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Ab-initio simulations of coherent phonon-induced
pumping of carriers in zirconium pentatelluride
Tao Jiang 1, Peter P. Orth 1,2,3, Liang Luo1, Lin-Lin Wang 1, Feng Zhang1,2, Cai-Zhuang Wang1,2,

Jin Zhao4,5,6,7, Kai-Ming Ho1,2, Jigang Wang1,2 & Yong-Xin Yao 1,2✉

Laser-driven coherent phonons can act as modulated strain fields and modify the adiabatic

ground state topology of quantum materials. Here we use time-dependent first-principles and

effective model calculations to simulate the effect of the coherent phonon induced by strong

terahertz electric field on electronic carriers in the topological insulator ZrTe5. We show that

a coherent A1g Raman mode modulation can effectively pump carriers across the band gap,

even though the phonon energy is about an order of magnitude smaller than the equilibrium

band gap. We reveal the microscopic mechanism of this effect which occurs via

Landau–Zener-Stückelberg tunneling of Bloch electrons in a narrow region in the Brillouin

zone center where the transient energy gap closes when the system switches from strong to

weak topological insulator. The quantum dynamics simulation results are in excellent

agreement with recent pump-probe experiments in ZrTe5 at low temperature.
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Coherent phonons that are excited by laser pulses in the
Terahertz (THz) or mid-infrared frequency range1–3 can
provide nonthermal pathways for the dynamical control of

quantum phases of condensed matter4–7. Recent experimental
demonstrations include ultrafast phononic manipulation of
magnetic orders8–10, of insulator-to-metal phase transitions11–13,
and a transient enhancement of martensitic phase14 and super-
conducting correlations15–18. In topological quantum materials,
coherent phonon excitations were shown to induce dynamical
switching between different topological phases by modifying the
crystal symmetry and by tuning strain fields19–27. Particularly,
recent coherent phonon pumping work provides compelling
evidence of light-induced Dirac points25, Weyl nodes26 and
enhanced stability of topological systems28,29.

The theoretical understanding and first-principles simulations
of light-excited electron-ion quantum systems are challenging,
but significant progress has been achieved in recent years30–34.
Specifically to describe the ultrafast electronic and spin dynamics
associated with phonon excitations, microscopic theories have
been developed for the light-induced insulator-to-metal structural
phase transition35, the switching of magnetic orders36, and the
enhancement of superconducting correlations through
symmetry-allowed electron-phonon coupling37–46. Here, we
theoretically investigate the switching between strong and weak
topological insulators (STI and WTI) induced by THz-driven
coherent Raman phonon excitations in the model Dirac system
ZrTe525. Although a qualitative picture has previously been
established using static density functional theory (DFT)
calculations25, the ultrafast dynamics of the laser-driven system
such as the observed continuous increase of electronic carrier
density after the THz pump and the underlying mechanism, calls
for more in-depth quantum dynamics simulations. The progress
in this direction is highly appealing to the experimental com-
munity, who have been actively pursuing THz-driven quantum
dynamics in various quantum materials recently47–50.

In this paper, we simulate the coherent phonon-induced carrier
dynamics in ZrTe5 in the framework of time-dependent Schrö-
dinger equation with DFT basis functions. We complement the
DFT-based dynamics simulations by an effective model calcula-
tions that captures the essentials of the microscopic mechanism.
Our detailed numerical analysis shows that the switching between
STI and WTI, which necessarily involves the closing of the bulk
gap, creates a small but finite volume in momentum space, where
effective two-level systems (TLSs) undergo avoided level cross-
ings. This results in Landau-Zener-Stückelberg (LZS)
tunnelling51–56 and leads to an increase of the carrier con-
centration during several cycles of the coherent phonon mod-
ulation. Our time-dependent Schrödinger equation simulations
predict the dynamics of the phonon-induced carrier concentra-
tion in quantitative agreement with the experiment.

Results and discussion
Summary of previous pump-probe experimental results. To
facilitate the presentation, we summarize the key results of the
THz pump-THz probe experiment on ZrTe5 at 4.2 K, which is
described in detail in Ref. 25. These results motivate the numerical
simulations in this work. In the experiment, an intense THz-
pump pulse with an E-field trace plotted in Fig. 1a is incident
normally on the ZrTe5 single crystal. The THz pump-induced
coherent phonon emission from the sample is observed after the
pump pulse between 2.5 ps≲ t≲ 5.8 ps, as highlighted in Fig. 1b.
The coherent phonon emission lasts for about five full cycles and
its dominant spectral peak at fph= 1.2 THz after Fourier trans-
formation matches the A1g Raman mode at the Brillouin zone
center. By performing THz pump and THz probe measurements

using the same pump pulse, the THz probe differential trans-
mission ΔE/E0, which is proportional to the change of carrier
density Δn, is obtained and plotted in Fig. 1c. The carrier density
continuously increases after the pump pulse as long as the
coherent phonon emission is observed. It saturates for t≳ 5.8 ps,
which coincides with the loss of phonon coherence. ΔE/E0 decays
back to zero after about 120 ps25.

