual

distribution 𝑃𝜽(xcf | 𝑑𝑜(x𝑖 B 𝛼), xf) .

1 function: SampleCounterfactual

2 input: factual xf, index 𝑖, value 𝛼
3 begin

4 u← 𝑇𝜽(xf) # Perform the abduction step

5 x
f

𝑖
← 𝛼 # Set x𝑖 to the intervened value 𝛼

6 u𝑖 ← 𝑇𝜽(xf)𝑖 # Change the 𝑖-th value of u
7 xcf ← 𝑇−1

𝜽 (u)
8 return xcf # Return the counterfactual sample
9 end

12.3 Ablation study

12.3.1 Network design . . . 130
12.3.2 Time complexity . . . 131
12.3.3 Exogenous distribution 132
12.3.4 Flow architecture . . 132

In this section, we extensively validate the design of Causal NFs from

Subsection 12.1.3 and the different insights discussed in Subsection 12.1.3.

Experiment details can be found in Appendix E.2.

12.3.1 Network design

Experimental setup. We evaluate every network combination de-

scribed in Table 12.1 on a 4-chain SCM
4

and assess the extent to which4: Which has a diameter of 3 and a very

sparse Jacobian.
these models: i) capture the observational distribution, measured by

KL(𝑝M(x) ∥ 𝑝𝜽(x)) ; ii) remain causally consistent w.r. t. the original SCM,

measured with L(∇x𝑇𝜽(x)) B ∥∇x𝑇𝜽(x) · (1 − 𝑨)∥2 from Equation 12.9;

and iii) perform at causal-inference tasks, such as estimating the average

treatment effect (ATE) [153] or predicting counterfactuals, both of which

we measure with the root mean squared error (RMSE) w.r. t. the original

causal model. Every experiment is repeated 5 times and every Causal

NF uses masked autoregressive flows (MAFs) [146] as layers.

Results. Figure 12.5 shows the results for different Causal NF designs.

Specifically, we ablate: i) network design, generative u→ x v.s. abductive

12.3 Ablation study 131

Direction: x→ u u→ x Model: Ordering Ordering? Graph Graph?

1 2 3 5 10
L

0.00

0.50

1.00

L
(∇

x
T
θ
(x

))

1 2 3 5 10
L

10−3

10−2

10−1

K
L

fo
rw

ar
d

1 2 3 5 10
L

0.00

1.00

2.00

R
M

SE
A

T
E

1 2 3 5 10
L

0.00

0.03

0.05

0.08

L
(∇

x
T
θ
(x

))

1 2 3 5 10
L

10−3

10−2

K
L

fo
rw

ar
d

1 2 3 5 10
L

0.10

0.15

0.20

0.25

R
M

SE
A

T
E

(a) Results as we vary the number of layers 𝐿. (Top) Generative architectures (u ↦→ x). (Bottom)
Abductive architectures (x ↦→ u).

KL forward

RMSE ATE

RMSE CF

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b) Comparison of the two best

models of each row in (a).
Figure 12.5: Ablation of different Causal NFs designs on their causally consistency, and causal inference capabilities. The use of

regularization on the Jacobian (Equation 12.9) is indicated with the ★ superscript. The abductive Causal NF with information on 𝑨 and

𝐿 = 1 outperforms the rest of models across all metrics, demonstrating its efficacy despite its simplicity.

x→ u ; ii) causal knowledge, ordering v.s. graph; iii) number of layers 𝐿;

and iv) whether to add regularization, Equation 12.1 v.s. 12.9.

First, we see in Figure 12.5a (top) that, as expected, the generative

models (u ↦→ x) using the causal graph cannot capture the SCM with

𝐿 < diam𝑨 = 3 . Furthermore, we observe that abductive models x ↦→ u
in Figure 12.5a (bottom) accurately fit the observational distribution,

and that embedding the causal graph in the architecture significantly

improves ATE estimation. Second, we compare the two network designs

in Figure 12.5b, and observe that in general abductive models result

in more accurate estimates of the observational distribution, as well as

of interventional and counterfactual queries. Finally, we observe that

regularization works well in all cases, yet it renders useless for the

abductive model with 𝐿 = 1 and knowledge on the graph, since it is

causally consistent by design. In summary, this experiment confirms that,

despite its simplicity, the causal abductive model with 𝐿 = 1 outperforms

the rest of design choices. As a consequence, in the following sections we

will stick to this particular design choice.

12.3.2 Time complexity

Next, we evaluate the time complexity of the design choices introduced

in Subsection 12.1.3. Figure 12.6 summarizes the results, where the x-axis

represents the number of nodes in the dataset,𝐷, and the y-axis indicates

the time
5

required for a single forward pass of the NF during training. 5: In microseconds, µs.

Results. First, abductive models (x→ u , solid lines) train significantly

3 4 5

Size of graph (d)

0

5

10

15

Tr
ai

ni
ng

tim
e

(µ
s)

Figure 12.6: Time complexity compar-

ison between the different design choices

discussed in Subsection 12.1.3. Same le-

gend as that of Figure 12.5.

faster than generative models (u→ x , dotted lines), which emphasizes

the computational cost associated with inverting ANFs during training.

Moreover, the time complexity of abductive models remains constant

regardless of input size 𝐷, whereas that of generative models increases

linearly with 𝐷, as indicated in the right-most column of Table 12.1. Note

that we should see the exact opposite behaviour when sampling. Second,

the inclusion of Jacobian regularization (★marker) introduces significant

overhead, as clearly depicted in Figure 12.6. Finally, leveraging causal

graph information or relying solely on ordering (represented in orange

and green, respectively) has minimal impact on computational time.

132 Chapter 12 Effective Deep Causal Inference with Causal Normalizing Flows

Dataset SIMPSON [NLIN] TRIANGLE [LIN]

Base Distr. KL forward RMSE ATE RMSE CF
Normal

Normalθ

Laplace

Laplaceθ

0.0

0.2

0.4

0.6

(a) Ablation on the base distribution.

Model KL forward RMSE ATE RMSE CF
NSF

MAF

0.0

0.1

0.2

0.3

(b) Ablation on the flow architecture.

Figure 12.7: Performance on the SimpsonNLIN and TriangleLIN datasets of Causal NFs with (a) different base distributions, Normal and

Laplace, where 𝜽 indicates that we learn their parameters; and (b) flow architectures, MAF and NSF. Differences in base distribution

only affects KL divergence, while the choice of flow architecture influences the overall performance.

12.3.3 Exogenous distribution

We now assess to which extent a mismatch of the distribution 𝑃u between

the underlying SCM and the Causal NF affects performance. To this end,

we consider two more complex SCMs, Simpson [63] and Triangle [174],

and two exogenous distributions for the Causal NF, Normal and Laplace

distributions, for which we either fix or learn their parameters during

training. Both synthetic SCMs use standard normal distributions.

Results. Figure 12.7a reveals a notable distinction between base distri-

butions in terms of the observational-distribution fitting. However, this

discrepancy appears to have minimal implications on the two causal-

inference tasks. We hypothesize that this disparity originates from dis-

similarities in the tails of the distributions, as it can be inferred by the

slight edge of Normal over Laplace on the last column of Figure 12.7a,

which measures per sample differences, where larger errors occur at the

outliers which are, by definition, scarce. Interestingly, with this particular

architecture of Causal NF, every model had a difficult time modelling

the linear Triangle SCM.

12.3.4 Flow architecture

Considering the observed challenges faced by the MAF [146] flow to

accurately model the Triangle SCM in the previous experiment, we

further investigate the potential impact that flow architecture has on

performance. We consider a Causal NF with one MAF layer, and another

flow with a NSF [50] layer. Note that NSFs were built on top of MAFs[50] Durkan, Bekasov, Murray and Papa-

makarios (2019), ‘Neural Spline Flows.’
and differ in that they are no longer affine ANFs, which made MAFs not
universal TMI approximators. Therefore, we expect NSFs to outperform

MAFs in general.

Results. Figure 12.7b summarises our results, with MAFs and NSFs

depicted in orange and blue, respectively. Our empirical analysis reveals

that indeed NSFs consistently outperform MAFs on all three metrics, i. e.,
in observational, interventional, and counterfactual queries. Whilst ex-

pected, these findings highlight the practical implications of selecting an

appropriate flow architecture, which should be taken into consideration

when designing Causal NFs.

https://proceedings.neurips.cc/paper/2019/hash/7ac71d433f282034e088473244df8c02-Abstract.html

12.4 Model comparison 133

Table 12.4: Comparison, on three non-linear SCMs, of the proposed CausalNF, VACA [174], and CAREFL [91] with the do-operator proposed

in Section 11.5. The results are averaged over 5 different runs.

Performance Time Evaluation (µs)

Dataset Model KL ATERMSE CFRMSE Training Evaluation Sampling

Triangle
nlin

[174]

CausalNF 0.000.00 0.120.03 0.130.02 0.520.07 0.580.07 1.070.12

CAREFL† 0.000.00 0.120.03 0.170.03 0.570.18 0.830.26 1.680.62

VACA 7.710.60 4.780.01 4.190.04 28.821.21 23.000.55 70.653.70

LargeBD
nlin

[63]

CausalNF 1.510.04 0.020.00 0.010.00 0.520.10 0.600.17 3.050.66

CAREFL† 1.510.05 0.050.01 0.080.01 0.840.47 1.180.17 8.251.29

VACA 53.662.07 0.390.00 0.820.02 164.9211.10 137.8815.72 167.9425.75

Simpson
symprod

[63]

CausalNF 0.000.00 0.070.01 0.120.02 0.590.17 0.600.11 1.510.30

CAREFL† 0.000.00 0.100.02 0.170.04 0.490.15 0.810.19 1.910.33

VACA 13.850.64 0.890.00 1.500.04 49.264.09 37.783.41 79.2014.60

12.4 Model comparison

In this section, we compare the proposed model, CausalNF,
6

with other 6: Using 𝑨 , abductive, and with 𝐿 = 1 ,

i. e., bottom row of Table 12.1.
two relevant works: i) CAREFL [91], an abductive NF with knowledge

on the causal ordering and exclusively using affine flow layers; and

ii) VACA [174], a variational auto-encoding graph neural network (GNN)

with knowledge on the causal graph. To provide fair comparison, every

model uses the same budget for hyperparameter tuning, we restrict

CausalNF to affine flow layers, and CAREFL has been modified to use the

proposed do-operator from Section 11.5.
7

We increase the complexity 7: As the original implementation only

works in root nodes. See Appendix E.1.
of the synthetic SCMs and consider: i) Triangle, a 3-node SCM with a

dense causal graph; ii) LargeBD [63], a 9-node SCM with non-Gaussian

𝑃u and made out of two chains with common initial and final nodes; and

iii) Simpson [63], a 4-node SCM simulating a Simpson’s paradox [188],

where the relation between two variables changes if the SCM is not

properly approximated.

Results. In a nutshell, Table 12.4 shows that the proposed CausalNF

outperforms both CAREFL and VACA in terms of performance in all met-

rics as well as in computational efficiency. In general, VACA shows poor

performance, and it is considerably slower due to the inherent com-

plexity of GNNs. Our CausalNF outperforms CAREFL in interventional

and counterfactual estimation tasks with identical observational fit-

ting, stressing once more the importance of being causally consistent.

Moreover, our CausalNF is significantly faster than CAREFL, as usually

the best-performing CAREFL architectures have more than one layer.

In Appendix E.2.3 we extend these experiments to a total of 12 SCMs

with a variety of settings, showing that these results hold in general.

12.5 Fairness auditing and classification

To show the practical impact of Causal NFs, we reproduce the fairness

use-case of Sánchez-Martín et al. [174] on the Creditdataset [48], a dataset [174] Sánchez-Martín, Rateike and Valera

(2022), ‘VACA: Designing Variational

Graph Autoencoders for Causal Quer-

ies.’

from the UCI repository where the likelihood of individuals repaying

a loan is predicted based on a small set of features, including sensitive
attributes such as their sex. Extra details can be found in Appendix E.3.

https://ojs.aaai.org/index.php/AAAI/article/view/20789

134 Chapter 12 Effective Deep Causal Inference with Causal Normalizing Flows

Table 12.5: Accuracy, F1-score, and counterfactual unfairness of the audited classifiers. Causal NFs enable both fair classifiers and

accurate unfairness metrics. Results are averaged over 5 different runs.

Logistic classifier SVM classifier

full unaware fair x fair u full unaware fair x fair u

F1-score 72.286.16 72.374.90 59.668.57 73.084.38 76.042.86 76.805.82 68.285.74 77.391.52

Accuracy 67.003.83 66.752.63 54.755.91 66.503.70 69.503.11 71.003.83 59.252.99 69.751.26

Unfairness 5.842.93 2.810.72 0.000.00 0.000.00 6.652.45 2.780.40 0.000.00 0.000.00

Experimental setup. As proposed by Chiappa [29], we use a partial

causal graph that groups the 7 discrete features of the dataset in 4 different

blocks with known causal relationships, putting in practice the techniques

described in Section 11.4. For the Causal NF, we employ the abductive

model with a single non-affine NSF layer [50]. Our ultimate goal is to

train a Causal NF that captures well the underlying SCM producing the

data, and use it to train and audit classifiers that predict the (additional)

binary feature Credit risk, while remaining counterfactually fair w.r. t.
the binary variable Sex, x𝑆 .

In this context, we call a binary classifier 𝜅 : 𝕏→ {0, 1} counterfactually

fair [100] if, for every possible factual value xf ∈ 𝕏 , its counterfactual[100] Kusner, Loftus, Russell and Silva

(2017), ‘Counterfactual Fairness.’
unfairness remains zero. That is, if we have that

𝔼xf[𝑃(𝜅(xcf) = 1 | 𝑑𝑜(x𝑆 B 1), xf) − 𝑃(𝜅(xcf) = 1 | 𝑑𝑜(x𝑆 B 0), xf)] = 0 ,

where xcf ∼ 𝑃(xcf | 𝑑𝑜(x𝑆 B 𝑠), xf) , are counterfactual variables for the

intervention values 𝑠 ∈ {0, 1} .

We audit the following types of classifier: i) full, a model that takes all

observed variables; ii) unaware, a model that leaves the sensitive attribute

x𝑆 out; iii) fair x, a fair model that only considers non-descendant

variables of x𝑆 ; and, to demonstrate the ability to learn counterfactually-

fair classifiers with Causal NFs, we include fair u, a classifier that takes

u = 𝑇𝜽(x) as input, but leaves the sensitive exogenous variable u𝑆 out.

Results. Table 12.5 summarizes the performance and unfairness of the

different type of classifiers, using logistic regression [38] and SVMs [35] as

classification methods. Here, we observe that by taking the non-sensitive

exogenous variables from the Causal NF, the resulting classifiers achieve

comparable or better accuracy than the rest of approaches, while at

the same time being counterfactually fair. Moreover, the estimations

of counterfactual unfairness obtained with the Causal NF match our

expectations [100], with full being the most unfair classifier, followed by

unaware, and the two other classifiers being counterfactually fair. With

this use-case, we demonstrate that Causal NFs may indeed be a valuable

asset for real-world causal inference problems.

12.6 Concluding remarks

In this chapter, we have introduced Causal NFs, ANFs that follow a given

causal ordering, and showed that they are universal approximators of TMI

SCMs, making them a natural choice to provably learn a causal system by

leveraging the theoretical results from Chapter 11. Unfortunately, as local

https://proceedings.neurips.cc/paper/2017/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html

12.6 Concluding remarks 135

optima may hamper reaching these solutions in practice, we have explored

different network designs to introduce further structural inductive biases

by exploiting the available knowledge on the causal graph, hence making

Causal NFs causally consistent by design. Furthermore, we have revisited

the do-operator proposed in Chapter 11 and designed algorithms to

efficiently solve causal inference tasks with Causal NFs. Finally, we have

empirically validated our findings, and demonstrated that Causal NFs

consistently outperforms existing approaches and can deal with mixed-

typed data and partial knowledge on the causal graph, which is key for

real-world use-cases.

We firmly believe that this chapter opens a number of interesting direc-

tions to explore. For example, it remains an open question how to extend

Causal NFs to deal with hidden confounders, or whether other loss

functions than MLE require looser inductive biases. Moreover, it would

be exciting to see Causal NFs applied to other problems such as causal

discovery [63], fair decision-making [100], or neuroimaging [68], among

others. However, we would like to stress that, in the above contexts, it

would be essential to validate the suitability of our framework (e.g., using

experimental data) to prevent potential harms.

Part IV.

Epilogue

Conclusion 13.
13.1 Summary and impact . 139
13.2 Prospects 141

Si te encuentro gritaré a viva voz,

que prefiero verte que ganar la guerra.

Levántate, mi corazón,

te escondiste a la sombra de la sierra.

La raíz; A la sombra de la sierra

We conclude this dissertation by summarizing the main results covered

herein, the early impact that the research presented has had on subsequent

works, as well as by giving our honest suggestions on future research

directions that we hope this dissertation has helped moving towards.

13.1 Summary and impact

A common theme in this dissertation has been the specification of our

expectations on the model behaviour, and to consider them as actual

constraints in the optimization process, for which we use inductive biases

as a way of guiding the model parameters towards solutions satisfying

these constraints. Of meeting our expectations, we will more accurately

predict the functionality of the deep learning (DL) models we train and,

therefore, feel more in control over these models.

We first studied the case of multitask learning (MTL) where we showed

that, besides meeting our expectation of learning to solve many tasks

simultaneously, it is necessary to a priori set our expectations on the trade-

off (or Pareto) solutions that we aim to reach. Moreover, we made explicit

that, in order to aggregate information from different tasks in an informed

manner, the tasks should first be comparable. We demonstrated that

we can meet this comparability expectation if we had access to the true

cumulative distribution function (CDF) for each task, provided metrics to

approximate them out of samples, as well as different metrics to measure

the effect of incomparability (in the form of gradient conflict) during

optimization. For those cases where we seek to achieve task impartiality

as our trade-off solution,
1

we introduced RotoGrad [II], which has had 1: That is, where all tasks are equally

important to learn.
significant impact since its publication and, e.g., has been successfully

applied in the context of cancer-grading to help doctors diagnose cancer

under missing-modalities situations [205]. [205] Wang, Zhang, Zhu, Jiang, Qin and

Yuan (2024), ‘MGIML: Cancer Grading

With Incomplete Radiology-Pathology

Data via Memory Learning and Gradient

Homogenization.’

We then showed that similar expectations are also posed to multimodal

probabilistic generative models (PGMs) and connected both fields, where

modalities play now the role of tasks. Because of the probabilistic

constraints of PGMs, we first proposed Lipschitz-standardization, an

optimization-inspired preprocessing algorithm that attempts to equalize

the optimization landscape of each modality. Then, by reducing the

study of gradient conflict to the computational graphs of the models, we

showed that complex multimodal PGMs can (and do) exhibit multiple

sub-computational graphs prone to comparability problems. This way,

we systemized the study of gradient conflict and leveraged existing MTL

algorithms in the context of multimodal PGMs. Since the publication of

140 Chapter 13 Conclusion

our work [III], we have brought awareness to the problem of modality

collapse and to the interaction between gradients of different modalities

during training [25, 52, 53, 116, 180, 209, 215, 233].

Finally, we have made significant contributions to the field of causal

generative models (CGMs). Theoretically, we demonstrated the existence

of a family of structural causal models (SCMs), which are not only

component-wise identifiable, but that are causally equivalent to a much

broader family of SCMs which may have generated our data. We provided

tools to perform causal inference in this new model family, and extended

our results to more realistic scenarios with discrete data and missing

causal information. More crucially, we identified a family of DL models

which are natural members of this new family of SCMs, and provided

effective network architectures to meet our causal expectations with the

model by design. As a result, the proposed causal normalizing flows

(Causal NFs) became the first-of-its-kind DL model to provide theoretical

guarantees on its approximation capabilities of causal models, and we

empirically demonstrated that it can satisfactorily be used for causal

inference tasks. Despite the recency of our work [IV], Causal NFs have

already had significant impact and its effectiveness extensively tested:

▶ Empirically, concurrent works have explored the idea of adding

causal structure to to autoregressive normalizing flows (ANFs),

and corroborated our findings. Namely:

1. Parafita and Vitrià [148] embedded the causal structure in[148] Parafita and Vitrià (2022),

‘Estimand-Agnostic Causal Query

Estimation With Deep Causal Graphs.’

their model leveraging graphical normalizing flows [210],

and successfully used it to solve causal-inference tasks in a

different set of benchmarks that our work did.

2. Balgi et al. [6] used graphical normalizing flows in the same[6] Balgi, Peña and Daoud (2022), ‘Per-

sonalized Public Policy Analysis in Social

Sciences Using Causal-Graphical Nor-

malizing Flows.’

way, and instead applied the resulting model for policy learn-

ing, afterwards answering counterfactual queries.

3. Fan et al. [56] proposed an architecture similar to ours,[56] Fan, Hou and Gao (2023), ‘Cf-

vae: Causal disentangled representation

learning with vae and causal flows.’

and used the resulting flow to model the latent space of

a variational autoencoder (VAE) to successfully achieve disen-

tangled representations.

4. Chen et al. [24] also proposed causally-masked ANFs, but[24] Chen, Shi, Gao, Baptista and Krish-

nan (2023), ‘Structured Neural Networks

for Density Estimation and Causal Infer-

ence.’

instead focused on finding effective ways of masking the

network to embed the causal structure, and used it to solve

causal-inference tasks in a different set of problems.

▶ Recently, Dance and Bloem-Reddy [41] reproduced some of the[41] Dance and Bloem-Reddy (2024),

‘Causal Inference with Cocycles.’
results reported in our work, and studied the robustness of Causal

NFs under different misspecifications.

▶ Xi et al. [217] extended our theory and showed that Causal NFs ‘can[217] Xi, Gonzalez and Bloem-Reddy

(2023), ‘Triangular Monotonic Generat-

ive Models Can Perform Causal Discov-

ery.’

also be used to perform conditional independence based causal

discovery by finding the maximally sparse permutation.’

▶ Finally, Majumdar and Valera [123] leveraged Causal NFs to learn[123] Majumdar and Valera (2024),

‘CARMA: A practical framework to gen-

erate recommendations for causal al-

gorithmic recourse at scale.’

the underlying causal system, and provide recommendations for

algorithmic recourse by working directly in the exogenous space.

We hope that the insights presented in this thesis, and the works that

composed it, help further advance the DL community towards developing

more trustworthy models that behave according to our expectations.

https://ojs.aaai.org/index.php/AAAI/article/view/21437
https://arxiv.org/abs/2304.09010
http://papers.nips.cc/paper%5C_files/paper/2023/hash/d1881b5125b4e9cf42f6d6d0b6575934-Abstract-Conference.html
https://arxiv.org/abs/2405.13844
https://openreview.net/forum?id=kbXmvuk2Mc
https://doi.org/10.1145/3630106.3659003

13.2 Prospects 141

13.2 Prospects

13.2.1 Expectations 141
13.2.2 Grounded MTL 141
13.2.3 Comparability 142
13.2.4 Structured DL 143

In this section, we discuss open questions and research directions that we

would love to see develop in the future. We hope that the insights shared

in this dissertation help develop future research in these venues.

13.2.1 Expectations as optimization constraints

We have explored during all the dissertation the idea, in different settings,

that the expectations we place on the models during deployment should

be included during training as optimization constraints. We firmly believe

that this idea should indeed become a de-facto standard, rather than an

exception, where we clearly state exactly what are we expecting from the

DL models we train when they are deployed. Once that the optimization

constraints (in this case, our expectations) are clearly stated, we can study

to which extent we can introduce them in the training process.

This is a pressing problem to address if we want DL to be more robust and

trustworthy. Fortunately, the research community is slowly becoming

more aware of this issue. Recently, a number of researchers discussed the

tightly related with the problem of underspecification [40], where ‘predict- [40] D’Amour, Heller, Moldovan, Ad-

lam, Alipanahi, Beutel, Chen, Deaton,

Eisenstein, Hoffman et al. (2022), ‘Un-

derspecification presents challenges for

credibility in modern machine learning.’

ors returned by underspecified pipelines are often treated as equivalent

based on their training domain performance, but such predictors can

behave very differently in deployment domains.’ Similar to the way that

design-by-contract programming [132] argues that software designers
[132] Mitchell, McKim and Meyer (2001),

‘Design by contract, by example.’should define a formal, precise, and verifiable interface specifications for

software, DL engineers should also establish a clear behavioural contract

(in the form of the optimization problem to solve) when training DL

models, where all expectations are explicitly stated.

13.2.2 Towards grounded MTL research

Another topic that we flew over during Part I of this thesis is the additional

care that should be put when performing research in MTL methods.

Next, we discuss two particular topics within this context.

The potential dangers of MOO

In Section 4.4 we discussed how MTL can be interpreted as a multi-

objective optimization (MOO) problem, and that this interpretation was

increasingly popular in recent years. While useful and appealing (for

once, it presents the optimization problem disentangled from any loss

function that combines the different task losses), we reiteratedly stressed

the necessity of a priori establishing a scalarization function to solve within

this framework, rather than looking for any Pareto-optimal solution.

We motivate this argument in two ways. First, reaching any Pareto front

without the user having control of the specific trade-off solution that we

reach is of little to no use, similar to the inconsistent trade-off problem that

we discussed in Section 2.1. Second, comparing different MTL models

under the premise that they reach Pareto-optimal solutions quickly

becomes unfeasible: in order to verify that the model reach a Pareto-

optimal point, we need to run enough methods and random initializations

142 Chapter 13 Conclusion

to explore the entire Pareto front, which grows exponentially with the

number of tasks. As a result, systematically testing and corroborating

findings in MTL research under the MOO interpretation becomes close

to impossible in any practical terms.

A MOO perspective can be extremely useful, but just as we discussed

in the previous section, our expectations on the Pareto solution to reach

should be clearly specified from the beginning.

The need for MTL-tailored benchmarks

Another important topic is the need for well-suited benchmarks in MTL

research, understanding benchmark as the combination of datasets,

network architecture, and the set of specific hyperparameters. Similar to

how we should clearly state our expectations on the models that we train,

we should also clearly specify the problem that we attempt to address with

our research, and ensure that the benchmarks we employ help us show

that this problem has indeed been palliated. This is clearly illustrated in

the case of gradient-conflict methods we discussed in Chapter 6: if our

interest is on appropriately combining the information from different

tasks, measuring task performance and performing a hyperparameter

search in the network architecture may not the best choice, as bigger

models do exhibit less gradient conflict in general.

13.2.3 Comparability: the elephant in the room

The main expectation we discussed in Parts I and II was the comparability

of quantities coming from different, respectively, tasks and modalities.

Similar to how we connected these two fields in Part II, we expect similar

patterns to emerge everywhere in DL where data from heterogeneous

sources are combined. Ultimately, comparability and the proper aggreg-

ation of information in DL deserve to be studied as its own abstract

framework, so that it can effectively impact different areas of DL.

One key aspect towards this unification is to identify which areas of DL

may suffer from comparability problems, for which we suggest to look for

similar solutions as those we discussed in this dissertation. For example,

in the context of gradient-conflict methods, which emerged in MTL as

a response to the incomparability of task gradients, we can find similar

approaches in areas such as domain generalization [159, 187], continual

learning [57, 72], federated learning [42, 206], auxiliary learning [47,

109], meta learning [34, 60], fairness [122], imbalanced learning [78],

neural architecture search [135], diffusion sampling [46], dynamic-depth

neural-network training [196], among others.

Of unifying all these different areas under a single framework, solutions

and ideas could easily transfer from one area to another. For example, of

standardizing the connections between negative transfer and modality

collapse, we could design more manageable datasets by using a probab-

ilistic perspective, where we could generate our own synthetic data to

meet the requirements we need to test our methods. Moreover, as a result

of better understanding the root cause of our problems, we can borrow

ideas from other fields in science, e.g., for the proof of ranking statistics

as finite-sample approximations in Subsection 6.2.1, we were initially

13.2 Prospects 143

inspired by the fact that, in the social welfare literature, comparisons

need to be done by means of relative rankings due to the interpersonal

incomparability of utility [136, 156]. [136] Muandet (2022), ‘Impossibility of

Collective Intelligence.’

[156] Piggins (2019), ‘Collective Choice

and Social Welfare–Expanded Edition.’13.2.4 Structured Deep Learning

We showed in Part III the importance of adding structure to the archi-

tecture of our DL models in order to provably learn, in this case, the

underlying causal model generating our observations. It is well-known

that adding explicit structure can have many benefits on the models that

we train—such as ensuring certain invariances in the model [119], or [119] Lyle, Wilk, Kwiatkowska, Gal and

Bloem-Reddy (2020), ‘On the benefits of

invariance in neural networks.’

providing tractability guarantees when answering certain queries [30]—

[30] Choi, Vergari and Van den Broeck

(2020), ‘Probabilistic circuits: A unify-

ing framework for tractable probabilistic

models.’

but we believe that there is potential to push this idea even further,

making the structure of the neural network a first-class citizen in DL

research, and helping us overcome many of the existing challenges in

DL such as data-hunger, or the lack of generalization. In this regard, we

believe that Causal NFs and identifiability theory open an interesting

path towards achieving this goal.

Causal generative models

On one side, Causal NFs offer for the first time a principled connection

between DL models and causal inference, enabling neural networks to

be used for solving complex causal reasoning tasks. However, while

general, we made a number of assumptions to get to the results presented

in Part III that do not suit every use case, and loosening these could

be quite important for a number of scenarios. Obvious extensions of

Causal NFs would be to study cases where we have hidden confounders,

loosen the monotonic assumption for the family of causal models, or to

allow for probabilistic and soft interventions. Other more challenging

research venues would be those that enable the application of Causal

NFs in high-dimensional domains such as images and videos, for which

we could study the application of other generative models (such as, e.g.,
diffusion models [75]), or extending Causal NFs to work on the latent

space, adopting a Causal Component Analysis perspective [105]. [105] Liang, Kekic, Kügelgen, Buchholz,

Besserve, Gresele and Schölkopf (2023),

‘Causal Component Analysis.’

Beyond causality

Moreover, it is quite conceivable to detach Causal NFs from its causal

nature, as the core essence of the derived results come from the structure

of the network. Following this idea, Causal NFs could be easily extended

to other settings for which we also have relationships across variables

similar to that of cause-and-effect. One clear example is propositional

logic, where we have logic rules which we can embed in the network

architecture if we want the model to reason in a certain way, e.g., if we

had 𝑃 → 𝑄, we can interpret modus ponens (i. e., if 𝑃 implies 𝑄, and 𝑃 is

true, then 𝑄 is true), similar to a generative process where 𝑃 causes 𝑄 .

https://arxiv.org/abs/2206.02786
https://arxiv.org/abs/2005.00178
http://papers.nips.cc/paper%5C_files/paper/2023/hash/67089958e98b243d5cc1881ad60418b8-Abstract-Conference.html

Part V.

Appendix

Additional Material for Chapter 5 A.
A.1 Proofs 147
A.2 Stackelberg games 147
A.3 Experiments 149

A.1 Proofs

Proposition A.1 Suppose 𝑔𝑘 B 𝐿𝑘 ◦ ℎ𝑘 is an infinitely differentiable

real-valued function, and let us call 𝑮𝑘 = ∇𝒁 𝑔𝑘(𝒁) its derivative with

respect to 𝒁 , for every 𝑘 ∈ {1, 2, . . . , 𝐾} . If cos(𝑮𝑖 ,𝑮 𝑗) > −1/(𝐾 − 1)
pairwise, then there exists a small-enough step size 𝜖 > 0 such that,

for all 𝑘 , we have that 𝐿𝑘(ℎ𝝓𝑘
(𝒁− 𝜖 ·𝐶∑

𝑘 𝑼 𝑘),𝒀 𝑘) < 𝐿𝑘(ℎ𝝓𝑘
(𝒁),𝒀 𝑘) ,

where 𝑼 𝑘 B 𝑮𝑘/∥𝑮𝑘∥ and 𝐶 ≥ 0 .

Proof. Since 𝑔𝑘 is infinitely differentiable, we can take the first-order

Taylor expansion of 𝑔𝑘 around 𝒁 , for any 𝑘 , evaluated at 𝒁 − 𝜖𝑽 for a

given vector 𝑽 :

𝑔𝑘(𝒁 − 𝜖𝑽) = 𝑔𝑘(𝒁) − 𝜖⟨𝑮𝑘 ,𝑽 ⟩ + o(𝜖) . (A.1)

In our case, 𝑽 = 𝐶
∑
𝑘 𝑼 𝑘 with 𝐶 ≥ 0 , then:

𝑔𝑘(𝒁 − 𝜖𝑽) − 𝑔𝑘(𝒁) = −𝜖 · 𝐶∥𝑮𝑘∥
∑
𝑖

⟨𝑼 𝑘 ,𝑼 𝑖⟩ + o(𝜖)

= −𝜖 · 𝐶∥𝑮𝑘∥
(
1 +

∑
𝑖≠𝑗

⟨𝑼 𝑘 ,𝑼 𝑖⟩
)
+ 𝑘(𝜖) . (A.2)

Since ∥𝑼 𝑘∥ = 1 for all 𝑘 ∈ {1, 2, . . . , 𝐾} , it holds that

−1 ≤ cos(𝑼 𝑘 ,𝑼 𝑖) = ⟨𝑼 𝑘 ,𝑼 𝑖⟩ ≤ 1 . (A.3)

If cos(𝑮𝑘 ,𝑮𝑖) > −1/(𝐾 − 1) for all 𝑖 ≠ 𝑘 , then we have that 1 +∑
𝑖≠𝑗⟨𝑼 𝑘 ,𝑼 𝑖⟩ > 0 and 𝑔𝑘(𝒁 − 𝜖𝑽) < 𝑔𝑘(𝑽) for a small enough 𝜖 > 0 .

