
Universität des Saarlandes

Challenging Traditional Views and
Techniques in Relational Query

Processing and Indexing

Joris Nix

A dissertation submitted towards the degree
Doctor of Engineering (Dr.-Ing.)

of the Faculty of Mathematics and Computer Science
of Saarland University

Saarbrücken, 2024

Day of Colloquium
May 6, 2025

Dean of the Faculty
Prof. Dr. Roland Speicher

Examination Board
Chair

Prof. Dr. Markus Bläser

Reviewers

Prof. Dr. Jens Dittrich
Prof. Dr. Jana Giceva

Prof. Dr. Thomas Heinis

Academic Assistant

Dr. Marcel Maltry

Abstract

Query processing and indexing are fundamental components of every relational database man-
agement system. These areas are concerned with core aspects such as performance, design,
and maintenance, which have been the subject of extensive, longstanding research. As a result,
well-established methods and paradigms have emerged, particularly in query optimization, in-
dex construction, and the design and functionality of SQL. In this thesis, we aim to challenge
and redefine some of these traditional views and techniques.

In the first part of this thesis, we question the translation of a logical plan to a physical
plan on the granularity of complete operators during query optimization. Instead, we pro-
pose to deepen this process by breaking up the abstraction of an operator to consider more
fine-granular subcomponents, enabling additional optimization potential. Our experimental
validation demonstrates the impact of varying physical representations of a logical operator
and highlights that a more holistic optimization approach can significantly improve estimated
query plan quality.

In the second part of this thesis, we aim to apply this approach specifically to index structures,
which are generally considered monolithic and hand-crafted entities tailored to specific use
cases. We propose a generic indexing framework that breaks up index structures by separating
a logical index from a physical index similar to the split into logical and physical operators.
Furthermore, we formulate index construction as an optimization problem that we solve using
genetic programming. Our experiments show that our approach successfully rediscovers exist-
ing baselines. In addition, an optimized index tailored to a specific dataset and workload not
only matches, but in some cases, surpasses the performance of traditional indexes.

In the third part of this thesis, we propose a single keyword extension to SQL that breaks
up the single-table result limitation by allowing to return a subdatabase. This subdatabase
contains the tables that participate in the query, each reduced to those tuples that contribute
to the traditional query result. We present four SQL-based rewrite methods and an efficient

i

native algorithm that we implemented in a database system with a state-of-the-art compiling
query execution engine. The experimental evaluation shows that multiple individual result
sets significantly reduce the overall result set size, with our methods adding minimal overhead
to the query execution time and, in some cases, even outperforming traditional, single-table
execution.

Zusammenfassung

Abfrageverarbeitung und Indizierung sind grundlegende Komponenten jedes relationalen Da-
tenbankmanagementsystems. Diese Bereiche befassen sich mit zentralen Aspekten wie Leis-
tung, Design und Wartung, die seit langem Gegenstand umfangreicher Forschung sind. Infol-
gedessen sind fest etablierte Methoden und Paradigmen entstanden, insbesondere in der Ab-
frageoptimierung, der Indexkonstruktion sowie im Design und der Funktionalität von SQL. In
dieser Arbeit wollen wir einige dieser traditionellen Ansichten und Techniken infrage stellen
und neu definieren.

Im ersten Teil dieser Arbeit hinterfragen wir die Übersetzung eines logischen Plans in einen
physischen Plan auf der Granularität vollständiger Operatoren während der Abfrageoptimie-
rung. Stattdessen schlagenwir vor, diesen Prozess zu vertiefen, indemwir die Abstraktion eines
Operators aufbrechen, um feingranularere Teilkomponenten zu betrachten, die zusätzliches
Optimierungspotenzial ermöglichen. Unsere experimentelle Validierung zeigt die Auswirkun-
gen unterschiedlicher physischer Repräsentationen eines logischen Operators und hebt hervor,
dass ein ganzheitlicherer Optimierungsansatz die geschätzte Qualität des Abfrageplans erheb-
lich verbessern kann.

Im zweiten Teil dieser Arbeit wollen wir diesen Ansatz speziell auf Indexstrukturen anwen-
den, die im Allgemeinen als monolithische und handgefertigte Einheiten betrachtet werden,
die auf spezifische Anwendungsfälle zugeschnitten sind. Wir schlagen ein generisches Index-
Framework vor, das Indexstrukturen aufbricht, indem es einen logischen Index von einem phy-
sischen Index trennt, ähnlich wie bei der Aufteilung in logische und physische Operatoren.
Darüber hinaus formulieren wir die Indexkonstruktion als ein Optimierungsproblem, das wir
mithilfe genetischer Programmierung lösen. Unsere Experimente zeigen, dass unser Ansatz in
der Lage ist, bestehende Referenzindexe wiederzuentdecken. Des Weiteren ist ein optimierter
Index, der auf einen spezifischen Datensatz und Arbeitslast zugeschnitten ist, nicht nur in der
Lage die Leistung traditioneller Indexe zu erreichen, sondern diese in bestimmten Szenarien

iii

sogar zu übertreffen.

Im dritten Teil dieser Arbeit schlagen wir eine Erweiterung von SQL um ein einziges Schlüssel-
wort vor, die die Einschränkung des Ergebnisses auf eine einzige Tabelle aufbricht, indem sie
die Rückgabe einer Teildatenbank ermöglicht. Diese Teildatenbank enthält die an der Abfrage
beteiligten Tabellen, die jeweils auf die Tupel reduziert sind, die zum traditionellen Abfrageer-
gebnis beitragen. Wir stellen vier SQL-basierte Umformungsmethoden und einen effizienten
nativen Algorithmus vor, den wir in einem Datenbanksystemmit einer modernen kompilieren-
den Engine zur Ausführung von Abfragen implementiert haben. Die experimentelle Auswer-
tung zeigt, dass mehrere individuelle Ergebnisse die Gesamtgröße des Ergebnisses erheblich
reduzieren, wobei unsere Methoden nur minimalen zusätzlichen Aufwand bezüglich der Aus-
führungszeit der Abfrage verursachen und in einigen Fällen sogar die traditionelle Ausführung
mit nur einer Ergebnistabelle übertreffen.

Acknowledgement

First and foremost, I would like to express my deepest gratitude to my supervisor, Prof. Dr. Jens
Dittrich, for giving me the opportunity to pursue my Ph.D. His inspiring and often unconven-
tional ideas sparked my curiosity, leading to many invaluable discussions and exciting research
topics. His experience, support, and the freedom he provided allowed me to tackle every chal-
lenge that arose during my studies.

I would also like to thank Prof. Dr. Jana Giceva and Prof. Dr. Thomas Heinis for reviewing this
thesis. It is a great honor to have such distinguished researchers evaluate my thesis, and I am
grateful for their time and expertise.

Furthermore, I want to sincerely thank my exceptional current and former colleagues for their
support, both in overcoming the difficulties of work and in navigating everyday life. I am espe-
cially grateful to Marcel, Immanuel, Luca, and Simon who have also become wonderful friends.
Special thanks go to my co-author, Christian, with whom I had the pleasure of collaborating.

I am also deeply thankful to the fellow students I met during my undergraduate and graduate
studies, who helped me persevere through my academic journey, with some becoming dear
friends, especially Christopher.

Finally, I feel incredibly fortunate and grateful for my amazing family and friends, who have
supported me unconditionally throughout my doctoral studies and my entire life.

Additionally, I would like to acknowledge the use of ChatGPT for assistance with spelling,
grammar, translation, and overall refinement of my writing.

v

Contents

1 Introduction 1
1.1 Breaking Up Operators in Query Optimization 2
1.2 Breaking Up Index Structures . 4
1.3 Breaking Up SQL’s Single-Table Results . 6
1.4 Contributions . 8

2 Deep Query Optimization 11
2.1 Introduction . 11
2.2 Deep Query Optimization . 15

2.2.1 Local vs Global Effects of Deep Query Optimization 15
2.2.2 Meta-Relational Plan Properties . 18

2.3 Materialized Algorithmic View Selection . 19
2.3.1 Materialized Algorithmic Views (MAVs) 19
2.3.2 When to Materialize MAVs? . 20
2.3.3 The Algorithmic View Selection Problem (AVSP) 20
2.3.4 But the Search Space Is Exponential! 22

2.4 System Integration . 23
2.5 Experiments . 24

2.5.1 Setup and Methodology . 24
2.5.2 Performance of Physical Grouping Implementations 25
2.5.3 DQO-Enabled Dynamic Programming 27

2.6 Related Work . 32
2.7 Research Agenda . 33
2.8 Conclusions . 35

3 Genetic Generic Generation of Index Structures 37
3.1 Introduction . 37

vii

3.1.1 Problem 1: Indexes Are Considered Monolithic Entities 37
3.1.2 Problem 2: Two Completely Different Methodologies to Solve a Similar

Problem . 38
3.1.3 Problem Statement . 39
3.1.4 Contributions . 39

3.2 Generic Logical Indexing Framework . 40
3.2.1 Logical Nodes and Logical Indexes . 40
3.2.2 Logical Queries . 43

3.3 Generic Physical Indexing Framework . 44
3.3.1 Specify Search Algorithm . 44
3.3.2 Specify Data Layout . 45
3.3.3 Specify by Nested Logical or Physical Index 46

3.4 Genetic Index Breeding . 46
3.4.1 Core Algorithm . 47
3.4.2 Initial Population Generation . 50
3.4.3 Mutations and Their Distributions . 51
3.4.4 Fitness Function . 55

3.5 Related Work . 55
3.6 Experimental Evaluation . 59

3.6.1 Hyperparameter Tuning . 61
3.6.2 Rediscover Suitable Baseline Indexes 62
3.6.3 Optimized vs Heuristic Indexes . 65

3.7 Conclusion and Future Work . 68

4 Extending SQL to Return a Subdatabase 71
4.1 Introduction . 71

4.1.1 Problem Statement . 72
4.1.2 Use Cases . 74
4.1.3 Contributions . 76

4.2 Querying a Database to Return a Subdatabase 77
4.2.1 Preliminaries . 77
4.2.2 A Query Returning a Subdatabase . 77
4.2.3 Relationship-Preserving Subdatabase 78
4.2.4 Extending SQL: SELECT RESULTDB . 78

4.3 SQL-Based Rewrite Methods . 79
4.3.1 RM 1: Dynamic SELECT DISTINCT . 80

4.3.2 RM 2: Materialized SELECT DISTINCT 81
4.3.3 RM 3: Dynamic Subquery . 81
4.3.4 RM 4: Materialized Subquery . 82

4.4 ResultDBsemi-join Algorithm . 83
4.4.1 Preliminaries . 84
4.4.2 Acyclic Join Graph Topology . 85
4.4.3 Cyclic Join Graph Topology . 87
4.4.4 Putting It All Together . 90

4.5 Related Work . 91
4.6 Experiments . 95

4.6.1 Result Set Sizes . 96
4.6.2 Rewrite Methods . 98
4.6.3 ResultDBsemi-join Algorithm . 100
4.6.4 Runtime with Data Transfer & Post-join 102

4.7 Future Work . 104
4.8 Conclusion . 105

5 Conclusion 107
5.1 Deep Query Optimization . 107
5.2 Genetic Generic Generation of Index Structures 108
5.3 Extending SQL to Return a Subdatabase . 109
5.4 Concluding Remarks . 110

Bibliography 111

Chapter 1

Introduction

In an ever increasingly digitalized world, database management systems (DBMSs) are an inte-
gral part to store and manage tremendous amounts of data. DBMSs are so widespread, that
they can be found practically everywhere in everyday life. For example, each electronic device
contains at least one database instance, often even several. The authors of SQLite, probably the
most widely used database system in the world, claim that “there are over one trillion (1e12)
SQLite databases in active use” [Hip], being used in smartphones, computers, smart TVs, and
apps among others. On the one hand, this widespread highlights the exceptional importance
of DBMSs today. On the other hand, it also draws attention to the many different challenges
and requirements database systems face. In general, such systems require high availability and
reliability, and have to ensure consistency and durability. Besides those fundamental require-
ments, database systems are confronted with additional overarching goals and objectives, two
of which we examine more closely. First, performance is one of the core aspects and main con-
cerns of most DBMSs, coming in many different flavors like throughput, latency, or memory
consumption. Depending on the system requirements, a poor DBMS performance can render
an application useless. Second, the design and maintenance effort required to build a DBMS is
a crucial aspect, encompassing architectural decisions and essential components such as stor-
age management, concurrency control, recovery mechanisms, and query processing, including
optimization techniques. Obviously, a good design is essential for being able to continuously
maintain and improve a system.

Certainly, the aforementioned objectives are deeply rooted in the database community and
have been part of longstanding and extensive research. Therefore, each of those research ar-
eas has well-established solutions for various problems in the respective domain. This thesis

1

2 Chapter 1. Introduction

Syntactic & Semantic
Analysis Query Optimization Query Execution

Query AST QEP Result

Figure 1.1: High-level overview of the different query processing steps.

aims to address specific parts of both areas from a different angle and propose novel solutions
by breaking up traditional views and techniques in query processing and indexing. Specifi-
cally, we first tackle the translation of logical plans to physical plans on the granularity of
complete operators during query optimization by breaking up traditional operators into more
fine-granular subcomponents. Second, we break up monolithic index structures by separating
a logical index from a physical index, and automatically generate index structures by formulat-
ing index construction as an optimization problem that we solve using genetic programming.
Third, we address the limitation of single-table query results in SQL by breaking up the re-
sults into multiple individual result sets, each containing only the tuples contributing to the
traditional query output.

1.1 Breaking Up Operators in Query Optimization

Query optimization (QO) is at the heart of every relational database system and probably the
most important optimization problem in databases. It is part of a larger processing pipeline that
consists of various steps. Figure 1.1 depicts a high-level overview of the main query processing
stages. For a given query, a system first conducts a syntactic and semantic analysis of the query,
resulting in an abstract syntax tree (AST) that represents the query to be executed. In the query
optimization phase, based on this AST, a query execution plan (QEP) is computed. Finally, this
QEP is executed by the query execution engine to compute the final result.

The underlying goal of QO is to enable fast and efficient query processing by determining the
best physical query execution plan under a given cost model. To achieve this, QO is tradi-
tionally comprised of two steps [PHH92], rule-based optimization and cost-based optimization.
Figure 1.2 gives a broad overview of the internals of the query optimization step.

Upon entering the QO phase, the AST is transformed into a logical plan consisting of logical
operators like projections or joins as introduced by Codd [Cod70]. This logical plan is essen-
tially a relational algebra expression in tree form. Based on this initial logical plan, a set of
rules is applied to transform the represented query into a semantically equivalent one [Cod72].

1.1. Breaking Up Operators in Query Optimization 3

Logical Plan

𝜋

⊲⊳

𝜎

SR T

1. Rule-based

Physical Plan

𝜋

⊲⊳SHJ

⊲⊳SHJ

Ridx Tscan

Sscan

2. Cost-based

Query Optimization

AST QEP

Figure 1.2: Query optimization steps.

These rules, for example, include pushing down predicates and projections, replacing Carte-
sian products through joins, unnesting of (sub-) queries [NK15], and fusing operators as in the
groupjoin [MN11]. The common premise for these rewrite rules is that the transformed query
plan heuristically improves performance based on the chosen metric.

After all suitable rules have been applied, the cost-based optimization step determines a join
order and produces a physical plan by choosing a physical implementation for each logical
operator. The most commonly used approaches to compute a join order are either bottom-
up [Sel+79; VM96; Moe+06] or top-down [DT07; FM11] plan enumeration using dynamic pro-
gramming. Constructing the physical plan primarily includes deciding how database tables are
accessed, e.g., index-based or scan-based, and choosing a concrete physical implementation for
the logical operators, e.g., simple hash join or index-nested loops join. Note that, depending
on the specific implementation of a DBMS, determining the join order and selecting a physical
representation for a logical operator can be closely interconnected. For example, considering
so called ‘interesting properties’ like the sortedness of a relation on a specific attribute, can en-
able different physical implementations and in turn, favor a different join order. Furthermore,
there might even be no clear separation between rule-based and cost-based optimization and
the boundary becomes rather blurred.

In summary, the fundamental parts of QO are to apply certain rewrite rules, to determine a
join order, and to select a physical implementation for each logical operator in the plan. In
particular, the de facto standard since the ’70s is to map these ‘coarse-granular’ logical opera-

4 Chapter 1. Introduction

tors in the logical plan to physical operators. However, we argue that this potentially misses
significant optimization opportunities. For example, if we decide to implement a logical join
operation using a simple hash join, the DBMS usually provides one specific implementation of
this operator. As already observed by Richter et al. [Ric+15], a hash table has many different
dimensions which significantly influence performance like the type of the hash table, the hash-
ing scheme, or the hash function. Therefore, choosing the concrete physical implementation
for a logical operation can be considered an optimization task in itself. However, in virtually
all the aforementioned works, an operator serves as the fundamental unit of the optimization
process and is regarded as an inseparable unit.

In Chapter 2, we introduce the concept of Deep Query Optimization (DQO), which essentially
proposes to break up logical and physical operators into more fine-granular subcomponents.
We argue that instead of a direct translation from a logical operator to a physical one, there
should be a series of unnesting steps, each progressively increasing the physicality of the query
plan. Through this approach, we aim to apply optimizations both within individual operators
but also across typical operator boundaries.

1.2 Breaking Up Index Structures

Indexing is one of the most important and performance critical concepts in database systems.
Each year a myriad of indexing papers is published. Figure 1.3 shows the cumulative number
of papers that have the term ‘index’ in their title and were published in VLDB, SIGMOD, ICDE,
and CIDR from 1975 until today. Importantly, by now, there are at least about 800 indexing or
indexing-related papers, which only represents a lower bound. One of the reason for this high
number of papers each and every year is that index structures are often built upon existingwork
and tailored for specific use cases. In particular, these index structures are carefully designed
and implemented as immutable, monolithic entities.

Let us take the ubiquitous B-tree as an example, which was already introduced in 1972 by Bayer
and McCreight [BM72]. Since then, there has been a tremendous amount of follow-up papers
that either improve upon the original B-tree or adapt it for specific use cases. While the B-tree in
its original form stores keys and payloads at all levels, the currently prevalent B+-tree [Knu73]
only uses separator values in internal nodes and stores all keys and corresponding payloads in
the leaves. This especially improves performance when sequentially scanning the leaves which
are usually linked. Among this multitude of works, Rao and Ross introduce CSB+-trees [RR00],
a cache-conscious variant that stores child nodes contiguously in memory, improving cache

1.2. Breaking Up Index Structures 5

197
6
197

8
198

0
198

2
198

4
198

6
198

8
199

0
199

2
199

4
199

6
199

8
200

0
200

2
200

4
200

6
200

8
201

0
201

2
201

4
201

6
201

8
202

0
202

2
202

4

Year

0

200

400

600

800

Cu
m

ul
at

iv
e#

pa
pe

rs
‘Index’ Paper Published in VLDB, SIGMOD, ICDE, CIDR

Figure 1.3: Cumulative number of papers that contain the term ‘index’ in their title and were
published in VLDB, SIGMOD, ICDE, and CIDR. Data taken from https://dblp.org/.

locality and reducing the required amount of pointers. However, storing nodes contiguously
also makes updates in the index much harder. In contrast to that, there is also work on improv-
ing B+-trees in scenarios with high update rates, for example by Graefe [Gra04]. Even to this
day, new variants like the DB+-tree [Kwo+23] get published, which improves the branching
behavior by redesigning the internal node structure.

All those extensions of the original B-tree commonly adapt the data structure based on under-
lying characteristics and requirements such as hardware, disk-based vs main-memory-based
system, and the concrete workload. At the same time, they all use fundamentally the same
‘hard-coded’ node structures. In particular, they generally do not use different types of search
methods or different data layouts within the same index structure. Furthermore, there are also
many different other index structures like the Adaptive Radix Tree (ART) [Lei+13] or the Recur-
sive Model Index (RMI) [Kra+18] that are applicable and show superior performance in certain
situations.

