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 A B S T R A C T

A new grain growth model is proposed that extends classical mean-field models to include the local 
neighborhood of grains. The theoretical basis of the approach is the equilibrium angle of grain boundaries 
at triple junctions, which is estimated to be 120◦ considering 2 dimensions, in the case of isotropic grain 
boundary energy. Based on this fact and a size comparison of individual grains, an algorithm is developed 
that assigns a discrete neighborhood relationship to all grains, resulting in the generation of an artificial 
microstructure. For validation, samples of a CMn steel were examined in different states after heat treatments 
and the microstructure was characterized using deep learning approaches to extract grain boundaries from 
etched samples with excellent statistics and reliability. The properties and statistical characteristics of the 
artificial and real microstructures are presented and compared. It is shown that simple topological approaches, 
such as the linear relationship between the number of grain neighbors and the relative grain size, are good only 
in a first approximation, but collapse in detail. The proposed model is able to resemble these small deviations 
of a real microstructure from topological models. Furthermore, the grain growth behavior of such an artificial 
microstructure is compared with real grain growth experiments. The comparison shows that by implementing 
the discrete neighborhood of grains, behaviors such as abnormal grain growth seem to be covered to a certain 
extent without additional treatment as required in other models. 
1. Introduction

The manipulation of grain growth in such a way, that microstruc-
tural dependent properties evolve favorable, is the high art of thermo-
mechanical processing of steel slabs toward the ready for sale products. 
Properties as the yield strength or the velocity of the recrystallization 
kinetic are directly connected to the grain size by the Hall–Patch effect. 
Depending on how exact those properties have to be adjusted, the time 
slots of the necessary processing steps need to be hit to the second. 
Hence knowledge about the microstructure is a huge benefit.

Grain growth simulations have over time become the tool of choice 
when it comes to predict the evolution of microstructure, but these 
forecasts are only as good as the included physics. If grain size refining 
mechanisms such as recrystallization are neglected, the grain size dis-
tribution during grain growth is inalterable over time if the examined 
histogram is normed on the mean grain size [1]. The distribution itself 
can be described by a logarithmic normal distribution [2]. This basic 
rule can simply be illustrated by a Voronoi tessellation, where the seeds 
are not put in place at the same time but one after another, resulting in 
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a power-diagram or Laguerre–Voronoi diagram. The rate of microstruc-
tural evolution slows down as it evolves toward an asymptotic state [3]. 
A grain growth simulation should be able to cover all these features. 
One of the earliest models for grain size prediction was proposed by 
Burke [4], suggesting that the driving force of a grain boundary to move 
is proportional to its curvature and its direction is toward its center of 
curvature. This fact is often represented as an inverse proportionality 
of the grains diameter as the corresponding curvature, that originally 
results from the reduction of interfacial energy as stated by [5–7].

This model described the microstructure evolution with only few 
parameters, depending on the (initial) grain size, time passed during 
heat treatment and proportional constants [4], but over time, more 
advanced models arose, more and more focusing on local events that 
required simulations capable to circumstantiate grain boundary move-
ment with lateral resolution. Phase field models [8], cellular automata 
models [9], Monte Carlo Potts models [10,11] and vertex models [12] 
are the most popular modern frameworks. They all have their ad-
vantages and disadvantages, just to name the compact data in vertex 
models or the continuum descriptions in phase field models on the 
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positive side, but also the required discretization of space that is a major 
drawback for all of them since the discretization limits the fidelity of 
the simulation, as noted by [13]. In the same work, [13] provides 
a solution for the space discretization problem in two dimensions by 
presenting a model, that based on the assumptions of [14] calculates 
the movement of triple junctions and boundary vertices without the 
necessity of discretization. It can easily be expanded to three dimen-
sions as demonstrated in [15,16]. Although this model permits a very 
sophisticated way to calculate the movement of grain boundaries at 
discrete time steps, vertex models lack a fundamental feature. The fact, 
that grains itself do not exist in vertex models, but are only defined 
by the boundaries that limit their spatial distention, makes it hard to 
implement additional driving forces that result from characteristics of 
the grain itself, contrary to the forces yielding from the curvature of 
the boundary. Such properties, namely the dislocation density, cannot 
be neglected when it comes to strain induced grain growth or recrystal-
lization, two peculiarities that are impossible to circumnavigate during 
hot forming.