A.2 Stackelberg games and RotoGrad

In game theory, a Stackelberg game [58] is an asymmetric game where [58] Fiez, Chasnov and Ratliff (2020), ‘Im-

plicit Learning Dynamics in Stackelberg

Games: Equilibria Characterization, Con-

vergence Analysis, and Empirical Study.’

two players play alternately. One of the players—whose objective is

to blindly minimize their loss function—is known as the follower, F .

The other player is known as the leader, L . In contrast to the follower,

the leader attempts to minimize their own loss function, but with the

advantage of knowing which will be the best response to their move by

the follower. The problem can be written as

Leader: min

𝑥𝑙∈𝑋𝑙
{L(𝑥𝑙 , 𝑥 𝑓) | 𝑥 𝑓 ∈ arg min

𝑦∈𝑋 𝑓

F(𝑥𝑙 , 𝑦)} ,

Follower: min

𝑥 𝑓 ∈𝑋 𝑓

F(𝑥𝑙 , 𝑥 𝑓) ,
(A.4)

http://proceedings.mlr.press/v119/fiez20a.html

148 Appendix A Additional Material for Chapter 5

where 𝑥𝑙 ∈ 𝑋𝑙 and 𝑥 𝑓 ∈ 𝑋 𝑓 are the actions taken by the leader and

follower, respectively.

While traditionally one assumes that players make perfect alternate

moves in each step of Equation A.4, gradient-play Stackelberg games

assume instead that players perform simultaneous gradient updates,

𝑥𝑡+1

𝑙
= 𝑥𝑡

𝑙
− 𝛼𝑡

𝑙
∇𝑥𝑙L(𝑥𝑙 , 𝑥 𝑓) ,

𝑥𝑡+1

𝑓
= 𝑥𝑡

𝑓
− 𝛼𝑡

𝑓
∇𝑥 𝑓L(𝑥𝑙 , 𝑥 𝑓) ,

(A.5)

where 𝛼𝑙 and 𝛼 𝑓 are the learning rates of the leader and follower,

respectively.

An important concept in game theory is that of an equilibrium point,

i. e., a point in which both players are satisfied with their situation,

meaning that there is no available move immediately improving any

of the players’ scores, so that none of the players is willing to perform

additional actions/updates. Specifically, in this thesis we focus on the

following definition introduced by Fiez et al. [58]:

Definition A.1 (differential Stackelberg equilibrium) A pair of points

𝑥∗
𝑙
∈ 𝑋𝑙 , and 𝑥∗

𝑓
∈ 𝑋 𝑓 , where 𝑥∗

𝑓
= 𝑟(𝑥∗

𝑙
) is implicitly defined by

∇𝑥 𝑓F(𝑥∗𝑙 , 𝑥∗𝑓) = 0 , is a differential Stackelberg equilibrium point if

∇𝑥𝑙L(𝑥∗𝑙 , 𝑟(𝑥∗𝑙)) = 0 , and ∇2

𝑥𝑙
L(𝑥∗

𝑙
, 𝑟(𝑥∗

𝑙
)) is positive definite.

Note that, when the players manage to reach such an equilibrium point,

both of them are in a local optimum. Here, we make use of the following

result, introduced by Fiez et al. [58], to provide theoretical convergence

guarantees to an equilibrium point:

Proposition A.2 In the given setting, if the leader’s learning rate goes

to zero at a faster rate than the follower’s, that is, 𝛼𝑙(𝑡) = o(𝛼 𝑓 (𝑡)) ,
where 𝛼𝑖(𝑡) denotes the learning rate of player 𝑖 at step 𝑡 , then they

will asymptotically converge to a differential Stackelberg equilibrium

point almost surely.

In other words, as long as the follower learns faster than the leader,

they will end up in a situation where both are satisfied. Fiez et al. [58]

extended this result to the finite-time case, showing that the game will

end close to an equilibrium point with high probability.

As we can observe, the Stackelberg formulation in Equation A.4 is really

similar to RotoGrad’s formulation in Equation 5.5. Even more, the update

rule in Equation A.5 is quite similar to that one shown in Algorithm 5.3.

Therefore, it is sensible to cast RotoGrad as a Stackelberg game. One

important but subtle bit about this link regards the extra information

used by the leader. In our case, this extra knowledge explicitly appears

in Equation 5.4 in the form of the follower’s gradient, 𝒈𝑛𝑘 , which is

the direction the follower will follow and, as it is performing first-order

optimization by assumption, this gradient directly encodes the follower’s

response.

Thanks to the Stackelberg formulation in Equation 5.5 we can make use

of Proposition A.2 and, thus, draw theoretical guarantees on the training

stability and convergence. In other words, we can say that performing

A.3 Experiments 149

training steps as those described in Algorithm 5.3 will stably converge as

long as the leader is asymptotically the slow learner, i. e. 𝛼𝑡
𝑙
= o(𝛼𝑡

𝑓
) .

In practice, however, the optimization procedure proposed by Fiez et al.

[58] requires computing the gradient of a gradient, thus incurring a signi-

ficant overhead. Instead, we use Gradient Ascent-Descent (GDA), which

only computes partial derivatives and enjoys similar guarantees [86], as [86] Jin, Netrapalli and Jordan (2020),

‘What is Local Optimality in Nonconvex-

Nonconcave Minimax Optimization?’

we empirically showed in the manuscript.

A.3 Experiments

A.3.1 Experimental setups . 149
A.3.2 Additional results . . . 154

A.3.1 Experimental setups

Here, we discuss common settings across all experiments. Refer to specific

sections further below for details concerning single experiments.

Computational resources. All experiments were performed on a shared

cluster system with two NVIDIA DGX-A100. Therefore, all experiments

were run with (up to) 4 cores of AMD EPYC 7742 CPUs and, for those

trained on GPU (CIFAR10, CelebA, and NYUv2), a single NVIDIA A100

GPU. All experiments were restricted to 12 GB of RAM.

Loss normalization. Similar as in the gradient case studied in this work,

magnitude differences between losses can make the model overlook some

tasks. To overcome this issue, here we perform loss normalization, that

is, we normalize all losses by their value at the first training iteration (so

that they are all 1 in the 1st iteration). To account for some losses that

may quickly decrease at the start, after the 20th iteration, we instead

normalize losses dividing by their value at that iteration.

Checkpoints. For the single training of a model, we select the para-

meters of the model by taking those that obtained the best validation

error after each training epoch. That is, after each epoch we evaluate the

linearly-scalarized validation loss,

∑
𝑘 𝐿𝑘 , and use the parameters that

obtained the best error during training. This can be seen as an extension

of early-stopping where, instead of stopping, we keep training until

reaching the maximum number of epochs hoping to keep improving.

Baselines. We have implemented all baselines according to the original

paper descriptions, except for PCGrad, which we apply to the gradients

with respect to the feature z (instead of the shared parameters 𝜽 , as in

the original paper). Note that this is in accordance with recent works [27,

112], which also use this implementation of PCGrad in the feature space.

This way, all competing methods modify gradients with respect to the

same variables and, as backpropagation performs the sum of gradients at

the last shared representation 𝒛 , PCGrad can be applied to reduce conflict

at that level.

http://proceedings.mlr.press/v119/jin20e.html
http://proceedings.mlr.press/v119/jin20e.html

150 Appendix A Additional Material for Chapter 5

Hyperparameter tuning. Model-specific hyperparameters were mostly

selected by a combination of: i) using values described in prior works;

and ii) empirical validation on the vanilla case (without any gradient-

modifiers) to verify that the combinations of hyperparameters work. To

select method-specific hyperparameters we performed a grid search,

choosing those combinations of values that performed the best with

respect to validation error.

Specifically, we took 𝛼 ∈ {0, 0.5, 1, 2} and 𝑹𝑘 ∈ ℝ𝑚×𝑚
with 𝑚 ∈

{0.25𝑑, 0.5𝑑, 0.75𝑑, 𝑑} (restricting ourselves to 𝑚 ≤ 1500) for RotoGrad.

Regarding the learning rate of RotoGrad and GradNorm, we performed

a grid search considering 𝜂rot ∈ {0.05𝜂, 0.1𝜂, 0.5𝜂, 𝜂, 2𝜂} , where 𝜂rot

and 𝜂 are the learning rates of RotoGrad or GradNorm, and the network,

respectively.

Statistical test. For the tabular data, we highlight those results that are

significantly better than those from the multitask baseline.
1

To find these1: That is, better than the vanilla

multitask learning (MTL) optimization

without the 𝑅𝑘 matrices.

values, we run a paired one-sided Student’s t-test across each method

and the baseline. For those metrics for which higher is better, our null

hypothesis is that the method’s performance is equal or lower than the

baseline, and for those for which lower is better, the null hypothesis is

that the method’s performance is equal or greater than the baseline. We

use a significance level of 𝛼 = 0.05 .

Notation. In this section, we use the following to describe different

architectures: [Conv-𝐹-𝐶] denotes a convolutional layer with filter size 𝐹

and 𝐶 number of channels; [Max]denotes a max-pool layer of filter size

and stride 2, and [Dense-𝐻] a dense layer with output size 𝐻 .

Illustrative examples

Losses and metrics. Both illustrative experiments use mean squared

error (MSE) as both loss and metric. Regarding the specific form of 𝜑 in

Equation 5.6, the avocado-shaped experiments uses

𝜑((𝑥, 𝑦), 𝑠) = (𝑥 − 𝑠)2 + 25𝑦2 , (A.6)

while the non-convex second experiment uses

𝜑((𝑥, 𝑦), 𝑠) = −sin(3𝑥 + 4.5𝑠)
𝑥 + 1.5𝑠

− sin(3𝑦 + 4.5𝑠)
𝑦 + 1.5𝑠

+ |𝑥 + 1.5𝑠| + |𝑦 + 1.5𝑠|
(A.7)

Model. As described in the main manuscript, we use a single input

𝒙 ∈ ℝ2
picked at random from a standard normal distribution, and drop

all task-specific network parameters (that is, ℎ𝑘(𝒓 𝑘) = 𝒓 𝑘). As backbone,

we take a simple network of the form 𝒛 = 𝑾 2 max(𝑾 1𝒙 + 𝒃1 , 0) + 𝒃2

with 𝒃1 ∈ ℝ10 , 𝒃2 ∈ ℝ2
, and 𝑾 1 ,𝑾⊤

2
∈ ℝ10×2

.

Hyperparameters (convex case). We train the model for 100 epochs.

As network optimizer we use stochastic gradient descent (SGD) with

a learning rate of 0.01. For the rotations, we use RAdam [113] with a

A.3 Experiments 151

learning rate of 0.5 (for visualization purposes we need a high learning

rate, in such a simple scenario it still converges) and exponential decay

with decaying factor 0.999 99.

Hyperparameter (non-convex case). For the second experiment, we

train the model for 400 epochs and, once again, use SGD as the net-

work optimizer with a learning rate of 0.015. For the rotations, we use

RAdam [113] with a learning rate of 0.1 and an exponential decay of

0.999 99.

MNIST and SVHN

Datasets. We use two modified versions of MNIST [102] and SVHN [145]

in which each image has two digits, one on each side of the image.

In the case of MNIST, both of them are merged such that they form an

overlapped image of 28×28 , as shown in Figure A.1a. Since SVHN contains

backgrounds, we simply paste two images together without overlapping,

obtaining images of size 32 × 64 , as shown in Figure A.1b. Moreover, we

transform all SVHN samples to grayscale.

(a) Multi-MNIST. (b) Multi-SVHN.
Figure A.1: Samples extracted from the

modified MNIST and SVHN datasets.

Tasks, losses, and metrics. In order to further clarify the setup used,

here we describe in detail each task. Specifically, we have:

▶ Left digit classification. Loss: negative log-likelihood (NLL). Metric:

accuracy (ACC).

▶ Right digit classification. Loss: NLL. Metric: ACC.

▶ Parity of the product of digits, i. e., whether the product of both

digits gives an odd number (binary-classification). Loss: binary

cross-entropy (BCE). Metric: F1-score (F1).

▶ Sum of both digits (regression). Loss: MSE. Metric: MSE.

▶ Active pixels in the image, i. e., predict the number of pixels with

values higher than 0.5, where we use pixels lying in the unit interval

(regression). Loss: MSE. Metric: MSE.

152 Appendix A Additional Material for Chapter 5

Model. Our backbone is an adaption from the original LeNet [101]

model. Specifically, we use:

▶ MNIST: [Conv-5-10][Max][ReLU][Conv-5-20][Max][Dense-50][ReLU][BN],

▶ SVHN: [Conv-5-10][Max][ReLU][Conv-5-20][Max][Conv-5-20][Dense-50]

[ReLU][BN],

where [BN]refers to Batch Normalization [80]. Depending on the type of[80] Ioffe and Szegedy (2015), ‘Batch Nor-

malization: Accelerating Deep Network

Training by Reducing Internal Covariate

Shift.’

task, we use a different head. Specifically, we use:

▶ Regression: [Dense-50][ReLU][Dense-1],

▶ Classification: [Dense-50][ReLU][Dense-10][Log-Softmax],

▶ Binary-classification: [Dense-1][Sigmoid].

Model hyperparameters. For both datasets, we train the model for 300

epochs using a batch size of 1024. For the network parameters, we use

RAdam [113] with a learning rate of 1e−3.

Methods hyperparameters. In Tables A.1 and A.2 we show the results of

GradNorm with: i) MNIST, with 𝑅𝑘 , 𝛼 = 0 ; ii) MNIST without 𝑅𝑘 , 𝛼 = 0.5 ;

iii) SVHN with 𝑅𝑘 , 𝛼 = 1 ; and iv) SVHN without 𝑅𝑘 , 𝛼 = 2 . We train

RotoGrad with full-size rotation matrices (𝑚 = 𝑑). Both methods use

RAdam with learning rate 5e−4 and exponential decay of 0.9999 .

CIFAR10

Dataset. We use CIFAR10 [97] as dataset, with 40 000 instances as

training data and the rest as testing data. Additionally, every time we get

a sample from the dataset we: i) crop the image by a randomly selected

square of size 3 × 32 × 32 ; ii) randomly flip the image horizontally; and

iii) standardize the image channel-wise using the mean and standard

deviation estimators obtained on the training data.

Model. We take as backbone ResNet-18 [74] without pre-training,

where we remove the last linear and pool layers. In addition, we add a

Batch Normalization layer. For each task-specific head, we simply use a

linear layer followed by a sigmoid function, that is, [Dense-1][Sigmoid].

Losses and metrics. We treat each class (out of ten) as a binary-

classification task where we use BCE and F1-score as loss and metric,

respectively.

Model hyperparameters. We use a batch size of 128 and train the model

for 500 epochs. For the network parameters, we use as optimizer SGD

with learning rate of 0.01, Nesterov momentum of 0.9, and a weight

decay of 5e−4. Additionally, we use for the network parameters a cosine

learning-rate scheduler with a period of 200 iterations.

http://proceedings.mlr.press/v37/ioffe15.html

A.3 Experiments 153

Methods hyperparameters. Results shown in Tables 5.5 and A.3 use

𝛼 = 0 and 𝛼 = 0.5 for GradNorm with and without 𝑹𝑘 , respectively,

and we use RAdam [113] as optimizer with learning rate 0.001 and an

exponential decay factor of 0.999 95 for both GradNorm and RotoGrad.

NYUv2

Setup. In contrast with the rest of experiments, for the NYUv2 experi-

ments shown in Section 5.4, instead of writing our own implementation,

we slightly modified the open-source code provided by Liu et al. [115]

at https://github.com/lorenmt/mtan (commit 268c5c1). We therefore

use the exact same setting as them—and refer to their paper and code

for further details, with the addition of using data augmentation for the

experiments which, although not described in the paper, is included

in the repository as a command-line argument. We will provide along

this work a diff file to include all gradient-modifier methods into the

aforementioned code.

Methods hyperparameters. For the results shown in Table 5.4 we use

GradNormwith 𝛼 = 0 and RotoGradwith rotations𝑹𝑘 of size 1024. We use

a similar optimization strategy as the rest of parameters, using Adam [92]

with learning rate 5e−5 (half the one of the network parameters) and

where we halve this learning rate every 100 iterations.

CelebA

Dataset. We use CelebA [117] as dataset with usual splits. We resize

each sample image so that they have size 3 × 64 × 64 .

Losses and metrics. We treat each class (out of 40) as a binary-

classification task where we use BCE and F1-score as loss and metric,

respectively.

ResNet-18model. As withCIFAR10, we use as backboneResNet-18 [74]

without pre-training, where we remove the last linear and pool layers.

In addition, we add a batch-normalization layer. For each task-specific

head, we use a linear layer followed by a sigmoid function, that is,

[Dense-1][Sigmoid].

ResNet-18 hyperparameters. We use a batch size of 256 and train the

model for 100 epochs. For the network parameters, we use RAdam [113]

as optimizer with learning rate 0.001 and exponential decay of 0.999 95

applied every 2400 iterations.

Convolutional model. For the second architecture, we use a convolu-

tional network as backbone, [Conv-3-64][BN][Max][Conv-3-128][BN][Conv-3-128][BN]

[Max][Conv-3-256][BN][Conv-3-256][BN][Max][Conv-3-512][BN]

[Dense-512][BN]. For the task-specific heads, we take a simple network of

the form [Dense-128][BN][Dense-1][Sigmoid].

https://github.com/lorenmt/mtan

154 Appendix A Additional Material for Chapter 5

Convolutional hyperparameters. We use a batch size of 8 and train the

model for 20 epochs. For the network parameters, we use RAdam [113] as

optimizer with learning rate 0.001 and exponential decay of 0.96 applied

every 2400 iterations.

Methods hyperparameters. Results shown in Tables 5.6 and A.4 use

GradNorm with: i) convolutional network with 𝑹𝑘 , 𝛼 = 0 ; ii) convo-

lutional network without 𝑹𝑘 , 𝛼 = 1 ; iii) residual network with 𝑹𝑘 ,

𝛼 = 0.5 ; and iv) residual network without 𝑹𝑘 , 𝛼 = 1 . For RotoGrad,

we rotate 256 and 1536 elements of 𝒛 for the convolutional and residual

networks. As optimizer, we use RAdam [113] with learning rate 5e−6 and

an exponential decay factor of 0.999 95 for both GradNorm and RotoGrad.

Note that for these experiments we omit MGDA-UB [182] as it is computa-

tionally prohibitive in comparisons with other methods. In single-seed

experiments, we however observed that it does not perform too well

(specially in the convolutional network).

A.3.2 Additional results

Multi-MNIST and Multi-SVHN

Table A.1: Test performance (median

and standard deviation) on two set of

unrelated tasks on Multi-MNIST and

Multi-SVHN, across 10 different runs.

MNIST SVHN
Digits Act Pix Digits Act Pix

Method avg𝑘 Δ𝑘 ↑ MSE ↓ avg𝑘 Δ𝑘 ↑ MSE ↓
STL 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.17 ± 0.06

Vanilla −1.43 ± 3.24 0.14 ± 0.05 4.78 ± 0.88 3.04 ± 2.53

GradDrop −1.30 ± 1.82 0.16 ± 0.04 5.34 ± 0.92 2.99 ± 2.59

PCGrad −1.22 ± 2.81 0.13 ± 0.01 5.01 ± 0.65 2.70 ± 2.25

MGDA-UB −29.14 ± 9.23 0.06 ± 0.00 −4.36 ± 6.72 1.00 ± 0.57

GradNorm 0.86 ± 1.93 0.09 ± 0.04 5.24 ± 0.89 4.12 ± 9.46

IMTL-G 2.12 ± 1.46 0.07 ± 0.02 5.94 ± 0.99 1.70 ± 1.05

RotoGrad 1.55 ± 2.22 0.08 ± 0.03 6.08 ± 0.48 1.61 ± 2.72

We reuse the experimental setup from Subsection 5.4.1—now using the

original LeNet [101] and a multitask-version of SVHN [145]—in order to

evaluate how disruptive the orthogonal image-related task is for different

methods. We can observe (Table A.1) that the effect of the image-related

task is more disruptive in MNIST, in which MGDA-UB utterly fails. Direction-

aware methods (GradDrop and PCGrad) do not improve the vanilla results,

whereas IMTL-G, GradNorm, and RotoGrad obtain the best results.

We also provide the complete results for all metrics in Table A.2. In the

case of MNIST, we can observe that both regression tasks tend to be quite

disruptive. GradNorm, IMTL-G, and RotoGrad manage to improve over all

tasks while maintaining good performance on the rest of tasks. MGDA-UB,

however, focuses on the image-related task too much and overlooks other

tasks. In SVHN we observe a similar behaviour. This time, all methods

are able to leverage positive transfer and improve their results on the

parity and sum tasks, obtaining similar task improvement results. Yet,

the image-related task is more disruptive than before, showing bigger

differences between methods. Again, MGDA-UB completely focuses on this

task, but now is able to not overlook any task while doing so. Regarding

A.3 Experiments 155

Table A.2: Complete results (median and standard deviation) of different competing methods on MNIST/SVHN on all tasks, see side note 1

and Appendix A.3.2.

Left digit Right digit Product parity Sum digits Act. Pix.

Method Acc. ↑ Acc. ↑ F1 ↑ MSE ↓ avg𝑘 Δ𝑘 ↑ MSE ↓

M
N
I
S
T

W
i
t
h

o
u

t
𝑹
𝑘

STL 95.70 ± 0.20 94.05 ± 0.16 92.09 ± 0.76 1.90 ± 0.10 0.00 ± 0.00 0.01 ± 0.01

Vanilla† 94.94 ± 0.20 93.26 ± 0.27 93.07 ± 0.48 2.10 ± 0.17 −3.26 ± 3.12 0.11 ± 0.01

GradDrop 95.33 ± 0.39 93.55 ± 0.29 93.32 ± 0.54 2.14 ± 0.07 −2.52 ± 1.63 0.13 ± 0.02

PCGrad 95.07 ± 0.39 93.28 ± 0.18 93.34 ± 0.51 2.14 ± 0.19 −3.36 ± 3.86 0.12 ± 0.02

MGDA-UB 94.46 ± 1.04 92.23 ± 1.54 83.89 ± 1.84 2.50 ± 0.60 −10.80 ± 10.45 0.06 ± 0.02

GradNorm 95.19 ± 0.37 93.70 ± 0.31 93.31 ± 0.39 2.06 ± 28.71 −1.81 ± 37.99 0.09 ± 7.46

IMTL-G 95.28 ± 0.38 93.84 ± 0.21 93.24 ± 0.49 1.91 ± 6.61 −0.01 ± 82.48 0.07 ± 2.05

W
i
t
h
𝑹
𝑘

Vanilla 95.13 ± 0.20 93.41 ± 0.17 93.54 ± 0.50 1.99 ± 0.17 −1.43 ± 3.24 0.14 ± 0.05

GradDrop 95.14 ± 0.16 93.47 ± 0.12 93.59 ± 0.32 2.00 ± 0.06 −1.30 ± 1.82 0.16 ± 0.04

PCGrad 95.04 ± 0.26 93.36 ± 0.30 93.49 ± 0.30 1.98 ± 0.13 −1.22 ± 2.81 0.13 ± 0.01

MGDA-UB 89.99 ± 2.21 86.76 ± 1.18 79.24 ± 2.83 3.65 ± 0.42 −29.14 ± 9.23 0.06 ± 0.00

GradNorm 95.28 ± 0.18 93.56 ± 0.25 93.56 ± 0.57 1.86 ± 0.07 0.86 ± 1.93 0.09 ± 0.04

IMTL-G 95.47 ± 0.27 93.79 ± 0.31 93.56 ± 0.57 1.73 ± 0.09 2.12 ± 1.46 0.07 ± 0.02

RotoGrad 95.45 ± 0.19 93.83 ± 0.19 93.22 ± 0.35 1.85 ± 0.13 1.55 ± 2.22 0.08 ± 0.03

S
V
H
N

W
i
t
h

o
u

t
𝑹
𝑘

STL 85.05 ± 0.45 84.58 ± 0.24 77.47 ± 1.13 5.84 ± 0.14 0.00 ± 0.00 0.17 ± 0.06

Vanilla† 84.18 ± 0.30 84.18 ± 0.38 80.11 ± 0.85 4.81 ± 0.06 5.14 ± 0.83 2.75 ± 3.17

GradDrop 84.38 ± 0.29 84.48 ± 0.41 80.11 ± 0.69 4.69 ± 0.12 5.68 ± 1.05 1.91 ± 0.86

PCGrad 84.22 ± 0.31 84.23 ± 0.21 79.92 ± 0.79 4.69 ± 0.09 5.50 ± 0.75 2.26 ± 0.85

MGDA-UB 84.61 ± 0.75 84.38 ± 0.45 77.44 ± 1.44 4.47 ± 0.18 5.99 ± 1.48 0.66 ± 0.75

GradNorm 84.23 ± 0.33 84.13 ± 0.30 79.40 ± 0.87 4.92 ± 0.07 4.60 ± 1.01 4.30 ± 2.18

IMTL-G 84.60 ± 0.45 84.39 ± 0.37 79.63 ± 1.10 4.57 ± 0.13 5.81 ± 0.85 2.47 ± 1.65

W
i
t
h
𝑹
𝑘

Vanilla 84.11 ± 0.48 84.11 ± 0.40 79.83 ± 0.79 4.84 ± 0.10 4.78 ± 0.88 3.04 ± 2.53

GradDrop 84.23 ± 0.35 84.33 ± 0.40 80.10 ± 0.83 4.73 ± 0.09 5.34 ± 0.92 2.99 ± 2.59

PCGrad 84.21 ± 0.21 84.26 ± 0.38 79.64 ± 0.48 4.84 ± 0.06 5.01 ± 0.65 2.70 ± 2.25

MGDA-UB 77.05 ± 5.44 78.00 ± 5.04 71.76 ± 4.32 5.27 ± 0.56 −4.36 ± 6.72 1.00 ± 0.57

GradNorm 84.37 ± 0.34 84.30 ± 0.46 79.97 ± 0.75 4.72 ± 0.13 5.24 ± 0.89 4.12 ± 9.46

IMTL-G 84.23 ± 0.34 84.23 ± 0.39 79.77 ± 1.04 4.51 ± 0.12 5.94 ± 0.99 1.70 ± 1.05

RotoGrad 84.60 ± 0.50 84.44 ± 0.45 79.14 ± 0.96 4.45 ± 0.10 6.08 ± 0.48 1.61 ± 2.72

the other methods, all of them improved their results with respect to

the vanilla case, with RotoGrad and GradNorm obtaining the second-best

results.

Illustrative examples

We complement the illustrative figures shown in Figure 5.3 by providing,

for each example, an illustration of the effect of RotoGrad shown as an

active and passive transformation. In an active transformation (Figure A.2

left), points in the space are the ones modified. In our case, this means

that we rotate feature 𝒛 , obtaining 𝒓1 and 𝒓2 , while the loss functions

remain the same. In other words, for each 𝒛 we obtain a task-specific

feature 𝒓 𝑘 that optimizes its loss function. In contrast, a passive transform-

ation (Figure A.2 right) keeps the points unaltered while applying the

transformation to the space itself. In our case, this translates to rotating

the optimization landscape of each loss function (now we have 𝐿𝑘 ◦ 𝑹𝑘

instead of 𝐿𝑘), so that our single feature 𝒛 has an easier job at optimizing

both tasks. In the case of RotoGrad, we can observe in both right figures

that both optima lie in the same point, as we are aligning task gradients.

Besides the two regression experiments shown in Section 5.3, we include

156 Appendix A Additional Material for Chapter 5

Figure A.2: Level plots showing the il-

lustrative examples of Figure 5.3 for

RotoGrad. Top: Convex case. Bottom:
Non-convex case. Left: Active transform-

ation (trajectories of 𝒓 𝑘 and the level plot

of 𝐿1 + 𝐿2). Right: Passive transform-

ation (trajectory of 𝒛 and level plot of

(𝐿1 ◦ 𝑹1) + (𝐿2 ◦ 𝑹2)).

here an additional experiment where we test RotoGrad in the worst-case

scenario of gradient conflict, i. e., one in which task gradients are opposite

to each other. To this end, we solve a 2-task binary classification problem

where, as dataset, we take 1000 samples from a 2D Gaussian mixture

model with two clusters; 𝒚𝑛𝑘 = 1 if 𝒙𝑛 was sampled from cluster 𝑘 ;

and 𝒚𝑛𝑘 = 0 otherwise. We use as model a logistic regression model

of the form 𝒚𝑘 = 𝑾 2 max(𝑾 1𝒙 + 𝒃1 , 0) + 𝒃2 with 𝒃1 ∈ ℝ2 , 𝒃2 ∈ ℝ ,

𝑾 1 ∈ ℝ2×2
, and𝑾 2 ∈ ℝ1×2

. Because rotations in 1D are ill-posed,
2

here2: Only the identity is a proper rotation.

we add task parameters to increase the dimensionality of 𝒛 and make all

parameters shared, so that there is still no task-specific parameters. To

avoid a complete conflict where ∇𝒛𝐿1 + ∇𝒛𝐿2 = 0 , we randomly flip the

labels for the second tasks with 5 % probability. Figure A.3 shows that,

in this extreme scenario, RotoGrad is able to learn both tasks by aligning

gradients, i. e., by learning that one rotation is the inverse of the other

𝑹1 = 𝑹⊤
2

.

Training stability

While we showed in Subsection 5.4.1 only the results for the sum-of-digits

task as they were nice and clear, here we show in Figure A.4 the results

of those same experiments in Subsection 5.4.1 for all the different tasks.

The same discussion from the main manuscript can be carried out for all

metrics. Additionally, we can observe that the vanilla case (learning rate

zero) completely overlooks the image-related task (Active pixels) while

performing the best in the parity task.

Additionally, let us clarify what we mean here with stability, as in the

main manuscript we mainly talked about convergence guarantees. In

these experiments we test the convergence guarantees of the experiments

in terms of training stability, meaning the variance of the obtained results

across different runs. The intuition here is that, since the model does

A.3 Experiments 157

Figure A.3: Logistic regression for op-

posite classification tasks. Test data is

plotted scattered as gray dots. RotoGrad
learns both opposite rotations 𝑹1 = 𝑹⊤

2
.

not converge, we should expect some wriggling learning curves during

training and, as we take the model with the best validation error, the

individual task metrics should have bigger variance (i. e., less stability)

across runs.

91.0 91.5 92.0 92.5 93.0 93.5 94.0
Acc(%)

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Le
ar

ni
ng

 ra
te

Left digit

87 88 89 90 91 92
Acc(%)

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Right digit

2.5 3.0 3.5 4.0 4.5 5.0
MSE

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Le
ar

ni
ng

 ra
te

Sum of digits

0.1 0.2 0.3 0.4
MSE

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Active pixels

75 80 85 90
F1-score(%)

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Le
ar

ni
ng

 ra
te

Product of digits is odd

30 25 20 15 10 5
avgk k

0
1e-4
5-e4
1e-3
5e-3
1e-2
5e-2
1e-1

Digit-related tasks

Figure A.4: RotoGrad’s performance on

all tasks for the experiments in Subsec-

tion 5.4.1 for all metrics. We can ob-

serve training instabilities/stiffness on

all tasks as we highly increase/decrease

RotoGrad’s learning rate, as discussed in

the main manuscript.

CIFAR10 and CelebA

For the sake of completeness, we present in Table A.3 and Table A.4 the

same tables as in Section 5.4, but with more statistics of the results. For

CIFAR10, we now included in Table A.3 the minimum task improvement

across tasks and, while noisier, we can still observe that RotoGrad also

improve this statistic. The standard deviation of the task improvement

across tasks is, however, not too informative. In the case of CelebA, we

added in Table A.4 the maximum F1-score across tasks and, similar to the

last case, it is not too informative, as all methods achieve almost perfect

f1-score in one of the classes. We also include the training times for some

baselines, showing that RotoGrad stays on par with them.

158 Appendix A Additional Material for Chapter 5

Table A.3: Complete task-improvement

statistics in CIFAR10 for all competing

methods and RotoGrad with different

dimensionality for 𝑹𝑘 , see Section 5.4.

