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Abstract

In high-stakes decision-making environments, predictive models must deliver not only
high accuracy but also reliable uncertainty estimations and transparent explanations. This
study explores the integration of probability calibration techniques with Conformal Predic-
tion (CP) within a predictive process monitoring (PPM) framework tailored to healthcare
analytics. CP is renowned for its distribution-free prediction regions and formal coverage
guarantees under minimal assumptions; however, its practical utility critically depends on
well-calibrated probability estimates. We compare a range of post-hoc calibration meth-
ods—including parametric approaches like Platt scaling and Beta calibration, as well as
non-parametric techniques such as Isotonic Regression and Spline calibration—to assess
their impact on aligning raw model outputs with observed outcomes. By incorporating
these calibrated probabilities into the CP framework, our multilayer analysis evaluates
improvements in prediction region validity, including tighter coverage gaps and reduced
minority error contributions. Furthermore, we employ SHAP-based explainability to
explain how calibration influences feature attribution for both high-confidence and ambigu-
ous predictions. Experimental results on process-driven healthcare data indicate that the
integration of calibration with CP not only enhances the statistical robustness of uncertainty
estimates but also improves the interpretability of predictions, thereby supporting safer
and robust clinical decision-making.

Keywords: conformal prediction; explainable artificial intelligence; probability calibration;
predictive process monitoring

1. Introduction

High-stakes decision-making, especially in sectors such as healthcare, demands that
predictive models be not only accurate but also robust, transparent, and trustworthy [1]. In
these settings, the cost of erroneous predictions is exceptionally high, as misjudgments in
risk assessment can lead to delayed treatments, misallocated resources, or even adverse
patient outcomes [2]. As a result, ensuring that a model reliably quantifies uncertainty and
provides clear, interpretable explanations is paramount [3].

Conformal Prediction (CP) has emerged as a powerful framework for uncertainty
quantification (UQ) because it generates prediction regions with formal, distribution-free
coverage guarantees under minimal assumptions, most notably exchangeability [4—0].
This characteristic is especially beneficial in high-stakes applications where traditional
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probabilistic assumptions may be violated or hard to verify [7,8]. By constructing prediction
sets that are statistically valid regardless of the underlying data distribution, CP offers
a principled approach to ensure that the true outcome is captured with a pre-specified
level of confidence [9]. However, the practical impact of CP is critically dependent on the
quality of the underlying probability estimates [10,11]. In many real-world scenarios, raw
model outputs are miscalibrated—that is, the probabilities produced do not accurately
reflect the true likelihood of events [12]. This miscalibration creates a disconnect between
the statistical coverage guarantees provided by CP and the actual risk profile observed in
practice. In high-stakes environments, such a gap can compromise both the interpretability
of the prediction regions and the reliability of subsequent decision-making processes [13].
To address these challenges, researchers have developed a variety of post-hoc probability
calibration techniques. Parametric methods, such as Platt scaling and beta calibration,
impose a functional form to remap the raw outputs, while non-parametric approaches
like isotonic regression and spline calibration offer the flexibility to capture more complex
miscalibration patterns that often emerge in heterogeneous data [14].

Our work adopts a multilayer analytical framework that integrates these calibration
techniques with CP to enhance the reliability and interpretability of predictive process
monitoring (PPM) in high-stakes settings [15]. At the first layer, calibrated probability
estimates serve as a more faithful representation of the true event likelihoods. When these
refined probabilities are embedded within the CP framework, the resulting prediction
regions are not only statistically valid but also more reflective of real-world risk. This
integration is critical because tighter and more reliable prediction intervals directly translate
into better-informed decision making.

Moreover, a second layer of analysis is introduced through explainable artificial intelli-
gence (XAI) techniques—specifically, methods such as SHAP (SHapley Additive exPlana-
tions)—which explain the contributions of individual features to both high-confidence and
ambiguous predictions. Such transparency is essential for building trust among domain
experts and facilitating accountability in the deployment of Al systems. Preliminary analy-
ses suggest that ensemble-based methods, particularly those relying on gradient boosting,
may deliver superior performance on imbalanced and complex datasets. When combined
with non-parametric calibration approaches, these models can more effectively capture
subtle, non-linear patterns of miscalibration, thereby aligning predicted probabilities with
observed outcomes more closely.

Furthermore, integrating calibrated predictions into CP frameworks is expected to
yield prediction regions with reduced coverage gaps and lower minority error contribu-
tions—a crucial advancement for applications where underestimating risk for a minority
class can have significant repercussions. In healthcare, errors are not equal; a failure to
predict a critical event (a minority class error) is often far more dangerous than other
mistakes. By first using calibration to correct the systematically low probabilities often
assigned to rare events, our framework ensures that the subsequent CP step is less likely
to make these critical errors, thus enhancing patient safety. While the initial focus of this
work is on the methodological integration of calibration, CP, and XAl, later sections will
introduce clinical and healthcare applications to demonstrate how these advanced UQ and
interpretability techniques can be practically deployed in settings such as PPM for patient
care. By harmonizing robust statistical guarantees with transparent, interpretable insights,
our approach seeks to pave the way for more reliable and actionable Al in high-stakes
decision-making environments.

The remainder of the paper is organized as follows. Section 2 describes the PPM use
case from healthcare domain. Section 3 presents our methodology, including calibration
techniques, CP, and explainability methods. Section 4 outlines the experimental setup and
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evaluation metrics. Section 5 reports the results. Section 6 discusses the findings and their
implications. Section 7 reviews related work, and Section 8 concludes the paper with final
remarks and future research directions.

2. Use Case Description

Context and Scope. In our study, we focus on a process mining initiative that was
conducted by [16] at a regional hospital in the Netherlands, a facility with approximately
700 beds across multiple locations and an annual patient intake of around 50,000 indi-
viduals. An event log was constructed through SQL-based extraction, anonymized, and
archived in the 4TU. Center for Research Data repository [17]. Process mining—a data-
driven methodology for analyzing workflows via event logs enables here to address the
complexity of emergency care pathways, with a focus on sepsis management. By leveraging
process mining, our study specifically aims to predictively analyze trajectories leading
to Admission to the Intensive Care Unit (ICU), a high-stakes transition reflecting escalat-
ing care needs and systemic instability. Sepsis, a leading cause of ICU admissions and
in-hospital mortality, was selected due to its standardized diagnostic criteria (Systemic
Inflammatory Response Syndrome, SIRS) and time-sensitive treatment protocols.

Data Collection and Integration. Data spanning 1.5 years (November 2013-June 2015)
encompass 1050 sepsis patient cases, yielding 15,214 timestamped events. These were
extracted from three heterogeneous source systems: triage documentation, laboratory
systems, and financial/administrative databases (see Figure 1). Triage records provide
granular details such as symptom checklists, diagnostic order timestamps, and administra-
tion times for intravenous antibiotics and fluids. Laboratory data include blood test results
for leukocytes, C-reactive protein (CRP), and lactic acid, while financial and administrative
systems track admissions, care transitions (e.g., transfers to intensive care), discharges,
and post-treatment trajectories. Process mining’s strength in reconciling multi-source data
proved critical here, resolving inconsistencies (e.g., timestamp alignment, unit conversions)
to reconstruct temporally coherent patient pathways. This structured event log enables the
identification of patterns preceding ICU transfers, such as delayed antibiotic administration
or abnormal vital signs, which are often obscured in siloed healthcare datasets.

s — S
T T
;l;l record

emergency ward triage documents
- 5
———— —» —_—) _—>
g g record consolidate g extract
(SQL, Text -
mining)
laboratory lab documents data warehouse event log

-—T —>
g Q record
other wards financial records

Figure 1. The consolidation process of data from multiple source systems into a single event log as
described by [16].

Event Log Structure and Attributes. The final event log comprised 16 activity classes
organized into clinically meaningful categories: registration/triage (e.g., ER Sepsis Triage),
diagnostic procedures (leukocyte, CRP, and lactic acid measurements), treatment inter-
ventions (IV administration), care transitions (admissions, transfers), discharge processes
(five variants), and critical escalation events (ICU admissions). Each event was enriched
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with 28 attributes, including patient age, anonymized timestamps (preserving inter-event
durations), blood test values, diagnostic findings (e.g., organ dysfunction), and logistical
metadata such as care team assignments and clinical flags (e.g., hypotension, hypoxia).
Table 1 provides an illustrative excerpt, demonstrating the log’s granularity. For instance, a
single case (ID: B) spans registration, triage, diagnostic tests, and sepsis-specific interven-
tions, with CRP values indicating severe inflammation (240.0 mg/L). The dataset captured
890 unique process variants, reflecting diverse pathways such as direct ICU admissions,
delayed transfers after initial stabilization, and discharges without escalation—key insights
for understanding risk stratification in sepsis care.

Table 1. Excerpt from the utilized event log data.

Case ID Activity Timestamp ResourceID ... Age ... CRP
B ER Registration =~ 21-12-2014 11:04:24 A 45 .. -
B ER Triage 21-12-2014 11:17:19 C 45 ... -
B CRP 21-12-2014 11:36:00 B 45 ... 2400
B LacticAcid 21-12-2014 11:36:00 B 45 .. -
B Leucocytes 21-12-2014 11:36:00 B 45 .. -
B ER Sepsis Triage = 21-12-2014 12:15:45 A 45 ... -
J Admission NC  02-01-2014 20:09:47 F 80 ... -
J CRP 04-01-2014 08:00:00 B 80 ... 430
J Release A 06-01-2014 11:00:00 E 80 ... -

Focus of Our Research. In this work, we focus on forecasting Admission to ICU, a critical
juncture in sepsis care where timely intervention can significantly influence patient out-
comes. Our methodological pipeline extends the conventional application of classification
approaches by three more additional integrated components: (1) probability calibration
to align predictions with observed ICU admission rates, (2) CP to quantify uncertainty
through statistically valid prediction intervals, and (3) explainability mechanisms to elu-
cidate the drivers of model uncertainty. The danger of miscalibration can be illustrated
with a practical example. Consider a clinical decision support system designed to predict
a sepsis patient’s risk of ICU admission. A hospital protocol may mandate an immediate
specialist consultation if the predicted risk exceeds a 30% threshold. A model could be
highly accurate in discriminating between patients (e.g., have a high AUROC) yet be sys-
tematically underconfident, predicting a 25% risk for a patient whose true risk is 40%. In
this case, the life-saving consultation is not triggered due to the miscalibrated probability,
leading to a delayed intervention and a potential adverse outcome. This highlights that for
a model to be clinically useful, its confidence scores must be reliable. This gap between a
model’s discriminative power and the trustworthiness of its probability estimates is a cen-
tral challenge that our work addresses. The subsequent section formalizes this framework,
detailing the interplay between these components and establishing evaluation mechanisms.

3. Methodology

Figure 2 provides a comprehensive overview of the proposed pipeline, which system-
atically enhances the reliability and interpretability of well-calibrated uncertainty-aware
binary classification models. The process begins with data cleaning, process mining, and
feature engineering to transform raw event logs into a structured dataset. This dataset is
then split into training, calibration, and test sets. In the supervised learning phase, multi-
ple classifiers, including Decision Tree, Random Forest, XGBoost, and CatBoost, undergo
hyperparameter tuning to optimize predictive performance. To improve the trustwor-
thiness of probability estimates, post-hoc calibration techniques are applied, allowing
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for a comparative evaluation of their effectiveness. Further, UQ is incorporated via split
conformal prediction (SCP) to assess how different calibration approaches interact with
uncertainty estimation. This iterative exploration of classifier performance, calibration
reliability, and conformal uncertainty measures provides a robust framework for producing
well-calibrated risk scores with quantified confidence levels. Finally, SHAP analysis is
employed to explain model predictions, distinguishing between certain and uncertain
classifications by attributing importance scores to individual features. Our framework
supports robustness through bootstrapped evaluation and statistical testing. It ensures
transparency by using SHAP-based feature attribution to clarify feature contributions
to certain and uncertain predictions. Trustworthiness is supported through probability
calibration to align predicted risks with observed outcomes and SCP to provide formal
coverage guarantees and is quantified using the metrics described in Sections 4.3 and 4.4.
The interplay between these components ensures a rigorous, interpretable, and data-driven
decision-making pipeline.