In Chapter 3, we introduce a novel indexing framework called Genetic Generic Generation of

Index Structures (GENE), which enables the automatic generation of index structures. GENE
is based on the observation that most index structures are assembled along a few key dimen-
sions, including structural building blocks, invariants, and decisions on the internal layout of
nodes. Building on our DQO paper’s idea of breaking up logical and physical operators into
finer-grained subcomponents, we now aim to apply this approach specifically to index struc-

https://dblp.org/

6 Chapter 1. Introduction

Query Processing Index Construction
SQL Query

1. Logical Plan

2. Cost-Based Optimization
↩→ Physical Plan

3. Query Execution

Result

Dataset + Workload

1. Logical Index

2. Cost-Based Optimization
↩→ Physical Index

3. Index Execution

Result

Figure 1.4: Analogy of index construction to query processing.

tures. Figure 1.4 shows a side-by-side comparison of the optimization process during query
processing and index construction. Given a dataset and workload, our goal is to find the ‘best’
physical index in terms of throughput, memory consumption, or any other performance met-
ric, resulting in an optimization problem. Concretely, we first define a logical index that is
mostly concerned with partitioning the dataset. Afterward, we apply cost-based optimization
to generate a physical index that decides on the specific search algorithm and data layout in-
side a node. Based on this, we either use interpretation during query execution to access our
physical index, or we can even generate optimized code representing the final index structure.
In summary, in GENE we clearly separate a logical from a physical index and formulate index
construction as an optimization problem. We address this problem using genetic programming
to automatically generate index structures.

1.3 Breaking Up SQL’s Single-Table Results

Users interacting with a database management system fundamentally have two points of con-
tact with that system. First, the database schema or external view that describes the structure
and organization of the data. Second, the query language that uses this basic description of the
data to query the database. When defining the database schema, one very important aspect is
data normalization which aims at reducing data redundancy while establishing and improving
data integrity. Regarding the query language, the Structured Query Language (SQL) invented
by Chamberlin and Boyce [CB74] in the early 1970s is the most widespread language used for
querying relational database systems. However, using SQL is limited to produce a single-table

1.3. Breaking Up SQL’s Single-Table Results 7

result, even when querying multiple different relations. This introduces two major problems.
First, denormalizing the original tables through joins is bound to introduce duplicated values,
i.e., we have the problem of relational information redundancy. This conflicts with the initial
goal of normalizing the data. Another problem is the loss of relational information. Since SQL
is both, a data retrieval and a data transformation language, during the process of computing
a query result, some information can get lost. For instance, the information where a specific
attribute in the result table comes from or that duplicated values originate from the same tuple
can get lost.

While significant efforts have been made to extend SQL, such as the introduction of the Data
Cube [Gra+96] and Skyline [BKS01] operators, these works primarily focus on enhancing SQL
with additional functionality. Despite these developments, the limitation of single-table queries
has persisted since SQL’s invention.

In Chapter 4, we overcome this single-table limitation of traditional SQL by introducing a new
keyword, RESULTDB, that allows us to return multiple individual result sets, i.e., to essentially
compute a subdatabase as a result. Specifically, instead of returning a single table, we return the
set of tables that participate in a query, each containing only the tuples that contribute to the
traditional query result. There a quite a few application areas and use cases where producing
such individual result sets can be beneficial. In particular, it reduces data transfer by mini-
mizing redundancies, and preserves relational information by keeping data retrieval and data
transformation separate. Furthermore, it may even improve performance during query execu-
tion by avoiding the generation of large intermediate results. To compute a result subdatabase,
we present several rewrite algorithms allowing us to use any SQL-92-compliant closed-source
database system, and we propose an efficient native algorithm allowing us to extend query
optimizers directly inside a database system.

8 Chapter 1. Introduction

1.4 Contributions

In this section, we summarize and list the contributions of the projects presented in the follow-
ing chapters of this thesis.

Deep Query Optimization

Chapter 2 is based on the publication:

Jens Dittrich and Joris Nix. “The Case for Deep Query Optimisation”. 10th Conference on

Innovative Data Systems Research (CIDR), 2020. [DN20]

In this work, we make the following contributions:

1. Concept of Deep Query Optimization. Current state-of-the-art query optimization usu-
ally translates a logical operator in a single step into a physical operator, missing interesting
optimization potential. The underlying idea of DQO is to break up the abstraction of these
holistic operators into more fine-granular subcomponents. Initially, we argue that the trans-
formation from logical to physical plan represents more of a physiological design continuum.
Afterward, we discuss the impact of local versus global effects, i.e., how the choice of specific
subcomponents can influence the optimization process. Furthermore, we identify a set of meta-
relational properties that present promising avenues in the context of DQO.

2. Materialized Algorithmic Views. We introduce the concept of materialized algorithmic
views (MAVs) akin to traditional materialized views. The core concept behind MAVs is to mate-
rialize parts of a query execution plan at varying levels of granularity, ranging from individual
components of traditional operators, to entire operators, and even to larger subplans. Fur-
thermore, we introduce the algorithmic view selection problem, i.e., the problem of matching
precomputed MAVs to suitable subplans during query optimization.

3. Experimental Evaluation. We showcase the impact of deep query optimization based on
five different implementation variants of the traditional grouping operator. Furthermore, we
highlight the potential improvements of DQO over traditional query optimization in terms of
estimated query plan costs, particularly when taking meta-relational properties into account.

1.4. Contributions 9

Genetic Generic Generation of Index Structures

Chapter 3 is based on the publication:

Jens Dittrich, Joris Nix, and Christian Schön. “The next 50 Years in Database Indexing or:
The Case for Automatically Generated Index Structures”. Proc. VLDB Endow., 2021. [DNS21]

In this work, we make the following contributions:

1. Generic Indexing Framework. We introduce a generic index structure framework that
makes a clear distinction between a logical and physical index akin to the split into logical and
physical operators. A logical index handles the data partitioning, whereas a physical index
defines the concrete data layout and search method inside each node.

2. Genetic Algorithm. We formulate index construction as an optimization problem that
we solve using genetic programming. As part of the genetic algorithm, we present the core
mechanism for automatically generating index structures, along with the mutations that define
potential changes to both logical and physical indexes, and the fitness function used to evaluate
the performance of physical index structures.

3. Experimental Evaluation. We conduct a comprehensive evaluation of our generic frame-
work and demonstrate the ability of our genetic algorithm to rediscover existing, previously
handcrafted indexes. Furthermore, we investigate the potential performance gain of an opti-
mized GENE index compared to state-of-the-art index structures. Our results show that de-
pending on the underlying dataset, our optimized index is able to match and even outperform
the traditional indexes.

Personal Contributions and Involvement. My co-author Christian Schön primarily fo-
cused on the genetic algorithm, while I concentrated on the generic indexing framework. As
a result, he was responsible for implementing the genetic algorithm and took charge of Sec-
tion 3.4, Section 3.6.1, and Section 3.6.2, which are included in this thesis for completeness but
not claimed as my contribution. However, for Section 3.4, I significantly contributed to the
development of key components, including the initial population generation in Section 3.4.2,
the specific mutations applied to logical and physical index structures in Section 3.4.3, and the
fitness function used to evaluate the performance of the generated indexes in Section 3.4.4.

10 Chapter 1. Introduction

Extending SQL to Return a Subdatabase

Chapter 4 is based on the publication:

Joris Nix and Jens Dittrich. “Extending SQL to Return a Subdatabase”. Proc. ACM Manag.

Data, 2025. [ND25]

In this work, we make the following contributions:

1. SQL Extension. We propose a backward-compatible SQL extension, SELECT RESULTDB,
that returns a subdatabase instead of a single-table result. This subdatabase contains the tables
that participate in the SQL query, each restricted to those tuples that contribute to the overall
query result. We show that our approach has far-reaching consequences and a wide range
of use cases, the most notable being that we avoid the denormalization redundancy typically
introduced by joins.

2. Rewrite Methods. We present four SQL-based rewrite methods that can be used in any
DBMS including closed-source systems to support our extension. These rewrite methods ex-
plore different semi-join and materialization strategies, showcasing their strengths and weak-
nesses as well as the trade-offs between them.

3. Native Algorithm. We present an efficient native algorithm to extend query optimizers in
open-source database systems to compute a result subdatabase. This algorithm solves acyclic
queries using semi-joins based on the well-known Yannakakis algorithm. For cyclic queries,
we propose a new technique, called folding, to transform a cyclic query into an acyclic query.
In this context, we introduce the Tree Folding Enumeration Problem, a new optimization prob-
lem on how to choose folds to transform cyclic queries to acyclic queries. We implement our
algorithm in mutable, a main memory DBMSwith a state-of-the-art compiling query execution
engine.

4. Experimental Evaluation. We conduct an extensive experimental study comparing tradi-
tional query processing producing a single-table result with our approaches producing a result
subdatabase. In particular, we evaluate the performance of our rewrite methods and investigate
the overhead they introduce over single-table processing. Additionally, we compare our native
algorithm with traditional query processing and analyze the costs associated with joining a
result subdatabase to obtain the single-table result. Our results show that multiple individual
result sets significantly reduce the result set size, with our methods adding minimal overhead
to the query execution time and, in some cases, even outperforming single-table execution.

Chapter 2

Deep Query Optimization

2.1 Introduction

Query Optimization (QO) is at the heart of any query engine. The core task of QO is to find an
efficient plan under a given cost model. A major difficulty of this task is to compute not only a
logical plan (an extended relational algebra expression, a DAG of logical operators) specifying
which relations to join in which order but additionally a physical plan (a DAG of physical oper-
ators) that specifies which access methods (e.g., unclustered B-tree vs scan) and algorithms to
use (e.g., sort-merge vs hash join). The physical plan can then either be interpreted or compiled.

A major problem of this approach is the hidden legacy of relational algebra. For exam-
ple, at some point in QO, a logical join, i.e., ⊲⊳ (𝑅, 𝑆), is translated to a physical join,
e.g., SortMergeJoin(𝑅, 𝑆) or HashJoin(𝑅, 𝑆). In other words, the abstraction used during
query optimization is the following: a physical operator in relational algebra receives one or
two inputs from outside, does some well-defined processing inside, and produces one output
dataset to the outside. In summary, a physical plan is a DAG-structured ‘algorithmic recipe’
where the nodes are physical operators and the edges symbolize producer-consumer relation-
ships.

There has been considerable work on examining the pipelining aspects of this legacy, i.e., how
to effectively implement the producer-consumer relationships from good old volcano-style
ONC-iterators [Gra93], via vectorization [Bon+05] to breaking the boundaries of physical op-
erators to run plans until the next pipeline breaker [Neu11], to include parallelism [Lei+14],
and combinations thereof [Ker+18].

11

12 Chapter 2. Deep Query Optimization

However, these works neglect that the algorithms used to implement an operator can be con-

sidered a query plan in itself. For instance, consider the physical grouping operator1. From a
10,000 feet perspective, it can be implemented either using a sort-based or a hash-based algo-
rithm. In hash-based grouping, as shown in Algorithm 1, we initialize an empty hash table
(line 2). Then we insert each tuple from the input into that hash table using the grouping key
as the key to the hash table and the set of tuples having that key as the value to the hash table
(lines 4–9). Afterward, for each existing key in the hash table, we compute the aggregate on
the set of tuples pointed to (lines 11–13).

Algorithm 1 Textbook-style pseudocode for hash-based grouping.
1: function HashBasedGrouping(Relation R, groupingKey)
2: HashMap hm
3: Result result = {}
4: for each r ∈ R do ⊲insert all tuples from input R into HashMap hm
5: if r.groupingKey ∈ hm then
6: hm.probe(r.groupingKey) ∪ = {}
7: else
8: hm.insert(r.groupingKey, {r})
9: end if
10: end for
11: for each key ∈ hm.keySet() do ⊲build aggregates for each existing key in HashMap hm
12: result ∪ = aggregate(hm.probe(key))
13: end for
14: return result
15: end function

This algorithm can be found in almost all database textbooks, lectures, and even conference
talks. The problem with this algorithm is that it implies a couple of algorithmic and physical

design decisions: (1) As an internal index structure a hash table is used, but which one exactly?
As already observed in [Ric+15] a hash table has many different dimensions which influence
performance dramatically. (2) The insert operations to the hash table are implicitly assumed to
occur in serial. (3) The aggregation operations in the hash table are implicitly assumed to occur
in serial, i.e., group-wise. (4) The ‘Relation R’ parameter in the function signature implies that
the entire result set is passed to the algorithm fully materialized. Likewise, the final aggregates
are collected in a result set before passing them outside which again implies that the result
set is materialized. In summary, this induces two unnecessary pipeline breakers. (5) The two
phases in the algorithm (first load the hash table, then compute the aggregates) forbids any

1We focus on grouping here as joins have very similar algorithmic issues and solutions. This becomes clear if
you consider that a join is merely a co-group-operation with exactly two inputs followed by an aggregation on each
co-group. Vice versa a grouping operation is merely a co-group operation with a single input.

2.1. Introduction 13

kind of non-blocking behavior, e.g., like in any kind of online aggregation algorithm [Hel+97;
Dit+02].

A much better description of this algorithm is shown in Algorithm 2.

Algorithm 2 Partition-based grouping. Here each ‘line of code’ is written as a producer-
consumer pattern, i.e., a line of code consumes some input and creates one or multiple produc-
ers. This does not make any algorithmic decision whatsoever on how this producer-consumer
pattern will be implemented physically. ⇒ denotes that an operation provides a bundle of in-
dependent producers.
1: function PartitionBasedGrouping(Producer R, Consumer R’, groupingKey)
2: R → partitionBy(groupingKey)⇒ Rpartitions ⊲partition the input
3: Rpartitions ⇒ aggregate(...) ⇒ R’ ⊲aggregate each partition
4: end function

The two lines of code basically say: in line 2, we will partition the data produced by R into
a bundle of independent producers. If the input produces 42 different groups, partitionBy
creates 42 different producers. Semantically each producer will deliver the tuples belonging
to its group. Notice that there is no need here to shoehorn the result into one relation as
in relational algebra or SQL. In line 3, we specify that a bundle of independent producers is
aggregated with the same aggregation function, but possibly independently.

What if we depict this ‘code’, i.e., the insides of the logical operator, as a query plan itself? This
is shown in Figure 2.1. Figure 2.1 (a) shows logical grouping as found in (extended) relational
algebra. If we open up that box, i.e., if we unnest the operator into a more fine-granular query
plan, we obtain Figure 2.1 (b). The latter corresponds to the pseudocode given in Algorithm 2.
The more we unnest, we increase the physicality of the query plan as for each unnest we have
to make a decision on how exactly to implement a certain ‘bubble’. Only after some recursive
unnesting, we eventually obtain Figure 2.1 (d) which corresponds to the pseudocode of hash-
based grouping shown in Algorithm 1. In other words, hash-based grouping is just one of many
special cases in a partition-based grouping algorithm. Figure 2.1 (e) shows another unnest
using static perfect hashing (SPH, in the experiments we will even use minimal SPH) as well
as a parallel load. And from that we could continue further...

In Figure 2.1, the arrows denote a specific path we followed at each unboxing step. In turn, at
each unnest we discard several options. In this example we unnest four times. However, this
figure just visualizes the principle. We do not imply that it is exactly four unnest operations to
get from a logical operator to a ‘physical’ plan. However, what we do imply is that the current

state-of-the-art to translate from one extreme (a logical operator) in a single step to another extreme

14 Chapter 2. Deep Query Optimization

physicality

(a) (b) (c)logical operator
as in relational
algebra

intermediate
physiological
operator (Alg. 2)

intermediate
physiological
operator

purely
logical intermediate

physiological continuum

logicality

(d)"physical" operator:
textbook-style hash-
based grouping as shown
in Alg. 1

(e)static perfect
hashing
(SPH)-based
grouping

𝛾 𝛾𝛾 𝛾

partitionBy
𝚪

bulkload

index
scan

𝛾 𝛾𝛾 𝛾

unnest unnest

…

…

…sort-
based…

…

unnest

…

…

index
scan

𝛾 𝛾𝛾 𝛾

loop

loop

serial

hash table

unnest

…

…

index
scan

𝛾 𝛾𝛾 𝛾

parallel

loop

serial

SPH

unnest

…

…

…

unnest

𝚪
translate to hash-based grouping

Shallow Query Optimization (SQO):

concrete hash-
based-grouping
implementation

translate to
sort-based
grouping

Deep Query Optimization (DQO):
© iStock.com Yura GRIDENEV)

Figure 2.1: Standard (‘shallow’) query optimization (SQO) vs deep query optimization (DQO).
Top: Different unnesting steps of the logical grouping operator: each color depicts yet another
hidden nested query plan. Observe that every time we unnest, we make certain algorithmic
decisions. Thus, each unnest operation increases the physicality of the plan. For instance, if we
decide to implement partitionBy using any type of index, that decision will exclude other op-
tions like sort-based grouping. In turn, if we decide to implement that index using a hash table,
we exclude other types of indexes. Notice that naming a plan ‘physical’ is actually misleading,
as there is almost always yet another translation step underneath. For instance, the plan in (e)
increases the physicality by choosing one particular type of hash table, hash function, etc. (SPH
in this case). In further unnesting steps (not shown), code compilation by the database system
and/or compiler will add more steps. Finally, compiler and hardware will make more decisions,
e.g., reordering of code and memory accesses. Probably, only the final actions performed on
the hardware (the physics) should be called a truly physical plan.
Bottom: the design space continuum starting on the left from purely logical to plans increasing
the physicality of the plan. So far, we have mostly ignored the intermediate physiological plans
in that middle-ground: that is what we consider in Deep Query Optimization (DQO).

2.2. Deep Query Optimization 15

(a blackbox ‘physical operator’) misses several interesting optimization opportunities (cf. Shallow
Query Optimization in Figure 2.1).

This paper is structured as follows: in Section 2.2, we introduce Deep Query Optimization
(DQO). In Section 2.3, we introduce Materialized Algorithmic Views (MAVs) and the Algorith-
mic View Selection Problem (AVSP). Section 2.4 discusses how to integrate DQO into existing
systems. Section 2.5 presents early experimental results of our idea. Section 2.6 contrasts DQO
to related work. Finally, Section 2.7 presents a research agenda.

2.2 Deep Query Optimization

The core idea of Deep Query Optimization (DQO) is the following: rather than computing a
plan using only coarse-granular logical and/or ‘physical’ operators (as done in Shallow Query
Optimization, SQO), in DQO we consider more fine-granular components in the optimization
process.

As already shown in the previous sections, when inspecting a single group-by operator, there
aremany different hidden levels of nested query plans. Table 2.1 presents another view on these
granularity levels using an example from biology, a living cell, as an analogy. A living cell is
composed of organelles which consist of (macro-)molecules which consist of atoms. Using the
living cell analogy, we can phrase the key idea of DQO as follows: extend SQO to also assem-

ble organelles and macro-molecules from molecules rather than only living cells from organelles.

Table 2.2 contrasts SQO, and machine-‘learned’ techniques [Wan+16] with DQO.

2.2.1 Local vs Global Effects of Deep Query Optimization

DQO can be considered local if the types of subcomponents used to assemble a specific granule
do not have any effect on the context of that granule. In contrast, DQO must be considered
global (or at least non-local) if the types of subcomponents used to assemble a specific granule
do (or even may) have an effect on the context of that granule.

For instance, assume we want to find the optimal index to be used in hash-based grouping. Let
us take a look at two major options for the indexes to use here:

1. We use an out-of-the-box hash-table. Then, the output of the operator will not be sorted.
Technically, it is often sorted in the order as the groups appear in the hash table. That

16 Chapter 2. Deep Query Optimization

Table 2.1: Granularity concepts in biology vs their counterparts in query optimization, their
typical sizes, and example instances. The main difference of DQO over SQO is that we push
the frontier of what can be optimized further down into ‘physical’ operators. Hence, a physical
operator is not anymore a given thing optimized manually by some developer, but optimized
and synthesized by the system, either at query time or beforehand.