Method 𝑑 min𝑘 Δ𝑘 ↑ med𝑘 Δ𝑘 ↑ avg𝑘 Δ𝑘 ↑ std𝑘 Δ𝑘 ↓ max𝑘 Δ𝑘 ↑
Vanilla† 0 −0.81 ± 0.37 1.90 ± 0.53 2.58 ± 0.54 3.38 ± 0.94 11.14 ± 3.35

RotoGrad 64 −1.70 ± 0.81 1.79 ± 0.57 2.90 ± 0.49 3.98 ± 0.62 13.16 ± 2.40

RotoGrad 128 −1.12 ± 0.36 2.25 ± 1.07 2.97 ± 1.08 3.84 ± 0.87 12.64 ± 3.56

RotoGrad 256 0.17 ± 1.01 2.16 ± 0.72 3.68 ± 0.68 3.83 ± 0.74 14.01 ± 3.22

RotoGrad 512 −0.43 ± 0.76 3.67 ± 1.40 4.48 ± 0.99 4.23 ± 0.82 15.57 ± 3.99

W
i
t
h

o
u

t
𝑹
𝑘

Vanilla† −0.81 ± 0.37 1.90 ± 0.53 2.58 ± 0.54 3.38 ± 0.94 11.14 ± 3.35

GradDrop −0.73 ± 0.33 2.80 ± 0.20 3.41 ± 0.45 4.08 ± 0.34 13.58 ± 1.50

PCGrad −1.52 ± 0.98 1.95 ± 0.87 2.86 ± 0.81 3.74 ± 0.69 12.01 ± 3.19

MGDA-UB −7.27 ± 1.36 −1.21 ± 0.74 −1.75 ± 0.43 3.24 ± 0.55 3.67 ± 0.98

GradNorm −0.35 ± 0.59 2.45 ± 0.66 3.23 ± 0.35 4.02 ± 0.33 14.25 ± 1.35

IMTL-G −0.39 ± 0.82 1.97 ± 0.29 2.73 ± 0.27 3.25 ± 0.75 10.20 ± 2.98

W
i
t
h
𝑹
𝑘

(𝑑
=

5
1
2
)

Vanilla −0.85 ± 0.58 3.10 ± 1.29 3.12 ± 0.79 4.05 ± 0.56 14.23 ± 2.86

GradDrop −1.49 ± 0.78 3.27 ± 1.61 3.54 ± 1.10 4.11 ± 0.56 13.88 ± 2.95

PCGrad −1.44 ± 0.58 2.67 ± 0.88 3.29 ± 0.46 3.90 ± 0.37 13.44 ± 1.86

MGDA-UB −3.59 ± 1.48 0.57 ± 0.62 0.21 ± 0.67 2.44 ± 0.52 4.78 ± 2.15

GradNorm −0.79 ± 1.28 3.10 ± 1.01 3.21 ± 1.04 3.41 ± 0.86 10.88 ± 4.73

IMTL-G −1.29 ± 0.52 1.81 ± 0.87 3.02 ± 0.69 3.81 ± 0.21 12.76 ± 1.77

RotoGrad −0.43 ± 0.76 3.67 ± 1.40 4.48 ± 0.99 4.23 ± 0.82 15.57 ± 3.99

Table A.4: Complete F1-score statistics and training hours in CelebA for all competing methods and two different architectures/settings

(median over 5 runs), see Section 5.4. For the convolutional network we use 𝑚 = 256 , and 𝑚 = 1536 for the residual network.

Convolutional (𝑑 = 512) ResNet-18 (𝑑 = 2048)

Task F1-scores (%) ↑ Task F1-scores (%) ↑
Method min𝑘 med𝑘 avg𝑘 std𝑘 ↓ max𝑘 Hours min𝑘 med𝑘 avg𝑘 std𝑘 ↓ max𝑘 Hours

W
i
t
h

o
u

t
𝑹
𝑘 Vanilla† 1.62 53.39 58.49 24.26 96.97 7.62 15.45 63.04 62.85 22.09 96.58 1.49

GradDrop 2.63 52.32 57.33 25.27 96.72 8.53 13.31 64.37 63.95 20.93 96.59 1.60

PCGrad 2.69 54.60 56.87 25.75 97.04 34.05 13.61 62.45 62.74 21.60 96.64 5.75

GradNorm 2.17 52.98 56.91 24.72 96.84 20.93 17.42 62.49 62.62 21.93 96.55 3.61

IMTL-G 0.00 14.81 31.90 33.58 93.31 9.46 9.87 62.22 62.03 22.47 96.51 1.73

W
i
t
h
𝑹
𝑘

Vanilla 4.24 49.85 55.33 26.03 96.88 16.29 19.71 63.56 63.23 21.16 96.55 9.33

GradDrop 3.18 50.07 54.43 27.21 96.80 17.20 12.33 62.40 62.74 21.74 96.65 9.41

PCGrad 1.44 53.05 54.72 27.61 96.90 41.79 14.71 63.65 62.61 22.22 96.59 13.72

GradNorm 2.08 52.53 56.71 24.57 96.96 30.02 9.05 60.20 60.78 22.31 96.38 11.36

IMTL-G 0.00 37.00 42.24 33.46 94.34 18.05 17.11 61.68 60.72 22.80 96.44 9.52

RotoGrad 4.59 55.02 57.20 24.75 96.79 27.20 9.96 63.84 62.81 21.80 96.45 6.68

NYUv2

Complementing the results shown in Section 5.4, we show in Table A.5

the results obtained combining RotoGrad with all other existing meth-

ods (rows within RotoGrad +), for gradient scaling methods we only

apply the rotation part of RotoGrad. Results show that RotoGrad helps

improve/balance all other methods, which is specially true for those

methods that heavily overlook some tasks. Specifically, MGDA-UB stops

overlooking the semantic segmentation and depth estimation tasks, while

PCGrad and GradDrop stop completely overlooking the surface normal

loss. Note that we also show in Table A.5 the training times of each

method, and RotoGrad stays on par with non-extended methods in

training time. As mentioned in Appendix A.3.1, due to cluster overload,

some times were deceivingly high (specifically those baselines with 𝑹𝑘)

as we had to run them on different machines, and were omitted to avoid

confusion.

A.3 Experiments 159

Table A.5: Results for different methods on the NYUv2 dataset with a SegNet model. RotoGrad obtains the best performance in

segmentation and depth tasks on all metrics, while significantly improving the results on normal surfaces with respect to the vanilla case.

Relative

improvements ↑
Segmentation ↑ Depth ↓ Normal Surfaces Time ↓

Angle Dist. ↓ Within 𝑡◦ ↑
Method Δ𝑆 Δ𝐷 Δ𝑁 mIoU Pix Acc Abs. Rel. Mean Median 11.25 22.5 30 h

STL 0.0 0.0 0.0 39.21 64.59 0.70 0.27 25.09 19.18 30.01 57.33 69.30 8.90

R
o
t
o
G
r
a
d
+ GradDrop 1.2 12.6 −7.5 40.26 65.63 0.63 0.24 26.33 21.08 26.47 53.38 66.05 3.94

PCGrad 0.0 19.7 −8.3 39.08 64.68 0.54 0.21 26.41 21.29 26.13 52.99 65.72 3.89

MGDA-UB 2.5 23.2 −8.1 39.32 65.48 0.54 0.21 26.43 21.22 26.16 53.16 66.07 3.85

GradNorm 1.1 21.4 −7.7 39.08 65.43 0.54 0.21 26.44 21.42 26.17 52.59 65.52 3.84

IMTL-G 1.7 21.2 −6.9 40.13 65.17 0.55 0.21 26.20 21.06 26.69 53.39 66.04 3.96

W
i
t
h
𝑹
𝑘
(𝑚

=
1
0
2
4
) Rotate 3.3 20.5 −6.6 39.63 66.16 0.53 0.21 26.12 20.93 26.85 53.76 66.50 3.82

Scale −0.3 20.0 −7.9 38.89 65.94 0.54 0.22 26.47 21.24 26.24 53.04 65.81 3.87

RotoGrad 1.8 24.0 −6.1 39.32 66.07 0.53 0.21 26.01 20.80 27.18 54.02 66.53 3.83

Vanilla −2.7 20.6 −25.7 38.05 64.39 0.54 0.22 30.02 26.16 20.02 43.47 56.87 3.81

GradDrop −0.9 14.0 −25.2 38.79 64.36 0.59 0.24 29.80 25.81 19.88 44.08 57.54 4.01

PCGrad −2.7 20.5 −26.3 37.15 63.44 0.55 0.22 30.06 26.18 19.58 43.51 56.87 3.89

MGDA-UB −31.2 −0.7 0.6 21.60 51.60 0.77 0.29 24.74 18.90 30.32 57.95 69.88 3.85

GradNorm −0.6 19.5 −10.5 37.22 63.61 0.54 0.22 26.68 21.67 25.95 52.16 64.95 3.85

IMTL-G −0.3 17.6 −7.5 38.38 64.66 0.54 0.22 26.38 21.35 26.56 52.84 65.69 3.99

W
i
t
h

o
u

t
𝑹
𝑘

Vanilla † −0.9 16.8 −25.0 37.11 63.98 0.56 0.22 29.93 25.89 20.34 43.92 57.39 3.46

GradDrop −0.1 15.7 −27.0 37.51 63.62 0.59 0.23 30.15 26.33 19.32 43.15 56.59 3.55

PCGrad −0.5 20.0 −24.6 38.51 63.95 0.55 0.22 29.79 25.77 20.61 44.22 57.64 3.51

MGDA-UB −32.2 −8.2 1.5 20.75 51.44 0.73 0.28 24.70 18.92 30.57 57.95 69.99 3.52

GradNorm 2.2 20.6 −10.2 39.29 64.80 0.53 0.22 26.77 21.88 25.39 51.78 64.76 3.50

IMTL-G 1.9 21.4 −6.7 39.94 65.96 0.55 0.21 26.23 21.14 26.77 53.25 66.22 3.61

Additional Material for Chapter 6 B.
B.1 Experimental details . . . 161

B.1 Experimental details

B.1.1 Hyperparameters . . . 161
B.1.2 Network 161
B.1.3 Tasks 162
B.1.4 Datasets 162
B.1.5 Marker size 163

B.1.1 Hyperparameter optimization

In Chapter 6, we have attempted to perform an exhaustive hyperpara-

meter search (including regularization methods) to avoid misconducts

identified in prior works [99, 220]. Therefore, for every experiment,
1

1: I. e., for every combination of bench-

mark gradient-conflict approach.
we use BOHB [55] to perform a hyperparameter search, a state-of-the-

art Bayesian gray-box hyperparameter tuning method. Moreover, we

run each configuration three times
2

as we observed that the network 2: I. e., a trial on BOHB is the average

result of running three seeds.
was occasionally initialized close to the optimum of a task, biasing the

hyperparameter selection.

Specifically, we tune those hyperparameters that affect training (e.g.,
learning rate), but not those affecting the architecture (e.g., the number

of hidden layers). We also tune the hyperparameters from the gradient-

conflict methods, and the amount of regularization via weight decay.

Every experiment has the same computational resources (a dedicated

DGX A100 GPU) and time budget (6 h).

After tuning, we repeat each experiment 30 times, fixing the randomness

across methods to provide fair comparisons, and, in each run, take the

best model according to validation error during training (a variation of

early stopping quite popular in multitask learning (MTL)). We fix the

batch size to 1024 in every experiment, and consider the following search

space:

Hyperparameter Method Distribution Min Max

Learning rate All Log-uniform 1e−5 5e−2

Learning rate scheduler All Boolean No Yes

Exponential decay All Log-uniform 1e−7 1

Method-specific, 𝛼
GradNorm

Uniform 0 2CAGrad

GradVac

RotoGrad’s learning rate RotoGrad Log-Uniform 1e−5 5e−2

On average, each experiment tried 50 different configurations.

B.1.2 Network

Notation. We use the following notation: [Conv-𝐹-𝐶] denotes a convo-

lutional layer with kernel size 𝐹 and 𝐶 number of channels; [Max]denotes

a max-pool layer of kernel size and stride 2; [Dense-𝐻] a dense layer

with output size 𝐻 ; and [ReLU], [Sigmoid], and [Log-Softmax], their

corresponding activation functions.

162 Appendix B Additional Material for Chapter 6

Table B.1: Summary of the tasks considered for the experiments of Chapter 6. 𝐶 denotes the number of classes of the base dataset.

Task Type Loss Metric Expression Predicts

Left 𝐶-Class. NLL Acc. 𝒚𝐿 Left digit.

Right 𝐶-Class. NLL Acc. 𝒚𝑅 Right digit.

Odd 2-Class. BCE F1 𝒚𝐿𝒚𝑅 mod 2 Parity of the product of both digits.

Density Regression MSE MSE

∑
𝑖 𝑗 1{𝒙 𝑖 𝑗>0.5} Number of “active” pixels.

Number Regression MSE MSE 𝐶𝒚𝐿 + 𝒚𝑅 Number made by reading both digits together.

Both 𝐶2
-Class. NLL Acc. 𝐶𝒚𝐿 + 𝒚𝑅 Number made by reading both digits together.

Architecture. Following the initial setup from Sener and Koltun [182],

we implement the backbone of our model with a LeNet backbone [101]

and, in order to modify the number of parameters of the backbone, we

adopt the same strategy as Ruchte and Grabocka [167] and introduce a

channel multiplier parameter, 𝑐 . Namely, the backbone is described as:

Backbone: [Conv-5-10𝑐][Max][ReLU][Conv-5-20𝑐][Max][Dense-𝑑][ReLU] .

Depending on the task type, we use a slightly different head:

Classification: [Dense-50][ReLU][Dense-𝐶][Log-Softmax] ,

Binary classification: [Dense-1][Sigmoid] ,

Regression: [Dense-50][ReLU][Dense-1] .

B.1.3 Tasks

We consider the negative log-likelihood (NLL) for classification tasks,

binary cross-entropy (BCE) for binary classification tasks, and mean

squared error (MSE) for regression tasks. Regarding the task metrics, we

consider accuracy (Acc.) for classification tasks, F1-score (F1) for binary

classification tasks, and MSE for regression tasks. We show in Table B.1 a

summary of the considered tasks:

As mentioned in the main text, we rescale the prediction range of

regression tasks to make them invariant to the number of classes and the

image size. Specifically, instead of predicting, say, a number 𝐶𝒚𝐿 + 𝒚𝑅
for the N task, we predict (𝐶𝒚𝐿 + 𝒚𝑅)/𝐶2

, and for the task D we predict

1

784

∑
𝑖 𝑗 1𝒙 𝑖 𝑗 .

It is also important to note that the tasks are defined with respect to the

class number, and not the MNIST digit. This way, we can replace MNIST

with another dataset without further changes.

B.1.4 Datasets

We consider datasets that are (almost) perfect drop-in replacements of

the original MNIST [102] dataset. In particular, every dataset considered

contains single-channel images of size 28 × 28 px. We summarize the

considered datasets in Table B.2. All datasets contain images with the

same dimensions and number of channels, to reduce to the minimum

the number of modifications required to use them. Moreover, as we have

normalized the N task, it should be invariant to the number of classes

in the dataset (disregarding the dimension of the classification head, as

pointed out at the end of Subsection 6.3.3).

B.1 Experimental details 163

Table B.2: Summary of the tasks considered for the experiments of Chapter 6. 𝐶 denotes the number of classes of the base dataset.

Dataset name No. Classes (𝐶) Training size Composition

MNIST [102] 10 60 000 Handwritten digits.

FMNIST [219] 10 60 000 Clothes images.

KMNIST [31] 10 60 000 Handwritten kanjis.

Letter [33] 37 88 800 Handwritten letters.

Balanced [33] 47 112 800 Handwritten digits and letters.

B.1.5 A note on the marker size

To compute the marker size of Figure 6.11, where the results are not

directly comparable as we change the dataset across experiments, we

resort to a slight variation of the robust ranking, 𝑹𝑹, introduced in

Subsection 6.2.1. Instead of computing 𝑹𝑹 based on the raw task metrics,

we compute them with respect to their relative improvement w.r.t. to

single task learning (STL). That is, we perform the rankings necessary

for 𝑹𝑹 on the relative task performances, Δ𝑘 , rather on the metrics, 𝑀𝑘 .

While this is not ideal because of the incomparability issues, note that

still we are aggregating the relative improvement metrics across the

same quantity, yet different baselines, so that the results should still be

sensible.

Additional Material for Chapter 8 C.
C.1 𝐿-smoothness 165
C.2 Exponential family 165
C.3 Description of Lip-std . . 167
C.4 𝐿-smoothness after std . 170
C.5 Experimental setup . . . 174
C.6 Additional results 176

C.1 Basic properties of 𝐿-smoothness

In this section, we prove two basic properties of 𝐿-smooth functions, as

we used them on the main text. Specifically:

Proposition C.1 If a function ℓ (𝜼) is 𝐿𝑖-smooth with respect to 𝜂𝑖 ∈
𝜼 ∈ ℝ𝐼

, for every 𝑖 ∈ {1, 2, . . . , 𝐼} , then ℓ is

∑
𝑖 𝐿𝑖-smooth w.r. t. 𝜼 .

Proof. Consider two arbitrary 𝒂 , 𝒃 ∈ 𝑅𝐼 . Then, we have by assumption

that ∥𝜕𝜂𝑖ℓ (𝒂) − 𝜕𝜂𝑖ℓ (𝒃)∥ ≤ 𝐿𝑖∥𝒂 − 𝒃∥ for 𝑖 ∈ {1, 2, . . . , 𝐼} and

∥∇𝜼ℓ (𝒂) − ∇𝜼ℓ (𝒃)∥ ≤
∑
𝑖

∥𝜕𝜂𝑖ℓ (𝒂) − 𝜕𝜂𝑖ℓ (𝒃)∥ ≤
∑
𝑖

𝐿𝑖∥𝒂 − 𝒃∥ . (C.1)

Proposition C.2 If two functions ℓ1(𝜼) and ℓ2(𝜼) are 𝐿1-smooth and

𝐿2-smooth with respect to 𝜼 , respectively, then ℓ1+ℓ2 is 𝐿1+𝐿2-smooth

with respect to 𝜼 .

Proof. Consider two arbitrary 𝒂 , 𝒃 ∈ ℝ𝐼
. Then,

∥∇𝜼(ℓ1 + ℓ2)(𝒂) − ∇𝜼(ℓ1 + ℓ2)(𝒃)∥
= ∥(∇𝜼ℓ1(𝒂) − ∇𝜼ℓ1(𝒃)) + (∇𝜼ℓ2(𝒂) − ∇𝜼ℓ2(𝒃))∥
≤ ∥∇𝜼ℓ1(𝒂) − ∇𝜼ℓ1(𝒃)∥ + ∥∇𝜼ℓ2(𝒂) − ∇𝜼ℓ2(𝒃)∥
≤ 𝐿1∥𝒂 − 𝒃∥ + 𝐿2∥𝒂 − 𝒃∥ = (𝐿1 + 𝐿2)∥𝒂 − 𝒃∥ . (C.2)

C.2 Exponential family

We here provide the proofs of Proposition 8.1 on how to scale the

exponential family, as well as a reference table with the properties

of some common distributions of the manuscript. As a reminder, the

exponential family is characterized for having the form

𝑝(𝑥; 𝜼) = ℎ(𝑥) exp

[
𝜼⊤𝑻(𝑥) − 𝐴(𝜼)

]
, (C.3)

where 𝜼 are the natural parameters, 𝑻(𝑥) the sufficient statistics, ℎ(𝑥) the

base measure, and 𝐴(𝜼) the log-partition function, which ensures that

the distribution integrates to one.

To ease the task of transforming the natural (𝜼) and canonical (𝜽) paramet-

ers, we provide in Table C.1 a cheat-sheet with the relationship between

166 Appendix C Additional Material for Chapter 8

Table C.1: Relationship between the traditional parameters, 𝜽 , and the natural parameters, 𝜼 , and how to scale the latter (see

Proposition 8.1 in the main text) for different distributions of the exponential family.

Likelihood 𝜽 𝑇(𝑥) 𝜽 ↦→ 𝜼 𝜼 ↦→ 𝜽 𝑥 ↦→ �̃� 𝒇 (𝜔) 𝜼 ↦→ �̃�

Normal

𝜇 𝑥
𝜇
𝜎2

−𝜂1

2𝜂2 𝜔𝑥
𝜔

𝜂1

𝜔

𝜎2 𝑥2 −1

2𝜎2

−1

𝜂2

𝜔2
𝜂2

𝜔2

Log-normal

𝜇 log 𝑥
𝜇
𝜎2

−𝜂1

2𝜂2 𝑥𝜔
𝜔

𝜂1

𝜔

𝜎2 (log 𝑥)2 −1

2𝜎2

−1

𝜂2

𝜔2
𝜂2

𝜔2

Gamma

𝛼 log 𝑥 𝛼 − 1 𝜂1 + 1

𝜔𝑥
1 𝜂1

𝛽 𝑥 −𝛽 −𝜂2 𝜔
𝜂2

𝜔

Inv. Gaussian

𝜇 𝑥 − 𝜆
2𝜇2

√
𝜂2

𝜂1 𝜔𝑥
𝜔

𝜂1

𝜔

𝜆 1

𝑥 −𝜆
2

−2𝜂2

1

𝜔 𝜔𝜂2

Inv. Gamma

𝛼 log 𝑥 −𝛼 − 1 −𝜂1 − 1

𝜔𝑥
1 𝜂1

𝛽 1

𝑥 −𝛽 −𝜂2

1

𝜔 𝜔𝜂2

Exponential 𝜆 𝑥 −𝜆 −𝜂1 𝜔𝑥 𝜔
𝜂1

𝜔

Rayleigh 𝜎 𝑥2

2

−1

𝜎2

√
1

−𝜂1

𝜔𝑥 𝜔2
𝜂1

𝜔

Bernoulli 𝑝 𝑥 log

𝑝

1−𝑝
1

1+𝑒−𝜂1
- - -

Poisson 𝜆 𝑥 log𝜆 𝑒𝜂1
- - -

them some common distributions, and how their natural parameters

scale as a function of the scaling factor 𝜔 .

Regarding the relation between scaled and original variables within the

exponential family, we now prove a more general version of Proposition 8.1

from the main text.

Proposition C.3 Let 𝑝(𝑥; 𝜼) be a density function of the exponential

family with 𝑥 ∈ 𝑋 ⊂ ℝ and 𝜼 ∈ ℝ𝐼
. Assume a bĳective function

�̃� : 𝑋 × ℝ+ → 𝑋 such that, given 𝜔 ∈ ℝ+ , it defines the function

(and random variable (R.V.)) �̃�𝜔 B �̃�(𝑥, 𝜔) . If all sufficient statistics

factorize as 𝑇𝑖(�̃�𝜔) = 𝑓𝑖(𝜔)𝑇𝑖(𝑥) + 𝑔𝑖(𝜔) , then if we define �̃� such that

𝜼 = 𝒇 (𝜔) ⊙ �̃� , where 𝒇 = [𝑓1 𝑓2 . . . 𝑓𝐼] and ⊙ is the Hadamard

product, we have

𝜕
𝑗

�̃�𝑖
log 𝑝(�̃�𝜔; �̃�) = 𝑓𝑖(𝜔)𝑗 𝜕 𝑗𝜂𝑖 log 𝑝(𝑥; 𝜼) for 𝑗 ∈ ℕ , (C.4)

where 𝜕
𝑗

�̃�𝑖
denotes the 𝑗-th-partial derivative with respect to �̃�𝑖 .

Proof. First, we relate the normalizing constants 𝐴(�̃�) and 𝐴(𝜼) of

log 𝑝(�̃�𝜔; �̃�) and log 𝑝(𝑥; 𝜂) , respectively:

𝐴(�̃�) = log

∫
ℎ(�̃�𝜔) exp

[
�̃�⊤𝑻(�̃�𝜔)

]
d�̃�𝜔

=
∑
𝑖

𝑔𝑖(𝜔)�̃�𝑖 + log

∫
ℎ(�̃�𝜔) exp

[
𝜼⊤𝑻(𝑥)

]
d�̃�𝜔

=
∑
𝑖

𝑔𝑖(𝜔)�̃�𝑖 + log

∫
ℎ(�̃�𝜔)
ℎ(𝑥) ℎ(𝑥) exp

[
𝜼⊤𝑻(𝑥) ± 𝐴(𝜼)

]
𝜕𝑥 �̃�𝜔(𝑥)d𝑥

C.3 Full description of Lipschitz standardization 167

=
∑
𝑖

𝑔𝑖(𝜔)�̃�𝑖 + 𝐴(𝜼) + log𝔼𝑝(𝑥; 𝜼)

[
ℎ(�̃�𝜔)
ℎ(𝑥) 𝜕𝑥 �̃�𝜔(𝑥)

]
. (C.5)

We can safely divide by ℎ(𝑥) above, since it is the Radon-Nikodym

derivative
d𝐻(𝑥)

d𝑥 and we can assume that is non-zero almost everywhere

in the domain of the likelihood.

Second, we relate 𝑝(�̃�𝜔; �̃�) and 𝑝(𝑥; 𝜼) using a similar calculation:

𝑝(�̃�𝜔; �̃�) = ℎ(�̃�𝜔) exp

[
�̃�⊤𝑻(�̃�𝜔) − 𝐴(�̃�)

]
=
ℎ(�̃�𝜔)
ℎ(𝑥)

ℎ(𝑥) exp

[
𝜼⊤𝑻(𝑥) − 𝐴(𝜼)

]
𝔼𝑝(𝑥; 𝜼)[ℎ(�̃�𝜔)ℎ(𝑥) 𝜕𝑥 �̃�𝜔(𝑥)]

=
ℎ(�̃�𝜔)
ℎ(𝑥)

𝑝(𝑥; 𝜼)
𝔼𝑝(𝑥; 𝜼)[ℎ(�̃�𝜔)ℎ(𝑥) 𝜕𝑥 �̃�𝜔(𝑥)]

. (C.6)

By defining everything that is not 𝑝(𝑥; 𝜼) in the previous equation as

𝜓(𝑥, 𝜔)we have that:

log 𝑝(�̃�𝜔; �̃�) = log 𝑝(𝑥; 𝜼) + log𝜓(𝑥, 𝜔) . (C.7)

Now, for the case 𝑗 = 1 we just need to use the chain rule and the fact

that 𝜓(𝑥, 𝜔) does not depend on 𝜂𝑖 :

𝜕�̃�𝑖 log 𝑝(�̃�𝜔; �̃�) = 𝜕�̃�𝑖
[
log 𝑝(𝑥; 𝜼) + log𝜓(𝑥, 𝜔)

]
= 𝜕�̃�𝑖𝜂𝑖 · 𝜕𝜂𝑖 log 𝑝(𝑥; 𝜼)
= 𝑓𝑖(𝜔) · 𝜕𝜂𝑖 log 𝑝(𝑥; 𝜼) . (C.8)

And we can prove the case 𝑗 > 1 by induction:

𝜕
𝑗

�̃�𝑖
log 𝑝(�̃�𝜔; �̃�) = 𝜕�̃�𝑖

[
𝜕
𝑗−1

�̃�𝑖
log 𝑝(�̃�𝜔; �̃�)

]
= 𝑓

𝑗−1

𝑖
(𝜔) · 𝜕�̃�𝑖𝜂𝑖 · 𝜕𝜂𝑖

[
𝜕
𝑗−1

𝜂𝑖 log 𝑝(𝑥; 𝜼)
]

= 𝑓
𝑗

𝑖
(𝜔) · 𝜕 𝑗𝜂𝑖 log 𝑝(𝑥; 𝜼) . (C.9)

C.3 Full description of Lipschitz standardization

C.3.1 Gamma Trick 168
C.3.2 Workflow example . . 169
C.3.3 Lipschitz scaling 170

In this section we provide a complete description of Lipschitz stand-

ardization. Following the naming convention introduced in Section 8.5,

Lipschitz standardization would be denoted by lip-gamma, i. e., the al-

gorithm is composed of two different components: i) applying the Gamma

trick, and ii) scaling each distribution properly using our Lipschitz cri-

terion (Equation 8.14 from the main text). We proceed by describing each

individual component.

168 Appendix C Additional Material for Chapter 8

C.3.1 Gamma Trick

As introduced in Subsection 8.4.1 from the main text, the Gamma Trick is

a sequence of steps that allow us to model discrete variables using a set

of Gamma distributions. Here, we describe all of these steps separately.

Preprocessing. The first step is to analyse which of the given likelihoods

need to be replaced to transform the data 𝑥 ↦→ 𝑥 during preprocessing.

In practice, we have a set ‘testing’ and ‘training’ likelihoods, as well

as mappings between them to help us identify which of the training

likelihoods correspond to which of the testing likelihoods. Depending

on the likelihood, we proceed as follows:

▶ Continuous. One-to-one correspondence. Append the likelihood

to the set of training likelihoods, and do not alter the data.

▶ Bernoulli.

1. Make sure that 𝑥 ∈ {1, 2} .

2. Sample 𝜖𝑑𝑛 ∼ Beta(1.1, 30) , one per sample.

3. Transform the training data such that 𝑥𝑑𝑛 = 𝑥𝑑𝑛 + 𝜖𝑑𝑛 .

4. Again, one-to-one correspondence. We append a Gamma to

the set of training likelihoods.

▶ Poisson. Exactly as in the Bernoulli case, but making sure that the

data lies on the natural numbers.

▶ 𝑀-class categorical.

1. Transform the data to a one-hot encoding (if it was not already),

so that now 𝑥𝑛 = [𝑥0𝑛 𝑥1𝑛 . . . 𝑥𝑀𝑛] .

2. One-to-many correspondence. For each of the classes we

perform the exact same steps described for the Bernoulli

distribution. Note that now we need to keep track that these

new 𝑀 Gamma distributions correspond to the 𝑑-th modality.

Afterwards, all the modalities are scaled accordingly.

Training. During training, we just need to use the preprocessed data

and the training likelihoods as usual.

Testing. During testing we need to distinguish two cases:

▶ Data for the model. As the model expects data with the same prop-

erties as the training data, we need to apply the same preprocessing

as to the training data, which we can easily do on the fly.

▶ Data for the likelihood evaluation. When evaluating the likelihood,

we need to use the original testing data, that is, without the

preprocessing described above. Moreover, note that the testing

likelihoods are the original ones.

C.3 Full description of Lipschitz standardization 169

Recovering the original parameters. As described in the main text,

we need to come back to the original space whenever we evaluate the

model, and that means recovering the original parameters from the ones

obtained by the model. Specifically, assuming that the model outputs �̃� ,

we scaled them back to 𝜼 if the Gamma trick was applied to that modality,

then:

▶ Continuous. Nothing is necessary, that is, 𝜼 = 𝜼 .

▶ Bernoulli.

1. We transform the natural parameters to the canonical ones,

i. e., 𝛼 = 𝜂1 + 1 and 𝛽 = −𝜂2 .

2. We compute the mean, i. e., 𝜇 = 𝛼 / 𝛽 − 𝔼[𝜖] .

3. We obtain the parameter 𝑝 by making sure that 𝜇 fulfils the

constraints, i. e., 𝑝 = max(0,min(1, 𝜇)) .

▶ Poisson. Same steps as for the Bernoulli case, but for the last one

we recover the rate parameter by doing 𝜆 = max(𝛿, 𝜇) , where

0 < 𝛿 ≪ 1 ensures that 𝜆 > 0 .

▶ Categorical.

1. For each of the 𝑀 classes, we recover the parameters 𝜇𝑚 as

described in the Bernoulli case, but omitting the last step.

2. We obtain the parameters 𝜋𝑚 of the distribution by normaliz-

ing the 𝜇𝑚 , i. e., 𝜋𝑚 = 𝜇𝑚 /
∑
𝑖 𝜇𝑖 .

C.3.2 Illustrative example of data workflow

We provide a simple example that shows how data is transformed and

used throughout the entire process. Assume that we have two input

dimensions, 𝐷 = 2 , whose distributions are assumed to be normal

x1 ∼ N (𝜇, 𝜎) and categorical with 3 classes x2 ∼ Cat(𝝅[𝜋1 𝜋2 𝜋3]) ,
respectively. Let us further suppose that we want to use lip-gamma,

i. e., Lipschitz-standardization combined with the Gamma trick. Then,

we would not alter the first variable x1 = x1 ∼ N (𝜇, 𝜎) , but substitute

x2 with x2𝑗 = x2𝑗 + 𝜖 𝑗 ∼ Γ(𝛼 𝑗 , 𝛽 𝑗) , where 𝑗 ∈ {1, 2, 3} are the indexes

of the new variables, x2𝑗 ∼ Bern(𝑝 𝑗) models the 𝑗-th element of x2

when considered as a one-hot encoding, and 𝜖 𝑗 ∼ Beta(1.1, 30) is the

(independent) additive noise variables.

Now we can transform all variables, obtaining the new scaled variables

x̃1 = 𝜔1x1 ∼ N (�̃�, �̃�) and x̃2𝑗 = 𝜔2𝑗x2𝑗 ∼ Γ(�̃�, �̃�) for 𝑗 ∈ {1, 2, 3} . After

training, or whenever we need to evaluate the model in non-training data,

we must return to the original probabilistic model x1 , x2 . When recovering

the x variables, we need to use Proposition 8.1 so that 𝜼𝑖 = 𝑓𝑖(𝜔) ⊙ �̃�𝑖 ,
where we have obtained �̃�𝑖 as the output of our model. To finally recover

the original variables, x1 , x2 , we do not need to do anything to x1 since

x1 = x1 . For the second variable, we obtain x2𝑗 ∼ Bern(𝑝 𝑗) as

𝑝 𝑗 = max(0,min(1,𝔼[x2𝑗] − 𝔼[𝜖 𝑗])) = max(0,min(1, 𝛼 𝑗/𝛽 𝑗 − 0.035)) ,

and finally recover x2 ∼ Cat(𝝅)with𝝅 = [𝑝1

𝑝1+𝑝2+𝑝3

𝑝2

𝑝1+𝑝2+𝑝3

𝑝3

𝑝1+𝑝2+𝑝3

] .