3.1. Predictive Process Monitoring

Process Data Definition. PPM formalizes the task of forecasting process outcomes from
partial execution traces. In the context of sepsis care, this translates to predicting whether a
patient will be admitted to the ICU based on their evolving hospital trajectory. Mathemati-
cally, a process event ¢ € E represents a timestamped action in a patient’s care pathway,
structured as a tuple (4, ¢, tstart, tcompletes V1, - - -, v, ), where a denotes the activity label (e.g.,
ER Registration, CRP Measurement), ¢ identifies the unique patient case, and tsart and
tcomplete cOrrespond to the start and completion timestamps. The attributes v; encapsulate
event-specific clinical markers such as lactic acid levels or compliance with SIRS criteria.
The event universe E= A X C x T x T x V; x -+ x V, captures all possible interactions
in the care pathway. Projection functions allow the extraction of individual event com-
ponents, facilitating a granular analysis of activities, timestamps, and clinical parameters.
A patient’s care trajectory is represented as a trace 0, = (ey,. .., €|o| ), where events are
ordered by start time. For predictive monitoring, the prefixes hd;(cc) = (ey, ..., ¢;) denote
partial execution sequences, and suffixes tl;(0;) represent the remaining events. The event
log Ec = {oc | ¢ € C} aggregates all patient trajectories, serving as the foundation for
predictive modeling.

Data Preprocessing. The dataset D = {(x;,y;)} is constructed via a feature function
feat : E¥ — RY, where x; = feat(hd;(c;)) encodes key attributes relevant to ICU admis-
sion risks. Temporal features capture elapsed time since triage and intervals between
critical actions such as antibiotic administration. Clinical attributes include blood test
results, leukocyte counts, and indicators of sepsis severity based on SIRS criteria. Sequen-
tial patterns track the frequency of ICU transfers and variations in discharge protocols,
revealing deviations from standard care pathways. To enhance predictive accuracy, the
original event log was transformed into a structured dataset incorporating 30 additional
process-specific features. Temporal dynamics were represented through metrics such as
elapsed time between consecutive events, average hour of care activities, and total du-
ration from registration to discharge. Activity patterns captured workflow inefficiencies
by analyzing the maximum frequency of repeated activities. Sequential transitions were
encoded through binary indicators for critical event pairs, such as IV Antibiotics -
ICU Transfer, highlighting deviations from expected clinical progressions. A structured
preprocessing pipeline ensured statistical rigor and interpretability. Outlier removal was
applied to filter extreme values in event durations and laboratory results, refining the
dataset to 995 high-confidence cases. Robust scaling standardized numerical features, such
as leukocyte counts and time intervals, using median and inter-quartile range adjustments
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to mitigate the influence of extreme values. Class imbalance, a critical challenge given
the ICU admission rate of approximately 10%, was addressed through stratified sampling,
preserving the natural distribution in training, calibration and test sets without resorting to
synthetic data generation, thereby maintaining the temporal integrity of patient trajectories.

D
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Figure 2. Overview of the proposed framework.

Supervised Learning. The predictive task is formulated as a binary classification
problem that maps partial traces to ICU-admission outcomes. A labeling function
outcome : Ec — 0,1 assigns y, = outcome(c,), where y. = 1 if patient ¢ was admitted
to the ICU and y, = 0 otherwise. A probabilistic classifier M : R? — [0, 1] estimates the
posterior probability Pr(y; = 1 | x;), producing risk scores p; = M(x;). These scores are
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converted to binary predictions i = I(pi > ), where the threshold 7 controls the trade-off
between sensitivity and specificity. The model is trained by minimizing a loss function
L(M, Dtrain) over the training subset Dtrain, thereby optimizing its ability to map partial
traces to ICU-admission outcomes with high predictive accuracy.

3.2. Calibration Methods

Despite achieving high predictive accuracy, models often produce probability esti-
mates that diverge from true empirical likelihoods—a critical concern when probabilistic
outputs inform risk-sensitive decisions such as admission to ICU. For example, a predicted
probability of p; = 0.9 might correspond to observed positive outcomes in only 70% of sim-
ilar cases, indicating systematic overconfidence. Calibration rectifies such miscalibrations
by post-processing raw scores to ensure reliability: calibrated probabilities ﬁfal = ¢(pi)
must satisfy the statistical consistency condition:

Elyi [ ¢(pi) =pl=p VYpe[01] 1)

where ¢ : [0,1] — [0,1] is a calibration function learned from held-out data.

The calibration workflow mandates three distinct partitions of the dataset D: Diy,in
trains the base model M, D, fits the calibration function ¢, and Diest evaluates the
calibrated system. This strict separation prevents information leakage, as ¢ adapts
to M’s biases without overfitting to test data. Formally, the optimal ¢* minimizes a
calibration-specific loss:

(P* = argmin Z Lcal(yjf 4)(;5])) (2)

peP (Xjfyj)epcal

where @ denotes the hypothesis space of calibration functions. Parametric families ®
enforce interpretable mappings at the cost of rigid assumptions, while non-parametric
approaches (e.g., isotonic regression) flexibly adapt to arbitrary miscalibration patterns.

Calibration proves indispensable in operational settings where predicted probabilities
directly influence critical decision-making. The selection of a probability calibration method
is a critical, yet often overlooked, step in building trustworthy predictive models. There
is no single method that is universally superior; parametric approaches are simple and
robust to small calibration sets, while non-parametric methods offer greater flexibility to
correct complex miscalibration patterns. Our study therefore, employs a comparative ap-
proach, evaluating a range of techniques. The rationale for this is to investigate our central
hypothesis: that the choice of calibration method has significant and differing downstream
consequences for the safety of uncertainty estimates (via CP) and the transparency of the
model’s reasoning (via XAI). By comparing multiple methods, we can expose the critical
trade-offs between them, providing a more complete picture of how to build a reliable and
interpretable system. The subsequent sections detail calibration paradigms that address
distinct challenges, including handling class imbalance, ensuring robustness against rare
but critical escalation events, and preserving temporal consistency in dynamic patient
care pathways.

3.2.1. Platt Scaling

Platt Scaling, also known as logistic calibration, corrects model miscalibration by
applying a logistic transformation to raw prediction scores p; = M(x;) [18]. This method
assumes a sigmoidal relationship between uncalibrated outputs and true probabilities in
the log-odds space. The calibration function is formally defined as:

Pplare(Pi) = o(a - logit(p;) +b), 3)
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= H% denotes the logistic sigmoid, logit(p) = In (%) converts probabilities

to log-odds, and parameters 2,b € R are optimized on the calibration set D ,. These

where 0(2)

parameters minimize the negative log-likelihood objective:

(a*,b") = argrbnin Z []/j 1“4’Platt(ﬁj) +(1- yj) 1“(1 - 4)Platt(ﬁj))}' 4)
ab (xj,y;)€Deal

The coefficients a and b adjust the slope and intercept of the sigmoid curve, respectively,
counteracting systematic biases in the base model’s predictions. For instance, if M exhibits
overconfidence (e.g., assigning p; = 0.9 to cases where only 70% are positive), Platt Scaling
compensates by learning a < 1, effectively flattening the sigmoid to produce conservative
probability estimates.

3.2.2. Isotonic Regression

Isotonic Regression addresses calibration through a non-parametric, monotonic trans-
formation of raw model scores p;. Unlike parametric methods like Platt Scaling, it makes
no assumptions about the functional form of miscalibration, instead learning a piecewise
constant calibration function ¢y, that preserves the ordinal relationship between scores.
Formally, the calibration function satisfies:

(PIso(ﬁj) < (PISO<ﬁk) whenever ﬁj < FA’kz (5)

ensuring that higher raw scores never map to lower calibrated probabilities.
The optimal calibration function minimizes the squared error over D,

Pio =argmin Y (y;—(p))’, ©)

(Pe]:mono (xj/yj>€Dcal

where Frmono is the class of all monotonic non-decreasing functions. This optimization
is solved via the Pool Adjacent Violators (PAV) algorithm, which iteratively merges adja-
cent score intervals until monotonicity constraints are satisfied. For a sorted sequence of
predictions p; < pp < --- < Py, the algorithm partitions them into K bins {Bj, ..., Bx},
assigning each bin a calibrated probability:

Y v 7)

1
B &,

(PIso(Bk) = B

3.2.3. Beta Calibration

Beta Calibration generalizes logistic calibration by modeling miscalibration through a
parametric family of Beta distributions. This method extends Platt Scaling’s two-parameter
sigmoid to a three-parameter function, enabling correction of asymmetric miscalibration
patterns. The calibration function is defined as:

‘PBeta(ﬁi) = F(Cl ’ 1Ogit(ﬁi) +b; ‘X/ﬁ)/ (8)

where F(-; &, B) is the cumulative distribution function (CDF) of a Beta distribution with
shape parameters &, f > 0, and 4, b € R scale and shift the log-odds scores. The additional
parameters « and 8 provide flexibility to model skewed or heavy-tailed deviations from
calibration.

Parameters {a,b, a, B} are jointly optimized on D, via maximum likelihood estimation:

{a*,b*, 0%, "} = argmin Z [Vj In ¢peta (pj) + (1 —y;) In(1- ¢Beta(ﬁf))]' ©)
a,b,a,B (Xj,]//‘)GDcal
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Beta Calibration addresses limitations of Platt Scaling when miscalibration is non-sigmoidal.
While more flexible than Platt Scaling, Beta Calibration requires larger D, sizes to robustly
estimate four parameters. Overfitting risks emerge when calibration data is sparse, often
mitigated via Bayesian priors on & and S.

3.2.4. Venn-Abers

Venn-Abers calibration provides a transductive framework for probability calibra-
tion rooted in CP, offering distribution-free validity guarantees under the assumption of
exchangeability. Unlike parametric or isotonic methods, it outputs calibrated probability
intervals rather than point estimates, making it uniquely suited for applications requiring
rigorous UQ.

Given a base model M, Venn-Abers calibration operates on the calibration set
Deal = {(xj, yj)}}":l by first defining a conformity score s(x, y), often chosen as s(x,y) =
y-pi+ (1 —y)-(1—p;), where p; = M(x;). For each new instance Xpew, it computes
two smoothed probability estimates:

o |{] € Dcal U (XIIEW/ 0) | S(Xj/]/j) < S(Xnew/O)H
B m—+1

Po , (10)

_ |{] € Dcal U (xneer) | S(Xj/yj) S S(Xnew/l)}l

— : a1

P1

where pg and p; represent the empirical probabilities of observing conformity scores at least

as extreme as the hypothetical labels ynew = 0 and ynew = 1, respectively. The calibrated

P1
potp1’

probability interval is then [min(py, p1), max(po, p1)], with the point estimate pyp =

3.2.5. Spline Calibration

Spline Calibration combines the flexibility of non-parametric methods with the smooth-
ness of parametric approaches by modeling the calibration function ¢spjine as a piecewise
polynomial. This method partitions the raw score range [0,1] into K intervals (knots)
and fits a polynomial of degree d within each interval, constrained for continuity and
smoothness at knot boundaries. For cubic splines (d = 3), the calibration function takes
the form:

K
Pspline (Pi) = kz BiBi(pi), (12)
=1

where By(+) are basis functions (e.g., B-splines) and By are coefficients learned from D).
The optimization objective minimizes a penalized squared error:

K 2 1 2
B*=argmin ) (yj —kZﬁkBk(ﬁj)> +)\/0 {4)/S/pline(p)} dp, (13)
=1

(%j,¥)€Dcal

where A > 0 controls the trade-off between fit and smoothness, penalizing large curvature
in ¢gpline-

Spline calibration adapts to diverse miscalibration patterns while avoiding the staircase
artifacts of Isotonic Regression. For example, raw scores clustered near p; = 0.8 with an
empirical positive rate of 60% can be smoothly adjusted downward without abrupt binning.
The number of knots K and penalty A are tuned via cross-validation on D), balancing
underfitting and overfitting risks.