Also the validation of a grain growth model is important. This task is 
often not trivial, since the grain size of the high temperature phase has 
to be determined. While [17] overcame this problem by measuring the 
grain size insitu via laser ultrasound, this method might not be applica-
ble for the vast majority of users. Notwithstanding this method provides 
an excellent time resolution, only providing a mean value, this methods 
is unfeasible if the shape of the grain size distribution is of interest. 
In such cases more direct methods should be considered such as the 
reconstruction of the prior austenitic phase from EBSD orientation data 
which is applicable for martensitic and partially bainitic structures after 
quenching [18] or the conventional etching of the specimens with the 
standard Bechet–Beaujard-etchand [19] or with modified recipes [20]. 
For extreme low carbon steels the choice of the wetting agent as stated 
by [21] has a large impact on the results as can be seen in [22]. For the 
sake of completeness thermal etching can also be named in this context 
and can be gathered in [23].

2. Mean field models

In many cases, not only the capability of the model is of interest, but 
also the time required by the simulation itself. If no detailed lateral 
information about the microstructure is of interest, a more inchoate 
model, that still provides the desired quantities, might be the better 
choice. Most of these models are still focused on the mean grain 
boundary curvature, based on the work of [4,24] or on the number of 
sides (coordination number) of the grains, as shown by [25,26]. These 
early models illustrate the meaning of mean-field models, by reducing 
the microstructure in all its facettes to a only one parameter, the mean 
grain size, as can be seen in Eq.  (1) of the Burke–Turnbull model. 
𝑑𝑅
𝑑𝑡

∝
𝛾𝐺𝐵

𝑅
(1)

Here 𝛾𝐺𝐵 is the isotropic grain boundary energy and 𝑅 the mean 
grain size.

Hillert [3] for example considered individual grains 𝑅𝑖 that are 
surrounded by a hypothetical medium, that represents the average 
microstructure by the mean grain size 𝑅, thus altering the Burke–
Turnbull model. The advantage of this model is, that the result is not 
only a mean grain size, but a full grain size distribution, which contains 
much more information. 
𝑑𝑅
𝑑𝑡

∝ 𝛾𝐺𝐵

(

1
𝑅

− 1
𝑅𝑖

)

(2)

Later, [27] further improved Hillert’s model. He argued that Hillert’s
assumption of 𝑅 representing the average microstructure, is only true 
if the system is large enough. For smaller systems, or more localized 
observations, 𝑅 should show variations. A grain of particular size could 
therefore shrink in one place, but grow at another. These local varia-
tions of grain growth are not covered by Hillert. The constant growth 
2 
rate provided by Eq.  (2) are therefore only valid after a stationary 
grain size distribution is already obtained, thus only describing normal 
grain growth. By assigning individual neighboring grains to each single 
grain, [27] bypassed this problem with his so called linear bubble 
model. The assignment of the neighborhood for his 1 dimensional 
growth scenario is given by: 

4𝜋 (𝑅𝑖 + 𝑅)2 =
𝑗𝑚𝑎𝑥
∑

𝑗=1
𝜋 𝑚𝑖𝑛(𝑅2

𝑖 , 𝑅
2
𝑗 ) (3)

This equation basically tries to occupy the surface of a sphere with 
radius 𝑅𝑖 + 𝑅 with spheres of size 𝑅𝑗 . This is done by estimating the 
contact area between every two spheres to be 𝜋min(𝑅2

𝑖 , 𝑅
2
𝑗 ). In this case, 

the choice of picking the minimum radius, leads to a symmetric contact 
area, meaning the contact area from grain 𝑖 to grain 𝑗 is the same 
as for grain 𝑗 with grain 𝑖. This ensures the constancy of the overall 
volume of all spheres. Although [27] basic idea was to implement 
local neighbor variations, his model does not fully exclude 𝑅 from 
his growth model, as can be seen on the left hand side of Eq.  (3). 
Therefore in his model, the histogram of the coordination numbers,
i.e. the probability distribution for the number of neighbors, does not 
fit to observed microstructures, because the mode is to small and the 
spread to narrow. His equation for grain growth yields : 
𝑑𝑅𝑖
𝑑𝑡

= −
𝑑𝑅𝑗

𝑑𝑡
∝ 𝛾𝐺𝐵

(

1
𝑅𝑗

− 1
𝑅𝑖

)

(4)

Abbruzzese and Lücke [28,29] are also using Eq.  (4) for the grain 
growth kinetic, but differ in the assignment of the neighborhood. Their 
approach is a statistical neighbor assignment instead of a discrete one. 
Therefore, they calculate the probability of grains with radius 𝑅𝑖 to be 
neighboring a grain of radius 𝑅𝑗 . Since this probability is symmetric, 
the probability of a grain 𝑖 to be neighbor of grain 𝑗 is the same 
as the probability of grain 𝑗 to be adjacent to grain 𝑖, this approach 
intrinsically guarantees the overall grain area to be constant. While 
their approach is unimpeachable from a mathematical point of view, 
its implementation is kind of impractical. The probabilistic assignment 
of neighbors is based on an inherent probability function, that outputs 
the probability of a given grain, to be within size class 𝑟𝑖 and having 
𝑛 neighbors. [28,29] obtained this function by fitting it to the data, 
extracted from the microstructure of a Al 3% Mg sample.

