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Abstract
The amendment procedure and the successive procedure have been widely employed
in parliamentary and legislative decision making and have undergone extensive study
in the literature from various perspectives. However, investigating them through the
lens of computational complexity theory has not been as thoroughly conducted as for
many other prevalent voting procedures heretofore. To the best of our knowledge, there
is only one paper which explores the complexity of several strategic voting problems
under these two procedures, prior to our current work. To provide a better under-
standing of to what extent the two procedures resist strategic behavior, we study the
parameterized complexity of constructive/destructive control by adding/deleting vot-
ers/candidates for both procedures. To enhance the generalizability of our results, we
also examine a more generalized form of the amendment procedure. Our exploration
yields a comprehensive (parameterized) complexity landscape of these problems with
respect to numerous parameters.

Keywords Amendment procedure · Successive procedure · Election control ·
NP-hard · W[1]-hard · W[2]-hard · FPT

1 Introduction

The amendment and the successive voting procedures are two fundamental methods
commonly employed in parliamentary and legislative decision-making. The amend-
ment procedure is particularly prevalent in countries such as the United States, the
United Kingdom, Finland, and Switzerland, among others. Meanwhile, the succes-
sive procedure is widely utilized across many European nations, including the Czech
Republic, Denmark, Germany, Hungary, and Iceland. For a more detailed discussion,
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appeared in the Proceedings of the 21st International Conference on Autonomous Agents and Multiagent
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refer to Rasch [46]. Since the pioneering works of Black [8] and Farquharson [28],
these two procedures have been extensively and intensively investigated in the liter-
ature (see, e.g., the works of Apesteguia, Ballester, and Masatlioglu [1], Horan [34],
Miller [43], Rasch [46, 47]). Each of these procedures takes as input a set of candi-
dates, a group of voters with linear preferences over these candidates, and an agenda
(also referred to as a priority), which is specified as a linear order of the candidates.
The output is a single candidate selected as the winner. The agenda specifies the order
in which candidates are considered in the decision making process. The amendment
procedure takesm rounds to determine the winner, each determining a temporary win-
ner, where m denotes the number of candidates. The winner of the first round is the
first candidate in the agenda. For the i th round, the winner is either the i th candidate
in the agenda or the winner of the (i − 1)th round, determined by the head-to-head
comparison between the two candidates, with the winning candidate becoming the
winner of the i th round. The amendment winner is the winner of the last round. For
the successive procedure, the winner is the first candidate in the agenda for whom
there is a majority of voters, with each voter preferring this candidate to all successors
of the candidate.

In practice, several factors can influence the outcome of an election. For instance, it
is known that given the same voting profile, different agendas may result in different
winners. Notably, according to the works of Black [8] and Miller [43], the successive
procedure is more vulnerable to agenda control than the amendment procedure, in
the sense that for the same profile, any candidate that can be made the amendment
winner by some agenda can also be made the successive winner by some agenda (see
also the work of Barberá and Gerber [3] for an extension of this result). To gain a
more nuanced understanding of how election outcomes under the amendment and
the successive procedures can be affected by different factors, Bredereck et al. [11]
studied the complexity of several related combinatorial problems under these two pro-
cedures. Concretely, they studied problems such as Agenda Control, Coalition
Manipulation, Possible Winner, Necessary Winner, and weighted variants of
these problems. Their results reveal that the amendment procedure is more resistant
to agenda control and manipulation than the successive procedure.

To the best of our knowledge, the work of Bredereck et al. [11] is so far the sole
exploration into the complexity of strategic problems under these two procedures,
leaving many other types of strategic operations for these two procedures unexplored.
In an effort to fill these gaps and significantly expand our understanding of the extent to
which the two procedures resist other types of strategic operations, we investigate sev-
eral standard control problems. Particularly, we delve into the problems of constructive
control by adding/deleting voters/candidates, initially proposed in the pioneering paper
byBartholdi, Tovey, andTrick [4]. These problemsmodel scenarioswherewe are given
a number of registered voters and candidates, and an election controller aims tomake a
distinguished candidate the winner by either adding a limited number of unregistered
voters/candidates or deleting a limited number of registered voters/candidates. Addi-
tionally, we study the destructive counterparts of these problems, first proposed by
Hemaspaandra, Hemaspaandra, and Rothe [33]. In the destructive control problems,
the goal of the controller is to prevent the distinguished candidate from becoming the
winner.
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Tomake our results more general, in addition to the two procedures, we also study a
generalization of the amendment procedure, which we term h-amendment, where h is
a positive integer. Generally speaking, this procedure involves multiple rounds, where
in each round, a candidate c is compared with her next h successors to determine
whether c or the next h successors of c in the agenda are eliminated. The winner is
the one who survives the last round. (We refer to Sect. 2 for the formal definition.)
Notably, the standard amendment procedure is exactly the 1-amendment procedure.
Furthermore, another intriguing special case of the h-amendment procedures arises
when h equals the number of candidates minus one. We refer to this special case
as the full-amendment procedure. An advantage of the full-amendment procedure
is that it selects a superior winner compared to the amendment procedure and the
successive procedure. Specifically, for a fixed election and a given agenda, the full-
amendment winner either coincides with or is preferred by a majority of voters over
the amendment/successive winner.

For these procedures, we provide a comprehensive understanding of the parameter-
ized complexity of election control problems, including many intractability results
(NP-hardness results, W[1]-hardness results, W[2]-hardness results, and paraNP-
hardness results), and numerous tractability results (P-results and FPT-results). The
parameters examined in the paper include the number of predecessors/successors of the
distinguished candidate in the agenda, the number of added/deleted voters/candidates,
the number of registered voters/candidates, and the number of voters/candidates not
deleted. Table 1 summarizes ourmain results.We also examine the parameterized com-
plexity with respect to two natural parameters: the number of voters and the number of
candidates. Many of the results concerning these parameters are either straightforward
to observe or implicitly derived from the results for the aforementioned parameters,
with only a few cases remaining open. Formore details, we refer the reader to Sect. 2.4.
Additionally, we note that beyond the results presented in Table 1, our hardness reduc-
tions also imply many kernelization and approximation lower bounds, which shall be
discussed in detail in Sect. 4.

The general message conveyed by our study is that the amendment procedure and
the successive procedure exhibit distinct behaviours regarding their resistance to the
eight standard control problems. We will discuss this issue at the end of the paper in
greater detail.

As a side note, for readers interested in the topic, it is worth mentioning that similar
control problems have been investigated in many other settings, such as multiwinner
voting (see, e.g., the works of Meir et al. [42], Yang [52]), judgment aggregation (see,
e.g., the works of Baumeister et al. [5], Baumeister et al. [6]), group identification (see,
e.g., the works of Erdélyi, Reger, and Yang [26], Yang and Dimitrov [55]), tournament
solutions (see, e.g., the work of Brill, Schmidt-Kraepelin, and Suksompong [12]).

1.1 Motivation

Our motivation for the study is twofold.
First, the control types (operations) of adding/deleting voters/candidates are highly

relevant for practical applications. In the context of parliamentary decision-making,
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for example, members of parliament have the right to abstain from voting. Deleting
voters represents the scenario where a strategic controller may persuade particular
voters to abstain, though these voters initially planned not to do so. On the other hand,
adding voters represents a scenario where the strategic controller persuades certain
voters who initially planned to abstain to participate in the voting procedure. Similarly,
adding or deleting candidates is relevant in scenarios where a strategic controller has
the power to decide which motions, bills, proposals, etc., are eligible to be put on the
agenda.

Second, investigating the complexity of the aforementioned election control prob-
lems for many traditional voting procedures (those that do not require an agenda to
determine a winner) had partially dominated the early development of computational
social choice for several years, culminating in an almost complete complexity land-
scape of these problems (see the book chapters [7, 27] for important progress up to
2016, and the papers [25, 44, 50, 51, 53] for recent results). The motivation behind
the extensive research is rooted in the belief that complexity serves as a robust barrier
against strategic behavior. Given the broad applicability of the amendment and the
successive procedures, we believe it is of great importance to address the gaps in this
regard for the two procedures.

It is worth noting that several experimental studies have demonstrated that many
computationally hard election problems can often be solved efficiently on practical
instances, providing empirical evidence that mitigates the perception of complexity as
a barrier to strategic voting. However, we emphasize that establishing the theoretical
complexity of a problem is a foundational step toward a comprehensive understanding
of its nature and limitations. This theoretical groundwork is indispensable for system-
atically addressing the challenges and opportunities presented by these problems in
both theoretical and practical domains.

1.2 Organization

In Sect. 2, we provide important notations used in our study. Following this, we unfold
our main results in Sect. 3, which is further divided into three subsections respectively
covering our results for the h-amendment procedures, the (m − h)-amendment proce-
dures wherem is the total number of candidates and h is a constant, and the successive
procedure.Moving on, we discuss algorithmic lower bounds implied by our reductions
in Sect. 4. Finally, in Sect. 5, we briefly conclude our results, discuss their implications
on the usage of these procedures, and lay out several topics for future research.

2 Preliminaries

We assume that the reader has a basic understanding of (parameterized) complexity
theory and graph theory. This section provides the necessary notations for our study,
while terms not explicitly defined in the paper are referenced in the monographs edited
by Bang-Jensen and Gutin [2] and the work of West [49]. For a gentle introduction to
complexity theory, we recommend the paper by Tovey [48].
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For an integer i , [i] denotes the set of all positive integers less than or equal to i .

2.1 Elections

An election is defined as a tuple E = (C, V ), where C is a set of candidates and V
is a multiset of votes cast by the voters. In particular, each �∈ V is a linear order
on C , representing the preference of a corresponding voter over the candidates in
C . Specifically, a � b for a, b ∈ C indicates that the voter prefers a to b. We also
say that the vote � ranks a before b if a � b. For notational brevity, we sometimes
write a preference in the format of a sequence of candidates from the most preferred
one to the least preferred one. For instance, stating a vote with the preference a b c
means that, according to the vote, a is ranked before b, and b ranked before c. For
two disjoint subsets X ,Y ⊆ C , X � Y means that all candidates in X are ranked
before all candidates in Y in the vote �. For C ′ ⊆ C , V |C ′ is the multiset of votes
obtained from those in V by removing all candidates in C \C ′. Thus, (C ′, V |C ′) is the
election (C, V ) restricted to C ′. For notational convenience, we use (C ′, V ) to denote
(C ′, V |C ′).

A subset C ′ ⊆ C is called a block with respect to V if its members are ranked
consecutively in all votes from V , i.e., for each �∈ V and each c ∈ C \ C ′, it holds
that either {c} � C ′ or C ′ � {c}. An ordered block on a subset C ′ of candidates is a
linear order on C ′ such that C ′ is a block and, moreover, all votes of V restricted to C ′
are consistent with the linear order. For instance, if (a, b, c) is an ordered block, all
votes rank {a, b, c} together, and they all prefer a to b to c.

Let nV (a, b) denote the number of votes in V ranking a before b, i.e., nV (a, b) =
|{�∈ V : a � b}|. We say that a beats b with respect to V if nV (a, b) > nV (b, a),
and that a ties with b with respect to V if nV (a, b) = nV (b, a). For a candidate a ∈ C
and a subset C ′ ⊆ C\{a}, we say that a majority-dominates C ′ with respect to V if
there exists V ′ ⊆ V such that |V ′| > |V |/2, and {a} � C ′ holds for all �∈ V ′. For
uniformity, we define that every candidate a ∈ C majority-dominates the empty set ∅.

A candidate c ∈ C is the Condorcet winner of (C, V ) if c beats every candidate
from C \ {c} with respect to V . A candidate c is a weak Condorcet winner of (C, V )

if c is not beaten by any other candidate from C with respect to V . A voting procedure
is Condorcet-consistent if it always selects the Condorcet winner of an election as the
winner whenever the election admits a Condorcet winner.

An oriented graph is a directed graph (digraph) in which there is at most one arc
between any two vertices. The majority graph of an election (C, V ) is an oriented
graph with vertex set C , where there is an arc from candidate a to candidate b if and
only if a beats b with respect to V . An arc from vertex a to vertex b in a digraph is
denoted by (a, b). By assigning a weight of nV (a, b) to each arc (a, b) in the majority
graph, we obtain the weighted majority graph of (C, V ).

An agenda is a linear order� onC .We use�[i] to denote the i th candidate in�. Let
m = |C |. For two integers i and j , we define �[i, j] = {�[x] : x ∈ [m], i ≤ x ≤ j}.
Note that if j > m, then �[i, j] = �[i,m], and if i > j , then �[i, j] = ∅. For a
candidate c ∈ C , we call candidates before c in the agenda the predecessors of c, and
call those after c her successors. In particular, for two candidates �[i] and �[ j] such
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that j > i , we call �[ j] the ( j − i)th-successor of �[i], or say that �[ j] is a t≤th-
successor of�[i]where t is an integer such that t ≥ j−i . The number of predecessors
of c plus one is also called the position of c in the agenda �. The successive winner
and the h-amendment winner with respect to (C, V ) and� are determined as follows.

• Successive1 Let i ∈ [m] be the smallest integer such that�[i]majority-dominates
�[i + 1,m] with respect to V . The successive winner is �[i].

• h-amendment This procedure comprises several rounds, where in each round
either the first candidate in the current agenda is eliminated, or up to h candidates
following the first candidate in the agenda are eliminated. Specifically, in round r
where r = 1, 2, . . . , if the first candidate �[1] in the current agenda beats every
candidate in�[2, h+1], then all candidates in�[2, h+1] are eliminated from�.
Otherwise, �[1] is eliminated from �. The procedure continues until only one
candidate remains in the agenda; this candidate is then declared the winner.
We emphasize that when a set �[x, y] of candidates is eliminated, each �[ j] for
j > y is automatically shifted upward by y − x + 1 positions in �. As a result,
the first candidate in the agenda is always denoted by �[1].
Furthermore, if the election involves at most m ≤ h candidates, the h-amendment
winner is determined using the (m − 1)-amendment procedure.

The amendment procedure is exactly the 1-amendment procedure.2 The full-
amendment procedure is the (m−1)-amendment procedure. Notice that as each round
in the amendment procedure eliminates exactly one candidate, the amendment proce-
dure takesm−1 rounds. In contrast, the full-amendment proceduremay take anywhere
from 1 to m − 1 rounds depending on the situation.

From the definition, it is easy to see that the h-amendment procedure is Condorcet-
consistent for all possible values of h. On the other hand, the successive procedure
is not Condorcet-consistent (see the work of Miller [43] for detailed discussion). To
verify this, consider an election with three votes: a b c d, d a b c, and b c a d.
Obviously, a is the Condorcet winner, but with respect to the agenda (a, b, c, d),
the successive winner is b (a is not the successive winner because only one out of
three votes ranks a before all her successors). Nevertheless, it is easy to see that
if an election admits a Condorcet winner, then, as long as the Condorcet winner
is the last one in the agenda, this Condorcet winner is also the successive winner
of the election (see the work of Rasch [46] for detailed discussion). In addition, it
holds that the h-amendment/successive winner c of each election is the Condorcet
winner of the election restricted to c and all successors of c. As pointed out earlier,
the full-amendment winner of an election with respect to an agenda beats both the
amendment winner and the successive winner of the same election with respect to the
same agenda, if they do not coincide. One can also observe that, in the same election,
the full-amendment winner can be neither a successor of the amendment winner nor
a successor of the successive winner.

1 The successive procedure has also been studied under the name Euro-Latin procedure (see, e.g., the work
of Farquharson [28]).
2 The amendment procedure has also been studied under the namesAnglo-American procedure, elimination
procedure, and ordinary committee procedure (see, e.g., the works of Black [8], Farquharson [28]).
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Given an oriented graph G with the vertex set C and an agenda � on C , the h-
amendment/successive winner of G with respect to � is the h-amendment/successive
winner of an election whose majority graph is G with respect to �. See Example 1
for an illustration.

Example 1: An illustration of different voting procedures.

Consider an election (C, V ), where C = {a, b, c, d}, and V consists of three votes.
The three votes in V (left side) and the majority graph of (C, V ) together with three
different agendas are given below.
vote 1: b d c a
vote 2: c a b d
vote 3: a d b c

a b c d abcd ab cd

With respect to the agenda (a, b, c, d), b is the h-amendment winner for h ∈ {2, 3},
and d is both the amendment winner and the successive winner. With respect to the
agenda (d, c, b, a), a is both the successive winner and the h-amendment winner
for all h ∈ [3]. With respect to the agenda (b, a, d, c), c is the amendment winner,
and d is the successive winner and the h-amendment winner for h ∈ {2, 3}.

We remark that, at first glance, it may seem that the (h + 1)-amendment winner of an
electionwith respect to an agenda cannot be a successor of the election’s h-amendment
winner under the same agenda. However, this is not the case, as the h-amendment
winner may be eliminated by some of its predecessors (which may also be eliminated
later) when the (h+1)-amendment procedure is applied. To illustrate this, consider the
election derived from the one in Example 1 by introducing an additional candidate,
e, who is ranked first in the second vote and immediately after d in the other two
votes, such that e is beaten by d but beats both a and b. With respect to the agenda
(e, a, d, b, c), b is the amendment winner, while c is the 2-amendment winner.

2.2 Election Control Problems

Let τ be a voting procedure. We study eight standard control problems which are
special cases of the problems defined below.

Constructive Multimode Control for τ (CMC- τ )

Given: A set C of registered candidates, a distinguished candidate p ∈ C , a
set D of unregistered candidates, a multiset V of registered votes over
C ∪ D, a multiset W of unregistered votes over C ∪ D, an agenda �
on C ∪ D, and four nonnegative integers kAV, kDV, kAC, and kDC.

Question: Are there C ′ ⊆ C \ {p}, D′ ⊆ D, V ′ ⊆ V , and W ′ ⊆ W such that
(1) |C ′| ≤ kDC, |D′| ≤ kAC, |V ′| ≤ kDV, |W ′| ≤ kAV, and
(2) p is the τ winner of ((C \C ′) ∪ D′, (V \ V ′) ∪ W ′) with respect to
the agenda � restricted to (C \ C ′) ∪ D′?

To put it in plain words, in the CMC- τ problem, an election controller attempts
to make a given distinguished candidate the winner by deleting a limited number of
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Table 2 Specifications of some
election control problems. In the
abbreviations, the letter X is
either CC standing for
“constructive control” or DC
standing for “destructive
control”

Abbreviations Restrictions

XAV- τ kDV = kAC = kDC = 0, and D = ∅
XDV- τ kAV = kAC = kDC = 0, and W = D = ∅
XAC- τ kAV = kDV = kDC = 0, and W = ∅
XDC- τ kAV = kDV = kAC = 0, and W = D = ∅
For X = CC the problems are special cases of CMC- τ , and for
X = DC the problems are special cases of DMC- τ . The second let-
ters A and D in the abbreviations respectively stand for “adding” and
“deleting”, and the third letters V and C respectively stand for “voters”
and “candidates”

registered candidates and votes and adding a limited number of unregistered candidates
and votes.

Destructive Multimode Control for τ (DMC- τ ) is defined similar to
CMC- τ with only the difference that the goal of the controller is to make the given
distinguished candidate not the winner (i.e., we require in requirement (2) in the above
definition that p is not the τ winner of ((C\C ′) ∪ D′, (V \V ′) ∪ W ′)).3

The eight standard control problems are special cases of CMC- τ and DMC- τ .
The abbreviations of the problem names and their specifications are provided in
Table 2. For simplicity, when we write an instance of a standard control problem,
we omit its components of constant values 0 and ∅, and use k to denote the one in
{kAV, kDV, kAC, kDC} not requested to be zero. For example, an instance of CCAV-τ
is written as (C, p, V ,W ,�, k), where k represents kAV.

To improve readability and avoid repetitive phrasing, we adopt the following sim-
plifications in discussions concerning an election (C, V ) restricted to a subset C ′ of
candidates. (Such discussions are particularly relevant to election control problems
involving the addition or deletion of candidates.) Instead of explicitly stating that a
candidate c is the τ winner of (C, V ) with respect to an agenda � restricted to C ′,
we simply say that c is the τ winner of (C ′, V ) with respect to �. When the context
makes the agenda clear, we may further simplify by stating that c is the τ winner of
(C ′, V ).

In the paper, we establish numerous hardness results for restricted cases of the
control problems where the distinguished candidate p occupies a specific position
(e.g., the first or the last) in the agenda. Additionally, when we assert that a hardness
result holds as long as p is not the first candidate in the agenda, we mean that the result
holds when restricted to instances where p is in the i th position in the given agenda,
for all positive integers i ≥ 2.

A voting procedure is immune to a constructive control type if it is impossible to
turn a nonwinning candidate into a winner by performing the corresponding control-
ling operation (adding/deleting voters/candidates). Analogously, a voting procedure
is immune to a destructive control type if it is impossible to turn a winner into a
nonwinning candidate by performing the corresponding control operation.

3 Many traditional voting procedures, such as Borda, Copeland, Maximin, etc., do not need an agenda to
determine the winners. In these cases, � is dropped in the definitions of CMC- τ and DMC- τ .
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2.3 Parameterized Complexity

A parameterized problem is a subset of �∗ × N, where � is a finite alphabet. A
complexity hierarchy has been developed to classify parameterized problems into
numerous classes:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP.