3.3. Conformal Prediction

CP extends UQ to generate provably valid prediction sets for binary outcomes, ensur-
ing coverage guarantees without distributional assumptions. The framework’s validity
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rests on the minimal assumption of exchangeability, which posits that the calibration data
and new test instances are drawn from the same underlying data-generating process, re-
gardless of its form. This is a significant advantage in healthcare, where data is often too
complex to fit traditional parametric distributions. By relying only on exchangeability, CP
remains valid even when used with complex “black-box” models whose outputs have
unknown distributions.

Given a binary classifier M : X — [0, 1] producing estimates p; = Pr(y; = 1| x;), a
non-conformity score S(x,y) quantifies model uncertainty for labels y € {0,1}:

1-p;, ify=1,
Sy =4 (14)
ﬁi lf]/ZO,

where lower scores indicate stronger agreement between x; and y. Using the calibration
set Dea = {(xj,yj)}]f"zl, scores 5; = S(xj,y;) are computed, and the (1 — «)-quantile 4 is

derived as:
G- inf{q cg . UEPal {(x:n—i-—l’_r?n—&-l)} s s ab o a} (15)
For a new instance x,, 1, the prediction set C(x,11) C {0,1} is:
Clxus1) = {y € {01} : S(xs1,9) < 7} (16)
Under exchangeability of D, and test data, CP guarantees:
Pr(yns1 € C(xup1)) > 1—a 17)

irrespective of M’s accuracy. Prediction sets may yield confident predictions (C = {0}
or {1}) or abstain (C = {0,1}) when uncertainty exceeds «. In PPM, this enables risk-
aware decision-making by flagging uncertain cases for human review while ensuring
auditability through provable coverage rates. The framework’s validity depends critically
on exchangeability—a challenge in temporal processes with concept drift, addressed in
subsequent subsections via adaptive methods.

In this study, we adopt the SCP approach, a computationally efficient and widely
used variant of the original transductive framework. Also known as Inductive Conformal
Prediction, SCP decouples the calibration from the prediction phase, making it highly
scalable and practical for real-world applications. The procedure involves the following
steps: First, the available data is partitioned into two disjoint sets: a proper training set,
Dirain, and a calibration set, D ,;. The model M is trained exclusively on Dy,in. Second,
the trained model is used to compute a non-conformity score, s; = S(x;,y;), for every data
point (x;,y;) in the held-out calibration set. This yields a set of 1 = | D, | calibration scores,
{s1,52,...,5m}, which provides an empirical measure of the errors the trained model makes
on data it has not seen before. Third, this set of calibration scores is used to determine a
single critical threshold, 4, that will guarantee the desired coverage rate, 1 — . To account
for finite sample effects, this threshold is calculated as the appropriate empirical quantile of
the calibration scores. Let S(1) < 5(2) <...< S (m) be the scores sorted in non-decreasing
order. The threshold § is set to the k-th smallest score:

q=3@), where k=[(m+1)(1-a)] (18)

If k > m, we can consider § = oo, ensuring all prediction sets are valid. This value of § is
computed only once and is then fixed.
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Finally, for any new test instance x;, 1, the prediction set C(x;1) is constructed using
the same rule as before, comparing the non-conformity scores of potential labels against
the fixed threshold §:

Clxpar) = {y € {0,1} : S(xus1,¥) < 7} (19)

The crucial advantage is that this step does not require access to the calibration set or
retraining the model. Under the assumption that the instances in D, and the new
test instances are exchangeable, SCP provides the same formal coverage guarantee,
Pr(yy+1 € C(xp41)) > 1 —a.

For temporal process data, where exchangeability may be violated due to concept
drift, SCP provides a baseline for UQ. Its simplicity and speed make it particularly useful
in high-throughput environments, such as real-time fraud detection, where models must
generate auditable predictions without computational overhead.

3.4. Explainability of Uncertain Predictions via SHAP

CP (Section 3.3) determines where a model is confident in its outputs (|C(x;)| = 1) or
remains uncertain (|C(x;)| = 2). Here, C(x;) denotes the set of plausible labels returned
by the conformal predictor for an instance x;. When C(x;) contains only one label, the pre-
diction is deemed certain. Conversely, if it contains two labels, the prediction is uncertain,
indicating an elevated level of ambiguity.

Despite highlighting these uncertain cases, CP alone does not explain why such
ambiguity arises. To understand the drivers behind model certainty and uncertainty, we
employ an explainable Al (XAI) approach. While several XAl methods exist, we selected
SHAP (SHapley Additive exPlanations) [19] due to its distinct advantages for our research
questions. First, SHAP provides local, instance-level explanations, which are essential
for analyzing why an individual prediction results in a certain (single-label) or uncertain
(multi-label) conformal set. Second, its foundation in game theory ensures theoretical
guarantees of consistency and accuracy in attributing feature importance, overcoming the
potential instability of other methods like LIME.

SHAP Formalization. Consider a binary classifier M : X — [0,1] with a log-odds
representation:

0 = (M) = In( 25 ). 20

For a given instance x; and feature j, the SHAP value ¢ij is defined so that

d
f(xi) = dio+ Y Pirs (21)
k=1

where ¢jp = Ex.p,,. [f(x)] is the baseline expectation. Each ¢;; quantifies the contribution
of feature j to the instance’s deviation from the baseline, computed via

op— xSRI s u g - s, @)
SC{1,...d\{j} ’

where f(S) is the conditional expectation of f(x) given the subset S.
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Cluster Analysis Across Calibration Approaches. We apply this SHAP-based explanation
framework to the CP sets C(x;) derived from various calibration methods. Specifically, we
partition the test set Diegt into:

Ceertain = {xi € Dhest : ‘C(Xl)l = 1}/

(23)
Cuncertain = {xi € Diest : ‘C(X1)| = 2}‘

For both certain and uncertain groups, we calculate the mean absolute SHAP values
per feature:

qb]cler ain 1 Z | 47ij|r

| Ccertain | X; €Ceertain (24)

a}mcertain _ 1 Z | le] | )

| uncertaln‘ X; €Cuncertain

Conducting this analysis for each calibration approach in tandem with chosen CP methods
exposes how feature importance varies under different model-tuning strategies, ultimately
revealing the factors that cause a model to remain uncertain.

4. Experiment Settings
4.1. Research Problem and Questions

In this section, we introduce the primary research problems and questions that guide
our investigation. We focus on a binary classification task in the PPM domain, characterized
by sparse data and a significant class imbalance. Our research explores the interplay of
interpretable and black-box classifiers, probability calibration methods, CP approaches,
and explainability via feature attribution.

RQ1: How do different interpretable and black-box classifiers perform on a sparse, imbalanced
binary classification problem, considering both thresholded and threshold-free metrics?

To address this question, we evaluate a variety of classifiers, ranging from transparent
(e.g., Decision Trees) to black-box (e.g., XGBoost). We measure performance using Area Un-
der the Receiver Operating Characteristic Curve (AUROC), Area Under the Precision-recall
Curve (AUPRC), and Matthews Correlation Coefficient (MCC), capturing both threshold-
dependent and threshold-free perspectives. A bootstrap resampling approach is applied
for robust estimation, and statistical significance tests (Friedman and Nemenyi) are used to
identify any meaningful performance differences.

RQ?2: How do different probability calibration techniques compare against each other and
against uncalibrated models in terms of calibration quality?

Accurate probability estimates are crucial, especially in imbalanced scenarios. We
examine several calibration techniques (e.g., Isotonic Regression, Platt Scaling, Beta Cali-
bration, Venn-Abers) and compare them to uncalibrated outputs. Our evaluation relies on
standard metrics such as Expected Calibration Error (ECE), Maximum Calibration Error
(MCE), and Logarithmic Loss (LogLoss). To verify whether differences among methods are
statistically significant, we again employ statistical significance test.

RQ3: How does integrating calibrated probabilities affect the performance of Conformal
Prediction methods?

A key contribution of this study is investigating how calibration alters CP outcomes.
We apply SCP, measuring coverage, efficiency (e.g., Single Set Ratio, Minority Error Con-
tribution), and other relevant metrics. By conducting statistical significance tests, we
determine whether and how calibrated probability estimates improve CP-based UQ.
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RQ4: How do different probability calibration techniques affect the accuracy and reliability of
high-confidence single-label predictions within the Conformal Prediction framework?

To address this question, we evaluate chosen calibration methods specifically on
the subset of predictions where the CP framework assigns a single label, indicating high
confidence. We assess performance using different evaluation measures. Statistical signifi-
cance tests are employed to determine whether differences among calibration methods are
meaningful, thereby providing insights into how each calibration technique influences the
reliability and accuracy of confident predictions in high-stakes clinical settings.

RQ5: How do different calibration methods influence feature attribution and interpretability
for certain vs. uncertain predictions, as evaluated via SHAP?

After identifying instances where CP deems the model confident (single-label sets)
or uncertain (multi-label sets), we use SHAP to analyze feature contributions. We then
perform a grid comparison across various calibration and CP combinations, focusing on
how calibration may shift or reshape feature attributions. This analysis elucidates whether
certain calibration strategies consistently alter the importance of predictive features for
high-confidence versus low-confidence predictions.

4.2. Evaluation of Classification Methods

Evaluating the proposed framework requires considering (1) classification performance,
which assesses how effectively the model distinguishes between positive and negative in-
stances, (2) calibration quality, which measures how closely its predicted probabilities match
actual outcome frequencies, and (3) UQ, which ensures that CP sets meet desired coverage
and efficiency levels. This section details the metrics used for these three perspectives.

Let Diest = {(xi, yi)}}, be the held-out test set, where y; € {0,1}. For each instance i,
the model M produces a probability p; = M(x;). A hard classification label §; follows from

applying a threshold t:
1, ifp;, >,
gi=q = 25)
0, otherwise.
Define the confusion matrix counts:
N N
TP =) I(9i=1Ay;=1), TN=) I(§i=0Ay; =0),
i=1 i=1 26)

N
FP =) I(§; =1Ay; =0),
i=1

Based on these counts, we employ:

N
FN =) I =0Ay; =1).
i=1

Area Under the ROC Curve (AUROC). The Receiver Operating Characteristic (ROC)

curve plots

TPR(7) = — ()

TP(7) + EN(1)’

FP(7)

TR R NG

(27)

for all thresholds T € [0, 1]. The AUROC is the integral of TPR with respect to FPR. Values
near 1.0 indicate strong discrimination, whereas 0.5 implies random guessing.

Area Under the Precision-Recall Curve (AUPRC). When the positive class is rare, the
Precision-Recall (PR) curve is often more informative. It plots

Prec(t) = TP(7)

TP(t) +FP(1)’

TP(7)

Ree(T) = TPy + EN(D)

(28)
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across thresholds. AUPRC integrates these values, with higher scores indicating better
identification of the minority class in imbalanced scenarios.
Matthews Correlation Coefficient (MCC). The MCC accounts for all four confusion matrix
elements in a single coefficient:
TP x TN — FP x FN

MCC = . (29)
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

It ranges from —1 to +1. Values near +1 correspond to perfect classification, 0 indicates ran-
dom performance, and negative values imply an inverse relationship between predictions
and true labels.

4.3. Evaluation of Calibration Approaches

We use the following metrics to quantify calibration quality:

Expected Calibration Error (ECE). Partition the interval [0, 1] into K bins of equal width:
[bo,b1), ..., [bk—1,bk], where by = 0 and by = 1. Let By be the set of indices whose predicted
probability falls into bin k. Then define the mean predicted probability p, and the empirical
frequency of positive outcomes ¥, in bin k as:

pk |B ‘ sz/ ]/k |B | Zyl (30)

i€ By i€By
The ECE is given by:

ECE = Z' B 7y~ il (31)
k_
A smaller ECE indicates that predicted probabilities align more closely with observed
outcomes across bins.

Maximum Calibration Error (MCE). While ECE is an average measure, MCE shows the

largest single-bin deviation:
MCE = P — Vil 32
max [P — Tl (32)

A high MCE reveals at least one region where predictions are significantly over- or
underconfident.

Logarithmic Loss (LogLoss). LogLoss (or cross-entropy) penalizes overconfident but
incorrect predictions:

N
LogLoss = — 1 Z [yl In(p;) + (1 —y;) In(1 — ﬁi)}. (33)
z:l
Lower LogLoss values indicate that the model’s predicted probabilities better match actual
labels, accounting for both correctness and confidence.