170 Appendix C Additional Material for Chapter 8

C.3.3 Lipschitz scaling criterion

We describe now how to implement Lipschitz standardization to find the

weights according to

𝜔∗𝑑 B arg min

𝜔𝑑

(
𝐼𝑑∑
𝑖=1

𝐿𝑑𝑖(𝜔𝑑) − 𝐿∗
)

2

, (C.10)

for the distributions considered in the main manuscript. Here, we assume

that every distribution is continuous or the Gamma trick has been

applied, otherwise, discrete variables are ignored as they cannot be

scaled. Regarding the target smoothness 𝐿∗ , as mentioned in the main

paper, it is set to 1/(𝐷𝛼) in the general case, where 𝐷 is the number of

likelihoods that can be scaled, and 𝛼 the initial learning rate set by the

practitioner. For the particular case of a 𝑀-class categorical distribution

under with the Gamma trick, the target smoothness for the new 𝑀

Gamma distributions is set to 1/(𝐷𝑀𝛼) .
In Algorithm C.1 we show the pseudocode to find the optimal weight

1
1: I. e., to solve Equation 8.14.

for a single modality. In short, the algorithm computes the Hessian at

the maximum likelihood estimation (MLE) 𝜼 estimators using either

automatic differentiation or closed-form expressions, and then optimize

the equation above using any suitable optimization method, e.g., root-

finding methods. Some important remarks: i) in this case, computing

the Hessian matrix is cheap; ii) the derivatives are computed once, and

we avoid recalculating derivatives using Equation 8.13; iii) we rely on

numerical methods to find 𝜔 , but it is easy to show that Equation 8.14

has a single positive solution for the considered distributions;
2

and2: Exploiting the fact that we have a con-

tinuous increasing function with respect

to the weight 𝜔 .

iv) to ensure that the optimizer finds a positive 𝜔 , we parametrize it

with a softplus function, turning Equation 8.14 into an unconstrained

optimization problem.

Algorithm C.1: Pseudocode to compute

the Lipschitz-standardization weights

for a given continuous distribution.

1 function: HessianAtMLE

2 input: data 𝑿 = {𝑥𝑛}𝑁𝑛=1

3 begin
4 �̂�← MLE𝑝(𝑿)
5 ℓ ← ∑

𝑛 log 𝑝(𝑥𝑛 ; �̂�) # Evaluate the log-likelihood
6 𝑯 ← Hessian(ℓ , 𝜼) # Hessian w.r.t. the natural parameters
7 return 𝑯
8 end
9

10 function: FindWeight
11 input: data 𝑿, target smoothness 𝐿∗

12 begin
13 𝑯 ← HessianAtMLE(𝑿)
14 goal(𝜔) ←

(
∥𝑯 ⊙ 𝒇 (𝜔) 1⊤∥2,1 − 𝐿∗

)
2

15 return 𝜔← solve(goal) # E.g., using Brent’s method
16 end

C.4 𝐿-smoothness after standardizing

C.4.1 Gamma distribution . . 174

Remark C.1 We use throughout the

fact that 𝜕𝜂𝑖𝐴(𝜼) = 𝔼[𝑇𝑖(𝑥)] for every

𝑖 ∈ {1, 2, . . . , 𝐼} as long as the dis-

tribution belongs to the exponential

family.

In this section, we compute the local 𝐿-smoothness around a point after

standardizing the data for some common distributions. To this end, we

first compute the Hessian of log 𝑝(𝑥; 𝜼) w.r.t. 𝜼 .Then, we can compute

the 𝐿-smoothness after standardizing in two equivalent ways: i) using

Equation 8.13; or ii) evaluating the second derivatives on the standardized

C.4 L-smoothness after standardizing 171

parameters. We choose the latter as it is simpler in this case, whereas the

former enable an algorithm that reuses computations.

Remark C.2 We denote the Hessian

as 𝑯 , and use the fact that

𝑯 =

[
𝜕𝜂

1

𝔼[𝑇1(𝑥)] 𝜕𝜂
2

𝔼[𝑇1(𝑥)]
𝜕𝜂

1

𝔼[𝑇2(𝑥)] 𝜕𝜂
2

𝔼[𝑇2(𝑥)]

]
,

and 𝐻12 = 𝐻21 .

(Log-)Normal distribution.

𝔼[𝑇1(𝑥)] = 𝔼[𝑥] = 𝜇 =
−𝜂1

2𝜂2

, (C.11)

𝔼[𝑇2(𝑥)] = 𝔼[𝑥2] = 𝜇2 + 𝜎2 =
𝜂2

1

4𝜂2

2

+ −1

2𝜂2

=
𝜂2

1
− 2𝜂2

4𝜂2

2

, (C.12)

𝐻11 = −𝜕𝜂1

−𝜂1

2𝜂2

= − −1

2𝜂2

= −𝜎2 , (C.13)

𝐻22 = −𝜕𝜂2

𝜂2

1
− 2𝜂2

4𝜂2

2

=
−1

4

−2𝜂2

2
− 2𝜂2(𝜂2

1
− 2𝜂2)

𝜂4

2

= −
𝜂2 − 𝜂2

1

2𝜂3

2

= −2𝜎2(𝜎2 + 2𝜇2) , (C.14)

𝐻12 = −𝜕𝜂1

𝜂2

1
− 2𝜂2

4𝜂2

2

= − 𝜂1

2𝜂2

2

= −2𝜇𝜎2 . (C.15)

Therefore, we have that

𝐿1 =

√
𝜎4 + 4𝜇2𝜎4

and 𝐿2 =

√
4𝜇2𝜎4 + 4𝜎4(𝜎2 + 2𝜇2)2 , (C.16)

around the point [𝜇 𝜎2] . After standardizing the data, we have that

�̃� = 𝜇/𝜎 and �̃�2 = 1 , resulting in

𝐿std

1
=

√
1 + 4(𝜇/𝜎)2 and 𝐿std

2
= 2

√
(𝜇/𝜎)2 + (1 + 2(𝜇/𝜎)2)2 . (C.17)

Gamma distribution.

𝔼[𝑇1(𝑥)] = 𝛼 − log 𝛽 + logΓ(𝛼) + (1 − 𝛼)𝜓(𝛼)
= 𝜂1 + 1 − log(−𝜂2) + logΓ(𝜂1 + 1) − 𝜂1𝜓(𝜂1 + 1) , (C.18)

𝔼[𝑇2(𝑥)] = 𝔼[𝑥] = 𝛼
𝛽
=

𝜂1 + 1

−𝜂2

, (C.19)

𝐻11 = −𝜕𝜂1

[
𝜂1 + 1 − log(−𝜂2) + logΓ(𝜂1 + 1) − 𝜂1𝜓(𝜂1 + 1)

]
= −1 + 𝜓(𝜂1 + 1) − 𝜓(𝜂1 + 1) + 𝜂1𝜓

(1)(𝜂1 + 1)
= −1 + 𝜂1𝜓

(1)(𝜂1 + 1) = (𝛼 − 1)𝜓(1)(𝛼) − 1 , (C.20)

𝐻22 = −𝜕𝜂2

𝜂1 + 1

−𝜂2

= −𝜂1 + 1

𝜂2

2

= −𝛼/𝛽2 = −𝕍 [𝑥] , (C.21)

𝐻12 =
−1

−𝜂2

= −1/𝛽 . (C.22)

So that

𝐿1 =

√
[1 + (1 − 𝛼)𝜓(1)(𝛼)]2 + 1/𝛽2

and (C.23)

𝐿2 =
√
𝕍 [𝑥]2 + 1/𝛽2 . (C.24)

172 Appendix C Additional Material for Chapter 8

After standardizing, we obtain �̃� = 𝛼 , �̃� =
√
𝛼 , and 𝕍 [�̃�] = 1 . Thus:

𝐿std

1
=

√
[1 + (1 − 𝛼)𝜓(1)(𝛼)]2 + 1/𝛼2

and 𝐿std

2
=

√
1 + 1/𝛼 , (C.25)

i. e., 𝐿std

1
is a function dominated by 𝜓(1)(𝛼) for 𝛼 < 1 and by 1/

√
𝛼

otherwise, and 𝐿std

2
is dominated by 1/

√
𝛼 for 𝛼 < 1 and by 1 otherwise.

Exponential distribution. If x ∼ Exp(𝜆) , then x ∼ Γ(1,𝜆) , and we can

use the previous result to state that 𝐿1 = 𝕍 [𝑥] and 𝐿std

1
= 1 .

Rayleigh distribution. This distribution has parameter 𝜎 > 0 , sufficient

statistic 𝑇1(𝑥) = 𝑥2/2 , and natural parameter 𝜂1 = −1/𝜎2
. Using the fact

that its raw moments are of the form 𝔼[𝑥 𝑖] = 𝜎𝑖2𝑖/2Γ(1 + 𝑖
2
), we have:

𝔼[𝑇1(𝑥)] =
1

2

𝔼[𝑥2] = 1

2

𝜎2

2Γ(2) = 𝜎2 =
−1

𝜂1

, (C.26)

𝐻11 = −𝔼[𝑇1(𝑥)] =
1

𝜂2

1

= 𝜎4 . (C.27)

Therefore, 𝐿1 = 𝜎4
. After standardizing, 𝕍 [�̃�] = 4−𝜋

2
𝜎2 = 1⇒ �̃�2 = 2

4−𝜋
and 𝐿std

1
=

(
2

4−𝜋
)
2 ≈ 5.428 .

Inverse Gaussian distribution. It has parameters 𝜇,𝜆 > 0 , sufficient

statistics 𝑇1(𝑥) = 𝑥, 𝑇2(𝑥) = 1/𝑥 , and natural parameters 𝜂1 = −𝜆
2𝜇2
, 𝜂2 =

−𝜆
2

. Thus, we have that

𝔼[𝑇1(𝑥)] = 𝔼[𝑥] = 𝜇 =
√
𝜂2/𝜂1 , (C.28)

𝔼[𝑇2(𝑥)] = 𝔼[1
𝑥
] = 1

𝜇
+ 1

𝜆
=

√
𝜂1

𝜂2

− 1

2𝜂2

, (C.29)

𝐻11 = −𝜕𝜂1

√
𝜂2

𝜂1

= −√𝜂2𝜕𝜂1

1√
𝜂1

= −−1

2

√
𝜂2

𝜂1

1

𝜂1

= −
√

𝜂2

𝜂1

𝜂2

𝜂1

1

−2𝜂2

= −𝜇3/𝜆 , (C.30)

𝐻12 = −𝜕𝜂2

√
𝜂2

𝜂1

=
−1

2

1√
𝜂1𝜂2

=

√
𝜂2

𝜂1

1

−2𝜂2

= 𝜇/𝜆 , (C.31)

𝐻22 = −𝜕𝜂2

(√
𝜂1

𝜂2

− 1

2𝜂2

)
=

1

2

√
𝜂1

𝜂2

1

𝜂2

− 1

2𝜂2

2

= −
1 − √𝜂1𝜂2

2𝜂2

2

= −2𝜇 + 𝜆
𝜇𝜆2

. (C.32)

Therefore,

𝐿1 =

√
𝜇6 + 𝜇2

𝜆2

=
𝜇
√
𝜇4 + 1

𝜆
and (C.33)

𝐿2 =

√
𝜇2/𝜆2 +

(
2𝜇 + 𝜆
𝜇𝜆2

)
2

. (C.34)

C.4 L-smoothness after standardizing 173

After standardizing, we have 𝕍 [�̃�] = �̃�3/�̃� = 1 , so that 𝜔 =
√
𝜆/𝜇3

.

Also, �̃� = −2�̃�2 = −2𝜂2𝜔 = 𝜆𝜔 and �̃� =
√
�̃�2/�̃�1 =

√
𝜂2/𝜂1

√
𝜔2 = 𝜇𝜔 .

Therefore, �̃�std = 𝜆
√
𝜆/𝜇3

and �̃�std = 𝜇
√
𝜆/𝜇3

. Finally,

𝐿std

1
=

𝜇

√
𝜇4

(
𝜆2

𝜇6

)
+ 1

𝜆
=

𝜇

𝜆

√(
𝜆
𝜇

)
2

+ 1

=
𝜇

𝜆

√(𝜇
𝜆

)−2

+ 1 , (C.35)

𝐿std

2
=

√
𝜇2

𝜆2

+
((2𝜇 + 𝜆)𝜔

𝜇𝜆2𝜔3

)
2

=

√
𝜇2

𝜆2

+
((2𝜇 + 𝜆)

𝜇𝜆2

)
2

1

𝜔4

=

√
𝜇2

𝜆2

+
(
2𝜇 + 𝜆
𝜇𝜆2

)
2 𝜇6

𝜆2

=

√(𝜇
𝜆

)
2

+
(
2 + 𝜆

𝜇

)
2 (𝜇

𝜆

)
6

. (C.36)

Note that both constants vanish (grow) as 𝜇 vanishes (grows).

Inverse Gamma distribution. This distribution has parameters 𝛼, 𝛽 >
0 , sufficient statistics 𝑇1(𝑥) = log 𝑥, 𝑇2(𝑥) = 1/𝑥 , and natural parameters

𝜂1 = −𝛼 − 1, 𝜂2 = −𝛽 .

𝔼[𝑇1(𝑥)] = 𝛼 + log 𝛽 + logΓ(𝛼) − (1 + 𝛼)𝜓(𝛼)
= −𝜂1 − 1 + log(−𝜂2) + logΓ(−𝜂1 − 1) + 𝜂1𝜓(−𝜂1 − 1) , (C.37)

𝐻11 = 𝜕𝜂1

[
𝜂1 + 1 − log(−𝜂2) − logΓ(−𝜂1 − 1) − 𝜂1𝜓(−𝜂1 − 1)

]
= 1 + 𝜓(−𝜂1 − 1) − 𝜓(−𝜂1 − 1) + 𝜂1𝜓

(1)(−𝜂1 − 1)
= 1 − (𝛼 + 1)𝜓(1)(𝛼) , (C.38)

𝔼[𝑇2(𝑥)] = 𝔼[1/𝑥] = 𝛼
𝛽
=

𝜂1 + 1

𝜂2

,

𝐻22 = −𝜕𝜂2

𝜂1 + 1

𝜂2

=
𝜂1 + 1

𝜂2

2

= − 𝛼

𝛽2

, (C.39)

𝐻12 =
−1

𝜂2

=
1

𝛽
. (C.40)

Therefore,

𝐿1 =

√(
1 − (𝛼 + 1)𝜓(1)(𝛼)

)
2 + 1/𝛽2 , (C.41)

𝐿2 =

√
1/𝛽2 + 𝛼2/𝛽4 . (C.42)

After standardizing, we obtain (for 𝛼 > 2):

𝕍 [𝑥] = 𝛽2

(𝛼 − 1)2(𝛼 − 2) = 1⇒ 𝛽2 = (𝛼 − 1)2(𝛼 − 2) , (C.43)

𝐿std

1
=

√(
1 − (𝛼 + 1)𝜓(1)(𝛼)

)
2 + 1

(𝛼 − 1)2(𝛼 − 2) , (C.44)

𝐿std

2
=

√
1

(𝛼 − 1)2(𝛼 − 2) +
𝛼2

(𝛼 − 1)4(𝛼 − 2)2 . (C.45)

Something interesting about these last two estimators is that both explode

as 𝛼 approaches 2 , and both vanish as it gets far from it.

174 Appendix C Additional Material for Chapter 8

Figure C.1: Plot of 𝐿1 for the Gamma

distribution as a function of 𝛼 .

C.4.1 Scale-invariant smoothness of the Gamma
distribution

In section 8.4.1 we introduced the Gamma trick, which acts as an approx-

imation of discrete distributions. One subtle detail is that we assumed

discrete data to lay in the natural numbers. The reason behind it is that,

for the approximation to be accurate, it is beneficial that the data is a bit

far from zero. We justified the statement above by noting that the second

derivative of a Gamma log-likelihood w.r.t. the first natural parameter,

i. e., 𝑯11 , rapidly decreases as the data moves away from zero.

As computed before in Equation C.18, one part of 𝐿1 is scale-invariant

and of the form 1 + (1 − 𝛼)𝜓(1)(𝛼) . Figure C.1 shows a plot of the formula

above as a function of 𝛼 . It is easy to observe that as the shape parameter

grows the value of (our approximation to) 𝐿1 drastically decreases.

Finally, by supposing that discrete data are natural numbers, the mode is

at least one, which in practice means that the value for 𝛼 is bigger than 1

(usually close to 10), thus ensuring that the value of (our approximation

to) 𝐿1 mostly depends on the scale-dependent parameter 𝛽 .

C.5 Details on the experimental setup

C.5.1 Model descriptions . . 174
C.5.2 Experimental setup . . 176

In this section, we describe the experimental setup for each of the

experiments we conduct in the main text.

C.5.1 Model descriptions

Mixture model. Here we give a deeper description on the implementa-

tion details used for the models in the experiments. See Subsection 7.3.1

for an introduction to mixture models.

To ensure that the parameters predicted by the model fulfil the domain

restriction of each particular distribution, we perform the following

transformation:

𝜂𝑖(𝜂𝑖) =
{

softplus(𝜂𝑖) + 𝑚 + 𝜖 if 𝑚 < 𝜂𝑖 ,

−
(
softplus(𝜂𝑖) +𝑀 + 𝜖

)
if 𝜂𝑖 < 𝑀 ,

(C.46)

C.5 Details on the experimental setup 175

where 0 < 𝜖 ≪ 1 (in practice, 𝜖 = 1e−8), and where we never have

double-bounded constraints.

The only hyperparameter for the mixture model is the number of clusters,

𝑀. For the experiments, we use 𝑀 = 5 for the Breast, Wine, and spam

datasets, and 𝑀 = 10 otherwise.

As mentioned in Subsection 7.3.1, to learn the parameters of the discrete

latent variables, we change the categorical distribution by a GumbelSoft-

max distribution [81] during training, with a temperature that updates [81] Jang, Gu and Poole (2017), ‘Categor-

ical Reparameterization with Gumbel-

Softmax.’

every 20 epochs as

temp = max(0.001, 𝑒−0.001epoch) . (C.47)

Matrix factorization. Similar to the mixture model, we refer to Subsec-

tion 7.3.2 for an introduction to the matrix factorization model.

There some details that have to be noted. First, the variance of the local

parameters is shared among instances and treated as a regular model

parameter. Similarly, only the first parameter, 𝜂1 , of each distribution

is learnt using black-box variational inference (BBVI). The remaining

parameters are treated as regular model parameters. The same trans-

formations as in the mixture model are performed to the parameters in

order to fulfil their particular domain requirements.

When it comes to experiments, the only hyperparameter is the latent

size. We set it to half the number of dimensions for each dataset (be-

fore applying any trick to the data that may increase the number of

dimensions).

Variational autoencoder (VAE). See Subsection 7.3.3 for an introduction

to VAEs. For the experiments, we follow a basic architecture with the

following components:

▶ Encoder. 3-layer neural network with hyperbolic tangents as activ-

ation functions.

▶ Decoder. 4-layer neural network with ReLU as activation functions.

Other relevant implementation details are the following:

▶ We assume normal latent variables with a standard normal as prior.

▶ Hidden layers have 256 neurons.

▶ The latent size is set to the 75 % of the data number of dimensions

(before preprocessing).

▶ Layers are initialized using a Xavier uniform policy.

Specific details about the encoder:

▶ As we have to avoid using the missing data (as we use it to evaluate

the model performance), we implement an input-dropout layer as

in heterogeneous-incomplete VAE (HI-VAE) [143]. [143] Nazabal, Olmos, Ghahramani and

Valera (2020), ‘Handling incomplete het-

erogeneous data using VAEs.’▶ To guarantee a well-behaved training across all methods, we put

a batch-normalization layer at the beginning of the encoder. Note

that this does not interfere with the goal of this work, which is

about the evaluation of the loss function.

https://openreview.net/forum?id=rkE3y85ee

176 Appendix C Additional Material for Chapter 8

▶ In order to obtain the parameters of the variational approximation,

𝜇z and 𝜎z , we pass the output of the encoder through two linear

layers, one for the mean and another for the log-scale. The latter is

transformed to the scale via a softplus function.

Specific details about the decoder:

▶ The size of the output is set to the number of parameters to learn.

Each one being transformed accordingly to fulfil their distributional

restrictions, as done with the previous models.

C.5.2 Experimental setup

For the experiments in the main text, we use Adam [92] as optimizer

with a learning rate of 0.001 for all models expect MF, which is set to

0.01. The batch size is set to 1024 in all cases, and we train 400 epochs

for the bigger datasets (letter, Adult, and Credit), while we train 2000

epochs for the intermediate ones (Wine, and spam), and 3000 epochs for

the the Breast dataset. Moreover, we automate the process of choosing

a likelihood as described in Section 7.1 based on basic properties of the

data. Table C.3 shows a summary with the description of the datasets.

Table C.3: Types of variables per modal-

ity, and number of samples.
Dataset Credit Adult Wine spam letter Breast

Continuous 13 3 11 57 0 0

Poisson 1 2 1 0 16 9

Categorical 10 7 1 1 1 1

No. samples 30 000 32 000 7000 4600 20 000 700

C.6 Additional experimental results

In this section, we show complementary results from those show in

the main text. First, Figure C.2 depicts the same results as Figure 8.5,

but grouping by missing-values percentages instead. Second, we plot in

Figures C.3 and C.4 per-modality bar plots of the normalized missing

imputation error, for the Credit and letter datasets, respectively. These

figures further validate the argument of lip-gamma not overlooking any

−0.04 −0.02 0.00 0.02 0.04

−0.04

−0.02

0.00

0.02

0.04

max iqr std lip std-bern lip-bern std-gamma lip-gamma

0.00

0.50

1.00

10% 20% 50%

Adult

0.00

0.50

1.00

10% 20% 50%

Credit

0.00

0.50

1.00

10% 20% 50%

spam

0.00

0.50

1.00

10% 20% 50%

Wine

0.00

0.50

1.00

10% 20% 50%

letter

0.00

0.50

1.00

10% 20% 50%

Breast

Figure C.2: Mean ranking across methods (lower is better) for different datasets and missing-values percentages on VAEs models.

C.6 Additional experimental results 177

10−2

10−1

100

M
M

Credit dataset

variable

10−2

100

M
F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
10−2

10−1

100

V
A
E

std-gamma

std-bern

std

lip

lip-bern

lip-gamma

Figure C.3: Per-modality normalized missing imputation error on the Credit dataset (lower is better). Y-axis is in log-scale.

10−1

100

M
M

letter dataset

variable
10−1

100

M
F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

10−1

100

V
A
E

std-gamma

std-bern

lip-bern

lip-gamma

Figure C.4: Per-modality normalized missing imputation error on the letter dataset (lower is better). Y-axis is in log-scale.

variable significantly, unlike any other considered method. Finally, we

present the results in tabular form, divided by type of variable (discrete

v.s. continuous) and model type (MM, MF and VAE). Tables C.4 to C.6 show

the results obtained with, respectively, 10 %, 20 %, and 50 % of missing

data. Significant differences w.r. t. std are highlighted.

As discussed in Section 8.5, applying Lipschitz standardization results in

the best results on imputation error across all datasets, while not overlook-

ing any of the dimensions. We can also observe how this improvement

mainly manifests on discrete random variables when the Bernoulli and

Gamma tricks are applied. However, the case where properly learning

the discrete distributions translates to an improvement on all dimensions

can also occur, as in the Credit dataset.

Finally, there is an important aspect that qualitatively differentiates

lip-gamma from any other method. The objective of Lipschitz-standardize

every modality is to encourage an impartial learning process, and in cases

with high heterogeneity, such as Credit and Adult, the downstream

effects become clearer. For example, this can be readily observe by

checking that lip-gamma never spikes in any of the bar plots or tables

shown in this thesis, i. e., Figures 8.7, C.3 and C.4 and Tables C.4 to C.6.

Remarkably, lip-gamma still achieves good performance even when half

the data is missing during training.

178 Appendix C Additional Material for Chapter 8

Table C.4: Missing imputation error per type of variable for different methods, datasets, and models, with a 10 % of missing data.

Highlighted cells are significantly different results w.r. t. std according to a t-test with 𝛼 = 0.05 .

Discrete modalities Continuous modalities

Imputation error MM MF VAE MM MF VAE

Credit

max 0.773 ± 0.022 ∞ 0.720 ± 0.055 0.134 ± 0.051 0.056 ± 0.002 0.038 ± 0.002

iqr 0.777 ± 0.025 8.486 ± 0.022 0.719 ± 0.036 0.058 ± 0.009 ∞ 0.044 ± 0.010

std† 0.770 ± 0.028 4.448 ± 0.007 0.712 ± 0.024 0.055 ± 0.001 ∞ 0.042 ± 0.003

std-bern 0.191 ± 0.002 0.196 ± 0.048 0.135 ± 0.002 0.047 ± 0.001 ∞ 0.037 ± 0.016

std-gamma 0.189 ± 0.005 0.143 ± 0.003 0.123 ± 0.006 0.045 ± 0.001 0.043 ± 0.032 0.126 ± 0.280

lip 0.777 ± 0.020 0.779 ± 0.148 0.683 ± 0.036 0.054 ± 0.001 ∞ 0.040 ± 0.002

lip-bern 0.195 ± 0.004 0.133 ± 0.001 0.123 ± 0.001 0.044 ± 0.002 ∞ 0.029 ± 0.002

lip-gamma 0.189 ± 0.005 0.143 ± 0.002 0.112 ± 0.002 0.045 ± 0.001 0.045 ± 0.025 0.033 ± 0.003

Adult

max 0.645 ± 0.003 0.618 ± 0.051 0.694 ± 0.037 0.089 ± 0.000 0.089 ± 0.000 0.078 ± 0.005

iqr 0.601 ± 0.004 0.671 ± 0.038 0.702 ± 0.036 0.087 ± 0.001 0.081 ± 0.001 0.072 ± 0.003

std† 0.600 ± 0.002 0.622 ± 0.052 0.706 ± 0.022 0.087 ± 0.001 0.081 ± 0.001 0.071 ± 0.002

std-bern 0.242 ± 0.001 0.218 ± 0.012 0.152 ± 0.002 0.087 ± 0.003 0.100 ± 0.004 0.087 ± 0.004

std-gamma 0.229 ± 0.004 0.182 ± 0.003 0.125 ± 0.003 0.087 ± 0.003 0.087 ± 0.003 0.503 ± 0.001

lip 0.638 ± 0.003 0.651 ± 0.031 0.708 ± 0.037 0.088 ± 0.000 0.082 ± 0.000 0.072 ± 0.002

lip-bern 0.231 ± 0.004 0.167 ± 0.002 0.131 ± 0.005 0.087 ± 0.003 0.094 ± 0.003 0.072 ± 0.002

lip-gamma 0.228 ± 0.004 0.187 ± 0.010 0.122 ± 0.002 0.087 ± 0.003 0.094 ± 0.009 0.085 ± 0.005

Wine

max 0.110 ± 0.007 0.352 ± 0.110 0.114 ± 0.063 0.111 ± 0.001 0.274 ± 0.075 0.069 ± 0.000

iqr 0.099 ± 0.005 0.092 ± 0.002 0.086 ± 0.008 0.093 ± 0.001 0.148 ± 0.170 0.071 ± 0.003

std† 0.099 ± 0.005 0.090 ± 0.002 0.089 ± 0.008 0.093 ± 0.001 0.198 ± 0.337 0.073 ± 0.002

std-gamma 0.099 ± 0.003 0.090 ± 0.002 0.087 ± 0.005 0.092 ± 0.001 0.208 ± 0.376 0.073 ± 0.001

lip 0.099 ± 0.004 0.098 ± 0.004 0.089 ± 0.008 0.093 ± 0.001 0.200 ± 0.250 0.071 ± 0.001

lip-gamma 0.099 ± 0.003 0.092 ± 0.003 0.088 ± 0.011 0.093 ± 0.001 0.250 ± 0.443 0.071 ± 0.002

spam

max 0.158 ± 0.018 0.081 ± 0.012 0.232 ± 0.122 0.054 ± 0.001 0.054 ± 0.001 ∞
iqr 0.149 ± 0.022 0.081 ± 0.007 0.086 ± 0.016 0.054 ± 0.001 0.054 ± 0.001 ∞
std† 0.144 ± 0.021 0.080 ± 0.007 0.094 ± 0.012 0.054 ± 0.001 0.054 ± 0.001 0.050 ± 0.002

std-gamma 0.167 ± 0.033 0.082 ± 0.008 0.090 ± 0.010 0.054 ± 0.001 0.054 ± 0.001 0.050 ± 0.001

lip 0.142 ± 0.021 0.083 ± 0.007 0.091 ± 0.018 0.054 ± 0.001 0.054 ± 0.001 0.051 ± 0.003

lip-gamma 0.165 ± 0.036 0.080 ± 0.009 0.088 ± 0.020 0.054 ± 0.001 0.054 ± 0.001 0.050 ± 0.002

letter

std† 0.210 ± 0.008 0.190 ± 0.001 0.183 ± 0.005 - - -

std-bern 0.158 ± 0.001 0.146 ± 0.008 0.119 ± 0.002 - - -

std-gamma 0.150 ± 0.002 0.108 ± 0.001 0.098 ± 0.000 - - -

lip-bern 0.149 ± 0.002 0.125 ± 0.000 0.114 ± 0.002 - - -

lip-gamma 0.149 ± 0.002 0.106 ± 0.001 0.105 ± 0.005 - - -

Breast
std† 0.198 ± 0.005 0.212 ± 0.006 0.183 ± 0.006 - - -

std-gamma 0.201 ± 0.005 0.200 ± 0.007 0.201 ± 0.007 - - -

lip-gamma 0.200 ± 0.005 0.199 ± 0.006 0.198 ± 0.008 - - -

C.6 Additional experimental results 179

Table C.5: Missing imputation error per type of variable for different methods, datasets, and models, with a 20 % of missing data.

Highlighted cells are significantly different results w.r. t. std according to a t-test with 𝛼 = 0.05 .

Discrete modalities Continuous modalities

Imputation error MM MF VAE MM MF VAE

Credit

max 0.805 ± 0.018 ∞ 0.739 ± 0.047 0.110 ± 0.015 0.056 ± 0.003 0.038 ± 0.002

iqr 0.803 ± 0.021 9.938 ± 0.015 0.689 ± 0.016 0.054 ± 0.001 ∞ 0.042 ± 0.002

std† 0.805 ± 0.023 ∞ 0.707 ± 0.034 0.055 ± 0.001 ∞ 0.046 ± 0.007

std-bern 0.189 ± 0.001 1.722 ± 0.002 0.139 ± 0.002 0.047 ± 0.000 ∞ 0.034 ± 0.001

std-gamma 0.186 ± 0.004 0.146 ± 0.002 0.133 ± 0.007 0.045 ± 0.001 0.039 ± 0.019 0.037 ± 0.003

lip 0.809 ± 0.014 4.661 ± 0.005 0.703 ± 0.017 0.053 ± 0.001 ∞ 0.042 ± 0.002

lip-bern 0.192 ± 0.002 0.410 ± 0.453 0.133 ± 0.001 0.044 ± 0.001 ∞ 0.030 ± 0.001

lip-gamma 0.185 ± 0.004 0.147 ± 0.001 0.124 ± 0.002 0.046 ± 0.001 0.035 ± 0.007 0.033 ± 0.003

Adult

max 0.644 ± 0.002 0.630 ± 0.054 0.671 ± 0.040 0.090 ± 0.001 0.090 ± 0.001 0.073 ± 0.001

iqr 0.601 ± 0.003 0.656 ± 0.030 0.702 ± 0.024 0.089 ± 0.001 0.084 ± 0.003 0.071 ± 0.001

std† 0.602 ± 0.004 0.633 ± 0.023 0.701 ± 0.024 0.089 ± 0.001 0.084 ± 0.002 0.082 ± 0.034

std-bern 0.242 ± 0.003 0.225 ± 0.014 0.162 ± 0.002 0.086 ± 0.001 0.099 ± 0.003 0.089 ± 0.003

std-gamma 0.230 ± 0.003 0.188 ± 0.005 0.163 ± 0.033 0.087 ± 0.002 0.087 ± 0.002 ∞
lip 0.635 ± 0.007 0.647 ± 0.025 0.702 ± 0.025 0.090 ± 0.001 0.083 ± 0.001 0.073 ± 0.001

lip-bern 0.231 ± 0.002 0.180 ± 0.004 0.149 ± 0.002 0.087 ± 0.002 0.094 ± 0.001 0.075 ± 0.003

lip-gamma 0.230 ± 0.002 0.193 ± 0.006 0.142 ± 0.002 0.087 ± 0.002 0.092 ± 0.004 0.082 ± 0.002

Wine

max 0.118 ± 0.009 0.281 ± 0.120 0.125 ± 0.048 0.112 ± 0.000 0.235 ± 0.069 0.073 ± 0.000

iqr 0.105 ± 0.006 0.101 ± 0.002 0.087 ± 0.004 0.094 ± 0.001 0.109 ± 0.029 0.074 ± 0.001

std† 0.107 ± 0.007 0.099 ± 0.001 0.089 ± 0.002 0.094 ± 0.001 0.113 ± 0.048 0.076 ± 0.002

std-gamma 0.101 ± 0.006 0.099 ± 0.002 0.092 ± 0.004 0.093 ± 0.001 0.121 ± 0.078 0.076 ± 0.002

lip 0.106 ± 0.006 0.103 ± 0.007 0.091 ± 0.013 0.094 ± 0.001 0.156 ± 0.092 0.074 ± 0.001

lip-gamma 0.103 ± 0.006 0.099 ± 0.002 0.093 ± 0.006 0.094 ± 0.001 0.285 ± 0.518 0.074 ± 0.001

spam

max 0.176 ± 0.025 0.089 ± 0.014 0.222 ± 0.097 0.055 ± 0.001 0.055 ± 0.001 ∞
iqr 0.185 ± 0.034 0.086 ± 0.012 0.093 ± 0.011 0.055 ± 0.001 0.055 ± 0.001 ∞
std† 0.186 ± 0.035 0.088 ± 0.012 0.094 ± 0.007 0.055 ± 0.001 0.055 ± 0.001 0.060 ± 0.018

std-gamma 0.168 ± 0.022 0.099 ± 0.009 0.100 ± 0.011 0.055 ± 0.001 0.055 ± 0.001 ∞
lip 0.182 ± 0.034 0.089 ± 0.011 0.100 ± 0.014 0.055 ± 0.001 0.055 ± 0.001 0.055 ± 0.011

lip-gamma 0.169 ± 0.030 0.096 ± 0.010 0.106 ± 0.024 0.055 ± 0.001 0.055 ± 0.001 0.051 ± 0.001

letter

std† 0.210 ± 0.007 0.193 ± 0.000 0.188 ± 0.004 - - -

std-bern 0.159 ± 0.001 0.157 ± 0.009 0.126 ± 0.002 - - -

std-gamma 0.151 ± 0.001 0.114 ± 0.001 0.111 ± 0.003 - - -

lip-bern 0.150 ± 0.001 0.131 ± 0.000 0.120 ± 0.002 - - -

lip-gamma 0.151 ± 0.001 0.112 ± 0.001 0.123 ± 0.003 - - -

Breast
std† 0.196 ± 0.004 0.224 ± 0.021 0.183 ± 0.004 - - -

std-gamma 0.196 ± 0.006 0.200 ± 0.002 0.201 ± 0.004 - - -

lip-gamma 0.197 ± 0.006 0.200 ± 0.002 0.196 ± 0.007 - - -

180 Appendix C Additional Material for Chapter 8

Table C.6: Missing imputation error per type of variable for different methods, datasets, and models, with a 50 % of missing data.