Granularity Concept
Typical

size (LOC)

Optimized and synthesized how?
in Biology in Query Optimization Shallow Query

Optimization
Deep Query
Optimization

living cell ‘physical’ query plan ∼10000 query optimizer
organelle ‘physical’ operator ∼1000 developer query optimizer

macro-
molecule

type of index structure (hash vs tree),
scan method, high-level bulk loading,
and probing algorithm

∼100 developer query optimizer

molecule
any subcomponent of an index, e.g., a
node or leaf type, hash function used,
particular probing implementation,
low-level cache & SIMD tricks

∼10 developer

atom assignment, loop initialization,
arithmetic operation, matrix operation ∼1 compiler

order depends heavily on the hash function used. If we do not know exactly which order
is produced by a blackbox hash table, we have to assume that the data is unordered to
be on the safe side.

2. We use a static perfect hash-function (SPH). SPH can simply be an array of groups of tu-
ples (or running aggregates in the case of distributive and/or decomposable aggregation
functions). The grouping key then serves as the index into that array. Here, the linear
array slot computation works like a perfect hash function. If all array slots are used, the
SPH is even minimal. This is only applicable if the key domain of the grouping key is
(relatively) dense. This situation is not as rare as one might think. For instance, the keys
of a dictionary-compressed column are a natural candidate for this and can directly be
used for SPH. Like in a hash-table, the grouped output will be sorted according to the
order in the underlying array. Notice that in both options, the order on the probe input
is preserved.

In summary, any optimization step in DQO can be considered local, if the subplan produced at
that step has the same properties as any other plan at that granule. In contrast, if for a given
granule different subplans have different properties, its optimization effects may be considered
global.

2.2. Deep Query Optimization 17

Table 2.2: SQO, ‘learned’, and DQO in comparison: both SQO and DQO assume that we rewrite
and enumerate possible plans. However, in contrast to SQO, in DQOwe assume components at
amuch finer granule (as shown in Table 2.1). In contrast to ‘learned’ approaches, in DQO, we do
not learn those functions from scratch but assume fine-granular building blocks to be available.
Similar to SQO, we assume that rules are available that define how to combine those building
blocks, i.e., we see this primarily as an optimization rather than a machine learning problem.
Another important difference and advantage over several ‘learned’ approaches and a similarity
to SQO is that we do not need extra mechanisms to correct errors due to the approximative
nature of most ML-methods.

(a) SQO

function to optimize who? based on how?

index_node() human code lines trial & error
index() human index_node() trial & error

hash_join() human index() trial & error
query_plan() machine hash_join(), index(), etc. rules & enumeration

database_system() human query_plan() trial & error

(b) ‘learned’

function to optimize who? based on how?

index_node() NA NA NA
index() machine nothing ML + correction code

hash_join() machine nothing ML + correction code
query_plan() machine nothing ML + correction code

database_system() machine nothing ML + correction code

(c) DQO

function to optimize who? based on how?

index_node() human code lines trial & error
index() machine index_node() rules & enumeration

hash_join() machine index() rules & enumeration
query_plan() machine hash_join(), index(), etc. rules & enumeration

database_system() machine query_plan() rules & enumeration

18 Chapter 2. Deep Query Optimization

Table 2.3: Meta-relational properties for deep query optimization.

physical structural statistical

data layout partitioning distribution
compression grouping cardinality
location sorting uniqueness
hardware correlation density
clustered # rows

columns
NULL-values

min, max, avg, etc.

2.2.2 Meta-Relational Plan Properties

Throughout the years, database research literature proposed concepts like interesting orders

in sort-based operators or physical properties like compressed or partitioned data [Gra+93].
However, in DQOwe do not limit ourselves to this narrow set of plan properties and expand the
property space. Therefore, we introduce the concept ofmeta-relational properties, i.e., properties
that go beyond a pure relational model and reasoning about a query plan. Table 2.3 gives an
overview of existing meta-relational properties including a first attempt to categorize them
into various subcategories. Concepts like interesting orders are included as a special-case.

Physical meta-relational properties are those properties that are abstracted away by physical
data independence, e.g., any kind of data layout, physical location, and/or internal representa-
tion of the data.

Structural meta-relational properties are related to ordering and/or partitioning of the data,
e.g., sorting is referred to in database literature as interesting order. As these properties do
not necessarily have to be represented physically they belong to a separate category. Still they
may additionally also be reflected physically in which case they belong to the category Physical
meta-relational properties.

Statisticalmeta-relational properties are statistical properties summarizing the data using sta-
tistical moments or any other useful (yet lossy) approximation.

As optimization in DQO happens on small granules, we have to identify the right set of meta-
relational properties that allow for a deeper optimization on the corresponding granule, e.g., on
an operator level or on the structure of the query plan. In addition, we have to consider that
many of these meta-relational plan properties may have a non-local effect.

2.3. Materialized Algorithmic View Selection 19

In a first shot, the properties with a non-global effect can be considered and handled very
similarly to how interesting orders are handled in dynamic programming. If any subcomponent
in DQO produces an output with such a property, we must not discard that information.

In the experiments in Section 2.5, we show howwemodified dynamic programming to factor in
the following meta-relational plan property: dense vs sparse and how that makes a difference
in optimization and runtime performance. Examining the other properties in more detail is an
avenue for future work.

2.3 Materialized Algorithmic View Selection

There is another interesting similarity of DQO to SQOwhen recalling materialized views (MVs,
precomputed query results) and also prepared statements (preoptimized queries).

2.3.1 Materialized Algorithmic Views (MAVs)

In DQO, in particular for local effects but also for the non-local ones, it makes sense to precom-

pute certain granules offline (before a query comes in). We coin these precomputed components
Materialized Algorithmic Views (MAV). Just like MVs prematerialize query results, MAVs
prematerialize (i.e., optimize) parts of a deep query plan. An MAV may be a component of a
physical ‘operator’, entire physical ‘operators’ or larger units, i.e., physical subplans.

In other words, a deep query plan as shown for instance in Figure 2.1 (b–e) may conceptually
represent (parts of) an algorithm, an index node/leaf, an index, a physical operator like a very
specific hash join algorithm implementation or even larger parts of a physical plan. However,
as the search space for this plan is potentially large, we believe that MAVsmay help in that they
materialize certain subtrees of that plan into preoptimized units (again: just as prematerialized
views are used as building blocks in shallow query optimization).

MAVs can be precomputed for any granularity level not only within the traditional boundaries
of an operator. Like that MAVs can be used as building blocks for DQO at query time to speed-
up plan enumeration.

20 Chapter 2. Deep Query Optimization

2.3.2 When to Materialize MAVs?

An interesting question is when to compute an MAV. Again, the duality to materialized view
selection helps a lot here: MVs work well if the underlying data does not change too often, and
we do not spend too much work updating those MVs. In addition, an MV should be useful in
queries in the sense that it is used (matched) regularly and decreases the overall query runtime
(including query optimization time). At the same time the MV should be storage efficient. For
MVs these trade-offs naturally lead to a cost/benefit-calculation to decide which MVs to keep.
We believe that very similar techniques will strike for MAVs. We envision a usefulness-ranking
which quickly identifies components of a deep query plan that can be reused over and over
again. This is up to future work to show.

There is a natural trade-off here: howmuch time do I want to spend on DQO offline vs at query
time?

2.3.3 The Algorithmic View Selection Problem (AVSP)

At query time we have to face the challenge of matching those precomputed MAVs to suit-
able subplans. Again, inspired by the materialized view selection problem [Bar+97], we coin
this the Algorithmic View Selection Problem (AVSP). Like with MVs, there is no need in
AVSP to make any manual decision about which granules to precompute. This decision can be
automated. This is simply adding a new AVSP dimension to the physical design problem.

An example for algorithmic view matching is shown in Figure 2.2. Figure 2.2a shows an ex-
ample of a fine-granular (deep) query plan that we need to optimize. In Figure 2.2b, we match
the available MAVs as listed in Figure 2.2c against the plan in Figure 2.2a. In Figure 2.2b, we
visualize two matches: both MAV1 and MAV2 can be matched against suitable subplans. In Fig-
ure 2.2d, we replace these matches with their corresponding preoptimized MAVs. Only after
this matching step, plan enumeration needs to be invoked. Hence, the search space is dimin-
ished – just like in materialized view selection. Figure 2.2 also shows the relationship to MVs:
an MV for a given subplan precomputes a query result. This only works if that subplan corre-
sponds to a subtree of the plan, i.e., it does not depend on additional computations that need to
be performed at query time. In contrast, an MAVmaterializes an algorithm. Still that algorithm
may rely on inputs of other algorithms which are only optimized at runtime. In that sense, an
MAV is also related to prepared statements which partially preoptimize a plan but still allows
the database engine to insert variable assignments. In that sense, in order to map these ideas

2.3. Materialized Algorithmic View Selection 21

a

c d

e

c d

c d

f

a

g⨝

𝜎 𝚪

(a) Possible deep query plan.

a

c d

e

c d

c d

f

a

g

match 
MAV1

match 
MAV2

𝚪𝜎

⨝

(b) Algorithmic view matching.

e

c d
MAV1

f

a

g
MAV2

(c) Available materialized algorithmic views.

a

c d

c d

MAV2

MAV1

⨝

(d) Deep query plan using MAV1 and MAV2.

Figure 2.2: Materialized Algorithmic Views (MAVs) in deep query planning and the Algorithmic
View Selection Problem (AVSP).

22 Chapter 2. Deep Query Optimization

back to the traditional database universe of logical and physical operators, an MAV that hap-
pens (incidentally) to prematerialize the internals of what we used to call an operator could be
coined a prepared operator. For instance, in Figure 2.2d, MAV1 materializes the contents of
a grouping operator. Again, MAVs do not have to match these traditional operator boundaries.
In Figure 2.2d, the join operator is an example for a case where only parts of the ‘operator’ are
replaced by MAV2.

Another relationship worth mentioning is plan caching: some database engines already keep
subplans of previously optimized queries and reuse them. However, in contrast to DQO, these
techniques work on the coarse-granular operator abstraction.

Also notice that there is no need to fully preoptimize an MAV. A ‘materialization’ simply
means that we decrease the logicality and increase the physicality of this subplan in whatever
way. Recall our discussion for Figure 2.1 which displays this effect as well: prematerializing an
MAV simply means that we push a (sub-)plan further to the right.

MAVs and the AVSP trigger a couple of interesting research challenges and directions, in par-
ticular when applied to indexing. We will discuss them in Section 2.7.

2.3.4 But the Search Space Is Exponential!

It is obvious that DQO increases the search space of an already (but only possibly!) exponential
search space evenmore. However, in SQO, it is well-known that the shape of the join graphmay
reduce the complexity of the search space dramatically, e.g., the search space is only polynomial
for linear plans, see [Moe] for an overview. We believe that similar effects are present in DQO,
i.e., the shape of the graph representing how components may be composed may reduce the
search space a lot. This is up to future work to explore.

We also believe that similarly to howMVs helped to reduce the search space of a shallow query
plan at query time MAVs help to reduce the search space over algorithmic components. So, in
summary, the explosion of the search space may seem frightening in the beginning, however,
that is not a reason to ignore DQO but rather a call to research.

2.4. System Integration 23

2.4 System Integration

Our experiments in Section 2.5 consider the effects of DQO in an isolated way by examining a
concrete example of different grouping implementations. The intention is to make the case for
a deeper level of query optimizationwithout having a complete system behind it. Our long term
vision is to integrate this core idea into an existing database management system. Therefore,
in this section we will discuss what the integration of DQO into an existing DBMS could look
like. For this, we will briefly touch on the core components of query optimization like plan
representation, plan space enumeration, cost models, and statistics. Ultimately, we are plan-
ning to integrate DQO into mutable [HD23c], a query execution engine currently developed at
Saarland University.

Plan representation. The most fundamental design decision, on which the other parts of
the query optimization engine are building up, is the internal representation of a query. Since
we aim to break up the current structure of operators and to optimize on a deeper level, a new
physiological representation of queries might be necessary (analogue to one of the interme-
diate physiological operator representations in Figure 2.1). For instance, instead of having a
logical grouping operator, we could introducemultiple physiological grouping operators which
already decide on some implementation details like index-based or order-based grouping (see
our algorithms in Section 2.5).

Plan space enumeration. The deeper we go into an operator, the more the search space and
the complexity increases. Holistically enumerating the whole query plan including all possible
subcomponents of every operator could easily exceed what is computationally possible right
now. To overcome this, one possibility might be to do independent plan enumeration inside
each operator using the structural components as the building blocks. With that, we can locally
come up with the best possible operator given the underlying dataset and workload. Once we
have the optimal physical operators, we can use classical plan enumeration algorithms like
dynamic programming to find the final query execution plan. Of course, this probably does
not find the overall best execution plan because we are missing global optimization effects.
However, this could already improve performance significantly. To further prune the search
space, we can fall back on materialized algorithmic views. We could essentially create a library
of many different algorithmic implementations from which we could choose.

Cost models. Which cost models we are effectively going to use depends on the type of
plan enumeration and which statistics are available to use. In case we want to enumerate the

24 Chapter 2. Deep Query Optimization

structure of operators, we might need separate cost models for the different kinds of operators.
In addition, we expect to come across new rules whichwe can incorporate into the optimization
process. For example, using distribution information by knowing that the underlying data is
sparse, we might discard all possible plans using static perfect hash-based algorithms because
the performance will definitely be worse than classical hash-based implementations (see our
experimental results in Section 2.5).

Statistics. To enable a fine-granular optimization of our query operators and with it, of the
complete query plan, we need precise statistics about the underlying data and the workload.
For queries processing large amounts of data, we assume the overhead for collecting additional
statistics to be most likely negligible. Which statistics we need depends on the optimization
decisions we want to make. For example, information about the density of the data allows the
use of specialized algorithms like static perfect hash-based grouping.

As a closing thought, we expect that many design decisions will come naturally as we are
implementing the system.

2.5 Experiments

DQO can be applied in all parts of query optimization that include algorithmic design decisions.
In this section, we demonstrate in a small domain that DQO can have a significant impact on
query execution.

2.5.1 Setup and Methodology

All experiments were conducted on a Linux machine with an AMD Ryzen Threadripper 1900X
8-Core processor with 32 GiB memory. All algorithms are implemented single-threaded in C++
and compiled with Clang 8.0.1, -O3.

We consider five different implementation variants of grouping2. Each implementation com-
putes the aggregates COUNT and SUM on the fly and stores a mapping from grouping key to
aggregate data inside an array. In our experiments, we assume the number of distinct values
to be known. However, this assumption is not strictly required and can be relaxed by using
dynamic data structures, techniques like rehashing, or arrays that cover the whole domain in

2The implementation of our algorithms is available on GitHub https://github.com/
BigDataAnalyticsGroup/Deep-Query-Optimization

https://github.com/BigDataAnalyticsGroup/Deep-Query-Optimization
https://github.com/BigDataAnalyticsGroup/Deep-Query-Optimization

2.5. Experiments 25

case it is relatively small and dense.

Hash-based Grouping (HG). We use std::unordered_map as the underlying hash table
and the Murmur3 finalizer as hash function. Every input element is inserted individually into
the hash table.

Static Perfect Hash-based Grouping (SPHG). We use the grouping key as offset into the
array storing the groups, acting as a static and perfect hash function.

Order-based Grouping (OG). This implementation requires the input data to be partitioned
by the grouping key. We iterate sequentially over the input data, create a group for the very
first occurrence of a grouping key, and insert this group at the first empty slot in the array. As
long as the grouping key remains the same, the corresponding aggregates are updated.

Sort & Order-based Grouping (SOG). We do not require that the input data is partitioned
by the grouping key. Therefore, we first sort the data then we apply OG.

Binary Search-basedGrouping (BSG). We store amapping from grouping key to aggregate
data inside a sorted array. This allows us to perform binary search to look up a group by its
key.

The datasets consist of 100 million 4 byte unsigned integer values representing the grouping
key. Each dataset is uniformly distributed and has two properties, sortedness and density. Tak-
ing all combination of those properties, we end up with four different datasets.

2.5.2 Performance of Physical Grouping Implementations

This section compares the execution time of the algorithms across the four datasets. Figure 2.3
shows one plot for each of the four different datasets. Each plot depicts the execution time in
milliseconds for an increasing number of groups.

Sorted&Dense. For this combination, OG and SPHG exhibit the best performance at roughly
250 ms, being more than four times faster than HG. SOG performs even worse because the
already sorted input data is again (unnecessary) sorted, incurring considerable overhead. Fur-
thermore, the execution time of each algorithm is mostly independent of the number of groups.

26 Chapter 2. Deep Query Optimization

0

500

1000

1500

Ru
nt

im
e

[m
s]

sorted — sparse sorted — dense

0 10000 20000 30000 40000
#groups

0

2000

4000

6000

8000

10000

Ru
nt

im
e

[m
s]

unsorted — sparse

2 4 6 8 10 12 14 16 18 20
0

2000

0 10000 20000 30000 40000
#groups

unsorted — dense

Hash-based
Binary Search-based

Order-based
Sort & Order-based

Static & Perfect Hash-based

Figure 2.3: Grouping performance of four different grouping algorithms on four different input
datasets.

2.5. Experiments 27

Sorted & Sparse. This experiment shows that the execution time of HG, OG, and SOG is
essentially independent of the data density. OG again performs best at around 250ms. Since we
have a sparse data domain, we cannot use SPHG. Instead, we use BSG, which incurs logarithmic
costs relative to the number of groups. However, no algorithm comes close to the performance
of OG.

Unsorted & Dense. In this case, SPHG is the best performing algorithm at a constant exe-
cution time of roughly 250 ms, being unaffected by the sortedness of the data. The execution
time of HG grows with an increasing number of groups because of caching effects. For less
than about 500 groups, SOG displays a steep rise in execution time, and afterward merely a
modest increase.

Unsorted & Sparse. For this setting, we can neither exploit the sortedness nor the density
of the data. Without these properties, HG is superior in a wide range of number of groups.
However, for up to 14 groups (see zoom-in in the respective plot), BSG outperforms HG. This
opens up another optimization dimension in which the number of distinct values should be
considered.

In summary, this experiment shows that not only sortedness determines the fastest algorithm
but also other properties like in this case density.

2.5.3 DQO-Enabled Dynamic Programming

This section shows how classical dynamic programming can lead to better query execution
plans when extending it with DQO. Consider the query depicted in Listing 2.1.

Listing 2.1 Example query joining two relations 𝑅 and 𝑆 followed by a grouping operation.

1 SELECT R.A, COUNT (*)
2 FROM R JOIN S ON R.ID=S.R_ID
3 GROUP BY R.A;

For the physical implementations of the joins, we assume the algorithmic counterparts of our
grouping implementations. The corresponding cost models are shown in Table 2.4. We assume
the size of tables R and S to be 40, 000 and 90, 000, respectively. Further, we assume the output-
size of the join to be 90, 000 because of the foreign-key constraint R.ID=S.R_ID and the output-
size to be 20, 000. Figure 2.4 shows the logical plan of the query in Listing 2.1.

28 Chapter 2. Deep Query Optimization

Table 2.4: Cost models for grouping and join algorithms.

Grouping Join

hash-based 𝐻𝐺 (𝑅) = 4 · |𝑅 | 𝐻 𝐽 (𝑅, 𝑆) = 4 · (|𝑅 | + |𝑆 |)

order-based 𝑂𝐺 (𝑅) = |𝑅 | 𝑂𝐽 (𝑅, 𝑆) = |𝑅 | + |𝑆 |

sort & order-based 𝑆𝑂𝐺 (𝑅) = |𝑅 | · 𝑙𝑜𝑔2 (|𝑅 |) + |𝑅 |
𝑆𝑂𝐽 (𝑅, 𝑆) = |𝑅 | · 𝑙𝑜𝑔2 (|𝑅 |)+

|𝑆 | · 𝑙𝑜𝑔2 (|𝑆 |)+
|𝑅 | + |𝑆 |

static perfect hash-based 𝑆𝑃𝐻𝐺 (𝑅) = |𝑅 | 𝑆𝑃𝐻 𝐽 (𝑅, 𝑆) = |𝑅 | + |𝑆 |

binary search-based 𝐵𝑆𝐺 (𝑅) = |𝑅 | · 𝑙𝑜𝑔2 (#𝑔𝑟𝑜𝑢𝑝𝑠)
𝐵𝑆 𝐽 (𝑅, 𝑆) = |𝑅 | · 𝑙𝑜𝑔2 (#𝑔𝑟𝑜𝑢𝑝𝑠) +

|𝑆 | · 𝑙𝑜𝑔2 (#𝑔𝑟𝑜𝑢𝑝𝑠)

ΓR.A, COUNT(*)

⊲⊳R.ID=S.R_ID

R S

Figure 2.4: Logical plan of example query.