These calibration metrics offer more than a statistical summary; each provides a
distinct insight into the model’s clinical utility and trustworthiness. A low ECE signifies
that the model’s probabilities are reliable on average, making them suitable for strategic
decisions like resource planning. The MCE, in contrast, serves as a stress test for protocol
safety by identifying the single risk bracket where the model is most untrustworthy, thus
preventing systematic errors for specific patient subgroups. Finally, a low LogLoss is
crucial for individual patient safety, as it penalizes a model severely for high-confidence
mistakes, thereby discouraging the kind of “false reassurance” that can lead to delayed
care. A comprehensive assessment of a model’s practical value requires evaluating all
three aspects.
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4.4. Evaluation of Conformal Prediction

CP methods output a prediction set C(x;) € {0,1} for each instance x;. In binary
classification, such sets may be {0}, {1}, or {0, 1}, reflecting varying degrees of uncertainty.
Two major goals of conformal predictors are:

1.  Coverage: ensuring the true label is included with high probability.
2. Efficiency: keeping prediction sets as small as possible.

4.4.1. Coverage Metrics

Marginal Coverage. A valid conformal predictor with nominal coverage 1 — a should
include the correct label for a fraction =~ (1 — «) of test points. We define the empirically
observed coverage as:

1 N
Coverage = N 1221 I(y; € C(x:)), (34)

where N is the total number of predictions or data points, and I(-) is the indicator function
that returns 1 if the condition is true and 0 otherwise. High coverage indicates reliability
but, by itself, does not guarantee balanced coverage across classes.

Average Coverage Gap. This metric quantifies the deviation of the observed empirical
coverage from the desired nominal coverage of 1 — a. It measures whether the CP method
is under-covering or over-covering on average and is defined as:

AverageCoverageGap = (1 — a) — Coverage. (35)

A low Average Coverage Gap indicates that the actual coverage closely aligns with the
desired coverage, which is especially important in imbalanced settings where achieving
the target coverage uniformly across classes can be challenging.

4.4.2. Efficiency Metrics

Single Prediction Set Ratio. Returning {0,1} for every instance ensures near-perfect
coverage but offers little practical utility. Let

1 N
i io=—)1 ) =1).
SingleSetRatio N ; (IC(xi)| =1) (36)
A higher value means the predictor more frequently produces confident, single-label sets.
Minority Error Contribution. Not all coverage misses are equally costly. In an imbal-
anced dataset, missing a positive case (e.g., failing to include label 1 in C(x;) when y; = 1)
may be more critical. Define:

Yiy—1 1(1 € C(x;))
T Ly € Cx))

This ratio indicates how many of the total coverage misses occur on the minority class.

MinorityErrorContribution = (37)

4.4.3. Effectiveness of Confident Predictions

When the CP method returns a single-label prediction set |C(x;)| = 1, we say the
prediction is confident. While Section 4.2 defines global metrics such as Precision, Recall,
and MCC for the entire dataset, it is also insightful to evaluate these metrics exclusively
on the subset of instances for which the prediction is single-labeled. This subset-specific
view reveals how well the method actually performs when it chooses to be certain. In
addition, we track Specificity and the Minority Class Ratio to understand the nature of
confident decisions.
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Restricting Metrics to Confident Subset. Let

Dconf = { (Xiryi) € Drest ’ ‘C(xi)‘ = 1} (38)

be the confident subset of the test data, i.e., all test points for which the conformal set is
a single label {0} or {1}. For each instance in Dy, define the predicted label §; = C(x;).
We can then form a confusion matrix TP.ont, FPeonf, TNeonf, FNeonf restricted to Degns
and calculate:

TP,
Precisionggns = W();&Jf
con con
TP
Recall...r— __ —tconf
ecalleonf TPconf —+ FNconf ’ (39)
N
Specificity s = W—m’m

where the terms in the numerators and denominators denote true positives, false positives,
etc., respectively, on Dgpnf.

In an imbalanced dataset, it is also crucial to assess how frequently confident predic-
tions are for the minority (positive) class. Define:

™=z

1(c(x)| =1 A Cix) = {1})
iu(ycw 1)

Minority Class Ratio [%] = 100 x *

Il
_

, (40)

where {1} designates the positive (minority) class, and I(-) is the indicator function. A
high value of Minority Class Ratio means that, among all single-label sets, a substantial
fraction are {1}. Depending on the accompanying Precision and Recall values for these
cases, this could indicate either strong confident detection of positives or an overestimation
of risk leading to potential false positives.

4.5. Hyperparameter Optimization

Hyperparameters govern how models learn from the training data and can signifi-
cantly impact both predictive accuracy and calibration. In this work, we used Bayesian
Optimization with Gaussian Processes to select hyperparameters for each classifier (XG-
Boost, CatBoost, Decision Tree, Random Forest). Compared to grid or random search,
Bayesian Optimization adaptively balances exploration of less-examined hyperparameter
regions and exploitation of promising configurations by using an acquisition function like
Expected Improvement (EI) [20]. For each model, we defined an objective function that
measures performance via MCC (see Section 4.2 for definition). The dataset D was split into
10 folds using stratified sampling to preserve the original class ratio. Each candidate hyper-
parameter set was evaluated by 10-fold cross-validation, and the mean MCC across folds
served as the performance score. Table 2 summarizes the search intervals for each model.
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Table 2. Hyperparameter optimization settings for the ML models. Intervals denote the continuous
ranges explored via Bayesian Optimization.

Model Hyperparameters (Search Interval)

max_depth: (3, 20), gamma: (0, 1), learning_rate: (0.01, 0.6), subsample:
XGBoost (0.5,1), colsample_bytree: (0.5, 1), reg_alpha: (0.1, 20), reg_lambda:
(0.1, 20), n_estimators: (100, 1000)

max_depth: (3, 10), learning_rate: (0.0001, 0.4), subsample: (0.4,1),
CatBoost colsample_bylevel: (0.4, 1), 12_leaf_reg: (0.1, 20), n_estimators:
(100, 500)

max_depth: (3, 15), min_samples_split: (2, 10), min_samples_leaf: (1, 10),
max_features: (0.1, 1.0)

Decision Tree

n_estimators: (100, 500), max_depth: (3, 20), min_samples_split: (2, 10),

Random Forest min_samples_leaf: (1, 10), max_features: (0.4, 1)

4.6. Data Structure for Evaluation

A robust evaluation requires not only splitting the data into training and test sets
but also reserving a dedicated portion for calibration and UQ. In this study, we adopt
a Bootstrapping approach to generate multiple training and out-of-bag (OOB) samples,
ensuring that our performance estimates are less sensitive to a particular data partition.
Specifically, we perform the following steps for each bootstrap iteration b € {1,..., B},
where B = 200:

1. Bootstrap Sampling. Let the preprocessed dataset be
D = {(x,y)},, N =99, (41)

where y; € {0,1} represents the binary target (e.g., ICU admission in the sepsis
domain). For each iteration b, we draw N samples with replacement from D to create

Dfrain = { (X],]//) |] ~ U{l,N}}jl\Ll. (42)

The points not selected in this bootstrap sample form the out-of-bag (OOB) set, de-
noted by OOB’ C D. Typically, |OOB? | ranges between 343 and 394 instances (ap-
proximately 35% to 40% of the data).
2. Stratified Splitting of OOB. We further split OOB? into a calibration set Dfal and a
test set Dfest.
preserving the class ratio of OOB!. Formally:

The calibration set is a stratified sample of fixed size (171 instances),

DY, = { (x4, yx) € OOB" : k € St

a

1}, Dby =O00B"\ D!, (43)
With this partition, the minority class proportion in D?al remains representative
of OOB".

3. Pipeline Execution. For each iteration b:

(a) Model Training: Train a new model M, (e.g., XGBoost, CatBoost, Decision Tree,
Random Forest) on Di’rain.
(b) Calibration and UQ: Use Dé’al to apply post-hoc calibration (Section 4.3) and to

estimate uncertainty (Section 4.4).
(c) Model Evaluation: Report metrics on Dl..

This OOB bootstrapping approach ensures an unbiased estimate of each model’s
performance and calibration quality. By repeatedly sampling and training on different
subsets, we reduce the dependence on a single train-test split and gain a more robust
understanding of how well models generalize to new data.



Appl. Sci. 2025, 15, 7925

18 of 42

4.7. Statistical Significance Test

We assess the significance of our results—derived from multiple OOB bootstrap sam-
ples—using the Friedman test followed by the Nemenyi post-hoc test for pairwise comparisons.

The Friedman test, a non-parametric repeated-measures method [21], ranks each
algorithm’s performance across bootstrap samples and compares their average ranks. Its
statistic is computed as

12n

k(k+1)

k 2
k(k+1)
2
2 Rj A S,

j=1

XF= , (44)

where k is the number of algorithms, 7 is the number of bootstrap samples, and R jis the sum
of the ranks for the jth algorithm. The null hypothesis (Hp) asserts no significant differences
among methods; if p < 0.05, Hy is rejected and we proceed with the Nemenyi test.

The Nemenyi test computes a critical difference (CD) as

k(k+1)

D=4 on '

(45)

which indicates whether the difference in average ranks between any pair of methods is
statistically significant. This Friedman—Nemenyi framework is robust against non-normal
data and effectively compares multiple models while mitigating Type-I error risks.

5. Results
5.1. Classifier Performance Comparison (RQ1)

Table 3 summarizes the performance of four supervised learning models evaluated
on the task of predicting sepsis readmissions. Each metric (AUROC, AUPRC, and MCC)
is averaged over 200 bootstrap replications, providing a robust estimate of the models’
generalization capabilities. CatBoost achieves the highest mean scores across all three
metrics: 0.8506 & 0.05 in AUROC, 0.6807 £ 0.09 in AUPRC, and 0.6028 + 0.09 in MCC. This
suggests that CatBoost consistently balances the identification of true positives and true
negatives while maintaining strong discrimination between classes and handling the class
imbalance inherent to sepsis readmissions.

Table 3. Evaluation of Supervised Models Across 200 Bootstrap Samples.

Model AUROC AUPRC MCC

XGBoost 0.8356 (+0.05) 0.6567 (+0.09) 0.5839 (+0.09)
CatBoost 0.8506 (x0.05) 0.6807 (+0.09) 0.6028 (+£0.09)
Decision Tree 0.7437 (+0.07) 0.6340 (+0.10) 0.5816 (+0.11)
Random Forest 0.8306 (+0.06) 0.6652 (+0.09) 0.5828 (+0.10)

AUROC measures the overall separability of the positive and negative classes by
varying the decision threshold. CatBoost’s AUROC surpasses those of XGBoost, Random
Forest, and Decision Tree, indicating that it produces a better rank ordering of patients
likely to be readmitted. The Friedman test (Figure 3) confirms that the differences among
the four models are statistically significant (X2 ;oqman = 314.6368, p = 6.7562 x 10768). Post-
hoc Nemenyi tests reveal that CatBoost holds a significant edge over all other methods,
highlighting its superior capability to discriminate between sepsis patients who will and
will not be admitted to ICU.



Appl. Sci. 2025, 15, 7925

19 of 42

2
X Fricaman(3) = 314.6368, p =6.7562x107%8

T . 1
pNEmEﬂw =777 x 10 -
) 1
Phemenyi < 1%107°
} 1
Puemenys <1x10°
‘

)
Piemenyi <1210
T

Puemenys <1x 10

AUROC

0.8

0.6+

Decision Tree Random Forest XGBoost CatBoost

Figure 3. Friedman-Nemenyi significance test results regarding AUROC of machine learning models
across 200 bootstrapping iterations.

AUPRC focuses specifically on the model’s performance for positive cases, making it a
critical metric for domains with class imbalance. CatBoost again achieves the highest mean
AUPRC, 0.6807 + 0.09, which implies that it captures more of the actual admissions (true
positives) at lower false-positive rates compared to competing methods. The Friedman
statistic for AUPRC (Figure 4) (Xl%ri edman = 2141, p = 1.0906 x 10~19) indicates large
discrepancies between classifiers, and subsequent Nemenyi tests confirm that CatBoost’s
advantage is statistically significant. This result is clinically important: in sepsis treatment
settings, minimizing missed positive cases is a priority because each undetected admission
risk can lead to delayed interventions and adverse outcomes.