The model proposed here fits into this group of models that try 
to expand the basic models by incorporating microstructural features 
that arise from local inhomogeneities, without the necessity of a lateral 
resolution of the simulation itself, hereby bypassing the increased com-
putation time that is characteristic for these models. Nevertheless, if 
results with a lateral resolution is desired, vertex or phase field models 
are still the way to go.

3. Experimental procedure

For the model validation, a CMn-steel (0.04 wt% C, 1.6 wt% Mn, 
0.3 wt% Si, 0.03 wt% Al) has been analyzed during grain growth 
regarding its grain size kinetics and its characteristics concerning grain 
neighbor counts and grain neighbor size analysis. Equivalent grain 
diameters in a 2D cross section were determined in the initial state and 
for heat treatments at 1050 ◦C, 1150 ◦C and 1250 ◦C respectively for 
10, 20, 45, 60, 120 and 240 min. Samples were cut open in the middle 
and the grain size was determined. To do so, a substantial amount of 
grains is necessary to confirm the reliability of the measured values and 
to prevent misinterpretation due to statistical insufficiency. Due to the 
limited scanning area and time, an EBSD reconstruction is therefore not 
the method of choice, especially when the microstructure has formed 
mainly diffusion controlled. A new procedure has been used that has 
been particularly developed to overcome this problem. It is based on 
deep learning algorithms and capable to analyze a couple thousands of 
grains within minutes from a  Bechet–Beaujard etching, as described 
in [20]. It has been calibrated using reconstructed microstructure from 
EBSD data and has been extensively tested to provide reliable results. 
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Fig. 1. Example of a panorama image of an etching. Grain boundaries have been extracted as described in [20] and shown on the right.
Grain size analysis and grain neighbor analysis haven been done using 
the Software Fiji and MatLab. To ensure a good agreement between 
simulated and present temperature profile within the sample, the exact 
temperature profile of the heating up phase was measured with a 
thermocouple in the core of a dummy specimen. An example of the 
etchings where grain size and the neighbor grain analysis have been 
performed is shown in Fig.  1 below.

4. The proposed model

4.1. Creating neighbor relations from grain size distribution

Although [27] never presented the distribution regarding the num-
ber of neighbors of the grains in his work, applying the algorithm 
given with Eq.  (3) to the given grain size distribution of a given 
microstructure, the resulting distribution is too narrow in comparison. 
Considering that the method is intended for 3 dimensions, compared 
to a two dimensional cross section of a three dimensional structure, 
the neighbor distribution peak value at four seems to be too small. A 
distribution peak value of four to five can be observed in measurements 
of 2D cross sections, whereas the value in three dimension has to be 
higher, due to the additional neighboring grains in the missing third 
dimension. Therefore a similar but different procedure is presented that 
is independent of the assumptions of the contact area between grains, as 
used in Eq.  (3). It also bypasses the correction value of 𝑅, which could 
easily confound the results for bi- or multi modal size distributions, and 
also does not require the probability calculations and fits as in [28,29].

The principle of the new method is based on the idea, that at 
equilibrium conditions the angle at triple junctions of grains should be 
120◦ in 2D and 109◦ at quadruple junctions in 3D for missorientation 
independent interfacial energies 𝛾𝐺𝐵 . Assuming an extreme monomodal 
grain size distribution this results in six neighbors for each grain in the 
2D case and in 12 for the 3D case. The 12 neighbors in three dimensions 
come from the sufficient similarity between the 109◦ equilibrium angle 
and the 108◦ angles of a dodecahedron which has 12 faces. In mathe-
matical terms this breaking condition can be expressed in similar ways 
as Eq. (3), as: 

for grain i: 1 ≤
𝑗𝑚𝑎𝑥
∑

𝑗=1

1
6
𝑅𝑖
𝑅𝑗

in 2D (5)

and 

for grain i: 1 ≤
𝑗𝑚𝑎𝑥
∑

𝑗=1

1
12

𝑅𝑖
𝑅𝑗

in 3D (6)