In this paper, we focus on simulating this intriguing carrier
excitation dynamics for the time period 2.5 ps≲ t≲ 5.8 ps, where
the coherent phonon excitation is present. The residual pump
pulse is negligible during this time period, and the coherent
phonon excitation can be treated as preexisting, i.e., without
explicitly modelling the light-driven phonon generation process.
The strong correlation between the carrier generation and the
coherent phonon emission suggests a charge excitation mechan-
ism assisted by a coherent Raman vibration. Indeed, by
adiabatically following the A1g phonon trajectory, static DFT
calculations have revealed that the electronic state of the system
undergoes a topological transition between STI to critical Dirac
point (DP) to WTI25 (see also Methods). This suggests the
importance of the associated closing of the bulk band gap and
potentially further topological effects in the carrier pumping
process25. This makes a detailed quantum dynamics simulations
of the physical process highly desirable.

Effective model description
Model setup. We first study a toy model that qualitatively captures
the dynamical carrier generation observed experimentally in
ZrTe5. This model includes the essential physics underlying this
phenomenon which is the topological phase transition (driven by
coherent phonon oscillations) and a resulting inter-band charge

Fig. 1 THz pump-THz probe experimental results of ZrTe5 at 4.2 K.
a Normalized THz pump E-field as a function of pump delay time t, with the
maximal value of E(t) being Emax ¼ 736 kV/cm. b Phonon emission as a
function of t. The time-period after the pump pulse, where a coherent
phonon emission is observed, is highlighted in red. This region is the focus
of this work. c Normalized THz probe differential transmission ΔE(t)/E0 as
a function of t. ΔE(t) is the differential transmission of the THz probe peak
field E0 measured with and without the THz pump pulse. The right y-axis
labels the corresponding change of the carrier density Δn in unit of
1016 cm−3.
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excitation. For simplicity, we consider a Kitaev chain model57,
which in momentum space is represented by the following two-
orbital spinless fermion Bogoliubov-de Gennes (BdG) Hamilto-
nian:

HðkÞ ¼ ð�2ν cosðkÞ � μÞτz þ 2Δ sinðkÞτy : ð1Þ

Here τi are the Pauli matrices and the Hamiltonian parameters
include onsite energy μ, nearest-neighbor hopping ν and a super-
conducting pairing amplitude Δ. The momentum lies in the range
k∈ [− π, π). The model obeys particle hole symmetry τxH*(− k)
τx=−H(k).

With the chemical potential fixed at zero, the model exhibits a
topological phase transition from a gapped superconductor that is
trivial to one that is topological by tuning μ. The corresponding
BdG band structures together with the orbital (τz) projections of
the wavefunction are shown in Fig. 2a–e. This evolution of the
band energies is qualitatively similar to the phonon-induced
topological phase transition in ZrTe5 obtained from DFT
calculations25,58. The band structure in panels (a) to (d) are
obtained for μ/ν equal to− 2.02,− 2.00,− 1.97 to− 1.92 (a–d).
The evolution of the band gap as a function of μ/ν is shown in
panel (e). The bands in panels (a–d) are plotted together with
weight of the projection of the Bloch wave function onto the first
basis orbital (τz= 1), as given by the size of the red circles.
Clearly, a band inversion occurs when the system transforms
from the trivial phase (μ/ν <− 2) to the topological phase
(μ/ν >− 2). At μ/ν=− 2, the band gap closes and a nodal point
forms at Γ point. Consistently, the topological index, which can
be defined as Q≡ sign(μ2− 4ν2)57, is 1 in the trivial and− 1 in

the topological phase, as labelled in panels (a,c,d). For the
numerical simulations, we set ν= 1 eV, and Δ/ν= 0.1, which
results in a mode speed ∂εk/∂k= ± 2Δ at the Dirac point
(μ/ν=− 2) that is in qualitative agreement with the Fermi
velocity in ZrTe5 when driven to DP by the A1g phonon.

To model the effect of the coherent phonon excitation in
ZrTe5, we consider a periodic modulation of the onsite energy
which resembles the treatment of electron–phonon coupling in
the Holstein model59:

μðtÞ ¼ μ0 þ μ1 sin½ωðt � t0Þ� ð2Þ
resulting in the time-dependent Hamiltonian

Hðk; tÞ ¼ ½�2ν cosðkÞ � μðtÞ�τz þ 2Δ sinðkÞτy : ð3Þ
We choose ω/2π= 1.2 THz (T= 833 fs, ℏω= 4.96meV) to match
the experimental value of the A1g Raman mode frequency. We set
μ0/ν=− 1.97 and μ1/ν= 0.05, such that the gap variation at the Γ
point is approximately the same as in ZrTe525, as shown in Fig. 2e.
Because the zone-center phonon carries zero momentum (q= 0) it
does not mix different Bloch momenta and the HamiltonianH(k, t)
thus remains block diagonal in momentum space. The quantum
dynamics simulation can therefore be performed by solving the
time-dependent Schrödinger equation separately at each k-point:

i_
∂

∂t
ψðk; tÞ
�� � ¼ Hðk; tÞ ψðk; tÞ

�� �
: ð4Þ

We adopt a discrete-time propagator based on a Trotter
decomposition of the state evolution60,61