For a detailed discussion of these classes, we refer the reader to the monograph by
Downey and Fellows [22].

For each X ∈ �∗, let |X | denote the size of X . A parameterized problem is fixed-
parameter tractable (FPT) if there is an algorithm which solves each instance (X , κ)

of the problem in time f (κ) · |X |O(1), where f can be any computable function in
the parameter κ . A parameterized problem is in the class XP if there is an algorithm
which solves each instance (X , κ) of this problem in time |X | f (κ), where f can be
any computable function in the parameter κ .

Definition 1 (Parameterized Reduction)A parameterized problem P is parameterized
reducible to a parameterized problem Q if there is an algorithm which takes as input
an instance (X , κ) of P and outputs an instance (X ′, κ ′) of Q such that

• the algorithm runs in time f (κ) · |X |O(1);
• (X , κ) is a Yes-instance of P if and only if (X ′, κ ′) is a Yes-instance of Q; and
• κ ′ ≤ g(κ) for some computable function g in κ .

A parameterized problem is W[1]-hard (respectively, W[2]-hard) if all problems in
W[1] (respectively, W[2]) are parameterized reducible to this problem. A W[1]-hard
(respectively,W[2]-hard) problem that is inW[1] (respectively,W[2]) isW[1]-complete
(respectively, W[2]-complete). W[1]-hard and W[2]-hard problems do not admit any
FPT-algorithms unless the above hierarchy collapses to some level. To prove that a new
problem isW[1]-hard (respectively,W[2]-hard), one needs to select a knownW[1]-hard
(respectively, W[2]-hard) problem and establish a parameterized reduction from the
known problem to the new one.

Beyond the class of XP, there exists another significant class of parameterized prob-
lems known as paraNP-hard. A parameterized problem is classified as paraNP-hard
if it remains NP-hard for some fixed value of the parameter. For a more comprehen-
sive exploration of parameterized complexity theory, we recommend the textbooks by
Cygan et al. [18], Downey and Fellows [22], and Niedermeier [45].

2.4 ParametersWe Consider

Our results for the eight election control problems encompass the following natural
parameters.

Solution size k The parameter k, representing the number of voters or candidates
allowed to be added or deleted, is especially relevant in scenarios where the elec-
tion controller faces resource constraints or seeks to minimize the exertion of
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influence. For instance, consider a university senate deciding on a critical policy
change, such as revising tuition fees. In this scenario:
• Adding voters corresponds to persuading external experts, alumni, or student
representatives who were not initially planning to participate, to join the voting
process. However, this might entail significant communication efforts, logisti-
cal arrangements, or financial costs (e.g., compensating for their time or travel
expenses).
• Deleting voters may reflect attempts to convince certain stakeholders (e.g.,
administrators or faculty members) to abstain from voting, requiring delicate
negotiations and justification to avoid reputational damage or conflict.
Suppose the election controller supports the policy change but operates under a lim-
ited budget, allowing them to influence the participation of at most k voters. Here,
minimizing k aligns with practical constraints such as limited time to communi-
cate with potential participants, a fixed budget for compensating or incentivizing
voters, and the controller’s preference to avoid significant disruptions or visible
interventions.
In another example, consider a national election where k represents the number of
candidates to be added or removed from the ballot to favor a preferred candidate.
Adding candidates may involve recruiting new participants, which can be adminis-
tratively challenging and resource-intensive. Similarly, removing candidatesmight
require legal actions, political negotiations, or significant financial resources, all
of which are constrained by k.
We show that most hard control problems exhibit fixed-parameter intractability
concerning this parameter. Notably, for the problems of election control by adding
voters/candidates, the intractability persists even when combined parameterized
by the solution size and the number of registered voters/candidates, or when there
is only one or two registered candidates.

Number of voters/candidates not deleted This parameter becomes particularly rel-
evant in scenarios where the election controller is tasked with selecting a small
subset of voters/candidates to participate in the decision-making procedure, with
the unselected voters/candidates effectively being considered as deleted. For exam-
ple, consider the context of corporate board elections or committee decisions in
organizations. In such settings, the controller might wish to identify a small repre-
sentative group of voters-such as key stakeholders, senior employees, or domain
experts-who will cast votes on behalf of a larger group, thereby streamlining the
decision-making process. Here, the parameter captures the practical constraint of
selecting a manageable number of voters while ensuring that the election outcome
remains aligned with the controller’s objectives.
For problems involving voter or candidate deletions, our results demonstrate that
these hardness control problems are fixed-parameter intractable with respect to
this parameter. This intractability underscores the challenge of achieving the
controller’s goals when the number of retained voters or candidates is tightly
constrained, reinforcing the significance of understanding such scenarios both
theoretically and in practice.

Number of predecessors/successors of the distinguished candidate Previous works
indicate that candidates may benefit from their positions on the agenda. For
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example, in a scenario with three candidates and a decision determined by the
amendment procedure, it becomes evident that the candidate listed last on the
agenda is more likely to be selected.4 Hence, it is intriguing to explore if the con-
trol problem faced by the election controller becomes more manageable when the
distinguished candidate has only a few predecessors or successors. Our findings
demonstrate that concerning this parameter, certain problems are fixed-parameter
intractable, while others are FPT.

For the h-amendment and the (m−h)-amendment procedures, we also analyze the
parameter h. We prove that many control problems remain computationally hard even
for constant values of h, thereby identifying their classification within the hierarchy
of paraNP-hard problems with respect to h.

Two additional natural parameters are the number m of candidates and the num-
ber n of voters. It is straightforward to verify that the candidate control problems
(CCAC, CCDC, DCAC, DCDC) are FPTwith respect tom. For the voter control prob-
lems parameterized by m, one of our results (Theorem 4) establishes their FPT status.
Detailed discussions on this matter will follow the presentation of Theorem 4. Con-
sequently, our investigation implicitly provides a comprehensive understanding of the
parameterized complexity of the eight standard control problems for the parameterm.

Regarding the parameter n, it is easy to see that the voter control problems (CCAV,
CCDV, DCAV, DCDV) are FPT. Furthermore, several polynomial-time solvability
results for these problems are summarized in Table 1. However, beyond these tractabil-
ity results, the FPT status of certain candidate control problems parameterized by n
remains an open question. Specifically, this includesCCAC-Full-Amendment,CCAC-
Successive, CCDC-Successive, DCAC-Successive, and DCDC-Successive. We note
that a systematic study of the candidate control problems with respect to n for many
traditional voting procedures has been conducted by Chen et al. [14].

2.5 Auxiliary Problems

We elaborate on problems used for establishing our hardness results. Let G = (U , F)

be a simple undirected graph. For a vertex u ∈ U , NG(u) = {u′ ∈ U : {u, u′} ∈ F}
is the set of neighbors of u in G, and NG[u] = NG(u) ∪ {u} is the set of closed
neighbors of u inG. ForU ′ ⊆ U , let NG(U ′) = ⋃

u∈U ′ NG(u)\U ′, and let NG [U ′] =
NG(U ′)∪U ′. In addition,G−U ′ is the graph obtained fromG by deleting all vertices
inU ′. Two vertices are adjacent if there exists an edge between them. An independent
set ofG is a subset of vertices that are pairwise nonadjacent. A clique ofG is a subset of
pairwise adjacent vertices. A vertex u dominates a vertex u′ if either they are the same
vertex or they are adjacent. For two subsets S, S′ ⊆ U , we say that S dominates S′
if every vertex in S′ is dominated by at least one vertex in S. A dominating set of G
is a subset of vertices which dominate all vertices of G. A perfect code of G is a
dominating set P such that every vertex in G is dominated by exactly one vertex in P ,
i.e., P is a dominating set of G such that for every two distinct u, u′ ∈ P it holds that
NG [u] ∩ NG [u′] = ∅. Note that every perfect code is also an independent set.

4 If a Condorcet winner exists, the Condorcet winner will be selected regardless of her position. In all other
cases, the procedure consistently designates the last candidate on the agenda as the winner.
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For two positive integers i and j , Ki, j denotes the complete bipartite graph with i
vertices in one component and j vertices in the other component of the bipartition
of Ki, j .

Perfect Code

Given: A graph G and an integer κ .

Question: Does G have a perfect code of size κ?

Clique

Given: A graph G and an integer κ .

Question: Does G have a clique of size κ?

Biclique

Given: A bipartite graph G and an integer κ .

Question: Does G contain a complete bipartite graph Kκ,κ as a subgraph?

Red- Blue Dominating Set (RBDS)

Given: A bipartite graph G with the vertex bipartition (R, B) and an integer κ .

Question: Is there a subset B ′ ⊆ B such that |B ′| = κ and B ′ dominates R in G?

In the above definition, we call vertices in R red vertices and call those in B blue
vertices.

It is known that Perfect Code, Clique, Biclique, and RBDS are NP-complete
and, moreover, with respect to κ , Perfect Code, Clique, and Biclique5 are W[1]-
complete (see, e.g., the works of Cesati [13], Downey and Fellows [21], Lin [37]), and
RBDS isW[2]-complete (see, e.g., the works of Downey, Fellows, and Stege [23], and
Garey and Johnson [32]).

We note that in several of our reductions where the RBDS problem is used, we
make the following assumptions:

(1) |B| > κ > 1,
(2) the graph G does not contain any isolated vertices (i.e., vertices without any

neighbors),

5 Biclique is originally defined over general graphs, but we use its restricted version to bipartite graphs to
establish several of ourW[1]-hardness results.Whether Biclique isW[1]-hard had remained as a significant
long-standing open question until Lin [37] resolved it in the affirmative in 2015. More importantly, Lin’s
reduction [37, Theorem 1.1, Corollary 1.3] applies to the special case where the input graph is a bipartite
graph.
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(3) all vertices in R have the same degree, which we denote �, and
(4) � + κ ≤ |B|.
These assumptions do not affect the W[2]-hardness of the problem with respect to κ .
The first assumption, |B| > κ > 1, is straightforward, as otherwise the problem is
polynomial-time solvable. The second assumption is also easy to verify. If an instance
does not satisfy the third assumption, we can obtain an equivalent instance by the
following operation: Let � be the maximum degree of vertices in R. For each red
vertex r ∈ R whose degree is strictly smaller than �, we add new degree-1 vertices
adjacent only to r until r reaches degree �. An important observation is that there is
an optimal solution (a subset B ′ ⊆ B dominating R with the minimum cardinality) of
the new instance that does not contain any of the newly introduced degree-1 vertices.
This ensures the equivalency of the two instances. Lastly, note that if �+ κ > |B|, the
given instance must be a Yes-instance (any subset of κ blue vertices dominates all red
vertices).

2.6 Some General Notations Used in Our Reductions

In our hardness reductions, we will consistently use the following notations. For a
set X , we use

−→
X to denote an arbitrary but fixed linear order on X , unless stated

otherwise. For a subset X ′ ⊆ X ,
−→
X [X ′] denotes the order

−→
X restricted to X ′. In

addition,
−→
X \ X ′ is −→

X without the elements of X ′. For two linear orders
−→
X and−→

Y , the notation (
−→
X ,

−→
Y ) represents their concatenation, where

−→
X precedes

−→
Y . For

example, if
−→
X = (a, b, c) and

−→
Y = (1, 2, 3), then (

−→
X ,

−→
Y ) = (a, b, c, 1, 2, 3).

2.7 Some Remarks

All the parameterized reductions derived in the paper run in polynomial time. Since all
eight standard control problems under the h-amendment and the successive procedures
are in NP, in the following sections, if we prove that a problem isW[1]-hard or W[2]-
hard, it implies that the problem is also NP-complete. Particularly, for all our new
W[1]-hardness orW[2]-hardness results shown in Table 1, the corresponding problems
are NP-complete. To avoid repetitiveness, we will not assert these implied results in
the corresponding theorems.

3 Our Results

In this section, we study the complexity of the eight standard election control prob-
lems. In particular, we explore how the position of the distinguished candidate in the
given agenda shapes the parameterized complexity landscape of the problems. Our
exploration starts with the following lemma.

Lemma 1 Let E = (C, V ) be an election, and let � be an agenda on C. For all
positive integers h,�[1] is the h-amendment winner of E with respect to� if and only
if �[1] is the Condorcet winner of E.
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Proof Let E = (C, V ) and � be as stipulated in the lemma. Suppose �[1] is the
Condorcet winner of E , i.e., �[1] beats every other candidate with respect to V .
Consequently, in each round of the h-amendment procedure, all candidates ranked
after �[1] (up to h in number) are eliminated. This ensures that �[1] remains the
h-amendment winner of E with respect to �.

Conversely, assume that �[1] is the h-amendment winner of E . By the definition
of the h-amendment procedure, �[1] is not eliminated in any round. This implies
that �[1] beats every other candidate with respect to V , establishing that �[1] is the
Condorcet winner of E . ��

It is known that CCAV-Condorcet and CCDV-Condorcet are NP-complete (see the
work of Bartholdi, Tovey, and Trick [4]). Moreover, CCAV-Condorcet is W[1]-hard
with respect to the number of registered votes plus the number of added votes,CCDV-
Condorcet is W[1]-hard with respect to the number of deleted votes (see the work of
Liu et al. [38]), CCDV-Condorcet is W[2]-hard with respect to the number of votes
not deleted (see the work of Liu and Zhu [39])6. These results and Lemma 1 offer us
the following corollary.

Corollary 1 [38, 39] For any h-amendment procedure τ , the following hold:

• CCAV-τ isW[1]-hard with respect to |V | + k, the number of registered votes plus
the maximum number of unregistered votes allowed to be added.

• CCDV-τ is W[1]-hard with respect to k, the maximum number of votes that can
be deleted.

• CCDV-τ is W[2]-hard with respect to |V | − k, the minimum number of votes that
cannot be deleted.

Moreover, the above results hold even when the distinguished candidate is ranked first
on the agenda.

In addition, asDCAV-Condorcet andDCDV-Condorcet are polynomial-time solv-
able (see the work of Bartholdi, Tovey, and Trick [4]), we can deduce the following
corollary concerning destructive control by adding or deleting voters.

Corollary 2 [4] For τ being any h-amendment procedure, DCAV-τ and DCDV-τ
are polynomial-time solvable when the distinguished candidate is the first one in the
agenda.

Regarding candidate control, it is known that Condorcet is immune to CCAC and
DCDC, and CCDC-Condorcet and DCAC-Condorcet are polynomial-time solvable
(see the work of Bartholdi, Tovey, and Trick [4]). The following results follow.

6 Although not explicitly stated in the paper of Liu and Zhu [39] that CCDV-Condorcet isW[2]-hard with
respect to the number of votes not deleted, the reduction in the proof of Theorem 1 in [39] for a W[2]-
hardness of CCDV-Maximin can be directly used to show the result. Particularly, in the proof of Theorem 1
in [39], the authors established an instance of CCDV-Maximin from the W[2]-hard problem Dominating
Set. They showed that if the instance of Dominating Set is a Yes-instance, there are 2κ + 1 votes in
the constructed election with respect to which the distinguished candidate beats all the other candidates,
where κ is the parameter of theDominating Set instance. For the other direction, they showed that if there
are 2κ + 1 votes with respect to which the distinguished candidate is the Maximin winner, the Maximin
winner is the Condorcet winner.
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Corollary 3 [4] Let τ be an h-amendment procedure. If the distinguished candidate is
the first one in the agenda, then τ is immune to CCAC and DCDC, and CCDC-τ and
DCAC-τ are polynomial-time solvable.

In the following subsections, we show that some of the P-results in Corollary 3 hold
irrespective of the position of the distinguished candidate, while some others, although
generally intractable, are FPT when parameterized by the number of predecessors of
the distinguished candidate.

We note that throughout the paper, for all results regarding CCAC, the position of
the distinguished candidate is counted with respect to candidates in C ∪ D.

The remainder of this section focuses on cases not covered by the above corollaries.
We begin by examining the h-amendment procedures and the (m − h)-amendment
procedures (Sects. 3.1 and3.2). Following this, we explore the successive procedure
(Sect. 3.3). Within each section, we first consider control by adding or deleting voters
and then study control by adding or deleting candidates.We note that h is assumed to be
positive and integral. For readability, this assumption will not be repeated throughout
the discussion.

3.1 The h-Amendment Procedure for Constant h

By Corollary 1, CCAV-h-Amendment is intractable if the distinguished candidate is
the first one in the agenda. In the following, we show a similar result for the case where
the distinguished candidate is the last one in the agenda.

Theorem 1 For every constant h, CCAV-h-Amendment is W[2]-hard with respect to
the number of added votes plus the number of registered votes. This holds even if the
distinguished candidate is the last candidate in the agenda.

Proof We first prove the theorem for the case where h = 1 (i.e., the amendment pro-
cedure) using a reduction from RBDS. Subsequently, we demonstrate how to modify
the reduction for other constant values of h.

Let (G, κ) be an instance of RBDS, where G is a bipartite graph with bipartition
(R, B). We construct an instance of CCAV-Amendment as follows. For each vertex
in R, we create a corresponding candidate, denoted by the same symbol for simplicity.
Additionally, we introduce two candidates, q and p, designating p as the distinguished
candidate. LetC = R∪{p, q}, and letm = |C | denote the total number of candidates.
We create κ + 3 registered votes as follows:

• κ + 1 votes with the preference q
−→
R p;

• one vote with the preference p
−→
R q; and

• one vote with the preference
−→
R p q.

Let V be the multiset of the registered votes created above. Let � = (q,
−→
R , p) be an

agenda, where q and p are the first and last candidates, respectively, and
−→
R represents

the ordered set of candidates between q and p. Figure1 depicts the weighted majority
graph of (C, V ) and the agenda.
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Fig. 1 The weighted majority graph of (C, V ) and the agenda as used in the proof of Theorem 1. All arcs
among vertices in R are forward arcs with a uniform weight of κ + 3. The agenda is represented by the
left-to-right ordering of the vertices

The unregistered votes are created according to the blue vertices. Precisely, for each
blue vertex b ∈ B, we create one vote �b with the preference

(−→
R \ NG(b)

)
p q

(−→
R [NG(b)]

)
.

Let W = {�b : b ∈ B}. Let k = κ . The instance of CCAV- Amendment is
(C, p, V ,W ,�, k). We prove the correctness of the reduction as follows.

(⇒) Assume that there exists a subset B ′ ⊆ B such that |B ′| = κ and B ′ dom-
inates R in G. Let W ′ = {�b : b ∈ B ′} be the multiset of the κ unregistered votes
corresponding to B ′. Let E = (C, V ∪ W ′). We show that p is the amendment win-
ner of E with respect to �. First, as B ′ dominates R, from the above construction,
for every candidate r ∈ R, the vote �b, where b ∈ B ′ and b dominates r , ranks q
before r . Therefore, in E , at least κ + 2 votes rank q before r . This means that q beats
all candidates from R in E . As q is the first candidate of the agenda, q is the winner of
the (m−1)th round. Second, as all unregistered votes rank p before q, p beats q in E .
Consequently, p is the winner of the last round and hence is the amendment winner
of E with respect to �.

(⇐) Assume that there is a subset W ′ ⊆ W of at most k unregistered votes such
that p wins E = (C, V ∪W ′)with respect to�. Observe first that |W ′| ≥ k−1, since
otherwise q still beats all the other candidates and hence remains as the winner in E ,
a contradiction. Second, observe that no matter which at most k votes are contained
inW ′, every red vertex beats all her successors in E . Let B ′ = {b ∈ B : �b∈ W ′} be the
set of blue vertices corresponding toW ′. We claim that B ′ dominates R inG. Assume,
for the sake of contradiction, that there exists a red vertex r ∈ R not dominated by
any vertex from B ′. From the construction of the unregistered votes, it follows that all
votes inW ′ rank r before q. Consequently, there are exactly 2+|W ′| votes in V ∪W ′
that rank r before q, which implies that r beats or ties with q in E . Let r ′ denote the
leftmost red vertex in the agenda that beats or ties with q in E . Since r ′ beats all of its
successors, r ′ wins E . However, this contradicts the assumption that p is the winner
of E with respect to �. Therefore, B ′ dominates R in G.

Nowwe showhow tomodify the above reduction for the casewhere h > 1. For each
candidate corresponding to a red vertex in R, if we make h−1 copies of this candidate
and replace the candidate with a fixed order of these newly created candidates in the
above votes, the reduction works for other values of h. Precisely, for each red vertex
r ∈ R, we create an ordered block of h candidates, and we replace the candidate
created for r with this ordered block in all created votes. By using similar arguments,
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Fig. 2 The weighted majority graph of (C, V ) and the agenda as used in the proof of Theorem 2. All arcs
among the vertices in R are forward arcs with a weight of at least |B| − κ + 1. The agenda is represented
by the left-to-right ordering of the vertices

one can check that the RBDS instance is a Yes-instance if and only if we can make p
the h-amendment winner by adding at most k unregistered votes. ��

For constructive control by deleting voters, we have a similar result.

Theorem 2 For every constant h, CCDV-h-Amendment is W[2]-hard with respect to
the number of deleted votes. This holds even if the distinguished candidate is the last
candidate in the agenda.

Proof Similar to the proof of Theorem 1, we provide a detailed proof for the case
where h = 1, based on a reduction from RBDS. We then describe how to adapt this
reduction for other values of h.