2.5. Experiments 29

First, we join both input relations R and S and afterward, we compute the grouping result on the
output of the join. However, we want to determine which physical implementations of the join
and grouping operators lead to the overall best plan. While SQO only considers data sortedness,
DQO also considers other DQO plan properties (cf. Section 2.2.2), here: the density of the
grouping keys. This allows us to use static perfect hash-based algorithmic designs (SPH) for our
join and grouping implementations. For such a small query, a classical dynamic programming
algorithm is sufficiently fast. In case the search space gets too big, we believe that we can fall
back on established dynamic programming variations [Moe+06; Moe+08].

Figure 2.5 presents the DQO dynamic programming tables for the dense property, considering
the different combinations of input relations based on sortedness. Similarly, Figure 2.6 displays
the corresponding dynamic programming tables for the sparse property under the same sort-
edness variations of input relations. We consider static perfect hash-based algorithms only for
dense data and binary search-based algorithms only for sparse data. In addition, we assume
sort and order-based algorithms to incur sorting cost only if the input is not sorted. Further-
more, if at least one of the inputs is not sorted, we do not consider order-based algorithms.
For each combination, we compared the estimated costs of the best DQO plan to the estimated
costs of the best SQO plan. In general, the dynamic programming results show that in a dense
domain, using specialized algorithms like SPH leads to plans with the lowest estimated cost.

Table 2.5 shows the improvement factors for the estimated plan costs of DQO over SQO.
Compared to DQO, the only difference is that SQO does not consider data density as a meta-
relational property. Since SPH can only be used in a dense domain, for sparse data DQO gen-
erates the same plans as SQO, resulting in no improvement. In case both inputs are sorted, the
order-based implementations achieve the cheapest plans regardless of the data density. How-
ever, if at least one input is unsorted, DQO generates plans with an improvement factor of up
to 4x. In this case, DQO chooses plans that use the SPHJ and SPHG algorithms.

Table 2.5: Improvement factors for the estimated plan costs of DQO over SQO.

sparse dense

Rsorted
Ssorted 1x 1x
Sunsorted 1x 4x

Runsorted
Ssorted 1x 2.8x
Sunsorted 1x 4x

In summary, the experiments show that depending on the underlying data properties, different
physical implementations lead to the cheapest plans and achieve the best execution time. This
supports our claim that more fine-granular optimization can lead to better query plans.

30 Chapter 2. Deep Query Optimization

Figure 2.5: Dynamic programming tables for dense data and different combinations of input
relations regarding sortedness.

(a) Rsorted & Ssorted

Subproblem Possible Plans Costs Output Size Properties
Dense Sorted

R scan(R) 0 40, 000 3 3

S scan(S) 0 90, 000 3 3

R ⊲⊳ S

HJ(R,S) 520, 000

90, 000

3 3
OJ(R,S) 130, 000 3 3
SOJ(R,S) 130, 000 3 3
SPHJ(R,S) 130, 000 3 3

Γ(R ⊲⊳ S)

HG(OJ(R,S)) 490, 000

20, 000

3 7
OG(OJ(R,S)) 220, 000 3 3
SOG(OJ(R,S)) 220, 000 3 3
SPHG(OJ(R,S)) 220, 000 3 3

(b) Rsorted & Sunsorted

Subproblem Possible Plans Costs Output Size Properties
Dense Sorted

R scan(R) 0 40, 000 3 3

S scan(S) 0 90, 000 3 7

R ⊲⊳ S
HJ(R,S) 520, 000

90, 000
3 7

SOJ(R,S) 1, 611, 187 3 3
SPHJ(R,S) 130, 000 3 7

Γ(R ⊲⊳ S)

HG(SPHJ(R,S)) 490, 000

20, 000

3 7
SPHG(SPHJ(R,S)) 220, 000 3 3
SOG(SPHJ(R,S)) 1, 701, 187 3 3
OG(SOJ(R,S)) 1, 701, 187 3 3
SOG(SOJ(R,S)) 1, 701, 187 3 3

(c) Runsorted & Ssorted

Subproblem Possible Plans Costs Output Size Properties
Dense Sorted

R scan(R) 0 40, 000 3 7

S scan(S) 0 90, 000 3 3

R ⊲⊳ S
HJ(R,S) 520, 000

90, 000
3 3

SOJ(R,S) 741, 508 3 3
SPHJ(R,S) 130, 000 3 3

Γ(R ⊲⊳ S)

HG(SPHJ(R,S)) 490, 000

20, 000

3 7
OG(SPHJ(R,S)) 220, 000 3 3
SOG(SPHJ(R,S)) 220, 000 3 3
SPHG(SPHJ(R,S)) 220, 000 3 3

(d) Runsorted & Sunsorted

Subproblem Possible Plans Costs Output Size Properties
Dense Sorted

R scan(R) 0 40, 000 3 7

S scan(S) 0 90, 000 3 7

R ⊲⊳ S
HJ(R,S) 520, 000

90, 000
3 7

SOJ(R,S) 2, 222, 696 3 3
SPHJ(R,S) 130, 000 3 7

Γ(R ⊲⊳ S)

HG(SPHJ(R,S)) 490, 000

20, 000

3 7
OG(SOJ(R,S)) 2, 312, 696 3 3
SOG(SPHJ(R,S)) 1, 701, 187 3 3
SOG(SOJ(R,S)) 2, 312, 696 3 3
SPHG(SPHJ(R,S)) 220, 000 3 3

2.5. Experiments 31

Figure 2.6: Dynamic programming tables for sparse data and different combinations of input
relations regarding sortedness.

(a) Rsorted & Ssorted

Subproblem Possible Plans Costs Output Size Properties
Dense Sorted

R scan(R) 0 40, 000 7 3

S scan(S) 0 90, 000 7 3

R ⊲⊳ S

HJ(R,S) 520, 000

90, 000

7 3
OJ(R,S) 130, 000 7 3
SOJ(R,S) 130, 000 7 3
BSJ(R,S) 1, 987, 403 7 3

Γ(R ⊲⊳ S)

HG(OJ(R,S)) 490, 000

20, 000

7 7
OG(OJ(R,S)) 220, 000 7 3
SOG(OJ(R,S)) 220, 000 7 3
BSG(OJ(R,S)) 1, 415, 894 7 3

(b) Rsorted & Sunsorted

Subproblem Possible Plans Costs Output Size Properties
Dense Sorted

R scan(R) 0 40, 000 7 3

S scan(S) 0 90, 000 7 7

R ⊲⊳ S
HJ(R,S) 520, 000

90, 000
7 7

SOJ(R,S) 1, 611, 187 7 3
BSJ(R,S) 1, 987, 403 7 7

Γ(R ⊲⊳ S)

HG(HJ(R,S)) 880, 000

20, 000

7 7
OG(SOJ(R,S)) 1, 701, 187 7 3
SOG(HJ(R,S)) 2, 091, 187 7 3
SOG(SOJ(R,S)) 1, 701, 187 7 3
BSG(HJ(R,S)) 1, 805, 894 7 3

(c) Runsorted & Ssorted

Subproblem Possible Plans Costs Output Size Properties
Dense Sorted

R scan(R) 0 40, 000 7 7

S scan(S) 0 90, 000 7 3

R ⊲⊳ S
HJ(R,S) 520, 000

90, 000
7 3

SOJ(R,S) 741, 508 7 3
BSJ(R,S) 1, 987, 403 7 3

Γ(R ⊲⊳ S)

HG(HJ(R,S)) 880, 000

20, 000

7 7
OG(HJ(R,S)) 610, 000 7 3
SOG(HJ(R,S)) 610, 000 7 3
BSG(HJ(R,S)) 1, 805, 894 7 3

(d) Runsorted & Sunsorted

Subproblem Possible Plans Costs Output Size Properties
Dense Sorted

R scan(R) 0 40, 000 7 7

S scan(S) 0 90, 000 7 7

R ⊲⊳ S
HJ(R,S) 520, 000

90, 000
7 7

SOJ(R,S) 2, 222, 696 7 3
BSJ(R,S) 1, 987, 403 7 7

Γ(R ⊲⊳ S)

HG(SPHJ(R,S)) 880, 000

20, 000

7 7
OG(SOJ(R,S)) 2, 312, 696 7 3
SOG(HJ(R,S)) 2, 091, 187 7 3
SOG(SOJ(R,S)) 2, 312, 696 7 3
BSG(HJ(R,S)) 1, 805, 894 7 3

32 Chapter 2. Deep Query Optimization

2.6 Related Work

Notice, that the bulk of related work has already been discussed inline above or will be dis-
cussed in the Research Agenda in Section 2.7.

Stratos Idreos’ work [Idr+18b; Idr+18a] is the closest work to ours when it comes to physical
‘indexing operators’, see Section 2.7 (Materialized Algorithmic Index Views) for details.

Christoph Koch’s work [Koc13] discusses the problems with missing abstractions in the
database community, in particular when communicating our findings to the systems commu-
nity. The Introduction of that paper is a must-read for every researcher: “... What is frequently

lacking is a conclusive deconstruction of the research contribution [of a paper] into first principles

and fundamental patterns from which the contribution is composed. ...”. In his work, Christoph
Koch develops methods for synthesizing and composing algorithms [Koc14]. That work is
however much more PL and compiler-oriented than DQO. In particular, we argue that database
domain-specific decisions should not be delegated to the PL compiler.

Lohman introduced the concept of LOw-LEvel Plan OPerators (LOLEPOPs) [Loh88]. In this
work, the author aims to enumerate different query execution plans by using a ‘building block’
approach to assemble query execution plans in a grammar-like style. Specifically, they propose
to compose low-level database operations such as access, join, or sort into higher-level opera-
tions. Although this approach resembles the concept of DQO to some extent, the key difference
is the level of granularity. LOLEPOPs essentially consider existing relational algebra operators
such as joins as low-level operations and expand this set with additional operations such as
sorting or shipping. In particular, they do not propose the idea to break up existing relational
algebra operators. In contrast, we explicitly advocate for breaking up traditional logical oper-
ators and consider more fine-granular subcomponents during the query optimization process.
This enables us to construct query plans by optimizing not only the subcomponents within
individual logical operators but also across the conventional boundaries of operators.

The work by Kohn et al. [KLN21] is closely related to our work, as it also builds on the idea of as-
sembling complex parts of a query plan from low-level operators, specifically focusing on SQL
aggregations. Like DQO, their work is motivated by the observation that traditional relational
algebra operators are too coarse-grained for a holistic optimization process. To address this,
Kohn et al. propose to break up traditional SQL aggregation operators into a set of low-level
operators, enabling the composition of more advanced SQL aggregates. Their experimental
evaluation demonstrates that composing SQL aggregation computations from low-level opera-

2.7. Research Agenda 33

tors can significantly improve performance compared to monolithic operators. This approach
can be seen as an instantiation of a deep query plan specifically for aggregation.

The works by Bandle and Giceva [BG21] and Jungmair and Giceva [JG23] propose the use of
declarative sub-operators for universal data processing systems. In both works, the authors ad-
vocate for making sub-operators first-class entities within data processing systems, allowing
them to function as an intermediate representation or unified abstraction layer, respectively.
While the first work presents a more visionary perspective, the second offers a concrete design
and implementation based on specific requirements and novel design decisions. Jungmair and
Giceva [JG23] establish a unified abstraction layer that enables the specification of complex,
custom operators and algorithms. By decoupling the semantics of an operator from its con-
crete implementation, similar to the separation of logical and physical operators, they are able
to reduce complexity and make the implementation of complex operators feasible. Further, the
fine-granularity of these sub-operators also facilitates new automatic optimizations and trans-
formations. While our approach specifically breaks up traditional relational algebra operators
to unlock further optimization potential, their approach extends beyond query optimization.
It focuses on efficiently supporting diverse workloads and reducing the internal complexity of
data processing systems by introducing a unified abstraction layer based on declarative sub-
operators. In general, their work can be seen as a concrete implementation and realization of
the broader vision we advocate in our DQO work.

2.7 Research Agenda

Revisit SQO Algorithms. We envision that many existing SQO algorithms can easily be
extended to support DQO. Just like extending SQO to large queries [Neu+18], the challenge
will be to extend them to deep queries and find the right sweet spots. Recall that, in the history
of SQO, initially only relatively small queries could be optimized, but over time the queries
became bigger and bigger. We foresee the same to happen with DQO: over time deeper and
deeper queries will become optimizable. As long as optimization time in DQO is an issue, we
need MAVs to the rescue.

Physiological Algebra. An interesting research subspace will be to identify the right com-
ponents to use in DQO, i.e., what are suitable organelles and macro-molecules to consider?
We envision that this will lead to a physiological component set akin to relational algebra yet
including both logical and physical aspects.

34 Chapter 2. Deep Query Optimization

Algorithmic Views Selection. A promising direction is to systematically research and eval-
uate MAVs and the Algorithmic Views Selection Problem (AVSP). When to materialize which
algorithm into an MAV? Beforehand or at query time? What do we possibly gain or lose at
query time? These trade-offs have to be explored carefully. And, yes, for sure: these trade-offs
are absolutely workload-dependent. For which parts of a query plan should we consider DQO?

Partial Algorithmic Views. Rather than fully materializing parts of a deep query plan into
an MAV, or, if we pick the other extreme, not materializing it at all, there is an interesting
middle-ground: It makes sense to partially optimize an MAV offline and leave some flexibility
for DQO at query time. Which portions should be left up for DQO at query time? Again, these
trade-offs have to be explored carefully. Actually, there are many interesting lessons here that
can be adapted from compiler construction in this space.

MaterializedAlgorithmic IndexViews. An entire interesting research subspace is to apply
DQO to indexing. It would be exciting to explore DQO in that context. In database literature,
we witness the birth of about a dozen index structures every year. Most indexes are basically
composed of substructures (atoms in our analogy), i.e., different nodes and leaf types. Class-
book index structures like a B-trees and binary search trees use a tiny set of node and leaf types,
other indexes extend that set slightly allowing for more heterogeneous trees [Lei+13].

An extreme version of this is [Idr+18b; Idr+18a]. However, a synthesized data structure (SDS)
is simply one special case of what we propose. Basically, in DQO, a synthesized data structure

is one particular type of MAV. In addition, for an SDS all the optimization happens offline. That
is an unnecessary restriction as already outlined in Section 2.3. In DQO we do not need to
synthesize the entire index or any other MAV beforehand. Which implies the following:

Runtime-Adaptivity and Reoptimization of MAVs. So far we suggested optimizing deep
query plans and then execute these plans. As with shallow query plans, the literature on re-
optimization (during query time) as well as adaptivity should be revisited in the light of DQO.
For instance, in traditional indexing, for each column, the decision whether to create an index
is binary. What if we make that decision continuous? Like that different parts of a column are
not, slightly, or fully indexed. That is the core idea of adaptive indexing [Ker+05; Sch+13]. An
adaptive index has built-in heuristics to make these decisions at runtime based on the incom-
ing queries. And even those heuristics may be meta-adapted [Sch+18]. In the DQO universe a
(meta-)adaptive index is simply a partial MAV where some optimization decisions have been
delegated to query time and baked into that MAV. This idea should be revisited for all physical
components currently used in SQO; not only indexes.

2.8. Conclusions 35

Long term Vision. We are planning to integrate DQO into mutable [HD23c]. mutable is
an extensible research database system built at Saarland University. In particular, we want to
explore how to make a smooth transition from SQO to DQO and find the sweet spots for any
given workload.

2.8 Conclusions

This paper made several contributions: we opened the book for Deep Query Optimiza-
tion (DQO). We presented the general idea, contrasted it to SQO, and showed the high po-
tential of DQO. In addition, we introduced the concept of Materialized Algorithmic Views and
the Algorithmic View Selection Problem. We presented early experimental results with DQO.
In addition, we compiled a research agenda.

36 Chapter 2. Deep Query Optimization

Chapter 3

Genetic Generic Generation of Index
Structures

3.1 Introduction

3.1.1 Problem 1: Indexes Are Considered Monolithic Entities

When we, as database researchers, talk about indexes, we use the term index like referring
to an entity of its own. But is that the case? Let us look at our good old B-tree: A B-tree

index consists of two different node types: inner nodes and leaves. Inner nodes keep pointers to
other nodes. The main purpose of an inner node is to route incoming lookups to other nodes.
Leaves keep pointers to data pages or the data itself. In addition, a B-tree index algorithmically
preserves a couple of invariants, e.g., all paths from the root to a leaf have the same lengths,
each node only has one parent node (i.e., nodes are structurally organized into a tree), and so
forth. In addition, all nodes keep data in a specific layout (row or column layout, cache-and
SIMD-efficient layouts, etc.) and define which search algorithm to use inside a node (binary
search, interpolation, prediction, etc.). Since the publication of the original B-tree paper [BM72]
almost 50 years ago, the physical organization of B-trees has been improved in a zillion different
ways, e.g., [RR99; RR00; SGL09; Kim+10].

But what concretely is the entity ‘the index’ in here? So far we only defined two different
node types pointing to each other, we added a couple of constraints (fan-outs, tree-structure,
concrete physical organization of inner nodes and leaves). We may also add heuristics for

37

38 Chapter 3. Genetic Generic Generation of Index Structures

invariant maintenance (split and merge). But, if we change any aspect of this, do we receive a
completely different index? When is it just a variant of an existing index? And when is it a new
index? For instance, if we change constraints to allow nodes to have more than one parent,
would that be a completely different index entity? Or is it just that one constraint that changes
(with possible implications to other features of the index)?

In this paper, we will introduce the idea of logical and physical indexes. We will show that
most existing indexes can be expressed as a specific configuration in a generic logical and phys-
ical indexing framework1 including B-trees, radix-trees, learned indexes, and even extendible
hashing. And those configurations can be combined almost arbitrarily within the same config-

uration. This opens the book for a myriad of hybrid ‘indexes’. For instance, in our framework,
one extreme of an index (say a single hash table) can smoothly be morphed into another ex-
treme (say a B-tree style index with all kinds of different layouts and search algorithms inside
its nodes).

3.1.2 Problem 2: Two Completely Different Methodologies to Solve a Similar
Problem

It is remarkable that there is quite a divide in databases when it comes to designing efficient
components of a database system like index structures as opposed to designing query plans. For
index structures, the historic and state-of-the-art approach is to define some performance goals,
reason about complexities, design something on a blackboard, and then implement it. Like that
an index (much like any other system component) has to be designed from scratch and then
implemented. Eventually, we receive a piece of software that then (hopefully) serves the orig-
inal purpose. In sharp contrast to this, since the ’70s and the seminal Selinger paper [Sel+79],
database researchers follow a completely different, and rather successful, design path when it
comes to designing query plans: we automatically assemble complex plans from logical and
physical operators.

So why follow two completely different design approaches if at the core these are similar prob-
lems? Once we are in the position to express an ‘index’ as a configuration in a generic logical
and physical indexing framework, there is one question left: Why should we configure indexes
by hand anyway? Why should we handcraft which node type to use, which node-internal
search algorithm to use, which data layout, tree-levels to use, etc.? If we have different compo-
nents of an index which can be interchanged freely, plus options to play with, well, then we

1Note that we will not introduce this as a software framework as done in [HNP95; Ber+01] but rather on a
conceptual level.

3.1. Introduction 39

have an optimization problem!

For this reason, in this paper, we will propose a genetic algorithm that, given a dataset and
workload, will automatically determine a suitable logical and physical index configuration.