ψðk; t þ dtÞ
�� � ¼ e�iHðk;tÞ

_ dt ψðk; tÞ
�� �

; ð5Þ

Fig. 2 Toy model results of phonon-induced topological phase transition and carrier excitation dynamics. a–d Band structure of the BdG Kitaev chain
model with the onsite energy μ to the nearest-neighbor hopping ν ratio μ/ν=− 2.02,− 2.00,− 1.97, and− 1.92. The red color encodes the projection
weight of the band wavefunction on the first basis orbital (τz= 1). The topological index Q= ± 1 is also shown. e Band gap at the zone center Γ point, EG(Γ),
as a function of μ/ν∈ [− 2.02,− 1.92]. This behavior qualitatively mirrors the behavior of ZrTe5 system under the A1g Raman phonon modulation25. Red
circles indicate μ/ν values in a–d. The topological region is highlighted in blue. The vertical dashed line indicates the equilibrium value μ0. f Time evolution
of the excited state population ne(k, t) for a periodic modulation μ(t)/ν∈ [− 2.02,− 1.92] starting at μ(t= 0)= μ0 for five full cycles. The black line is for
k= 0.0033π and the orange line for k= 0.033π. g Time evolution of the energy gap EG(k, t) at k= 0.0033π (black) and 0.033π (orange). h Excited state
population ne(t). The black curve is for the simulation start time t0= 0 and the blue one is averaged over 10 runs with t0 taken from 10 uniformly spaced
points in the interval [0, T). i The k-point dependence of the offset ε0(k)(9). The bottom horizontal dotted line in e, i indicates the energy of the fph= 1.2
THz A1g phonon Eph. The upper three horizontal dotted lines in i correspond to E=mEph with m= 10, 11, and 12. The vertical dashed lines in i, j indicate the
k-points where ε0(k)=mEph. The minimal energy gap Emin

G ðkÞ � mint2½0;T� EGðk; tÞ ¼ jΔðkÞj over the simulation period is also plotted as orange line for
reference. j The k-point resolved number density in the excited band, which is defined as WnðkÞ �

R 5T
0 neðk; tÞdt=

R 5T
0 neðtÞdt. k The k-dependent driving

speed indicators: δ(k) in black line, LZ transition probability PLZ(k)≡ e−2πδ(k) in orange line, and 1− PLZ(k) in sky blue line.
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where the time step dt≪ T is chosen sufficiently small compared to
the variation of the onsite energy.

Dynamics simulation results. The simulation starts at time t= t0
and evolves until time t= t0+ 5T to agree with the experimental
situation (see Fig. 1). We monitor the time-dependent excited
state population ne(t), which corresponds to the excited carrier
density in the experiment and is tied to the differential emission
ΔE/E that is measured experimentally. In our simulations we
obtain neðtÞ ¼ 1

2π

R π
�π dkneðk; tÞ � ∑kwkneðk; tÞ as a weighted sum

of contributions ne(k, t) at each k-point in the Brillouin zone
[− π, π). The weight wk is obtained as 1/Nk with Nk the total
number of k-points uniformly sampled in the Brillouin zone.
Here we define

neðk; tÞ ¼ jhψðk; tÞjψcðk; tÞij2; ð6Þ

which is the size of the projection of the one-electron wave-
function ψ(k, t) on the adiabatic conduction band ψc(k, t), an
eigenstate of H(k, t) with eigenvalue ϵc(k, t). We use a step size
dt= T/1000= 0.833 fs and a uniform k-mesh with Nk= 560
points, and find that ne(t) converges to a precision of 10−6.

In Fig. 2f we plot the excited state population ne(k, t) as a
function of time t. We consider five modulation cycles of the
onsite energy μ(t) starting with t0= 0. The black line represents
the data at a momentum point close to the zone center
k= 0.0033π, and the orange line is for momentum k= 0.033π.
The corresponding (instantaneous) energy gap EG(k, t) at the
respective k-points versus t is shown in Fig. 2g. Sharp variations
of ne(k, t) are observed whenever the energy gap is minimal. In
total we observe a substantial increase of ne(k, t) from zero to a
finite value at the two representative k-points during the
dynamical process. We note that the definition of ne(k, t)(6)
may not be unique. In Supplementary Note 1, we compare the
numerical result with that based on an alternative definition, and
show that the definition (6) gives more physically reasonable
results.

The excited state population per unit cell, ne(t), is plotted as a
black line in Fig. 2h. It shows a similar behavior as ne(k, t) at the
two individual k-points shown in Fig. 2f. By the end of the
simulation, ne(t= t0+ 5T) has increased from zero to about 0.01.
To account for the experimentally unknown initial phase of the
coherent phonon oscillation, we also provide results that are
averaged over t0 that is uniformly sampled within the interval
[0, T]. The averaged results �neðtÞ ¼ 1

10∑
9
i¼0 neðtÞjt0¼ i

10T
are shown

in orange in Fig. 2h and also increase from zero to about 0.01
during the simulations.

