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Abstract

In many cases, neural networks can be mapped into tensor networks with an exponen-
tially large bond dimension. Here, we compare different sub-classes of neural network
states, with their mapped tensor network counterpart for studying the ground state of
short-range Hamiltonians. We show that when mapping a neural network, the resulting
tensor network is highly constrained and thus the neural network states do in general
not deliver the naive expected drastic improvement against the state-of-the-art tensor
network methods. We explicitly show this result in two paradigmatic examples, the 1D
ferromagnetic Ising model and the 2D antiferromagnetic Heisenberg model, addressing
the lack of a detailed comparison of the expressiveness of these increasingly popular,
variational ansätze.
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1 Introduction

Artificial Neural Networks (NN) have increasingly taken hold in various research fields and
technology [1–3]. Their power in recognizing special patterns behind a huge amount of raw
data allowed a revolutionary change in our approach towards deep learning [4, 5]. Taking
inspiration from biological neural networks, NNs can be a good framework to process big
sets of data. As a matter of fact, NNs can be seen as special functional mappings of many
variables (physical and hidden), which can be trained by specific algorithms and applied to a
very broad spectrum of applications in different fields, one of which is statistical physics [2,6–
9]. A powerful example is the Restricted Boltzmann Machine (RBM) which has been largely
employed to mimic the behaviour of complex quantum systems [10–17]. Essentially, RBM is
a type of artificial neural network which, in interacting quantum systems, can be understood
as a particular variational ansatz for the many-body wave function.

Another very successful class of wave-function variational ansatz that has been widely
exploited are Tensor Network (TN) states [18–34]. They are based on the replacement of
the non-local rank-N tensor representing the N -body wave function, with O(N) local tensors
with smaller rank, connected via auxiliary indexes. Such ansatz interpolates between the
mean-field approach, where quantum correlations are completely neglected, and the exact
(but inefficient) representation of the state. The interpolation is governed by the dimension
χ of the auxiliary indexes connecting local tensors. In one dimension, a very successful tensor
network representation is the so-called Matrix Product States (MPS) [18,19,25,33].

When applied to the study of many-body quantum systems, these two very powerful ap-
proaches reduce the exponentially large Hilbert space dimension by optimally tuning a number
of parameters which scales polynomially with N . In particular, the number of free parameters
scales as O(N M) for a fully connected RBM (where M is the number of hidden variables),
while is O(Nχ2) for an MPS. Recently, a strong connection between NN and TN has been
pointed out [40–46]: among others, it has been shown that the fully connected RBM can be
explicitly rewritten as a MPS with an exponentially large auxiliary dimension, i.e. χ = 2M (see
Fig. 1). Considering the fact that the bipartite entanglement entropy in an MPS is proportional
to logχ, suggests that RBMs may provide a way to represent highly correlated quantum states
whose entanglement content scales with the system volume [47], thus going much beyond the
MPS descriptive power that is limited to area-law states [48,49].

Here, present a systematic comparison between constraint TN representations of NNs and
the unconstrained counterparts aiming to investigating the actual descriptive power of the NN
ansatz as constrained Tensor Networks with exponentially large bond dimension. With this
comparison we further aim to address the lack of a detailed comparison of the expressive-
ness of these various ansatz considering the increasing popularity of such variational states
and encourage further work in this direction. In the following section, we unveil fundamental
aspects of this important connection between TN and NN states and along the way we intro-
duce a new mapping between NN and TN, valid also in two-dimensions. This mapping can
be exploited to introduce more efficient strategies to optimize NN states. Finally, we present
two paradigmatic examples, the study of one-dimensional and two-dimensional ground states
of many-body quantum Hamiltonians and show that a TN with moderate bond dimensions
can match – if not overcome – the prediction of the correspondent NN, that were expected
to deliver results equivalent to those obtained via TN with an in practice unreachable bond
dimension. In particular, we compare the prediction of NN and TN, and show that the latter
are able to deliver higher precision in local quantities and in correlation functions with respect
to the equivalent NN. We further clarify why these results have to be expected.

In one dimension, these results are based on the fact that beyond the naive expectations,
the detailed aspects in the relationship between RBM and MPS shall be considered. In partic-
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Figure 1: The RBM for α = 1 (M = N) (left) can be mapped to an exponentially
large coMPS (right). The pink-shaded region represents the 2N ×2N local matrix Σ

σ j

j
which is constructed as a tensor product of N matrices (yellow circles) with bond
dimension χ = 2 (see main text for details). Arrows indicate periodic boundary
conditions.

ular, (i) different topologies of the NN may result in MPSs with very different auxiliary dimen-
sions; (ii) the emerging “constrained” MPS (coMPS) is highly constrained due to the mapping
itself. In practice, even though the formal mapping reveals an exponentially large auxiliary
dimension of the related coMPS, the number of independent entries of the tensors scales poly-
nomially with the size of the artificial neural network. This makes the coMPS representation
of the RBM inefficient.