3.1.3 Problem Statement

We summarize the two principal problems discussed above into the following problem state-
ment that we will investigate in this work:

1. How can we generalize the most important index structures into a common conceptual
indexing framework?

2. How can we automatically breed index structures using 1.

3.1.4 Contributions

In this paper, we make the following contributions:

1. We introduce a generic index structure framework that makes a clear difference between
a logical and a physical indexing framework. This is inspired by the split into logical and
physical operators in relational and physical algebras/operators.

2. We present a genetic algorithm which allows us to automatically generate (breed) effi-
cient index configurations (aka indexes).

3. We present an extensive experimental evaluation of our approach, demonstrating that
we can rediscover both existing, previously handcrafted indexes and new types of hybrid
indexes.

The paper is structured as follows. In Section 3.2, we introduce our logical generic indexing
framework. After that, in Section 3.3, we introduce our physical generic indexing framework.
Both serve as the basis for Section 3.4 where we introduce our index breeding approach. Sec-
tion 3.5 contrasts our approach to related work. Section 3.6 presents our experimental evalu-
ation. We will conclude and point out a couple of exciting future research directions in Sec-
tion 3.7.

40 Chapter 3. Genetic Generic Generation of Index Structures

3.2 Generic Logical Indexing Framework

In this section we introduce our generic logical indexing framework. The physical indexing
framework is explained Section 3.3.

Descriptions of index structures tend to mix up logical (what is done) and physical aspects (how
is that achieved). For instance, consider the following sentence taken from a popular textbook.

“A sorted file, called the data file, is given another file, called the index file, consisting of key-
pointer-pairs. A search key K in the index file is associated with a pointer to a data-file record
that has search key K” [GUW02, Section 13.1].

In this sentence the logical aspects of the index (black underlines, e.g., sorted, key, record) and
the physical aspects of the index (red underlines, e.g., file, pointer) are introduced at the same

time and thus mix up both aspects in the same explanation. In a way this violates physical
data independence of the index structure. We want to clearly separate the logical and physical
aspects of an index. This is analogue to the separation of logical and physical operators in
query processing and optimization.

Basic Definitions. Any expression 𝜎𝑃 (𝑅) where 𝑃 is a predicate defined on a relational
schema [𝑅] : {[𝐴1 : 𝐷1, . . . , 𝐴𝑛 : 𝐷𝑛]}, i.e., a function 𝑃 : [𝑅] ↦→ {true,false}, is called a query
on 𝑅. The result of a query is 𝜎𝑃 (𝑅) ⊆ 𝑅. Given [𝑅] with an attribute 𝐴𝑖 with a corresponding
non-categorical one-dimensional domain 𝐷𝑖 , and two constants 𝑙, ℎ ∈ 𝐷𝑖 , 𝑙 ≤ ℎ, 𝜎𝑙≤𝐴𝑖≤ℎ (𝑅) is
a range query on 𝑅. It selects all tuples 𝑡 = (𝑎1, .., 𝑎𝑖 , .., 𝑎𝑛) ∈ 𝑅 where 𝑎𝑖 is contained in the
interval [𝑙 ;ℎ]. A range query with 𝑙 = ℎ is called a point query.

3.2.1 Logical Nodes and Logical Indexes

Definition 1 (Logical Node.). A logical node is a tuple (p, RI,DT):

1. p : [𝑅] → 𝐷 is a partitioning function on the schema [𝑅] of the dataset to index, (p
may be undefined),

2. RI is the routing information. It is a function 𝑅𝐼 : 𝐷 → P(𝑁) where𝑁 is a set of nodes
and P(𝑁) is the power set of 𝑁 . In other words, each element of 𝐷 (the target domain
of p) is mapped to a subset of the nodes in 𝑁 . For each outcome of the partitioning
function p we can find a set of associated nodes or the empty set. Notice that the routing

3.2. Generic Logical Indexing Framework 41

…

logical node
routing information RI data DT

{(2,A),(1,B)}

… …

partitioning function p
 p(t) := t . e mod 5

set of nodes N

…

4 2 0 3 1

…

node
routing table RI data DT

{42, 9, 4, 8}

… … …

partitioning function p
 p0(t) := t . a mod 5

set of nodes N

…

old version:

{4, 2, 0, 1}

…

Figure 3.1: An example of a logical node with a hash-style partitioning function, four mappings
in the routing information RI, and two tuples in the data part.

information does neither imply nor assume a specific physical organization including a
sort order on its entries (like in B-trees). RI may be undefined. In the following, we use
nodes(RI) for the set of nodes mapped to by RI.

3. DT is the data. It is a set of tuples with relational schema [𝑅], DT may be empty2.

Figure 3.1 visualizes the principal structure of a logical node. The partitioning function 𝑝 com-
putes 𝑡 .𝑒 mod 5 which yields a domain 𝐷 = {0, 1, 2, 3, 4}. Here, only a subset of 𝐷 is shown in
the visualization of RI, i.e., 3 is not shown as it maps to the empty set. In addition, RI maps 2
and 0 to the same node. Moreover, the data part DT contains two tuples (2, 𝐴) and (1, 𝐵).

Definition 2 (Complete Logical Index.). Let 𝐿𝑁 be a set of logical nodes with ∀𝑛∈𝐿𝑁 :
𝑛𝑜𝑑𝑒𝑠 (𝑛.𝑅𝐼) ⊆ 𝐿𝑁 . Then the graph 𝜆 = (𝐿𝑁) is called a complete logical index.

In other words, only if all routing information in the nodes of 𝐿𝑁 points to nodes contained in
𝐿𝑁 , we call 𝐿𝑁 a complete logical index. At first, this definition sounds a bit trivial, but this
definition makes an important observation that is frequently overlooked: a logical index is-a
graph of logical nodes — and nothing else.

Running Example. Figure 3.2 illustrates the modeling power of our framework and shows
four possible logical indexes for [𝑅] = {[𝑒 : int, 𝑔 : char]} and 𝑅 = {(2,A), (7, B), (1, B), (6,C),
(12,Z), (11,C)}. Note that in these examples the DTs are empty for inner nodes. The implica-
tions of non-empty DTs are future work. Figure 3.3 demonstrates how we can model arbitrary
‘hybrid’ logical indexes.

2In principle, DT could also be defined as a similar function as RI, the difference being that RI maps to nodes
whereas DT maps to tuples. Also note that the DT-fields can be used to very naturally support buffer-tree-style
indexes [Arg95], bulk loading mechanisms [BS01] as well as any form of recursive partitioning algorithm.

42 Chapter 3. Genetic Generic Generation of Index Structures

RI DT
{}

p
t . e {(- ;6), [6;11), [11;+)}∞ ∞

b-tree with ISAM

{(1,B), (2,A)}{[6;+)}∞−
p RI DT

{(7,B), (6,C)}{(- ;6),[11;+)}∞ ∞−
p RI DT

{(11,C), (12,Z)}{- ;11)}∞−
p RI DT

(a) B-tree with ISAM:Here the partitioning function returns 𝑡 .𝑒 . The routing information maps ranges
to nodes on the next level. This induces a B-tree-style partitioning. Notice that the common textbook
explanation of B-trees showing 𝑘 pivots and 𝑘 +1 pointers is already a specific physical implementation
of this logical index. In addition, this index contains entries on the leaf-level for backward and forward
chaining of leaves as in ISAM.

RMI

1
3

⋅ t . e 0 1 2 3 4
floor(p(t))

p RI DT
{}

{(1,B), (2,A)}−
p

{}
RI DT

{}−
p

{}
RI DT

{(7,B), (6,C)}−
p

{}
RI DT

{(11,C)}−
p

{}
RI DT

{(12,Z)}−
p

{}
RI DT

(b) RMI: Here the partitioning function is a linear function 𝑝 (𝑡) = 1
3 · 𝑡 .𝑒 + 0 that squeezes the data into

a smaller range ([0;12] → [0;4]). This is equivalent to a linear regression over the key space. RI groups
the data into bins (corresponding to nodes on the next level). However, 𝑝 and RI can be set to use any
form of regression method and for any node independently.

extensible hashing

(2,A),(7,B),(1,B),(6,C), (12,Z),(11,C)

(0010,A),(0111,B),(0001,B),(0110,C), (1100,Z),(1011,C)

data:

binary:

(0010,A),(0111,B),(0001,B),(0110,C), (1100,Z),(1011,C)

(0010,A), (0110,C) (0001,B)

 & 0x7t . e {001,010,011,100,110,111}

{(0111,B) (1011,C)}

local depth = 2
 local depth = 2
 local depth = 3
 local depth = 3

global depth = 3

p RI DT

{}

−
p

{}
RI DT

{(0010,A), (0110,C)}−
p

{}
RI DT

{(0001,B)}−
p

{}
RI DT

{(1100,Z)}−
p

{}
RI DT

(c) Extendible Hashing: Here the partitioning function only considers a suffix of the lowest three bits
(&0x7) of 𝑡 .𝑒 . This implies that it partitions exactly like an extendible hashing [Fag+79] directory with
global depth of three.

radix tree

(1100,Z)

 & 0xCt . e {00,01,10,11}

(0001,B)

(0110,C)

(1011,C))

(0010,A)

(0111,B)

{01,10}
p RI DT

{} & 0x3t . e

p RI DT
{}

{10,11}
p RI DT

{} & 0x3t . e {(1011,C)}−
p

{}
RI DT

{(1100,Z)}−
p

{}
RI DT

{(0001,B)}−
p

{}
RI DT

{(0010,A)}−
p

{}
RI DT

{(0110,C)}−
p

{}
RI DT

{(0111,B)}−
p

{}
RI DT

(d) Radix Tree: Here the partitioning functions partition the dataset on two adjacent bits each: the
root-node partitions on the first two bits of the prefix, the next level on the next two bits. This induces a
radix-partitioning. Note that in this example the index is configured to keep at most one tuple per leaf.
This can of course be configured. So alternatively, we could force a two-level tree just partitioning on
the first two bits. The second level would then keep multiple entries in their DT-fields.

Figure 3.2: Themodeling power of our logical indexing framework for traditional indexes. Four
special cases of possible logical indexes for the running example. All examples mimic existing
and handcrafted (physiological) index structures.

3.2. Generic Logical Indexing Framework 43

B-tree-style index

hybrid logical index

t . e {(- ;6), [6;11), [11;+)}∞ ∞
p DT

{}
RI

radix-style index

t . g {A, B}
RI DT

{}
p

{(2,A)}−
p

{}
RI DT

{(1,B)}{}
RI

−
p DT

extendible hashing-
style index

 & 0x7t . e {110,111}
RI DT

{}
p

{(0111,B)} −
p

{}
RI DT

{(0110,C)}− {}
RIp DT

RMI-style index

DT
{}

1
3

⋅ t . e 0 1 2 3 4
floor(D)

RIp

{(11,C)}−
p

{}
RI DT

{(12,Z)}{}
RI

−
p DT

Figure 3.3: The modeling power of our logical indexing framework for any form of ‘hybrid’
index. The example combines properties from four different traditional index structures. Notice
that there are countless examples: any node in this logical indexmay be exchanged by any other
suitable logical node as long as the data in the index is partitioned in a way that all possible
queries on the logical index return the correct result set. On this abstraction level it is still
undefined how data is represented in the different nodes and in particular in the RI-function
and the DT-set and how we search.

3.2.2 Logical Queries

Definition 3 (RQ: Result of a Range Query on a Logical Index.). Given a range query with
predicate 𝑃 := 𝑙 ≤ 𝐴𝑖 ≤ ℎ, a logical index 𝜆 build upon a relation 𝑅 and a non-empty start
node-set 𝑆𝑁 ⊆ 𝐿𝑁 , the result set of the range query is given by:

RQ(𝑃, 𝑆𝑁) :=
⋃

𝑛∈𝑆𝑁

(
𝜎𝑃 (𝑛.𝐷𝑇)︸ ︷︷ ︸
data in 𝑛

∪ RQ
(
𝑃,

⋃
𝑡 ∈𝑅,𝑙≤𝑡 .𝐴𝑖≤ℎ

𝑛.RI
(
𝑛.𝑝 (𝑡)

)))

Notice that the set semantics will implicitly remove duplicates which in a physical graph-
structured index (possibly not obeying set semantics) may result from visiting nodes multiple
times. Also note that this query will recursively traverse the graph for all qualifying nodes in
the RI-fields. This is fine for a strictly tree-structured index, however, as soon as we do not
have a tree-structure anymore but a more general DAG, it may become possible that, given a
set of start nodes 𝑆𝑁 , certain nodes are reachable via multiple paths. For a general graph, the
implementing algorithm has to be modified to not visit nodes multiple times.

Definition 4 (Correctness of a Logical Index.). Let 𝜆 = (𝐿𝑁) be a complete logical index. Let
𝑆𝑁 be an arbitrary non-empty subset of start nodes: 𝑆𝑁 ⊆ 𝐿𝑁 . Let 𝐷𝑇𝜆: =

⋃
𝑛∈𝐿𝑁 𝑛.𝐷𝑇 be the

44 Chapter 3. Genetic Generic Generation of Index Structures

data contained in 𝜆. Let 𝜎𝑃 :=𝑙≤𝐴𝑖≤ℎ (𝑅) be a range query on 𝑅. If

∀𝑙,ℎ : 𝜎𝑙≤𝐴𝑖≤ℎ (𝐷𝑇𝜆) = RQ(𝑃, 𝑆𝑁),

then 𝜆 is called a correct logical index w.r.t 𝑆𝑁 .

Notice that the correctness of an index depends on whether data is placed into the different
DT-sets according to the properties of the different partitioning functions used at the various
nodes. Furthermore, the start nodes 𝑆𝑁 must be chosen such that all qualifying data can be
reached by the range query. For instance, in a tree-structured index picking the start node is
trivial: we call it ‘the root node’. In a general graph structure, which may even be disconnected,
things can become more complex, i.e., we might have multiple ‘root nodes’, i.e., all nodes that
cannot be reached from any other node of the index, or even no root nodes (in case of a cyclic
graph). This discussion is beyond the scope of this paper and therefore in the following, we
will only consider correct, DAG-structured indexes and assume that 𝑆𝑁 is chosen accordingly.

3.3 Generic Physical Indexing Framework

Aswe just have defined logical indexes (our counterparts to the logical relational algebra opera-
tors), now, we can proceed to devise physical indexes (our counterparts to physical operators).

For each logical node and for each of its RI and DT-part we eventually have to specify how to
realize it. We do this by making a physical decision on the search algorithm (see Section 3.3.1)
and the data layout to use for that set (see Section 3.3.2). Or, we delegate those decisions by
using a nested index (see Section 3.3.3). Any index where for all its nodes the data layouts and
algorithms are sufficiently specified, is called a physical index.

3.3.1 Specify Search Algorithm

We decide which search algorithm to use for searching (key/value)-pairs in RI and/or DT. Note
that all search algorithms stop once a qualifying key was found, i.e., we found the correspond-
ing entry in RI, or we have an exact key match in DT. The principal options are as follows:

1. scan: linear search through all entries, for each key check if it qualifies.

2. binS: binary search, iteratively check key in the middle of the data structure and reduce

3.3. Generic Physical Indexing Framework 45

the search area to [left, mid] or (mid, right] respectively until key qualifies.

3. intS: interpolation search, iteratively compute slope and intercept, i.e., a linear function,
for left and right key, predict key location pred and reduce search area to [left, pred] or
(pred, right] respectively until key qualifies.

4. expS: exponential search, start with the first entry, increase exponent 𝑖 for key position
specified by 2𝑖 until key is greater than the search value, use binary search (or any other
suitable method) inside range [2𝑖−1, end].

5. hashS: chained hashing (or any other suitable hashing variant), use the underlying hash
function to compute the location of the key (and its associated mapping).

6. linregS: linear regression (or any other form of approximation and/or learning), compute
slope and intercept, i.e., linear function, for all data points, compute error bounds, predict
key location pred and use linear search (or any other suitable error correction method)
inside [pred - lower error bound, pred + upper error bound].

7. hybridS: any suitable hybrid algorithm (i.e., a composite of the former options).

3.3.2 Specify Data Layout

We decide which data layout to use for representing the data from RI and/or DT. To define a
data layout, we have to specify the following:

1. col vs row: key/value-pairs are in row or col layout.

2. func: we use a function to specify the RI and/or DT-mapping, thus we do not need
to represent pivots and/or data and therefore do not need a data layout. As discussed
in Definition 1 already, we assume the DT-fields to be actual sets even though they could
be modeled as a more general mapping as well.

3. unsorted vs sorted: the entries are (or are not) sorted by their key.

4. comp: the entries are compressed (and how exactly, i.e., which compression method).

5. hybridDL any suitable hybrid data layout (i.e., any composite of the former options).

Notice that some of these data layout decisions cannot be made independently of the search
algorithms to use, e.g., binary search implies a sorted data layout. Figure 3.4 shows an example

46 Chapter 3. Genetic Generic Generation of Index Structures

 p RI DT
{(1,B), (2,A)} − {}

 p RI DT
{(7,B), (6,C)} − {}

 p RI DT
{(11,C), (12,Z)} − {}

logical
index

RI DT
{}

 p
 t . e {(- ;6), [6;11), [11;+)}∞ ∞

RI DT

{}

 p

 t . e {(- ;6), [6;11), [11;+)}∞ ∞

DL: col, sorted
SAlg: binS

physical
index

 p
DL: row, unsorted

RI DT

SAlg: hashS
{(11,C), (12,Z)} − {}

 p
DL: row, sorted

RI DT

SAlg: expS
{(7,B), (6,C)} − {}

 p
DL: col, sorted

RI DT

SAlg: expS
{(1,B), (2,A)} − {}

specifysp
ec

ify

RI DT

{}

 p

 t . e {(- ;6), [6;11), [11;+)}∞ ∞

DL: col, sorted
SAlg: scan

physical
index

 p
DL: row, unsorted

RI DT

SAlg: hashS
{(11,C), (12,Z)} − {}

 p
DL: row, sorted

RI DT

SAlg: expS
{(7,B), (6,C)} − {}

 p
DL: col, unsorted

RI DT

SAlg: scan
{(1,B), (2,A)} − {}

Figure 3.4: The arrows show some possible transitions from a logical to a physical index (we
specify an algorithm and/or a data layout). Notice that neither the partitioning tree nor the
assignment of data to nodes are changed in this process.

of a logical index that by specifying the search algorithms and data layouts may be transformed
into different physical indexes.

3.3.3 Specify by Nested Logical or Physical Index

We make a decision to specify RI and DT by a nested physical index. Notice that this is not
equivalent to the recursively reachable set of nodes pointed to by one particular RI. Nesting is
about representing the key/value-lookup search algorithms and data layout inside a node by
another index. For instance, consider a physical binary search tree (BST). If we use such BST
to represent and search RI, we basically have a nested physical index in our node. However,
this is just a special case, so in theory we can allow for arbitrary nested indexes at this point.

3.4 Genetic Index Breeding

As we just have defined our logical and physical generic indexing frameworks, we proceed to
present our genetic algorithm allowing us to automatically generate indexes. This is structured
as follows:

1. Core algorithm (Section 3.4.1)

3.4. Genetic Index Breeding 47

2. Initial population generation (Section 3.4.2)

3. The set of applicable mutations describing possible changes to individual logical and
physical index structures (Section 3.4.3)

4. The fitness function used to measure the performance of individual physical index struc-
tures (Section 3.4.4)

The major challenge with a generic indexing framework presented in Section 3.3 is the in-
tractable search space. Therefore, we need an optimization method that can cope with such
a huge search space. Notice that an intractable search space does not imply that we cannot
find a good solution. In fact, entire research communities work on these kinds of problems
including: planning, reinforcement learning, and genetic optimization. We decided to design
our search algorithm based on genetic optimization. Genetic optimization algorithms have
been developed for more than 40 years [Hol75], but recently gained a lot of attention due to
growing computational resources. They allow researchers to effectively explore larger search
spaces. Recent surprising, and not widely-known, results include: genetic algorithms can re-

discover state-of-the-art machine learning algorithms(!) [Rea+20]. Furthermore, they can devise
yet unknown mathematical equations [Cra+20]. Genetic optimization tasks are very domain
specific as possible mutations and the performance measure depend heavily on the concrete
task.