Highlighted cells are significantly different results w.r. t. std according to a t-test with 𝛼 = 0.05 .

Discrete modalities Continuous modalities

Imputation error MM MF VAE MM MF VAE

Credit

max 0.833 ± 0.025 ∞ 0.764 ± 0.051 ∞ 0.057 ± 0.001 0.045 ± 0.004

iqr 0.831 ± 0.024 ∞ 0.709 ± 0.028 ∞ ∞ 0.045 ± 0.003

std† 0.829 ± 0.037 ∞ 0.709 ± 0.045 ∞ ∞ 0.046 ± 0.003

std-bern 0.188 ± 0.000 ∞ 0.157 ± 0.001 0.047 ± 0.000 ∞ 0.035 ± 0.001

std-gamma 0.191 ± 0.003 0.160 ± 0.002 0.163 ± 0.007 0.046 ± 0.001 0.165 ± 0.295 0.037 ± 0.002

lip 0.838 ± 0.037 ∞ 0.685 ± 0.051 ∞ ∞ 0.046 ± 0.004

lip-bern 0.194 ± 0.002 ∞ 0.154 ± 0.001 0.044 ± 0.001 ∞ 0.033 ± 0.001

lip-gamma 0.192 ± 0.003 0.161 ± 0.003 0.150 ± 0.003 0.046 ± 0.001 0.080 ± 0.092 0.036 ± 0.003

Adult

max 0.642 ± 0.001 0.654 ± 0.048 0.681 ± 0.041 0.089 ± 0.000 0.089 ± 0.000 0.075 ± 0.003

iqr 0.600 ± 0.001 0.668 ± 0.033 0.685 ± 0.039 0.088 ± 0.000 0.088 ± 0.006 0.072 ± 0.004

std† 0.600 ± 0.001 0.667 ± 0.052 0.666 ± 0.057 0.088 ± 0.000 0.086 ± 0.002 0.071 ± 0.003

std-bern 0.243 ± 0.001 0.242 ± 0.008 0.200 ± 0.001 0.086 ± 0.001 0.100 ± 0.003 0.087 ± 0.004

std-gamma 0.239 ± 0.002 0.209 ± 0.001 0.210 ± 0.017 0.087 ± 0.000 0.090 ± 0.008 0.098 ± 0.009

lip 0.636 ± 0.005 0.667 ± 0.031 0.690 ± 0.015 0.089 ± 0.000 0.088 ± 0.008 0.072 ± 0.001

lip-bern 0.242 ± 0.002 0.210 ± 0.001 0.194 ± 0.002 0.087 ± 0.001 0.096 ± 0.001 0.083 ± 0.003

lip-gamma 0.239 ± 0.002 0.212 ± 0.002 0.192 ± 0.002 0.087 ± 0.000 0.098 ± 0.003 0.081 ± 0.003

Wine

max 0.155 ± 0.020 0.264 ± 0.102 0.131 ± 0.020 0.116 ± 0.001 0.273 ± 0.038 0.087 ± 0.001

iqr 0.122 ± 0.005 0.148 ± 0.005 0.116 ± 0.007 0.098 ± 0.002 0.132 ± 0.002 0.091 ± 0.002

std† 0.122 ± 0.005 0.145 ± 0.004 0.118 ± 0.010 0.098 ± 0.002 0.131 ± 0.002 0.092 ± 0.003

std-gamma 0.121 ± 0.006 0.134 ± 0.004 0.121 ± 0.006 0.097 ± 0.001 0.129 ± 0.001 0.091 ± 0.002

lip 0.123 ± 0.004 0.160 ± 0.016 0.115 ± 0.010 0.098 ± 0.002 0.186 ± 0.048 0.090 ± 0.002

lip-gamma 0.121 ± 0.005 0.140 ± 0.007 0.112 ± 0.006 0.098 ± 0.001 0.204 ± 0.053 0.088 ± 0.001

spam

max 0.183 ± 0.018 0.127 ± 0.003 0.328 ± 0.132 0.055 ± 0.000 0.055 ± 0.000 ∞
iqr 0.187 ± 0.027 0.118 ± 0.003 0.149 ± 0.017 0.055 ± 0.000 0.055 ± 0.000 ∞
std† 0.188 ± 0.027 0.118 ± 0.004 0.144 ± 0.011 0.055 ± 0.000 0.055 ± 0.000 ∞
std-gamma 0.195 ± 0.048 0.129 ± 0.006 0.149 ± 0.013 0.055 ± 0.000 0.055 ± 0.000 ∞
lip 0.188 ± 0.028 0.122 ± 0.004 0.142 ± 0.007 0.055 ± 0.000 0.056 ± 0.002 0.058 ± 0.012

lip-gamma 0.191 ± 0.049 0.131 ± 0.007 0.147 ± 0.009 0.055 ± 0.000 0.056 ± 0.002 0.054 ± 0.000

letter

std† 0.210 ± 0.004 0.207 ± 0.000 0.192 ± 0.002 - - -

std-bern 0.165 ± 0.001 0.164 ± 0.005 0.145 ± 0.001 - - -

std-gamma 0.154 ± 0.001 0.145 ± 0.000 0.154 ± 0.010 - - -

lip-bern 0.153 ± 0.001 0.155 ± 0.001 0.144 ± 0.003 - - -

lip-gamma 0.153 ± 0.001 0.144 ± 0.000 0.166 ± 0.011 - - -

Breast
std† 0.207 ± 0.004 0.251 ± 0.008 0.201 ± 0.005 - - -

std-gamma 0.208 ± 0.007 0.210 ± 0.004 0.213 ± 0.005 - - -

lip-gamma 0.209 ± 0.006 0.211 ± 0.004 0.205 ± 0.006 - - -

Additional Material for Chapter 9 D.
D.1 General algorithm 181
D.2 Analysis by data type . . 182
D.3 Model descriptions . . . 184
D.4 Experimental details . . 187

D.1 General algorithm

In Section 9.2 of the main text, we gradually introduced the impartiality

block, starting with a simple example, and adapting it as we were facing

different challenges. Here, we introduce the impartiality block in a general

and flexible way, so that it could be easier for the reader to understand

how to apply it to the tailored models explained in the main manuscript,

as well as how to apply the impartiality block on their own models.

𝒚
1

𝑊1 𝑜1

𝑂 𝐿

𝒚𝑀 𝑊𝑇 𝑜𝑇

.

(a)

1⊤ 𝒇𝝍1
(𝜕1:𝑇

𝒚
1

) 𝑊1 𝜕𝑜1

𝜕
𝑂

𝐿

1⊤ 𝒇𝝍𝑴
(𝜕1:𝑇

𝒚𝑀
) 𝑊𝑇 𝜕𝑜𝑇

.

×𝜷1

×𝜷𝑻

(b)

Figure D.1: General sketches of a (a) for-

ward and (b) modified backward pass

of an impartiality block. Note that here

we are using the shorthand 𝜕1:𝐾
𝑥 for a

sequence of 𝐾 gradients w.r. t. 𝑥 .

Algorithm D.1 shows the general formulation, and Figure D.1 the forward

and backward passes. To detach the block from its original presentation,

we have adopted here a general notation for the different elements of the

block, as well as allow for multiple entries. In this way, we would like to

emphasize that the key aspect of the impartiality block is its structure,

and not the variables that appear within it. That is, Algorithm D.1 can be

applied to any impartiality block, independently of whether the input is

an intermediate feature,
1

1: Such as in the blocks related with LI,

see Section 9.2

or the features of a neural network.
2

2: Such as in the blocks related with DEI,

see Subsection 9.3.2.

1 function: ImpartialBackward(inputs: 𝒚
1:𝑀, heads: 𝑊

1:𝑇, output: 𝑂)
2 input: output gradient, ∇𝑂𝐿
3 begin
4 for 𝑡 = 1, 2, . . . , 𝑇 do
5 𝜕𝑜𝑡 ← 𝜷𝑡∇𝑜𝑡𝑂 ∇𝑂𝐿 # Re-weigh the gradient at the heads

6 ∇𝑊𝑡 𝐿← ∇𝑊𝑡 𝑜𝑡 · 𝜕𝑜𝑡 # Compute head gradients (if any)

7

8 # Per-modality gradients wrt. the common inputs
9 for 𝑚 = 1, 2, . . . , 𝑀 do

10 𝜕𝑡𝒚𝑚 ← ∇𝒚𝑚 𝑜𝑡 · 𝜕𝑜𝑡
11 done
12 done
13

14 # Apply MTL methods and return the gradients

15 return 1⊤ 𝒇𝝍
1

(𝜕1:𝑇
𝒚

1

), 1⊤ 𝒇𝝍
2

(𝜕1:𝑇
𝒚

2

), . . . , 1⊤ 𝒇𝝍𝑀 (𝜕
1:𝑇
𝒚𝑀
)

16 end

Algorithm D.1: General impartial back-

ward pass within the impartiality block.

With the re-formulation of the impartiality block, we provide now a

summary of the impartiality blocks presented in the main text:

182 Appendix D Additional Material for Chapter 9

𝜽1 𝜼
1

𝑝𝜽(x | z𝐴)

x1 𝝓
1

𝜽𝐷 𝜼𝐷

A z𝐴 𝑝𝜽(z𝐴) 𝐿(𝜽,𝝓)

x𝐷 𝝓𝐷 𝝓
1

𝑞1

𝑞𝝓(z𝐴 | x)

𝝓𝐷 𝑞𝐷

. . .

. . .

LI

. . .

EEI

(a) z𝐴 perspective.

z1 𝑝𝜽1
(x1 | z1)

𝜽1

x1 𝝓
1

z𝐷 𝑝𝜽1
(x1 | z𝐷)

A z𝐴 KL(𝑞𝝓(z𝐴 | x) ∥ 𝑝(z𝐴)) 𝐿(𝜽,𝝓)

x𝐷 𝝓𝐷 z1 𝑝𝜽2
(x2 | z1)

𝜽2

... z𝐷 𝑝𝜽2
(x2 | z𝐷)

...

...

...

...

DEI

DEI

(b) 𝜽𝑑 perspective.

Figure D.2: Forward pass of the mixture-based models from two different points of view: (a) shows the perspective where z is the active

role, where for each z𝐴 we find two impartiality blocks; in (b) we show the perspective of the decoder parameters, where the they play

the active role, and now we can observe that there is an impartiality block result of evaluating each decoder in all expert samples. Here,

the dashed block simply indicates that the sample z𝐴 gets distributed into that set of blocks to be evaluated. Note that we explicitly show

only 2 out of 𝐷 blocks for DEI.

Model Goal # Backward call

VAE LI 1 ImpartialBackward(y; 𝜔1:𝐷 ; 𝜼)
IWAE LI 1 ImpartialBackward(y; 𝜔1:𝐷 ; 𝜼)
DReG LI 2 ImpartialBackward(y; 𝜔1:𝐷 ; 𝜼)

HI-VAE LI 2

ImpartialBackward(y; 𝜔1:𝐷 ; 𝜼)
ImpartialBackward(s; 𝜔1:𝐷 ; 𝜼)

Mixture LI 𝑀 ImpartialBackward(z𝐴; 𝜽1:𝐷 ; 𝑝𝜃(x | z𝐴))
Mixture EEI 𝑀 ImpartialBackward(z𝐴; 𝜙𝐴; 𝑞𝜙(z𝐴 | x))
Mixture DEI 𝐷 ImpartialBackward(𝜽𝑑; zA; 𝐿)

Unfortunately, we could not show the third source of impartiality blocks

for the mixture-base models in Subsection 9.4.2. We present the complete

computational graph for this type of models in Figure D.2, with two

different ways of drawing the computational graph that unveil all the

impartiality blocks.

D.2 Analysis by data type

In this section, we attempt to mathematically sketch the results obtained

in Table 9.3 of the main text. To this end, we are going to compute the

expected value of the squared norm of the gradient w.r.t. each of the

likelihoods, i. e., we estimate 𝔼x𝑑 [∥∇𝜼𝑑 log 𝑝𝜽𝑑 (x𝑑; 𝜼𝑑)∥2] . We make the

extra assumption that we evaluate on the parameters that explain the

random variable (R.V.), i. e., that x𝑑 follows the density 𝑝𝜽𝑑 (x𝑑; 𝜼𝑑) . We

break down this informal proof in two steps:

Computing the expected squared norms. We first take advantage that

all considered distributions are part of the exponential distribution,
3

and3: Introduced in Section 7.2.

find a general formula valid for all of them. As a reminder, the exponential

family, with natural parameters 𝜼 ∈ ℝ𝐼
, is a family of distributions which

is characterized by having a density function of the form

𝑝(𝑥; 𝜼) = ℎ(𝑥) exp

[
𝜼⊤𝑻(𝑥) − 𝐴(𝜼)

]
. (D.1)

D.2 Analysis by data type 183

Using this general expression, we can compute the value of interest:

ln 𝑝(𝑥; 𝜼) = 𝑻(𝑥)⊤𝜼 − 𝐴(𝜼) + 𝐶(𝑥) , (D.2)

𝜕𝜂𝑖 ln 𝑝(𝑥; 𝜼) = 𝑇𝑖(𝑥) − 𝜕𝜂𝑖𝐴(𝜼) = 𝑇𝑖(𝑥) − 𝔼[𝑇𝑖(𝑥)] , (D.3)

and therefore

𝔼𝑥𝑑 [∥∇𝜼𝑑 log 𝑝𝜽𝑑 (𝑥𝑑; 𝜼𝑑)∥2] =
𝐼∑
𝑖=1

𝔼𝑥𝑑 [(𝑻 𝑖(𝑥) − 𝔼[𝑻 𝑖(𝑥)])2] , (D.4)

where we have used the fact that 𝜕𝜂𝑖𝐴(𝜼) = 𝔼[𝑇𝑖(x)] .
We can now simply plug in the specific values for the sufficient statistics

for each of the likelihoods:

𝜕𝜂1

ln 𝑝(𝑥; 𝜼) 𝜕𝜂2

ln 𝑝(𝑥; 𝜼) 𝔼[∥∇𝜼 ln 𝑝(x; 𝜼)∥2]
Normal 𝑥 − 𝜇 𝑥2 − (𝜇2 + 𝜎2) 𝜎2 + 4𝜇2𝜎2

Log-normal ln 𝑥 − 𝜇 (ln 𝑥)2 − (𝜇2 + 𝜎2) 𝜎2 + 4𝜇2𝜎2

Poisson 𝑥 − 𝜆 𝜆
Categorical 1{𝑥=𝑖} − 𝜋𝑖

∑𝐼
𝑖=1

𝔼[(1{x=𝑖} − 𝜋𝑖)2]

For each likelihood above, we have used the usual notation for their

traditional parameters. Moreover, note that the moments are not well-

defined for the categorical distribution. Instead, we just compute the

average over the entire dataset.

Bounding the norms under our data pipeline. Once that we have

rough estimates of the expected squared norms of the gradients for each

likelihood, we need to connect them with the experiments in Subsec-

tion 9.4.1. Specifically, we need to take into account the preprocessing

and the datasets themselves. We use the Adult dataset as an example:

▶ Normal. We standardize the data, such that 𝜇 = 0 and 𝜎 = 1 .

Therefore, 𝔼[∥∇𝜼 ln 𝑝(x; 𝜼)∥2] ≈ 1 .

▶ Log-normal. We standardize (only scaling) in log-space. In Adult,

the biggest log-normal distribution lies in the range [15, 22] , and

thus 𝜇 ≈ 1 , 𝜎 < 1 , and 𝔼[∥∇𝜼 ln 𝑝(x∥𝜼)]2; ≈ 1 .

▶ Poisson. Since it is discrete, we do not standardize. Count data can

be quite large, reaching in Adult a maximum value of 100 . Thus,

𝔼[∥∇𝜼 ln 𝑝(x; 𝜼)∥2] ≫ 1 in Adult.

▶ Categorical. Again, we do not standardize, as it is discrete. However,

it is relatively simple to see that 0 ≤ 𝔼[∥∇𝜼 ln 𝑝(x; 𝜼)∥2] ≤ 𝐼 since

0 ≤ 𝜋𝑖 ≤ 1 and 1{x=𝑖} ∈ {0, 1} . However, the number of classes 𝐼 is

usually small, and the gradient is bounded by 𝐼 during the entire

training, while in the other cases this is not the case.

Therefore, using these rough calculations, we can expect the values of

𝔼[∥∇𝜼 ln 𝑝(x; 𝜼)∥2] to follow the following order:

Categorical < Normal ≈ Log-normal≪ Poisson.

Now, if we compute the difference between normalized errors in Table 9.3,

we obtain that our approach improves the error across types in an order

similar to the reverse of the one above:

184 Appendix D Additional Material for Chapter 9

Cat logN N Poiss

Vanilla 0.158 0.064 0.041 0.058

Ours 0.065 0.057 0.039 0.083

Improv. 0.092 > 0.008 ≈ 0.002 > −0.025

D.3 Model descriptions

D.3.1 VAE 184
D.3.2 IWAE 185
D.3.3 DReG 185
D.3.4 HIVAE 186
D.3.5 Mixture models 186

In this section we explain the implementation details for each model,

please refer to the original papers for a detailed explanation of each

model. We follow the notation described in Table D.2.

D.3.1 Variational autoencoder (VAE)

We implement the original variational autoencoder (VAE) [93] assuming

the following probabilistic model:

Prior: 𝑝(z) = N (0, 𝑰) ,
Likelihood: 𝑝𝜽(x | z) =

∏
𝑑 𝑝𝑑(x𝑑 | 𝜼𝑑(z; 𝜽)) ,

Posterior approx.: 𝑞𝝓(z | x) = N (𝜇(x; 𝝓), 𝜎(x; 𝝓)) .

Here 𝜇 and 𝜎 are modelled by the encoder, and all 𝜼𝑑 are jointly modelled

by the decoder.

These two neural networks are of the following form:

Encoder: [Dropout-10 %][BN][Dense-ℎ][Tanh][Dense-ℎ][Tanh]

[Dense-ℎ][Tanh][Dense-2𝑑]

Decoder: [Dense-ℎ][ReLU][Dense-ℎ][ReLU][Dense-ℎ]

[ReLU][Dense-𝐷′]

Additionally, we make sure that each parameter fulfils its distributional

constraints
4

by passing it through a softplus function when necessary.4: E.g., the variance has to be positive.

It is also important to note that, while we parametrize the latent space

using the mean and standard deviation, we parametrize the parameters

of the likelihoods using their natural parameters.

Table D.2: Notation to describe the architectures in the appendix.

.

Notation Description

𝐷 Number of features.

𝐷′ Total number of likelihood parameters.

𝑑 Latent size.

ℎ Hidden size.

[Dense-ℎ] Linear layer with output of size ℎ .

[Conv-𝑘-𝑠-𝑝] Convolutional layer with kernel size 𝑘 , stride 𝑠 and padding 𝑝 .

[ConvT-𝑘-𝑠-𝑝] Transposed convolutional layer with kernel size 𝑘 , stride 𝑠 and padding 𝑝 .

[Dropout-10 %] Dropout Srivastava et al. [192] with 10 % of dropping probability.

[ReLU] Rectified linear unit activation function.

[Tanh] Hyperbolic tangent activation function.

[Sigmoid] Sigmoid activation function.

D.3 Model descriptions 185

Loss. We use the negative evidence lower bound (ELBO) as training

loss:

ELBO(x, 𝜽,𝝓) B 𝔼𝑞𝝓 [log 𝑝𝜽(x | z)] − KL(𝑞𝝓(z) ∥ 𝑝(z)) . (D.5)

Imputation. We impute data by taking the modes of 𝑞𝝓(z | x) and

𝑝𝑑(x𝑑; 𝜂𝑑(z; 𝜽)) .

D.3.2 Importance weighted autoencoder (IWAE)

Importance weighted autoencoders (IWAEs) [15] differ from VAEs only [15] Burda, Grosse and Salakhutdinov

(2016), ‘Importance Weighted Autoen-

coders.’

on the training loss.

Loss. Instead of maximizing the ELBO, IWAE maximizes a tighter loss

that makes use of 𝐾 i. i.d. samples from z :

IWAE(x, 𝜽,𝝓) B 𝔼z1 ,...,z𝐾∼𝑞𝝓

[
log

1

𝐾

∑
𝑘

𝑝𝜽(x | z𝑘)𝑝(z𝑘)
𝑞𝝓(z𝑘 | x)

]
. (D.6)

For all the results shown in Table 9.2 we set the number of importance

samples to 𝐾 = 20 .

D.3.3 Doubly reparametrized gradient estimator (DReG)

Rainforth et al. [158] showed that the gradient estimators produced [158] Rainforth, Kosiorek, Le, Maddison,

Igl, Wood and Teh (2018), ‘Tighter Vari-

ational Bounds are Not Necessarily Bet-

ter.’

by IWAE have some undesired properties that could hamper properly

learning the encoder parameters. Later, Tucker et al. [202] provided a

[202] Tucker, Lawson, Gu and Maddison

(2019), ‘Doubly Reparameterized Gradi-

ent Estimators for Monte Carlo Object-

ives.’

simple way of solving these issues using the reparametrization trick

a second time. Again, the model is identical to a VAE, but which is

optimized with two different losses: one for the encoder, and one for the

decoder. We use 𝐾 = 20 importance samples.

Encoder loss. For one importance sample z𝑘 , let us define

𝜔𝑘 B
𝑝𝜽(x | z𝑘)𝑝(z𝑘)

𝑞𝝓(z𝑘)
, and 𝜔𝑘 B

𝜔𝑘∑
𝑖 𝜔𝑖

, (D.7)

such that

∑
𝑘 𝜔𝑘 = 1 . Then, the loss is defined as

DReGenc(x, 𝜽,𝝓) B 𝔼z1 ,...,z𝐾∼𝑞𝝓

[∑
𝑘

𝜔2

𝑘
log 𝜔𝑘

]
, (D.8)

where we consider 𝜔𝑘 to be a constant value (i. e., we do not back-

propagate through it), and we compute the derivative w.r.t. 𝝓 only

through z (i. e., we do not compute the partial derivative w.r. t. 𝝓).

Decoder loss. Similarly, we optimize the parameters of the decoder by

maximizing the following loss (same assumptions on 𝜔𝑘 and 𝝓):

DReGdec(x, 𝜽,𝝓) B 𝔼z1 ,...,z𝐾∼𝑞𝝓

[∑
𝑘

𝜔𝑘 log 𝜔𝑘

]
. (D.9)

http://arxiv.org/abs/1509.00519
http://proceedings.mlr.press/v80/rainforth18b.html
https://openreview.net/forum?id=HkG3e205K7

186 Appendix D Additional Material for Chapter 9

D.3.4 HIVAE

We have faithfully re-implemented the original version of heterogeneous-

incomplete VAE (HI-VAE) [143], using the same architecture and para-[143] Nazabal, Olmos, Ghahramani and

Valera (2020), ‘Handling incomplete het-

erogeneous data using VAEs.’

meter count, as well as implementing the proposed normalization and

denormalization layers. Therefore, results between HI-VAE and the rest

of the models in Table 9.2 are not completely comparable. We refer the

reader to Subsection 7.3.3 for an introduction to the model.

We fix the size of each latent variable to 10 , with a hidden size of ℎ = 5𝐷 ,

just as in the original paper.

Loss. We maximize the ELBO as originally proposed:

ELBO(x, 𝑝𝜽 , 𝑞𝝓) B 𝔼z,s∼𝑞𝝓

[
log

𝑝𝜽(x, z, s)
𝑞𝝓(z, s)

]
. (D.10)

D.3.5 Mixture-based VAEs

For the mixture-based models, we have followed the same architecture

and setups as the ones used by Sutter et al. [199]. When it comes to different

models, we only have changed the way we sample the modalities z𝐴 by

changing the selection of A , but the architectures are equal to the ones

used in previous literature.

Therefore, we here describe the architecture for all the models at once, as

they differ on the loss function and the experts, which does not modify

the underlying network. We assume the following probabilistic model

for the MNIST-SVHN-Text experiments:

Prior: 𝑝(z) = N (0, 𝐼) ,

Likelihood: 𝑝𝜽(x | z) =
Laplace(xM | 𝜇(z; 𝜽), 0.75)
Laplace(xS | 𝜇(z; 𝜽), 0.75)

Cat(xT | 𝜋(z; 𝜽))
,

Posterior approx.: 𝑞𝝓(z | x) = N (𝜇(x; 𝝓), 𝜎(x; 𝝓)) ,
where variables are properly transformed to meet their constraints. We

consider the following encoders and decoders for each modality:

MNIST:
Encoder: [Dense-ℎ][ReLU][Dense-ℎ][ReLU][Dense-2𝑑]

Decoder: [Dense-ℎ][ReLU][Dense-ℎ][ReLU][Dense-2𝐷][Sigmoid]

SVHN:
Encoder: [Conv-4-2-1][ReLU][Conv-4-2-1][ReLU][Conv-4-2-1]

[ReLU][Conv-4-1-0]

Decoder: [ConvT-4-1-0][ReLU][ConvT-4-2-1][ReLU][ConvT-4-2-1]

[ReLU][Conv-4-2-1][Sigmoid]

where the last convolutional layer of the encoder is repeated twice, one

for each parameter of the posterior approximation.

Text:
Encoder: [Conv-1-1-0][ReLU][Conv-4-2-1][ReLU][Conv-4-2-0]

[ReLU][Dense-2𝑑]

Decoder: [Dense-𝐷][ConvT-4-1-0][ReLU][ConvT-4-2-1]

[ReLU][Conv-1-1-0]

D.4 Experimental details 187

Experimental setup. For each experiment, we train the model for 30

epochs and a batch size of 128 . We use AMSGrad [161] with a learning

rate of 0.001 . Regarding the variational loss, we use 𝐾 = 30 importance

samples for all losses (when using the ELBO, we instead use those

samples for the Monte Carlo estimator of the outer expectation). For

evaluation, we take the model parameters with the highest validation

error (10 % of the training data) during training, and report all the metrics

with respect to a test set.

D.4 Experimental details

D.4.1 Heterogeneous exps. . 187
D.4.2 Multimodal exps. . . . 190
D.4.3 Additional results . . . 191D.4.1 Heterogeneous experiments

Dataset descriptions

Likelihood selection. We choose the likelihood based on the properties

of each modality, as we described in Section 7.1.

Datasets. For the experiments shown in Subsection 9.4.1, we use 12

different heterogeneous and homogeneous datasets. First, we took Adult,

Credit, Wine, Bank, ElNino, Magic, and BooNE datasets from the UCI

repository [48]. Then, we included from the R package datasets [157] the

following datasets: Diam., IMDB, HI, rwm5yr, and labour.

Table D.3 provides the statistics per dataset in terms of sizes and number

of likelihoods. It is important to remark that the IMDB and Adult datasets

contain NaNs values (each only in two of the features). We replace them

by non-NaNs values and ignore them during training and evaluation

using boolean masks.

Preprocessing. When parsing the dataset, we centre all real-valued

features. We further standardize real-valued features, computing their

(training) standard deviation and dividing the data by this quantity. We

also divide by the standard deviation for positive real-valued features

Dataset 𝑁 𝐷 Real Positive Count Categorical

Adult 32561 12 0 3 1 7

Credit 30000 24 6 7 1 10

Wine 6497 13 0 11 1 1

Diam. 53940 10 7 0 0 3

Bank 41188 21 10 0 0 11

IMDB 28819 23 4 1 10 8

HI 22272 12 5 1 0 6

rwm5yr 19609 16 0 2 3 11

labour 15992 9 3 0 2 4

ElNino 178080 12 12 0 0 0

Magic 19020 11 11 0 0 0

BooNE 130065 43 43 0 0 0

Table D.3: Datasets description. The first

two columns describe number of in-

stances, 𝑁 , and number of features, 𝐷 .

The next columns describe the number

of data types per dataset. Note that the

last three datasets are homogeneous, and

thus only have real variables.

188 Appendix D Additional Material for Chapter 9

(but in the log-space, as we assume a log-normal likelihood). These last

two steps are omitted for HI-VAE, since it uses its own normalization layer

as described by Nazabal et al. [143]. We also treat non-negative as positive[143] Nazabal, Olmos, Ghahramani and

Valera (2020), ‘Handling incomplete het-

erogeneous data using VAEs.’

real-valued features by adding a negligible value of 1e−20. Finally, we

make sure that the support of count, binary, and categorical features

are in accordance to that of the library used during implementation by

removing their minimum value in the case of binary and categorical

features, and 1 in the case of count features.

Additionally, we performed some extra preprocessing to the IMDB and

Bank datasets. In the IMDB dataset, there are ten features that contain

rating percentages of users to the movies, ranging from 0 to 100, at

intervals of 0.5 . We convert each of them into discrete features starting

from one by performing x′
𝑑
= 2x𝑑 + 1 to each of these features, treating

them afterwards as count data. As for the Bank dataset, we remove the

uninformative dimension 12th as a data cleaning step.

Experimental settings

We train all experiments using Adam as optimizer, with a learning rate of

0.001 for all models, a batch size of 128, and we train for 400 epochs with

the all datasets (except for Wine with 2000 epochs). For HI-VAE, we set

the batch size to 1000 and the number of epochs to 2000 as in the original

paper. We randomly split the data into training (70 %), validation (10 %),

and testing (20 %).

We set the latent size of z , to 50 % of the number of features of the dataset,

and the hidden size of each layer to 50 for all the experiments, except for

those of the Bank dataset which are set to 100.

Metric. For numerical features (real, positive, and count data) we

compute the normalized root mean squared error:

err(𝑑) = 1

𝐷

∥𝑥𝑑 − �̃�𝑑∥2

max (𝑥𝑑) −min (𝑥𝑑)
, (D.11)

where �̃� is the model prediction. For the case of nominal features (cat-

egorical and binary data) we use the error rate as reconstruction error:

err(𝑑) = 1

𝑁

𝑁∑
𝑛=1

1{𝑥𝑛𝑑≠�̃�𝑛𝑑} . (D.12)

The final metric shown in Table 9.2 is the average across dimensions,

err = 1

𝐷

∑
𝑑 err(𝑑) .

Model selection. In order to make fair comparisons, for each model and

dataset we first tuned the hyperparameters (e.g., hidden/latent/batch

size, number of epochs) for the Vanilla implementations (i. e., without

modifying the backward pass). To this end, we ran grid searches and

averaged the validation metric over 5 random seeds, just as in Table 9.2,

choosing the set of hyperparameters that performed the best in terms of

reconstruction error during validation. Note that all these hyperparamet-

ers (including optimization hyperparameters such as learning rate) are

shared across all methods of the same setting. Additionally, we verified

D.4 Experimental details 189

Dataset VAE-ELBO VAE-IWAE VAE-DReG HI-VAE

Adult IMTL-G IMTL-G IMTL-G-PG GN-PG(𝛼 = 1)

Credit IMTL-G IMTL-G-GD IMTL-G-GD GN(𝛼 = 1)

Wine GN(𝛼 = 0) GN-PG(𝛼 = 0) GN(𝛼 = 0) GN(𝛼 = 0)

Diam. IMTL-G IMTL-G IMTL-G-PG GN(𝛼 = 0)

Bank GN(𝛼 = 0) GN-GD(𝛼 = 0) GN(𝛼 = 0) MGDA-PG
IMDB GN-GD(𝛼 = 0) GN(𝛼 = 0) GN-PG(𝛼 = 0) GN-PG(𝛼 = 0)

HI GN-GD(𝛼 = 0) GN(𝛼 = 0) GN-PG(𝛼 = 0) MGDA
rwm5yr GN(𝛼 = 1) GN-GD(𝛼 = 1) GN(𝛼 = 1) MGDA-PG
labour GN(𝛼 = 0) GN(𝛼 = 1) GN-PG(𝛼 = 0) GN(𝛼 = 0)

ElNino IMTL-G IMTL-G-PG IMTL-G-GD GN(𝛼 = 0)

Magic GN(𝛼 = 1) IMTL-G GN(𝛼 = 1) IMTL-G
BooNE IMTL-G-PG IMTL-G GN-PG(𝛼 = 0) MGDA-PG

Table D.4: The best MTL methods chosen

by cross-validation. GN, GD, PG, and MGDA
stand for GradNorm, GradDrop, PCGrad,

and MGDA-UB, respectively.

that the vanilla models were performing well by visually inspecting the

marginal reconstructions.