The first point above raises a very delicate question regarding the efficiency of the NN tout
court. Physical many-body states are usually eigenstates of short-range interacting Hamiltoni-
ans, which naturally introduce the notion of distance between lattice sites, suggesting that a
valuable approach should encode this information ab initio. Therefore, a useful modification
of the RBM is obtained by introducing proper intra-layer connections in the wave function
ansatz; the resulting unRestricted Boltzmann Machine (uRBM) has been recently employed
in order to describe the ground state of the ferromagnetic Ising quantum chain [50]. A sim-
ple structure with one layer of hidden variables (see Fig. 2) explicitly encodes the underlying
Hamiltonian geometry and makes it possible to obtain an increased accuracy with respect to
the corresponding RBM (i.e. with α = 1), with a much smaller number of free parameters.
The surprising effect of this result will become evident in the following, when the RBM and
the uRBM will be compared at the level of the mapping to the corresponding coMPS.

2 Constrained Matrix Product States

Here we introduce the “constrained” Matrix Product State, highlighting the differences be-
tween RBM and uRBM. In the following, periodic boundary conditions are assumed, and re-
sults are valid for N > 2.

RBM: An RBM is defined as follows: given a set σ = {σ1,σ2, . . . ,σN} of N physical binary
variables (e.g. the eigenvaluesσ j = ±1 of a spin-1/2), one introduces an extra set of “unphysi-
cal” hidden variables h = {h1, h2, . . . , hM} (with density α≡ M/N) such that the unnormalised
many-body wave function of the RBM type is obtained from a full Boltzmann distribution by
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tracing out the hidden set,

Ψα(σ) =
∑

h

exp [−ψα(σ, h)] , (1)

where ψα is the RBM’s functional

ψα(σ, h) =
N
∑

j=1

a jσ j +
M
∑

j=1

b jh j +
M ,N
∑

i, j=1

Γi jhiσ j , (2)

and α = M/N is assumed to be a positive integer for convenience. Parameters a j and b j
are local biases (in the spin-1/2 picture, they represent local magnetic fields) applied to the
variables, whilst Γi j are couplings between the physical and the hidden variables (see Fig. 1).

As stated in the introduction, in the previous prescription there is no direct connections
within the same set of variables while the two sets are fully connected, thus there is no notion
of a distance. Nonetheless, correlations between physical variables may be mediated by their
fictitious interactions with the hidden variables. A priori the RBM variational ansatz is well
suited to work in any dimension. As a matter of fact, it is a promising tool to describe many-
body quantum states [35–39]; recently convolutional NNs have been employed to improve the
level of accuracy of the shallow RBMs in order to deal with frustrated 2D lattice models [51].

RBM wave functions can be rewritten as a coMPS with periodic boundary conditions. The
absence of intra-layer couplings allows to easily take the sum over the hidden variables in
Eq. (1), thus obtaining [40]

Ψα(σ) = e−
∑N

j=1 a jσ j

M
∏

i=1

2cosh(bi +
N
∑

j=1

Γi jσ j) = Tr





N
∏

j=1

Σ
σ j

j



 (3)

in terms of 2M × 2M real diagonal matrices (see Fig. 1) of the form

Σσj = e−a jσ
M
⊗

i=1

�

e−bi/N−Γi jσ 0
0 ebi/N+Γi jσ

�

. (4)

Notice that, if the RBM wave function describes a translational invariant quantum state, we
should have Ψα(σ) = Ψα(σ′), where σ and σ′ differ for an arbitrary cyclic permutation of
local spin variables: thus, all local tensors Σ

σ j

j can be set to be equal and independent of the
lattice site j, reducing the number of free parameters to 2M + 1. Let us mention that when
the local biases are set to zero, the wave function becomes spin-flip invariant as well.