3.4.1 Core Algorithm

The general design for our algorithm follows the principal of evolutionwhich is known fromna-
ture. Algorithm 3 shows our genetic search algorithm of GENE and Table 3.1 gives an overview
of the corresponding symbols. We start with the main function GeneticSearch (line 15). We
start by initializing a population of individuals (line 16), in our case a set of physical index struc-
tures Π := {𝜋 |𝜋 is a physical index} (see function InitPopulation, line 1). To create the initial
population, we build and populate 𝑠init physical index structures (line 4) and add them to the
population Π (line 5). This build process is described in more detail in Section 3.4.2. Now, we
enter the central iteration: we perform 𝑔max iterations in genetic search (lines 17–31). We start
by tournament selection (line 18), see function TournamentSelection (line 9). We select a
sample of size 𝑠T of the current population Π (line 10) from which we select the fittest index
𝜋min (line 11). We keep a trace of the fitness of physical indexes to never evaluate indexes mul-
tiple times. We compute the median fitness 𝑡 of sample 𝑇 (line 12) and return both 𝜋min and

48 Chapter 3. Genetic Generic Generation of Index Structures

Algorithm 3 Genetic Search Algorithm of GENE
1: function InitPopulation(𝐷𝑆, 𝑠init)
2: Π = ∅ ⊲initialize population with empty set
3: for (𝑖 = 0; 𝑖 < 𝑠init; 𝑖 + +) do ⊲create 𝑠init initial indexes
4: 𝜋 = buildAndPopulateRandomIndex(𝐷𝑆) ⊲build and populate index
5: Π = Π ∪ {𝜋} ⊲add index to population Π
6: end for
7: return Π ⊲return population Π
8: end function

9: function TournamentSelection(Π, 𝑠T,𝑊)
10: 𝑇 = sample_subset(Π, 𝑠T) ⊲draw random subset 𝑇 ⊆ Π of size 𝑠T
11: 𝜋min = arg min𝜋∈𝑇 𝑓 (𝜋,𝑊) ⊲select fittest individual 𝜋min in 𝑇 under𝑊
12: 𝑡 =median_fitness(𝑇) ⊲compute median fitness of all 𝜋 ∈ 𝑇
13: return (𝜋min, 𝑡) ⊲return fittest individual 𝜋min and median fitness 𝑡
14: end function

15: function GeneticSearch(𝑔max, 𝑠init, 𝑠max, 𝑠Π, 𝑠𝑇 , 𝑠ch, 𝐷𝑆,𝑀𝐷, 𝑁𝐷,𝑊)
16: Π = InitPopulation(𝑠init, 𝐷𝑆) ⊲initialize population
17: for (𝑖 = 0; 𝑖 < 𝑔max; 𝑖 + +) do ⊲perform 𝑟max iterations/generations
18: (𝜋min, 𝑡) = TournamentSelection(Π, 𝑠𝑇 ,𝑊) ⊲run tournament selection
19: for (𝑗 = 0; 𝑗 < 𝑠max; 𝑗 + +) do ⊲create 𝑠max mutations
20: 𝑚 = draw_mutation(𝑀𝐷) ⊲draw from mutation distribution
21: 𝑛 = draw_node

(
𝑁𝐷 (𝜋min,𝑚)

)
⊲draw from node distribution

22: 𝑝ℎ = draw_phys
(
𝑃𝐷 (𝑚,𝑛)

)
⊲draw from phys distribution

23: 𝜋mut =𝑚(𝜋min, 𝑛, 𝑝ℎ) ⊲perform mutation
24: if 𝑓 (𝜋mut,𝑊) ≤ 𝑡 then ⊲add 𝜋mut to Π if fitter than median 𝑡
25: if |Π | ≥ 𝑠Π then ⊲if capacity exceeded
26: Π = Π \ arg max𝜋∈𝑇 𝑓 (𝜋,𝑊) ⊲remove unfittest individual
27: end if
28: Π = Π ∪ {𝜋mut} ⊲add index to population
29: end if
30: end for
31: end for
32: 𝜋min = arg min𝜋∈Π 𝑓 (𝜋,𝑊) ⊲return fittest individual of final population
33: return 𝜋min
34: end function

3.4. Genetic Index Breeding 49

Table 3.1: Symbols.

Symbol Meaning

𝜆 logical index
𝜋 physical index
Π population
𝑠init initial size of the population
𝑠Π maximum number of indexes in population
𝑔max number of generations
𝑠max number of mutations created and evaluated in a single iteration
𝑠T size of sample in tournament selection
𝑠ch maximum length of a mutation chain applied in one iteration
𝐷𝑆 dataset
𝜋min best individual in tournament selection
𝜋mut mutated element
𝑡 median fitness
𝑀𝐷 probability distribution of mutations
𝑚 a single mutation
𝑁𝐷 (𝜋,𝑚) probability distribution of nodes
𝑃𝐷 (𝑚, 𝑁) probability distribution of physical implementations
𝑊 workload of queries
𝑓 (𝜋,𝑊) fitness of a physical index

𝑡 (line 13) to the GeneticSearch function (line 18). Then, we enter the mutation loop (line 19).
The core idea is to compute 𝑠max ≥ 1 mutations for index 𝜋min. We draw a random mutation
𝑚 from a precomputed distribution of mutations 𝑀𝐷 (line 20). For the mutation 𝑚 we draw
a start node 𝑛 to be used for this mutation (line 21) as well as a physical implementation 𝑝ℎ

(line 22). The mutations and distributions are described in detail in Section 3.4.3.

Then, we perform the actual mutation on 𝜋min (line 23) and receive 𝜋mut. We originally also
experimented with applying chains of mutations (lines 20 and 23) but it did not show any
benefits. We check, whether the mutated index 𝜋mut has a better fitness than the median 𝑡

(line 24). If it has a better fitness, we check if Π exceeds its capacity of maximum allowed
physical indexes 𝑠Π (line 25). If that is the case, we remove the physical index with the worst
fitness from Π (line 26). Then we add 𝜋mut to the population Π (line 28). Once the outer loop
terminates, we determine the fittest index from Π (line 32) and return it.

50 Chapter 3. Genetic Generic Generation of Index Structures

3.4.2 Initial Population Generation

What is a good start population Π for the genetic algorithm? In Algorithm 3, function InitPop-
ulation (line 1), we need to define an initial population of individual index structures. There are
several possible dimensions to consider. First, we can change the initial number 𝑠init of indexes
in Π. This basically defines how diverse the initial set of indexes may be. Second, we should
determine how to actually build and populate the initial physical index with data from dataset
DS (line 4). There are several options:

1. We start with a single physical node that does not contain data, mutate it, and only
then insert the actual data. We experimented with this approach initially but discarded
it quickly due to its high training costs. Thus, we do not support it in our algorithm
anymore.

2. We start with a single physical node containing all data. For data layout/search method
we either randomly pick it or we pick one that we believe works well for the given
workload.

3. We use bottom-up bulk loading with the difference that for all nodes the search algo-
rithms and data layouts are picked randomly. In our current version we exclude hash
nodes for inner nodes as we have not defined a radix-partition search method on this
data layout yet. We will integrate this in future versions of our optimization framework.
The resulting tree is logically similar to a standard B-Tree, the physical nodes however
differ considerably.

4. We start with a population containing a physical index that resembles a state-of-the-art
hand-tuned index, i.e., we define the logical index (including its partitioning functions)
as well as the physical nodes. Then we check whether we can still improve that index
through our genetic algorithm.

Notice that for options from 1. to 4. increasing, we postulate that we take away load from
GENE, using it increasingly as a refinement tool. The more we start with something already
representing a very efficient (or fit, however fitness is defined) index, the more we expect that
only small mutations will be performed by GENE. At least that is what we would believe. In
fact, even if we (non-randomly) specify an initial physical index to start with, recall, that GENE
has all degrees of freedom to pick mutations, and may surprise us by taking unexpected turns
and make different decisions.

3.4. Genetic Index Breeding 51

3.4.3 Mutations and Their Distributions

In this section we introduce a suitable set of mutations and discuss how they are used in our
algorithm.

Mutation. In our framework, a mutation is a function𝑚 : Index→ Index. A mutation takes
a single index as input, mutates it, and returns a modified index. By ‘Index’ we mean, that
either a logical index (𝜆) or a physical index (𝜋) is given, and a mutated index is returned (𝜆mut

or 𝜋mut). 𝜆mut and 𝜋mut must preserve the correctness of 𝜆 and 𝜋 . This is inspired by rewrite
rules in classical query optimization: there we also only consider rules that are guaranteed to
not change the query result. We will only consider mutations on tree-structured indexes. This
is not a restriction of our generic framework but makes the following mutations a bit more
digestible.

Mutation distributions. We use a probability distribution 𝑀𝐷 allowing us to assign differ-
ent probabilities to the different mutations (line 20), e.g., we can prioritize certain mutations.
Given a mutation𝑚 and a physical index 𝜋min we draw from a second distribution 𝑁𝐷 (𝜋min,𝑚)
to determine the nodes 𝑁 for this mutation (line 21). Now, we draw from a third distribution
𝑃𝐷 (𝑚, 𝑁) to determine which physical implementation to use for this mutation and nodes.
Setting probabilities to zero within this distribution 𝑃𝐷 (𝑚, 𝑁) excludes invalid combinations
of physical data layout and search method, e.g., binary search on unsorted data layouts. Note
that these distributions can be created based on microbenchmarks.

Fundamental Mutations. Our goal is to implement a minimal set of mutations allowing to
create a huge variety of physical indexes.

M1 Change data layout: From 𝑛, we randomly select either its RI- or DT-part. Then we
create a new physical node 𝑛′ with data layout 𝑛′.𝑑𝑙 ≠ 𝑛.𝑑𝑙 drawn from 𝑃𝐷 (𝑚, 𝑁) with
the same data and routing information as𝑛: 𝑛′.𝐷𝑇 = 𝑛.𝐷𝑇 ∧𝑛′.𝑅𝐼 = 𝑛.𝑅𝐼 . The options for
data layouts are described in Section 3.3.2. If 𝑛 contains child partitions, we enforce the
additional condition𝑛.𝑑𝑙 ′ ≠ hash, as our software framework does not (yet) support child
partitions in nodeswith a hash layout. In 𝜋 , we replace𝑛 by𝑛′. If𝑛′.𝑠 is incompatiblewith
𝑛′.𝑑𝑙 , we draw a new method from 𝑃𝐷 (𝑚, 𝑁) to ensure correctness. Figure 3.5a shows
an example: the input node 𝑛 has a sorted column-layout. In the index, we replace 𝑛 by
𝑛′ which has a tree-layout.

M2 Change search method: From 𝑛, we randomly select either its RI- or DT-part. Given

52 Chapter 3. Genetic Generic Generation of Index Structures

RI DT

{}

 p

 t . e {(- ;6), [6;11), [11;+)}∞ ∞

DL: col, sorted
SAlg: scan

M1

n
RI DT

{}

 p

 t . e {(- ;6), [6;11), [11;+)}∞ ∞

DL: tree, sorted
SAlg: scan

n’

mutate M1

(a)M1 Change node type: change data layout of RI.

RI DT

{}

p

t . e {(- ;6), [6;11), [11;+)}∞ ∞

DL: col, sorted
SAlg: scan

n
RI DT

{}

p

t . e {(- ;6), [6;11), [11;+)}∞ ∞

DL: col, sorted
SAlg: binS

n’

mutate M2

M2

(b) M2 Change search method: change search of RI.

RI DT

{}

p

t . e {(- ;6), [6;11), [11;+)}∞ ∞

DL: col, sorted
SAlg: scan

mutate M4

p
DL: row, sorted

RI DT

SAlg: expS

{(7,B), (6,C)}− {}

p
DL: row, unsorted

RI DT

SAlg: hashS

{(11,C), (12,Z)}− {}

p
DL: row, sorted

RI DT

SAlg: expS

{(7,B), (6,C)}− {}

p
DL: row, unsorted

RI DT

SAlg: hashS

{(11,C), (12,Z)}− {}

p
DL: col, unsorted

RI DT

SAlg: scan

{(2,A)}− {}

p
DL: col, unsorted

RI DT

SAlg: scan

{(1,B), (2,A)}− {}

p
DL: col, unsorted

RI DT

SAlg: scan

{(1,B)}− {}

RI DTp

t . e {(- ;2), [2,6), [6;11), [11;+)}∞ ∞

DL: col, sorted
SAlg: scan {}

nparent
mutate M3

ntarget Nsources

(c)M3 &M4 Merge or split nodes horizontally: merge left & middle child node (M3) or split leftmost
child node (M4).

RI DT

{}

p

t . e {(- ;6), [6;11), [11;+)}∞ ∞

DL: col, sorted
SAlg: scan

p
DL: row, sorted

RI DT

SAlg: expS
{(7,B), (6,C)}− {}

p
DL: row, unsorted

RI DT

SAlg: hashS
{(11,C), (12,Z)}− {}

p
DL: col, unsorted

RI DT

SAlg: scan
{(1,B), (2,A)}− {}

mutate M6

RI DT

{}

p

t . e {(- ;6), [6;11), [11;+)}∞ ∞

DL: col, sorted
SAlg: scan

p
DL: row, sorted

RI DT

SAlg: expS
{(7,B), (6,C)}− {}

p
DL: row, unsorted

RI DT

SAlg: hashS
{(11,C), (12,Z)}− {}

p
DL: col, unsorted

RI DT

SAlg: scan
{(1,B), (2,A)}− {}

nparent

p
DL: col, unsorted
RI DT

SAlg: scan
{}− {(- ,6)}∞

mutate M5

nchild

(d)M5 & M6 Merge or split nodes vertically: merge top-level node’s left child (M5) or split it (M6).

Figure 3.5: Performing the mutations described in Section 3.4.3 on actual physical indexes.

3.4. Genetic Index Breeding 53

the existing search method 𝑛.𝑠 , we draw an 𝑠′ ≠ 𝑠 from 𝑃𝐷 (𝑚, 𝑁). Then we create a
new physical node 𝑛′ with the new search method 𝑠′ with the same data and routing
information as 𝑛: 𝑛′.𝐷𝑇 = 𝑛.𝐷𝑇 ∧𝑛′.𝑅𝐼 = 𝑛.𝑅𝐼 . Figure 3.5b shows an example: the input
node 𝑛 uses a scan as search method. In the index, we replace 𝑛 by 𝑛′ using binary search.

M3 Merge sibling nodes horizontally: We set node 𝑛parent := 𝑛 whose RI maps to at least
one other node in 𝜋 , if not we abort this mutation. From the set of nodes mapped to by
𝑛parent we randomly select a child node 𝑛target ∈ nodes(𝑛parent.RI). We select a non-empty
subset 𝑁sources ⊆ nodes(𝑛parent.RI) of nodes to merge into 𝑛target using the following
restrictions: 𝑛target ∉ 𝑁sources ∧ ∀𝑛∈𝑁sources𝑛.𝑝 = 𝑛target.𝑝 . This implies that the source
domain of the routing information function 𝐷 is equal for all nodes in 𝑁sources ∪ {𝑛target}.
We then need to perform updates on two levels of the index: The node 𝑛target that we
merge with and the parent node 𝑛parent. We start by describing the updates to the node
𝑛target. First we update the data 𝑛target.DT and set it to the union of all data within the
merged nodes:

𝑛′target.DT = 𝑛target.DT ∪
⋃

𝑛∈𝑁sources

𝑛.DT.

In the following, we also update the routing information function 𝑛target.RI such that

∀𝑑∈𝐷𝑛′target.𝑅𝐼 (𝑑) = 𝑛target.RI(𝑑) ∪
⋃

𝑛∈𝑁sources

𝑛.RI(𝑑),

where 𝐷 is the common domain of the RIs in 𝑁sources ∪ {𝑛target}. This ensures that our
target node 𝑛target now maps to all child nodes that any node 𝑛 ∈ 𝑁sources previously
mapped to, i.e., we can still reach all child nodes. For the parent node 𝑛parent we have to
update the routing information 𝑛parent.RI such that

∀𝑑∈𝑛𝐷parent
∀𝑛∈𝑁sources𝑛 ∈ 𝑛parent.𝑅𝐼 (𝑑)

⇒ 𝑛parent.𝑅𝐼 (𝑑) = {𝑛target} ∪ 𝑛parent.𝑅𝐼 (𝑑) \ {𝑛}.

In other words: We remove all mappings to merged nodes 𝑛 ∈ 𝑁sources and replace them
with a new mapping to the node 𝑛target.

Notice that the merge operation performed in B-trees is essentially just a specialized
version of this general merge mutation. In a B-tree the number of merged nodes 𝑘 is
typically set to 𝑘 = 2 and the nodes must be directly neighboring due to the sorted key
domain. For our actual implementation, we also restrict ourselves similarly to merges
where |𝑁sources | = 1. Merge operations with larger source-sets can easily be achieved

54 Chapter 3. Genetic Generic Generation of Index Structures

by recursively executing the merge operation on the same node. Figure 3.5c shows an
example: the set 𝑁sources contains a single leaf that we want to merge into 𝑛target. To
achieve this we first merge all data contained in 𝑁sources.DT into 𝑛target.DT. As 𝑁sources.RI
is empty, we do not have to do anything here. In 𝑛parent.RI, we need to remove the map-
ping to all nodes in 𝑁sources, in this case the key-range [2; 6) ⊂ 𝐷 must be changed to
map to 𝑛target. For this example this is equivalent to merging the old entry (−∞; 2) with
[2; 6) into (−∞; 6). Now, all nodes in 𝑁sources can be removed from the index.

M4 Split child node horizontally into k nodes: This is the inverse mutation of M3. Fig-
ure 3.5c shows an example.

M5 Merge sibling nodes vertically: We set node 𝑛parent := 𝑛 whose RI maps to at least one
other node in 𝜋 , if not we abort this mutation. From the set of nodes mapped to by 𝑛parent
we randomly select a child node 𝑛child ∈ nodes(𝑛parent.RI) using the following restriction:
𝑛child.𝑝 = 𝑛parent.𝑝 . To merge 𝑛child into 𝑛parent, we then need to perform the following
updates: First we need to move all data in 𝑛child.DT to the parent node:

𝑛parent.DT = 𝑛parent.DT ∪ 𝑛child.DT

In the following, we move potential child nodes 𝑛′ of 𝑛child to the parent node 𝑛parent:

∀𝑑∈𝐷parent 𝑛child ∈ 𝑛parent.RI(𝑑)

⇒ 𝑛parent.RI(𝑑) = 𝑛parent.RI(𝑑) \ {𝑛child} ∪ 𝑛child.RI(𝑑)

where 𝐷parent is the domain of 𝑛parent.RI. In other words: We remove all mappings to
the merged node 𝑛child and replace them with mappings to the child nodes of 𝑛child. For
our actual implementation, we restrict ourselves to the merge of a single parent-child-
pair during a single mutation. Merge operations for longer chains of nodes can easily be
achieved by recursively executing the merge operation on the same node. Figure 3.5d
shows an example: We select the root node as𝑛parent and its left child node as𝑛child which
we want to merge into the root node. To achieve this we first merge all data contained
in 𝑛child.DT into 𝑛parent.DT. In 𝑛parent.RI, we need to remove the mapping to 𝑛child and
replace them with mappings to the children of 𝑛child. In this case, we remove the key-
range (−∞; 6) ⊂ 𝐷 and replace it with the corresponding entries of 𝑛child.RI. For this
example this is equivalent to re-inserting the entry (−∞; 6) into 𝑛parent.RI.

M6 Split child node vertically into k nodes: This is the inverse operation of M5. Fig-
ure 3.5d shows an example.