2
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Figure 4. Friedman-Nemenyi significance test results regarding AUPRC of machine learning models
across 200 bootstrapping iterations.

The MCC consolidates true positives, false positives, true negatives, and false negatives
into a single coefficient, offering a more balanced measure when class prevalence is skewed.
Once again, CatBoost’s average MCC of 0.6028 £ 0.09 exceeds those of the other algorithms,
although the differences among models are more modest than for AUROC or AUPRC.
The Friedman test (Figure 5) ( )(I%ri edman = 18.375, p = 3.6807 x 107*) and subsequent
Nemenyi tests verify that CatBoost significantly outperforms Random Forest, XGBoost,
and Decision Tree with respect to MCC. From a clinical standpoint, a higher MCC indicates
more reliable predictions that avoid both over-diagnosis (unnecessary interventions) and
under-diagnosis (missed sepsis relapses).
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Figure 5. Friedman-Nemenyi significance test results regarding MCC of machine learning models
across 200 bootstrapping iterations.

Three primary observations emerge from these results. First, boosting-based meth-
ods outperform single-tree and classical ensemble approaches in distinguishing high-risk
sepsis patients. By iteratively refining weak learners and focusing on hard-to-classify
instances, CatBoost and XGBoost capture non-linear interactions and subtle patterns in
patient trajectories that a single Decision Tree often overlooks. Second, the frequent usage
of categorical features likely contributes to CatBoost’s competitive edge, as it includes
specialized strategies for dealing with categorical inputs and typically requires less exten-
sive feature engineering. Third, while Random Forest does offer improvements over a
single Decision Tree by aggregating multiple trees, it still lags behind gradient boosting,
as indicated by both the average performance metrics and the post-hoc significance tests.
Notably, Decision Tree yields the lowest overall scores, a result likely due to insufficient
model complexity in capturing the intricacies of sepsis readmission pathways. Still, its
interpretability may appeal to clinicians wanting an easily understandable framework,
although, in high-stakes applications, maximizing predictive performance often remains a
priority. Random Forest strikes a balance by maintaining some level of interpretability via
feature importance analysis, but its predictive power is outmatched by boosting methods.
In contrast, CatBoost manages to achieve superior accuracy and interpretability trade-offs,
particularly because game-theoretic approaches (e.g., SHAP values) can provide post-hoc
explanations for boosting predictions.

The strong performance of CatBoost implies that advanced boosting algorithms can
significantly enhance the early detection of potential readmissions, giving healthcare pro-
fessionals additional lead time to intervene. By maximizing both AUPRC (for the minority
class) and MCC (for balanced predictive quality), CatBoost reduces the risk of missing criti-
cal cases or triggering unwarranted alerts. These findings underline the value of ensemble-
based approaches in healthcare analytics, especially in scenarios where patient-level events
have complex temporal and categorical interdependencies. In summary, CatBoost exhibits
statistically significant benefits in separating sepsis admission outcomes over XGBoost,
Random Forest, and Decision Tree. Its higher AUPRC and MCC highlight a promising ca-
pacity for correctly identifying high-risk patients without an excessive false-alarm rate. As
a result, CatBoost emerges as the leading candidate for the subsequent stages of calibration,
UQ, and explainability within the proposed predictive monitoring framework.

5.2. Evaluation of Calibration Approaches (RQ2)

Following the classifier comparison, we now explore how various calibration meth-
ods alter the CatBoost model’s probability outputs. In Table 4, we report classification
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performance (AUROC, AUPRC) alongside calibration-specific measures (LogLoss, ECE,
MCE) averaged over 200 bootstrap iterations. Figures 6-10 summarize the corresponding
Friedman-Nemenyi significance test results for each metric.

Table 4. Average Performance of CatBoost Model Across 200 Bootstrap Samples with Different
Calibration Methods Applied.

Calibration Method AUROC AUPRC Log Loss ECE MCE

Beta 0.8506 (+0.05) 0.6807 (+0.09) 0.1995 (+0.04) 0.0327 (+0.01) 0.6248 (+0.18)
Isotonic Regression 0.8345 (+0.05) 0.6825 (+0.09) 0.4194 (+0.27) 0.0318 (+0.01) 0.4663 (+0.24)
Platt Scaling 0.8506 (+0.05) 0.6807 (x0.09) 0.1981 (+0.03) 0.0333 (x0.01) 0.6260 (+0.19)
Spline 0.8355 (+0.06) 0.6731 (x0.09) 0.2001 (+0.03) 0.0384 (+0.02) 0.6008 (+0.17)
Uncalibrated 0.8506 (+0.05) 0.6807 (x0.09) 0.2062 (+0.05) 0.0413 (+0.01) 0.6108 (+0.16)
Venn-Abers 0.8474 (+0.05) 0.6806 (+0.09) 0.2068 (+0.03) 0.0490 (+0.01) 0.4883 (+0.16)

As expected, none of the post-hoc calibration techniques significantly boosts AU-
ROC or AUPRC over the uncalibrated CatBoost. Platt Scaling and Beta match the uncali-
brated baseline in AUROC (both at ~0.8506 & 0.05), while Spline and Isotonic Regression
appear slightly lower (~0.835). The Friedman test for AUROC (X3 qan = 153.9573,
p = 19185 x 10_31) affirms that at least one method differs notably; however, the Nemenyi
post-hoc analysis pinpoints Isotonic Regression and Spline Calibration as significantly less
effective than Beta, Platt Scaling, and the uncalibrated model.

A similar observation arises with AUPRC ()(%ri edman = 32-9493, p = 3.8516 x 107°):
Isotonic Regression obtains the top mean AUPRC (0.6825 £ 0.09), but Beta, Platt Scal-
ing, and uncalibrated CatBoost remain very close behind (~0.6807 £ 0.09). The fact that
these methods do not provide consistent improvement in rank-based metrics (AUROC) or
minority-class performance (AUPRC) aligns with existing literature: calibration primarily
targets how well probabilities match actual outcome frequencies, rather than enhancing the
underlying discrimination. In some instances (e.g., Spline or Isotonic Regression vs. uncali-
brated CatBoost), a minor dip in AUROC/AUPRC is the price of improved calibration.
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Figure 6. Friedman-Nemenyi significance test results regarding AUROC of calibration methods on
the CatBoost model across 200 bootstrapping iterations.
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Figure 7. Friedman-Nemenyi significance test results regarding AUPRC of calibration methods on
the CatBoost model across 200 bootstrapping iterations.

LogLoss gauges the magnitude of misalignment between predicted probabilities
and actual outcomes—severely penalizing instances assigned incorrect high-confidence
scores. Notably, Platt Scaling yields the lowest mean LogLoss (0.1981 & 0.03), followed
closely by Beta (0.1995 & 0.04) and Spline (0.2001 £ 0.03). By contrast, Isotonic Regres-
sion exhibits a substantially higher mean LogLoss (0.4194 £ 0.27). The Friedman test
(X riedman = 178.8486, p = 9.4262 x 10~7) indicates these differences are highly signifi-
cant, and the subsequent Nemenyi comparisons identify Isotonic as significantly worse
than nearly all other calibration methods in this regard. From a clinical perspective, lower
LogLoss translates into more reliable estimation of readmission risk across the entire proba-
bility spectrum. For example, an overly confident model might assign probabilities close
to 1.0 for patients who ultimately do not get readmitted, incurring large penalization. If
healthcare decisions hinge on probability thresholds to, say, intensify monitoring or allocate
ICU beds, a method with a low LogLoss is valuable because it avoids severe misclassifica-
tions. Hence, Platt or Beta might be more attractive if one seeks a stable, precise reflection
of readmission likelihood without excessively skewing the probability scale.
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Figure 8. Friedman-Nemenyi significance test results regarding log loss of calibration methods on
the CatBoost model across 200 bootstrapping iterations.

While LogLoss focuses on penalizing incorrect high-confidence assignments, ECE and
MCE capture how close predicted probabilities are to empirical event frequencies. This
distinction is crucial in domains like sepsis management, where calibrating risk estimates
for threshold-based interventions can directly affect patient outcomes. ECE measures the
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average gap between predicted probability and the true proportion of positives. A low
ECE means that if the model predicts, for instance, a 40% chance of readmission, then
roughly 40% of those patients do indeed return. MCE captures the largest such deviation
across all probability bins, highlighting worst-case miscalibrations that could be critical in
a high-stakes clinical workflow.

Results show that Isotonic Regression achieves the lowest ECE (0.0318 £ 0.01) and
lowest MCE (0.4663 £ 0.24). Beta and Platt Scaling do yield moderate improvements
compared to the uncalibrated model, but they cannot match Isotonic Regression in terms
of minimizing average and worst-case calibration error. The Friedman tests for ECE
(X%ﬂe dman ~ 236) and MCE (Xl%rie dman ~= 148) both yield p-values far below 0.01, indicating
statistically significant differences among methods. Pairwise Nemenyi tests highlight that
Isotonic Regression’s ECE and MCE are significantly lower than those of Venn-Abers, the
uncalibrated baseline, and sometimes Spline.
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Figure 9. Friedman-Nemenyi significance test results regarding ECE of calibration methods on the
CatBoost model across 200 bootstrapping iterations.
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Figure 10. Friedman-Nemenyi significance test results regarding MCE of calibration methods on the
CatBoost model across 200 bootstrapping iterations.

Clinically, lower ECE and MCE signify more consistent alignment between the numeric
score and real-world ICU admission risk. For instance, an Isotonic Regression-calibrated
model that assigns an 80% admission probability might be especially trustworthy for
mobilizing time-sensitive interventions. On the flip side, the relatively high LogLoss of
Isotonic Regression suggests that such piecewise-constant adjustments can become extreme
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in certain probability bins, creating large penalty spikes. This means the model is, on
average, well-calibrated but can mispredict certain individual cases rather sharply.

In sum, each calibration method presents a distinct trade-off. Isotonic Regression
dominates in calibration error metrics (ECE, MCE), ensuring a tight alignment of predicted
versus observed risk. However, it incurs higher LogLoss and occasionally lowers AUROC
or AUPRC. Platt Scaling and Beta Calibration preserve near-top discrimination (AUROC,
AUPRC) while also achieving consistently low Log Loss, indicating more balanced updates
to probability scores. Spline calibration is moderately effective across all metrics, offering
flexible piecewise corrections but does not stand out as best in any one category. Venn-Abers
provides interval predictions with theoretical validity guarantees—a unique advantage in
safety-critical settings—but has higher calibration errors. From a healthcare standpoint,
the choice of calibration hinges on balancing the need for accurate high-risk identification
(AUROC, AUPRC) with the demand for trustworthy probability statements (LogLoss, ECE,
MCE). Figure 11’s reliability plots illustrate these findings. The uncalibrated model slightly
overestimates risk in mid- to high-probability bins. Platt Scaling, Beta, and Spline each
temper this overconfidence, more closely aligning with the diagonal “perfect calibration”
line. Although Isotonic stands out for particularly low calibration errors overall, its stepwise
adjustments sometimes cause spikier changes in probability assignment, visible as flatter
regions on the reliability curve. For contexts where stable, smoothly varying scores are
preferred, such discontinuities might be less desirable despite the strong ECE performance.
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Figure 11. Calibration plots of post-hoc calibration methods across 200 bootstrap iterations.

Overall, there is no single “best” calibration method for every clinical situation. If strict
accuracy of the probability estimate is paramount—so that a predicted 70% readmission
risk closely matches actual outcomes—then Isotonic Regression or Spline might be worth
of any drop in LogLoss or AUPRC. Conversely, if the clinical workflow demands a stable
probability distribution with minimal penalization for misclassifications, Platt Scaling or
Beta may be most appealing. In our sepsis context, where critical resources (ICU beds,
antibiotics) hinge on balancing over- and under-treatment risks, Platt Scaling and Beta
Calibration emerge as especially strong candidates. They keep classification metrics intact
while substantially correcting probability estimates, supporting more nuanced risk-based
decisions and potentially leading to better patient outcomes.
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5.3. Evaluation of Conformal Prediction Methods

This section examines SCP applied to the CatBoost classifier, along with various
calibration strategies. Table 5 and Figures 12-15 summarize the main findings for marginal
coverage, average coverage gap, minority error contribution, and the single prediction
set ratio. Together, these results reveal how often the conformal procedure yields valid
and precise predictions, and how misclassification risk is distributed across the minority
(admission to ICU) class.