1D - uRBM: Let us now turn our attention to the unrestricted Boltzmann machine for 1D
systems. When explicitly encoding the geometry of the underlying model into the artificial
neural network, we can describe the many-body quantum state via the following uRBM un-
normalised wave function

Φ`(σ) =
∑

h

exp [−φ`(σ, h)] , (5)

where now the hidden variables are labeled according to h = {hγj } with j ∈ [1, N], and
γ ∈ [1,`] denoting the different layers. The uRBM’s functional is now given by

φ`(σ, h) =
N
∑

j=1

�

K0
j σ jσ j+1 +

∑̀

γ=1

Kγj hγj h
γ
j+1

+ J1
j σ jh

1
j +

∑̀

γ=2

Jγj hγ−1
j hγj

�

. (6)
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Figure 2: The uRBM with one layer of hidden variables in one (two) dimension
is mapped to the corresponding coMPS (coPEPS). In the 2D case we only draw the
local building block of the full tensor network. Here in general crossing lines are
independent, except when a dot fixes them to be equals. The 1/2 in one of the dot
means that the B matrices have to be evaluated at σ/2 (see main text for details).
Arrows indicate periodic boundary conditions.

Interestingly, the state described by the uRBM wave function enforces the spin-flip invariance
of the Ising Hamiltonian, namely Φ`(−σ) = Φ`(σ); moreover, it is also invariant under the
transformation Jγj → −Jγj , for arbitrary γ. Although we cannot analytically sum over the
hidden variables as before, it is still possible to trace-out the hidden variables recasting Eq. (5)
in a simple coMPS form. Exploiting the transfer matrix approach for evaluating the partial
partition function, we obtain (e.g. for `= 1)

Φ1(σ) = Tr





N
∏

j=1

(A
σ j

j ⊗ B
σ j

j )



 , (7)

where

Aσj =

�

cosh(K0
j ) − sinh(K0

j )σ
cosh(K0

j )σ − sinh(K0
j )

�

, (8)

Bσj =

�

e−K1
j −J1

j σ eK1
j −J1

j σ

eK1
j +J1

j σ e−K1
j +J1

j σ

�

. (9)

Also, in this case, translational invariance of the many-body state can be exploited reducing the
number of free parameters by a factor N . Interestingly, the spin-flip symmetry of the state is
reflected in the coMPS representation as the local invariance A−σj = σ̂zAσj σ̂

z , B−σj = σ̂x Bσj σ̂
x .

Finally, the mapping can be extended to an arbitrary number of additional hidden layers which
results in a coMPS with auxiliary dimension χ` = 2`+1.

2D - uRBM: The geometry encoded in the uRBM may affect the tensor network represen-
tation of the many body wave function which, in the 2D cases, can be written as a coPEPS
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(constrained Projected Entangled Pair State). For the sake of simplicity, we focus only on the
translational invariant case where the 2D uRBM wave function reads

Φ2D
` (σ) =

∑

h

exp
�

−φ2D
` (σ, h)

�

, (10)

with

φ2D
` (σ, h) =

N
∑

i, j=1

�

K0 (σi, jσi, j+1 +σi, jσi+1, j)

+
∑̀

γ=1

Kγ (hγi, jh
γ
i, j+1 + hγi, jh

γ
i+1, j)

+ J1σi, jh
1
i, j +

∑̀

γ=2

Jγ hγ−1
i, j hγi, j

�

. (11)

Summing over the hidden variables, the wave function can be rewritten as a translational
invariant coPEPS built from the local tensors (see Fig. 2)

Aσαβγδ = (Aσ)αβ(A
σ)γδ,

Bσα′β ′γ′δ′ = δα′γ′(B
σ/2)α′β ′(B

σ/2)γ′δ′ , (12)

with matrices Aσ and Bσ given by Eqs. (8) and (9), where we discarded the label j due
to the translational invariance. The local building block for the coPEPS is obtained by index
fusion, paring each couple of indices to a single index which spans a four-dimensional auxiliary
space, i.e. α= (α,α′), getting Cσαβγδ = Aσ

αβγδ
Bσ
α′β ′γ′δ′

. Again, in this case, the extension to an
arbitrary number of hidden layers is straightforward, and the coPEPS auxiliary dimension is
the same as in the 1D case, namely χ` = 2`+1.

The coMPS (coPEPS) mapping of the uRBM variational ansatz can be proficiently used
together with Monte Carlo techniques in order to avoid the full sampling over the set of hidden
variables. Indeed, those representations are a practical way to explicitly trace out the full set
of the hidden variables.

3 Numerical results

In what follows we investigate how the different ansätze are able to describe the ground state
of critical Hamiltonians (both in 1D and 2D), where bipartite entanglement entropy scales
logarithmically with the system size, and the correlation functions decay algebraically.