Let (G, κ) be an instance of RBDS, whereG is a bipartite graph with the bipartition
(R, B). We make the following assumptions which do not change the W[2]-hardness
of RBDS, as discussed in Sect. 2.5. First, we assume that |B| > κ > 1. Second, we
assume thatG does not contain any isolated vertices. Third, we assume that all vertices
of R have the same degree � for some positive integer � ≤ |B|. Lastly, we assume
that � + κ ≤ |B|. We construct an instance (C, p, V ,�, k) of CCDV-Amendment as
follows.

The candidate set and the agenda are exactly the same as in the proof of Theorem 1,
i.e., C = R ∪ {p, q} and � = (q,

−→
R , p). We create 2|B| − κ + 1 votes in V :

• |B| − κ + 1 − � votes with the preference
−→
R p q;

• � votes with the preference p q
−→
R ; and

• for each b ∈ B, one vote �b with the preference

(−→
R [NG(b)]

)
q

(−→
R \ NG(b)

)
p.

Let VB = {�b : b ∈ B}. Figure2 depicts the weighted majority graph of (C, V ) and
the agenda.

Let k = κ . One can check that under the assumptions κ ≤ 1 and � + κ < |B|, all
candidates beat p, implying that p cannot be the amendment winner of (C, V ). We
show the correctness of the reduction as follows.

(⇒) Suppose that there is a subset B ′ ⊆ B of cardinality κ which dominates R
in G. Let V ′ = {�b : b ∈ B ′}, and let E = (C, V \V ′). We show below that in E , q
beats all candidates from R, but is beaten by p, and hence p becomes the winner in E .
First, let r be any arbitrary candidate of R. In V there are exactly � + (|B| − �) = |B|
votes ranking q before r . As B ′ dominates R, there exists at least one b ∈ B ′ such
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that b dominates r . According to the construction of the votes, the �b, which is from
V ′, ranks r before q, implying that there are at most κ − 1 votes in V ′ ranking q
before r . As a result, in V \ V ′ there are at least |B| − κ + 1 votes ranking q before r .
As |V \V ′| = 2|B| − 2κ + 1, it holds that q beats r in E . As all votes in V ′ rank q
before p, there are exactly |B| − κ + 1 votes in V \ V ′ ranking p before q, implying
that p beats q in E .

(⇐)Assume that there is a V ′ ⊆ V such that |V ′| ≤ κ and p wins E = (C, V \V ′)
with respect to �. Observe first that as � + κ ≤ |B|, no matter which at most κ votes
are in V ′, every candidate from R beats all of its successors with respect to V \V ′.
Therefore, it must be that q beats all candidates of R, and p beats or ties with q in E .
The latter implies that |V ′| ≥ κ − 1 and V ′ ⊆ VB . Let B ′ = {b ∈ B : �b∈ V ′}
be the set of blue vertices corresponding to V ′. We claim that B ′ dominates R in G.
Suppose, for the sake of contradiction, that there exists r ∈ R not dominated by any
vertex from B ′. From the construction of the votes, q is ranked before r in all votes
in V ′. So, there are (|B| − κ + 1 − �) + � = |B| − κ + 1 votes ranking r before q
in E , contradicting that q beats r in E . So, we know that B ′ dominates R.

To prove theW[2]-hardness for other values of h, we modify the above reduction in
the same way as we did in the proof of Theorem 1. That is, we replace in each of the
above created vote the candidate created for r with an ordered block of h candidates.

��
Nowweshow that theW[2]-hardness of CCDV-h-Amendment remainswith respect

to the dual parameter of the solution size.

Theorem 3 For every constant h, CCDV-h-Amendment is W[2]-hard with respect to
the number of votes not deleted. This holds even if the distinguished candidate is the
last one in the agenda.

Proof We prove the theorem via reductions from RBDS. We consider first the case
where h = 1. Let (G, κ) be an instance of RBDS, whereG is a bipartite graph with the
bipartition (R, B). We construct an instance of CCDV-Amendment as follows. Let
C = R ∪ {q, q ′, p}, and let � = (q, q ′,−→R , p). We create the following |B| + κ + 1
votes:

• a multiset V1 of κ votes, each with the preference p q
−→
R q ′;

• a singleton V2 of one vote with the preference
−→
R p q q ′; and

• for each blue vertex b ∈ B one vote �b with the preference

q ′ (−→
R \ NG(b)

)
q

(−→
R [NG(b)]

)
p.

For a given B ′ ⊆ B, let VB′ = {�b : b ∈ B ′} be the multiset of votes created for
vertices in B ′. Let V = V1 ∪ V2 ∪ VB . In total, we have |B| + κ + 1 votes. Let
k = |B| − κ . The instance of CCDV-Amendment is (C, p, V ,�, k). Observe that
after deleting at most k votes from the election (C, V ), at least 2κ + 1 votes remain.
In the following, we establish the correctness of the reduction.

(⇒)Assume that there is a B ′ ⊆ B of cardinality κ such that B ′ dominates R in G.
Let V ′ = V1 ∪ V2 ∪ VB′ , and let E = (C, V ′). Recall that |V1| + |V2| = κ + 1. We
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claim that p is the amendment winner of E with respect to �. Clearly, q beats q ′ in E .
For each r ∈ R, let b ∈ B ′ be a vertex dominating r in G. From the construction of
the votes, q is ranked before r in �b. Therefore, there are at least |V1| + 1 votes in V ′
ranking q before r , implying that q beats r in E . This ensures that all candidates in
R ∪ {q ′} are eliminated before the last round. Furthermore, since all κ + 1 votes in
V1 ∪V2 rank p before q, q is eliminated in the last round, leaving p as the amendment
winner of E . Hence, the constructed instance of CCDV-Amendment is a Yes-instance.

(⇐) Suppose that there is a V ′ ⊆ V of at least 2κ + 1 votes such that p is the
amendment winner of (C, V ′) with respect to �. Let E = (C, V ′). Observe that V ′
cannot contain more than κ + 1 votes from VB , since otherwise q ′ beats all the other
candidates and hence it is impossible that p is the amendment winner of E . If V ′
contains exactly κ + 1 votes from VB , then either q ′ is the amendment winner of E
(when V ′ contains exactly κ votes from V1 ∪ V2), or someone in R is the amendment
winner (when (V1 ∪V2) ⊆ V ′), both of which contradict the winning of p in E . Then,
as |V ′| ≥ 2κ +1, and |V1|+|V2| = κ +1, it must hold that V ′ contains exactly κ votes
from VB . As a consequence, V ′ contains all the κ + 1 votes from V1 ∪ V2. Let VB′ ,
B ′ ⊆ B, be the intersection of V ′ and VB . We claim that B ′ dominates R in G. For
the sake of contradiction, assume that there is a red vertex r ∈ R not dominated by
any vertex from B ′. Then, by the construction of the votes, all votes in VB′ rank r
before q, implying that r beats q in E . Moreover, it is easy to see that q beats q ′. By
the definition of the agenda �, this implies that the winner of the second-to-last round
is from R. However, as everyone in R beats p in E , this contradicts the winning of p
in E . Since B ′ dominates R in G, and |B ′| = |VB′ | = κ , the RBDS instance is a
Yes-instance.

To prove the W[2]-hardness for other values of h, we modify the above reduction
by replacing each candidate in R ∪ {q ′} with an ordered block of h candidates. ��

Nowwe study destructive control by adding/deleting voters. Particularly, we extend
theP-results for theh-amendment procedures inCorollary 2 to a unified FPT-algorithm,
considering the number of predecessors of the distinguished candidate in the agenda.
To achieve this, we examine an intermediate problem and formulate it using integer
linear programming (ILP).

Majority Graph Control by Editing Voters (MGCEV)

Given: A set C of candidates, two multisets V and W of votes over C , an
oriented graph G with the vertex set C , and two integers k and k′.

Question: Are there V ′ ⊆ V and W ′ ⊆ W such that |V ′| = k, |W ′| = k′, and the
majority graph of (C, V ′ ∪ W ′) is exactly G?

The following lemma is well-known.

Lemma 2 [31, 35, 36] ILP is FPT with respect to the number of variables.

Based on Lemma 2, we can show the following result.

Theorem 4 MGCEV is FPT with respect to the number of candidates.
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Proof Let I = (C, V ,W ,G, k, k′) be an instance of MGCEV. Let m = |C | denote
the number of candidates. Let L be the set of all linear orders on C . It holds that
|L| = m!. For each �∈ L, we use n�

V (respectively, n�
W ) to denote the number of

votes in V (respectively, W ) with the preference �. For each �∈ L, we introduce
two nonnegative integer variables, x� and y�, which represent the number of votes in
V and W , respectively, with the preference � that are included in a desired feasible
solution. The constraints are as follows.

• As we aim to identify two multisets V ′ ⊆ V and W ′ ⊆ W , with cardinali-
ties k and k′, respectively, we have the following constraints:

∑
�∈L x� = k and∑

�∈L y� = k′.
• To ensure that the majority graph of (C, V ′ ∪ W ′) is exactly G, we create the
following two classes of constraints:

– for every arc from a candidate c to another candidate c′ in the graph G, we
have that

∑

�∈L:c�c′
x� +

∑

�∈L:c�c′
y� >

k + k′

2
,

– for every two candidates c and c′ inG without an arc between them, we require
that

∑

�∈L:c�c′
x� +

∑

�∈L:c�c′
y� = k + k′

2
.

• Lastly, for each variable x� and y�, we have that n�
V ≥ x� ≥ 0 and n�

W ≥ y� ≥ 0.

This completes the construction of the ILP instance. Clearly, the given instance I
is a Yes-instance if and only if the above ILP has a feasible solution. The theorem
follows from Lemma 2 and the fact that the number of variables of the above ILP is
bounded from above by a function in m. ��

Before presenting our parameterized results concerning the number of predecessors
of the distinguished candidate, we note that Theorem 4 can be straightforwardly lever-
aged to derive FPT-algorithms for the four standard voter control problems under the
h-amendment procedures and the successive procedure, with respect to the number m
of candidates. To verify this, first observe that the majority graph of an election and
an agenda suffices to determine the winner. Based on this observation, solving a voter
control problem can be reduced to enumerating all oriented graphs over the candidate
set as vertices, such that the distinguished candidate p is either the winner (in the
case of constructive control) or not the winner (in the case of destructive control) for
the enumerated graph and the given agenda. For each enumerated graph, we verify
whether it is possible to add or delete a given number of voters so that the major-
ity graph of the resulting election matches the enumerated graph. This verification is
equivalent to solving the MGCEV problem. Theorem 4 guarantees that this can be
performed in FPT-time with respect to m. The original instance is a Yes-instance if
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and only if at least one enumeration yields a Yes-instance of the MGCEV problem.
Since the number of oriented graphs with m vertices is bounded above by a function
of m, it follows that the voter control problems are FPT when parameterized by m.

Returning to ourmain focus, we nowpresent stronger FPT-results for the destructive
voter control problems by leveraging Theorem 4. Specifically, we establish the fixed-
parameter tractability of a generalized problem that subsumes both theDCAV problem
and the DCDV problem as special cases. This result is parameterized by the number
of predecessors of the distinguished candidate, which is strictly smaller than m.

Exact Destructive Control by Editing Voters for τ (E- DCEV- τ )

Given: A set C of candidates, a distinguished candidate p ∈ C , a multiset V
of registered votes over C , a multiset W of unregistered votes over C ,
an agenda � on C , and two nonnegative integers k and k′.

Question: Are there V ′ ⊆ V and W ′ ⊆ W such that |V ′| = k, |W ′| = k′, and p
is not the τ winner of (C, V ′ ∪ W ′) with respect to �?

Theorem 5 E- DCEV-h-Amendment is FPT with respect to h plus the number of
predecessors of the distinguished candidate.

Proof Let I = (C, p, V ,W ,�, k, k′) be an instance of E- DCEV-h-Amendment.
Let � be the number of predecessors of p in the agenda �. Therefore, p = �[� + 1].
Let �′ = min{� + h + 1,m}. In the following, we derive an algorithm running in
FPT-time in �′.

Observe that p is not the h-amendment winner of an election (C,U ) where U ⊆
V ∪ W with respect to � if and only if one of the following two cases occurs:

(1) p is not the h-amendment winner of (C,U ) restricted to �[1, �′] (with respect to
the agenda � restricted to �[1, �′]).

(2) p is the h-amendment winner of (C,U ) restricted to �[1, �′], but some candidate
after �[�′] in the agenda beats or ties with p (in this case it must be that �′ < m).

For the first case, only the head-to-head comparisons among candidates in �[1, �′]
matter. For the second case, in addition to �[1, �′], we need to guess one candidate
q ∈ �[�′ +1,m] who is supposed to beat or tie with p in the final election. Once such
a candidate q is fixed, we need only to focus on the head-to-head comparisons among
candidates in �[1, �′] ∪ {q}.

Our algorithm proceeds as follows. We define a configuration as an oriented graph
whose vertices are a subset of candidates. We enumerate all possible configurations,
with our focused candidates being the vertices, and check if at least one of the enu-
merated configurations leads to the occurrence of at least one of the above two cases.
Precisely, the enumerated configurations consist of the following oriented graphs:

• all oriented graphs whose vertex set is �[1, �′]; and
• for each q ∈ C \ �[1, �′], all oriented graphs whose vertex set is �[1, �′] ∪ {q}.

It is clear that there are FPT-many configurations to enumerate with respect to �′. For
each configuration H , we check in polynomial time whether one of the two cases
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occurs, based on the definition of the h-amendment procedure. More precisely, we
first compute the h-amendment winner of H with respect to the agenda � restricted
to only our focused candidates (corresponding to vertices of H ). If H has vertex
set �[1, �′] and the winner is not p, this configuration results in Case (1). If H has
vertex set �[1, �′] ∪ {q}, where q ∈ C \ �[1, �′], such that p is the h-amendment
winner of H − {q} with respect to �, and there is no arc from p to q in H , then
this configuration results in Case (2). If a configuration results in neither Case (1) nor
Case (2), we discard it. Otherwise, we utilize the FPT-algorithm in Theorem 4 to check
if there are desired V ′ ⊆ V andW ′ ⊆ W that achieve the configuration. To be precise,
let C ′ be the vertex set of H . Then, we solve an instance (C ′, V |C ′ ,W |C ′ , H , k, k′) of
MGCEV by Theorem 4, and return the output for the configuration.

If we obtain a Yes-answer from at least one of the enumerated configurations, we
conclude that I is a Yes-instance; otherwise we conclude that I is a No-instance. ��

The following result is a consequence of Theorem 5.

Corollary 4 DCAV-h-Amendment and DCDV-h-Amendment are FPT with respect to
the combined parameter of h and the number of predecessors of the distinguished
candidate.

In contrast to these tractability results, we show that if the distinguished candidate
moves to the last position of the agenda, both problems become intractable from the
parameterized complexity point of view.

Theorem 6 For every constant h, DCAV-h-Amendment is W[1]-hard with respect to
the number of added votes plus the number of registered votes. This holds even if the
distinguished candidate is the last one in the agenda.

Proof Webeginwith a proof for the amendment procedure (i.e., when h = 1), based on
the Perfect Code problem. Let (G, κ) be an instance of the Perfect Code problem,
where G is a graph with vertex set U . We denote the vertex set as U = {u1, . . . , un}.
We create an instance of DCAV- Amendment as follows.

For each ui ∈ U , we create two candidates, denoted by xi and yi , respectively.
Let X = {xi : i ∈ [n]}, and let Y = {yi : i ∈ [n]}. In addition, we introduce two
candidates, p and q, where p is the distinguished candidate. Let C = X ∪ Y ∪ {p, q}.
The agenda is � = (q,

−→
X ,

−→
Y , p). We create the following 3κ + 3 registered votes:

• one vote with the preference p q
−→
X

−→
Y ;

• κ + 2 votes with the preference q p
−→
X

−→
Y ;

• κ − 2 votes with the preference p
−→
X q

−→
Y ; and

• κ + 2 votes with the preference p
−→
X

−→
Y q.

Let V denote the multiset of the above registered votes. Figure3 shows the weighted
majority graph of (C, V ) and the agenda. As p beats every other candidate, p is the
amendment winner of (C, V ).

For each ui ∈ U , let NX [ui ] (respectively, NY [ui ]) be the set of candidates from X
(respectively,Y ) corresponding to the closed neighbors of ui inG. Precisely, NX [ui ] =
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Fig. 3 An illustration of the weighted majority graph of (C, V ) and the agenda as used in the proof of
Theorem 6. All arcs among the vertices in X (respectively, Y ) are forward arcs with a uniform weight of
3κ + 3. The agenda is represented by the left-to-right ordering of the vertices

{x j ∈ X : u j ∈ NG [ui ]} and NY [ui ] = {y j ∈ Y : u j ∈ NG[ui ]}. For each ui ∈ U ,
we create one unregistered vote �i with the preference

−→
X [NX [ui ]]

(−→
Y \ NY [ui ]

)
q p

(−→
X \ NX [ui ]

) −→
Y [NY [ui ]].

Let W = {�i : ui ∈ U }.
Let k = κ . The instance of DCAV- Amendment is (C, p, V ,W ,�, k). It remains

to prove the correctness of the reduction.
(⇒) Suppose thatG has a perfect code S of size κ . LetW ′ be the set of unregistered

votes corresponding to S. Let E = (C, V ∪ W ′). We show below that q wins E
by proving that q beats every other candidate with respect to V ∪ W ′. First, as all
unregistered votes rank q before p, there are exactly 2κ + 2 votes in E ranking q
before p, implying that q beats p in E . Let xi be a candidate from X . Because S is a
perfect code, there is exactly one u j ∈ S such that xi ∈ NX [u j ]. From the construction
of the unregistered votes, we know that there are exactly κ − 1 votes in W ′ ranking q
before xi , resulting in κ+3+κ−1 = 2κ+2 votes ranking q before xi in the election E .
Similarly, we can show that for every yi ∈ Y , exactly 1+(κ+2)+(κ−2)+1 = 2κ+2
votes ranking q before yi in E . from |V ∪ W ′| = 4κ + 3, it follows that q beats all
candidates from X ∪ Y in E .

(⇐) Suppose that W ′ ⊆ W is a subset of k unregistered votes such that p is not
the amendment winner of E = (C, V ∪W ′) with respect to�. Observe that no matter
which at most κ votes are contained in W ′, p beats all candidates in X ∪ Y . This
implies that q is the only candidate which is capable of preventing p from winning.
In other words, q is the amendment winner of E with respect to �. It follows that q
beats all the other candidates in E . Then, observe that |W ′| = k, since otherwise p
is not beaten by q in E . Let S be the set of vertices corresponding to W ′. Similar
to the analysis for the other direction, as for every yi ∈ Y we have 2κ + 1 votes
in V ranking q before yi , there is at least one vote in W ′ ranking q before yi . By the
construction of the unregistered votes, we know that there is at least one u j ∈ S such
that yi ∈ NY [u j ], and hence ui ∈ NG [u j ]. As yi can be any candidate inY , this implies
that S is a dominating set of G. Now, we show that for every two vertices ui , ui ′ ∈ S,
it holds that NG[ui ] ∩ NG [ui ′ ] = ∅. Assume, for the sake of contradiction, that there
are ui , ui ′ ∈ S and a vertex u j ′ such that u j ′ ∈ NG[ui ] ∩ NG [ui ′ ]. Then, as the two
votes�i and�i ′ corresponding to ui and ui ′ both rank x j ′ before q, there can be atmost
κ − 2 votes in W ′ ranking q before x j ′ , resulting in at most κ + 3+ (κ − 2) = 2κ + 1
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Fig. 4 An illustration of the weighted majority graph of (C, V ) and the agenda as used in the proof of
Theorem 7. All arcs among the vertices in R are forward with a weight of at least 2|B| − κ − � + 1. The
agenda is represented by the left-to-right ordering of the vertices

votes in V ∪ W ′ ranking q before x j ′ , contradicting that q beats x j ′ in E . We can
conclude now that S is a perfect code of G.

To prove for the case where h > 1, we replace each xi and each yi with an ordered
block of size h in the above reduction. ��

For control by deleting voters, we have similar results as encapsulated in the
following two theorems.

Theorem 7 For every constant h, DCDV-h-Amendment is W[2]-hard with respect to
the number of deleted votes, even if the distinguished candidate is the last one in the
agenda.

Proof We consider first the amendment procedure. We give a reduction from RBDS
to DCDV-Amendment. Let (G, κ) be an instance of RBDS, where G is a bipartite
graph with the bipartition (R, B). Similar to the proof of Theorem 2, we assume that
each red vertex in G has the same degree � > 0, |B| > κ > 1, and � + κ < |B|. We
create an instance of DCDV-Amendment as follows. The candidates and the agenda
are the same as in the proof of Theorem 2, i.e., C = R ∪ {p, q}, where p serves as the
distinguished candidate, and � = (q,

−→
R , p). We create the following 2|B| + 1 − κ

votes in V :

• |B| + 1 − � − κ votes with the same preference
−→
R q p;

• � votes with the same preference q p
−→
R ; and

• for each blue vertex b ∈ B, one vote �b with the preference
p (

−→
R [NG(b)]) q (

−→
R \NG(b)).