Table 5. Average Conformal Prediction Results for Split Conformal with CatBoost Model Across

200 Bootstrap Samples.
Calibration Method Marginal Coverage Average Coverage Gap  Minority Error Contribution (%)  Single Prediction Set Ratio (%)
Beta Calibration 0.9599 (x0.02) 19.0294 (+7.99) 93.4913 (x12.11) 90.6204 (+10.02)
Isotonic Regression 0.9578 (x0.02) 19.4813 (+8.27) 90.8993 (+14.13) 91.1105 (+13.55)
Platt Scaling 0.9608 (+0.02) 19.1753 (+8.11) 95.3790 (+10.44) 89.2572 (+10.87)
Spline Calibration 0.9599 (x0.02) 19.3481 (+7.73) 94.3152 (+11.21) 90.8709 (+9.62)
Uncalibrated CatBoost 0.9615 (+0.02) 18.6658 (+7.61) 95.5935 (+10.37) 89.7549 (+10.80)
Venn-Abers 0.9578 (+0.02) 19.6807 (+8.29) 92.0942 (+14.88) 89.8766 (+12.73)

Figure 12 shows that marginal coverage for the CP converges near or slightly above
0.95, indicating that the true label is included in the model’s prediction set roughly
95-96% of the time. Uncalibrated CatBoost achieves the highest average coverage
(0.9615 £ 0.02), narrowly surpassing Platt Scaling and Beta/Spline calibrations (around
0.9599-0.9608). Isotonic Regression and Venn-Abers trail slightly at 0.9578. Statistical tests
(x%rie dman — 80.5488, p = 6.4421 X 10~1) confirm significant differences among the cali-
bration methods. Post-hoc comparisons suggest that although Uncalibrated CatBoost has a
minor coverage edge, several pairwise differences (e.g., uncalibrated vs. Beta or Spline) are
subtle. Clinically, these marginal coverage levels imply that across repeated samples, the
prediction sets produced by CP include the correct label at or beyond the intended 95%
frequency—a reassuring result for risk-sensitive healthcare environments.
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Figure 12. Friedman-Nemenyi significance test results regarding Marginal Coverage of Split confor-
mal prediction and calibration methods on the CatBoost model across 200 bootstrapping iterations.

Average coverage gap (Figure 13) measures how much coverage can fluctuate relative
to the nominal 95% target across different test instances. Uncalibrated CatBoost achieves
the smallest gap (18.66 £ 7.61), with Beta, Platt Scaling, and Spline following closely (all
around 19). Isotonic Regression and Venn-Abers lie marginally higher (approximately 19.48
and 19.68, respectively). The Friedman test ()(l%rie dman = 19-8589, p = 1.3283 x 10~?) again
indicates statistically significant variation. For the examined use case, a lower coverage



Appl. Sci. 2025, 15, 7925

26 of 42

gap means the conformal intervals (or sets) remain more consistently valid across different
patients. Large gaps can signal that certain subpopulations—for example, older patients or
those with atypical symptoms—might be over- or under-covered. Although Uncalibrated
CatBoost exhibits the tightest overall coverage gap, the differences here are modest (roughly
1% across methods). Hospitals with large, diverse patient populations might still opt for a
calibration method if it yields other benefits (e.g., improved minority error rates) without
inflating coverage gap too severely.
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Figure 13. Friedman-Nemenyi significance test results regarding Average Coverage Gap of Split con-
formal prediction and calibration methods on the CatBoost model across 200 bootstrapping iterations.

Figure 14 presents the minority error contribution: the proportion of total misclassifica-
tions arising from the positive (ICU admission) class. Ideally, a lower fraction indicates that
prediction errors are more evenly distributed, reducing the likelihood of disproportionately
missing readmissions. Isotonic Regression yields the lowest minority error (90.90 & 14.13%),
suggesting that when mistakes occur, fewer are concentrated among readmitted patients.
Beta and Spline calibrations approach mid-range values near 93-94%. Uncalibrated, Platt
Scaling, and Spline calibrations all exceed 94-95%, indicating a larger share of errors
come from those crucial positive cases. These distinctions are statistically significant
(X riedman = 71.88945, p = 4.142 x 10~'%). In a high-stakes domain like sepsis, lower
minority error implies the model better safeguards the subgroup in urgent need of accurate
predictions. By contrast, a higher minority error portion could lead to under-detection of
relapsing patients, potentially causing delays in treatment.

Another key metric, shown in Figure 15, is the single prediction set ratio—the percent-
age of instances for which the conformal predictor returns exactly one label (fully confident)
rather than an ambiguous set. Here, Isotonic Regression stands out at 91.11 & 13.55%,
while Beta and Spline hover near 90.6-90.9%. Platt Scaling and Uncalibrated are slightly
lower, around 89%. Statistical tests (X%riedman = 97.00886, p = 2.2552 x 10~19) reveal
that Isotonic Regression’s single-set predictions are significantly more frequent than those
under uncalibrated or Platt Scaling-based conformal methods. In practice, a higher single
prediction set ratio can be interpreted as fewer “uncertain” predictions requiring secondary
review. For hospital workflows, this translates into fewer flagged patients needing ad-
ditional confirmatory steps—saving time and resources, albeit with the caveat that such
higher confidence can sometimes be miscalibrated.
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Figure 14. Friedman-Nemenyi significance test results regarding Minority Error Contribu-
tion of Split conformal prediction and calibration methods on the CatBoost model across
200 bootstrapping iterations.

SCP aims to guarantee valid coverage at a pre-defined confidence level (95% in our
use-case), and these results confirm that nearly all methods fulfill this target. Nonetheless,
certain calibration strategies offer subtle but important trade-offs. Uncalibrated CatBoost
slightly outperforms in marginal coverage and average coverage gap, but it exhibits one of
the highest minority error contributions. In other words, missed admissions to the ICU
account for more of its overall misclassifications. Isotonic Regression achieves the lowest
minority error and the highest frequency of confident (single-label) decisions, at the cost of
slightly lower coverage and a modestly larger coverage gap. Beta and Spline calibrations
produce balanced, middle-ground behaviors, combining decent coverage with reasonable
minority error distribution. Platt Scaling align coverage near uncalibrated levels but also
share the downside of an elevated minority error fraction.

2
X Ericaman(5) = 97.00886, p = 2.2552x1071°

Bricnea, =2.05x10"
Dryageny =B.08x10

Drisnsay =2.08 <10~

.g D amany = 64710
Y] Buemenu=11310"
14 <0
5 100 o =567 10
n
o - P =
[0} finean = 0.8975] [limean= 09062 | oo = 0.8988 |
o i
I |
055
=
w

0.104

Uncalibrated Beta Ind. Venn-Abers Isotonic Platt Spline

Figure 15. Friedman-Nemenyi significance test results regarding Single Prediction Set Ra-
tio of Split conformal prediction and calibration methods on the CatBoost model across
200 bootstrapping iterations.

For sepsis admissions to the ICU, reducing errors on the minority class could be
paramount: even a small reduction in missed admissions to the ICU can translate into
significantly improved patient outcomes. Hence, a method like Isotonic Regression, which
shifts the error burden away from relapsing patients, may be particularly appealing. On
the other hand, uncalibrated or Platt Scaling-based CP—though high in overall cover-
age—might inadvertently let too many high-risk patients slip by undetected. Ultimately,
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the choice depends on whether the clinical emphasis is on maximizing certainty in predic-
tions (thus fewer ambiguous cases) versus avoiding minority-class oversights.

5.4. Inspection of Certain Predictions

When the CP framework produces a single-label outcome, it designates a high-
confidence prediction for a particular instance. Although most calibration strategies yield
broadly similar proportions of such one-label sets, there are notable differences in how
accurately each method classifies the positive and negative classes within this “certain”
subset. The Table 6 reveals consistent performance patterns: Isotonic Regression and Spline
typically offer elevated recall or precision in these confident instances, while Platt Scaling
provides unusually strong specificity. Beta often strikes a middle-ground, balancing both

recall and precision without dominating in any single metric.

Table 6. Evaluation of Single Prediction Set for Split Conformal Across 200 Bootstrap Samples

for CatBoost.
Calibration Method Recall Precision Specificity MCC Minority Class Ratio (%)
Beta Calibration 0.5320 (x0.16)  0.9478 (+0.13) 0.9974 (+0.01) 0.6859 (+0.14) 4.9266 (+1.80)
Isotonic Regression 0.5525 (+0.15)  0.9380 (+0.10)  0.9959 (+0.01)  0.6943 (+0.12) 5.5531 (+2.40)
Platt Scaling 0.3594 (+0.25) 0.6922 (+0.44) 0.9985 (+0.00) 0.4814 (+0.31) 3.2686 (+2.46)
Spline Calibration 0.5407 (+0.14)  0.9671 (x0.07)  0.9981 (+0.00)  0.7002 (x0.11) 4.9806 (+1.61)
Uncalibrated CatBoost 0.4931 (+0.14) 0.9657 (0.10) 0.9984 (+0.00) 0.6672 (+0.12) 4.0378 (£1.48)
Venn-Abers 0.4042 (+0.20) 0.8247 (+0.33) 0.9967 (+0.01) 0.5523 (+0.24) 3.6240 (+2.28)

Figures 16-20 corroborate these observations and offer a deeper comparative lens.
Figure 16 (Recall for certain data) shows Isotonic Regression achieving a mean of 0.5525,
significantly higher than Platt Scaling at 0.3594 (X%, ;oqman = 207-1656, p = 8.3203 x 10~%3).
This indicates that when the Isotonic-based SCP method is sufficiently confident to assign a
single label, it more reliably flags actual readmissions than Platt Scaling. By contrast, Spline
emerges with the highest precision (0.9671 in Figure 17), suggesting fewer false positives
among confidently predicted patients, an attribute that may reduce undue resource allo-
cation to non-relapsing cases. The Friedman test further confirms that Platt Scaling, Beta,
and Uncalibrated CatBoost differ from Isotonic Regression or Spline in precision ranks
(XZriedman = 88-94143, p = 1.1211 x 10~ 17).
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Figure 16. Friedman-Nemenyi significance test results regarding Recall for certain data in-
stances of Split conformal prediction and calibration methods on the CatBoost model across
200 bootstrapping iterations.
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Figure 17. Friedman-Nemenyi significance test results regarding Precision for certain data in-
stances of Split conformal prediction and calibration methods on the CatBoost model across
200 bootstrapping iterations.

Similar distinctions manifest in specificity and MCC (Figures 18 and 19). Platt Scaling
delivers near-perfect specificity (0.9985) for certain predictions, whereas Beta and Uncal-
ibrated CatBoost range closer to 0.9974-0.9984, with Spline also above 0.9980. Higher
specificity reduces false alarms but can curb recall by excluding borderline positive pa-
tients. The MCC values reveal a parallel story: Spline peaks at 0.7002, surpassing both
Beta and Isotonic Regression (0.6859 and 0.6943, respectively), attesting to its consistent
balance of true positives and true negatives within single-label decisions. The Friedman
statistic (7(12: riedman — 167.216,p = 2.8643 x 10~3%) and subsequent pairwise comparisons
confirm Spline’s significant advantage over Platt Scaling’s more conservative approach
(0.4814 MCCQ).