3.1 The Ising quantum chain

We start our analysis with the ferromagnetic Ising quantum chain, whose Hamiltonian, for N
lattice sites and periodic boundary conditions, is given by

HI = −
N
∑

j=1

σ̂z
j σ̂

z
j+1 −λ

N
∑

j=1

σ̂x
j , (13)

where σ̂γj (for γ ∈ {x , y, z}) are Pauli matrices acting on the site j, and σ̂γN+1 = σ̂
γ
1. The trans-

verse field λ drives the ground state from a ferromagnetic region (λ < 1) to a paramagnetic
region (λ > 1) across a quantum critical point.
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Figure 3: Relative error in the ground-state energy estimate for different many-body
wave function representations. (left panel) We compare the uRBM with ` = 1 with
respect to the canonical MPS with the same bond dimension (χ = 2`+1 = 4) as a
function of the transverse field λ. (right panel) Scaling analysis of the energy error
at the critical point, as a function of the hidden variable density α = ` (for RBM
and uRBM) and analogous bond dimension χ = 2`+1 (for the MPS). RBM (uRBM)
representation reaches (overtakes) the accuracy of the MPS with χ = 4 only for
α = 2 (` = 2); however, they remain above the estimate obtained with a canonical
MPS with the same auxiliary dimension of the uRBM, i.e. χ = 2`+1 = 8.

Exploiting the coMPS mapping of the uRBM, we are able to optimize the many-body wave
function very efficiently. We consider a chain with periodic boundary conditions and mainly
focus on the one layer case (`= 1), thus reducing the number of variational parameters to 3.
Due to the coMPS representation of the variational wave function in Eq. (7) we are able to
evaluate the Hamiltonian expectation value exactly. Thus, we improve the accuracy and the
computational time compared to what has been recently found for the ground state energy
with an uRBM in Ref. [50] via Monte Carlo methods. For sake of clarity, we point out that this
approach drastically improves the evaluation of expectation values only and does not affect
the time required for the optimisation of the uRBM wave-function.

In the left panel of Fig. 3 we report the relative error of the best estimate of the ground-
state energy with respect to the exact value, namely δE = |(〈HI〉 − Eex)/Eex |, for a system of
size N = 80 and varying the transverse field λ ∈ [0.5, 1.5]. We compare the results of the
uRBM with `= 1 against the data obtained with a traditional MPS-based algorithm [52] with
the same auxiliary dimension χ = 2`+1 = 4. At the critical point, we also report the result
obtained in Ref. [13] with the RBM variational ansatz and the same number of hidden variables
(i.e. α= 1). We confirm that appropriate physical insights about the model under investigation
not only reduce the computational effort of the algorithm (from 2N+1 parameters in the RBM
to 3 parameters in the uRBM), but results in higher precision. However, we notice that results
based on the canonical MPS representation are order of magnitudes more accurate than those
based on the corresponding uRBM representation.

Of course, it must be said that the canonical MPS representation contains more variational
parameters than the uRBM with the same bond dimension; we would expect all represen-
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Figure 4: (left panels) Finite size scaling analysis of the relative error in the ground-
state energy of the critical Ising chain for different many-body wave function ansatz
(uRBM and MPS); the grey dashed lines correspond to the accuracy goal 10−5. (right
panel) Scaling of the largest system size N ∗ which can be described with an energy
accuracy ≤ 10−5 for the two different ansätze. The black dashed lines are power-law
fits as reported in the main text.

tations becoming better by increasing the number of variational parameters. Therefore, we
investigate this aspect at the critical point (the more computational demanding case), where
we perform a scaling analysis of the accuracy in the energy estimation for the different wave
function representations. It turns out that, for equal hidden variable density α= `, the uRBM
overtakes the RBM; however, the canonical MPS with the same bond dimension χ = 2`+1 of
the uRBM remains highly more accurate than any NN representation (see Fig. 3 right panel).
For example, for α = ` = 2, we obtain δERBM ' 0.8 · 10−4, δEuRBM ' 0.16 · 10−4, whilst the
MPS with χ = 2`+1 = 8 gives δEM PS ' 0.15 · 10−5.