Figure4 illustrates the weighted majority graph of (C, V ) and the agenda.
To complete the reduction, we let k = κ . The instance of DCDV-Amendment

is (C, p, V ,�, k). It is easy to check that p beats everyone else, and hence is the
amendment winner of (C, V ) with respect to �. We show the correctness of the
reduction as follows.

(⇒) Suppose that there is a subset B ′ ⊆ B of cardinality κ which dominates R inG.
Let V ′ = {�b : b ∈ B ′} be the set of votes corresponding to B ′. Let E = (C, V \ V ′).
Clearly, E contains exactly 2|B|+1−2κ votes.We showbelow thatq is the amendment
winner of E with respect to � by proving that q beats all the other candidates. First,
as all votes in V ′ rank p before q, the number of votes in V \ V ′ ranking q before p
remains as |B| + 1 − κ , implying that q beats p in E . We consider candidates in R
now. Let r be any arbitrary candidate from R. As B ′ dominates R, there is at least one
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vertex b ∈ B ′ which is adjacent to r inG. Then, the vote�b corresponding to b ranks r
before q, meaning that there can be at most κ − 1 votes in V ′ ranking q before r . This
further implies that in V \V ′, at least � + (|B| − � − (κ − 1)) = |B| + 1 − κ votes
rank q before r , and hence q also beats r in E . As this holds for all r ∈ R, we know
that q beats all candidates from R in E .

(⇐) Assume that there exists a subset V ′ ⊆ V such that |V ′| ≤ k and p is not the
amendment winner of the election E = (C, V \V ′) with respect to �. First, observe
that regardless of which at most k votes are included in V ′, the candidate p beats all
candidates from R in E . This implies that the amendmentwinner of E with respect to�
must be q. In other words, q beats all other candidates in E . Furthermore, note that V ′
must consist of exactly k votes, all of which correspond to vertices in B. Otherwise, p
remains the winner. Thus, we have |V \V ′| = 2|B| + 1 − 2κ . Now, for every r ∈ R,
since there are precisely � + (|B| − �) = |B| votes in V ranking q before r , at most
κ − 1 votes from V ′ can rank q before r . This ensures that for every r ∈ R, there
exists at least one vote �b∈ V ′ where r is ranked before q. By the definition of �b, it
follows that b dominates r in G. Therefore, the subset of blue vertices corresponding
to V ′ dominates R in G.

To establish hardness for every constant h > 1, we replace each candidate cor-
responding to a red vertex with an ordered block of size h in the above-constructed
election. The correctness analysis remains similar. ��
Theorem 8 For every constant h, DCDV-h-Amendment is W[2]-hard with respect to
the number of remaining votes, even if the distinguished candidate is the last one in
the agenda.

Proof We prove the theorem by a reduction from RBDS. Let (G, κ) be an instance
of RBDS, where G is a bipartite graph with the bipartition (R, B). Without loss of
generality, we assume that κ < |B|. Let C = R ∪ {q, p}, with p as the distinguished
candidate, and let � = (q,

−→
R , p). We create the following votes:

• a multiset V1 of κ votes with the preference q p
−→
R ;

• a singleton V2 of one vote with the preference
−→
R q p; and

• for each blue vertex b ∈ B, one vote �b with the preference

p
(−→
R \ NG(b)

)
q

(−→
R [NG(b)]

)
.

For a given B ′ ⊆ B, we use VB′ = {�b : b ∈ B ′} to denote themultiset of votes created
for the blue vertices in B ′. Let V = V1 ∪V2 ∪VB . It holds that |V | = |B|+ κ +1. Let
k = |B| − κ . The instance of DCDV-h-Amendment is (C, p, V ,�, k). Obviously,
under the assumption that κ < |B|, the h-amendment winner of (C, V ) with respect
to � is p. It remains to show the correctness of the reduction.

(⇒) Assume that there is a subset B ′ ⊆ B such that |B ′| = κ and B ′ dominates R
in G. Let V ′ = V1 ∪ V2 ∪ VB′ , and let E = (C, V ′). Obviously, |V ′| = 2κ + 1. We
claim that q is the h-amendment winner of E with respect to the agenda �. As q is
the first candidate in �, we need to show that q beats all the other candidates in E .
It is clear that q beats p in E . For each red vertex r ∈ R, there exists at least one
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b ∈ B ′ dominating r in G. From the construction of the votes, we know that q is
ranked before r in the vote �b. Therefore, there are in total at least |V1| + 1 = κ + 1
votes ranking q before r in V ′, implying that q beats r . As this holds for all r ∈ R,
the correctness for this direction follows.

(⇐)Assume that there is a subset V ′ ⊆ V of at least 2κ +1 votes such that p is not
the h-amendment winner of (C, V ′) with respect to �. Observe that as |V1| + |V2| =
κ+1 and all votes in VB rank p in the first place, it must be that (V1∪V2) ⊆ V ′, and V ′
contains exactly κ votes from VB (since otherwise p remains as the h-amendment
winner of (C, V ′)). Let VB′ = V ′ ∩ VB , where B ′ ⊆ B. As just discussed, it holds
that |VB′ | = κ . We also observe that p beats all candidates in R in (C, V ′) no matter
which κ votes from VB are contained in V ′. Therefore, it must be that q is the h-
amendment winner of (C, V ′), i.e., q beats all the other candidates. We claim that B ′
dominates R. Suppose, for the sake of contradiction, that this is not the case. Then,
there exists at least one red vertex r ∈ R not dominated by any vertex from B ′ in G.
Then, from the construction of the votes, r is ranked before q in all votes of VB′ .
Together with the vote in V2, there are κ + 1 votes in V ′ ranking r before q, implying
that r beats q in (C, V ′). However, this contradicts that q is the h-amendment winner
of (C, V ′) with respect to �. ��

We now investigate election control through the addition or deletion of candidates.
Unlike voter control operations, we demonstrate that candidate control operations
generally remain solvable in polynomial time, regardless of the position of the distin-
guished candidate in the agenda. These results extend the findings for the amendment
procedure stated in Corollary 3.

We first consider CCAC-Amendment. We need the following notions for our study.
Let E = (C, V ) be an election, and let � = (c1, c2, . . . , cm) be an agenda on C .

For a subsetC ′ ⊆ C and two candidates c, c′ ∈ C ′ such that c�c′, a (c ← c′)-beating
path with respect to (C ′, V ) and� is a sequence of candidates (cπ(0), cπ(1), . . . , cπ(t)),
where {π(0), . . . , π(t)} ⊆ [m], satisfying the following conditions:

• cπ(i) ∈ C ′ for all i ∈ [t] ∪ {0}, i.e., all candidates in the (c ← c′)-beating path
belong to C ′;

• cπ(0) = c′ and cπ(t) = c;
• π(i − 1) > π(i) for all i ∈ [t], i.e., cπ(t) � cπ(t−1) � · · · � cπ(0);
• for all i ∈ [t], cπ(i) is either beaten by or ties with cπ(i−1); and
• for all i ∈ [t], cπ(i) beats all of its successors from C ′ that lie between cπ(i)

and cπ(i−1) in the agenda �, i.e., cπ(i) beats �[ j] for all �[ j] ∈ C ′ such that
π(i) < j < π(i − 1).

In particular, for any candidate c ∈ C , we define the trivial (c ← c)-beating path as
the sequence consisting solely of (c). We refer to Fig. 5 for an illustration.

Checking whether there is a (c ← c′)-beating path with respect to (C ′, V ) and �
can be clearly done in polynomial time. Moreover, a candidate c is the amendment
winner of (C, V ) with respect to � if and only if c beats all her successors, and there
is a (�[1] ← c)-beating path with respect to (C, V ) and �.

We are now prepared to present our algorithm for CCAC-Amendment.

Theorem 9 CCAC-Amendment is polynomial-time solvable.
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Fig. 5 The sequence (c11, c6, c2) (highlighted as dark vertices) represents a (c2 ← c11)-beating path with
respect to the subset C ′ = {c1, c2, c4, c5, c6, c7, c10, c11} (vertices enclosed in blue circles), the election
(C ′, V ), and the agenda � = (c1, c2, . . . , c12). A dark arc (a, b) signifies that a beats b, while a gray arc
(a, b) indicates that a either beats or ties with b

Proof We derive a dynamic programming algorithm for the CCAC-Amendment prob-
lem as follows. Let I = (C, p, D, V ,�, k) be an instance of CCAC-Amendment,
where C and D are respectively the set of registered candidates and the set of unreg-
istered candidates, p ∈ C is the distinguished candidate, V is a multiset of votes, � is
an agenda, and k is the number of unregistered candidates that we can add. Let c� be
the leftmost candidate fromC in the agenda�. That is, c� �c holds for all c ∈ C\{c�}.
If p does not beat all her successors inC , we directly conclude that I is a No-instance.
So, let us assume that p beats all her successors fromC in�. If p is already the amend-
ment winner, I is a Yes-instance; we are done. Otherwise, we determine whether we
can add at most k candidates from D into C to make p the amendment winner. Let
D1 ⊆ D be the set of predecessors of p contained in D. Observe that it does not make
any sense to add any candidates from D \ D1.

We maintain a table H(d) indexed by candidates d ∈ D1. We define H(d) as
the minimum number of successors of d from D1 that need to be added, under the
condition that d is added into C , such that a (d ← p)-beating path exists with respect
to the resulting election and�. If such candidates do not exist, we define H(d) = +∞.
We process the candidates in D1 sequentially, following the decreasing order of their
positions in the agenda � (i.e., from the rightmost to the leftmost). In particular, the
table is computed as follows.

First, let d ∈ D1 be the rightmost predecessor of p from D1. We let H(d) = 1 if
there is a (d ← p)-beating path with respect to (C ∪ {d}, V ) and �. Otherwise, we
let H(d) = +∞.

Next, we recursively compute other entries. To this end, let d ∈ D1 denote the
currently considered candidate. Assuming that H(d ′) has been computed for all d ′ ∈
D1 such that d � d ′, we compute H(d) as follows.

• If there is a (d ← p)-beating path with respect to (C ∪ {d}, V ) and �, we let
H(d) = 1.

• Otherwise, we define H(d) = +∞ if no (d ← d ′)-beating path exists with respect
to (C ∪ {d, d ′}, V ) and � for any successor d ′ ∈ D1 of d.

• Otherwise, we let

H(d) = 1 + min
d ′∈D1, d�d ′

∃(d←d ′)-beating path w.r.t. (C∪{d,d ′},V ) and �

H(d ′).

After computing all entries of the table, we conclude that the given instance I is a
Yes-instance if and only if one of the following two cases occurs:
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• there is a candidate d ∈ D1 after c� in the agenda� such that H(d) ≤ k, and there
is a (c� ← d)-beating path with respect to (C ∪ {d}, V ) and �.

• there is a candidate d ∈ D1 before c� in the agenda � such that H(d) ≤ k.

The algorithm runs in polynomial time since the table has at most |D1| entries and
computing each entry can be done in polynomial time as shown above. ��

For constructive control by deleting candidates, we have the same result.

Theorem 10 CCDC-Amendment is polynomial-time solvable.

Proof Let I = (C, p, V ,�, k) be an instance of the CCDC-Amendment problem,
where C is a set of candidates, p ∈ C is a distinguished candidate, V is a multiset of
votes on C , � is an agenda on C , and k is an integer.

A necessary condition for p to be the amendment winner is that p beats all her
successors. Therefore, the first step of our algorithm is to remove all the successors
of p not beaten by p, and decrease k accordingly.

If k < 0 after doing so, we directly conclude that I is a No-instance. Otherwise,
if p has at most k predecessors, we immediately conclude that I is a Yes-instance,
because in this case, we can make p the winner by deleting all its predecessors without
exceeding the budget k.

We assume now that p has at least k + 1 predecessors. Let (c1, c2, . . . , ct ) be the
agenda � restricted to the predecessors of p. It holds that t ≥ k + 1. For notational
brevity, let ct+1 = p. For i, j ∈ [t] such that i < j , let C[i, j] denote the union of
{ci , c j } and the set of candidates between ci and c j in �. Additionally, for i = j , we
let C[i, j] = {ci }, and for i > j , we define C[i, j] = ∅. We maintain a table H(ci )
for i ∈ [t + 1]. Specifically, H(ci ) is defined as the minimum number of candidates
that need to be removed from C[i + 1, t] such that there is a (ci ← p)-beating path
in the remaining election with respect to �.

We compute the entries in the order of H(ct+1), H(ct ), . . . , H(c1). First, we set
H(ct+1) = 0. For each ci where i ∈ [t], if ci is not beaten by any candidate from
C[i + 1, t + 1], we let H(ci ) = +∞; otherwise, we compute

H(ci ) = min
i < j ≤ t + 1,

c j beats or ties with ci

(
H(c j ) + j − i − 1

) (
H(c j ) + j − i − 1

)
.

Here, j − i − 1 accounts for that all candidates in C[i + 1, j − 1] are considered to
be deleted.

The given instance I is a Yes-instance if and only if there exists a candidate ci
with i ∈ [t] such that H(ci ) ≤ k − i + 1. The existence of such a candidate ci implies
that we can delete all the i − 1 predecessors of ci , along with at most k − i + 1
candidates between ci and p in �, to ensure the presence of a (ci ← p)-beating path
in the remaining election. Since p beats all her successors, this guarantees that p will
become the winner after the deletion of the aforementioned candidates. Moreover,
note that p has at least k + 1 predecessors, which ensures that at least one candidate
c j with j ∈ [t] is not deleted.
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Since the table contains polynomiallymany entries, and each entry can be computed
in polynomial time, the overall algorithm runs in polynomial time. ��

As DCAC-Amendment and DCDC-Amendment are respectively polynomial-time
Turing reducible to CCAC-Amendment and CCDC-Amendment, we obtain the
following corollary as a consequence of Theorem 9 and Theorem 10.

Corollary 5 DCAC-Amendment and DCDC-Amendment are polynomial-time solv-
able.

3.2 The (m− h)-Amendment Procedure for Constant h

This section focuses on election control for the (m − h)-amendment procedures,
where m denotes the number of candidates and h is a positive integer constant. We
stipulate that for a fixed constant h, when the (m−h)-amendment procedure is applied
to an election with m ≤ h candidates and an agenda, the winner is the first candidate
in the agenda.

Our first result is stated as follows.

Theorem 11 For every constant h, CCAV-(m − h)-Amendment is W[1]-hard with
respect to the combined parameter of the number of added votes and the number of
registered votes. This holds evenwhen the distinguished candidate is the last candidate
in the agenda.

Proof We prove the theorem through a reduction from the Perfect Code problem.
Consider an instance (G, κ) of Perfect Code, whereG is a graph, and κ is an integer.
Let U denote the vertex set of G. We first give a reduction for the case where h = 1.
Particularly, we construct an instance of CCAV-Full-Amendment as follows.

Let (u1, u2, . . . , un) be any arbitrary linear order of U . For each ui , we create
two candidates denoted by xi and yi . In addition, we create one candidate p. Let
X = {xi : i ∈ [n]}, let Y = {yi : i ∈ [n]}, and let C = X ∪ Y ∪ {p}. Furthermore, let−→
X = (x1, x2, . . . , xn), and let

−→
Y = (y1, y2, . . . , yn). The agenda is� = (

−→
X ,

−→
Y , p).

For each ui where i ∈ [n], let

NX [ui ] = {x j ∈ X : j ∈ [n], u j ∈ NG [ui ]}

be the set of candidates in X corresponding to the closed neighborhood of ui in G.
Analogously, let

NY [ui ] = {y j ∈ Y : j ∈ [n], u j ∈ NG [ui ]}.

We create the following registered votes:

• κ + 2 votes with the preference p
−→
X

−→
Y ;

• κ − 2 votes with the preference
−→
X p

−→
Y ; and

• κ + 2 votes with the preference
−→
X

−→
Y p.
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Fig. 6 An illustration of the weighted majority graph of (C, V ) and the agenda as used in the proof of
Theorem 11. Arcs among the vertices in X (respectively, Y ) are forward arcs with a uniform weight of
3κ + 2. The agenda is represented by the left-to-right ordering of the vertices

Let V be the multiset of the above 3κ +2 registered votes. Figure6 shows the majority
graph of (C, V ).

Now we construct the unregistered votes. For each ui , i ∈ [n], we create one
unregistered vote �i with the preference

(−→
X [NX [ui ]]

) (−→
Y \ NY [ui ]

)
p

(−→
X \ NX [ui ]

) (−→
Y [NY [ui ]]

)
.

Let W denote the multiset of the above unregistered votes. Let k = κ , i.e., we are
allowed to add at most κ unregistered votes. The CCAV-Full-Amendment instance is
(C, p, V ,W ,�, k).

In the following,we show that the given Perfect Code instance is aYes-instance if
and only if the above constructed CCAV-Full-Amendment instance is a Yes-instance.
Observe that as for every c ∈ C \ {p}, all the 3κ + 2 registered votes rank c before
all her successors except p, no matter which at most κ unregistered votes are added, c
still beats all her successors in C \ {p}.

(⇒)Assume that the graphG admits a perfect codeU ′ ⊆ U of size κ . LetW ′ = {�i

: ui ∈ U ′} be the set of unregistered votes corresponding toU ′. Let E = (C, V ∪W ′).
As p is the last candidate in the agenda, and every candidate from C \ {p} beats all her
successors from C\{p}, p wins E if and only if p is not beaten by anyone else in E .
Consider two candidates xi ∈ X and yi ∈ Y where i ∈ [n]. AsU ′ is a perfect code ofG,
there is exactly one u j ∈ U ′ such that ui ∈ NG[u j ]. By the definition of unregistered
votes, this implies that in W ′, only the vote � j created for u j ranks xi before p and,
moreover, only the same vote � j ranks p before yi . It follows that nV∪W ′(p, xi ) =
(κ + 2) + (κ − 1) = 2κ + 1 and nV∪W ′(p, yi ) = (κ + 2) + (κ − 2) + 1 = 2κ + 1. As
there are exactly 3κ + 2 + κ = 4κ + 2 votes in E , we know that p ties with both xi
and yi . As i can be any integer in [n], we know that p ties with all candidates from
X ∪ Y in E .

(⇐)Assume that there is a subsetW ′ ⊆ W of at most κ votes such that p is the full-
amendment winner of E = (C, V ∪ W ′) with respect to the agenda �. First, observe
that every candidate from X beats each of its successors in E , except p, regardless of
which at most κ votes are contained in W ′. This is because all the 3κ + 2 registered
votes rank every candidate from X before all of its successors except p.

Moreover, ifW ′ contains at most κ −1 votes, then there exists at least one candidate
from X who also beats p with respect to V ∪ W ′. This follows because there are
already 2κ registered votes that rank every candidate from X before p. If no votes
are added, all candidates from X beat p. Alternatively, if any unregistered vote, say
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�i , corresponding to a vertex ui in G is added, any candidate from X , say xi , that is
ranked before p beats p in E .

In other words, if |W ′| ≤ κ − 1, there would exist at least one candidate in X
who beats all of her successors. In this case, the leftmost such candidate in the agenda
would be the winner of E . However, this contradicts the assumption that p wins E .

From the above analysis, we conclude that |W ′| = κ . It follows that |V ∪ W ′| =
4κ + 2. Let U ′ = {ui ∈ U : �i∈ W ′} be the set of vertices corresponding to W ′. We
claim that U ′ is a perfect code of G. Suppose, for the sake of contradiction, that this
is not the case. Then, one of the following two cases occurs.

Case 1: ∃ui ∈ U such that ui /∈ NG [U ′]
In this case, all unregistered votes in W ′ rank yi before p. So, in E there are
in total κ + 2 + κ = 2κ + 2 votes ranking yi before p, implying that p is
beaten by yi in E , contradicting that p wins E .

Case 2: ∃ui ∈ U and u j , u j ′ ∈ U ′ such that ui ∈ NG[u j ] ∩ NG [u j ′ ].
Due to the construction of the unregistered votes, the two votes � j and � j ′
in W ′ both rank xi before p. In this case, there are at least 2κ + 2 votes in
V ∪ W ′ ranking xi before p, implying that xi beats p in E . However, this
contradicts that p wins E .

Since both of the above cases lead to contradictions, U ′ is a perfect code of G.
To show the W[1]-hardness of CCAV-(m − h)-Amendment we add a set of h − 1

additional candidates p1, p2, . . . , ph−1 in the following way:

(1) we add them before p with their relative order being ph−1, ph−2, . . . , p1 in the
agenda; and

(2) in each vote, we rank them after p with their relative order being p1, p2, . . . , ph−1.

So, in the new election, p beats each pi where i ∈ [h − 1], and the head-to-head
comparison between every candidate xi (respectively, yi ) and each p j where j ∈
[h − 1] is exactly the same as that between xi (respectively, yi ) and p. ��

For control by deleting voters, we also obtain a parameterized intractability result.

Theorem 12 For every constant h, CCDV-(m − h)-Amendment is W[2]-hard with
respect to the number of deleted votes. This holds even when the distinguished
candidate is the last candidate in the agenda.