Selecting the MTL algorithm. For the heterogeneous experiments we

trained all the possible combinations between the following magnitude-

aware algorithms: i) doing nothing; ii) GradNorm [26]; iii) MGDA-UB [182];

iv) IMTL-G [112]; and direction-aware algorithms: i) doing nothing;

ii) GradDrop [27]; iii) PCGrad [227]. This amounts to a total of 12 com-

binations, plus the hyperparameters of the algorithms. In this case, we

only tune the 𝛼 parameter from GradNorm between the values zero and

one. Then, similar to model selection, we chose the best algorithm by

averaging over 5 random seeds and taking the combination of methods

that performed the best in terms of reconstruction error in the validation

set, see Table D.4. In general, it was enough to focus on the median to

select the best combination. However, some combinations had outliers,

and we chose those having a good balance between median, mean, and

standard deviation.

Statistical test. In order to compare the performance of the proposed

method with the baseline, we employ the corrected paired t-test [139].

The usual paired t-test assumes that the data used to perform the test

is independently sampled, which usually does not hold in the machine

learning as we sample the training and test data from the same distribu-

tion. As a consequence, paired t-test might suggest statistical significance

between the compared models, whereas there is no such significance

(type I error). Corrected paired t-test considers the dependency of the

sampled data, correcting the variance of the differences of the paired

samples in the two testing models.

Data generation. To generate the data for the experiments in Subsec-

tion 9.4.1, we followed the same approach as Ghosh et al. [65] and made [65] Ghosh, Sajjadi, Vergari, Black and

Schölkopf (2020), ‘From Variational to

Deterministic Autoencoders.’

use of post-hoc gaussian mixture models (GMMs) to approximate the

aggregated posterior, 𝔼x[𝑞𝝓(z | x)] . After training the VAEs, we use the

latent space generated from the training data and fit a GMM (with 100

components) on that data. Next, we use this GMM to sample a dataset

with as many samples as the test data.

https://openreview.net/forum?id=S1g7tpEYDS

190 Appendix D Additional Material for Chapter 9

Table D.5: Test reconstruction errors

(mean and standard deviation) of dif-

ferent models and losses for the baseline

and our framework.

Dataset Method VAE-ELBO VAE-IWAE VAE-DReG HI-VAE

Adult
Vanilla 0.21 ± 0.01 0.22 ± 0.02 0.24 ± 0.01 0.13 ± 0.00

Ours 0.11 ± 0.02 0.12 ± 0.02 0.19 ± 0.08 0.09 ± 0.02

Credit
Vanilla 0.13 ± 0.00 0.14 ± 0.02 0.14 ± 0.01 0.15 ± 0.09

Ours 0.04 ± 0.00 0.05 ± 0.01 0.08 ± 0.01 0.06 ± 0.01

Wine
Vanilla 0.09 ± 0.00 0.08 ± 0.00 0.08 ± 0.00 0.13 ± 0.01

Ours 0.07 ± 0.01 0.07 ± 0.00 0.07 ± 0.00 0.11 ± 0.02

Diam.
Vanilla 0.19 ± 0.01 0.18 ± 0.01 0.18 ± 0.00 0.11 ± 0.02

Ours 0.13 ± 0.02 0.12 ± 0.01 0.14 ± 0.01 0.01 ± 0.01

Bank
Vanilla 0.20 ± 0.00 0.20 ± 0.00 0.19 ± 0.00 0.13 ± 0.02

Ours 0.04 ± 0.00 0.10 ± 0.05 0.11 ± 0.04 0.10 ± 0.01

IMDB
Vanilla 0.09 ± 0.02 0.10 ± 0.02 0.10 ± 0.02 0.08 ± 0.00

Ours 0.05 ± 0.04 0.05 ± 0.04 0.06 ± 0.04 0.10 ± 0.09

HI
Vanilla 0.17 ± 0.01 0.16 ± 0.00 0.15 ± 0.00 0.11 ± 0.00

Ours 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.11 ± 0.01

rwm5yr
Vanilla 0.11 ± 0.01 0.09 ± 0.00 0.10 ± 0.00 0.04 ± 0.01

Ours 0.03 ± 0.00 0.03 ± 0.01 0.03 ± 0.00 0.02 ± 0.00

labour
Vanilla 0.11 ± 0.00 0.10 ± 0.00 0.10 ± 0.00 0.10 ± 0.00

Ours 0.06 ± 0.00 0.07 ± 0.00 0.08 ± 0.01 0.07 ± 0.00

ElNino
Vanilla 0.10 ± 0.01 0.09 ± 0.00 0.08 ± 0.00 0.10 ± 0.01

Ours 0.07 ± 0.01 0.06 ± 0.01 0.07 ± 0.00 0.02 ± 0.00

Magic
Vanilla 0.06 ± 0.00 0.05 ± 0.00 0.05 ± 0.00 0.06 ± 0.00

Ours 0.06 ± 0.00 0.05 ± 0.00 0.05 ± 0.00 0.03 ± 0.00

BooNE
Vanilla 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00

Ours 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00

Additional experimental results

In addition to the results presented in the main text, we present in

Table D.5 the same table as Table 9.2 but showing also the standard

deviation of the results. Moreover, we show in Figures D.3 and D.4 the

complete pair plots for the HI and labour datasets.

D.4.2 Multimodal experiments

Experiment details

For the multimodal experiments on MNIST-SVHN-Text, we have followed

the same setup (including hyperparameters) as Sutter et al. [199]. We[199] Sutter, Daunhawer and Vogt (2021),

‘Generalized Multimodal ELBO.’
differ from their setups in that, in order to provide a fair comparison

between losses, we always employ 𝐾 = 30 samples from z , whether they

are used as importance samples (IWAE, SIWAE) or used for the Monte-

Carlo approximation of the expected value w.r.t. z . Also, we do model

selection using a validation dataset (10 % of the training data), and use

a test set to obtain all the results presented in this work. Following Shi

et al. [185], we use the Sticking-The-Landing estimator (STL) [164] for

all losses. In short, this estimator simply omits the partial derivatives of

the posterior approximation w.r. t. the encoder parameters. Note that Shi

et al. [185] did not mention this estimator, but they rather talk about the

https://openreview.net/forum?id=5Y21V0RDBV

D.4 Experimental details 191

DReG loss [202]. However, due to a bug in their code, they effectively

compute the STL estimator in their experiments.

Selecting MTL algorithm. Since the number of impartiality blocks is

large, and the training times are considerably longer than for the het-

erogeneous experiments, here we keep performing cross-validation, but

this time we substitute grid-selection by hand-picked hyperparameters

options that we observed to perform better than others (for example, we

replaced IMTL-G [112] by CAGrad [111], as it was really clear by looking

at the logs that IMTL-G was not working at all). Instead of looking for

a specific algorithm for each of the impartiality blocks, we assume the

same algorithm for all of them (same hyperparameters, but different

parameters) and only cross-validate by using the modified backward

pass on the blocks associated with the different goals in an incremental

way (i. e., as presented in Table 9.7 in the main text).

Choosing the best algorithm in the multimodal setup is more complicated,

as we care about different metrics (coherence and latent classification) at

different levels (self and cross metrics), for each modality. We group all

metrics in metric-type pairs (e.g., latent-classification-self), and within

each group, we group them by the expert/modality they are testing

(e.g., cross latent classification for the first expert tests all other latent

samples in the classifier of the first expert). For each metric, we compute

a value 𝐼(𝑥, 𝑦) , where 𝑥 is the value obtained by the algorithm, and 𝑦 the

value obtained by the baseline, and take the average of each sequence

recursively until obtaining a single number. We use the relative im-

provement 𝐼(𝑥, 𝑦) = avgΔ(𝑥, 𝑦) = 𝑥−𝑦
𝑦 to compare the different metrics,

choosing the method that obtains the best improvement, averaged across

experts/modalities and metrics. For MVAE, we noticed that the metrics

tend to oscillate and there are important trade-offs in performance. There-

fore, for this model we adopt a more conservative approach and use

𝐼(𝑥, 𝑦) = 1𝑥≥𝑦 , to choose the algorithm that, on average, improves the

most number of metrics.

D.4.3 Additional experimental results

In this section, we have included the complete results for the experiments

with the MNIST-SVHN-Text dataset. Specifically, we present: the recon-

struction coherence results for all the three losses (Table D.6); the self and

cross coherence results in tabular form for the three losses (Tables D.7

to D.9), including extra information like the training times, the specific

MTL algorithms used, and the goals for which we apply them; and the

log-likelihoods conditioned on different modalities (Tables D.10 to D.12),

showing standard deviations as space permits, thus showing the high

variance that the vanilla approach shows at times (for example, MoPoE in

Table D.12). Finally, we present the parallel coordinate plots for the three

models (Figure D.5).

192 Appendix D Additional Material for Chapter 9

Figure D.3: Pair plot of all the dimensions of HI, generated from different VAEs. Diagonal show the marginals, upper-diagonals scatter

plots, and lower-diagonals kernel density estimates. The VAE trained with our approach is able to generate faithful samples.

Table D.6: Reconstruction coherence (𝐴 ∈ {M, S, T}) for each modality, model, and dataset.

ELBO IWAE SIWAE

x𝑑 M S T M S T M S T

MVAE
Vanilla 97.53 88.26 99.30 97.27 87.19 98.76 97.37 87.47 98.83

Ours 97.85 89.65 99.64 98.28 89.01 99.93 97.42 87.63 99.20

MMVAE
Vanilla 86.01 45.59 89.17 85.25 84.03 88.66 58.95 61.27 63.27

Ours 89.42 45.83 91.54 87.55 86.87 90.93 74.85 73.89 81.09

MoPoE
Vanilla 95.72 85.86 98.01 95.82 87.55 97.93 75.10 67.16 76.61

Ours 96.50 93.60 99.14 97.29 92.93 99.00 96.91 89.01 99.28

D.4 Experimental details 193

Figure D.4: Pair plot of all the dimensions of labour, generated from different VAEs. Diagonal show the marginals, upper-diagonals

scatter plots, and lower-diagonals kernel density estimates. The VAE trained with our approach is able to generate faithful samples.

(a) MVAE. (b) MMVAE. (c) MoPoE.

Figure D.5: Generation coherence results for all models and losses. In general, our framework improves all metrics w.r. t. the baseline.

194 Appendix D Additional Material for Chapter 9

Table D.7: Self and cross generation coherence (%) results for different models on MNIST-SVHN-Text, trained using ELBO and averaged

over 5 different seeds. Models trained with our framework are able to sample more coherent modalities. CA stands for CAGrad.

Self coherence Cross coherence

x𝑑 M S T M S T Time

𝐴 LI EEI DEI M S T S T ST M T MT M S MS h

MVAE
Vanilla 80.30 12.63 25.77 11.12 18.22 19.49 43.29 18.50 16.90 51.82 11.65 54.71 3.82

CA (𝛼 = 0.4) ✓ 85.12 12.34 34.64 10.70 12.51 16.83 44.94 22.36 29.45 61.41 12.26 69.77 4.82

MMVAE
Vanilla 95.23 68.25 99.99 62.93 99.92 81.43 31.06 37.42 34.24 96.27 71.29 83.79 10.07

CA (𝛼 = 10) ✓ ✓ ✓ 92.62 73.84 99.99 76.01 99.59 87.80 29.11 34.46 31.78 95.27 79.34 87.31 13.06

MoPoE
Vanilla 94.52 71.21 99.99 66.80 99.98 98.12 19.70 33.25 31.55 96.79 77.04 97.15 23.24

CA (𝛼 = 10) ✓ ✓ ✓ 94.64 73.36 100.00 74.76 99.98 98.42 15.84 32.84 31.03 96.03 78.61 96.67 29.41

Table D.8: Self and cross generation coherence (%) results for different models on MNIST-SVHN-Text, trained using IWAE and averaged

over 5 different seeds. Models trained with our framework are able to sample more coherent modalities. CA stands for CAGrad.

Self coherence Cross coherence

x𝑑 M S T M S T Time

𝐴 LI EEI DEI M S T S T ST M T MT M S MS h

MVAE
vanilla 87.33 11.70 37.49 10.76 26.63 29.48 54.10 25.16 29.51 70.24 11.38 72.33 3.80

GN (𝛼 = 0.0) ✓ 85.73 12.68 79.19 11.18 19.45 22.05 49.37 55.83 54.48 59.56 11.79 63.69 4.24

MMVAE
vanilla 94.70 68.13 99.99 62.34 98.79 80.55 86.72 97.29 92.01 96.83 69.23 83.02 10.08

CA (𝛼 = 0.4) ✓ 94.96 73.66 99.99 68.49 99.25 83.85 88.99 97.97 93.49 96.27 76.55 86.40 11.96

MoPoE
vanilla 94.44 63.16 99.97 58.20 99.01 99.24 80.75 94.76 88.62 96.51 66.13 96.03 23.27

CA (𝛼 = 10.0) ✓ ✓ ✓ 95.41 69.54 99.99 61.75 99.06 99.07 81.23 96.47 92.98 96.64 73.33 96.16 29.35

Table D.9: Self and cross generation coherence (%) results for different models on MNIST-SVHN-Text, trained using SIWAE and averaged

over 5 different seeds. Models trained with our framework are able to sample more coherent modalities. CA stands for CAGrad.

Self coherence Cross coherence

x𝑑 M S T M S T Time

𝐴 LI EEI DEI M S T S T ST M T MT M S MS h

MVAE
Vanilla 82.06 12.08 36.67 10.34 17.12 19.19 49.99 19.31 31.19 62.50 10.82 64.25 3.81

CA (𝛼 = 0.4) ✓ 86.89 12.89 59.15 10.99 20.92 30.34 54.83 31.82 24.97 71.87 11.10 72.74 4.77

MMVAE
Vanilla 95.90 48.30 53.02 28.43 52.52 40.45 84.44 51.08 67.77 96.80 39.96 68.38 10.07

CA (𝛼 = 0.4) ✓ 95.90 58.20 88.70 49.33 79.32 64.30 87.29 76.17 81.71 96.70 57.86 77.28 12.30

MoPoE
Vanilla 92.32 11.60 69.05 10.13 51.02 34.67 41.93 46.39 51.58 85.19 10.57 67.54 23.29

GN (𝛼 = 0.5) ✓ 90.99 12.00 83.82 10.63 62.75 52.08 28.19 46.91 43.34 79.64 10.81 90.33 24.58

Table D.10: Log-likelihood of the joint generative model, conditioned on the variational posterior of subsets of the modalities. Results

report on ELBO as loss function and are averaged over 5 different seeds. Each log-likelihood is divided by the dimensionality of its

modality before adding them up, to better reflect improvement across modalities.

𝕏|M 𝕏|S 𝕏|T 𝕏|MS 𝕏|MT 𝕏|ST 𝕏|MST

MVAE
Van. −8.61 ± 1.18 −10.26 ± 1.14 −8.17 ± 1.30 −8.18 ± 1.26 −1.51 ± 0.11 −7.41 ± 1.38 −1.02 ± 0.11

Ours −8.07 ± 0.88 −9.89 ± 0.62 −6.94 ± 1.19 −7.44 ± 0.64 −1.42 ± 0.05 −6.12 ± 1.69 −0.95 ± 0.00

MMVAE
Van. −2.30 ± 0.21 −2.18 ± 0.09 −1.19 ± 0.00 −2.24 ± 0.11 −1.75 ± 0.10 −1.68 ± 0.04 −1.89 ± 0.07

Ours −2.59 ± 0.40 −2.31 ± 0.13 −1.19 ± 0.00 −2.45 ± 0.23 −1.89 ± 0.20 −1.75 ± 0.06 −2.03 ± 0.15

MoPoE
Van. −1.93 ± 0.01 −2.06 ± 0.04 −1.19 ± 0.00 −1.76 ± 0.00 −1.18 ± 0.00 −1.04 ± 0.00 −1.03 ± 0.05

Ours −1.92 ± 0.03 −2.09 ± 0.05 −1.19 ± 0.00 −1.75 ± 0.02 −1.17 ± 0.01 −1.03 ± 0.00 −1.00 ± 0.01

Table D.11: Log-likelihood of the joint generative model, conditioned on the variational posterior of subsets of the modalities. Results

report on IWAE as loss function and are averaged over 5 different seeds. Each log-likelihood is divided by the dimensionality of its

modality before adding them up, to better reflect improvement across modalities.

𝕏|M 𝕏|S 𝕏|T 𝕏|MS 𝕏|MT 𝕏|ST 𝕏|MST

MVAE
Van. −8.62 ± 0.40 −10.68 ± 0.98 −6.78 ± 1.66 −8.28 ± 0.47 −1.83 ± 0.14 −6.08 ± 1.36 −1.15 ± 0.03

Ours −8.26 ± 0.29 −9.51 ± 0.25 −2.83 ± 0.54 −7.74 ± 0.15 −1.35 ± 0.03 −1.96 ± 0.33 −0.94 ± 0.00

MMVAE
Van. −1.98 ± 0.06 −2.74 ± 0.32 −1.27 ± 0.00 −2.36 ± 0.15 −1.62 ± 0.03 −2.00 ± 0.16 −1.99 ± 0.10

Ours −2.44 ± 0.03 −2.45 ± 0.12 −1.26 ± 0.00 −2.44 ± 0.06 −1.85 ± 0.01 −1.86 ± 0.06 −2.05 ± 0.04

MoPoE
Van. −1.97 ± 0.00 −2.55 ± 0.12 −1.27 ± 0.00 −5.85 ± 0.52 −1.25 ± 0.00 −1.05 ± 0.00 −1.02 ± 0.00

Ours −2.01 ± 0.01 −2.61 ± 0.11 −1.27 ± 0.00 −7.07 ± 0.06 −1.24 ± 0.01 −1.05 ± 0.00 −1.01 ± 0.00

D.4 Experimental details 195

Table D.12: Log-likelihood of the joint generative model, conditioned on the variational posterior of subsets of the modalities. Results

report on SIWAE as loss function and are averaged over 5 different seeds. Each log-likelihood is divided by the dimensionality of its

modality before adding them up, to better reflect improvement across modalities.

𝕏|M 𝕏|S 𝕏|T 𝕏|MS 𝕏|MT 𝕏|ST 𝕏|MST

MVAE
Van. −8.82 ± 0.63 −10.13 ± 0.29 −7.17 ± 1.73 −8.52 ± 0.74 −2.23 ± 1.31 −5.94 ± 1.35 −1.15 ± 0.02

Ours −8.41 ± 0.14 −10.52 ± 0.53 −5.65 ± 1.76 −8.13 ± 0.17 −1.46 ± 0.07 −5.49 ± 1.87 −1.01 ± 0.01

MMVAE
Van. −2.01 ± 0.08 −4.04 ± 0.43 −3.25 ± 0.94 −3.02 ± 0.20 −2.63 ± 0.49 −3.64 ± 0.25 −3.10 ± 0.18

Ours −2.34 ± 0.36 −3.22 ± 1.28 −3.03 ± 1.07 −2.78 ± 0.59 −2.69 ± 0.54 −3.12 ± 0.43 −2.86 ± 0.22

MoPoE
Van. −6.29 ± 2.75 −10.02 ± 0.43 −3.80 ± 1.48 −7.51 ± 0.93 −1.59 ± 0.35 −4.97 ± 2.68 −3.15 ± 3.78

Ours −8.01 ± 0.42 −10.16 ± 0.55 −2.96 ± 1.11 −7.26 ± 0.28 −1.34 ± 0.01 −2.30 ± 0.91 −0.99 ± 0.02

Additional Material
for Chapters 11 and 12 E.

E.1 Previous do-operators . . 197
E.2 Details & extra results . . 198
E.3 Fairness use-case 205

E.1 Interventions in previous works

In this section, we put our implementation of the do-operator (see

Section 11.5) into context and describe how the models considered in

Section 12.4, namely CAREFL [91] and VACA [174], propose to perform

interventions with their models.

CAREFL [91]. Two different algorithms were proposed to sample from [91] Khemakhem, Monti, Leech and

Hyvärinen (2021), ‘Causal Autoregress-

ive Flows.’

an interventional distribution in CAREFL: i) a sequential algorithm which

mimics the usual implementation of the do-operator with the recursive

representation of the structural causal model (SCM); and ii) a parallel

algorithm that samples the counterfactual in a single call. While the first

algorithm works, the parallel one is the one actually implemented in their

official codebase, and it only works when intervening on root nodes.

This second algorithm, if we were to compute 𝑑𝑜(x𝑖 B 𝛼) , is described

as follows:
1 i) sample u from 𝑃u; ii) set u𝑖 to the i-th value obtained by 1: See Alg. 2 in [91].

applying the flow, 𝑇𝜽 , to an observation with x𝑖 = 𝛼 and x𝑗 = 0 for 𝑗 ≠ 𝑖 ;

and iii) return the value obtained by 𝑇−1

𝜽 with u .

While this algorithm resembles the one proposed in this thesis, this

implementation does not have into account that the value of u𝑖 to fix 𝛼
does depend on the observed values of its parents, which is clear by looking

at the linear illustrative example from Figure 11.1. As a consequence, the

algorithm only works when the node has no parents, which is why we

replaced it by the one we proposed for the comparisons in Section 12.4

and Appendix E.2.

VACA [174]. Based on graph neural networks (GNNs), the approach for

intervening on VACA is reminiscent to the traditional implementation of

the do-operator. Specifically, the authors propose to sever those edges

in every layer of the GNN whose endpoints fall in the path generating

the intervened variable, so that the ancestors have no way to influence

it by design. While the previous statement is true: ancestors cannot

influence the intervened variable nor its descendants, here we argue

that this process would require us to ‘recalibrate’ the model, as the

middle computations after an intervention change in more complex ways

than simply removing the ancestors from the structural equation, while

keeping the rest unchanged. To see this, consider the following non-linear

triangular SCM: 
x1 = u1

x2 = x
2

1
u2

x3 = 2x1 + x2

x1

+ x2

x
2

1

+ u3

(E.1)

http://proceedings.mlr.press/v130/khemakhem21a.html

198 Appendix E Additional Material for Chapters 11 and 12

which VACA could learn with two layers as follows:
z1 = u1

z2 = u1u2

z3 = u1 + u2 + u3


x1 = z1

x2 = z1z2

x3 = z1 + z2 + z3

(E.2)

Now, if we were to compute 𝑑𝑜(x2 B 𝛼) , the real SCM would yield:
x1 = u1

x2 = 𝛼

x3 = 2x1 + 𝛼
x1

+ 𝛼
x

2

1

+ u3

(E.3)

while VACA would yield:
z1 = u1

z2 = 𝛼

z3 = u1 + 𝛼 + u3


x1 = z1

x2 = 𝛼

x3 = z1 + 𝛼 + z3

=⇒


x1 = u1

x2 = 𝛼

x3 = 2x1 + 2𝛼 + u3

(E.4)

where we can clearly see that the expression for x3 is not the correct one.

In contrast, our causal normalizing flow (Causal NF) would keep the

structural equations as they are, and set u2 to 𝛼/x2

1
, yielding the correct

value.

E.2 Experimental details and extra results

E.2.1 Base distribution 201
E.2.2 Flow architecture . . . 201
E.2.3 Additional SCMs 202

In this section, we complement the description of the experimental

section from Chapter 12, and provide the reader with additional results

in the following subsections. First, we describe the details common to

every experiment, and delve into the specifics of each experiment in their

respective subsections.

Hardware. Every individual experiment shown in this paper ran on

a single CPU with 8 GB of RAM. To run all experiments, we used a

local computing cluster with an automatic job assignment system, so

we cannot ensure the specific CPU used for each particular experiment.

However, we know that every experiment used one of the following

CPUs picked randomly given the demand when scheduled: AMD EPYC

7702 64-Core Processor, AMD EPYC 7662 64-Core Processor, Intel(R)

Xeon(R) CPU E5-2698 v4 @ 2.20GHz, or Intel(R) Xeon(R) CPU E5-2690

v4 @ 2.60GHz.

Training and evaluation methodology. For every experiment with

synthetic SCMs, we generated a dataset with 20 000 training samples,

2500 validation samples, and 2500 test samples. We ran every model for

1000 epochs, and the results shown in the manuscript correspond to

the test set evaluation at the last epoch. For the optimization, we used

Adam [92] with an initial learning rate of 0.001, and reduced the learning

rate with a decay factor of 0.95 when it reaches a plateau longer than 60

epochs. For hyperparameter tuning, we always perform a grid search

with similar budget, and select the best hyperparameter combination

E.2 Experimental details and extra results 199

according to validation loss, reporting always results from the test dataset

in the manuscript. Every experiment is repeated 5 times, and we show

averages and standard deviations.

Datasets. This section provides all the information of the SCMs em-

ployed in the empirical evaluation of Chapter 12. The exogenous variables

always follow a standard normal distributionN (0, 1) , except for LargeBD,

where a uniform distribution U(0, 1) is used instead. Subsequently, we

define the 12 SCMs employed (encompassing both linear and non-linear

equations) and we additionally provide their causal graph in Figure E.1.

Let us first define the softplus operation as 𝑠(𝑥) = log (1.0 + 𝑒𝑥) . Then:

3-Chainlin:

x1 = 𝑓1(u1) = u1 (E.5)

x2 = 𝑓2(x1 , u2) = 10 · x1 − u2 (E.6)

x3 = 𝑓3(x2 , u3) = 0.25 · x2 + 2 · u3 (E.7)

3-Chainnlin:

x1 = 𝑓1(u1) = u1 (E.8)

x2 = 𝑓2(x1 , u2) = 𝑒x1/2 + u2/4 (E.9)

x3 = 𝑓3(x2 , u3) =
(x2 − 5)3

15

+ u3 (E.10)

4-Chainlin:

x1 = 𝑓1(u1) = u1 (E.11)

x2 = 𝑓2(x1 , u2) = 5 · x1 − u2 (E.12)

x3 = 𝑓3(x2 , u3) = −0.5 · x2 − 1.5 · u3 (E.13)

x4 = 𝑓4(x3 , u4) = x3 + u4 (E.14)

5-Chainlin:

x1 = 𝑓1(u1) = u1 (E.15)

x2 = 𝑓2(x1 , u2) = 10 · x1 − u2 (E.16)

x3 = 𝑓3(x2 , u3) = 0.25 · x2 + 2 · u3 (E.17)

x4 = 𝑓4(x3 , u4) = x3 + u4 (E.18)

x5 = 𝑓5(x4 , u5) = −x4 + u5 (E.19)

Colliderlin:

x1 = 𝑓1(u1) = u1 (E.20)

x2 = 𝑓2(u2) = 2 − u2 (E.21)

x3 = 𝑓3(x1 , x2 , u3) = 0.25 · x2 − 0.5 · x1 + 0.5 · u3 (E.22)

Forklin:

x1 = 𝑓1(u1) = u1 (E.23)

x2 = 𝑓2(u2) = 2 − u2 (E.24)

200 Appendix E Additional Material for Chapters 11 and 12

x3 = 𝑓3(x1 , x2 , u3) = 0.25 · x2 − 1.5 · x1 + 0.5 · u3 (E.25)

x4 = 𝑓4(x3 , u4) = x3 + 0.25 · u4 (E.26)

Forknlin:

x1 = 𝑓1(u1) = u1 (E.27)

x2 = 𝑓2(u2) = u2 (E.28)

x3 = 𝑓3(x1 , x2 , u3) =
4

1 + 𝑒−x1−x2

− x
2

2
+ 0.5 · u3 (E.29)

x4 = 𝑓4(x3 , u4) =
20

1 + 𝑒0.5·x2

3
−x3

+ u4 (E.30)

LargeBDnlin: Let us define

l(𝑥, 𝑦) = 𝑠(𝑥 + 1) + 𝑠(0.5 + 𝑦) − 3.0 , (E.31)

and let us call cdf
−1(𝜇, 𝑏, 𝑥) the quantile function of a Laplace distribution

with location 𝜇 , scale 𝑏 , and evaluated at 𝑥 . Then:

x1 = 𝑓1(u1) = 𝑠(1.8 · u1) − 1 (E.32)

x2 = 𝑓2(x1 , u2) = 0.25 · u2 + l(x1 , 0) · 1.5 (E.33)

x3 = 𝑓3(x1 , u3) = l(x1 , u3) (E.34)

x4 = 𝑓4(x2 , u4) = l(x2 , u4) (E.35)

x5 = 𝑓5(x3 , u5) = l(x3 , u5) (E.36)

x6 = 𝑓6(x4 , u6) = l(x4 , u6) (E.37)

x7 = 𝑓7(x5 , u7) = l(x5 , u7) (E.38)

x8 = 𝑓8(x6 , u8) = 0.3 · u8 + (𝑠(x6 + 1) − 1) (E.39)

x9 = 𝑓9(x7 , x8 , u9) = cdf
−1

(
−𝑠

(
x7 · 1.3 + x8

3

+ 1

)
+ 2, 0.6, u9

)
(E.40)

Simpsonnlin:

x1 = 𝑓1(u1) = u1 (E.41)

x2 = 𝑓2(x1 , u2) = 𝑠(1 − x1) +
√

3/20 · u2 (E.42)

x3 = 𝑓3(x1 , x2 , u3) = tanh(2 · x2) + 1.5 · x1 − 1 + tanh(u3) (E.43)

x4 = 𝑓4(x3 , u4) =
x3 − 4

5

+ 3 + 1√
10

· u4 (E.44)

Simpsonsymprod:

x1 = 𝑓1(u1) = u1 (E.45)

x2 = 𝑓2(x1 , u2) = 2 · tanh(2 · x1) +
1√
10

· u2 (E.46)

x3 = 𝑓3(x1 , x2 , u3) = 0.5 · x1 · x2 +
1√
2

· u3 (E.47)

x4 = 𝑓4(x1 , u4) = tanh(1.5 · x1) +
√

3

10

· u4 (E.48)

Trianglelin:

x1 = 𝑓1(u1) = u1 + 1 (E.49)

E.2 Experimental details and extra results 201

x2 = 𝑓2(x1 , u2) = 10 · x1 − u2 (E.50)

x3 = 𝑓3(x1 , x2 , u3) = 0.5 · x2 + x1 + u3 (E.51)

Trianglenlin:

x1 = 𝑓1(u1) = u1 + 1 (E.52)

x2 = 𝑓2(x1 , u2) = 2 · x2

1
+ u2 (E.53)

x3 = 𝑓3(x1 , x2 , u3) =
20

1 + 𝑒−x
2

2
+x1

+ u3 (E.54)

(a) 3-Chain (b) 4-Chain (c) 5-Chain

(d) Triangle (e) Collider (f) Fork

(g) Simpson [nlin] (h) Simpson [symprod] (i) LargeBD

Figure E.1: Causal graph of the different

SCMs considered in the experiments of

Chapter 12.

E.2.1 Ablation: Base distribution

Hyperparameter tuning. While we fixed the flow to have a single

masked autoregressive flow (MAF) [146] layer with ELU [32] ac-

tivation functions, we determined through cross-validation the op-

timal number of layers and hidden units of the neural network

within MAF. Specifically, we considered the following combina-

tions, where [𝑎, 𝑏] represents two layers with 𝑎 and 𝑏 hidden units:

[16, 16, 16, 16], [32, 32, 32], [16, 16, 16], [32, 32], [32], [64] . As discussed

at the start of the section, we report test results for the configuration with

the best validation performance at the last epoch.

E.2.2 Ablation: Flow architecture

Hyperparameter Tuning. We cross-validate again the optimal number

of layers and hidden units of the neural network of the unique layer of the

Causal NF. We consider the following values, where [𝑎, 𝑏] represents two

layers with 𝑎 and 𝑏 hidden units: [32, 32, 32] , [16, 16, 16] , [32, 32] , [32] ,
and [64] . As before, test results are reported for the configuration that

achieved the best performance on the validation set at the final epoch.

202 Appendix E Additional Material for Chapters 11 and 12

E.2.3 Comparison: Additional non-linear SCMs

In this section, we complement the results from Section 12.4 and provide

a more extensive comparison of the proposed CausalNF, along with

CAREFL [91] and VACA [174], on additional datasets.

Hyperparameter Tuning. For VACA, we cross-validated the dro-

pout rate with values {0.0, 0.1} , the GNN layer architecture with

{GIN, PNA, PNADisjoint} ,
2

and the number of layers in the network2: See [174] for details.

prior to the GNN with choices {1, 2} . For CAREFL, we cross-validated

the number of layers in the flow, {1, 2, . . . , diam𝑨} , and the number

of layers and hidden units of the network composing the flow layers,
3

3: Same format as before.

{[16, 16, 16], [32, 32], [32], [64]} . For CausalNF, we used the abductive

model with a single layer, and cross-validated the number of layers and

hidden units in the network composing the layer of the flow with values

{[16, 16, 16, 16], [32, 32, 32], [16, 16, 16], [32, 32], [32], [64]} . We report

test results for the configuration with the best validation performance at

the final epoch.