The denominator values of 6 and 12 ensure, that a grain that is 
on average larger than its neighbors, has more neighbors then the 
denominator value and vice versa. This ensures, according to Eq.  (9), 
the von Neumann–Mullins relationship, consequently in 2 dimensions 
grains with more than 6 neighbors (12 in 3 dimensions) grow and 
grains with less than 6 neighbors, respectively 12, shrink. Even though 
in reality the observations deviate in the individual cases, the overall 
grain growth behavior follows the von Neumann–Mullins relationship, 
even for anisotropic grain boundary energy, as shown by [30].
3 
For fine tuning, the denominator values of the prefactors in Eqs. (5) 
and (6) can be slightly adapted until the generated distribution repre-
sents reality in the best possible way. A similar effect has been observed 
by [28], as he had to correct the grains perimeter compared to its 
radius. It is assumed that also in the case presented the reason is 
the same and can be traced back to not perfectly equiaxed grains, 
which results in a slight deviation from the spherical assumed shape 
of the grains. Applying the presented approach to a given grain size 
distribution, results in a coordination number distribution as shown in 
Fig.  2.

As displayed in Fig.  2, the neighbor assignment can start at any 
arbitrary grain. Starting at any index 𝑖, grain 𝑖 is linked alternating 
to grains with higher and lower index, until the breaking condition 
in Eq.  (5) occurs. If the index would become smaller than zero or larger 
than the number of radii, it attains the corresponding index value from 
the end of the array or at the start of the array. Visually, the array 
is virtually connected to its own end as pictured. This procedure is 
repeated for every grain, considering their already existing links from 
earlier treated grains, linked to them. Eqs.  (5) and (6) are in fact 
inequations, since it can be assumed that there is no linear array of 
arbitrary grain radii 𝑅𝑖, that would result in Eqs. (5) and (6) being 
exactly 1. For this reason, the contact area between two grains, cannot 
be extracted from these equations, since those contact areas would be 
asymmetric, accordingly the conservation of area or volume during 
grain growth would be violated. Hence, a symmetric expression for the 
contact area 𝑎𝑖𝑗 is given in following Eqs.  (7) and (8). 

𝑎𝑖𝑗 = 𝜋 2
6
𝑅𝑖 + 𝑅𝑗

2
in 2D (7)

and 

𝑎𝑖𝑗 = 𝜋 1
9

(𝑅𝑖 + 𝑅𝑗

2

)2

in 3D (8)

These equations, which draw the grain boundary between grain 𝑖
and grain 𝑗 exactly in the middle at 𝑅𝑖+𝑅𝑗

2 , can be interpreted as the 
construction of a Voronoi cell, as depicted in Fig.  3.

4.2. Re-adjusting neighbors during grain growth

During grain growth it inevitably comes to the disappearance of 
grains, since they are absorbed by their neighbors. Consequently, the 
neighbors lose the vanished grain as their neighbor. For growing grains, 
this leads to the stage that no neighbors are left, and their ability to 
grow is reduced to zero. To avoid this, their grain boundary area has to 
be reoccupied. This reoccupation is conducted under the same rules as 
given in Eq.  (5) or (6), with one exception. Only grains that also lost the 
exact same neighbor come into consideration for reoccupation and this 
method is applied for all grains that lost a neighbor. For simplicity, the 
reallocation is only done when a grain disappears and not after each 
discrete time step, even though Eq.  (5) or (6) might not be satisfied 
in between anymore due to the change of size of individual grains. A 
disadvantage of this method is that time steps cannot have arbitrary 
values, but the values are limited to a value so that only one grain 
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Fig. 2. (a) An array of grain radii in random order is generated so that their histogram represents the desired size distribution. Subsequent the grains are linked.
(b) Corresponding coordination number distribution generated by Eq.  (5) for  67.000 grains, with a log-normal distribution fitted to it.
Fig. 3. Visualization of Eq.  (7). Grain boundary segments of a polygon, constructed as 
a Voronoi cell.

among all will disappear in that particular time step. The reason behind 
is simply that after a grain disappears and the neighbors are reallocated, 
the individual driving forces (see Section 4.3) have to be reevaluated. 
If an individual time step might be too large so that the individual 
volume change for each grain indicates that more than one grain would 
vanish, this can be corrected by rescaling the time step so that only 
for one grain the negative volume change equals the grains area or 
volume. Thus the whole following procedure in Sections 4.3 to 4.4 
does not have to be recalculated. This method can also be applied to 
refine the calculations in such a way that time steps limit the grains 
volume change per time step, so that they do not change their size over 
magnitudes in a single time step.