Once established that the uRBM with the Ising-like geometry gives better estimates of the
ground-state Ising energy with respect to the RBM variational wave function, we may now
concentrate on a more systematic Finite Size Scaling (FSS) comparison between uRBM and
MPS. Indeed, in order to infer about a possible definition of the descriptive power of a given
many-body wave-function ansatz, we decided to proceed in the following way: (i) We fixed the
level of accuracy to be 10−5 so as to have a good interpolation of the uRBM data; (ii) we extract
the largest system size N ∗ whose ground-state energy can be estimated within that accuracy
goal; (iii) we analyse the behaviour of N ∗ as a function the (effective) bond dimension χ,
which indeed gives the algorithmic complexity of the energy minimisation procedure for both
ansätze. Once again, we concentrate the FSS analysis to the more computational demanding
critical chain (i.e. λ= 1). We perform numerical simulations with sizes N ∈ [10,200] for the
uRBM with ` ∈ {1, 2,3}, and N ∈ [10,400] for the MPS with χ ∈ {4,8, 16}.
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Figure 5: (left) Two-point connected correlation function in log-log scale at the
critical point for different variational ansatz and smaller description, i.e. α = ` = 1
and χ = 2`+1 = 4. Black full line are the exact analytical results. (right) Relative
error from the exact data when larger NN representations are considered; here we
compare RBM/uRBM with α = ` = 2 with the canonical MPS with χ = 2`+1 = 8.
All the data for RBM has been obtained by using the optimised wave functions in
Ref. [13].

In the left panels of Fig. 4 we report the data (symbols) together with the best power-law
fits δE = a + bN c (full lines). From the best-fit parameters and their errors we obtain the
estimate of N ∗, where the effective bond-dimension of the uRBM is χ = 2`+1. A different
scaling of the descriptive power of the two ansätze is reasonably clear from the right panel
of Fig. 4: The black dashed lines indeed show a fair agreement with N ∗ ∼ χ4.2 for the MPS
variational wave-function, while only N ∗ ∼ χ1.9 for the uRBM one.

Let us stress once more that, the performances of the uRBM to characterise the low-energy
properties of the Ising chain are strictly related to the fact that such variational ansatz some-
how encode the Ising geometry. In principle, we do not expect the same degree of accuracy
when analysing different 1D critical models; this is what happen, for example, when trying to
characterise the ground-state energy of the XXZ spin-1/2 chain in the gapless phase, where
the performances of both the uRBM and the MPS are one/two orders of magnitude worst.

Even though the different variational ansätze may give reasonable estimates of the ground-
state energy, it is worth investigating the large-distance behaviour of correlation functions. In-
deed, at the critical point, we expect a power-law decay of the two-point connected correlation
function 〈σz

1σ
z
j+1〉c = 〈σ

z
1σ

z
j+1〉 − 〈σ

z
1〉〈σ

z
j+1〉, as far as j� N . However, the MPS structure of

the variational ansatz introduces an unavoidable fictitious correlation length. Moreover, the
fact that the uRBM energy estimate is better than the RBM estimate (see Ref. [13, 50] for a
comparison), implies that the uRBM may give a better estimate at the level of the correlation
functions as well. With this respect, in the left panel of Fig. 5, we compare the connected
two-point function 〈σz

1σ
z
j+1〉c evaluated in the optimised uRBM with ` = 1 against the same

two-point function evaluated in the unconstrained MPS with auxiliary dimension χ = 4. In
order to have the same number of hidden variables in both NN representations, we show the
RBM correlations with α= 1, which have been obtained by sampling the optimised wave func-
tion in Ref. [13] over 106 configurations. We focus our analysis to the critical point, where a
larger deviation from the exact data is expected. From the figure it is clear that, the canonical
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MPS is largely better than the neural-network representation.
In a way, the RBM suffers from a sort of over-estimation of the long-range correlations due

to the presence of unphysical long-range couplings between hidden and physical variables; on
the contrary, the over-constrained structure of the coMPS representation of the uRBM reflects
into a stronger exponential decay of the two-point correlations. However, there is the possibil-
ity for those functions obtained by optimised NNs to be improved by the inclusion of further
layers in the ansatz, which can increase the degree of correlations.

Indeed, when the number of hidden variables is increased to α = ` = 2 in such a way to
reach the same energy accuracy of the MPS with χ = 4 (see Fig. 3, right panel), the corre-
sponding NN description of the correlation function improves as well and reaches that of the
MPS with χ = 4. However, it still remains less accurate with respect to the MPS representa-
tion with an auxiliary dimension χ = 2`+1 = 8 (see right panel in Fig. 5). In particular, for
distances j ® 20 lattice sites, the RBM relative error remains ® 5%, the uRBM gets an error
® 0.6% whilst finally the MPS reaches a better accuracy with an error ® 0.16%.