Proof We prove the theorem by reductions from the RBDS problem. Let (G, κ) be
an instance of RBDS, where G is a bipartite graph with the bipartition (R, B). We
first provide a reduction for the case where h = 1. Similar to the proof of Theorem 2,
we assume that every red vertex has the same degree, which we denote by �. We
also assume that κ ≥ 3. The candidate set and the agenda are exactly the same as
in the proof of Theorem 2. Precisely, we have that C = R ∪ {p, q} where p is the
distinguished candidate, and � = (q,

−→
R , p). We create the following 2|B| + 2� − κ

votes in V :

• |B| − κ + 1 votes with the preference
−→
R p q;

• � votes with the preference q p
−→
R ;
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Fig. 7 An illustration of the weighted majority graph of (C, V ) and the agenda as used in the proof of
Theorem 12. All arcs between the vertices in R are forward arcs with a weight of at least 2|B| − κ + �. The
agenda is depicted by the left-to-right ordering of the vertices

• � − 1 votes with the preference p q
−→
R ; and

• for each blue vertex b ∈ B, one vote �b with the preference

q
(−→
R [NG(b)]

)
p

(−→
R \ NG(b)

)
.

Let k = κ . The constructed instance of CCDV- Full- Amendment is
(C, p, V ,�, k). The weighted majority graph of (C, V ) and the agenda � are
illustrated in Fig. 7.

It is easy to see that q beats everyone else and is the full-amendment winner
of (C, V ) with respect to �. The construction clearly can be created in polynomial
time. In the following, we prove the correctness of the reduction.

(⇒)Assume that there is a subset B ′ ⊆ B of cardinality κ such that B ′ dominates R
in G. Let V ′ = {�b : b ∈ B ′} be the set of votes corresponding to B ′. Let E =
(C, V \V ′). Clearly, |V \V ′| = 2|B|− 2κ + 2�. We shall show that p is not beaten by
anyone else in E and hence is the full-amendment winner. As all votes in V ′ rank q
before p, it holds that nV \V ′(p, q) = (|B|− κ +1)+ (�−1) = |B|− κ + �, meaning
that p ties with q in E . Moreover, as B ′ dominates R, for every r ∈ R, there is at least
one blue vertex b ∈ B ′ dominating r . By the construction of the votes, we know that r
is ranked before p in the vote�b∈ V ′ corresponding to b. It follows that at most κ −1
votes in V ′ rank p before r . By the construction of the votes, we know that there are
at least � + (� − 1) + (|B| − �) − (κ − 1) = |B| + � − κ votes ranking p before r
in V \V ′, implying that p ties with r in E . As this holds for all r ∈ R, we know that p
ties with all candidates in R. It follows that p is the full-amendment winner of E .

(⇐) Assume that we can make p the full-amendment winner by deleting at most
k = κ votes from V , i.e., ∃V ′ ⊆ V such that |V ′| ≤ k and pwins E = (C, V \V ′)with
respect to�. It is easy to see that nomatter which at most k votes are contained in V ′, q
beats all candidates in R, and every r ∈ R beats all her successors in R in the election E .
Therefore, it must be that p beats or ties with all the other candidates in E . This implies
that all votes in V ′ must rank q before p and, moreover, it must be that |V ′| = k = κ ,
since otherwise p is beaten by q in E . There are two groups of votes ranking q before p:
those corresponding to the blue vertices, and those with the preference q p

−→
R . We

may assume that all votes in V ′ belong to the first group. This assumption holds
because if V ′ contained any vote with the preference q p

−→
R , we could construct

another solution V ′′ by replacing this vote with any vote from the first group that is
not currently in V ′. Let r be a candidate from R. As nV (r , p) = |B| − κ + � + 1
and |V \V ′| = 2|B| − 2κ + 2�, we know that there is at least one vote �b∈ V ′ which
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ranks r before p. By the reduction, we know that the vertex b corresponding to �b

dominates r in G. It is clear now that the subset B ′ = {b ∈ B : �b∈ V ′} of blue
vertices corresponding to V ′ dominates R in G.

To prove the W[2]-hardness of CCDV-(m − h)-Amendment for other constant
values of h, we modify the reduction above in the same manner as in the proof of
Theorem 11. Specifically, we add h − 1 additional candidates, denoted as p1, p2,
. . . , ph−1, in the same way as in the proof of Theorem 11. ��
Theorem 13 For every constant h, CCDV-(m − h)-Amendment is W[2]-hard with
respect to the number of remaining votes. This result holds evenwhen the distinguished
candidate occupies the last position in the agenda.

Proof Weprove the theoremvia reductions from theRBDSproblem. First,we consider
the case where h = 1. Let (G, κ) be an instance of RBDS, where G is a bipartite
graph with the bipartition (R, B). Without loss of generality, assume that κ < |B|.
We construct an instance of CCDV-Full-Amendment as follows.

For each red vertex, we create one candidate denoted still by the same symbol for
notational simplicity. In addition, we create two candidates q and p, where p is the
distinguished candidate. Let C = R ∪ {q, p}. The agenda is � = (q,

−→
R , p). We

create the following votes:

• a multiset V1 of κ − 1 votes with the preference p q
−→
R ;

• a singleton V2 of one vote with the preference
−→
R p q; and

• for each blue vertex b ∈ B, one vote �b with the preference

q
(−→
R \ NG(b)

)
p

(−→
R [NG(b)]

)
.

For a given B ′ ⊆ B, let VB′ = {�b: b ∈ B ′} be the submultiset of votes created
for the blue vertices in B ′. Let V = V1 ∪ V2 ∪ VB . It holds that |V | = |B| + κ .
Let k = |B| − κ . Obviously, under the assumption that κ < |B|, the full-amendment
winner of (C, V ) with respect to � is q. The instance of CCDV- Full- Amendment
is (C, p, V ,�, k), which asks if there is a submultiset V ′ ⊆ V of cardinality at least
|V | − k = 2κ such that p is the full-amendment winner of (C, V ′) with respect to �.
It remains to show the correctness of the reduction.

(⇒) Assume that there is a subset B ′ ⊆ B such that |B ′| = κ and B ′ dominates R
in G. Let V ′ = V1 ∪ V2 ∪ VB′ , and let E = (C, V ′). We claim that p is the full-
amendment winner of E with respect to�. Since p is the last candidate in the agenda,
it suffices to show that p is not beaten by any other candidate in E . It is clear that p ties
with q in E . Let r ∈ R be a red vertex. As B ′ dominates R, there is at least one vote�b

in VB′ such that b dominates r . From the construction of the votes, we know that p
is ranked before r in the vote �b. Therefore, there are in total at least |V1| + 1 = κ

votes ranking p before r in V ′, implying that p is not beaten by r . As this holds for
all r ∈ R, the correctness for this direction follows.

(⇐) Assume that there exists a submultiset V ′ ⊆ V of at least 2κ votes such
that p is the full-amendment winner of (C, V ′) with respect to �. Observe that, since
|V1|+|V2| = κ and all votes inVB rankq in first place, itmust hold that (V1∪V2) ⊆ V ′,
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and V ′ contains exactly κ votes from VB . Otherwise, q would be the full-amendment
winner of (C, V ′), contradicting that p wins (C, V ′). Define VB′ = V ′ ∩ VB , where
B ′ ⊆ B. As noted, it follows that |VB′ | = κ .

We claim that B ′ dominates R in G. Suppose, for the sake of contradiction, that
there exists a red vertex r ∈ R not dominated by any vertex from B ′. Then, by the
construction of the votes, r is ranked before all its successors in all votes of VB′ .
Combined with the vote in V2, there are κ + 1 votes in V ′ ranking r before all its
successors. In this case, the leftmost r ∈ R not dominated by B ′ becomes the full-
amendment winner of (C, V ′), contradicting the winning of p in (C, V ′).

Therefore, the claim holds. Since |B ′| = κ , the RBDS instance is a Yes-instance.
To prove the W[2]-hardness of CCDV-(m − h)-Amendment for other constant

values of h, we modify the above reduction in the same way as done in the proof of
Theorem 11. ��

Now we study destructive control by adding/deleting voters. Compared with pre-
vious results, the complexity transition of these problems for the (m − h)-amendment
procedures is more sharp. Particularly, by Corollary 2, these problems are polynomial-
time solvable if the distinguished candidate is the first one in the agenda. However,
when the distinguished candidate is the second, the third, or the last candidate in
the agenda, we show that the problems become already intractable from the param-
eterized complexity point of view. This stands in contrast to the fixed-parameter
tractability of the same problems for the h-amendment procedures with respect to
the combined parameter of h and the number of predecessors of the distinguished
candidate (Corollary 4).

Theorem 14 For every constant h, DCAV-(m − h)-Amendment is W[1]-hard with
respect to the number of added votes plus the number of registered votes as long as
the distinguished candidate is not the first one in the agenda.

Proof We first show that the reduction in the proof of Theorem 6 directly applies here
(with only the agenda being different). Recall that the reduction was from the Perfect
Code problem. We had the candidate set C = X ∪ Y ∪ {p, q} ∪ {p1, p2, . . . , ph−1},
where X = {x1, . . . , xm} and Y = {y1, . . . , ym} with xi and yi each being the two
candidates created for a vertex ui in the given graphG of the Perfect Code instance,
and (p, p1, p2, . . . , ph−1) is an ordered block. We let � be an agenda such that q is
the first candidate, and, excluding p, the last h−1 candidates in the agenda are p1, p2,
. . . , ph−1. (Other candidates except p can be ordered arbitrarily between q and p1,
and p can be in any position after q in the agenda.) We created a multiset V of votes
such that p beats all the other candidates and, moreover, except for q, this holds even
after we add atmost k unregistered votes. Thismeans that q is the only candidatewhich
is able to replace p as the new winner. By the definition of the (m − h)-amendment
procedure, q is the (m − h)-amendment winner if and only if q beats all the other
candidates. In the proof of Theorem 6, we constructed a multiset of unregistered votes
such that there exists a perfect code of G if and only if at most k unregistered votes
can be added to ensure that q beats all other candidates. The theorem follows. ��

One might wonder why, in Theorem 6, we require the distinguished candidate p to
be the last candidate in the agenda, whereas in Theorem 14, we only stipulate that p
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must not be the first candidate in the agenda. The distinction arises because, if p is not
the last candidate in the agenda, preventing p from being an h-amendment winner does
not necessarily require q to beat all other candidates. For example, suppose p imme-
diately follows q in the agenda. In this case, to prevent p from being an amendment
winner, it suffices for q to beat p, even if q is beaten by a candidate appearing after p
in the agenda. Our FPT-result for DCAV-Full-Amendment, stated in Corollary 4, also
reflects this distinction from a different perspective.

For destructive control by deleting voters, we have a similar result.

Theorem 15 For every constant h, DCDV-(m − h)-Amendment is W[2]-hard with
respect to the number of deleted votes, as long as the distinguished candidate is not
the first one of the agenda.

Proof We adopt the reduction in the proof of Theorem 7 to prove this theorem. Recall
that the reduction was from RBDS. Specifically, given an instance I = (G, κ) of
RBDS, where G is a bipartite graph with the bipartition (R, B), we created a set
C = R ∪ {q} ∪ {p, p1, p2, . . . , ph−1} of candidates, where p is the distinguished
candidate. Moreover, we created a multiset of votes such that

• (p, p1, . . . , ph−1) is an ordered block;
• p beats all the other candidates and, moreover, except for q, this holds even if we
delete at most k = κ votes; and

• I is a Yes-instance if and only if we can delete at most k votes such that q beats
all other candidates.

It is fairly easy to verify that the reduction applies to DCDV-(m − h)-Amendment for
all agendas where q is the first candidate, and p1, p2, . . . , ph are the last h candidates
in the agenda without p. ��
Theorem 16 For every constant h, DCDV-(m − h)-Amendment is W[2]-hard with
respect to the number of remaining votes, as long as the distinguished candidate is
not the first one of the agenda.

Proof We prove the theorem via a reduction from the RBDS problem. Let (G, κ)

be an instance of RBDS, where G is a bipartite graph with the bipartition (R, B).
Without loss of generality, we assume |B| ≥ κ + 2. The candidate set is defined as
C = R ∪ {q, p}, where p is the distinguished candidate. The agenda � can be any
ordering in which q occupies the first position. We construct the following votes:

• a multiset V1 of κ votes, each with the preference q p
−→
R ;

• a singleton V2 containing one vote with the preference
−→
R q p; and

• for each blue vertex b ∈ B, one vote �b with the preference

p
(−→
R \ NG(b)

)
q

(−→
R [NG(b)]

)
.

For each subset B ′ ⊆ B, let VB′ = {�b : b ∈ B ′} denote the multiset of votes
corresponding to the blue vertices in B ′. Define V = V1 ∪ V2 ∪ VB . Clearly, |V | =
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|B| + κ + 1. Let k = |B| − κ . Under the assumption |B| ≥ κ + 2, it is evident that
the (m − h)-amendment winner of (C, V ) with respect to the agenda � is p.

It remains to show the correctness of the reduction.
(⇒) Assume there exists a subset B ′ ⊆ B such that |B ′| = κ and B ′ dominates R

in G. Let V ′ = V1 ∪ V2 ∪ VB′ , and let E = (C, V ′). We claim that q is the (m − h)-
amendment winner of E with respect to the agenda �. Since q is in the first position
of �, it suffices to show that q beats every other candidate in E (Lemma 1).

Observe that |V ′| = 2κ + 1. As all the κ + 1 votes from V1 ∪ V2 prefer q to p, it
follows that q beats p in E . Let r ∈ R be a red vertex. Since B ′ dominates R in G,
there exists at least one vote �b in VB′ such that b dominates r , i.e., r ∈ NG(b). By
the construction of �b, we know that q is ranked before r in this vote. Thus, there are
at least |V1|+1 = κ +1 votes in V ′ ranking q before r , implying that q beats r . Since
this holds for all r ∈ R, the correctness of this direction is established.

(⇐)Assume there exists a submultiset V ′ ⊆ V of at least 2κ+1 votes such that p is
not the (m−h)-amendmentwinner of (C, V ′)with respect to�. As |V1|+|V2| = κ+1
and all votes in VB rank p in the first place, we know that (V1∪V2) ⊆ V ′, and V ′ must
contain exactly κ votes from VB , because otherwise p remains the (m−h)-amendment
winner of (C, V ′), a contradiction. Let VB′ = V ′ ∩ VB , where B ′ ⊆ B. It follows that
|VB′ | = κ .

Observe that p beats all candidates from R in (C, V ′), regardless of which κ votes
from VB are included in V ′. Therefore, q must be the (m − h)-amendment winner of
(C, V ′), meaning q beats all other candidates. We claim that B ′ dominates R.

Suppose, for the sake of contradiction, that there exists a red vertex r ∈ R not
dominated by any vertex in B ′. Then, by the construction of the votes, r is ranked
before q in all votes from VB′ . Together with the vote in V2, there are κ +1 votes in V ′
ranking r before q, implying that r beats q in (C, V ′). This contradicts the assumption
that q beats all candidates in (C, V ′). Thus, B ′ must dominate R in G.

As |B ′| = κ , the given instance of the RBDS problem is a Yes-instance. ��
We now turn to candidate control operations. Unlike the h-amendment procedures,

we first show that constructive control by adding candidates under the (m − h)-
amendment procedures is hard to solve, for each positive integer constant h. Notably,
this is our only hardness result for candidate control under the various variants of
amendment procedures.

Theorem 17 For every constant h, CCAC-(m − h)-Amendment is W[2]-hard with
respect to the number of added candidates. This holds even when the distinguished
candidate is the last one in the agenda.

Proof We prove the theorem via a reduction from RBDS. Let (G, κ) be an instance
of RBDS, where G is a bipartite graph with the bipartition (R, B). We first consider
the full-amendment procedure, i.e., the case where h = 1. We construct an instance
of CCAC-Full-Amendment as follows.

For each vertex in G, we create one candidate, denoted by the same symbol for
notational simplicity. Additionally, we create a distinguished candidate p. Let C =
R ∪ {p}, let D = B, let k = κ , and define the agenda as � = (

−→
R ,

−→
B , p). We create

a multiset V of votes such that
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Fig. 8 An illustration of the majority graph of (C ∪ D, V ) and the agenda used in the proof of Theorem 17.
All arcs between the vertices in R are forward. Arcs between the vertices in B are irrelevant as they have
no impact on the correctness of the reduction. The agenda is depicted by the left-to-right ordering of the
vertices

• every candidate from R beats p;
• p beats every candidate from B;
• for each r ∈ R and b ∈ B, if b dominates r in G, then b beats r ; otherwise, r
beats b; and

• every candidate r ∈ R is beaten by all of its predecessors in the agenda �.

We refer to Fig. 8 for an illustration of the majority graph of (C ∪ D, V ) and the
agenda �.

By McGarvey’s theorem [41], such votes can be constructed in polynomial time.
The corresponding CCAC-Full-Amendment instance is given by (C, p, D, V ,�, k).

The correctness of the reduction is easy to see. In particular, if there is a subset
B ′ ⊆ B of κ vertices which dominate R in G, then after adding the candidates
corresponding to B ′, for every r ∈ R, there is at least one candidate from B ′ beating r ,
excluding the winning of r . Candidates from B ′ cannot win as they are beaten by p.
Therefore, after adding these candidates, p becomes thewinner. If, however, theRBDS
instance is a No-instance, then nomatter which at most κ candidates from B are added,
there is at least one candidate in R who beats all her successors in the agenda. As all
candidates from R are before p in the agenda �, in this case, we cannot add at most κ
candidates to make p the winner.

The above reduction can be modified in the following way to prove the hardness for
every h > 1: replace the distinguished candidate by an ordered block of h candidates
with the first one in the block being the distinguished candidate. ��

However, when the distinguished candidate has only a few predecessors, the
problem becomes tractable from the perspective of parameterized complexity.

Theorem 18 For every constant h, CCAC-(m − h)-Amendment is FPT with respect to
the number of predecessors of the distinguished candidate.

Proof Let I = (C, p, D, V ,�, k) be an instance of CCAC-(m − h)-Amendment,
where p ∈ C is the distinguished candidate. Let C1 (respectively, D1) be the set of
predecessors of p contained in C (respectively, D), and let C2 = C \ (C1 ∪ {p})
(respectively, D2 = D\D1). Additionally, let D′

2 ⊆ D2 be the set of candidates
from D2 beaten by p with respect to V .

We first give an FPT-algorithm for the full-amendment procedure, and then we
show how to extend the algorithm for the (m − h)-amendment procedures. Let � =
|C1| + |D1| be the number of predecessors of p in C ∪ D.

If at least one candidate from C2 is not beaten by p with respect to V , we imme-
diately conclude that I is a No-instance. So, let us assume that p beats all candidates
from C2.
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We split I into at most 2� subinstances by enumerating all subsets S ⊆ D1. In
particular, each subinstance takes I and a subset S ⊆ D1 as input, and determines
if there is a subset D′ ⊆ D2 such that |D′| ≤ k − |S| and p is the full-amendment
winner of (C ∪ S ∪ D′, V ) with respect to �. Clearly, I is a Yes-instance if and only
if at least one of the subinstances is a Yes-instance. To solve a subinstance associated
with an enumerated subset S, we create an instance of RBDS as follows.

• Red vertices are those in C1 ∪ S who beat their respective successors from C ∪ S.
• Blue vertices are those in D′

2.• We create an edge between a red vertex c and a blue vertex c′ if and only if c′ is
not beaten by c with respect to V .

• Let κ = min{k − |S|, |D′
2|}.

It is straightforward to verify that the RBDS instance is a Yes-instance if and only
if the subinstance is a Yes-instance. Regarding the running time, we reiterate that
RBDS is FPT with respect to the number of red vertices (see, e.g., the works of Dom,
Lokshtanov, and Saurabh [20], Fomin, Kratsch, and Woeginger [30]). Then, as each
RBDS instance constructed above has at most � red vertices, and we have at most 2�

subinstances to consider, the whole algorithm runs in FPT-time with respect to �.
We now consider the (m−h)-amendment procedures, where h is a positive constant

integer. We enumerate all tuples (S, S′) of two subsets such that

• S ⊆ D1,
• S′ ⊆ D′

2,• |S′| ≤ min{h − 1, |D′
2|}, and• |S| + |S′| ≤ k.

Candidates in S are assumed to be exactly those from D1 that are included in a
desired feasible solution,while candidates in S′ are also considered part of the solution.
Moreover, candidates in S′ are assumed to be the last candidates from D′

2 included
in the solution. Let B denote the set of candidates from D′

2 that appear before any
candidate from S′ in �. Formally, B ⊆ D′

2, and for all b ∈ B and all c ∈ S′, it holds
that b� c. Let κ = min{k−|S∪ S′|, |B|}. For each enumerated {S, S′}, we determine
whether there exists B ′ ⊆ B such that

• |B ′| ≤ κ , and
• p is the (m − h)-amendment winner of (C ∪ S ∪ S′ ∪ B ′, V ) with respect to �.

The original instance I is a Yes-instance if and only if there is a Yes-answer to the
above question for at least one enumerated (S, S′).

In the following, we describe how to solve a subproblem associated with an enu-
merated tuple (S, S′). Let �′ be the agenda � restricted to C ∪ S ∪ S′. Let A be the
set of the last h − 1 candidates in �′. We have two cases to consider.