Clinical Relevance and Technical Considerations. From a clinical perspective, these find-
ings highlight critical trade-offs in patient classification strategies. The recall and precision
distributions across calibration methods directly influence patient triage decisions, par-
ticularly in high-stakes medical scenarios such as early sepsis detection, post-operative
monitoring, and hospital readmission risk assessment. The model’s ability to confidently
predict a single-label classification directly impacts clinical workflows and intervention
timing. Isotonic Regression’s superior recall implies that more high-risk patients would
be flagged with a certain positive classification, ensuring that at-risk individuals receive
necessary monitoring or intervention. This attribute is particularly crucial in conditions
where early warning signs are subtle yet predictive, such as sepsis onset or cardiac decom-
pensation. However, high recall at the expense of specificity may increase unnecessary
hospital admissions or treatments, leading to higher resource utilization and potential
patient burden from false positives. Conversely, Platt Scaling and Spline, with their higher
specificity and precision, minimize unnecessary interventions, favoring a more conserva-
tive approach. This calibration choice is preferable in cases where false positives carry
substantial costs, such as invasive procedures or intensive resource allocation (e.g., ICU
admission). For instance, a high specificity system ensures that only those with a true
likelihood of relapse are assigned aggressive therapeutic strategies, reducing the risk of
overtreatment. The MCC further contextualizes these trade-offs by offering a more holistic
measure of classifier quality, incorporating all four confusion matrix components (true
positives, false positives, true negatives, and false negatives). The MCC scores indicate that
while Isotonic Regression and Beta provide strong recall-driven certainty, Spline calibration
optimizes overall balance. A high MCC ensures that the classifier is not disproportionately
favoring one class over the other, which is critical in clinical settings where both false
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positives and false negatives can be costly. For example, underdiagnosing a condition like
post-surgical infection (false negative) can result in complications, whereas overdiagnosing
it (false positive) leads to unnecessary antibiotic usage and increased resistance concerns.
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Figure 18. Friedman-Nemenyi significance test results regarding Specificity for certain data in-
stances of Split conformal prediction and calibration methods on the CatBoost model across
200 bootstrapping iterations.
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Figure 19. Friedman-Nemenyi significance test results regarding MCC for certain data in-
stances of Split conformal prediction and calibration methods on the CatBoost model across
200 bootstrapping iterations.
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Figure 20. Friedman-Nemenyi significance test results regarding Minority Class Ratio of Split confor-
mal prediction and calibration methods on the CatBoost model across 200 bootstrapping iterations.
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Figure 20 (Minority Class Ratio) sheds light on another important consideration—the
proportion of high-confidence positive predictions assigned to the minority class. A well-
calibrated system should maintain a balance where underrepresented but clinically critical
cases are neither overlooked nor overly emphasized. Isotonic Regression assigns approxi-
mately 5.6% of confidently labeled instances to positive cases, while Spline’s 5.0% indicates
a slightly more restrictive but stable classification boundary.

Overall, the results underscore the necessity of calibration-aware decision-making in
predictive clinical modeling. The choice of calibration method should align with the clinical
setting’s tolerance for false negatives versus false positives. If the primary objective is to en-
sure that no high-risk patients are overlooked, Isotonic Regression may be preferable. If the
aim is to maintain high precision and reduce overdiagnosis, Spline or Platt Scaling should
be considered. Given the variations observed, hybrid strategies—such as dynamically
adjusting calibration approaches based on incoming patient profiles or using ensemble
calibration techniques—may offer additional improvements in real-world deployments.

5.5. SHAP-Based Explainability Analysis

The integration of calibration methods with CP not only refines probabilistic outputs
but also reshapes the interpretability of predictive models, particularly in distinguishing
high-confidence predictions from uncertain ones. To address RQ5, SHAP analysis was
employed to dissect feature attributions across calibration strategies, revealing how post-
hoc adjustments influence the drivers of certainty and uncertainty in ICU admission
predictions. By comparing SHAP values for instances classified as certain (single-label
sets) versus uncertain (both-label sets) under SCP, this analysis elucidates the interplay
between calibration techniques and model interpretability in clinically actionable terms
(see Figures 21-26).

Feature Attribution Patterns Across Calibration Methods. For certain predictions, adminis-
trative and temporal features—such as age, duration_since_registration, and hours_past_
midnight—consistently emerged as dominant contributors across all calibration methods.
These features, which encode patient demographics and care timeline metadata, serve as ro-
bust anchors for high-confidence predictions, reflecting their stability in capturing systemic
risk factors for sepsis progression. Clinical markers like diagnose_C (a diagnostic code
for sepsis) and diagnosticurinaryculture (urinary tract infection indicators) also retained
prominence, underscoring their established relevance in sepsis care pathways. This consis-
tency suggests that calibration methods preserve the model’s reliance on well-understood
predictors when confidence is high, aligning with clinical intuition.

In contrast, uncertain predictions exhibited marked divergence in feature importance
depending on the calibration approach. Under Beta calibration, uncertainty was primarily
linked to rare diagnostic codes (e.g., diagnose_BE) and biochemical markers like diag-
nosticartastrup (arterial blood gas analysis), which are less frequently observed in sepsis
cases. This pattern implies that ambiguity arises when the model encounters atypical
clinical profiles, where sparse or conflicting laboratory results complicate risk assessment.
Isotonic Regression, however, tied uncertainty to deviations from standard diagnostic path-
ways, emphasizing interactions between temporal features (duration_last_event) and less
common lab tests (diagnosticurinarysediment). Such shifts highlight how non-parametric
calibration amplifies the salience of edge-case clinical signals, potentially flagging patients
whose trajectories defy conventional sepsis criteria.

Spline calibration introduced further nuance: while administrative features remained
pivotal for certain predictions, uncertain cases saw heightened contributions from lab-
result transitions (e.g., Leucocytes — LacticAcid), reflecting instability in interpreting serial
biomarker trends. This suggests that Spline’s piecewise adjustments, while smoothing
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probability outputs, may inadvertently magnify the impact of transient or noisy clinical
measurements. Venn-Abers calibration, despite its theoretical guarantees for validity,
produced less coherent explanations for uncertain predictions, with paradoxical retention
of administrative features (duration_since_reg) as key drivers even amid ambiguity. This
discordance between feature importance and prediction uncertainty could undermine
clinician trust, as administrative timestamps lack direct pathophysiological relevance to
sepsis severity.

Parametric methods like Platt Scaling exhibited a hybrid behavior: certain predictions
mirrored uncalibrated models in prioritizing age and diagnose_C, but uncertain predictions
disproportionately emphasized temporal features (hours_past_midnight), divorcing expla-
nations from clinical context. This misalignment indicates that logistic adjustments, while
effective in probability correction, may obscure the biological rationale for uncertainty;,
rendering explanations less actionable. The uncalibrated model, unsurprisingly, displayed
erratic attributions for uncertain cases, with rare diagnostic codes (diagnose_AB) and ad-
ministrative artifacts dominating SHAP values—a consequence of unregulated probability
overconfidence amplifying noise in feature space.
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Figure 21. Comparison of SHAP values for single and both prediction sets under Split conformal
prediction with post-hoc Beta calibration applied to the CatBoost model. (a) Single prediction set.
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Figure 22. Comparison of SHAP values for single and both prediction sets under Split conformal
prediction with post-hoc Isotonic calibration applied to the CatBoost model. (a) Single prediction set.
(b) Both prediction sets.
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Figure 23. Comparison of SHAP values for single and both prediction sets under Split conformal
prediction with post-hoc Spline calibration applied to the CatBoost model. (a) Single prediction set.
(b) Both prediction sets.
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Figure 24. Comparison of SHAP values for single and both prediction sets under Split conformal
prediction with post-hoc Inductive Venn-Abers calibration applied to the CatBoost model. (a) Single
prediction set. (b) Both prediction sets.
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Figure 25. Comparison of SHAP values for single and both prediction sets under Split conformal
prediction with post-hoc Platt calibration applied to the CatBoost model. (a) Single prediction set.
(b) Both prediction sets.
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Figure 26. Comparison of SHAP values for single and both prediction sets under Split conformal
prediction with the uncalibrated CatBoost model. (a) Single prediction set. (b) Both prediction sets.

Relevance of Explainability in Calibration-CP Frameworks. The interplay between cal-
ibration and explainability carries profound implications for clinical deployment. Cali-
bration methods, often perceived as purely statistical corrections, inherently reconfigure
the model’s internal reasoning—particularly in ambiguous cases. For instance, Isotonic
Regression and Spline calibrations, by tethering uncertainty to clinically interpretable
markers (e.g., lab anomalies or atypical diagnoses), enable clinicians to contextualize model
hesitancy. A prediction flagged as uncertain due to elevated diagnosticartastrup values,
for example, could prompt targeted blood gas analysis, transforming uncertainty into a
diagnostic cue. Conversely, methods like Venn-Abers or Platt Scaling, which decouple
uncertainty from domain-specific features, risk producing opaque explanations that hinder
root-cause analysis. This analysis underscores that calibration is not a neutral adjustment
but a reinterpretive act that reshapes model transparency. In high-stakes settings like sepsis
management, where clinician trust hinges on interpretability, the choice of calibration
method must balance statistical rigor with explanatory coherence. A well-calibrated model
that attributes uncertainty to non-clinical factors (e.g., hours_past_midnight) risks being
dismissed as a “black box” whereas one linking ambiguity to plausible clinical variables
(e.g., conflicting lab trends) fosters collaborative decision-making.

Synthesis and Clinical Implications. The findings reveal a critical trade-off: parametric
calibrations (Platt Scaling, Beta) enhance probability reliability but may dilute clinical inter-
pretability, while non-parametric methods (Isotonic Regression, Spline) preserve feature
relevance at the cost of increased computational complexity. For healthcare applications,
Isotonic Regression emerges as a compelling compromise—its uncertainty explanations
align with clinical workflows, enabling providers to reconcile model outputs with bedside
observations. Spline calibration offers similar advantages but requires careful monitoring
of its sensitivity to lab-result fluctuations. Ultimately, the integration of SHAP-based ex-
plainability with calibration-CP frameworks advances beyond mere technical validation;
it bridges the gap between algorithmic outputs and clinical reasoning. By exposing how
calibration reshapes feature attributions—and, by extension, model “thinking”—this ap-
proach empowers clinicians to audit uncertainty drivers, refine intervention protocols, and
align predictive analytics with real-world care pathways. In doing so, it elevates PPM from
a statistical exercise to a clinically embedded tool, where uncertainty is not a flaw but a
diagnostically meaningful signal.

6. Discussion

This study reveals fundamental tensions and synergies in deploying machine learning
for clinical predictive monitoring, where accuracy, calibration, UQ, and explainability
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intersect. We selected sepsis management and the prediction of Intensive Care Unit (ICU)
admission as our use case for several strategic reasons. Clinically, sepsis is a time-critical,
high-mortality condition where early predictive analytics can directly impact patient out-
comes. Methodologically, it is an ideal testbed for our framework. The progression of
sepsis is inherently a process, lending itself to a Predictive Process Monitoring approach.
Furthermore, sepsis data presents a unique combination of challenges that our multilay-
ered framework is designed to address: (1) natural class imbalance, where the critical
minority class (ICU admission) must be predicted reliably; (2) high clinical uncertainty;,
justifying the need for a robust uncertainty quantification (UQ) method like Conformal
Prediction; and (3) data heterogeneity, with a complex mix of temporal, numerical, and
categorical features that tests the power of modern ensemble models. Thus, sepsis provides
arich, clinically relevant context to evaluate the interplay between prediction, calibration,
and explainability.

The findings challenge conventional assumptions about post-hoc calibration as a
purely technical adjustment, positioning it instead as a transformative layer that reshapes
model behavior, trustworthiness, and clinical utility. Below, we synthesize the methodolog-
ical and practical implications of these insights.

Calibration as a Reinterpretive Act. The central paradox uncovered is that calibration
methods, while designed to align probabilities with empirical outcomes, inherently re-
configure how models “reason” about uncertainty. For instance, isotonic regression not
only reduced miscalibration but also redirected the model’s attention during uncertain
predictions toward clinically interpretable markers (e.g., ambiguous lab results or rare
diagnoses). In contrast, parametric methods like Platt scaling preserved the model’s
original feature hierarchy, even when uncertainty arose from non-clinical artifacts like
administrative timestamps. This divergence underscores that calibration is not a neutral
correction but a reinterpretive process: it filters the model’s internal logic through the
lens of probability alignment, amplifying or suppressing specific drivers of uncertainty.
For clinical applications, this means the choice of calibration directly influences whether
uncertainty explanations align with medical intuition or obscure it—a critical factor in
fostering clinician trust.