Results. Table E.1 shows the performance of each model for all the

considered datasets, further validating the conclusions drawn in the

main manuscript: the proposed CausalNF consistently outperforms both

CAREFL and VACA in terms of performance and computational efficiency.

The performance of VACA is significantly inferior, and its computation

time is higher, primarily due to the complexity of GNNs. Our CausalNF

achieves similar performance to CAREFL in terms of observational fitting,

while surpassing it on interventional and counterfactual estimation tasks.

Additionally, CausalNF outperforms CAREFL in computational speed.

This is to be expected since the optimal CAREFL architectures often have

multiple layers, resulting in increased computation time. In contrast,

CausalNF has a single layer, reducing computational complexity.

Figure E.2 qualitative proofs the effectiveness of the proposed CausalNF

in accurately modelling both observational and interventional distribu-

tions for the Simpsonnlin dataset. In this plot, blue represent the real

distribution/samples, while orange represents the ones generated by

CausalNF. Figure E.2a clearly shows that the model successfully captured

the correlations among all variables in the observational distribution.

Furthermore, Figure E.2b displays the interventional distribution ob-

tained when we do 𝑑𝑜(x3 B −1.09) , i. e., when we intervene on the 25th

empirical percentile of x3 . Remarkably, CausalNF accurately learns the

distribution of descendant variables, i. e., x4 , and effectively breaks any

dependency between the ancestors of the intervened variable and x4 .

Additionally, Figure E.3 shows a similar analysis for 5-Chainlin, when

we perform 𝑑𝑜(x3 B 2.18)—which corresponds to intervening on the

75th percentile of x3—clearly showing that the correlations not involving

the intervened path (x1 → x2 and x4 → x5) are preserved.

E.2 Experimental details and extra results 203

Table E.1: Comparison, on different SCMs, of the proposed CausalNF, VACA [174], and CAREFL [91] with the do-operator proposed in

Section 11.5. The results are averaged over 5 different runs.

Performance Time Evaluation (µs)

Dataset Model Observ. Interv. Counter. Training Evaluation Sampling

3-Chain
lin

[174]

CausalNF 0.000.00 0.050.01 0.040.01 0.410.06 0.480.10 0.760.06

CAREFL† 0.000.00 0.200.13 0.200.09 0.680.24 0.970.33 1.940.77

VACA 4.441.03 5.760.07 4.980.10 36.191.54 28.330.72 75.344.58

3-Chain
nlin

[174]

CausalNF 0.000.00 0.030.01 0.020.01 0.520.06 0.560.03 1.020.05

CAREFL† 0.000.00 0.050.02 0.040.02 0.600.22 0.840.22 1.660.41

VACA 12.821.00 1.540.03 1.320.02 39.454.12 30.932.30 84.369.60

4-Chain
lin

CausalNF 0.000.00 0.070.02 0.040.01 0.560.08 0.620.15 1.540.40

CAREFL† 0.000.00 0.160.07 0.140.04 0.700.28 0.990.20 2.850.54

VACA 13.140.73 3.820.01 3.720.05 61.855.06 49.314.11 92.067.93

5-Chain
lin

CausalNF 0.010.00 0.120.02 0.080.01 0.620.19 0.690.15 1.910.44

CAREFL† 0.000.00 0.470.23 0.460.22 0.790.41 1.190.25 4.210.87

VACA 17.310.84 5.950.05 6.060.08 103.7510.04 80.8111.06 124.5220.86

Collider
lin

[174]

CausalNF 0.000.00 0.020.01 0.010.00 0.460.12 0.560.11 0.950.19

CAREFL† 0.000.00 0.020.01 0.010.00 0.390.07 0.450.05 0.740.07

VACA 13.450.43 0.220.01 0.860.02 37.223.55 28.774.22 71.216.73

Fork
lin

[22]

CausalNF 0.000.00 0.030.01 0.010.00 0.520.05 0.590.08 1.570.57

CAREFL† 0.000.00 0.040.01 0.020.00 0.600.17 0.780.16 2.391.06

VACA 8.750.73 0.870.02 1.430.02 45.844.64 34.662.39 73.294.70

Fork
nlin

[22]

CausalNF 0.000.00 0.070.02 0.070.00 0.630.16 0.740.31 1.840.84

CAREFL† 0.010.01 0.110.04 0.180.07 0.570.17 0.770.08 1.960.17

VACA 5.090.60 2.010.03 3.190.06 49.225.48 42.132.95 101.0218.94

LargeBD
nlin

[63]

CausalNF 1.510.04 0.020.00 0.010.00 0.520.10 0.600.17 3.050.66

CAREFL† 1.510.05 0.050.01 0.080.01 0.840.47 1.180.17 8.251.29

VACA 53.662.07 0.390.00 0.820.02 164.9211.10 137.8815.72 167.9425.75

Simpson
nlin

[63]

CausalNF 0.290.01 0.040.01 0.020.00 0.580.18 0.630.26 1.570.64

CAREFL† 0.290.01 0.040.01 0.030.00 0.690.32 1.020.26 2.950.79

VACA 18.970.66 0.600.00 1.190.02 54.767.46 43.697.92 87.0116.33

Simpson
symprod

[63]

CausalNF 0.000.00 0.070.01 0.120.02 0.590.17 0.600.11 1.510.30

CAREFL† 0.000.00 0.100.02 0.170.04 0.490.15 0.810.19 1.910.33

VACA 13.850.64 0.890.00 1.500.04 49.264.09 37.783.41 79.2014.60

Triangle
lin

[174]

CausalNF 0.000.00 0.240.05 0.210.05 0.540.05 0.560.04 1.050.07

CAREFL† 0.000.00 0.150.06 0.140.03 0.600.20 0.750.05 1.500.10

VACA 3.820.69 7.490.07 7.220.17 27.461.53 21.611.00 67.006.23

Triangle
nlin

[174]

CausalNF 0.000.00 0.120.03 0.130.02 0.520.07 0.580.07 1.070.12

CAREFL† 0.000.00 0.120.03 0.170.03 0.570.18 0.830.26 1.680.62

VACA 7.710.60 4.780.01 4.190.04 28.821.21 23.000.55 70.653.70

204 Appendix E Additional Material for Chapters 11 and 12

−2

0

2

4

x
1

0

2

4

x
2

−5.0

−2.5

0.0

2.5

5.0

x
3

−2.5 0.0 2.5 5.0

x1

1

2

3

4

x
4

0 2 4

x2

−5 0 5

x3

2 4

x4

(a) Observational distribution.

−2

0

2

x
1

0

2

4

x
2

−1.10

−1.09

−1.08

x
3

−2 0 2 4

x1

1.0

1.5

2.0

2.5

3.0

x
4

0 2 4

x2

−1.10 −1.09 −1.08

x3

1 2 3

x4

(b) Interventional distribution 𝑑𝑜(x3 B −1.09) .

Figure E.2: Pair plot of real (in blue) and generated (in orange) data of Simpsonnlin. (a) Samples from the true and learnt observational

distribution. (b) Samples from the true and learnt interventional distribution when 𝑑𝑜(x3 B −1.09) . The plot illustrates that the

dependency of x4 on the ancestors of x3 , namely x1 and x2 , is effectively broken.

−4

−2

0

2

x
1

−40

−20

0

20

x
2

−10

−5

0

5

10

x
3

−10

−5

0

5

10

x
4

−5.0 −2.5 0.0 2.5

x1

−10

−5

0

5

10

15

x
5

−25 0 25

x2

−10 0 10

x3

−10 0 10

x4

−10 0 10

x5

(a) Observational distribution.

−2

0

2

x
1

−40

−20

0

20

40

x
2

2.14

2.16

2.18

2.20

x
3

−2

0

2

4

6

x
4

−2.5 0.0 2.5

x1

−7.5

−5.0

−2.5

0.0

2.5

5.0

x
5

−25 0 25

x2

2.150 2.175 2.200

x3

0.0 2.5 5.0

x4

−5 0 5

x5

(b) Interventional distribution 𝑑𝑜(x3 B 2.18) .

Figure E.3: Pair plot of real (in blue) and generated (in orange) data of 5-Chainlin. (a) Samples from the true and learnt observational

distribution. (b) Samples from the true and learnt interventional distribution when 𝑑𝑜(x3 B 2.18) . The plot illustrates that the dependency

of x4 and x5 on the ancestors of x3 , namely x1 and x2 , is effectively broken.

E.3 Details on the fairness use-case 205

E.3 Details on the fairness use-case

In this section, we provide additional details on the use-case of fairness
x3

x1 x𝑆

x4

x2 x𝐴

x5

?

?

?

Figure E.4: Partial causal graph used for

the Credit dataset [48]. Rectangles show

the SCCs grouping different variables.

Solid arrows represent causal relation-

ships between SCCs, and dashed arrows

represent an arbitrary order picked to

learn the joint distribution of each SCC

with an ANF. See Subsection 11.4.2 for

an in-depth explanation on how to deal

with partial causal graphs.

auditing and classification using the German dataset [48], whose causal

graph is shown in Figure E.4. Here, x1 and x2 correspond to the Credit

amount and Repayment history variables, x3 to x5 to the Checking

account, Savings, and Housing variables and, lastly, x𝑆 and x𝐴 represent

the sensitive attribute Sex and the Age of loan applicant.

Training. For this section, we performed minimal hyperparameter

tuning, and only tested a few combinations by hand. We decided to use a

neural spline flow (NSF) [50] for the single layer of the Causal NF, which

internally uses an feed-forward neural network with 3 layers, and 32

hidden units each. We use Adam [92] as the optimizer, with a learning

rate of 0.01, along with a plateau scheduler with a decay factor of 0.9 and

a patience parameter of 60 epochs. The training is performed for 1000

epochs, and the results are reported using 5-fold cross-validation with a

80 − 10 − 10 split for train, validation, and test data, respectively.

Results. On addition to the results from Section 12.5, Figure E.5 shows

two pair plots from one of the 5 runs, chosen at random. The true empirical

distribution is shown in blue, and the learnt distribution by the Causal NF

is depicted in orange. Specifically, Figure E.5a illustrates the observational

distribution, and Figure E.5b the interventional distribution, obtained

when we intervene on the Sex variable and set it to 1, i. e., 𝑑𝑜(x𝑆 B 1) .
We can observe that the Causal NF achieves a remarkable fit in both

cases, demonstrating its capability to handle discrete data, and partial

knowledge of the causal graph.

206 Appendix E Additional Material for Chapters 11 and 12

0.0

0.2

0.4

0.6

0.8

1.0

S
ex

0

20

40

60

80

A
ge

0

5000

10000

15000

C
re

di
ta

m
ou

nt

0

20

40

60

R
ep

ay
m

en
th

is
to

ry

0

1

2

C
he

ck
in

g
ac

co
un

t

−2

0

2

4

6

S
av

in
gs

0 1

Sex

0

2

4

H
ou

si
ng

0 25 50 75

Age
0 10000

Credit amount
0 25 50 75

Repayment history
0 1 2

Checking account
0.0 2.5 5.0

Savings
0 1 2 3

Housing

GERMAN

(a) Observational distribution.

0.990

0.995

1.000

1.005

1.010

S
ex

20

40

60

80

A
ge

0

5000

10000

15000

C
re

di
ta

m
ou

nt

0

20

40

60

R
ep

ay
m

en
th

is
to

ry

0

1

2

C
he

ck
in

g
ac

co
un

t

−2

0

2

4

6

S
av

in
gs

0.99 1.00 1.01

Sex

0

2

4

H
ou

si
ng

25 50 75

Age
0 10000

Credit amount
0 25 50 75

Repayment history
0 1 2

Checking account
0.0 2.5 5.0

Savings
0 1 2 3

Housing

GERMAN

(b) Interventional distribution 𝑑𝑜(x𝑆 B 1) .

Figure E.5: Pair plot of real (in blue) and generated (in orange) data of the Credit dataset [48]. (a) Samples from the true and learnt

observational distributions. (b) Samples from the true and learnt interventional distributions when 𝑑𝑜(x𝑆 B 1) . The plot illustrates that

the Causal NF is able to handle discrete data and correctly intervene on them.

Bibliography

[1] Absil, P., Mahony, R. E., and Sepulchre, R., ‘Optimization Algorithms on Matrix Manifolds.’ Princeton
University Press, 2008.

[2] Ahmed, K., Teso, S., Chang, K., Broeck, G. V., and Vergari, A., ‘Semantic Probabilistic Layers for

Neuro-Symbolic Learning.’ Advances in Neural Information Processing Systems 35: Annual Conference
on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022. Edited by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho and A. Oh. 2022.

[3] Ahn, C., Kim, E., and Oh, S., ‘Deep Elastic Networks With Model Selection for Multi-Task Learning.’

2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 -
November 2, 2019. IEEE, 2019, pages 6528–6537.

[4] Amari, S., and Nagaoka, H., ‘Methods of information geometry.’ Volume 191. American Mathematical
Soc., 2000.

[5] Badrinarayanan, V., Kendall, A., and Cipolla, R., ‘SegNet: A Deep Convolutional Encoder-Decoder

Architecture for Image Segmentation.’ IEEE Trans. Pattern Anal. Mach. Intell. 39.12 (2017), pages 2481–

2495.

[6] Balgi, S., Peña, J. M., and Daoud, A., ‘Personalized Public Policy Analysis in Social Sciences Using

Causal-Graphical Normalizing Flows.’ Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI
2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March
1, 2022. AAAI Press, 2022, pages 11810–11818.

[7] Baltrušaitis, T., Ahuja, C., and Morency, L.-P., ‘Multimodal machine learning: A survey and taxonomy.’

IEEE transactions on pattern analysis and machine intelligence 41.2 (2018), pages 423–443.

[8] Barrejón, D., Olmos, P. M., and Artés-Rodríguez, A., ‘Medical data wrangling with sequential

variational autoencoders.’ ArXiv preprint abs/2103.07206 (2021).

[9] Belkin, M., Hsu, D., Ma, S., and Mandal, S., ‘Reconciling modern machine-learning practice and

the classical bias–variance trade-off.’ Proceedings of the National Academy of Sciences 116.32 (2019),

pages 15849–15854.

[10] Betancourt, M. ‘A conceptual introduction to Hamiltonian Monte Carlo.’ ArXiv preprint abs/1701.02434

(2017).

[11] Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R., Szerlip,

P. A., Horsfall, P., and Goodman, N. D., ‘Pyro: Deep Universal Probabilistic Programming.’ J. Mach.
Learn. Res. 20 (2019), 28:1–28:6.

[12] Bishop, C. M. ‘Pattern Recognition and Machine Learning (Information Science and Statistics).’ Berlin,

Heidelberg: Springer-Verlag, 2006.

[13] Bishop, C. M., and Bishop, H., ‘Deep Learning: Foundations and Concepts.’ Springer, 2024.

[14] Boyd, S. P., and Vandenberghe, L., ‘Convex optimization.’ Cambridge university press, 2004.

[15] Burda, Y., Grosse, R. B., and Salakhutdinov, R., ‘Importance Weighted Autoencoders.’ 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings. Edited by Y. Bengio and Y. LeCun. 2016.

[16] Caruana, R. ‘Multitask Learning: A Knowledge-Based Source of Inductive Bias.’ Machine Learning,
Proceedings of the Tenth International Conference, University of Massachusetts, Amherst, MA, USA, June
27-29, 1993. Edited by P. E. Utgoff. Morgan Kaufmann, 1993, pages 41–48.

[17] Caruana, R. ‘Multitask Learning’. PhD thesis. 1997.

[18] Casado, M. L. ‘Trivializations for Gradient-Based Optimization on Manifolds.’ Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. Edited by H. M. Wallach, H. Larochelle,

A. Beygelzimer, F. d’Alché-Buc, E. B. Fox and R. Garnett. 2019, pages 9154–9164.

[19] Casado, M. L., and Martínez-Rubio, D., ‘Cheap Orthogonal Constraints in Neural Networks: A

Simple Parametrization of the Orthogonal and Unitary Group.’ Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. Edited by

K. Chaudhuri and R. Salakhutdinov. Volume 97. Proceedings of Machine Learning Research. PMLR,

2019, pages 3794–3803.

[20] Casella, G., and Berger, R. L., ‘Statistical inference.’ Cengage Learning, 2021.

[21] Chai, H., Yin, Z., Ding, Y., Liu, L., Fang, B., and Liao, Q., ‘A Model-Agnostic Approach to Mitigate

Gradient Interference for Multi-Task Learning.’ IEEE Transactions on Cybernetics (2022), pages 1–14.

[22] Chao, P., Blöbaum, P., and Kasiviswanathan, S. P., ‘Interventional and Counterfactual Inference with

Diffusion Models.’ ArXiv preprint abs/2302.00860 (2023).

[23] Chatterjee, S., and Zielinski, P., ‘Making coherence out of nothing at all: measuring the evolution of

gradient alignment.’ ArXiv preprint abs/2008.01217 (2020).

[24] Chen, A. Q., Shi, R., Gao, X., Baptista, R., and Krishnan, R. G., ‘Structured Neural Networks for

Density Estimation and Causal Inference.’ Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023. Edited by A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt and S. Levine. 2023.

[25] Chen, H., Wang, X., Lan, X., Chen, H., Duan, X., Jia, J., and Zhu, W., ‘Curriculum-Listener: Consistency-

and Complementarity-Aware Audio-Enhanced Temporal Sentence Grounding.’ Proceedings of the 31st
ACM International Conference on Multimedia (2023).

[26] Chen, Z., Badrinarayanan, V., Lee, C., and Rabinovich, A., ‘GradNorm: Gradient Normalization for

Adaptive Loss Balancing in Deep Multitask Networks.’ Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Edited by J. G. Dy

and A. Krause. Volume 80. Proceedings of Machine Learning Research. PMLR, 2018, pages 793–802.

[27] Chen, Z., Ngiam, J., Huang, Y., Luong, T., Kretzschmar, H., Chai, Y., and Anguelov, D., ‘Just Pick a

Sign: Optimizing Deep Multitask Models with Gradient Sign Dropout.’ Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual. Edited by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan and H. Lin.

2020.

[28] Chennupati, S., Sistu, G., Yogamani, S. K., and Rawashdeh, S. A., ‘MultiNet++: Multi-Stream Feature

Aggregation and Geometric Loss Strategy for Multi-Task Learning.’ 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW) (2019), pages 1200–1210.

[29] Chiappa, S. ‘Path-Specific Counterfactual Fairness.’ The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019. AAAI Press, 2019, pages 7801–7808.

[30] Choi, Y., Vergari, A., and Van den Broeck, G., ‘Probabilistic circuits: A unifying framework for tractable

probabilistic models.’ UCLA. URL: http://starai. cs. ucla. edu/papers/ProbCirc20. pdf (2020), page 6.

[31] Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., and Ha, D., Deep Learning for
Classical Japanese Literature. 2018. arXiv: cs.CV/1812.01718 [cs.CV].

[32] Clevert, D., Unterthiner, T., and Hochreiter, S., ‘Fast and Accurate Deep Network Learning by

Exponential Linear Units (ELUs).’ 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. Edited by Y. Bengio and Y. LeCun.

2016.

[33] Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A., ‘EMNIST: Extending MNIST to handwritten

letters.’ 2017 international joint conference on neural networks (ĲCNN). IEEE. 2017, pages 2921–2926.

https://arxiv.org/abs/cs.CV/1812.01718

[34] Collins, L., Mokhtari, A., and Shakkottai, S., ‘Task-Robust Model-Agnostic Meta-Learning.’ Advances
in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual. Edited by H. Larochelle, M. Ranzato, R. Hadsell,

M. Balcan and H. Lin. 2020.

[35] Cortes, C., and Vapnik, V., ‘Support-vector networks.’ Machine learning 20.3 (1995), pages 273–297.

[36] Cortés, J. ‘Finite-time convergent gradient flows with applications to network consensus.’ Autom. 42.11

(2006), pages 1993–2000.

[37] Couprie, C., Farabet, C., Najman, L., and LeCun, Y., ‘Indoor Semantic Segmentation using depth

information.’ 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona,
USA, May 2-4, 2013, Conference Track Proceedings. Edited by Y. Bengio and Y. LeCun. 2013.

[38] Cox, D. R. ‘The regression analysis of binary sequences.’ Journal of the Royal Statistical Society: Series B
(Methodological) 20.2 (1958), pages 215–232.

[39] Cummings, R., Gupta, V., Kimpara, D., and Morgenstern, J., ‘On the Compatibility of Privacy and

Fairness.’ Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization.

UMAP’19 Adjunct. Larnaca, Cyprus: Association for Computing Machinery, 2019, pages 309–315.

[40] D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J.,

Eisenstein, J., and Hoffman, M. D., ‘Underspecification presents challenges for credibility in modern

machine learning.’ Journal of Machine Learning Research 23.226 (2022), pages 1–61.

[41] Dance, H., and Bloem-Reddy, B., ‘Causal Inference with Cocycles.’ ArXiv preprint abs/2405.13844

(2024).

[42] Dandi, Y., Barba, L., and Jaggi, M., ‘Implicit Gradient Alignment in Distributed and Federated

Learning.’ Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022. AAAI Press,
2022, pages 6454–6462.

[43] Dayma, B. DALL·E Mega - Training Journal. 2022. url: https://wandb.ai/dalle-mini/dalle-mini

/reports/DALL-E-Mega-Training-Journal--VmlldzoxODMxMDI2 (visited on 09/06/2022).

[44] Désidéri, J.-A. ‘Multiple-gradient descent algorithm (MGDA) for multiobjective optimization.’ Comptes
Rendus Mathematique 350.5 (2012), pages 313–318.

[45] Désidéri, J.-A. ‘Multiple-gradient descent algorithm (MGDA) for multiobjective optimization.’ Comptes
Rendus Mathematique 350.5-6 (2012), pages 313–318.

[46] Dinh, A., Liu, D., and Xu, C., ‘PixelAsParam: A Gradient View on Diffusion Sampling with Guidance.’

International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA. Edited

by A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato and J. Scarlett. Volume 202. Proceedings

of Machine Learning Research. PMLR, 2023, pages 8120–8137.

[47] Du, Y., Czarnecki, W. M., Jayakumar, S. M., Farajtabar, M., Pascanu, R., and Lakshminarayanan, B.,

‘Adapting auxiliary losses using gradient similarity.’ ArXiv preprint abs/1812.02224 (2018).

[48] Dua, D., and Graff, C., ‘UCI Machine Learning Repository.’ 2017. url: http://archive.ics.uci.edu

/ml.

[49] Duong, L., Cohn, T., Bird, S., and Cook, P., ‘Low Resource Dependency Parsing: Cross-lingual

Parameter Sharing in a Neural Network Parser.’ Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers). Edited by C. Zong and M. Strube. Beĳing, China: Association for Computational
Linguistics, 2015, pages 845–850.

[50] Durkan, C., Bekasov, A., Murray, I., and Papamakarios, G., ‘Neural Spline Flows.’ Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. Edited by H. M. Wallach, H. Larochelle,

A. Beygelzimer, F. d’Alché-Buc, E. B. Fox and R. Garnett. 2019, pages 7509–7520.

https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-Mega-Training-Journal--VmlldzoxODMxMDI2
https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-Mega-Training-Journal--VmlldzoxODMxMDI2
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[51] Eberhardt, F., and Scheines, R., ‘Interventions and Causal Inference.’ Philosophy of Science 74.5 (2007),

pages 981–995. (Visited on 14/05/2023).

[52] Ektefaie, Y., Dasoulas, G., Noori, A., Farhat, M., and Zitnik, M., ‘Geometric multimodal representation

learning.’ ArXiv preprint abs/2209.03299 (2022).

[53] Ektefaie, Y., Dasoulas, G., Noori, A., Farhat, M., and Zitnik, M., ‘Multimodal learning with graphs.’

Nature Machine Intelligence 5 (2022), pages 340–350.

[54] Everitt, B. S. ‘An introduction to finite mixture distributions.’ Statistical methods in medical research 5.2

(1996), pages 107–127.

[55] Falkner, S., Klein, A., and Hutter, F., ‘BOHB: Robust and Efficient Hyperparameter Optimization at

Scale.’ Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018. Edited by J. G. Dy and A. Krause. Volume 80. Proceedings of

Machine Learning Research. PMLR, 2018, pages 1436–1445.

[56] Fan, D., Hou, Y., and Gao, C., ‘Cf-vae: Causal disentangled representation learning with vae and

causal flows.’ ArXiv preprint abs/2304.09010 (2023).

[57] Farajtabar, M., Azizan, N., Mott, A., and Li, A., ‘Orthogonal Gradient Descent for Continual Learning.’

The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August
2020, Online [Palermo, Sicily, Italy]. Edited by S. Chiappa and R. Calandra. Volume 108. Proceedings of

Machine Learning Research. PMLR, 2020, pages 3762–3773.

[58] Fiez, T., Chasnov, B., and Ratliff, L. J., ‘Implicit Learning Dynamics in Stackelberg Games: Equilibria

Characterization, Convergence Analysis, and Empirical Study.’ Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. Volume 119. Proceedings of

Machine Learning Research. PMLR, 2020, pages 3133–3144.

[59] Fifty, C., Amid, E., Zhao, Z., Yu, T., Anil, R., and Finn, C., ‘Efficiently Identifying Task Groupings for

Multi-Task Learning.’ Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. Edited by M. Ranzato,

A. Beygelzimer, Y. N. Dauphin, P. Liang and J. W. Vaughan. 2021, pages 27503–27516.

[60] Flennerhag, S., Rusu, A. A., Pascanu, R., Visin, F., Yin, H., and Hadsell, R., ‘Meta-Learning with

Warped Gradient Descent.’ 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[61] Fliege, J., and Svaiter, B. F., ‘Steepest descent methods for multicriteria optimization.’ Mathematical
methods of operations research 51.3 (2000), pages 479–494.

[62] Fort, S., Nowak, P. K., Jastrzebski, S., and Narayanan, S., ‘Stiffness: A new perspective on generalization

in neural networks.’ ArXiv preprint abs/1901.09491 (2019).

[63] Geffner, T., Antorán, J., Foster, A., Gong, W., Ma, C., Kicıman, E., Sharma, A., Lamb, A., Kukla, M.,

Pawlowski, N., Allamanis, M., and Zhang, C., ‘Deep End-to-end Causal Inference.’ ArXiv preprint
abs/2202.02195 (2022).

[64] Gendron, G., Witbrock, M., and Dobbie, G., ‘A Survey of Methods, Challenges and Perspectives in

Causality.’ ArXiv preprint abs/2302.00293 (2023).

[65] Ghosh, P., Sajjadi, M. S. M., Vergari, A., Black, M. J., and Schölkopf, B., ‘From Variational to Deterministic

Autoencoders.’ 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020.

[66] Glorot, X., and Bengio, Y., ‘Understanding the difficulty of training deep feedforward neural networks.’

Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Edited by

Y. W. Teh and M. Titterington. Volume 9. Proceedings of Machine Learning Research. Chia Laguna

Resort, Sardinia, Italy: PMLR, 2010, pages 249–256.

[67] Goodfellow, I. J., Bengio, Y., and Courville, A. C., ‘Deep Learning.’ Adaptive computation and machine

learning. MIT Press, 2016.

[68] Gorgolewski, K., Burns, C., Madison, C., Clark, D., Halchenko, Y., Waskom, M., and Ghosh, S.,

‘Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in

Python.’ Frontiers in Neuroinformatics 5 (2011).

[69] Guo, P., Lee, C., and Ulbricht, D., ‘Learning to Branch for Multi-Task Learning.’ Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. Volume 119.

Proceedings of Machine Learning Research. PMLR, 2020, pages 3854–3863.

[70] Guo, W., Wang, J., and Wang, S., ‘Deep multimodal representation learning: A survey.’ IEEE Access 7

(2019), pages 63373–63394.

[71] Gutknecht, A. J., Wibral, M., and Makkeh, A., ‘Bits and pieces: understanding information decompos-

ition from part-whole relationships and formal logic.’ Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 477.2251 (2021), page 20210110. eprint: https://royalsocietypubli

shing.org/doi/pdf/10.1098/rspa.2021.0110.

[72] Hadsell, R., Rao, D., Rusu, A. A., and Pascanu, R., ‘Embracing change: Continual learning in deep

neural networks.’ Trends in cognitive sciences 24.12 (2020), pages 1028–1040.

[73] Han, J., Pei, J., and Kamber, M., ‘Data mining: concepts and techniques.’ Elsevier, 2011.

[74] He, K., Zhang, X., Ren, S., and Sun, J., ‘Deep Residual Learning for Image Recognition.’ 2016 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016.

IEEE Computer Society, 2016, pages 770–778.

[75] Ho, J., Jain, A., and Abbeel, P., ‘Denoising Diffusion Probabilistic Models.’ Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual. Edited by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan and H. Lin.

2020.

[76] Hornik, K., Stinchcombe, M., and White, H., ‘Multilayer feedforward networks are universal approx-

imators.’ Neural networks 2.5 (1989), pages 359–366.

[77] Hoyer, P. O., Janzing, D., Mooĳ, J. M., Peters, J., and Schölkopf, B., ‘Nonlinear causal discovery

with additive noise models.’ Advances in Neural Information Processing Systems 21, Proceedings of the
Twenty-Second Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia,
Canada, December 8-11, 2008. Edited by D. Koller, D. Schuurmans, Y. Bengio and L. Bottou. Curran
Associates, Inc., 2008, pages 689–696.

[78] Huang, Z., Sang, Y., Sun, Y., and Lv, J., ‘A neural network learning algorithm for highly imbalanced

data classification.’ Information Sciences 612 (2022), pages 496–513.

[79] Hyvärinen, A. ‘Painful intelligence: What AI can tell us about human suffering.’ ArXiv preprint
abs/2205.15409 (2022).

[80] Ioffe, S., and Szegedy, C., ‘Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift.’ Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015. Edited by F. R. Bach and D. M. Blei. Volume 37. JMLR Workshop and

Conference Proceedings. JMLR.org, 2015, pages 448–456.

[81] Jang, E., Gu, S., and Poole, B., ‘Categorical Reparameterization with Gumbel-Softmax.’ 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017.

[86] Jin, C., Netrapalli, P., and Jordan, M. I., ‘What is Local Optimality in Nonconvex-Nonconcave Minimax

Optimization?’ Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-
18 July 2020, Virtual Event. Volume 119. Proceedings of Machine Learning Research. PMLR, 2020,

pages 4880–4889.

[87] Kamiran, F., and Calders, T., ‘Data preprocessing techniques for classification without discrimination.’

Knowledge and information systems 33.1 (2012), pages 1–33.

[88] Karimi, A., Kügelgen, B. J., Schölkopf, B., and Valera, I., ‘Algorithmic recourse under imperfect causal

knowledge: a probabilistic approach.’ Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.
Edited by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan and H. Lin. 2020.

https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2021.0110
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2021.0110

[89] Kendall, A., Gal, Y., and Cipolla, R., ‘Multi-Task Learning Using Uncertainty to Weigh Losses for

Scene Geometry and Semantics.’ 2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. IEEE Computer Society, 2018, pages 7482–7491.

[90] Khemakhem, I., Kingma, D. P., Monti, R. P., and Hyvärinen, A., ‘Variational Autoencoders and

Nonlinear ICA: A Unifying Framework.’ The 23rd International Conference on Artificial Intelligence and
Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy]. Edited by S. Chiappa and

R. Calandra. Volume 108. Proceedings of Machine Learning Research. PMLR, 2020, pages 2207–2217.

[91] Khemakhem, I., Monti, R. P., Leech, R., and Hyvärinen, A., ‘Causal Autoregressive Flows.’ The 24th
International Conference on Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021, Virtual
Event. Edited by A. Banerjee and K. Fukumizu. Volume 130. Proceedings of Machine Learning

Research. PMLR, 2021, pages 3520–3528.

[92] Kingma, D. P., and Ba, J., ‘Adam: A Method for Stochastic Optimization.’ 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
Edited by Y. Bengio and Y. LeCun. 2015.

[93] Kingma, D. P., and Welling, M., ‘Auto-Encoding Variational Bayes.’ 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings.
Edited by Y. Bengio and Y. LeCun. 2014.

[94] Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and Welling, M., ‘Improved

Variational Inference with Inverse Autoregressive Flow.’ Advances in Neural Information Processing
Systems. Edited by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon and R. Garnett. Volume 29. Curran
Associates, Inc., 2016.

[95] Knothe, H. ‘Contributions to the theory of convex bodies.’ Michigan Mathematical Journal 4 (1957),

pages 39–52.

[96] Kocaoglu, M., Snyder, C., Dimakis, A. G., and Vishwanath, S., ‘CausalGAN: Learning Causal Implicit

Generative Models with Adversarial Training.’ 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018.

[97] Krizhevsky, A., and Hinton, G., ‘Learning multiple layers of features from tiny images.’ (2009).

[98] Kumar, A., and III, H. D., ‘Learning Task Grouping and Overlap in Multi-task Learning.’ Proceedings
of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 -
July 1, 2012. icml.cc / Omnipress, 2012.

[99] Kurin, V., Palma, A. D., Kostrikov, I., Whiteson, S., and Mudigonda, P. K., ‘In Defense of the Unitary

Scalarization for Deep Multi-Task Learning.’ Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022. Edited by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho

and A. Oh. 2022.