4.3. Evaluation of the driving force

The driving force in this work is still based on the thoughts of [4], 
but with respect to the generated neighbor relations in Section 4.1. It is 
composed of 2 terms, respectively for driving forces through boundary 
4 
curvature and driving forces by dislocation density differences. The 
driving force of grain ‘‘𝑖’’ with regard to its neighbor grain ‘‘𝑗’’ can be 
expressed as: 

𝐹𝑖→𝑗 = −𝐹𝑗→𝑖 = 𝛾𝑖𝑗

(

1
𝑑𝑗

− 1
𝑑𝑖

)

+ 0.5𝐺𝑏2
(

𝜌𝑗 − 𝜌𝑖
)

(9)

where 𝛾𝑖𝑗 is the homogeneous, isotropic grain boundary energy, 𝑑𝑖,𝑗 the 
diameter of grain 𝑖 and 𝑗, 𝐺 is the shear modulus, 𝑏 the burgers vector 
and 𝜌𝑖,𝑗 the dislocation density of grain 𝑖 and 𝑗. If grains are of equal 
size, the force resulting through boundary curvature is zero. In cases 
where recrystallization occurs, hence deformation free small nuclei 
start growing at the expense of their surrounding deformed grains, the 
second term based on the dislocation density overwhelms the first one. 
The fact that 𝐹𝑖→𝑗 = −𝐹𝑗→𝑖 ensures the simulated volume to remain 
constant during grain growth, since the fluxes for the Eulerian control 
volume for each grain boundary add up to zero.

For all grains the calculations by Eq.  (9) are independent and 
therefore can be parallelized. Because of the symmetry in the same 
equation, the quantity of calculation can be further reduced making 
this approach very efficient with respect to computation time.

4.4. Bypassing the limitation of maximum grain size to be about the simu-
lation area or volume

In reality grains cannot grow larger than a monocrystal. The max-
imum grain size is thus limited by the available volume. Therefore it 
is necessary in the simulation as well, to provide enough total volume 
at the beginning to not confound the final grain size by to few initial 
grains. However, a large number of grains at simulation start also 
provokes disadvantages. Even thought the computation time per time 
step will diminish over time due to the decreasing number of grains, 
the total computation time will be drastically increased. To avoid 
this dissipation and at the same time bypass the maximum grain size 
problem described above, a new method is presented.

For better visualization, one can imagine observing grain growth in 
a limited area under a microscope. When the number of grains in this 
area is decreased in such a way, that it is impossible to calculate values 
as mean grain size etc. with high statistical certainty, one decreases 
the magnification and continues observing grain growth, but now with 
better statistics.

In reality this is simple, because after enlarging the field of view, it 
is obvious if the now statistical sufficient number of grains matches the 
expectations from the small area before or if the small area represented 
some outliers compared to its surrounding. In the simulation this is 
impossible because there are no grains outside the box. The newly 
created structure and its properties are entirely based on the previous 
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Fig. 4. For every integer value on the 𝑥-axis, 𝑥 random numbers were taken 10 times, following the log-normal distribution with the parameters. 𝜇 = 𝑙𝑜𝑔(20) and 𝜎 = 𝑙𝑜𝑔(1.4). For 
each of the 10 test series the mean value was calculated. On the 𝑦-axis the deviation from the expected value of the mean of those 10 mean values (black), the maximum of the 
mean values (blue) and the minimum of the means (green) is plotted. For the mean to have a maximum deviation of 1% from the expectation value 𝑒𝜇+ 𝜎2

2 , at least 2000 data 
points or more are necessary. Adding a security margin, 2500 samples are required.
structure. Thus the ‘‘zoom out’’ in the simulation has to happen before 
the number of grains is to few and the system becomes indescribable 
in a statistical manner. In Fig.  4 it is shown how the lower limit of 
necessary grains is statistically determined by a simple evaluation of 
statistics.

To increase the number of grains, the existing grains including their 
properties, except their neighbor relations, are copied and replicated. 
The replication factor can be any integer value greater than or equal to 
2. The manifold grains are then attached in a special way to the existing 
grain array. One can imagine from Fig.  2 (a), that the circle is broken 
down, bend up and the gap is filled with an almost copy of its own. 
The modifications applied to the duplicated array are the following:

1. For each of the two grains bordering the insertion point, de-
termine their neighbors on the opposite side of the insertion 
point.

2. Keep the grains from point 1. in this exact sequence, to not 
manipulate the neighbor relations of the existing grains at both 
ends of the insertion point.

3. Mix the remaining grains in a random order and allocate neigh-
bors to them according to Eqs. (5) or (6). The mixing has to be 
done, since otherwise the copied grains would have allocated 
the corresponding neighbors of the original array. This would 
result in an amplification of the characteristics of the grain size 
distribution that might not be beneficial.