The Duality of Uncertainty Quantification. CP provided robust coverage guarantees
across all methods, yet its clinical value depended heavily on calibration. Uncalibrated
models achieved marginal coverage but exhibited a dangerous skew: 95% of errors im-
pacted the minority class (ICU admissions), reflecting systemic underconfidence in high-
risk predictions. Post-hoc calibration rectified this by redistricting uncertainty, tying it
to domain-relevant edge cases (e.g., conflicting biomarker trends) rather than arbitrary
thresholds. This duality—coverage as a statistical necessity, error distribution as a clinical
imperative—highlights that CP frameworks must be calibration-aware to avoid perpetuat-
ing hidden biases. In practice, this means CP cannot be treated as a standalone module; its
integration with calibration determines whether UQ serves as a safety net or a source of
systemic blind spots.

Explainability as a Mirror of Calibration Strategy. SHAP analysis exposed how calibration
methods rewrite the narrative of model decisions. While all methods agreed on feature
importance for high-confidence predictions (e.g., prioritizing age or care timeline metadata),
their handling of uncertainty diverged starkly. Non-parametric methods like Isotonic Re-
gression and Spline calibration linked ambiguity to clinically meaningful signals—aberrant
lab results, atypical diagnostic codes—effectively translating uncertainty into diagnostic
hypotheses. Parametric methods, however, often attributed uncertainty to non-clinical fea-
tures (e.g., hours_past_midnight), creating explanations that clash with clinician reasoning.
This suggests that explainability is not static but calibration-contingent: the same model
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can oscillate between clinically coherent and opaque explanations based on post-processing
choices. For healthcare Al this demands a paradigm shift—evaluating models not just by
their accuracy or calibration metrics, but by how their entire decision hierarchy (certain
and uncertain) aligns with domain expertise.

Methodological Trade-offs and Clinical Realities. The trade-offs between calibration ap-
proaches carry profound implications for real-world deployment. Isotonic Regression,
despite its superior alignment of uncertainty with clinical logic, introduces computational
complexity and sensitivity to small sample sizes. Platt Scaling, while efficient and stable,
risks “explaining away” uncertainty through non-clinical features, potentially eroding trust.
These tensions necessitate context-aware calibration strategies: in resource-constrained
settings, Platt Scaling’s efficiency might outweigh its explanatory limitations, while in
tertiary care systems, Isotonic Regression’s clinical coherence could justify its overhead.
Importantly, no method universally dominated, underscoring the need for calibration to be
tailored to institutional priorities—whether interpretability, computational efficiency, or
strict probability alignment.

Our study focused on the deep analysis of a single, state-of-the-art sequential ensemble
model (gradient boosting) as the engine for our predictive framework. We acknowledge that
this is one of several powerful paradigms in ensemble learning. An alternative approach
involves the fusion of multiple, heterogeneous base classifiers. Recent advancements in this
area offer promising avenues for further improvement. For instance, theoretical frameworks
for the optimal linear soft fusion of classifiers have been developed to combine model
outputs in a way that provably minimizes post-fusion error [22]. Similarly, information-
theoretic methods such as alpha-integration provide a principled and generalized approach
for fusing the probability distributions from diverse models. Future work could explore
whether a “super ensemble,” created by fusing the outputs of a gradient boosting model
with other classifiers (e.g., a deep neural network) using these optimal techniques, could
provide an even more robust and reliable starting point for our subsequent calibration
and conformal prediction pipeline. This could potentially lead to further reductions in
predictive error and more precise uncertainty estimates.

Toward a Meta-Analysis of Model Design. These findings collectively argue for a holistic,
systems-level view of predictive model design. Accuracy, calibration, uncertainty, and
explainability are not isolated components but interacting dimensions that co-determine
clinical utility. For example, a model with stellar AUROC but poorly calibrated probabilities
may harm care pathways by overtriggering interventions, while a well-calibrated model
with opaque explanations may stagnate due to clinician skepticism. This interdependence
suggests that future frameworks must adopt multivariate evaluation metrics that weigh
these dimensions jointly, rather than optimizing them in isolation. Beyond statistical perfor-
mance, the practical deployment of this framework in a clinical setting requires addressing
challenges such as latency, interpretability, and trust. Our approach was designed with
these factors in mind. Latency is minimal at the point of care, as all computationally inten-
sive training and calibration steps are performed offline, leaving only rapid, low-latency
calculations for real-time inference. For interpretability, our SHAP-based analysis provides
the crucial backend for a user-friendly clinical interface. By showing that calibration can
align feature attributions with clinically relevant factors, we lay the groundwork for expla-
nations that are not just available but also meaningful to a clinician. Most importantly, the
framework is architected to build trust. It combines reliable, calibrated probabilities with
the honest uncertainty of Conformal Prediction. When the model is uncertain about a case,
it does not provide a single, potentially misleading prediction. Instead, it flags the case for
human review by producing an ambiguous prediction set. This “knows what it doesn’t
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know” capability is fundamental for enabling safe, human-in-the-loop decision-making
and fostering clinician confidence in the system.

Limitations as Catalysts for Innovation. We must acknowledge the limitations of this
study to appropriately contextualize our findings. The analysis is based on a single,
modestly-sized dataset from one hospital. This naturally limits the direct generalizability
of the trained predictive model to other clinical settings, and we make no claim that this
specific model is ready for deployment. However, the primary contribution of this work is
the methodological framework itself. The dataset, with its characteristic clinical complexity
and class imbalance, serves as a realistic testbed to rigorously evaluate the interplay
between prediction, calibration, and uncertainty quantification. To ensure the robustness
of our methodological insights, we employed an extensive bootstrapping procedure. This
provides strong evidence that our findings—such as the observed trade-offs between
different calibration methods and their downstream effects on conformal prediction and
explainability—are stable and not an artifact of a single data split. Therefore, we propose
our framework as a transferable blueprint for developing and validating trustworthy
predictive models. A crucial and necessary direction for future work is to apply and validate
this entire framework on larger, multi-center, and contemporary datasets to confirm the
generalizability of these methodological findings across diverse patient populations and
evolving clinical practices.

The study’s focus on a single clinical context (sepsis) and static datasets invites explo-
ration into dynamic, evolving care environments. Future work must test whether these
findings generalize to settings with concept drift (e.g., emerging pathogens) or hetero-
geneous patient populations. Additionally, the computational costs of non-parametric
calibration methods pose barriers to real-time deployment—a gap that hybrid approaches
(e.g., adaptive Spline calibration) could bridge. Furthermore, while our study used aggre-
gated AUC metrics to select the best base classifier, we acknowledge that a more granular
analysis of the full ROC and Precision-Recall curves, particularly in the low false-positive
rate regime, would offer deeper insights into model trade-offs for clinical deployment.
Such a detailed investigation represents a valuable direction for future work. Finally, the
ethical dimension of uncertainty attribution warrants scrutiny: if models attribute ambigu-
ity to socioeconomic features (e.g., insurance status) rather than clinical factors, they risk
exacerbating care disparities.

7. Related Work

As machine learning models become increasingly complex, ensuring their transparency
is crucial, particularly in high-stakes domains such as healthcare and finance [23-25]. Trans-
parency in machine learning encompasses both procedural transparency, which involves
clear documentation of data collection, preprocessing and model training, and algorithmic
transparency, which focuses on understanding how models arrive at their decisions [26,27].
Both aspects are essential for assessing fairness, reliability, and accountability in predictive
systems [28]. A key aspect of transparency is UQ, which provides tools to measure and
communicate the confidence of model predictions [27]. UQ involves estimating different
types of uncertainty, including aleatoric uncertainty, which arises from inherent random-
ness in the data, and epistemic uncertainty, which stems from a lack of knowledge about
the model or data [27,29-31]. Proper UQ ensures that predictions are not only accurate but
also informative, helping decision-makers identify cases requiring additional validation or
caution [32]. Various UQ methods exist, broadly categorized into Bayesian and Frequentist
approaches [27].

CP provides a formal framework for UQ by constructing prediction sets with a guaran-
teed probability of containing the true label [4,33,34]. Unlike traditional point predictions,
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which provide a single best estimate, conformal methods generate set-valued predictions
that account for uncertainty in a rigorous, distribution-free manner. The fundamental prin-
ciple involves computing non-conformity scores, which measure how unusual a prediction
is relative to past observations, and using these scores to define prediction sets that maintain
finite-sample validity under the assumption of exchangeability [33,34]. This ensures that, at
a chosen confidence level, the true label falls within the prediction set with a probability at
least equal to the specified threshold, making CP a well-calibrated approach to UQ [34,35].
A key advantage of CP is its model-agnostic nature, allowing integration with any machine
learning model without requiring modifications to its internal structure [4,33]. Several vari-
ations have been introduced to improve its efficiency and applicability [34]. SCP partitions
the data into separate training and calibration sets, enabling efficient computation of pre-
diction sets without extensive retraining [34]. Mondrian conformal prediction conditions
the non-conformity scores on predefined categories, such as class labels, ensuring category
or class-wise valid coverage and improving performance on imbalanced datasets [36,37].
More recent approaches focus on adaptive and distribution-free conformal methods, which
refine prediction sets dynamically to improve informativeness while preserving theoretical
coverage guarantees [34,38].

Probability calibration is an essential process in machine learning that ensures the
predicted probabilities of outcomes align with the actual observed frequencies. In the
context of UQ and CP, proper calibration is crucial for generating reliable prediction
intervals and quantifying uncertainty accurately [39,40]. Temperature scaling, for instance,
has been shown to influence CP, suggesting that overconfident models may sometimes yield
different prediction sets compared to well-calibrated models [39,41]. Venn-Abers calibration
has been explored as an approach to improve probability estimates while maintaining the
theoretical guarantees of CP [10].

PPM as a subdomain of Process Mining addresses fundamental aspects of process
execution with a central focus on predicting upcoming events and performance indicators
relevant to operational and strategical business goals [42—44]. Leveraging predictive models,
predominant tasks encompass next event prediction [45,46], identification of anomalies [47],
and the prediction of possible process outcomes [48]. Early implementations in PPM re-
lied on conventional classification and regression techniques. In contrast, recent studies
have increasingly adopted deep learning and ensemble methods to capture the complex
temporal dependencies inherent in process data [49-52]. XAl has also emerged as a vital
component in PPM, particularly for high-stakes decision-making scenarios [52,53]. UQ also
plays an essential role in bolstering the reliability of PPM systems. UQ techniques estimate
the confidence associated with predictions, which is crucial in risk-sensitive environments.
Recent research has explored various UQ approaches, including Bayesian networks [54],
ensemble learning strategies [55], Monte Carlo dropout [56,57], and CP methods [58,59].
Integrating these techniques into PPM frameworks allows practitioners to obtain both point
forecasts and prediction intervals, thereby identifying cases that may require additional
data or human oversight. High-stakes decision-making in PPM—relevant to sectors such
as healthcare—demands models that are both accurate and interpretable [15]. In these
contexts, the consequences of erroneous predictions are significant, making it imperative
to understand not only what the models predict but also why. The combination of XAI
and UQ provides a comprehensive toolkit: explainability methods elucidate the rationale
behind model decisions, while uncertainty measures offer insights into the reliability of
these decisions [60,61]. This integrated approach facilitates more informed and confident
decision-making by illuminating both model strengths and limitations. In summary, re-
cent advancements in PPM underscore the importance of combining explainability and
uncertainty quantification to enhance transparency and trustworthiness.
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8. Conclusions

In summary, our study demonstrates that integrating probability calibration tech-
niques with CP framework enhances both the statistical robustness and interpretability
of PPM in high-stakes healthcare applications. By systematically comparing post-hoc
calibration methods we established that calibrated probabilities not only align better with
empirical outcomes but also improve the reliability of uncertainty estimates generated via
SPC. The experimental results indicate that while uncalibrated models can achieve high
overall discrimination, they tend to misallocate uncertainty, particularly for the minority
class. In contrast, calibration methods preserve classification performance while yielding
lower log loss and improved ECE. Furthermore, explainability analysis based on SHAP
values revealed that the calibration process reshapes feature attributions; non-parametric
approaches, for instance, tie uncertainty more directly to clinically meaningful markers,
thereby enhancing model transparency and fostering clinician trust. These findings high-
light that calibration is not merely a technical adjustment but a transformative layer that
influences model reasoning and uncertainty quantification.
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