[100] Kusner, M. J., Loftus, J. R., Russell, C., and Silva, R., ‘Counterfactual Fairness.’ Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA. Edited by I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,

R. Fergus, S. V. N. Vishwanathan and R. Garnett. 2017, pages 4066–4076.

[101] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., ‘Gradient-based learning applied to document

recognition.’ Proceedings of the IEEE 86.11 (1998), pages 2278–2324.

[102] LeCun, Y., Cortes, C., and Burges, C., ‘MNIST handwritten digit database.’ ATT Labs [Online] 2 (2010).

[103] Levi, H., and Ullman, S., ‘Multi-Task Learning by a Top-Down Control Network.’ ArXiv preprint
abs/2002.03335 (2020), pages 2553–2557.

[104] Li, X., and Gong, H., ‘Robust Optimization for Multilingual Translation with Imbalanced Data.’

Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. Edited by M. Ranzato, A. Beygelzimer, Y. N.

Dauphin, P. Liang and J. W. Vaughan. 2021, pages 25086–25099.

[105] Liang, W., Kekic, A., Kügelgen, J., Buchholz, S., Besserve, M., Gresele, L., and Schölkopf, B., ‘Causal

Component Analysis.’ Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023. Edited

by A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt and S. Levine. 2023.

[106] Lin, B., Ye, F., Zhang, Y., and Tsang, I. W.-H., ‘Reasonable Effectiveness of Random Weighting: A

Litmus Test for Multi-Task Learning.’ 2021.

[107] Lin, X., Yang, Z., Zhang, Q., and Kwong, S., ‘Controllable pareto multi-task learning.’ ArXiv preprint
abs/2010.06313 (2020).

[108] Lin, X., Zhen, H., Li, Z., Zhang, Q., and Kwong, S., ‘Pareto Multi-Task Learning.’ Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. Edited by H. M. Wallach, H. Larochelle,

A. Beygelzimer, F. d’Alché-Buc, E. B. Fox and R. Garnett. 2019, pages 12037–12047.

[109] Lin, X., Baweja, H. S., Kantor, G., and Held, D., ‘Adaptive Auxiliary Task Weighting for Reinforcement

Learning.’ Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. Edited by H. M.

Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox and R. Garnett. 2019, pages 4773–4784.

[110] Liu, B., Feng, Y., Stone, P., and Liu, Q., ‘FAMO: Fast Adaptive Multitask Optimization.’ Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023. Edited by A. Oh, T. Naumann,

A. Globerson, K. Saenko, M. Hardt and S. Levine. 2023.

[111] Liu, B., Liu, X., Jin, X., Stone, P., and Liu, Q., ‘Conflict-Averse Gradient Descent for Multi-task learning.’

Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. Edited by M. Ranzato, A. Beygelzimer, Y. N.

Dauphin, P. Liang and J. W. Vaughan. 2021, pages 18878–18890.

[112] Liu, L., Li, Y., Kuang, Z., Xue, J., Chen, Y., Yang, W., Liao, Q., and Zhang, W., ‘Towards Impartial

Multi-task Learning.’ 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021.

[113] Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and Han, J., ‘On the Variance of the Adaptive

Learning Rate and Beyond.’ 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[114] Liu, S., James, S., Davison, A. J., and Johns, E., ‘Auto-Lambda: Disentangling Dynamic Task Relation-

ships.’ ArXiv preprint abs/2202.03091 (2022).

[115] Liu, S., Johns, E., and Davison, A. J., ‘End-To-End Multi-Task Learning With Attention.’ IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. Computer
Vision Foundation / IEEE, 2019, pages 1871–1880.

[116] Liu, Y., Zhang, K., Ren, X., Huang, Y., Jin, J., Qin, Y., Su, R., Xu, R., and Zhang, W., ‘An Aligning and

Training Framework for Multimodal Recommendations.’ ArXiv preprint abs/2403.12384 (2024).

[117] Liu, Z., Luo, P., Wang, X., and Tang, X., ‘Deep Learning Face Attributes in the Wild.’ 2015 IEEE
International Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015. IEEE
Computer Society, 2015, pages 3730–3738.

[118] Long, M., Cao, Z., Wang, J., and Yu, P. S., ‘Learning Multiple Tasks with Multilinear Relationship

Networks.’ Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Edited by I. Guyon, U. von Luxburg,

S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan and R. Garnett. 2017, pages 1594–1603.

[119] Lyle, C., Wilk, M., Kwiatkowska, M., Gal, Y., and Bloem-Reddy, B., ‘On the benefits of invariance in

neural networks.’ ArXiv preprint abs/2005.00178 (2020).

[120] Ma, C., Tschiatschek, S., Turner, R. E., Hernández-Lobato, J. M., and Zhang, C., ‘VAEM: a Deep

Generative Model for Heterogeneous Mixed Type Data.’ Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual. Edited by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan and H. Lin. 2020.

[121] Mahapatra, D., and Rajan, V., ‘Multi-Task Learning with User Preferences: Gradient Descent with

Controlled Ascent in Pareto Optimization.’ Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event. Volume 119. Proceedings of Machine Learning

Research. PMLR, 2020, pages 6597–6607.

[122] Maheshwari, G., and Perrot, M., ‘Fairgrad: Fairness aware gradient descent.’ ArXiv preprint
abs/2206.10923 (2022).

[123] Majumdar, A., and Valera, I., ‘CARMA: A practical framework to generate recommendations for causal

algorithmic recourse at scale.’ Proceedings of the 2024 ACM Conference on Fairness, Accountability, and
Transparency. FAccT ’24. Rio de Janeiro, Brazil: Association for Computing Machinery, 2024, pages 1745–

1762.

[124] Maninis, K., Radosavovic, I., and Kokkinos, I., ‘Attentive Single-Tasking of Multiple Tasks.’ IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20,
2019. Computer Vision Foundation / IEEE, 2019, pages 1851–1860.

[125] Mao, Y., Wang, Z., Liu, W., Lin, X., and Xie, P., ‘MetaWeighting: Learning to Weight Tasks in

Multi-Task Learning.’ Findings of the Association for Computational Linguistics: ACL 2022. Edited by

S. Muresan, P. Nakov and A. Villavicencio. Dublin, Ireland: Association for Computational Linguistics,
2022, pages 3436–3448.

[126] Matthews, R. ‘Storks deliver babies (p= 0.008).’ Teaching Statistics 22.2 (2000), pages 36–38.

[127] Mehrasa, N., Jyothi, A. A., Durand, T., He, J., Sigal, L., and Mori, G., ‘A Variational Auto-Encoder

Model for Stochastic Point Processes.’ IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation / IEEE, 2019, pages 3165–3174.

[128] Messerli, F. H. ‘Chocolate consumption, cognitive function, and Nobel laureates.’ N Engl J Med 367.16

(2012), pages 1562–1564.

[129] Michel, P., Ruder, S., and Yogatama, D., ‘Balancing Average and Worst-case Accuracy in Multitask

Learning.’ ArXiv preprint abs/2110.05838 (2021).

[130] Miettinen, K. ‘Nonlinear multiobjective optimization.’ Volume 12. Springer Science & Business Media,

1999.

[131] Misra, I., Shrivastava, A., Gupta, A., and Hebert, M., ‘Cross-Stitch Networks for Multi-task Learning.’

2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016. IEEE Computer Society, 2016, pages 3994–4003.

[132] Mitchell, R., McKim, J., and Meyer, B., ‘Design by contract, by example.’ USA: Addison Wesley Longman
Publishing Co., Inc., 2001.

[133] Mitchell, T. M. ‘The need for biases in learning generalizations.’ (1980).

[134] Morningstar, W. R., Vikram, S. M., Ham, C., Gallagher, A. G., and Dillon, J. V., ‘Automatic Differentiation

Variational Inference with Mixtures.’ The 24th International Conference on Artificial Intelligence and
Statistics, AISTATS 2021, April 13-15, 2021, Virtual Event. Edited by A. Banerjee and K. Fukumizu.

Volume 130. Proceedings of Machine Learning Research. PMLR, 2021, pages 3250–3258.

[135] Movahedi, S., Adabinejad, M., Imani, A., Keshavarz, A., Dehghani, M., Shakery, A., and Araabi, B. N.,

‘Λ-DARTS: Mitigating Performance Collapse by Harmonizing Operation Selection among Cells.’

ArXiv preprint abs/2210.07998 (2022).

[136] Muandet, K. ‘Impossibility of Collective Intelligence.’ ArXiv preprint abs/2206.02786 (2022).

[137] Murphy, K. P. ‘Probabilistic Machine Learning: An introduction.’ MIT Press, 2022.

[138] Murray, R. W., Swenson, B., and Kar, S., ‘Revisiting Normalized Gradient Descent: Fast Evasion of

Saddle Points.’ IEEE Trans. Autom. Control. 64.11 (2019), pages 4818–4824.

[139] Nadeau, C., and Bengio, Y., ‘Inference for the generalization error.’ Machine learning 52.3 (2003),

pages 239–281.

[140] Nasr-Esfahany, A., Alizadeh, M., and Shah, D., ‘Counterfactual Identifiability of Bĳective Causal

Models.’ International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA. Edited by A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato and J. Scarlett. Volume 202.

Proceedings of Machine Learning Research. PMLR, 2023, pages 25733–25754.

[141] Nathan Silberman, P. K., and Fergus, R., ‘Indoor Segmentation and Support Inference from RGBD

Images.’ ECCV. 2012.

[142] Navon, A., Shamsian, A., Achituve, I., Maron, H., Kawaguchi, K., Chechik, G., and Fetaya, E., ‘Multi-

Task Learning as a Bargaining Game.’ International Conference on Machine Learning, ICML 2022, 17-23 July
2022, Baltimore, Maryland, USA. Edited by K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G. Niu and

S. Sabato. Volume 162. Proceedings of Machine Learning Research. PMLR, 2022, pages 16428–16446.

[143] Nazabal, A., Olmos, P. M., Ghahramani, Z., and Valera, I., ‘Handling incomplete heterogeneous data

using VAEs.’ Pattern Recognition 107 (2020), page 107501.

[144] Nesterov, Y. E. ‘Introductory Lectures on Convex Optimization - A Basic Course.’ Volume 87. Applied

Optimization. Springer, 2004.

[145] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y., ‘Reading digits in natural images

with unsupervised feature learning.’ NeurIPS Workshop on Deep Learning and Unsupervised Feature
Learning (2011).

[146] Papamakarios, G., Murray, I., and Pavlakou, T., ‘Masked Autoregressive Flow for Density Estimation.’

Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Edited by I. Guyon, U. von Luxburg, S. Bengio,

H. M. Wallach, R. Fergus, S. V. N. Vishwanathan and R. Garnett. 2017, pages 2338–2347.

[147] Papamakarios, G., Nalisnick, E. T., Rezende, D. J., Mohamed, S., and Lakshminarayanan, B., ‘Normal-

izing Flows for Probabilistic Modeling and Inference.’ J. Mach. Learn. Res. 22 (2021), 57:1–57:64.

[148] Parafita, Á., and Vitrià, J., ‘Estimand-Agnostic Causal Query Estimation With Deep Causal Graphs.’

IEEE Access 10 (2022), pages 71370–71386.

[149] Pascal, L., Michiardi, P., Bost, X., Huet, B., and Zuluaga, M. A., ‘Improved optimization strategies for

deep multi-task networks.’ ArXiv preprint abs/2109.11678 (2021).

[150] Pascanu, R., Mikolov, T., and Bengio, Y., ‘On the difficulty of training recurrent neural networks.’

Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21
June 2013. Volume 28. JMLR Workshop and Conference Proceedings. JMLR.org, 2013, pages 1310–1318.

[151] Pawlowski, N., Castro, D. C., and Glocker, B., ‘Deep Structural Causal Models for Tractable Counter-

factual Inference.’ Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Edited by H. Larochelle,

M. Ranzato, R. Hadsell, M. Balcan and H. Lin. 2020.

[152] Pearl, J. ‘Causality.’ Cambridge University Press, 2009.

[153] Pearl, J. ‘Causal inference in statistics: An overview.’ (2009).

[154] Pearl, J. ‘The Do-Calculus Revisited.’ Proceedings of the Twenty-Eighth Conference on Uncertainty in
Artificial Intelligence, Catalina Island, CA, USA, August 14-18, 2012. Edited by N. de Freitas and K. P.

Murphy. AUAI Press, 2012, pages 3–11.

[155] Petkova, V. I., and Ehrsson, H. H., ‘If I Were You: Perceptual Illusion of Body Swapping.’ PLOS ONE
3.12 (2008), pages 1–9.

[156] Piggins, A. ‘Collective Choice and Social Welfare–Expanded Edition.’ 2019.

[157] R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing. Vienna, Austria, 2021.

[158] Rainforth, T., Kosiorek, A. R., Le, T. A., Maddison, C. J., Igl, M., Wood, F., and Teh, Y. W., ‘Tighter

Variational Bounds are Not Necessarily Better.’ Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Edited by J. G. Dy

and A. Krause. Volume 80. Proceedings of Machine Learning Research. PMLR, 2018, pages 4274–4282.

[159] Ramé, A., Dancette, C., and Cord, M., ‘Fishr: Invariant Gradient Variances for Out-of-Distribution

Generalization.’ International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,
Maryland, USA. Edited by K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G. Niu and S. Sabato.

Volume 162. Proceedings of Machine Learning Research. PMLR, 2022, pages 18347–18377.

[160] Ranganath, R., Gerrish, S., and Blei, D. M., ‘Black Box Variational Inference.’ Proceedings of the
Seventeenth International Conference on Artificial Intelligence and Statistics, AISTATS 2014, Reykjavik,
Iceland, April 22-25, 2014. Volume 33. JMLR Workshop and Conference Proceedings. JMLR.org, 2014,

pages 814–822.

[161] Reddi, S. J., Kale, S., and Kumar, S., ‘On the Convergence of Adam and Beyond.’ 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018.

[162] Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G., Novikov, A., Barth-maron, G., Giménez, M.,

Sulsky, Y., Kay, J., Springenberg, J. T., Eccles, T., Bruce, J., Razavi, A., Edwards, A., Heess, N., Chen, Y.,

Hadsell, R., Vinyals, O., Bordbar, M., and Freitas, N., ‘A Generalist Agent.’ Transactions on Machine
Learning Research abs/2205.06175 (2022). Featured Certification.

[163] Robbins, H., and Monro, S., ‘A stochastic approximation method.’ The annals of mathematical statistics
(1951), pages 400–407.

[164] Roeder, G., Wu, Y., and Duvenaud, D., ‘Sticking the Landing: Simple, Lower-Variance Gradient

Estimators for Variational Inference.’ Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA.

Edited by I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan and

R. Garnett. 2017, pages 6925–6934.

[165] Romera-Paredes, B., Aung, H., Bianchi-Berthouze, N., and Pontil, M., ‘Multilinear Multitask Learning.’

Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21
June 2013. Volume 28. JMLR Workshop and Conference Proceedings. JMLR.org, 2013, pages 1444–1452.

[166] Rosenblatt, M. ‘Remarks on a Multivariate Transformation.’ The Annals of Mathematical Statistics 23.3

(1952), pages 470–472. (Visited on 21/04/2023).

[167] Ruchte, M., and Grabocka, J., ‘Multi-task problems are not multi-objective.’ ArXiv preprint
abs/2110.07301 (2021).

[168] Ruchte, M., and Grabocka, J., ‘Scalable pareto front approximation for deep multi-objective learning.’

2021 IEEE international conference on data mining (ICDM). IEEE. 2021, pages 1306–1311.

[169] Ruder, S. ‘An Overview of Multi-Task Learning in Deep Neural Networks.’ ArXiv preprint
abs/1706.05098 (2017).

[170] Rumelhart, D. E., Hinton, G. E., and Williams, R. J., ‘Learning representations by back-propagating

errors.’ Nature 323 (1986), pages 533–536.

[171] Sabour, S., Frosst, N., and Hinton, G. E., ‘Dynamic Routing Between Capsules.’ Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA. Edited by I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,

R. Fergus, S. V. N. Vishwanathan and R. Garnett. 2017, pages 3856–3866.

[172] Salakhutdinov, R., and Mnih, A., ‘Probabilistic Matrix Factorization.’ Advances in Neural Information
Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing
Systems, Vancouver, British Columbia, Canada, December 3-6, 2007. Edited by J. C. Platt, D. Koller, Y. Singer

and S. T. Roweis. Curran Associates, Inc., 2007, pages 1257–1264.

[173] Sanchez, P., and Tsaftaris, S. A., ‘Diffusion Causal Models for Counterfactual Estimation.’ CLEaR.

2022.

[174] Sánchez-Martín, P., Rateike, M., and Valera, I., ‘VACA: Designing Variational Graph Autoencoders

for Causal Queries.’ Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth
Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022. AAAI
Press, 2022, pages 8159–8168.

[175] Sankararaman, K. A., De, S., Xu, Z., Huang, W. R., and Goldstein, T., ‘The Impact of Neural Network

Overparameterization on Gradient Confusion and Stochastic Gradient Descent.’ Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event. Volume 119.

Proceedings of Machine Learning Research. PMLR, 2020, pages 8469–8479.

[176] Santambrogio, F. ‘Optimal transport for applied mathematicians.’ Birkäuser, NY 55.58-63 (2015),

page 94.

[177] Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A., ‘How Does Batch Normalization Help Optimization?’

Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. Edited by S. Bengio, H. M. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi and R. Garnett. 2018, pages 2488–2498.

[178] Schäffler, S., Schultz, R., and Weinzierl, K., ‘Stochastic method for the solution of unconstrained vector

optimization problems.’ Journal of Optimization Theory and Applications 114 (2002), pages 209–222.

[179] Schölkopf, B., and Kügelgen, J., ‘From statistical to causal learning.’ ArXiv preprint abs/2204.00607

(2022).

[180] Schulz, A., Vetter, J., Gao, R., Morales, D., Lobato-Ríos, V., Ramdya, P., Gonccalves, P. J., and Macke,

J. H., ‘Modeling conditional distributions of neural and behavioral data with masked variational

autoencoders.’ bioRxiv (2024).

[181] Sekhon, J. ‘271 The Neyman– Rubin Model of Causal Inference and Estimation Via Matching Methods’.

The Oxford Handbook of Political Methodology. Oxford University Press, 2008. eprint: https://academic

.oup.com/book/0/chapter/215142463/chapter-ag-pdf/44586764/book_28340_section_21

5142463.ag.pdf.

[182] Sener, O., and Koltun, V., ‘Multi-Task Learning as Multi-Objective Optimization.’ Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada. Edited by S. Bengio, H. M. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi and R. Garnett. 2018, pages 525–536.

[183] Shamsian, A., Navon, A., Glazer, N., Kawaguchi, K., Chechik, G., and Fetaya, E., ‘Auxiliary Learning as

an Asymmetric Bargaining Game.’ International Conference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA. Edited by A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato and

J. Scarlett. Volume 202. Proceedings of Machine Learning Research. PMLR, 2023, pages 30689–30705.

[184] Shen, J., Zhen, X., Worring, M., and Shao, L., ‘Variational Multi-Task Learning with Gumbel-

Softmax Priors.’ Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. Edited by M. Ranzato,

A. Beygelzimer, Y. N. Dauphin, P. Liang and J. W. Vaughan. 2021, pages 21031–21042.

[185] Shi, Y., Narayanaswamy, S., Paige, B., and Torr, P. H. S., ‘Variational Mixture-of-Experts Autoencoders

for Multi-Modal Deep Generative Models.’ Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada. Edited by H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox and

R. Garnett. 2019, pages 15692–15703.

[186] Shi, Y., Paige, B., Torr, P. H. S., and Siddharth, N., ‘Relating by Contrasting: A Data-efficient Framework

for Multimodal Generative Models.’ 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[187] Shi, Y., Seely, J., Torr, P. H. S., Narayanaswamy, S., Hannun, A. Y., Usunier, N., and Synnaeve,

G., ‘Gradient Matching for Domain Generalization.’ The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

[188] Simpson, E. H. ‘The interpretation of interaction in contingency tables.’ Journal of the Royal Statistical
Society: Series B (Methodological) 13.2 (1951), pages 238–241.

[189] Sinha, A., Chen, Z., Badrinarayanan, V., and Rabinovich, A., ‘Gradient adversarial training of neural

networks.’ ArXiv preprint abs/1806.08028 (2018).

https://academic.oup.com/book/0/chapter/215142463/chapter-ag-pdf/44586764/book_28340_section_215142463.ag.pdf
https://academic.oup.com/book/0/chapter/215142463/chapter-ag-pdf/44586764/book_28340_section_215142463.ag.pdf
https://academic.oup.com/book/0/chapter/215142463/chapter-ag-pdf/44586764/book_28340_section_215142463.ag.pdf

[190] Smith, S. L., Dherin, B., Barrett, D. G. T., and De, S., ‘On the Origin of Implicit Regularization in

Stochastic Gradient Descent.’ 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[191] Song, S., Lichtenberg, S. P., and Xiao, J., ‘SUN RGB-D: A RGB-D scene understanding benchmark

suite.’ IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June
7-12, 2015. IEEE Computer Society, 2015, pages 567–576.

[192] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R., ‘Dropout: A Simple

Way to Prevent Neural Networks from Overfitting.’ Journal of Machine Learning Research 15.56 (2014),

pages 1929–1958.

[193] Standley, T., Zamir, A. R., Chen, D., Guibas, L. J., Malik, J., and Savarese, S., ‘Which Tasks Should Be

Learned Together in Multi-task Learning?’ Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event. Volume 119. Proceedings of Machine Learning

Research. PMLR, 2020, pages 9120–9132.

[194] Sun, G., Probst, T., Paudel, D. P., Popovic, N., Kanakis, M., Patel, J., Dai, D., and Gool, L. V., ‘Task

Switching Network for Multi-task Learning.’ 2021 IEEE/CVF International Conference on Computer
Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021. IEEE, 2021, pages 8271–8280.

[195] Sun, X., Panda, R., Feris, R., and Saenko, K., ‘AdaShare: Learning What To Share For Efficient Deep

Multi-Task Learning.’ Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Edited by H. Larochelle,

M. Ranzato, R. Hadsell, M. Balcan and H. Lin. 2020.

[196] Sun, Y., Li, J., and Xu, X., ‘Meta-GF: Training dynamic-depth neural networks harmoniously.’ European
Conference on Computer Vision. Springer. 2022, pages 691–708.

[197] Suteu, M., and Guo, Y., ‘Regularizing deep multi-task networks using orthogonal gradients.’ ArXiv
preprint abs/1912.06844 (2019).

[198] Sutter, T. M., Daunhawer, I., and Vogt, J. E., ‘Multimodal Generative Learning Utilizing Jensen-

Shannon-Divergence.’ Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Edited by H. Larochelle,

M. Ranzato, R. Hadsell, M. Balcan and H. Lin. 2020.

[199] Sutter, T. M., Daunhawer, I., and Vogt, J. E., ‘Generalized Multimodal ELBO.’ 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[200] Tarjan, R. ‘Depth-First Search and Linear Graph Algorithms.’ SIAM Journal on Computing 1.2 (1972),

pages 146–160. eprint: https://doi.org/10.1137/0201010.

[201] Thrun, S., and O’Sullivan, J., ‘Discovering Structure in Multiple Learning Tasks: The TC Algorithm.’

Machine Learning, Proceedings of the Thirteenth International Conference (ICML ’96), Bari, Italy, July 3-6,
1996. Edited by L. Saitta. Morgan Kaufmann, 1996, pages 489–497.

[202] Tucker, G., Lawson, D., Gu, S., and Maddison, C. J., ‘Doubly Reparameterized Gradient Estimators

for Monte Carlo Objectives.’ 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[203] Vahdat, A., and Kautz, J., ‘NVAE: A Deep Hierarchical Variational Autoencoder.’ Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual. Edited by H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan

and H. Lin. 2020.

[204] Von Kügelgen, J., Mohamed, A., and Beckers, S., ‘Backtracking counterfactuals.’ Conference on Causal
Learning and Reasoning. PMLR. 2023, pages 177–196.

[205] Wang, P., Zhang, H., Zhu, M., Jiang, X., Qin, J., and Yuan, Y., ‘MGIML: Cancer Grading With Incomplete

Radiology-Pathology Data via Memory Learning and Gradient Homogenization.’ IEEE Transactions
on Medical Imaging 43.6 (2024), pages 2113–2124.

[206] Wang, Z., Fan, X., Qi, J., Wen, C., Wang, C., and Yu, R., ‘Federated Learning with Fair Averaging.’

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, ĲCAI 2021, Virtual Event
/ Montreal, Canada, 19-27 August 2021. Edited by Z. Zhou. ĳcai.org, 2021, pages 1615–1623.

https://doi.org/10.1137/0201010

[207] Wang, Z., Lipton, Z. C., and Tsvetkov, Y., ‘On Negative Interference in Multilingual Models: Findings

and A Meta-Learning Treatment.’ Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Edited by B. Webber, T. Cohn, Y. He and Y. Liu. Online: Association for
Computational Linguistics, 2020, pages 4438–4450.

[208] Wang, Z., Tsvetkov, Y., Firat, O., and Cao, Y., ‘Gradient Vaccine: Investigating and Improving Multi-task

Optimization in Massively Multilingual Models.’ 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[209] Waqas, A., Tripathi, A., Ramachandran, R., Stewart, P., and Rasool, G., ‘Multimodal Data Integration

for Oncology in the Era of Deep Neural Networks: A Review.’ ArXiv preprint abs/2303.06471 (2023).

[210] Wehenkel, A., and Louppe, G., ‘Graphical Normalizing Flows.’ The 24th International Conference on
Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021, Virtual Event. Edited by A. Banerjee

and K. Fukumizu. Volume 130. Proceedings of Machine Learning Research. PMLR, 2021, pages 37–45.

[211] Wen, Y., Li, Z., Xiang, Y., and Reker, D., ‘Improving molecular machine learning through adaptive

subsampling with active learning.’ Digital Discovery 2 (4 2023), pages 1134–1142.

[212] Woodward, J. ‘Causation and Manipulability’. The Stanford Encyclopedia of Philosophy. Edited by E. N.

Zalta and U. Nodelman. Summer 2023. Metaphysics Research Lab, Stanford University, 2023.

[213] Wu, M., and Goodman, N. D., ‘Multimodal Generative Models for Scalable Weakly-Supervised

Learning.’ Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. Edited by S. Bengio,

H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi and R. Garnett. 2018, pages 5580–5590.

[214] Wu, S., Zhang, H. R., and Ré, C., ‘Understanding and Improving Information Transfer in Multi-Task

Learning.’ 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020.

[215] Wu, Z., Dadu, A., Tustison, N. J., Avants, B. B., Nalls, M. A., Sun, J., and Faghri, F., ‘Multimodal Patient

Representation Learning with Missing Modalities and Labels.’ The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

[216] Xi, Q., and Bloem-Reddy, B., ‘Indeterminacy in Generative Models: Characterization and Strong

Identifiability.’ International Conference on Artificial Intelligence and Statistics, 25-27 April 2023, Palau
de Congressos, Valencia, Spain. Edited by F. J. R. Ruiz, J. G. Dy and J. van de Meent. Volume 206.

Proceedings of Machine Learning Research. PMLR, 2023, pages 6912–6939.

[217] Xi, Q., Gonzalez, S., and Bloem-Reddy, B., ‘Triangular Monotonic Generative Models Can Perform

Causal Discovery.’ Causal Representation Learning Workshop at NeurIPS 2023. 2023.

[218] Xia, K. M., Pan, Y., and Bareinboim, E., ‘Neural Causal Models for Counterfactual Identification and

Estimation.’ The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023.

[219] Xiao, H., Rasul, K., and Vollgraf, R., Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine
Learning Algorithms. 2017. arXiv: cs.LG/1708.07747 [cs.LG].

[220] Xin, D., Ghorbani, B., Gilmer, J., Garg, A., and Firat, O., ‘Do Current Multi-Task Optimization Methods

in Deep Learning Even Help?’ Advances in Neural Information Processing Systems 35: Annual Conference
on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022. Edited by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho and A. Oh. 2022.

[221] Xu, W., Sun, H., Deng, C., and Tan, Y., ‘Variational Autoencoder for Semi-Supervised Text Classification.’

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA. Edited by S. P. Singh and S. Markovitch. AAAI Press, 2017, pages 3358–3364.

[222] Yager, R. R. ‘On the analytic representation of the Leximin ordering and its application to flexible

constraint propagation.’ European Journal of Operational Research 102.1 (1997), pages 176–192.

https://arxiv.org/abs/cs.LG/1708.07747

[223] Yang, E., Pan, J., Wang, X., Yu, H., Shen, L., Chen, X., Xiao, L., Jiang, J., and Guo, G., ‘AdaTask:

A Task-Aware Adaptive Learning Rate Approach to Multi-Task Learning.’ Thirty-Seventh AAAI
Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of
Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2023, Washington, DC, USA, February 7-14, 2023. Edited by B. Williams, Y. Chen and J. Neville.

AAAI Press, 2023, pages 10745–10753.

[224] Yang, M., Liu, F., Chen, Z., Shen, X., Hao, J., and Wang, J., ‘CausalVAE: Disentangled Representation

Learning via Neural Structural Causal Models.’ IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, virtual, June 19-25, 2021. Computer Vision Foundation / IEEE, 2021, pages 9593–

9602.

[225] Yang, Y., and Hospedales, T. M., ‘Deep Multi-task Representation Learning: A Tensor Factorisation

Approach.’ 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[226] Yang, Y., and Hospedales, T. M., ‘Trace Norm Regularised Deep Multi-Task Learning.’ 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track
Proceedings. OpenReview.net, 2017.

[227] Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., and Finn, C., ‘Gradient Surgery for Multi-Task

Learning.’ Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Edited by H. Larochelle, M. Ranzato,

R. Hadsell, M. Balcan and H. Lin. 2020.

[228] Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., and Finn, C., ‘Multi-Task Reinforcement Learning

without Interference.’ ().

[229] Zafar, M. B., Valera, I., Gomez-Rodriguez, M., and Gummadi, K. P., ‘Fairness Constraints: Mechanisms

for Fair Classification.’ Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA. Edited by A. Singh and X. (Zhu.

Volume 54. Proceedings of Machine Learning Research. PMLR, 2017, pages 962–970.

[230] Zečević, M., Dhami, D. S., Velivcković, P., and Kersting, K., ‘Relating Graph Neural Networks to

Structural Causal Models.’ ArXiv preprint abs/2109.04173 (2021).

[231] Zeleny, M. ‘Compromise programming.’ Multiple criteria decision making (1973).

[232] Zhang, Y., and Yeung, D.-Y., ‘A Regularization Approach to Learning Task Relationships in Multitask

Learning.’ ACM Trans. Knowl. Discov. Data 8.3 (2014).

[233] Zhou, Y., Wang, X., Chen, H., Duan, X., and Zhu, W., ‘Intra- and Inter-Modal Curriculum for

Multimodal Learning.’ Proceedings of the 31st ACM International Conference on Multimedia (2023).

	Acknowledgments
	Abstract
	Zusammenfassung
	Publications
	Table of Contents
	Notation
	Acronyms
	Trustworthy Deep Learning and User Expectations
	Trustworthy deep learning as functional predictability
	From predictive to causal generative models: a motivating example

	The Role of Optimization in Trustworthy Deep Learning
	Weaknesses of deep learning optimization
	Expectations and optimization

	Thesis Outline and Contributions
	Outline
	Main contributions

	Multitask Learning
	Introduction to Multitask Learning
	Historical overview
	Problem statement
	Network architectures
	Multitask learning as multi-objective optimization
	Task impartiality
	Gradient conflict

	Gradient Homogenization in Multitask Learning
	Problem statement
	Gradient homogenization
	Illustrative examples
	Empirical validation
	Concluding remarks

	On Task Incomparability and its Effects in Multitask Learning
	Motivation and background
	How to measure your multitask learning model
	Benchmark probing
	Empirical validation
	Concluding remarks

	Probabilistic Generative Models
	Deep Learning and Probabilistic Modelling
	Problem statement
	Exponential family
	Latent-variable models
	Modality collapse and multitask learning

	On Modality Collapse and Data Preprocessing
	Problem Statement
	Multivariate impartial learning
	Data scaling and smoothness
	Lipschitz standardization
	Empirical evaluation
	Concluding remarks

	Mitigating Modality Collapse via Impartial Optimization
	Preliminaries
	Impartial optimization in multimodal variational autoencoders
	Extending our framework
	Experiments
	Concluding remarks

	Causal Generative Models
	Introduction to Causal Inference in Deep Learning
	Correlation does not imply causation
	Structural causal models
	Causal inference
	Problem statement
	Existing works

	Causal Identifiability Given a Causal Ordering
	Solution characterization
	The multiple representations of structural causal models
	Causal identifiability
	Extension to real-world settings
	Reimplementing the do-operator
	Concluding remarks

	Effective Deep Causal Inference with Causal Normalizing Flows
	Causal normalizing flows
	Causal inference queries
	Ablation study
	Model comparison
	Fairness auditing and classification
	Concluding remarks

	Epilogue
	Conclusion
	Summary and impact
	Prospects

	Appendix
	Additional Material for Chapter 5
	Proofs
	Stackelberg games and RotoGrad
	Experiments

	Additional Material for Chapter 6
	Experimental details

	Additional Material for Chapter 8
	Basic properties of L-smoothness
	Exponential family
	Full description of Lipschitz standardization
	L-smoothness after standardizing
	Details on the experimental setup
	Additional experimental results

	Additional Material for Chapter 9
	General algorithm
	Analysis by data type
	Model descriptions
	Experimental details

	Additional Material for Chapters 11 and 12
	Interventions in previous works
	Experimental details and extra results
	Details on the fairness use-case

	Bibliography