Discussion of toy model results. The dynamics of the wavefunction
at different k-points is completely independent from each other
[see Eq. (4)]. The above calculation is thus composed of a col-
lection of independent and periodically-driven two-level systems
(TLSs), which resembles the well-known problem of LZS tun-
neling of a driven TLS in the presence of an avoided crossing55,56.
The behavior of the TLS is largely determined by the potential
ramp speed (i.e. the oscillation frequency of the drive) and the
minimal energy gap in the avoided crossing. While the ramp
speed is set by the phonon frequency (1.2 THz), the minimal
energy gap Emin

G ðkÞ � mint2½0;T� EGðk; tÞ and the nature of the
diabatic level crossing is strongly k-point dependent. In Fig. 2i, we
show the minimal gap Emin

G versus k in the range k∈ [− π/20, π/
20]. The minimal gap changes almost linearly from to zero in the
zone center (k= 0) to about 60 meV at k= ± π/20. For reference,
we also plot the 1.2 THz phonon mode energy (Eph= 4.96 meV)
as a dotted horizontal line. These findings suggest that the

contribution to the excited carrier density ne(t) arises from a
small part in momentum space around the zone center.

To obtain a more quantitative analysis, we define the following
time-averaged and k-resolved excited state density:

WnðkÞ �
R 5T
0 neðk; tÞdtR 5T
0 neðtÞdt

: ð7Þ

We plot Wn(k) in Fig. 2j for a simulation with t0= 0, and find
that it peaks in a Γ-centered narrow k-region. Peaks occur in a
wider range than naively expected by the condition that
Emin
G ðkÞ≤ Eph. We observe several distinct peaks of Wn(k) in this

region: the location of the peak closest to Γ-point (k= 0.004π)
and that of the peak furthest away (k= 0.033π) are close to the k-
points chosen for the presentation of ne(k, t) in (f, g). The peaks
can be understood by considering resonance condition of the
multi-cycle LZS problem as detailed in the following paragraph.

Although there is no closed form for the solution of the general
LZS problem, some analytical understanding can corroborate the
numerical results55,56. To facilitate the discussion, we cast the
time-dependent Hamiltonian (3) into the following form adopted
in references55,56:

Hðk; tÞ ¼ �ΔðkÞ
2

τx �
εðk; tÞ
2

τz ; ð8Þ

where we apply a− π/2 rotation around z-axis, and define
ΔðkÞ � �4Δ sinðkÞ, εðk; tÞ � ε0ðkÞ þ A sin½ωðt � t0Þ�, with the
offset:

ε0ðkÞ ¼ 4ν cosðkÞ þ 2μ0 ; ð9Þ
and the amplitude A= 2μ1. The level crossing of the diabatic
states (eigenstates of τz) occurs at ε(k, t)= 0, which requires−
0.09π≲ k≲ 0.09π for the specific parameters of the model we set.
Since the occupation probability of the upper adiabatic state is
known to be negligibly small if no diabatic level crossing
occurs55,56, this is consistent with the narrow k-range with
significant electron population transfer as shown in Fig. 2j. The
minimal energy gap between the two adiabatic (i.e. instantaneous)
levels reads Emin

G ðkÞ ¼ jΔðkÞj ¼ 4Δj sin kj. It is reached simulta-
neously with the diabatic state level crossing, and shows a linear
behavior at small k as plotted in Fig. 2i. As detailed in
references55,56, one can obtain an approximate analytic solution
of the LZS problem, in the slow and the fast-passage limits. These
limits are characterized by the dimensionless parameter
δ(k)≡ [Δ(k)]2/[4v(k)], which characterizes the ratio of the

minimal gap ∣Δ(k)∣ and the velocity vðkÞ � ∂εðk;tÞ
∂t jtc:ε ðk;tcÞ¼0 ¼

Aω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½ε0ðkÞ=A�2

q
at the minimal gap. The velocity is finite and

only weakly varying in the region of interest close the k= 0 before
it rapidly drops to zero as k→ 0.09π. As a result, we find δ(k)∝ k2