Case: p ∈ A.
In this case, B = ∅ holds. Consequently, we conclude that I is a Yes-instance if
p is the (m − h)-amendment winner of (C ∪ S ∪ S′, V ) with respect to �′, and
discard (S, S′) otherwise.
Case: p /∈ A.
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In this case, we construct an instance of theRBDS problem. Let p = �′[�′], where
�′ ≤ �. The red vertices in the RBDS instance are from C1 ∪ S. Specifically, a
candidate �′[i], where i ∈ [�′ − 1], is a red vertex if and only if at least one of the
following conditions holds:
• i ≤ h− 1, and �′[i] beats all candidates from �′[i + 1, i +m′ − h] with respect
to V , where m′ = |C ∪ S ∪ S′|;
• i ≥ h, and �′[i] beats all of its successors in C ∪ S ∪ S′.
Let R denote the set of the red vertices. Blue vertices are those in B. Edges are
constructed as follows: an edge exists between a vertex �′[i] ∈ R and a vertex
b ∈ B if and only if b is not beaten by�′[i]with respect to V . The instance asks if
there exists a subset of κ blue vertices that dominate all red vertices. If the resulting
RBDS instance is a Yes-instance, we conclude that I is a Yes-instance; otherwise,
(S, S′) is discarded.
If all enumerated tuples are discarded, we conclude that I is a No-instance.
The algorithm runs in FPT-time with respect to � for the following reasons: we

enumerate at most 2� · |D|h−1 tuples, h is a constant, the RBDS problem is FPT with
respect to the number of red vertices, and each RBDS instance generated contains at
most � red vertices. ��

For the operation of deleting candidates, we present a natural polynomial-time
algorithm for the full-amendment procedure, based on two reduction rules outlined
below.

Let I = (C, p, V ,�, k) be an instance of the CCDC-Full-Amendment problem.

Reduction Rule 1 If p has a successor q in � that is not beaten by p with respect to
V , remove q from C and �, and decrease k by one.

Reduction Rule 2 If the full-amendment winner q of (C, V ) with respect to �
precedes p in �, remove q from C and �, and decrease k by one.

Since each application of these reduction rules removes one candidate, the rules
can be applied at most m − 1 times, where m denotes the number of candidates. As
the condition in each rule can be verified in polynomial time, exhaustively applying
these reduction rules runs in polynomial time.

A reduction rule is said to be sound for a problem if applying it to any instance of
the problem results in an equivalent instance of the same problem. The soundness of
Reduction Rule 1 for the CCDC-Full-Amendment problem is evident: if a candidate
p can become a winner by deleting other candidates, and there exists a successor q
of p in � not beaten by p, then q must be deleted. We now prove the soundness of
Reduction Rule 2.

Lemma 3 Reduction Rule 2 for the CCDC-Full-Amendment problem is sound.

Proof Let I ′ = (C ′, p, V ′,�′, k−1)be the instance obtained after applyingReduction
Rule 2 to I = (C, p, V ,�, k) and q, where

(1) q is the full-amendment winner of (C, V ) with respect to �,
(2) q � p,
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(3) C ′ = C \ {q},
(4) V ′ is obtained from V by removing q from every vote in V ,
(5) �′ is the agenda � restricted to C ′.

We prove below that I ′ is a Yes-instance of the CCDC-Full-Amendment problem
if and only if I is a Yes-instance of the same problem.

(⇒)Assume there exists D ⊆ C ′ such that |D| ≤ k−1 and p is the full-amendment
winner of (C ′\D, V ) with respect to �′. It follows that D ∪ {q} is a witness for I .
Thus, I is a Yes-instance.

(⇐)Now assume that I is a Yes-instance, i.e., there exists D ⊆ C such that |D| ≤ k
and p is the full-amendment winner of (C \ D, V ) with respect to �.

If q ∈ D, then D\{q} is witness for I ′.
Now consider the case where q /∈ D. By Condition (1) above, q beats all its

successors in �. According to the definition of the full-amendment procedure, if q
is not eliminated during the winner determination process, q will remain the winner
of (C\D, V ), which contradicts p being the winner of (C\D, V ). Thus, q must be
eliminated when some candidate a ∈ C \ D with a � q is considered during the
winner determination procedure. By Condition (2) above, it follows that a � p. Note
that at each round of the full-amendment procedure, either the considered candidate is
eliminated, or all its successors are eliminated (in which case the considered candidate
is declared the winner). Therefore, if q is eliminated when a is considered, p must
also be eliminated, which contradicts p’s status as the winner.

We can now conclude that the case where q /∈ D is impossible. ��

With the two reduction rules at hand, we are ready to present the following result.

Theorem 19 CCDC-Full-Amendment is polynomial-time solvable.

Proof Let I = (C, p, V ,�, k) be an instance of the CCDC-Full-Amendment prob-
lem. We exhaustively apply Reduction Rule 1 and Reduction Rule 2. The order of
application does not matter, as the soundness of each rule is independent of the other.
As previously discussed, the exhaustive application of these rules can be performed
in polynomial time.

After the reduction rules have been applied exhaustively, candidate p becomes the
full-amendment winner. We conclude that I is a Yes-instance if and only if k ≥ 0. ��

Since DCDC-Full-Amendment is polynomial-time Turing reducible to CCDC-
Full-Amendment, we obtain the following corollary from Theorem 19.

Corollary 6 DCDC-Full-Amendment is polynomial-time solvable.

It is important to note that the soundness of Reduction Rule 2 fails for the CCDC-
(m − h)-Amendment problem, even when h = 2, as demonstrated in Example 2.
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Example 2: Reduction Rule 2 is not sound for CCDC-(m − 2)-Amendment

Consider an instance (C, p, V ,�, k), where the election (C, V ) and the majority
graph of (C, V ) along with the agenda � are depicted below. The election is illus-
trated on the left, while the majority graph appears on the right, with the agenda
represented by a left-to-right ordering of the vertices. Let k = 1. The (m − 2)-
amendment winner of (C, V ) is q. Consequently, if Reduction Rule 2 is applied,
q will be removed, and k will be reduced to zero. However, it is straightforward
to verify that p is not the (m − 2)-amendment winner of the remaining election.
(Note that the number of candidates in the remaining election is three, not four. In
this case, the (m−2)-amendment procedure becomes equivalent to the amendment
procedure.) Nevertheless, the instance is a Yes-instance; specifically, the unique
feasible solution is to delete candidate b.

vote 1: a q b p
vote 2: q b p a
vote 3: p b a q a b q p

Let us now consider the problem of destructive control by adding candidates. We first
show that, for the full-amendment procedure, it suffices to consider adding at most
one candidate. This result is formalized in the following lemma.

Lemma 4 Let C and D be two disjoint sets of candidates, V a multiset of votes over
C ∪ D, � an agenda on C ∪ D, and p ∈ C a candidate. If there exists D′ ⊆ D such
that p is not the full-amendment winner of (C ∪ D′, V ) with respect to �, then there
exists a subset D′′ ⊆ D′ such that |D′′| ≤ 1 and p is not the full-amendment winner
of (C ∪ D′′, V ) with respect to �.

Proof Assume that there exists a subset D′ ⊆ D such that p is not the full-amendment
winner of (C ∪ D′, V ) with respect to �.

If p has a successor d ∈ C ∪ D′ that is unbeaten by p with respect to V , we are
done. In this case, defining D′′ = D′ ∩ {d}, p cannot be the full-amendment winner
of (C ∪ D′′, V ) due to the presence of d.

Otherwise, p is eliminated when some candidate c ∈ C ∪ D′, preceding p in
the agenda �, is considered during the winner determination process applied to
(C∪D′, V ). In this scenario, c is declared thewinner of (C∪D′, V ). Let D′′ = D′∩{c}.
Clearly, |D′′| ≤ 1. Now, consider the election E = (C ∪ D′′, V ). If c is eliminated
during the winner determination process when one of c’s predecessors in E is con-
sidered, then, by the definition of the full-amendment procedure, p is also eliminated
along with c, thereby preventing p from winning. Otherwise, as c wins (C ∪ D′, V )

and D′′ ⊆ D′, the candidate c beats all of its successors in E . In this case, c also wins
(C ∪ D′′, V ). ��

Lemma 4 implies that DCAC-Full-Amendment is solvable in polynomial time. We
generalize this result to all (m − h)-amendment procedures, where h is a constant, as
stated in the following theorem.
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To facilitate a better understanding of the algorithm presented below, let us first
establish some convenient terminology. Consider an election E = (C, V ) and an
agenda �. Recall that candidates are considered in the order specified by �. Assume
that some candidate c ∈ C is currently being considered. If c beats all of its nextm−h
successors with respect to V , we say that c eliminates each of these m − h candidates
(or equivalently, that each of these candidates is eliminated by c). Otherwise, there
exists a candidate c′ among thesem − h successors who is unbeaten by c. In this case,
we say that c is eliminated by c′.

Note that a candidate c may be considered multiple times. For example, if c elimi-
nates its nextm − h successors, it will remain the next candidate to be considered. We
say that c is directly eliminated if it is eliminated by one of its successors during its
first consideration. Nevertheless, whenm ≥ 2h−1, each candidate can be considered
at most twice. Specifically, if C ′ denotes the set of the first h−1 candidates in �, then
every candidate in C ′ can be considered at most twice, while every other candidate
can be considered at most once. However, this is not the case when m < 2h − 1.
For instance, consider m = 5 and h = 4. In this scenario, m − h = 1, and the first
candidate in the agenda can be considered up to four times.

Theorem 20 For every constant h, DCAC-(m − h)-Amendment is polynomial-time
solvable.

Proof Let I = (C, p, D, V ,�, k) be an instance of the DCAC-(m − h)-Amendment
problem. Our algorithm first addresses the case where I admits a constant-sized
feasible solution, followed by the case where no such feasible solution exists.

Step 1: Handling instances with a constant-sized feasible solution.
In this step, we determine whether there exists a subset D′ ⊆ D with |D′| ≤

min{2 h−1, k} such that p is not the (m−h)-amendment winner of (C ∪ D′, V )with
respect to �. Since h is a constant, this can be achieved in polynomial time.

If such a subset exists, we conclude that I is a Yes-instance. Otherwise, we consider
the following two cases:

• If |D| ≤ 2h − 1 or k ≤ 2h − 1, we directly conclude that I is a No-instance.
• If |D| ≥ 2 h and k ≥ 2 h, the algorithm proceeds to the next step.

Step 2: Handling instances without a constant-sized feasible solution.
At this point, we know that I does not admit a feasible solution D′ ⊆ D with at

most 2h − 1 candidates. Our algorithm proceeds by enumerating all tuples (SL, SR)

of subsets of D such that SL ∩ SR = ∅ and |SL| = |SR| = h − 1. (For clarity and
ease of reference, we note that the superscripts L and R denote “left” and “right”,
respectively.) The candidates in SL (respectively, SR) are intended to represent the
first (respectively, last) h − 1 candidates among all added candidates in the agenda �.

Let k′ = k − |SL| − |SR| = k − 2h + 2. As k ≥ 2 h, k′ is positive. For each
enumerated (SL, SR), we define SL∪R = SL ∪ SR, and construct a subinstance to
determine whether there exists a subset S ⊆ D\SL∪R such that:

• |S| ≤ k′,
• p is not the (m − h)-amendment winner of (C ∪ SL∪R ∪ S, V ) with respect to �,
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• SL � S � SR, meaning no candidate from SL∪R appears between candidates from
S in the agenda �.

Since h is a constant, the number of subinstances is at most polynomial in the size of
I . Furthermore, I is a Yes-instance if and only if at least one of the subinstances is a
Yes-instance.

Next, we present a polynomial-time algorithm for solving a subinstance specified
by an enumerated tuple (SL, SR).

Let dLR be the rightmost candidate from SL in �, and let dRL be the leftmost
candidate from SR in �. To aid our exposition, we define two disjoint subsets X and
Y of D\SL∪R:

• X = {d ∈ D : dLR � d � dRL, d � p}, which consists of all predecessors of p
from D that lie between dLR and dRL in the agenda �.

• Y = {d ∈ D : dLR � d � dRL, p � d}, which consists of all successors of p from
D that lie between dLR and dRL in the agenda �.

We observe that p beats all its successors in C ∪ SL∪R ∪ Y with respect to V . The
reasoning is as follows: if p has a successor d ∈ C ∪ SL∪R ∪ Y that is not beaten
by p, then p is not the (m − h)-amendment winner of (C ∪ {d}, V ). In this case, the
instance would already have been resolved in Step 1.

Let � denote the number of successors of p from C ∪ SL∪R with respect to the
agenda �. We analyze the problem by considering the following two cases:

Case 1: � ≥ h − 1.
In this case, using reasoning similar to the proof of Lemma 4, we can show that
if the subinstance is a Yes-instance, there must exist a candidate d ∈ X such that
p does not win (C ∪ SL∪R ∪ {d}, V ). Since |SL∪R ∪ {d}| = 2 h − 1, this implies
that the instance would already have been resolved in Step 1.
Case 2: � < h − 1.
Let k′′ = min{h − �, k′}. In this case, we determine whether there exists a subset
Z ⊆ (X ∪ Y ) such that |Z | ≤ k′′ and p is not the (m − h)-amendment winner of
(C ∪ SL∪R ∪ Z , V ) with respect to �. Since h is a constant, this can be done in
polynomial time. If such a subset Z exists, we conclude that I is a Yes-instance;
otherwise, we discard the enumerated (SL, SR).
Regarding the correctness of this step, the result is evident when h − � > k′.
For the case where h − � ≤ k′, we claim that if the subinstance is a Yes-instance,
then adding a set Z of at most k′′ = h − � candidates from X ∪ Y to the election
(C ∪ SL∪R, V ) is sufficient to prevent p from winning. We prove this claim as
follows. Assume that there exists a subset Z ′ ⊆ (X ∪ Y ) such that p is not the
(m−h)-amendment winner of (C ∪ SL∪R∪ Z ′, V ). Consequently, p is eliminated
when one of its predecessors, say c�, is considered during thewinner determination
process applied to (C ∪ SL∪R ∪ Z ′, V ). Let �′ denote the agenda � restricted to
C ∪ SL∪R ∪ Z ′.
We construct the desired set Z as follows: For each candidate c ∈ �′[1, h−1−�]—
that is, each candidate within the first h − 1 − � positions of �′—which does not
beat at least one of its successors in �′, we identify the leftmost successor of c
in �′ that is not beaten by c with respect to V . Let C ′ denote the set of these
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“leftmost” candidates. We then define

Z = (
C ′ ∪ {c�}) ∩ Z ′.

Clearly, |Z | ≤ |C ′|+|{c�}| ≤ (h−1−�)+1 = h−�. Let E = (C∪SL∪R∪Z , V ),
and let �′′ be � restricted to C ∪ SL∪R ∪ Z . Note that due to the presence of
candidates in SL, the first h − 1 candidates in �′ are identical to those in �′′.
Similarly, the presence of candidates in SR ensures that the last h − 1 candidates
in �′ are also the same as those in �′′. Using similar reasoning as in the proof
of Lemma 4, we prove below that p does not win E . Our proof proceeds by
considering the following three cases.

Case 1: c� is within the first h − 1 − � positions of �′.
In this case, c� is not eliminated in (C ∪ SL∪R ∪ Z ′, V ) by any of its pre-
decessors from �′[1, h−1− �]. Consider now the winner determination
process applied to E and�′′. By the definition ofC ′, all predecessors of c�

will be directly eliminated. Since c� eliminates p in (C ∪ SL∪R ∪ Z ′, V )

and Z ⊆ Z ′, it follows that c� will also eliminate p.
Case 2: c� is within neither the first h−1−� positions nor the last h−1 positions

of �′.
As c� is not eliminated in (C ∪ SL∪R ∪ Z ′, V ) by any of its predecessors
from�′[1, h−1−�] in the election (C∪SL∪R∪Z ′, V ), by the definition of
C ′, c� is not eliminated by any of its predecessors from�′′[1, h−1−�] =
�′[1, h−1−�] in E . It follows that all the first h−1−� candidates in�′′
are directly eliminated in E . Consequently, if c� is eliminated when one
of its predecessors, say a, is considered in E , then a must not belong to
the first h − 1 − � candidates in �′′. In this case, all the next (m − h)

successors of a, including both c� and p, are eliminated. Otherwise, p
will be eliminated by c� in E .

Case 3: c� is within the last (h − 1) positions of �′.
Consider the winner determination process applied to E and�′′. If all the
first h−1−� candidates in�′′ are directly eliminated, the proof proceeds
similarly to that of Case 2. Otherwise, assume that some candidate c ∈
�′′[h−1−�] is not directly eliminated. In this case, after c is considered
for the first time, at most h candidates remain. It follows that either p is
eliminated together with c� by some predecessors of c�, or p is eliminated
by c�.

Finally, if all enumerated tuples are discarded, we conclude that I is a No-instance.
��

The proof of Theorem 20 in fact implies that if an instance of DCAC-(m − h)-
Amendment is a Yes-instance, it must have a feasible solution of size at most
min{k, 3h − 2}.
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3.3 The Successive Procedure

In this section, we study the successive procedure. We first consider constructive
control by adding/deleting voters. A slight modification of the reduction presented in
the proof of Theorem 11 leads to the following result.

Theorem 21 CCAV-Successive isW[1]-hardwith respect to the number of added votes
plus the number of registered votes. This holds even when the distinguished candidate
is the last one in the agenda.

Proof We show that the reduction established in the proof of Theorem 11 can be used
to prove the theorem. Recall that our reduction is from the Perfect Code problem,
and we have the following 3κ + 2 registered votes in V :

• a multiset V1 of κ + 2 votes with the preference p
−→
X

−→
Y ;

• a multiset V2 of κ − 2 votes with the preference
−→
X p

−→
Y ; and

• a multiset V3 of κ + 2 votes with the preference
−→
X

−→
Y p.

In addition, for eachvertexui inG,wehave anunregisteredvote�i with the preference

(−→
X [NX [ui ]]

) (−→
Y \ NY [ui ]

)
p

(−→
X \ NX [ui ]

) (−→
Y [NY [ui ]]

)
.

The agenda is � = (
−→
X ,

−→
Y , p). The proof for the correctness is similar.

(⇒) In the proof of Theorem 11, we showed that if there is a perfect code, then after
adding the unregistered votes corresponding to the perfect code, p ties with everyone
else. This means that none of the predecessors of p is the winner after the deletion of
the votes. As p is the last one in the agenda, p wins the resulting election.

(⇐) Suppose that there is a W ′ ⊆ W such that |W ′| ≤ κ and p is the successive
winner of E = (C, V ∪ W ′) with respect to �. Let U ′ = {ui ∈ U : �i∈ W ′} be the
set of vertices corresponding to W ′. We claim that U ′ is a perfect code. Assume, for
the sake of contradiction, that this is not the case. Then, one of the following cases
occurs.

Case 1: ∃ui ∈ U such that ui /∈ NG [U ′].
In this case, all unregistered votes in W ′ rank yi before all her successors.
Thus, in E , there are a total of |V3| + κ = κ + 2 + κ = 2κ + 2 votes
ranking yi before the set of all her successors. However, in this case, either
some predecessor of yi or yi herself wins E , contradicting the assumption
that p wins E .

Case 2: ∃ui ∈ U and u j , u j ′ ∈ U ′ such that ui ∈ NG [u j ] ∩ NG [u j ′ ].
By to the construction of the unregistered votes, the two votes � j and � j ′
in W ′ both rank xi before all the successors of xi . So, in E there are at least
|V2 ∪ V3| + 2 = 2κ + 2 votes ranking xi before all the successors of xi .
However, in this case, either some predecessor of xi or xi herself wins E ,
contradicting that p wins E .

Since both cases lead to contradictions, we conclude thatU ′ is a perfect code of G.
��
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Fig. 9 An illustration of the weighted majority graph of (C, V ) and the agenda as used in the proof of
Theorem 22. All arcs between the vertices in R are forward arcs with a weight of at least 2|B| − κ + �. The
agenda is depicted by the left-to-right ordering of the vertices

For constructive control by deleting voters, we have two W[2]-hardness results.

Theorem 22 CCDV-Successive is W[2]-hard with respect to the number of deleted
votes. This holds even when the distinguished candidate is the last one in the agenda.

Proof We prove the theorem by a reduction from the RBDS problem. Let (G, κ)

be an instance of RBDS, where G is a bipartite graph with the bipartition (R, B).
Without loss of generality, we assume that |B| ≥ κ . Similar to the proof of Theorem 2,
we assume that every red vertex has the same degree, which we denote by �. We
create an instance of CCDV-Successive as follows. For each red vertex we create one
candidate denoted still by the same symbol for simplicity. In addition, we create three
candidates q, p, and p′, where p is the distinguished candidate. LetC = R∪{q, p, p′}.
The agenda is � = (q,

−→
R , p′, p). We create the following 2|B| + 2� − κ votes:

• a multiset V1 of |B| − κ votes with the preference
−→
R p p′ q;

• a multiset V2 of � − 1 votes with the preference q p p′ −→
R ;

• a singleton V3 of one vote with the preference q
−→
R p p′;

• a multiset V4 of � votes with the preference p′ p q
−→
R ; and

• for each blue vertex b ∈ B, one vote �b with the preference

q
(−→
R [NG(b)]

)
p′ p

(−→
R \ NG(b)

)
.