A schematic example of this procedure is illustrated in Fig.  5:

5. Results and discussion

The calculated neighbor histogram matches the measured neighbor 
histogram very well for only being based in the 120◦ equilibrium angle 
assumption, as can be seen in Fig.  6.

The artificial microstructure can be further analyzed to compare it 
with properties of the real microstructure. Therefore, both the artificial 
as well as the real microstructure were examined for grain-neighbor 
grain properties. In detail, the correlation between the grain size and 
the number of neighboring grains (coordination number) was evaluated 
5 
(Fig.  7), as well as the correlation between the grain size and the size 
of the neighboring grains (Fig.  8).

While the shapes of both probability distributions in Fig.  7 are simi-
lar, they have minor differences. The width of the artificial distribution 
(middle) seems a bit wider than its counter part (top). Related to Fig. 
6 and its deviations it can be concluded that those deviations can only 
result from the deviation of a spherical grain shape in the measured 
microstructure, whereas a spherical shaped grain in the model is as-
sumed. On the other hand, the relative size of the neighbor grains 
(Fig.  8) seems unaffected by this. Compared with the microstructural 
data from an Al 3% Mg sample provided by [28], the data from the 
sample in this work as well as from the artificial microstructure show 
a very good agreement. In all cases the spread of the distribution is in 
conformity. Fig.  7 (bottom) confirms this, where only minor deviations 
of the linear regression from real and artificial microstructures are 
visible. The largest difference can be observed when comparing the 
data to the coordination number calculated by 𝑛 = 3 + 3𝑅. While this 
theoretical approach is also based on the assumption of 6 neighbors for 
equally sized grains, it also assumes a minimum neighbor count of 3 in 
2-dimensions. This is in contradiction to the real microstructure which 
shows as little as 2 neighbors on a regular basis, which is also the case 
for the artificial microstructure proposed in this paper

Parameters in Table  1 were chosen to give the best overall agree-
ment for the values of maximum grain size, area weighted mean grain 
size, number weighted mean grain size and the 95% percentile of all 
grains and for all times and temperatures as can be seen in Fig.  9.

The influence of the artificial microstructure on the grain growth 
behavior itself has been also put to the test. Fig.  10 shows a comparison 
between experimental results for a CMn-steel and 4 nearly identical 
simulations. All 4 simulations have the exact same grain size distribu-
tion as starting condition in common, but since the order is different, 
they differ in the assignment of the neighbor relations of the individual 
grains. As can be seen, the tendency of all 4 simulations is the same. 
The 5 properties displayed, namely minimum grain diameter, number 
weighted mean grain diameter, area weighted mean grain diameter, 
95% percentile and maximum grain diameter, all have about the same 
values with a good agreement of the measured values. The spread of 
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Fig. 5. (a) Cut the grain array from Fig.  2 (a) open at any arbitrary position. Count to how many grains the grains at one cut side are connected to grains of the other cut side 
(red grain (𝑖) is connected to 3 to grains to the left, turquoise grain (𝑖 − 1) is connected to 2 grains to the right) (b) insert a copy of the array into the cutting point (c) keep the 
3 new neighbors to the left of the red grain (𝑖) and accordingly the 2 new neighbors to the right of turquoise grain (𝑖 − 1) in the exact sequence while the order of the grains 
between is mixed up. Subsequently assign neighbors to the new grains according Eq.  (5) or (6).
Fig. 6. Comparison between measured (blue) coordination number distribution and calculated (red) coordination number distribution. Both are characterized by a maximum 
number of neighbors of 20 and a peak value at 4. The slight left shift of the measured distribution compared to the calculated one, is argued to come from the assumption of 
spherical grains, which seems to be not fully applicable. The blue histogram is based on 67000 grains, measured by EBSD, the red one is also based on 67000 grains, following 
the same size distribution as measured.
Table 1
Input parameters for grain growth simulation.
 Parameter Value Source  
 𝛾 1.3111-0.0005T [31]  
 𝐺 𝐸

2(1+𝜈)
general knowledge 

 𝜈 0.3 this work  
 𝐸 (191000-73T)⋅106 this work  
 𝑏 360⋅10−12 this work  
 Fine tuned 
denominator value 
Eq.  (5)

5.5 this work  

these values displayed and evaluated in Table  2 is expected to be the 
same for 4 individual samples that have been heat treated under the 
same conditions.

Comparing simulations where the ‘‘zoom out’’ method proposed 
from Section 4.4 was applied and simulations where it was not applied 
(Fig.  11), show a close match up to a distinctive point.