at small k and δ= 1 at k1 ≈ 0.03π (see Fig. 2 (k)). In terms of this
parameter, the LZ transition probability for a single passage reads
PLZ(k)≡ e−2πδ(k). In the fast-passage limit at k≪ k1, we have
δ(k)≪ 1 and 1− PLZ(k)≪ 1; while in the slow-passage limit, we
have δ(k)≫ 1 and PLZ(k)≪ 1. In Fig. 2k we plot these driving
speed indicators in the k-region with significant excited state
occupation. The fast-passage regime extends from the Γ-point
(k= 0), where the minimal gap vanishes, roughly to the position
of the first peak of Wn(k) at k= 0.0033π [see Fig. 2k], where
δ(k)≲ 0.01 and 1− PLZ(k)≲ 0.06. The resonance condition in the
diabatic regime reads ε0(k)=mω with integer m. This condition
is fulfilled at k= 0.005π for m= 12 and at k= 0.017π for m= 11
as shown in by the black vertical dashed lines in Fig. 2i, which
explains the two dominant peaks seen in Fig. 2j. Note that we
have δ(k= 0.017π)= 0.26 and 1− PLZ(k= 0.017π)= 0.81, which
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implies that k= 0.017π is near the crossover from fast to slow
passage. In fact, the resonance condition with m= 10 gives
k= 0.023π as shown by a gray vertical dashed line in Fig. 2i,
which is off from the peaks in Fig. 2j due to being located close to
the crossover region with δ(k= 0.023π)= 0.48 and 1− PLZ(k=
0.023π)= 0.95. At larger k1 ≈ 0.03π, the crossover from fast to
slow passage occurs and one needs to use a more general
resonance condition (see Eq. (56) in Ref. 56). Finally, for π/
20 ≤ k ≤ 0.09π and beyond the slow-passage regime is reached,
where we find a small adiabatic state probability. The resonance
condition in the adiabatic regime reads 2A

πω ¼ m with integer m,
which is not exactly fulfilled for our choice of parameters
2A
πω ¼ 12:8. One should also take into account that the dynamics
only involves five LZS oscillations due to damping effects in
experiments, which limits the total transfer into the upper
adiabatic state (even on resonance) when PLZ≪ 1. We conclude
that the majority of the excited state population dynamics in our
model occurs in the fast-passage region and the crossover regime
between the fast and the slow-passage limits, and that the main
peaks can be understood as arising from resonances in the
diabatic regime.

To summarize, our analysis demonstrates the crucial role of the
phonon-induced topological band closing for carrier excitation.
This creates a finite momentum space volume where effective
TLSs experience an avoided level crossing with a sufficiently small
band gap such that carriers can be excited through LZS tunneling.

First-principles quantum dynamics simulations
Model and ab initio simulation method. To gain a more material-
specific understanding of the carrier excitation dynamics of the
phonon-modulated ZrTe5 system, we carry out first-principles
simulations based on time-dependent Schrödinger equation with
DFT basis functions. The time-dependence of the KS Hamilto-
nian Ĥ0ðtÞ is encoded in the ionic trajectory R(t) that is set by the
A1g coherent phonon. In the implementation of DFT for periodic
systems one often adopts a basis set with large dimension, such as
plane waves. This renders a direct manipulation of the DFT
Hamiltonian Ĥ0ðtÞ cumbersome. Note that Ĥ0ðtÞ generally covers
higher-energy unoccupied states and deeper occupied states,
which are likely irrelevant for the carrier excitation dynamics in
phonon-modulated ZrTe5, which we expect to be dominated by
states close to the chemical potential. Standard tight-binding
downfolding approaches, such as maximally localized Wannier
function62 and quasi-atomic minimal basis-set orbitals
method63,64, can be useful; but the downfolding calculation for
many snapshots along the trajectory R(t) in the simulation time
period can be time-consuming, and the time-dependence of
the downfolded orbitals introduces additional complexity. Here
we adopt an alternative representation where the component of
the dynamical electronic state ΨðtÞ

�� � ¼ �k Ψðk; tÞ
�� �

is approxi-
mated as a linear combination of Nb adiabatic states f Φiðk; tÞ

�� �g
generalized to a generic k-point from Ref. 65,66:

Ψðk; tÞ
�� � ¼ ∑

Nb

i¼1
ciðk; tÞ Φiðk; tÞ

�� �
; ð10Þ

where Φiðk; tÞ
�� � � Q

μ2Siϕ
y
μðk; tÞ 0j i is a noninteracting single

Slater determinant state defined by a set Si of occupied KS orbitals

ϕμ(k, t), which satisfies Ĥ0ðk;RðtÞÞ ϕμðk; tÞ
���

E
¼ ϵμðk; tÞ ϕμðk; tÞ

���
E
.

Here the crystal momentum k is conjugate to the position vector
of the simulation unit cell.

The propagation of Ψðk; tÞ
�� �

is encoded in the time-dependent
complex amplitudes ci(k, t) and the adiabatic states Φiðk; tÞ

�� �
.

Substituting Eq. (10) into the time-dependent Schrödinger

equation leads to the equation of motion (EOM) of the
amplitudes

i_
∂ciðk; tÞ

∂t
¼ ∑

Nb

j¼1
Hijðk; tÞcjðk; tÞ : ð11Þ

The vibronic Hamiltonian is given by

Hijðk; tÞ ¼ εiðk; tÞδij � i_dijðk; tÞ : ð12Þ
Here, we define εiðk; tÞ ¼ ∑μ2Siϵμðk; tÞ. The complex nonadiabatic
coupling (NAC) coefficient between a pair of distinct states
fjΦii; jΦjig is given by dij ¼ hΦij ∂

∂t jΦji, which is nonzero only if
there is exactly one distinct occupied KS orbital between jΦii and
jΦji due to the single Slater determinant nature67,68. The NAC can
be conveniently evaluated using the finite-difference method67:

dijðk; tÞ �
1
2dt

hΦiðk; tÞjΦjðk; t þ dtÞi
�

�hΦiðk; t þ dtÞjΦjðk; tÞi
�
;

ð13Þ

which is completely determined by the state overlap matrix
between consecutive time steps.