Let VB be the multiset of votes corresponding to the blue vertices in B. Let V =
V1 ∪ V2 ∪3 ∪V4 ∪ VB . Let k = κ . The CCDV-Successive instance is (C, p, V ,�, k).

The weighted majority graph of (C, V ) and the agenda � are illustrated in Fig. 9.
We prove the correctness of the reduction as follows.

(⇒) Suppose that there is a B ′ ⊆ B such that |B ′| = κ and B ′ dominates R in G.
Let V ′ = {�b : b ∈ B ′} be the set of votes corresponding to B ′. Clearly, |V ′| = κ = k.
Let E = (C, V \ V ′). We shall show that p is the successive winner of E with respect
to �. First, as there are exactly (� − 1) + 1+ (|B| − κ) = |B| + � − κ votes in V \ V ′
ranking q in the top, |V \V ′| = 2|B|+2�−2κ , and q is the first one in the agenda, we
know that q is not the successive winner of E . Let r be any candidate from R. Let S(r)
be the set of r ’s successors in �. Clearly, all votes in V1 ∪ V3 rank r before S(r).
Let b ∈ B ′ be a blue vertex dominating r . It holds that r �b p. As exactly � votes
in VB rank r before p, this implies that VB \ V ′ contains at most �− 1 votes ranking r
before p. To summarize, there can be at most |V1| + |V3| + �− 1 = |B| − κ + � votes
in V \ V ′ ranking r before S(r), excluding the winning chance of r . Observe that p
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ties with p′ in E , which excludes the winning chance of r . We now know that none of
the predecessors of p wins E , and that p is the successive winner of E with respect
to the agenda �, as it is the last candidate in �.

(⇐) Suppose that there exists V ′ ⊆ V such that |V ′| ≤ k and p is the successive
winner of E = (C, V \V ′) with respect to �. Observe that all votes in V ′ must rank q
in the first place and |V ′| = κ , since otherwise q majority-dominates the set of all
her successors in E , which contradicts that p wins E . There are three groups of votes
ranking q in the first place: those in V2, V3, and VB . However, observe that it must
hold that V ′ ⊆ VB , since otherwise p′ would beat p in E . Given that p is the only
successor of p′, this contradicts the fact that p is the successive winner of E . Let
B ′ = {b ∈ B : �b∈ V ′} be the set of blue vertices corresponding to V ′. We claim
that B ′ dominates R. Assume, for the sake of contradiction, that this is not the case.
Let r be the leftmost red vertex in the agenda � not dominated by any vertex from B ′.
Then, all votes in V ′ rank p before r . This implies that in V \ V ′ there are at least
|V1| + |V3| + � = (|B| − κ) + 1 + � votes ranking r before all successors of r (the
last term � corresponds to the � votes in {�b : b ∈ B, r ∈ NG(b)} which is a subset of
V \ V ′). However, as |V \V ′| = 2|B| − 2κ + 2�, this implies that r is the successive
winner of E , contradicting the winning of p. So, we know that B ′ dominates R. This
implies that the RBDS instance is a Yes-instance. ��

We can show the W[2]-hardness of CCDV-Successive with respect to the dual
parameter of the number of deleted votes.

Theorem 23 CCDV-Successive isW[2]-hard with respect to the number of remaining
votes. Moreover, this holds even when the distinguished candidate is the last one in
the agenda.

Proof The reduction for the W[2]-hardness of CCDC-Full-Amendment in the proof
of Theorem 13 directly applies here. The correctness argument is also the same (one
needs only to replace “full-amendment” with “successive”). ��

However, if the distinguished candidate has only a few predecessors, the problem
becomes tractable from the parameterized complexity point of view. As a matter of
fact, we have a result for a constructive control problem to which both CCAV-τ and
CCDV-τ are polynomial-time Turing reducible.

Exact Constructive Control by Editing Voters for τ (E- CCEV- τ )

Given: A set C of candidates, a distinguished candidate p ∈ C , a multiset V
of registered votes over C , a multiset W of unregistered votes over C ,
an agenda � on C , and two nonnegative integers k and k′.

Question: Are there V ′ ⊆ V and W ′ ⊆ W such that |V ′| = k, |W ′| = k′, and p
is the τ winner of (C, V ′ ∪ W ′) with respect to �?

Theorem 24 E- CCEV-Successive is FPT with respect to the number of predecessors
of the distinguished candidate in the agenda.
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Proof Let (C, p, V ,W ,�, k, k′) be an instance of E- CCEV-Successive. Let m =
|C |. Let �[�] = p for some � ∈ [m]. Therefore, the distinguished candidate p has
� − 1 predecessors. We present a natural ILP formulation for the given instance as
follows.

We partition V (respectively, W ) into 2� submultisets, each identified by an �-
length 1-0 vector s and denoted by Vs (respectively, Ws). Precisely, a vote � from V
(respectively,W ) belongs to Vs (respectively,Ws) if and only if the following condition
holds:

• For each i ∈ [�], s[i] = 1 if and only if there exists some j ∈ [m] with j > i such
that �[ j] � �[i], i.e., at least one of �[i]’s successors is ranked before �[i] in
the vote �.

For each submultiset Vs, we introduce a nonnegative integer variable xs, and for
each submultiset Ws, we introduce a nonnegative integer variable ys. The variables xs
and ys indicate, respectively, the number of votes from Vs andWs that are contained in
a certain feasible solution. Let S be the set of all �-length 1-0 vectors. The constraints
are as follows.

• As we aim to find two submultisets V ′ ⊆ V and W ′ ⊆ W of cardinalities
respectively k and k′, we have that

∑
s∈S xs = k and

∑
s∈S ys = k′.

• For each s ∈ S we have that 0 ≤ xs ≤ |Vs| and 0 ≤ ys ≤ |Ws|.
• For each i ∈ [� − 1], in order to ensure that �[i] is not the successive winner of

(C, V ′ ∪ W ′) with respect to �, we have that

∑

s∈S
s[i] · (xs + ys) ≥ k + k′

2
.

• To ensure that p is the successive winner of (C, V ′ ∪ W ′) with respect to �, we
introduce

∑

s∈S
s[�] · (xs + ys) <

k + k′

2
.

As we have 2�+1 variables, by Lemma 2, the above ILP can be solved in FPT-time
in �. ��

From Theorem 24, we have the following corollary.

Corollary 7 CCAV-Successive and CCDV-Successive are FPT with respect to the
number of predecessors of the distinguished candidate in the agenda.

Now we move on to destructive control by adding/deleting voters. We show that
both problems become polynomial-time solvable for the successive procedure.

Theorem 25 E- DCEV-Successive is polynomial-time solvable.
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Proof Let I = (C, p, V ,W ,�, k, k′) be an instance of E- DCEV-Successive. Let
m = |C | be the number of candidates. Let p = �[�] for some � ∈ [m]. Moreover,
let S be the set of the successors of p in the agenda �. We solve I as follows.

We first check whether there exist V ′ ⊆ V and W ′ ⊆ W of cardinalities k and k′,
respectively, such that p does not majority-dominate S with respect to V ′ ∪ W ′. This
can be achieved using the following procedure. Let Vp (respectively, Wp) denote
the submultiset of V (respectively, W ) that ranks p before all candidates in S, i.e.,
Vp = {�∈ V : {p} � S} (respectively, Wp = {�∈ W : {p} � S}). Furthermore, let
Vp = V \Vp and letWp = W\Wp. If |Vp| ≥ k, we let V ′ be any arbitrary submultiset
of Vp of cardinality k. Otherwise, we let V ′ be the union of Vp and any submultiset
of exactly k − |Vp| votes from Vp. The submultiset W ′ is defined analogously.

Now, if p does not majority-dominate S with respect to V ′ ∪W ′, we conclude that
the given instance I is a Yes-instance.

Otherwise, to prevent p from winning, some predecessor of p in the agenda �
must win. In this case, we determine, for each predecessor c = �[i] of p where
i < �, whether there exist V ′ ⊆ V and W ′ ⊆ W with |V ′| = k and |W ′| = k′
such that c majority-dominates �[i + 1,m] with respect to V ′ ∪ W ′. This can be
accomplished in polynomial time using a greedy algorithm. Specifically, let Vc denote
the submultiset of votes in V that rank c before �[i + 1,m], and let Wc denote the
submultiset of votes in W that rank c before �[i + 1,m]. Then, we construct V ′ as
a submultiset of V with cardinality k, including as many votes from Vc as possible.
Similarly, we construct W ′ as a submultiset of W with cardinality k′, including as
many votes fromWc as possible. If cmajority-dominates�[i +1,m] in (C, V ′ ∪W ′),
we conclude that I is a Yes-instance.

If none of the predecessors of p provides a Yes-answer, we conclude that I is a
No-instance. ��

From Theorem 25, we obtain the following corollary.

Corollary 8 DCAV-Successive and DCDV-Successive are polynomial-time solvable.

Now we study control by adding/deleting candidates for the successive procedure.
The following result is easy to see.

Corollary 9 Successive is immune to CCAC if the distinguished candidate is the first
one in the agenda.

However, as long as the distinguished candidate is not in the first place of the agenda,
the problem becomes intractable from the parameterized complexity perspective, and
this holds even when there are only two registered candidates.

Theorem 26 CCAC-Successive is W[2]-hard with respect to the number of added
candidates, as long as the distinguished candidate is not in the first place of the
agenda. Moreover, this holds even when there are only two registered candidates.

Proof We prove the theorem by a reduction from RBDS. Let (G, κ) be an instance
of RBDS, where G is a bipartite graph with the bipartition (R, B). We construct
an instance (C, p, D, V ,�, k) of CCAC-Successive as follows. We create only two
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registered candidates, denoted by p and q, where p is the distinguished candidate. Let
C = {p, q}. Then, for each blue vertex b ∈ B we create one unregistered candidate
denoted still by b for simplicity. Let D = B. Let � be any agenda on C ∪ D such
that q is in the first place (the relative order of other candidates can be set arbitrarily).
We create the following votes:

• one vote with the preference p
−→
B q;

• |R| votes with the preference q p
−→
B ; and

• for each red vertex r ∈ R, one vote �r with the preference

(−→
B [NG(r)]

)
q p

(−→
B \ NG(r)

)
.

Let VR = {�r : r ∈ R} denote the multiset of votes corresponding to the red vertices,
and let V denote the multiset of all the 2|R|+1 votes created above. Lastly, let k = κ .

The construction of (C, p, D, V ,�, k) can clearly be completed in polynomial
time. We now proceed to prove the correctness of the reduction.

(⇒) Suppose there exists a subset B ′ ⊆ B such that |B ′| = κ and B ′ dominates
R in G. Let E = (B ′ ∪ {p, q}, V ). We will show that p is the successive winner
of E with respect to �. First, observe that there are |R| + 1 votes ranking p before
all candidates in B. Hence, it suffices to prove that q is not the successive winner of
E . Since B ′ dominates R, for every vote �r corresponding to a red vertex r ∈ R,
there exists at least one b ∈ B ′ such that b dominates r . Consequently, b is ranked
before q in�r . This implies that the |R| votes with the preference q p

−→
B are all votes

ranking q before B ′. However, since there are a total of 2|R| + 1 votes, q cannot be
the successive winner of E . Thus, we are done.

(⇐) Suppose there exists a subset B ′ ⊆ B such that |B ′| ≤ k and p is the successive
winner of the election E = (B ′ ∪ {p, q}, V ) with respect to the agenda �. We show
below that B ′ dominates R in G. Assume, for the sake of contradiction, that this is not
the case, i.e., there exists a red vertex r ∈ R such that r /∈ NG(B ′). Then, the vote �r

corresponding to r ranks q before B ′. Together with the |R| votes with the preference
q p

−→
B , there are at least |R| + 1 votes ranking q in the first place in the election E ,

implying that q is the successive winner of E , a contradiction. ��
For constructive control by deleting candidates, we first present a intractability

result.

Theorem 27 CCDC-Successive is W[1]-hard with respect to the number of deleted
candidates. This holds even when the distinguished candidate is the first one in the
agenda.

Proof We prove the theorem by a reduction from the Clique problem. Let (G, κ) be
an instance of Clique, where G = (U , F) is a graph. Let n = |U | and m = |F |
be the number of vertices and the number of edges of G, respectively. Without loss
of generality, we assume that m ≥ κ · (κ − 1). For each vertex in G, we create
one candidate denoted by the same symbol for simplicity. In addition, we create a
distinguished candidate p. Let C = U ∪ {p}. Let � be an agenda where p is the first
candidate. We create the following votes.
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• First, we create a multiset of m − κ · (κ − 1) + 1 votes, each with the preference
p

−→
U .

• Then, for each edge e ∈ F between two vertices u and u′, we create one vote,
denoted �e, with the preference

−→e p (
−→
U \e). Let V2 be the set of these m votes.

Let V = V1 ∪ V2 be the multiset of the above 2m − κ · (κ − 1) + 1 created votes.
Let k = κ , i.e., we are allowed to delete at most κ candidates. We have completed
the construction of an instance (C, p, V ,�, k) of CCDC-Successive, which clearly
can be done in polynomial time. In the following, we prove the correctness of the
reduction.

(⇒)Assume that there is a clique K ⊆ U of size κ in the graph G. We prove below
that p is the successive winner of (C\K , V ) with respect to �. Since p is the first
candidate in the agenda, this amounts to proving that there are at leastm− κ·(κ−1)

2 +1
votes ranking p before U \ K . Let F(K ) be the set of edges whose endpoints are
both contained in K . As K is a clique of κ vertices, F(K ) consists of exactly κ·(κ−1)

2
edges. Let �e be a vote corresponding to an edge e ∈ F(K ). From the definition
of �e, only the two candidates corresponding to the two endpoints of e are ranked
before p in the vote. This implies that all the κ·(κ−1)

2 votes corresponding to F(K )

rank p before U \ K . Then, as all votes in V1 rank p in the top, in total there are at
least |V1| + κ·(κ−1)

2 = m − κ·(κ−1)
2 + 1 votes in V ranking p before U \ K , we are

done.
(⇐) Let K ⊆ U be an arbitrary subset of at most k = κ vertices (candidates).

If |K | < κ or K is not a clique, then there can be at most κ·(κ−1)
2 − 1 edges with both

endpoints in K . Following a similar reasoning as above, one can verify that at most
|V1|+ κ·(κ−1)

2 −1 = m− κ·(κ−1)
2 votes rank p beforeU\K . This implies that p cannot

be the successive winner of (C \ K , V ) with respect to the agenda �. Consequently,
if G does not contain a clique of size κ , the instance of CCDC-Successive constructed
above is a No-instance. ��

Additionally, we show that the problem remains W[1]-hard with respect to the
number of candidates not deleted.

Theorem 28 CCDC-Successive isW[1]-hard with respect to the number of remaining
candidates. This holds even when the distinguished candidate is the first one in the
agenda.

Proof Weprove the theorem via a reduction from theBiclique problem. Let (G, κ) be
an instance of the Biclique problem, where G is a bipartite graph with the bipartition
(X ,Y ). Letm = |X |, and let n = |Y |. We assume thatm > κ and n > 2κ , which does
not change theW[1]-hardness of the Biclique problem. (Otherwise, the problem can
be solved in FPT-time with respect to κ .)We construct a CCDC-Successive instance as
follows. For each vertex x ∈ X , we create one candidate denoted still by x . In addition,
we create a candidate p which is the distinguished candidate. Let C = X ∪{p}. Let �
be an agenda on C such that p is the first candidate. We create the following votes.

• For each vertex y ∈ Y , we create one vote �y with the preference

(−→
X \ NG(y)

)
p

(−→
X [NG(y)]

)
.
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For a given Y ′ ⊆ Y , let VY ′ be the multiset of votes created for vertices in Y ′.
• We create a multiset V ′ of n − 2κ + 1 votes, each with the preference p

−→
X .

Let V = VY ∪ V ′ denote the multiset of the 2n − 2κ + 1 votes constructed above. Let
k = m − κ . The instance of CCDC-Successive is (C, p, V ,�, k).

We prove the correctness of the reduction as follows.
(⇒) Assume that G contains a biclique (X ′,Y ′) such that |X ′| = |Y ′| = κ . Let

E = (X ′ ∪ {p}, V ). We show that p is the successive winner of E with respect to �.
First, as (X ′,Y ′) is a biclique inG, due to the above construction, every vote�y where
y ∈ Y ′ ranks p before all candidates in X ′. As all votes in V ′ rank p in the top, there
are in total at least |Y ′| + |V ′| = n − κ + 1 votes ranking p before X ′. As there are in
total 2n − 2κ + 1 votes, p is the successive winner of E .

(⇐) Assume that there is a subset X ′ ⊆ X such that |X ′| ≥ m − k = κ and p is
the successive winner of (X ′ ∪ {p}, V ) with respect to �. Observe that, since p is the
first candidate in the agenda, for any subset X ′′ ⊆ X ′, p remains as the successive
winner of (X ′′ ∪ {p}, V ). This observation allows us to assume that |X ′| = κ . Given
this, we know that there are in total at least n − κ + 1 votes in V ranking p before X ′.
Furthermore, since |V ′| = n − 2κ + 1 and all votes in V ′ rank p in the top, it follows
that there are at least κ votes in VY ranking p before X ′. Let VY ′ ⊆ VY , where Y ′ ⊆ Y
is a submultiset of κ votes, each of which ranks p before X ′. By the construction,
every vertex in Y ′ is adjacent to all vertices in X ′. In other words, (X ′,Y ′) forms a
biclique of size κ in G. ��

However, if the distinguished candidate has only a constant number of successors,
we can solve CCDC-Successive in polynomial time. In particular, we show that the
problem is FPTwith respect to the number of successors of the distinguished candidate.

Theorem 29 CCDC-Successive can be solved in time O∗(2�), where � is the number
of successors of the distinguished candidate in the agenda.

Proof Let I = (C, p, V ,�, k) be an instance of CCDC- Successive. Let C ′ denote
the set of successors of p in the agenda �, and let � = |C ′|. To solve the problem,
we enumerate all subsets S ⊆ C ′ containing at most k candidates. Each enumerated S
represents a hypothesis that, in a desired feasible solution, precisely the candidates in
S are deleted from C ′.

For a fixed subset S ⊆ C ′, we determine whether it is possible to expand S by
including at most k − |S| candidates from C \ (C ′ ∪ {p}) such that p becomes the
successive winner of (C \ S, V ) with respect to the restriction of � to C \ S. It follows
that the given instance I is a Yes-instance if and only if there exists a subset S ⊆ C ′
for which the answer to the above question is Yes.

Our algorithm proceeds as follows. For each enumerated subset S, we execute the
following steps:

(1). If p is the successive winner of (C \ S, V ) with respect to �, we conclude that I
is a Yes instance.

(2). Otherwise, we exhaustively apply the following procedure:

Procedure: If the successive winner of (C\S, V ) with respect to � precedes p in �,
add the successive winner to S.
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After the above procedure has been applied exhaustively, if p is the successive
winner of (C\S, V ) and |S| ≤ k, we conclude that I is a Yes-instance. Otherwise, we
discard the current subset S.

If all subsets S ⊆ C ′ are discarded, we conclude that the given instance I is a
No-instance.

Since there are at most 2� subsets S to enumerate, and the above procedure for
each subset S can be executed in polynomial time, the overall algorithm runs in time
O∗(2�). ��

Note that the W[2]-hardness reduction of CCAC-Successive in the proof of The-
orem 26 can be adapted to establish the W[2]-hardness of DCAC-Successive by
designating q as the distinguished candidate. In the following, we present a simplified
variant of this reduction to show a similar result for a more restrictive case.

Theorem 30 DCAC-Successive is W[2]-hard with respect to the number of added
candidates. Moreover, this holds even when the distinguished candidate is the only
registered candidate and is the first one in the agenda.

Proof Weprove the theoremby slightlymodifying the reduction forCCAC-Successive
presented in the proof of Theorem 26. Specifically, given an instance (G, κ) of RBDS,
where G is a bipartite graph with the bipartition (R, B), we construct an instance of
DCAC-Successive as follows.We create only one registered candidate p. That is,C =
{p}. Then, for each blue vertex b ∈ B, we create one unregistered candidate denoted
still by the same symbol for simplicity. Let D = B be the set of the unregistered
candidates. The agenda is � = (p,

−→
B ). We create the following votes:

• |R| − 1 votes with the preference p
−→
B ; and

• for each r ∈ R, one vote �r with the preference

(−→
B [NG(r)]

)
p

(−→
B \ NG(r)

)
.

Let VR = {�r : r ∈ R} denote the multiset of votes corresponding to the red vertices,
and let V denote the multiset of the above created 2|R| − 1 votes. We set k = κ . The
DCAC-Successive instance is (C, p, D, V ,�, k).

The construction can clearly be completed in polynomial time. We prove its
correctness as follows.

(⇒) Suppose that there is a B ′ ⊆ B such that |B ′| = κ and B ′ dominates R in G.
We show that p is not the successive winner of (B ′ ∪ {p}, V ) with respect to �. In
fact, as B ′ dominates R, for every vote �r corresponding to a red vertex r ∈ R, there
exists b ∈ B ′ such that b′ dominates r in G, and hence b is ranked before p in �r .
This implies that the |R| − 1 votes in V \VR are all those who rank p before B ′. As
we have in total 2|R| − 1 votes and p is in the first place of the agenda �, p cannot
be the successive winner of (B ′ ∪ {p}, V ) with respect to �.