From this point of view a structured neural network states, namely a uRBM, seem better
tailored than an RBM, at least, to deal with short-range one-dimensional systems. Once again,
we may stress that when simulating with a uRBM, the coMPS representation should be used to
calculate energy and further expectation values for higher accuracy and lower computational
time.

3.2 The 2D Heisenberg model

We now extend our analysis to two-dimensional systems as well, by considering the 2D Heisen-
berg antiferromagnetic model, whose Hamiltonian is

HH =
N
∑

i, j=1

∑

γ

�

σ̂
γ
i, jσ̂

γ
i, j+1 + σ̂

γ
i, jσ̂

γ
i+1, j

�

, (14)

where γ runs over {x , y, z}. We assume here periodic boundary conditions. The ground state
of Heisenberg Hamiltonian is characterised by power-law decaying correlations, thus being a
perfect two-dimensional benchmark.

As already stressed, an RBM is characterised by an exponentially large bond dimension
and seems to work pretty well in the presence of long-range interactions and correlations [47].
Here, in order to avoid the expensive optimisation procedure for a PEPS wave function, we only
consider the state-of-the-art RBM variational results in Ref. [13] and compare its descriptive
power against a Tree Tensor Network (TTN) [34, 54–57] representation for the 2D Heisen-
berg ground-state. A TTN is a loop-free Tensor Network which can be efficiently contracted
and it is characterised by a finite bond dimension χ which enforces the maximum amount of
entanglement for any bipartition of the 2D state to be finite.

In our TTN simulations, we consider both 8 × 8 and 10 × 10 sizes; the former is more
suitable for a TTN algorithm since it can fully exploit the binary-tree structure. We compare the
estimated energy density with the best known results obtained via Quantum Monte Carlo [53]
and show the relative deviation in Fig. 6 for both system sizes. In both cases (for L = 8 and
L = 10) the errors of the Quantum Monte Carlo results are below 10−5 and therefore negligible
compared to both, the TTN as well as the RBM.

The 10× 10 case presents a geometry which is much less easy to adapt for TTN compu-
tations; nevertheless we are able to reach the same accuracy of an RBM with α = 1 by only
keeping χ = 340 states (see Fig. 6), which should be compared with the RBM equivalent bond
dimension χRBM ∼ 2αN2

= 2100. Let us point out that in the 8× 8 case, when a better-suited
TTN geometry can be used, we are able to reach one order of magnitude better precision.
With a relatively small bond dimension χ = 700 we already almost meet the RBM results with
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Figure 6: Relative error of the 2D Heisenberg ground-state energy compared with
the best available estimates obtained by the finite-size Quantum Monte Carlo analysis
in Ref. [53]. Symbols are TTN results for two different system sizes as function of
the maximum bond dimension. Dashed lines represent RBM accuracy from Ref. [13]
for the 10× 10 system and different hidden variable densities α ∈ [1,32].

α = 16 (whose bond-dimension scale as χRBM ∼ 216·64). Let us stress that, this huge differ-
ence in the bond dimension scaling, suggests that such parameter is not a sensible measure of
complexity for a Neural Network.

At this point, we may wonder how well different representations reproduce two-point cor-
relation functions. Due to the SU(2) symmetry of the Heisenberg Hamiltonian, we expect all
correlations 〈σ̂γi σ̂

γ
j 〉c being independent of γ when evaluated in the exact ground state. In

the TTN framework, we enforced U(1) symmetry along the ẑ axis which provides 〈σ̂x ,y
j 〉 = 0

thus the connected correlations are more accurate in the x̂- ŷ plane; we therefore compute
correlations along the x̂ axis. In the RBM case, we considered correlations in the ẑ axis, since
by construction they are more accurate and easier to measure here; again in this case, the
RBM correlations have been obtained by sapling over 106 configurations the optimised wave
function in Ref. [13]. With this prescription we are sure to compare the best estimates in both
representations.

In Fig. 7 we show the TTN correlations for the 10×10 size and different bond dimensions,
and compare them to the RBM with α= 1 and 2. It is clear that correlations are growing and
getting better with an increasing number of variational parameters. However, the insight from
this comparison is twofold: (i) the exponentially large bond-dimension of the RBM is not a
guarantee for this representation to be able to encode power-law correlations in critical 2D
short-range interacting models and thus to overtake a Tensor Network representation based
on finite bond-dimension; (ii) when both TTN and RBM get the same accuracy in the energy
(i.e. α = 1 and χ = 340 for the 10 × 10 size), TTN is more accurate for characterising
the correlation functions. However, regarding the latter, we mention that this finding and
especially the magnitude of the difference in characterising the correlation functions may as
well be dependent on the model of investigation. Thus, the generalisation of this statement
has to be investigated in future work.
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Figure 7: Connected correlation function in the TTN representation of the ground
state of the 10×10 Heisenberg Hamiltonian for different bond dimensions (symbols)
vs the distance r(i, j) ≡ [i2 + j2]1/2, where i ≤ j ∈ {0,5} × {0, 5}. The dashed grey
lines represent correlations obtained by sampling the RBM optimised wave function
in Ref. [13].