Technical details of the simulation. The computational complexity
of the simulation is tied to the number Nb of adiabatic states that
are used in Eq. (10). The Raman A1g phonon in ZrTe5 has a
frequency of 1.2 THz, which is one order of magnitude smaller
than the equilibrium band gap. We can thus truncate the
expansion at the level of single-electron excitations between low
energy bands. We include configurations with one electron
excited from the top valence band to one of the four lowest
conduction bands. We thus keep Nb= 5 adiabatic states Φi(k, t)
in the expansion at each k-point. Each Φi differs by exactly one
occupied KS orbital, which therefore can also be labelled by the
same index i, with i= 1 corresponding to the top valence band,
and i= 2…Nb to the conduction bands in ascending order of
energy. The vibronic Hamiltonian (12) can be simplified by set-
ting εi(k, t)= ϵi(k, t) as a rigid potential shift. The evaluation of
the NAC (13) can also be reduced to

dijðk; tÞ �
1
2dt

hϕiðk; tÞjϕjðk; t þ dtÞi
�

�hϕiðk; t þ dtÞj ϕjðk; tÞi
�
;

ð14Þ

which depends only on the Nb KS orbitals that are kept at each k-
point.

The EOM (11) assumes the continuity of the time dependent
basis Φiðk; tÞ

�� �
with t. Therefore, it is crucial to fix the phase

degree of freedom of the KS orbitals ϕi(k, t). This can be achieved
by consecutively applying a phase factor to ϕi(k, t+ dt)→
eiθϕi(k, t+ dt), where the phase eiθ � O�

i =jOij with Oi=
〈ϕi(k, t)∣ ϕi(k, t+ dt)〉 is determined by the overlap with the same
orbital at the previous time step. Additional complexity of the
dynamics simulations originates from the presence of time-
reversal and inversion symmetry, which renders every band
doubly degenerate, and strong spin-orbit coupling in ZrTe5. The
ambiguity in the doubly degenerate bands can be partially fixed
by choosing a Sz-gauge such that the 2 × 2 spin Sz matrix becomes
diagonal in each doubly degenerate manifold via a unitary
transformation. Numerically, we find that the Sz gauge transfor-
mation is not sufficient to guarantee the orbital continuity along
the dynamical path. Therefore, we propose the following overlap
gauge correction to better address the band degeneracy problem.
The simulation starts with orbitals in the Sz-gauge, and apply
unitary transformation in each doubly degenerate manifold in all
following time steps, such that each rotated orbital ϕi(k, t+ dt)
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has maximal overlap with the same one at the previous step.
This is achieved by diagonalizing a series of 2 × 2 matrices PðjÞ

rs ¼
hϕðjÞr ðk; t þ dtÞjP̂j jϕðjÞs ðk; t þ dtÞi with P̂j ¼ jϕðjÞ1 ðk; tÞihϕðjÞ1 ðk; tÞj.
Here r, s ∈ [1, 2] run through the two orbitals in the jth
degenerate doublet. The diagonalization gives two eigenvectors,
where one has a nonzero eigenvalue and is assigned to the first
orbital of the jth doublet. The other eigenvector has zero
eigenvalue, and is assigned to the second orbital in the doublet.
Following this procedure, we numerically find that the self-
overlap of each wavefunction at consecutive time steps always
remains above 99.99%. The band index exchange between
different degenerate doublets, which can be detected by
checking the overlap between wavefunctions at consecutive
time steps, is not observed in the simulations reported here. In
Supplementary Note 2, we compare the NAC amplitudes
evaluated with and without phase correction to demonstrate the
significance of properly fixing the gauge and phase degrees of
freedom.

First-principles quantum dynamics simulation results. The analy-
sis of the one-dimensional (1D) toy model results shows that the
main contribution to the carriers in the excited band resulted
from LZS tunneling in a narrow region of momentum space
around the zone center k∈ [− π/20, π/20]. Expecting a similar
behavior for the realistic 3D model of ZrTe5, we use a dense
360 × 360 × 120 uniform k-grid covering the full Brillouin zone
for the following dynamics simulations and use a shift of Δ ¼
0:5
360 ðb1 þ b2Þ þ 0:5

120 b3 from the Γ-point for each k-point. Here, bi
are the reciprocal basis vectors. The center-shifted k-mesh
therefore excludes the Γ-point, where the band gap closes at
certain times and additional gauge correction is otherwise needed.