Both progressions in Fig.  11 are nearly identical beyond the point 
where the conventional method drops below 2500 grains, showing that 
the new method does not influence the results. Noteworthy diverging 
between both simulations starts between the ‘‘500 grains’’ mark and 
6 
Table 2
Mean values (A.M.) and standard deviations (SD) after 4 h at 1250 ◦C of plotted 
properties in Fig.  10 based on 10 simulations.
 Property A.M. [μm] SD [μm] 𝑆𝐷

𝐴.𝑀.
 [%] 

 Maximum grain size 3,461.3 519.9 15.0  
 95% of grains below 1,321.7 107.6 8.1  
 Area weighted mean grain size 1,055.6 91.9 8.7  
 Number weighted mean grain size 779.1 33.1 4.3  
 Minimum grain size 150.7 23.7 15.7  

‘‘200 grains’’ mark, which flag the points where the conventional 
method drops below 500, respectively 200 grains. Even though the 
diverging itself could be of statistical nature, due to too few grains, 
it is also fact that with too few grains the chances for every grain to 
satisfy Eq.  (5) during neighbor reallocation is reduced. This leads to a 
wrong neighbor distribution which also influences further performance. 
In summary, the new method presents a favorable alternative since the 
results are less influenced by the individual behavior of single grains, if 
the number of grains is statistically insufficient (kinks in dashed lines). 
The major advantage remains in the reduction of computation time 
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Fig. 7. Comparison between the correlation of the normalized grain size regarding 
𝑅 and its number of neighbors for the measured specimen (top) and the calculated 
artificial microstructure (middle). Comparison is also possible with respect to the fit 
function used by [28] (bottom).

which has been reduced by 97% from about 8.61 h to 13 min, for the 
simulation of 1 h grain growth at 1250 ◦C including the heating-up.

To underline [32], in which the state is independent on initial 
conditions, this can be put to the test by simulating the same heat 
treatment but with different initial grain size distributions. Three dis-
tributions have been chosen which not only differ in parameters of 
the distribution but in the distribution itself, namely a left skewed 
log.-normal distribution, right skewed log.-normal distribution and a 
Gaussian distribution. It can be seen in Fig.  12 that independent on 
the initial distribution, within the relative deviations of the grain sizes 
illustrated in Fig.  10 and Table  2, the results remain the same. In the 
zoomed in version, Fig.  12 (c), this converging point can be found very 
early after only about 6 min, which is before the final temperature has 
been reached at 6:40 min.

Looking at 13, it is evident that the grain size distributions is 
widening with time (see Fig.  13). [3] published data that are very 
similar and also support this behavior. A general observation is, that 
even if the maximum grain size relative to the mean grain size is very 
large at the start, it drops almost immediately to a value of about 2, 
which is the maximum value according to [3] observed for normal 
grain growth. The fact that, in agreement with the measurements, after 
this drop the ratio starts to increase again up to a steady state value of 
about 3.5 to 4 for all temperatures, suggests that all samples undergo 
some kind of abnormal grain growth and that this behavior is already 
covered by the simulation. While it is very hard to backtrack this 
7 
manner, it is assumed that it must come from special configurations 
of the neighborhood relationship of individual grains.

By manipulating the rather random order of the grains size array 
before the neighbor relations are allocated, their sequence can be 
influenced and the effect on grain growth can be observed. For example 
an humongous grain surrounded by tiny grains, compared to the same 
enormous grain surrounded by average sized grains could be analyzed 
for the impact of the neighbor configuration on the grain growth 
kinetics. Considering strain induced grain growth and recrystallization 
this dependency gains in significance. Questions such as if some giant 
grains, arisen by coarsening, can totally change a recrystallization 
kinetic or if this would additionally depend on their neighbors can be 
answered. For such purposes the here proposed method is ideal if a 
more complex model with lateral resolution is too time consuming.

5.1. Possible expansions to include texture evolution

The model expansion discussed hereinafter is not included yet, but 
would be easy to implement and favor from the structure of the general 
approach:

In 4.3, the interfacial energy is taken as a temperature dependent 
value, independent of the grain neighborship. In reality 𝛾 is depending 
on the missorientation of the grains and the exact geometry of the 
grain boundary, such as the normal vectors of the grain boundaries. 
While the grain boundary geometry is not included by the presented 
approach, assigning each grain an orientation, the missorientation be-
tween neighboring grains can be calculated and also the dependency 
of 𝛾 on the same. The calculation of the interfacial energy is taken 
from [33]. Since the iterative evaluation would be too time consuming, 
the orientation space is discretized and these discrete orientations are 
randomly assigned to the grains. The precalculated missorientation 
concerning the grains orientations and the corresponding 𝛾-values are 
taken from look up tables. The mobility of the grain boundary is 
dependent on the missorientation 𝜃 and calculated by 

𝑀 (𝜃) = 𝑀0 ⋅

[

1 − 𝑒𝑥𝑝

(

−5
(

𝜃
𝜃0

)4
)]

(10)

according to [34], with 𝜃0 = 15◦ being the threshold missorientation 
with a constant, misorientation independent mobility above it.