3.5. Related Work 55

3.4.4 Fitness Function

The fitness function is used tomeasure the performance of a single physical index and describes
what to optimize by the genetic algorithm (either by minimizing or maximizing its value). Its
definition can be chosen freely depending on the optimization goal. We have chosen to opti-
mize our index structures for the runtime given a specific workload consisting of point and
range queries. We therefore define the fitness function 𝑓 : Physical Index × Workload→ ℝ to
be minimized in the following way: 𝑓 (𝜋,𝑊) = 𝑟 (𝜋,𝑊)𝑐 . 𝜋 denotes the physical index (the
individual) to evaluate,𝑊 is a sequence of queries and denotes the workload of the specific
experiment. 𝑟 (𝜋,𝑊)𝑐 is the median runtime measured for this physical index on the workload
over 𝑐 runs. The fitness function can also easily be adapted to factor in other optimization
goals like memory or energy efficiency. Other interesting extensions include regularization,
i.e., index complexity could be punished (similar to model complexity in ML). Furthermore, we
could punish or incentivize the filling grade of leaves, e.g., if leaves are fully packed, this is ben-
eficial for read-optimized indexes but for inserts can quickly lead to structural modifications of
the tree. However, if leaves are only partially filled, many inserts can be handled by leaf-local
changes. All these requirements can be modeled into the fitness function.

3.5 Related Work

Handcrafted Indexes. Since the original B-tree-paper [BM72] in 1972, B-trees have become
a workhorse in database systems. Since then a myriad of B-tree-variants and -improvements
have been proposed [RR99; RR00; SGL09; Kim+10]. Moreover, considerable work has been
done in the past years to better understand the performance of hash tables which are widely
used in query processing [Alv+15; Ric+15].

Learned Indexes. The core task of a learned index [Kra+18] is to provide an index on a
densely packed, sorted array. The main idea is to manually define an (outer) B-tree-like struc-
ture, typically a two-level tree (coined RMI by the authors). Then, inside each node, rather than
performing a binary search on the keys contained in that node — as done in a textbook B-tree
— a learned regression function is used to predict the position in the sorted array. Care has
to be taken to avoid prediction errors. This is done through an error correction method: the
prediction actually defines a range which must be post-filtered through a different algorithm
like binary or interpolation search. The biggest advantage of a ‘learned index’ is that no space
is required to store pivots in internal nodes thus allowing for high branching factors. Like our

56 Chapter 3. Genetic Generic Generation of Index Structures

work, the original work was a read-only index. It bulk loaded the index top-down, but as with
any other B-tree like structure, bottom-up bulk loading up is also possible [Kip+20] and actually
easier. Later on different proposals were made to use different regression techniques [Kip+19]
and support inserts and deletes [Din+20; FV20]. Also note that the RMIs make a couple of other
assumptions that may not always hold in practice [Cro21]. As illustrated in Figure 3.2b already,
an RMI is just one special configuration in GENE: an RMI is (1) a logical index: classical B-tree
(however, fixed number of layers, balancing enforced, high fan-out), (2) a physical index: node
internal search constrained to use some form of linear regression. In other words, an RMI hand-
crafts its logical structure. Then, inside its nodes it uses a fixed physical regression method to
learn a CDF. In contrast, we allow for optimizing the structure and the search methods and
data layouts used inside nodes. Thus, we fully embrace the orthogonality of learning a model

only inside a node vs optimizing the entire index structure. Our approach aims at optimizing the
entire index structure not only learning weights in a handcrafted structure.

Periodic Tables and Data Calculator. The work by Stratos Idreos et al. on semi-automatic
data structure design is truly inspiring. In their vision paper [Idr+18b] they aim at a complete
dissection and classification of the individual primitives used to design data structures. They
sketch the huge design space of indexes and conclude that many quadrants in that space are
still unexplored. They also phrase the high-level vision to synthesize an index from a declara-
tive specification. Their main idea is to use a fine-grained learned cost models to be able to cost
the physical individual index primitives (like scans, binary search, etc.). However, they go not
further to show how this can be achieved concretely. In addition, no split into logical and phys-
ical indexes is given which is the key enabler in our approach. The follow-up work [Idr+19b]
is another vision paper which goes into somewhat more detail in describing the problem space
of this endeavor and proposing a workbench like “‘Data Alchemist’ architecture” which is a
semi-automatic design tool. However, again no experiments and/or results are shown. Then,
[Idr+18a] explores a large set of physical index design primitives, benchmarks them, and uses
the results to learn cost models for physical primitives. This is used to build synthesized cost
models for the expected cost of a combination of those physical primitives. The authors show
several indexes where these cost estimates match the actual runtimes very well. At the same
time the paper emphasizes that many physical design primitives and their cost models are
missing including compression, concurrency, updates, etc. In their most recent work [Idr+19a],
they present the concept of design continuums, which unify different data structure designs
by introducing common parameters, rules, and domains necessary to describe the underlying
individuals. Using this design continuum, they show how to transition between known data
structures, exposing also hybrid designs, and how to extend the continuum by new designs.

3.5. Related Work 57

Their focus lies on the semi-automated construction of these design continuums which are
supposed to support researchers and engineers in finding a close to optimal data structure for
a given problem composed of workload and hardware by using it as an inference engine.

There are four important differences to our work: we focus on (1) fully automatic index struc-
ture construction, (2) we provide a clear separation into logical and physical index components,
(3) we believe that the index design space is simply too big for a practical system to be com-
prehensively modeled by (learned) cost models one reason being that costs models of different
physical primitives are often non-additive and hence not usable for an optimization process.
(4) Optimization time is important but not as critical as in standard query optimization: recall
that the creation of an index structure is an offline process (in contrast to the creation of an
index instance at query time!). And therefore, it makes a lot of sense to define fitness via actual
observed runtime measurements rather than cost models whenever possible.

Generic Frameworks. A couple of generic indexing frameworks have been proposed in
the past, most notably GIST [HNP95] and XXL [Ber+01]. Those frameworks also aimed at
generalizing presumably different index structures into a common software framework. This
in turn allowed architects to implement important database algorithms for the generic index.
The specialized indexes could then relatively easily be adapted to use the generic algorithms.
Prominent examples include generic bulk loading [BSW97] and concurrency control [KMH97].
Though that work was inspiring to us, we stress that in our paper we argue on a conceptual
level rather than an object-oriented-level. Moreover, we are primarily inspired by the analogue
separation into logical and relational operators without immediately specifying how physical
operators get implemented (ONC, vectorization, SIMD, whatever) or even how software inter-
faces need to be defined, as that is a tertiary concern.

DQO. Recently, we proposed Deep Query Optimization [DN20]. The core idea is to break
operators into smaller components which can then possibly be optimized using traditional
query optimization technique. This paper is another inspiration of our work. However, that
work does not go into any detail on how such an idea can be realized in the context of indexing.
It neither details how traditional operators can be split nor how this can be turned into an
optimization problem for automatic index creation. We fill that gap.

Index Selection. Index Selection [LL71; Kos+20] operates on a completely different level as
our approach. Instead of coming up with a concrete index structure, in index selection the
goal is to determine a suitable set of attributes to index in order to improve the runtime of a
workload. In contrast, in our work we consider how to devise efficient index structures in the

58 Chapter 3. Genetic Generic Generation of Index Structures

first place — which could then be leveraged in index selection algorithms.

Adaptive Indexing. As index selection is NP-hard, an interesting strategy is to not consider
indexing a binary decision but rather allow indexes to become more and more fine-grained
over time. That is at the heart of adaptive indexing [IKM07]. Several interesting proposals
have been made in this space, see [Sch+13] for a survey. However, all these indexes are still
handcrafted indexes. In future work, we are planning to revisit some of these techniques, as
the DT-field of our logical nodes can be used to mimic many of those techniques.

Genetic Algorithms. Genetic algorithms are a long known search method for an infeasible
search space and have been used in our database community for decades. Early work by Ben-
nett et al. [BFI91] applied a genetic algorithm to search for efficient plans in a query optimizer.
Other papers used similar approaches to improve database testing [Bat+07] or to perform index
selection [Kor+04; Neu+19; FG89]. We are however not aware of papers tackling the problem
of index creation using a genetic algorithm and therefore try to further extend the application
area of these algorithms.

Decoupling Logical and Physical Indexes. Early work on partitioning schemes was done
by Hellerstein et al. [Hel+02]. They represent data as a set of partitions where each partition
is then (redundantly) mapped to at least one physical replica. In contrast to our work, they
do not consider partitioning trees as in our logical indexes, and they also do not further detail
how to physically implement each partition. In the field of structural indexing [Agt+16; Pic+14;
Fle+09] introduce the idea to co-partition (or cluster) tuples in a relational schema using graph
partitioning. These graph partitions can then be exploited to answer structural queries which
could be difficult to compute using foreign key indexes only. Their work has a completely
different goal: while we strive to create a single physical index, they strive to create a graph
partitioningwhich can then bemapped to suitable existing indexes. Extending our logical index
partitions to their graph co-partitions could be an interesting future extension to GENE. The
GMAP project by Tsatalos et al. [TI94; TSI96] is another interesting work in the area of physical
data independence and index design. In contrast to their work, we focus on the clear difference
between a logical and physical index and not the schema and a physical index. Moreover, we
automatically generate efficient index structures, while their work only allows the choice of
one concrete physical index.

3.6. Experimental Evaluation 59

3.6 Experimental Evaluation

In our experiments, we first determine a suitable set of hyperparameters for our genetic frame-
work. Based on those hyperparameters, we then carefully evaluate GENE. We highlight the
cost for training and the ability to automatically reach a certain performance baseline. Finally,
we show the capability of GENE to match and even beat the performance of several state-of-
the-art index structures.

System. All experiments were executed on a machine with an AMD Ryzen Threadripper
1900X 8-Core processor with 32 GiB memory on Linux. Our framework and the respective
experiments are implemented in C++ and compiled with Clang 8.0.1, -O3. All experiments are
run single-threaded and in main-memory.

Datasets. We use three types of datasets. All datasets consist of unique 64-bit uint keys and
a 64-bit payload. In the following, we refer to the keys as data.keys. The payload represents
the offset of the corresponding key into a sorted array. Therefore, we refer to the payload as
data.offset. The datasets exhibit a variety of different characteristics like distribution, density,
domain, and size. The first dataset unidense contains keys that are uniformly distributed in a
dense domain. Concretely, 𝑢𝑛𝑖dense contains keys in the range [0, n) where 𝑛 is the size of the
dataset. The other two datasets, books and osm, represent real-world datasets with complex
distributions and are taken from [Kip+19]. The datasets are sampled-down to our specific data
size by uniformly drawing elements without duplicates. We have two main dataset sizes 100K
and 100M, depending on the concrete experiment. Table 3.2 gives an overview of the datasets.

Workloads. We use three classes of workloads: point, range, and mixed point and range
query workloads. For the moment, all our workloads are read-only, i.e., we do not consider
insert, delete, or update statements. Note however, that our generic framework still supports
insertions and deletions. In addition, update statements would not alter the structure of the
index, so we could easily integrate them into our framework. Table 3.3 summarizes the basic
workload types. Point(data, idxmin, idxmax) represents a point query workload where the keys
to lookup are taken from the keys in the dataset data by selecting indices in the subdomain
[idxmin, idxmax) ⊆ [0, 𝑛) with a uniform distribution. Likewise, Range𝑠𝑒𝑙 (data, idxmin, idxmax)
describes a range query workload consisting of pairs specifying the lower bound and upper
bound of the query. The lower bound is drawn with a uniform distribution in the index domain
[idxmin, idxmax - data.size * sel) ⊆ [0, 𝑛) and the upper bound is set based on the dataset size
and the given selectivity sel. If the domain is not explicitly specified, we assume it to cover the

60 Chapter 3. Genetic Generic Generation of Index Structures

Table 3.2: Datasets.

Dataset CDF Properties

unidense 𝑛 := # elements (100K, 100M)
64-bit unique unsigned integers

books
𝑛 := # elements (100K, 1M, 10M, 100M)

64-bit unique unsigned integer
Dataset taken from [Kip+19]

osm
𝑛 := # elements (100K, 100M)

64-bit unique unsigned integers
Dataset taken from [Kip+19]

Table 3.3: Workloads.

Workload Characteristics Parameters

Point(data, idxmin, idxmax)
point queries in index domain
[idxmin, idxmax) with uniform
distribution

[idxmin, idxmax) ⊆ [0, 𝑛)

Range𝑠𝑒𝑙 (data, idxmin, idxmax)
range queries in index domain
[idxmin, idxmax) with uniform
distribution and selectivity 𝑠𝑒𝑙

[idxmin, idxmax) ⊆ [0, 𝑛)
sel ∈ [0, 1]

Mix(data, 𝑃 , 𝑅)
mix of point and range query
workloads with 𝑃 and 𝑅 being
sets of respective workloads
based on data

𝑃 := {𝑝 |𝑝 is Point(data, idxmin, idxmax)}
𝑅 := {𝑟 |𝑟 is Range𝑠𝑒𝑙 (data, idxmin, idxmax)}

whole dataset. Mix(data, 𝑃 , 𝑅) represents a mix of point and range queries with 𝑃 and 𝑅 being
sets of point and range query workloads, respectively, based on data. Note, that in contrast to
the datasets, our workloads may contain duplicates.

As already showcased in Section 3.3 and Section 3.4, there is a huge search space in designing
physical index structures. Consequently, in our experiments, we focus on the most important
data layouts and search algorithms. We use the data layouts depicted in Table 3.4. As search
algorithms, we use scan, binS, intS, expS, and hashS described in more detail in Section 3.3.1.

3.6. Experimental Evaluation 61

Table 3.4: Data layouts.

Data Layout Characteristics Implementation Detail

sorted_col RI and DT have columnar layout for both
keys and values. Sorted according to keys.

C++ standard library con-
tainer std::vector<Key> and
std::vector<Value>

hash DT represents hash table mapping keys to
their values. RI empty.

C++ standard library container
std::unordered_map<Key, Value>

tree
RI and DT represent tree data structure
mapping keys to their values. Sorted ac-
cording to keys.

C++ standard library container
std::map<Key, Value>

3.6.1 Hyperparameter Tuning

We use a𝑢𝑛𝑖dense dataset of size 100K and vary five different parameters within this experiment:

1. Number of mutations per generation (𝑠max): 𝑠max ∈ {10, 50}.

2. Maximum population size (𝑠Π): 𝑠Π ∈ {50, 200, 1000}.

3. Tournament selection size (𝑠𝑇): 𝑠𝑇 ∈ {10%, 50%, 100% of population size}.

4. Initial population size (𝑠init): 𝑠init ∈ {10, 50}.

5. Population insertion criterion (𝑞): Instead of taking the median of the subset drawn dur-
ing tournament selection, we define a percentile 𝑞 to be reached for a mutated individual
to be inserted into the population: 𝑞 ∈ {0%, 50%, 100%}. For the 0% percentile, we always
insert the mutated individual, for the 100% percentile we only add it if it is better than
the previous best individual within the tournament selection subset.

Table 3.5: Best Genetic Search Configurations (over 5 runs)

Rank 𝑠max 𝑠Π 𝑠𝑇 𝑠init 𝑞 median runtime [s] mean runtime [s]

1 10 200 100% 50 0% 13.72 91.72
2 10 1000 50% 50 50% 14.58 26.10
3 10 1000 100% 10 50% 16.71 24.94
4 10 1000 100% 50 0% 16.87 94.48
5 10 1000 50% 10 50% 18.21 158.49

Table 3.5 shows the best configurations (based on the median of the 5 runs executed per config-
uration). Given a total number of mutations we want to perform, we conclude that it is more
beneficial to use a smaller number of mutations per generation combined with a larger number

62 Chapter 3. Genetic Generic Generation of Index Structures

of generations. As the population size has a limited influence, we decided to keep it very small
to reduce the overhead to maintain the population. We therefore used the following default
parameters for the experiments in the following sections: 𝑠max = 10, 𝑠Π = 50, 𝑠𝑇 = 25, 𝑠init = 10
and 𝑞 = 50%.

3.6.2 Rediscover Suitable Baseline Indexes

In this experiment, we will demonstrate that our genetic algorithm is capable of reproduc-
ing the performance of various baseline index structures as known from textbooks. We
consider two different datasets: 𝑢𝑛𝑖dense of size 100K and books of sizes 100K, 1M, 10M,
and 100M. We combine each of those two datasets with three different workloads of 10,000
queries each: Point(unidense), Range0.001(unidense) and a Mix(unidense, 𝑃 , 𝑅) workload, with P :=
{Point(unidense)} and R := {Range0.01(unidense)} consisting of 80% point and 20% range queries.
For each workload, we define a baseline within our generic framework of which we believe it
has a decent performance. For the point query only workload, we assume a simple hash table
to perform best which is implemented as an index structure with a single node having the hash
data layout. For the range query only and mixed workload, we assume a B-tree-like structure
to offer a decent performance. We initialize the tree to have 100 fully filled leaves, each con-
taining 1,000 elements and a fan-out of 10 for the internal nodes. Each node is configured to
use the sorted_col layout and binS. We configured GENE to allow nodes to contain up to
100,000 key-value-pairs or 100,000 child partitions (potentially leading to solutions consisting
of a single node or solutions with one node per element assembled under a single root node).
In the initial population trees were bulk loaded with 100 equally filled leaves and a fan-out of
10, but with randomized data layouts and search methods. Each experiment is conducted for
8000 generations. The genetic search was run on the smallest sample size of 100K elements.

Figure 3.6 shows the results. The first two rows show the performance of the best individual
of each generation found by the genetic algorithm compared to the respective baseline on
the datasets with 100K elements. The third row shows the relative improvement compared to
the initial index structure after upscaling the dataset sizes of 100K to 100M. Specifically, each
time we found a new best individual, we checked whether the results carry over to the larger
datasets, i.e., we created new index structures using the same routing information, data layouts,
and search methods as found by GENE (i.e., using the exact same index structure), but bulk
loaded them with the larger dataset, increasing leaf capacities if necessary. We then evaluated
them using the exact same workload as used in the genetic search. We plot the curves up to
the point of the last improvement.

3.6. Experimental Evaluation 63

(a) PQ, unidense (b) RQ, unidense (c)Mixed, unidense

(d) PQ, books (e) RQ, books (f) Mixed, books

(g) Upscaling, PQ, books (h) Upscaling, RQ, books (i) Upscaling, Mixed, books

Figure 3.6: (a-f): GENE approaching handcrafted baselines on three different workloads: A
point query only workload (PQ), a range query only workload (RQ) and a mixed workload
consisting of 80% point and 20% range queries. (g-i): Relative improvement compared to the
initial index structure after upscaling to dataset sizes of 100K to 100M.

As we can clearly see, GENE rapidly approaches the baseline. This is mostly due to the fact
that GENE can rather easily improve bymutating very inefficient nodes in the beginning. After
getting close to the baseline, GENE only finds slight improvements, e.g., by changing search
algorithms within nodes, which are hardly visible on the plot. The index structures found
by GENE are very similar to the baselines: On the 𝑢𝑛𝑖dense dataset, GENE always returned a
single node index structure. For the point query only workload, it came up with a single hash

64 Chapter 3. Genetic Generic Generation of Index Structures

node containing all entries, i.e., exactly the baseline we defined beforehand. For the range
query only as well as mixed workload, GENE also reduced the index to a single node, but
with sorted_col data layout and intS search method. This difference is due to the fact that
range queries can not be executed efficiently on a hash node. This result is reasonable as a
uniformly distributed, dense dataset can easily be modeled by an array with a linear model
as search method. Considering the books dataset, the point query workload resulted in a tree
with 68 nodes in total, 66 of them being leaves. All but one leaf are direct children of the
sorted_col root node, the remaining leaf has a single tree node between itself and the root.
With 48 nodes, the vast majority of the leaves has a hash data layout. The remaining leaves
are of sorted_col (15) or tree data layout (3). The dominating search method for non-hash
nodes is binS, with only 3 exceptions that use expS. The resulting index structure reminds
of a partitioned hash map, indicating that GENE indeed approached the expected baseline.
For the range query workload, we obtained an index with similar size, having 44 nodes with
sorted_col data layout in total, 40 of them being leaves. The index has a height of three with
the majority of the leaves (38) situated at depth two and only two leaves being one level below.
binS is again the dominating search method for the leaves, with four nodes using intS and two
using expS instead. The resulting index structure reminds of a shallow B-tree, indicating that
GENE again approached the expected baseline. For the final mixed workload, the results are
similar to the range only workload. We obtained an index of height three with 41 nodes in total
(all with sorted_col data layout), 35 of them being leaves. Themajority of the leaves is at depth
two, with three leaves being one level above and one leaf being a level below. The dominating
search method is again binS, with only 7 leaves using an intS instead. As for the range query
only workload, GENE approached a shallow B-tree like index to match the performance of the
baseline. The last line in Figure 3.6 shows the improvements of the scaled index structures for
the books dataset. Each line represents the relative improvements compared to the best index
structure of GENE’s initial population, upscaled to the indicated dataset sizes of 100K (the size
on which the search was conducted) up to 100M.We can clearly see that an improvement in the
solid line representing the training data nearly always results in a very similar improvement
for the upscaled index structures. The overall, relative improvement becomes even bigger with
increasing dataset size, indicating that is most likely sufficient to run GENE on a sample of
the data to obtain a decent index structure, highly reducing the necessary search time. If best
possible performance is the ultimate goal, then GENE can again be applied to the upscaled
index structure resulting from the sample to perform further fine-tuning.