In Fig. 3a we present the excited state population ne(i, k, t) as a
function of simulation time t for five phonon cycles, starting at

t0= 0 with zero phonon displacement. Here we define

neði; k; tÞ � jciðk; tÞj2 ; ð15Þ
which is equivalent to the definition used in the toy model
analysis. At momentum k= b3/120+ Δ adjacent to the zone
center, an electron is gradually excited from the top valence band
(i= 1) to the two lowest conduction bands (i= 2, 3) due to
nonadiabatic effects. The complex NAC amplitude ℏd13(k, t)
between the 1st and 3rd bands at the same k-point is plotted in
Fig. 3b. The yellow line denotes the real part and the red line the
imaginary part. The line width indicates the numerical noise,
which is found to have negligible impact on the state population
dynamics. The maximal difference in the dynamical state
populations from the simulation using the (noisy) NAC
amplitudes versus using smoothed data via application of a
Savitzky-Golay filter is only about 10−3. Clearly, Fig. 3a, b shows
that a sharp transition of the state population ne occurs at the
peaks of the NAC. This also coincides with a minimum of the
band gap, EG= ε2(k, t)− ε1(k, t), as indicated by the blue shading
in the background of Fig. 3b. We note that d12(k, t) has a similar
time-dependence as d13(k, t) [both bands have degenerate
energies ε2(k, t)= ε3(k, t)], yet with slightly larger amplitude.
This difference in the NAC induces a larger electron occupancy in
the i= 2 band compared to the one with i= 3, as shown in
Fig. 3a. In contrast, the NACs from i= 1 to i= 4, 5 are smaller by
more than one order of magnitude, resulting in negligibly small
carrier excitations to these bands, ne(i, k, t) < 10−6 for i= 4, 5.

The first-principles dynamics simulations allow for a direct and
quantitative comparison to experiment. First, in Fig. 3c we show
the excited state carrier density, neðtÞ ¼ ∑kwk ∑

3
i¼2 neði; k; tÞ as a

function of time t. It increases from zero to about
ne(t= 5T) ≈ 2.4 × 1016 cm−3 at the end of the simulation t= 5T
and exhibits qualitatively similar sharp transitions near dynamical
band gap minimum as the momentum resolved quantity in

Fig. 3 Carrier excitation dynamics of phonon-modulated ZrTe5 system from first-principles simulations. a Occupancy of the two lowest-energy
conduction bands, ne(i, k, t) with i= 2, 3, as a function of simulation time t for 5 phonon periods starting with t0= 0 (the equilibrium configuration with zero
phonon displacement) at k= b1/720+ b2/720+ b3/80. Here (b1, b2, b3) are the reciprocal primitive vectors (see Methods for details). b Time-
dependence of the complex nonadiabatic coupling amplitude ℏd13(k, t) between the top valence band (i= 1) and lowest conduction band (i= 3) at the
same k-point as a, with real part in yellow and imaginary part in red. The background dark blue to light blue indicates a band gap, EG= ε2(k, t)− ε1(k, t),
varying from 27meV to 132meV. c The total excited states population ne(t) integrated over the Brillouin zone as a function of t for the simulation starting
with t0= 0. d The time-evolution of normalized �neðtÞ=�neð5TÞ(black line), where �neðtÞ is the total excited states population ne(t) averaged over simulations
starting with t0 uniformly sampled by 10-points in a phonon period. The normalized experimental carrier density change Δn(t)/Δn(5T) are also plotted in
orange line. We obtain �neð5TÞ ¼ 1:2 ´ 1016 cm−3 from the theoretical simulation, and Δn(5T)= (0.28 ± 0.12) × 1016 cm−3 estimated from the experiment.
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Fig. 3a. Within the 360 × 360 × 120 uniform k-mesh of the
Brillouin zone, we find that the dominant contributions come
from k ¼ l

360b1 þ m
360b2 þ n

120b3 þ Δ with l,m, n= 0, ± 1, ± 2,− 3.
Next, we we account for the fact that in pump-probe experiments,
the time-trace of differential transmission is obtained as an
average over multiple runs and ZrTe5 samples exhibit some degree
of electronic heterogeneity and nanostrip junctions, as observed in
the THz nanoimaging48. To capture these phenomena on average,
we define �neðtÞ ¼ 1

10∑
9
i¼0 neðtÞjt0¼ i

10T
, which is an average over

simulations at 10 different starting times. In Fig. 3d we directly
compare the time-dependence of a normalized �neðtÞ=�neðt ¼ 5TÞ
(black), to the experimental data Δn(t)/Δn(t= 5T) (orange).
Both curves exhibit a similar growth pattern of the carrier
density over time, and we also find the carrier density at the
end of the simulation �neðt ¼ 5TÞ � 2:4 ´ 1016 cm−3 to be in good
agreement with the one estimated from experiment
Δn(5T)= (0.28 ± 0.12) × 1016 cm−3, considering that there is
electronic heterogeneity present in the experimental ZrTe5
sample48. The numerical estimation of ne(t= 5T) and �neðt ¼
5TÞ reported here also includes a factor of 2 to take into account
the double degeneracy of the top valence band in ZrTe5 system.