(⇐) Suppose there exists a subset B ′ ⊆ B such that |B ′| ≤ k and p is not the
successivewinner of (B ′∪{p}, V )with respect to�.We aim to show that B ′ dominates
R in G.
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Assume, for the sake of contradiction, that there exists r ∈ R such that r /∈ NG(B ′).
Observe that the distinguished candidate p is ranked before B ′ in �r . Together with
the votes from V \ VR , this results in at least |R| votes ranking p in the first position
in the election (B ′ ∪ {p}, V ). Since p is the first candidate in the agenda �, it follows
that p must be the successive winner of (B ′ ∪ {p}, V )—a contradiction. ��

Next, we show that the same problem is tractable if the distinguished candidate has
a back seat in the agenda.

Theorem 31 DCAC-Successive can be solved in time O∗(2�), where � is the number
of successors of the distinguished candidate in the agenda.

Proof Let I = (C, p, D, V ,�, k) be an instance of DCAC-Successive. Define D′
as the set of successors of p contained in D with respect to the agenda �, and let
� = |D′|. We enumerate all S ⊆ D′ of up to k candidates and, for each enumerated S,
proceed as follows: If p is not the successive winner of (C ∪ S, V ) with respect to �,
we conclude that I is a Yes-instance. Otherwise, two cases arise:

Case: |S| = k.
In this case, we discard S.

Case: |S| < k.
In this case, we check if there is a candidate d ∈ D \ D′ such that d is the
successive winner of (C ∪ S ∪ {d}, V ) with respect to �. If such a candidate
exists, we conclude that I is a Yes-instance; otherwise, we discard S.

Since there are atmost 2� possible choices for S, and for each S, the above algorithm
can be executed in polynomial time, the overall running time of the algorithm is
O∗(2�). ��

Now, we turn to the destructive control by deleting candidates. The following
corollary is straightforward.

Corollary 10 Successive is immune toDCDC if the distinguished candidate is the first
in the agenda.

Corollary 10 indicates that an election controller cannot take any effective action if
they are limited to performing the candidate deletion operation and the distinguished
candidate they aim to prevent from winning is the first in the agenda. However, if
the distinguished candidate has at least one predecessor, the destructive election con-
troller has an opportunity to influence the outcome. Nevertheless, as established in the
following two theorems, the controller faces an intractable problem.

Theorem 32 DCDC-Successive is W[1]-hard with respect to the number of deleted
candidates, as long as the distinguished candidate is not the first one in the agenda.

Proof We prove the theorem via a reduction from the Clique problem. Let (G, κ) be
an instance of Clique where G = (U , F). Let m = |F | be the number of edges in G.
Without loss of generality, we assume that m ≥ κ·(κ−1)

2 > 0. We create an instance
(C, p, V ,�, k) of DCDC-Successive as follows. For each vertex in G, we create one
candidate denoted by the same symbol for notational brevity. In addition, we create
two candidates q and p, where p is the distinguished candidate. Let C = U ∪ {q, p}.
Let � be an agenda on C where q is the first candidate. We create the following votes.
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• First, we create a multiset V1 of m − κ·(κ−1)
2 + 1 votes, each with the preference

q p
−→
U .

• Second, we create a multiset V2 of
κ·(κ−1)

2 votes, each with the preference

p
−→
U q.

• Third, for each edge e ∈ F , we create one vote �e with the preference

−→e q p (
−→
U \ e).

Let VF = {�e : e ∈ F} be the set of the votes corresponding to the edges in G.
We have that |VF | = m.

Let V = V1 ∪ V2 ∪ VF be the multiset of all the 2m + 1 votes created above. Let
k = κ . We prove the correctness of the reduction below.

(⇒) Suppose that there is a clique K of κ vertices in G. Defining E = (C \ K , V ),
we claim that q is the successive winner of E with respect to�. Let F(K ) be the set of
edges whose both endpoints are in K , and let VF(K ) = {�e : e ∈ F(K )} be the set of
votes corresponding to F(K ). Clearly, |VF(K )| = |F(K )| = κ·(κ−1)

2 . According to the
construction of the votes, after deleting candidates from K , each vote in VF(K ) ranks q
in the first place. Therefore, in the election E there are at least |VF(K )|+ |V1| = m+1
votes ranking q in the first place, implying that q is the successive winner of E .

(⇐) Suppose that there is a subset C ′ ⊆ C\{p} of at most k candidates such that p
is not the successive winner of (C \ C ′, V ) with respect to �. Let E = (C \ C ′, V ).
Observe that p majority-dominatesU , the set containing all possible successors of p.
It follows that q is the successive winner of E , and C ′ ⊆ U . Then, as q is the first
candidate in the agenda � and |V | = 2m + 1, there are at least m + 1 votes ranking q
in the first place in E . This implies that, in the election E , at least κ·(κ−1)

2 votes in VF

rank q in the top. Let F ′ be the set of the edges corresponding to any arbitrary κ·(κ−1)
2

votes in E ranking q in the top. By the construction of the votes, we know that both
endpoints of each edge in F ′ are contained in C ′. As |F ′| = κ·(κ−1)

2 and |C ′| ≤ κ , this
is possible only if C ′ forms a clique of size κ in G. ��
Theorem 33 DCDC-Successive isW[1]-hardwith respect to the remaining candidates.
This result holds as long as the distinguished candidate is not the first in the agenda.

Proof We prove the theorem by a reduction from Biclique. Let (G, κ) be an instance
of Biclique, where G is a bipartite graph with the bipartition (X ,Y ). Let m = |X |
and let n = |Y |. Without loss of generality, we assume that min{m, n} > κ > 1. We
create an instance of DCDC-Successive as follows. First, for each vertex x ∈ X , we
create one candidate denoted by the same symbol for notational brevity. Additionally,
we introduce two candidates, q and p, where p is the distinguished candidate. Let
C = X ∪ {q, p}. There are m + 2 candidates in total. Let � be an agenda on C such
that q is the first candidate. We create the following votes.
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• First, we create a multiset V1 of κ votes, each with the preference

p
−→
X q.

• Second, we create a multiset V2 of n − κ + 1 votes, each with the preference

q p
−→
X .

• Third, for each vertex y ∈ Y , we create one vote �y with the preference

(−→
X \ NG(y)

)
q p

(−→
X [NG(y)]

)
.

For a given Y ′ ⊆ Y , we use VY ′ = {�y : y ∈ Y ′} to denote the multiset of the votes
corresponding to Y ′. Let V = V1 ∪ V2 ∪ VY be the multiset of all the 2n + 1 votes
created above. Let k = m − κ . The instance of DCDC-Successive is (C, p, V ,�, k).

In the following, we prove the correctness of the reduction, i.e., the Biclique
instance is a Yes-instance if and only if there is a subset C ′ ⊆ C such that p ∈ C ′,
|C ′| ≥ κ + 2, and p is not the successive winner of (C ′, V ) with respect to �.

(⇒) Assume that there are X ′ ⊆ X and Y ′ ⊆ Y such that |X ′| = |Y ′| = κ , and
X ′ ∪ Y ′ induces a complete bipartite subgraph of G. Let C ′ = X ′ ∪ {p, q} and let
E = (C ′, V ). We claim that q is the successive winner of E . Let y be a vertex in Y ′.
Due to the definition of �y , q is ranked before X ′ ∪ {p} in �y . Therefore, in total,
there are at least |Y ′| + |V2| = n + 1 votes ranking q before X ′ ∪ {p} in E . Since
|V | = 2n + 1 and X ′ ∪ {p} is the set of successors of q in E , we conclude that q is
the successive winner of E .

(⇐) Observe that p majority-dominates the set of all its successors in (C, V ).
Therefore, if p is not the winner after some candidates are deleted, it must be the case
that q becomes the winner of the resulting election. As a consequence, let us assume
that there is a subset X ′ ⊆ X of at least κ candidates such that q is the successive
winner of (X ′ ∪ {q, p}, V ) with respect to �. Similar to the proof for the ⇒ direction,
we know that there are at least κ votes in VY ranking q before X ′ ∪{p}. Let VY ′ , where
Y ′ ⊆ Y , be the multiset of such votes. By the construction of the votes, it holds that
X ′ ⊆ NG(y) for all y ∈ Y ′. This implies that G[X ′ ∪Y ′] is a complete bipartite graph.
As |X ′| ≥ κ and |Y ′| ≥ κ , the instance of Biclique is a Yes-instance. ��

We have obtained numerous intractability results (NP-hardness,W[1]-hardness, or
W[2]-hardness) for the special cases where the distinguished candidate has only a
constant number of predecessors or successors. These hardness results lead to the
following corollaries:

Corollary 11 The following problems are paraNP-hard with respect to the number of
predecessors of the distinguished candidate:

• CCAV-τ and CCDV-τ for each τ ∈ {Amendment,Full-Amendment};
• X-Successive for each X ∈ {CCAC,DCAC,CCDC,DCDC}; and
• X-Full-Amendment for each X ∈ {DCAV,DCDV}.
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Corollary 12 The following problems are paraNP-hard with respect to the number of
successors of the distinguished candidate:

• CCAV-τ and CCDV-τ for each τ∈{Amendment,Full-Amendment, Successive};
• CCAC-τ for each τ ∈ {Full − Amendment, Successive};
• DCAV-τ and DCDV-τ ∈ {Amendment,Full-Amendment}; and
• DCDC-Successive.

We also note that if a problem is shown to be intractable when the distinguished
candidate p has � predecessors (respectively, successors) for some constant �, the
same result can be extended to the case where p has � + 1 predecessors (respectively,
successors). This can be achieved by introducing a new candidate who is immediately
before (respectively, after) p in the agenda and is ranked last in all votes.

4 Algorithmic Lower Bounds

In this section, we discuss how the reductions established in Sect. 3 offer lower bounds
on kernelization algorithms, exact algorithms, and approximation algorithms. The
following notations are used in our discussions:

• mr: number of registered candidates, i.e., mr = |C |.
• mu: number of unregistered candidates, i.e., mu = |D|.
• m: total number of candidates, i.e., m = |C | + |D|.
• nr: number of registered votes, i.e., nr = |V |.
• nu: number of unregistered votes, i.e., nu = |W |.
• n: total number of votes, i.e., n = |V | + |W |.
• k: a given upper bound on the cardinality of a desired feasible solution.

4.1 Kernelization Lower Bounds

It is known thatRBDSdoes not admit any polynomial kernelswith respect to both |R|+
κ and |B|, assuming PH �= �3

P (see, e.g., the book chapter edited by Cygan et al. [18],
and the paper by Dom, Lokshtanov, and Saurabh [20]). In light of this result, many of
our reductions imply the nonexistence of polynomial kernels for various parameters,
as these reductions are, in fact, polynomial parameter transformations. To clarify
our discussion, we reiterate the formal definitions of kernelization and polynomial
parameter transformations.

Definition 2 (Kernelization) Let P be a parameterized problem. A kernelization algo-
rithm (or kernelization) for P is an algorithm that takes as input an instance (X , κ)

of P and outputs an instance (X ′, κ ′) of P such that the following four conditions
hold simultaneously.

• The algorithm runs in polynomial time in the size of (X , κ).
• (X , κ) is a Yes-instance of P if and only if (X ′, κ ′) is a Yes-instance of P .
• |X ′| ≤ f (κ) for some computable function f depending only on κ .
• κ ′ ≤ g(κ) for some computable function g depending only on κ .
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Table 3 Nonexistence of polynomial kernels with respect to various parameters, assuming PH �= �3
P

CCAV-τ CCDV-τ CCAC-τ CCDC-τ

Amendment n, m + nr + k (Thm. 1) m + k (Thm. 2) \ \
n, m + n − k (Thm. 3)

Full-amendment ? m + k (Thm. 12) mu, mr + k (Thm. 17) \
n, m + n − k (Thm. 13)

Successive ? n, m + k (Thm. 22) m, n + k (Thm. 26) ?

m + n − k (Thm. 23)

DCAV-τ DCDV-τ DCAC-τ DCDC-τ

Amendment ? m + k (Thm. 7) \ \
n, m + n − k (Thm. 8)

Full-amendment ? n, m + k (Thm. 15) \ \
Successive \ \ m, n + k (Thm. 30) ?

Entries marked with “\” indicate that the corresponding problems are solvable in polynomial time, while
entries marked with “?” signify that our reductions do not provide a conclusive result regarding the
nonexistence of polynomial kernels for these problems, given the current state of known lower bound
techniques

The new instance (X ′, κ ′) in the above definition is called a kernel, and the size
of X ′ is referred to as the size of the kernel. If f (κ) is a polynomial function of κ ,
we say that (X ′, κ ′) is a polynomial kernel, and the problem P is said to admit a
polynomial kernel.

Definition 3 (Polynomial Parameter Transformation) Let P and Q be two parameter-
ized problems. A polynomial parameter transformation from P to Q is an algorithm
that takes as input an instance (X , κ) of P and outputs an instance (X ′, κ ′) of Q such
that the following three conditions are satisfied:

• The algorithm runs in polynomial time with respect to the size of (X , κ).
• (X , κ) is a Yes-instance of P if and only if (X ′, κ ′) is a Yes-instance of Q.
• κ ′ ≤ g(κ), where g is a polynomial function of κ .

Lemma 5 [9, 18, 20] Let P and Q be two parameterized problems such that the
unparameterized version of P is NP-complete and the unparameterized version of Q
is in NP. Then, if there exists a polynomial parameter transformation from P to Q, it
follows that Q admitting a polynomial kernel implies that P also admits a polynomial
kernel.

With these notions in mind, and recalling that (1) the unparameterized version of
RBDS is NP-complete, (2) all election control problems considered in the paper are
in NP, (3) RBDS does not admit any polynomial kernels with respect to both |R| + κ

and |B| assuming PH �= �3
P , and (4) many of our reductions are polynomial parameter

transformations, we can summarize the nonexistence of polynomial kernels for various
election control problems in Table 3.

123



Algorithmica (2025) 87:842–907 901

4.2 Exact Algorithm Lower Bounds

Assuming the Strong Exponential Time Hypothesis (SETH), it is known that RBDS
cannot be solved in time O∗((2 − ε)|B|) (see, e.g., the book chapter by Cygan et al.
[18]). Moreover, unless the Exponential Time Hypothesis (ETH) fails, Clique cannot
be solved in time f (κ) · zo(κ) (where z denotes the number of vertices), and RBDS
cannot be solved in time f (κ) · |B|o(κ) for any computable function f in κ (see,
e.g., the work of Chen et al. [15]). These lower bounds, combined with several of
our reductions, suggest that brute-force-based algorithms for many election control
problems are essentially optimal. A summary of these results can be found in Table 4.

4.3 Inapproximability Results

This section is dedicated to the inapproximability consequences of the previously
established reductions. For each of the eight standard election control problems, we
examine its optimal version, where the goal is to add or delete the minimum number of
voters or candidates such that the distinguished candidate becomes the winner (in the
case of constructive control problems) or is not the winner (in the case of destructive
control problems).

Let Optimal RBDS be the optimal version of RBDS, where the objective is
to select a minimum number of blue vertices that dominate all red vertices. It has
long been known that unless NP ⊆ DTIME(nlog log n), Optimal RBDS cannot be
approximated in polynomial time within a factor of (1− ε) ln |R| (see, e.g., the work
of Feige [29]). This result has been recently improved by Dinur and Steurer [19] who
showed that the same lower bound holds under the assumption P �= NP. Building
on these results and our previous reductions, we obtain numerous inapproximability
results for the optimal versions of the election control problems, as summarized in
Table 5.

5 Conclusion

We have investigated eight standard control problems under the h-amendment proce-
dure and the successive procedure. The 1-amendment procedure and the successive
procedure are currently two of themost important sequential voting procedures used in
practical parliamentary and legislative decision-making. The full-amendment proce-
dure is a special case of h-amendment where h equals the number of candidates minus
one. An advantage of the full-amendment procedure is that for the same election and
the same agenda, if the full-amendment winner does not coincide with the amend-
ment (respectively, successive) winner, then the former beats the latter. However, a
disadvantage of the full-amendment procedure is that in the worst case it may need
the head-to-head comparisons among all candidates to determine the winner, while
the amendment procedure only needs voters to compare m − 1 pairs of candidates,
where m is the number of candidates.
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Table 5 Lower bounds for approximation algorithms based on the assumption P �= NP

CCAV-τ CCDV-τ CCAC-τ CCDC-τ

Amendment (1 − ε) lnm (Thm. 1) (1 − ε) lnm (Thm. 2) \ \
Full-amendment ? (1 − ε) lnm (Thm. 12) (1 − ε) lnmr (Thm. 17) \
Successive ? (1 − ε) lnm (Thm. 22) (1 − ε) ln n (Thm. 26) ?

DCAV-τ DCDV-τ DCAC-τ DCDC-τ

Amendment ? (1 − ε) lnm (Thm. 7) \ \
Full-amendment ? (1 − ε) lnm (Thm. 15) \ \
Successive \ \ ? ?

Entries filled with “\” mean the corresponding problems are polynomial-time solvable. Entries filled with
“?” mean that our reductions established in the paper do not imply meaningful inapproximability results

Our study offers a comprehensive understanding of the parameterized complexity
of these problems. In particular, we obtained both parameterized intractability results
(W[1]-hardness results or W[2]-hardness results) for the special cases where the dis-
tinguished candidate is the first candidate or the last candidate in the agenda, and
many tractability results including some FPT-algorithms and several polynomial-time
algorithms. For a summary of our concrete results over the amendment procedure,
the full-amendment procedure, and the successive procedure, we refer to Table 1. Our
study also yields a lot of algorithmic lower bounds, as summarized in Tables 3–5.

Overall, our investigation conveys the following message.

• The amendment procedure and the successive procedure behave quite differently
regarding their resistance to these control types: the amendment procedure demon-
strates greater resistance to voter control, whereas the successive procedure proves
more resistant to candidate control.

• From a computational complexity perspective, the amendment procedure and the
full-amendment procedure exhibit similar behavior concerning their resistance
to the eight standard control types: both are resistant to the four voter control
types and vulnerable to most candidate control types, with the exception that
CCAC-Full-Amendment is computationally hard.

• From the parameterized complexity perspective, the full-amendment procedure
outperforms the amendment procedure in the sense that election control problems
for the full-amendment procedure are at least as difficult to solve as the same
problems for the amendment procedure. For instance, we showed that destructive
control by adding/deleting voters for the amendment procedure is FPTwith respect
to the number of predecessors of the distinguished candidate (Corollary 4). How-
ever, the same problems for the full-amendment procedure areNP-hard, evenwhen
the distinguished candidate has a constant number of predecessors (Theorem 14
and Theorem 15).

• The position of the distinguished candidate on the agenda has a significant impact
on the parameterized complexity of the problems. Specifically, from a complexity-
theoretic perspective, most of these problems are more challenging to solve when
the distinguished candidate p has a back position on the agenda than when p has
a front position.
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A summary of our results and those by Black [8], Farquharson [28], and Bred-
ereck et al. [11] reveals that there is no clear-cut conclusion on which procedure is the
best one because these procedures all have their own advantages regarding resistance
to different strategic behaviors. Nevertheless, in many practical applications, not all
types of strategic behavior are likely to occur. If only one or two types of strategic
behavior are likely to happen, our study might provide persuasive guidance on the
choice of the procedures.

Finally, we touch upon some prominent topics for future research.

• First, as our study solely focuses on worst-case analysis, it is important to con-
duct experimental investigations to examine if the standard control problems are
genuinely difficult to solve in practice.

• Second, beyond the eight control types discussed in this paper, it is worthwhile
to investigate additional control problems, such as constructive and destructive
control by partitioning voters or candidates. For further insights on these topics, see
the book chapter byBaumeister andRothe [7], thework of Erdélyi, Hemaspaandra,
and Hemaspaandra [24], and the book chapter by Faliszewski and Rothe [27].

• Third, exploring the parameterized complexity of the problems with respect to
structural parameters, such as the single-peaked width and the single-crossing
width, is another avenue of investigation. Definitions of these structural parameters
and related results can be found in the papers of Cornaz, Galand, and Spanjaard
[16, 17], and Yang and Guo [56]. We note that since all h-amendment procedures
are Condorcet-consistent, election control problems under these procedures can
be solved in polynomial time when restricted to single-peaked or single-crossing
domains, given certain mild restrictions (e.g., assuming an odd number of voters).
This result leverages the techniques developed by Brandt et al. [10] and Magiera
and Faliszewski [40].

• Another interesting topic is investigating whether the P-results for destructive
control problems can be extended to FPT-results for the corresponding resolute
control problems proposed first by Yang and Wang [57], where there are mul-
tiple distinguished candidates whom the election controller would like to make
nonwinners.

• Finally, numerous open problems remain to be addressed following our study.
Beyond the unresolved questions concerning the parameterized complexity of
various candidate control problems with respect to the number of voters, as dis-
cussed in Sect. 2.4, the complexity of the following problems for constant h ≥ 2
also remains open: X-h-Amendment for X ∈ {CCAC,CCDC,DCAC,DCDC},
and X-(m − h)-Amendment for X ∈ {CCDC,DCDC}.
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