The grain boundary mobility 𝑀0 is directly taken from the mobility 
values provided by the CALPHAD approach. These values can be further 
corrected for solute drag and Zener pinning, presented in [35].

During deformation and recrystallization the texture, hence the 
individual orientations of the grains will change. The path in orienta-
tion space that each orientation will take during deformation can be 
calculated by either Taylor- or Sachs model. Since these orientation 
changes require the orientation space to be discretized very fine, it 
is advised to interpolate the misorientation and interfacial energies 
between those states, otherwise the fine discretization, resulting in a 
number of precalculated misorientations proportional to the square of 
the discrete orientations, would be very hungry for system resources.

New grains forming during recrystallization could be initialized 
with a random orientation that has a low interfacial energy towards 
its neighbor grains.

6. Conclusion

In this work, an algorithm to link individual grains to generate 
an artificial microstructure with discrete neighbors is presented. The 
approach is based on the observations of dihedral angles of 120◦ in 
structures with isotropic interfacial energy. Its independent of assump-
tions about the contact area between grains and bypasses the problems 
of older ideas that were dependent on informations extracted from 
real microstructures. Based on that, multiple examinations within the 
simulation can be investigated, that cannot be studied with other purely 
statistical grain growth models:
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Fig. 8. Comparison between the correlation of grain size and the size of its neighbor grains for the measured specimen (top) and the calculated artificial microstructure (bottom).

Fig. 9. Temperature dependent grain growth: Comparison between simulation and measurements. Measured data points are marked with ⊗ for 1050 ◦C, ⊞ for 1150 ◦C and ∗
for 1250 ◦C , whereas the simulation results are plotted in solid, dashed and dotted lines for the different temperatures. Missing datapoints are owed to the fact that from some 
samples no grain size could be extracted, due to bad etching quality, mainly caused by bainitic dominated microstructures.
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Fig. 10. Comparison between measured values (marked with ⊗) and corresponding simulated values for 4 simulations of a CMn- steel at 1250 ◦C. It can be observed that the 
different profiles of the 5 properties plotted all have the same tendency and order of magnitude (see Table  2).
Fig. 11. Comparison between the new method (continuous lines) and a conventional method (dashed lines). The simulation with the new method started with 5000 grains, using 
the ‘‘zoom out’’ function when the grain number would drop below 2500 grains, marked with black vertical lines. The Conventional simulation started with 40000 grains. The 
vertical red line marks the time where the conventional simulation drops below 2500 grains.
• The model is able to reflect morphological aspects of a real 
microstructure. This includes:

– the dependency of the coordination number distribution of 
the grain size distribution

– the dependency of the coordination number of the grain size
– the dependency of the grain size on the size of the neigh-
boring grains

• For microstructures that are statistically identical regarding its 
grain size, the influence of the individual grain neighbor on the 
coarsening behavior can be observed. In the case of a random 
linking, it can be shown that different linkings result in a slight 
9 
scatter in the grain size over time, as one would expect it to be 
for different samples that went through the same heat treatment. 
The amount of scatter within grain size development over time 
can therefore be investigated.

• The initial grain size distribution affects the grain neighbor size 
correlation. It can be shown that the grain size distribution always 
evolves into a log-normal distribution, unaffected by the initial 
grain size distribution.

• To continue the thought of point 3, it is possible to investigate 
how different nucleation sites during nucleation, either nucle-
ation at smaller grains or larger grains, can affect the recrystalliza-
tion kinetics and the grain size distribution after recrystallization.
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Fig. 12. Grain growth independent on initial state. Colors assignment identical to previous Figures: blue for maximum grain diameter, green for 95% quantile, red for area 
weighted mean grain diameter and black for number weighted mean grain diameter (a) different initial grain size distributions (b) grain growth over time at 1150 ◦C for 4 h (c)
zoomed in version of first 10 min of (b) with visible heating-up section at the beginning.
Fig. 13. Analysis of the widening of the grain size distribution with time. The increase in ratio of the maximum grain size in relation to the mean grain size indicates that the 
largest grains grow faster than the average.
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