Let us further point out that in this particular benchmark we may as well exploit the SU(2)
symmetry in the TTN simulations thus allowing us to: (1) dramatically increase the accuracy
in the estimated energy; (2) reduce the effective bond dimension and thereby the computa-
tional time since for non-abelian symmetry we may only work within the symmetry multiplet
spaces; (3) drastically improve the connected correlations since we enforce 〈σ̂γj 〉 = 0, as well

as 〈σ̂γi σ̂
γ
j 〉c to be equivalent independent on γ. While (3) can be achieved as well for the RBM

when encoding symmetries, (2) does not apply for RBMs. Thus, for RBMs, as for the TTN,
we would expect to gain a higher precision in the final results when exploiting the SU(2)
symmetry as a result of (3). However, we would not expect such a dramatic increase of the
computational time as in the case of the TTN, which in return enables the TTN to achieve
higher bond dimensions and thereby to further increase the accuracy additionally to point (3).

4 Discussions

We investigated the efficiency of Neural Network quantum states with respect to Tensor Net-
work quantum states when used to describe the ground-state of critical short-range interacting
Hamiltonians both in one and two dimensions.

We pointed out and exploited the “constrained” Tensor Network State (coMPS/coPEPS in
1D/2D) representation of the neural-network wave function. As a matter of fact, RBM and
uRBM have very different representations. Even though the coMPS associated to the RBM has
an auxiliary dimension which scales exponentially with the number of hidden variables, it still
struggles to properly describe the ground-state correlation functions of critical Hamiltonians.

Indeed, in the 1D Ising case, a much smaller coMPS dimension associated to a much more
constrained uRBM wave function gives a more accurate description if compared to the RBM
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parametrisation. However, it turns out that, for equal auxiliary dimension, standard MPS
algorithms give a more acurate description of the many-body ground state. In addition, since
the performances of bothe, the uRBM (in the coMPS representation) and the MPS algorithm,
scale with the (effective) auxiliary dimension χ, an accurate FSS analysis suggests a possible
definition of the descriptive power of a variational wave-function: namely, the largest system
size which can be faithfully (i.e. within an accuracy goal) described by a given ansatz. As
a matter of fact, the descriptive power of the un-constrained MPS outperforms the uRBM
descriptive power, when both are used to approximate the ground-state of a critical Ising chain.

In this sense, the exponentially large auxiliary dimension of the coMPS associated to a
generic RBM seems not enough to provide a good characterisation of the long-range correla-
tions in the critical Ising quantum chain. In order to obtain more accurate estimates, system-
dependent deep neural network states, namely a uRBM with ` � 1, have to be properly
optimised. Our explicit coMPS representation of the uRMB variational ansatz can be even-
tually combined with Monte Carlo techniques thus overcoming the limitation, pointed out in
Ref. [50], of sampling over the hidden-variable configurations; thus making the Monte Carlo
approach also effective for Hamiltonians where the sign-problem occurs. Moreover, an opti-
mised uRBM can be used to optimally initialise convolutional NN algorithms, so as to speed
up the computations.

In 2D we compared the RBM representation against the TTN representation when both
are used to approximate the ground-state many-body wave function of the two-dimensional
Heisenberg Hamiltonian. As expected, both methods are well suited to describe the 2D many-
body quantum system. However, when reaching the same level of accuracy in the energy
estimate, a TTN is more precise in characterising long-range correlations, even though they
are employing a strictly finite bond dimension far below the mapped counterpart of the RBM
representation. This, from the one side, leaves no doubt that the exponentially large auxiliary
dimension of the RBM does not ensure an adequate descriptive power; from the other side, it
leaves us with the open question on how to properly estimate the information which is encoded
in a NN, so as to define a proper measure of complexity for a neural network quantum state.
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A 1D numerical simulations

The numerical simulations for the ground-state optimisation in the Ising quantum chain have
been performed by means of different approaches. In particular, the optimisation of the canon-
ical MPS has been done by using the well established DMRG algorithm [25]. In our algorithm,
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we fixed the auxiliary dimension χ to remain constant. A preliminary “infinite” size procedure
enlarges the system up to the desired linear dimension N = 80. Thereafter, the usual “sweeps”
procedure locally optimises the MPS wave function. The algorithm is stopped when the energy
difference between two consecutive sweeps is less that the machine precision.