Conclusions
We report detailed first-principle and effective model simulations
of the carrier excitation dynamics in coherent phonon-modulated
ZrTe5. Our results shed new light on recent pump-probe
experiments25 by providing a clear intuitive explanation of the
experimental results. Both first-principle and effective model
calculations reveal the importance of the phonon-induced topo-
logical phase transition in ZrTe5 and the associated closing of the
bulk gap for the observed excitation of carriers. We show that the
excitations occur via Landau-Zener-Stückelberg tunneling in a
series of time-dependent avoided level crossings of Bloch states
located in a narrow region of momentum space around the zone
center. Our detailed time-dependent Schrödinger equation

simulations further show that the dominant tunneling occurs
between the highest valence band and the lowest doubly degen-
erate conduction bands, while excitations to the next higher
bands are negligible due to small transition matrix elements. We
predict that the carrier density increases gradually with time and
reaches a final value of 2.4 × 1016cm−3 at t= 5T when phonon
coherence is lost in the experiment. These results are in good
quantitative agreement with experiment. Our work thus
demonstrates that the coherent charge excitation process in
topological quantum materials such as ZrTe5 can be understood
and predicted quantitatively by first-principles quantum
dynamics simulations.

Methods
First-principles total energy and electronic-structure calculations
for ZrTe5 are based on DFT with the exchange correlation func-
tional in generalized gradient approximation parametrized by
Perdew, Burke, and Ernzerhof (PBE)69. Van der Waals interaction
is included by Grimme’s damped atom-pairwise dispersion cor-
rections (D2)70. The calculations are performed using the Vienna
Ab initio Simulation Package (VASP)71. We use a plane-wave
cutoff energy of 230 eV and include spin-orbit coupling for all the
calculations. The phonon modes are calculated using the
finite displacement approach as implemented in Phonopy72. Spe-
cifically, we use the primitive unit cell of experimental struc-
ture(a= 3.987Å, b= 14.502Å, and c= 13.727Å)73. The primitive
vectors are a1= (1.994,− 7.251, 0) Å, a2= (1.994, 7.251, 0)Å, and
a3= (0, 0, 13.727)Å. The corresponding reciprocal primitive vec-
tors are b1= (0.251,− 0.069, 0)2π Å−1, b2= (0.251, 0.069, 0)2π
Å−1, and b3= (0, 0, 0.073)2πÅ−1. Highly accurate wavefunctions
at specific k-points are generated for NAC calculations by setting
an energy convergence criterion to 10−9 eV and requiring a
minimum of 20 electronic steps.

To be self-contained, we present the key DFT band structure
calculation results for the description of the A1g phonon-induced

Fig. 4 DFT band structure calculations for the adiabatic topological phase switching induced by the A1g Raman phonon mode in ZrTe5. a–d Band
structure along k-path Z− Γ− Y with distortion parameter λ=−3.0, −2.2, 0.0, and 3.0, respectively. The red color encodes projection weight of 5p-
orbitals of Ted to the wavefunctions. We define Z= (0, 0, 0.5) and Y= (− 0.5, 0.5, 0) in the reciprocal space with basis vectors (b1, b2, b3). e Band gap at
the zone center, EG(Γ), as a function of distortion parameter λ. Here λ= 1 represented 0.033Å displacement for Zr, 0.035Å for Ted, 0.032Å for Tea, and
0.017Å for Tez25. Red circles indicate the λ values for a–d. The strong topological insulator (STI) region is highlighted in blue and weak topological insulator
(WTI) region in white, with boundary line indicating the Dirac point position. f The A1g phonon mode in the conventional cell of ZrTe5. Green spheres
represent Zr atoms, orange spheres for apical Te atoms (Tea), silver spheres for zigzag Te atoms (Tez), and purple spheres for dimerized Te atoms (Ted).
The arrows indicate the atomic displacement vectors of the A1g mode.
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adiabatic topological phase transition observed in ZrTe5 system as
reported in Ref. 25. Under the modulation of the A1g eigenmode
as plotted in Fig. 4f, the band gap EG(Γ) at zone center closes at
distortion parameter λ=− 2.2 as shown in Fig. 4e, implying a
topological phase transition along the dynamical path. This is
confirmed by the band structure analysis and topological invar-
iant index calculation25. In Fig. 4a–d, we plot the band structure
along high-symmetry k-path Z− Γ− Y at phonon distortion
parameter λ=− 3.0,− 2.2, 0, 3.0, decorated with red color indi-
cating the Ted 5p-orbital weight. Band inversion clearly occurs
when λ passes through λ=− 2.2 the Dirac point. For λ <− 2.2,
the adiabatic state of the system is in WTI, and switches to STI for
λ >− 2.2.

Data availability
All the data to generate the figures are available at figshare74. Data supporting the
calculations are available together with the codes at figshare75. All other data are available
from the corresponding authors on reasonable request.

Code availability
All the computer codes developed and used in this work are available open-source at
figshare75.
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