In the uRBM approach, we exploited the coMPS representation of the ansatz for the wave-
function so as to get very accurate results. If Mσ is the local tensor depending on 2`+ 1 real
variational parameters ~K , we introduced the local operator-dependent transfer-matrix

TÔ =
∑

σ,σ′
〈σ′|Ô|σ〉 (M∗)σ

′
⊗Mσ, (15)

which implicitly depends on the variational parameters ~K , and globally minimised the energy
density of the Ising quantum chain

ε[~K] = −
Tr[Tσ̂z Tσ̂z TN−2

Î
] +λTr[Tσ̂x TN−1

Î
]

Tr[TN
Î
]

. (16)

In the simplest case of ` = 1 we used the Mathematica builtin routine NMinimize which
turns out to be stable and it efficiently converges to the global minimum. However, for larger
parameter spaces, namely ` = 2 and 3, the Mathematica routine does not give the expected
improvement in the energy minimisation, and it gets stacked on some local minimum. We
thus improved the global minimisation by randomly reducing the dimension of the parameter
space wherein NMinimize has to look for a global minimum. In practice, we proceed in the
following way:

1. We randomly initialise a real vector ~K which contains the 2`+1 variational parameters.

2. We randomly construct a (2`+1)×(2`+1) orthogonal matrix R and define the variational
parameter vector in the new basis ~K ′ = RT ~K .

3. We pick up three components of the vector ~K ′ and promote them as variational vari-
ables, thus defining the 3-variable dependent vector ~K ′(x , y, z) where {x , y, z} is a three
dimensional subset of variational parameters. We thus transform back the vector to the
original basis so as to have ~K(x , y, z) = R~K ′(x , y, z). We minimise ε[~K(x , y, z)] with
respect to {x , y, z} by using NMinimize, thus finding the best parameters {x∗, y∗, z∗}.
If the new optimised energy density is lower than the actual best estimate, we upgrade
the solution ~K = ~K(x∗, y∗, z∗).

4. We repeat point 3 for all possible different way of taking three components of the vector
~K ′, i.e.

�2`+1
3

�

. Thereafter, we go back to point 2 and repeat the procedure.

5. We stop the recipe when the difference in the two best energy estimates is less than 10−9.

B 2D Numerical simulations

The simulations for the ground-state computation of the isotropic 2D Heisenberg model have
been done using a binary Tree Tensor Networks (TTN). In this approach each tensor within the
Network combines two sites to one coarse-grained virtual site (or bond link), resulting in the
hierarchical tree structure. The optimisation of the TTN, as well as the calculation of the ob-
servables for the optimised ground-state, were obtained following the description for loopless
Networks in Ref. [34]. For all simulation the U(1) symmetry has been exploited. Furthermore,
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Figure 8: Binary TTN structure for the 8× 8 simulations. The tensors (green) each
merges two sites of the lower layer to one bond link (brown). The mapping here
groups alternatingly in x- and y-direction from layer to layer starting from the phys-
ical sites of the 8× 8 lattice.

for each simulation the Network was randomly initialised within the zero-magnetisation sym-
metry sector and within the given bond dimension χ.

For the 10× 10 simulations, the physical sites j ∈ {1, . . . , 100} of the TTN were assigned
in a zig-zag pattern to the two-dimensional lattice, such that the lattice site (x , y) (with
x , y ∈ {1, . . . , 10}) is mapped to the TTN site j = x + 10 · (y − 1). Thereby, the system is
coarse-grains in x-direction first at the lower layers of the tree, and afterwards at the upper
layers in y-direction. Thus the simulation is biased towards the x-direction as the topology
of the TTN is not well suited to capture correlations in y-directions. This makes the 10× 10
system size in general not ideal for a TTN approach.

In the case of the 8× 8 system size, the TTN was arranged, such that the grouping within
the network is done in an alternating form from layer to layer, as depicted in Fig. 8. Thus the
Tensors in the TTN is coarse graining the system in local plaquettes and thereby better capture
the correlations within these plaquettes. This mapping leads to a more precise description,
which can be observed in the energy being an order of magnitude more accurate (see Fig. 6).
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