We also experimented with an additional, mixed workload again consisting of 10,000 queries
with an 80% / 20% point to range query ratio, based on the 𝑢𝑛𝑖dense dataset. However, this time

3.6. Experimental Evaluation 65

Table 3.6: Overview of different index types and representatives of each category.

Type Index Details

Tree B-tree TLX btree_map [Bin18]
Radix ART SOSD ARTPrimaryLB [Mar+20]
Learned PGM PGM PGMIndex [FV20]

we chose the queries to be normally distributed around key 75,000 with a standard deviation
of 10,000, i.e., the queries were mainly focused on the upper half of the key domain. Our
GENE algorithm again decided to shrink the initial index structures considerably, however it
stopped after 3500 generations returning a tree with 4 levels and 25 nodes in total, 17 of them
being leaves. The nodes containing the upper half of the key domain were again using the
sorted_col layout and either intS or binS.

The total runtimes of GENE heavily depend on the concrete datasets andworkloads. The fastest
execution for 𝑢𝑛𝑖dense with point query only workload took less than 3 minutes until the last
improvement was found. The longest run on the same dataset with range query only workload
took about 122 minutes. Performing the additional upscaling steps further influenced the run-
times, leading to execution times of up to 30 hours for the books dataset in combination with
range query only workload.

3.6.3 Optimized vs Heuristic Indexes

In this section, we will compare the performance of a GENE index with representatives of
different prevalent heuristic index types. Table 3.6 gives an overview of the different index
types and respective representatives. For the B+tree implementation we use the commonly
used TLX baseline implementation by Bingmann [Bin18]. In particular, we use the specialized
B+tree template class btree_map implementing STL’s map container. The ART implementa-
tion is taken from the SOSD benchmark [Mar+20] by Marcus et al. and concretely, we use the
implementation ARTPrimaryLB that supports lower bound lookups. PGM [FV20] by Ferragina
et al. provides multiple implementations that support a variety of different functionalities like
insertion and deletion support or compression to reduce space usage. Since we are only inter-
ested in the lookup performance, we use the default PGMIndex implementation. We purposely
exclude hash tables since they do not support range queries efficiently.

We conduct our performance evaluation on the three different datasets, unidense, books, and osm,
each with a size of 𝑛 = 100M data points. As for the workload, we are going to use a mixed

66 Chapter 3. Genetic Generic Generation of Index Structures

Figure 3.7: Visualization of the experimental setup. The osm dataset is shown as CDF while the
point and range queries are illustrated as a stacked histogram. The red vertical lines highlight
the partition borders.

workload consisting of multiple point and range query workloads. Concretely, the workload
consists of 1M queries, divided in three point query workloads and one range query workload:
Mix(data, 𝑃 , 𝑅), with 𝑃 := {Point(data, 0, 0.1 · n), Point(data, 0.1 · n, 0.85 · n), Point(data, 0.85 · n,
n)} and 𝑅 := {Range(data, 0.1 · n, 0.85 · n)}, where data ∈ {unidense, books, osm}. With that, the
queried key domain is essentially split into three partitions at 10% and 85% of the data based
on the different workloads. The first partition [0, 0.1 · 𝑛) exclusively receives point queries
representing 20% of the total workload size. The second partition [0.1 · 𝑛, 0.85 · 𝑛) receives a
mix of both, 10% point and 20% range queries, and the third partition [0.85 · 𝑛, 𝑛) 50% point
queries.

Figure 3.7 illustrates theworkload based on the osm dataset. Since each data point maps a key to
its position in a sorted data array, range queries can be translated to finding the position of the
lower bound in the index and subsequently scanning the data array. This scan is independent of
the underlying index type and can therefore be neglected. Thus, a range query in our evaluation
is equivalent to a lower bound lookup in the index.

Our generic implementation allows us to easily replace specific parts of a physical index struc-
ture like the data layout or search method. However, this leads to a non-negligible perfor-
mance overhead mainly due to repeated dynamic dispatches. To be competitive with the other
baselines and state-of-the-art index structures, we provide an additional implementation that
specifically contains the concrete physical index structures used in this experiment. Figure 3.8

3.6. Experimental Evaluation 67

RI DT

{}

p DL: col, sorted
SAlg: binS

{[0,0.1 ⋅ n), [0.1 ⋅ n,0.85 ⋅ n), [0.85 ⋅ n, n)}data . offset

p
DL: row, unsorted

RI DT

SAlg: hashS
{…}− {}

p
DL: row, unsorted

RI DT

SAlg: hashS
{…}− {}

B-tree-style

Index

…

p
DL: col, sorted

RI DT

SAlg: binS
{}{…}

p
DL: col, sorted

RI DT

SAlg: binS
{…}{}

p
DL: col, sorted

RI DT

SAlg: binS
{…}{}

Figure 3.8: Physical index structure of the GENE index based on the workload partitioning.

shows the physical structure of our GENE index. Since the workload domain is split into three
partitions with two exclusive point query regions, we bulk load our index structure accordingly.
The first and third partition are hash nodes while the second partition represents a B-tree-style
index. The root is a sorted array using binary search. We randomly shuffle the workload before
each execution to avoid caching effects.

Figure 3.9 shows the results of the index structures for different datasets. We report the average
index lookup time. Independent of the underlying dataset, the TLX B-tree requires around 700
ns and is not able to compete with the other indexes. On the uniform dense dataset, ART
and PGM both achieve a lower lookup time than GENE. However, for both, a uniform dense
dataset is close to the optimal use case. For the two real-world skewed and sparse datasets, our
GENE index achieves a competitive or even faster lookup time than the other index structures
of around 350 ns.

We are well aware that this is a very specific use case, however, it showcases that there are
indeed scenarios where an optimized GENE index can outperform a state-of-the-art (heuristic)
data structure. Expanding the covered design space by GENE, i.e., the available data structures
and search algorithms, and automatically finding those scenarios is part of future work. In
conclusion, our proof of concept emphasizes that there are use cases in which GENE is able to
achieve a competitive or even superior performance than state-of-the-art index structures and
therefore, confirms its validity.

68 Chapter 3. Genetic Generic Generation of Index Structures

Figure 3.9: Average index lookup time comparison between three representative state-of-the-
art index structures and our GENE index on three different datasets and workloads described
in Section 3.6.3. The small black bars indicate the standard deviation of five runs, which is
negligibly small.

3.7 Conclusion and Future Work

Conclusion. This paper has opened the book for automatically generated index structures.
We have proposed a powerful generic indexing framework on the logical and physical level ana-
logue to logical and physical operators in query processing and optimization. We have shown
that by clearly separating the logical and physical dimensions of an index, a huge number of
existing (physical) indexes can be represented in our generic indexing framework. Further-
more, we introduced Genetic Generic Generation of Indexes (GENE). Given a workload, GENE
can come up with an efficient physical index structure automatically. Our initial experimental
results outline the potential and efficiency of our approach.

Future Work. This paper is obviously just a starting point and there are many possible ex-
citing research directions ahead:

1. code-generation, similar to generating code for the most efficient physical plan found,
generate code for the most efficient physical index structure found,

2. The Index Farm: we plan to open source our framework: the goal is that people submit
a workload on a web page and the framework emits suitable source code for an index
structure,

3. runtime adaptivity: how to mutate structurally, this can also simulate the adaptive in-
dexing family of index structures,

4. updates: explore workloads with inserts, updates, and deletes,

3.7. Conclusion and Future Work 69

5. scalability: extend our scalability experiments to evaluate workloads only on subtrees
affected by mutations, using cost functions to prioritize expensive partitions when draw-
ing nodes for mutations

6. effects of non-empty DT-fields in internal nodes,

7. extendGENE to supportmore data layouts, search algorithms, and hardware acceleration
(SIMD).

70 Chapter 3. Genetic Generic Generation of Index Structures

Chapter 4

Extending SQL to Return a
Subdatabase

4.1 Introduction

With the invention of the relational model by E. F. Codd [Cod70], database normalization was
already identified as a key principle in database design. In that seminal paper, Codd intro-
duced the first normal form with the aim of enabling the development of a ‘universal data
sublanguage’. In his follow-up work [Cod71], Codd went on to define the second and third
normal form. These normal forms were designed to reduce data redundancies by eliminat-
ing undesirable dependencies between relations, improve maintenance and consistency of the
data, enhance the extensibility of databases, and make the relational model more informative
to users. Moreover, the logical database schema serves as the common interface for both ap-
plications and database developers. Therefore, carefully designing the logical database schema
is crucial when creating a database. However, queries involving multiple relations often in-
herently and inevitably denormalize the underlying data when producing the result set, which
contradicts the core principles of normal forms. This implies that significant effort is invested
in normalizing data within the database system, yet the normalized state is often neglected
once the data is queried using SQL. This occurs, for instance, when passing data to users or
creating materialized views.

71

72 Chapter 4. Extending SQL to Return a Subdatabase

customers

id name state

0 custA NY
1 custB CA
2 custC NY

order

cid pid

0 1
1 1
2 2
2 1
0 2
1 3

products

id name category

0 smartphone electronics
1 laptop electronics
2 shirt clothing
3 pants clothing

Figure 4.1: Database tables with sample data. The gray rows indicate the tuples contributing
to the result set in Figure 4.2.

customers ⊲⊳ order ⊲⊳ products

c.name p.name p.category

custA laptop electronics

custA shirt clothing

custC laptop electronics

custC shirt clothing

Figure 4.2: Relational result table. The colors represent attribute values of database entities
(tuples) that get duplicated in the result of the query depicted in Listing 4.1.

4.1.1 Problem Statement

Consider the SQL query in Listing 4.1. Figure 4.1 depicts the corresponding database tables
with sample data and Figure 4.2 shows the query result.

Listing 4.1 SQL statement.

1 SELECT c.name , p.name , p.category
2 FROM customers AS c, order AS o, products AS p
3 WHERE c.state = ’NY’ AND
4 c.id = o.cid AND
5 p.id = o.pid;

When restricted to a single-table query output, computing the relational result shown in Fig-
ure 4.2 has two notable problems.

Problem 1: Relational information redundancy. The result table contains redundancies,
with customer names and product information appearing multiple times due to denormaliza-
tion caused by the underlying join operation. These data values are not only displayed multiple
times but are also physically duplicated. In general, the larger the result table, the greater the

4.1. Introduction 73

effort to transmit or store these result sets. This is particularly problematic for queries that pro-
duce large result sets, as it can lead to significant memory consumption during query process-
ing when these redundancies have to be materialized at some point in the physical execution
plan.

Problem 2: Relational information loss. In addition, relational information indicating
that duplicated values originate from the same tuple is lost. For instance, there could be two
customers named custA, and distinguishing between them in the result table would require
projecting their primary keys. Another issue with the result table is that the concept of a ‘key’
is simply abandoned when processing data in SQL or relational algebra. For instance, in Fig-
ure 4.2, the combination of the customer and product name uniquely identifies each record.
However, this information is not evident from the result set alone. SQL discards even more
information from the underlying relations: where did a specific attribute in the result table
originate from? Does that attribute value correspond to an attribute in one of the base rela-
tions, or was it computed? These are central questions in the area of ‘data provenance’ and
emphasize that both SQL and relational algebra are not primarily data retrieval languages but
rather data transformation languages. Both languages take a set of base relations as their in-
put and transform them into a single output relation. However, considerable information
regarding the relationship among the schema, keys, and data from the base relations is lost in
the process.

Therefore, in this work, we argue that it is much more natural to return individual, reduced
tables, i.e., a subdatabase, instead of a potentially denormalized result.

Definition 5 (Result Subdatabase). Let𝑄 be an arbitrary select-project-join query over a set
of relations 𝑅 = {𝑅1, . . . , 𝑅𝑛} that projects to a set of attributes 𝐴 = 𝐴1 ∪ · · · ∪ 𝐴𝑚 where each
𝐴𝑖 is a subset of the attributes of relation 𝑅𝑖 and𝑚 ≤ 𝑛. Let 𝑇 be the single table result of 𝑄
over 𝑅. A result subdatabase is defined as:

𝑄subdatabase := {𝜋𝐴1 (𝑇), . . . , 𝜋𝐴𝑚 (𝑇)}

In other words, instead of returning a single table, we return the set of tables whose attributes
are part of the projection of the original query, each containing only the tuples that contribute
to the overall query result. This concept has a wide range of use cases where it enhances declar-
ative simplicity and may even improve query performance, a selection of which are discussed
in the following.

74 Chapter 4. Extending SQL to Return a Subdatabase

electronics

id pid storage

0 0 64 GB
1 0 32 GB
2 1 128 GB

products

id name price

0 smartphone 900
1 laptop 3500
2 shirt 40
3 pants 120

clothing

id pid size

0 2 L
1 3 XS
2 3 M

Figure 4.3: Database tables showing electronics and clothing as subtypes of products. The pid in
both subtypes is a foreign key to the supertype.

4.1.2 Use Cases

1. Hierarchical Data. Consider the database tables shown in Figure 4.3, which shows a dif-
ferent way of modeling the products table. Instead of having the category as an attribute as
shown in Figure 4.1, the products table is divided into multiple subtypes, each representing
a specific category and containing category-specific information. Let us assume we are inter-
ested in all electronic and clothing products priced under 1000 Euros. Listing 4.2 shows the
corresponding query. Note that, we cannot use UNION to compute the desired result due to the

Listing 4.2 Querying hierarchical data.

1 SELECT e.*, c.*
2 FROM products AS p
3 LEFT OUTER JOIN electronics AS e ON p.id = e.pid
4 LEFT OUTER JOIN clothing AS c ON p.id = c.pid
5 WHERE p.price < 1000;

different schemas of electronics and clothing. Furthermore, since we must merge the relevant
tuples from both subtypes into a single output relation, we are forced to use OUTER JOINs,
which introduce NULL values as padding. However, with the RESULTDB extension, we can com-
pute the same result split into multiple individual output relations, allowing us to eliminate the
undesired and redundant NULL values. This use case applies more broadly to any scenario in
which we need to retrieve data from multiple distinct relations that lack a direct relationship.

2. Views. Materialized views (MVs) are a powerful concept in database management systems,
commonly used to precompute specific results and enhance query performance. However, MVs
come with drawbacks, the most significant being storage overhead. Materializing query results
as views requires physically replicating part of the underlying data, leading to additional stor-
age costs. This issue is exacerbated by the fact that MVs often contain redundancies introduced
by data denormalization through joins.

4.1. Introduction 75

Therefore, applying the idea of materializing only the individual result sets – using the
RESULTDB keyword to create the view – offers significant advantages by greatly reducing stor-
age overhead, primarily by eliminating duplicated data. For example, assumewewant to create
a materialized view for the query given in Listing 4.1. Instead of materializing the single-table
join result with redundancies, as shown in Figure 4.2, RESULTDBwould only materialize the un-
derlying database entities contributing to the query result, as illustrated in gray in Figure 4.1.
Depending on the amount of redundancy in the data, this approach has the potential to con-
siderably reduce storage overhead. The idea of storing only these filtered relations can also be
naturally applied to data provenance, particularly in the context of view lineage [CWW00]. In
that work, the authors propose several algorithms to reconstruct those tuples for a given data
item that produce a materialized (aggregation) view. These computed sets of source data items
essentially map one-to-one to our reduced base table views and can be used by the proposed
algorithms to trace the lineage of data items.

The issue with only storing the filtered base relations is that a post-join might be required,
i.e., we might have to join the individual tables again. However, this should not be viewed as a
disadvantage but rather as an opportunity. On the one hand, if the materialized view contains
a high amount of redundancy and the cost of executing the post-join is relatively low, it can be
beneficial to send the individual result sets to the client and execute the post-join there, thereby
reducing transfer overhead. On the other hand, without fully materializing the join result, we
can apply filters and create index structures directly on the filtered base table views, which can
be much more efficient than doing so on potentially large materialized views. Furthermore,
our experiments (Section 4.6.4) show that the post-join overhead is in general extremely small.

Another advantage of computing a result subdatabase is that it allows users to conveniently
define a completely customized view across multiple tables. With traditional SQL, users are
limited to either defining a view for each table individually or combining data from different
tables into a single table. Computing a subdatabase can be particularly useful, for instance,
when defining a view related to logical data independence or access control. In addition, it is
much more convenient to redefine the view if the requirements or specifications change.

3. Distributed Database Systems. In a distributed setting, it is often advantageous to pro-
cess as much data as possible locally on a single node. Once processed, the results may need
to be sent to another node for further computation, which can lead to significant data transfer
overhead. Therefore, computing a result subdatabase locally, rather than a single-table result,
can minimize the amount of data that needs to be transmitted, thereby reducing transfer time
and potentially decreasing the overall computation time. This concept is similar to the general

76 Chapter 4. Extending SQL to Return a Subdatabase

idea of semi-join reductions in distributed settings [Ber+81], which can be seen as a subset of
computing a result subdatabase but also applies to broader contexts, such as shipping the re-
sult of a query to an application server. In general, any scenario that involves transferring data
over a potentially slow network can benefit from producing individual result sets. Naturally,
we must consider the trade-off between reducing transfer costs and executing the post-join.

Overall, there are numerous use cases that could benefit from computing multiple individual
result sets. The advantages are extensive, including smaller (intermediate) result sets, a more
intuitive experience for users, and new opportunities for query optimization.

4.1.3 Contributions

We extend SQL to allow it to return a result subdatabase, i.e., only the tuples from those re-
lations that are required to compute the query result. In summary, our contributions are as
follows:

1. We introduce a backward-compatible SQL extension, SELECT RESULTDB, which enables
SELECT statements in SQL to return a clearly defined subset of a database rather than
just a single table. Although the introduction of this new keyword does not extend the
expressive power of SQL, it fundamentally alters the underlying semantics of the com-
puted result set. Note that, this work focuses on the data retrieval aspect and is therefore
limited to select-project-join (SPJ) queries. However, we plan to address data transforma-
tion such as grouping and more complex operations such as set difference or anti-joins
in future work. (Section 4.2)

2. We propose four rewrite algorithms that enable any SQL-92-compliant closed-source
database system to support our extension. (Section 4.3)

3. We present an efficient native algorithm, that enables query optimizers to compute the
result subdatabase efficiently directly inside a database system. We implement our algo-
rithm in mutable [HD23c], an open-source main memory DBMS featuring a state-of-the-
art compiling query execution engine. (Section 4.4)

4. We conduct an extensive experimental study comparing traditional single-table query
processing with our proposed approaches. We evaluate both our rewrite methods and
the integration of our algorithm directly into a DBMS. Our results show that multiple in-
dividual result sets significantly reduce size, with our methods adding minimal overhead
and, in some cases, even outperforming single-table execution. (Section 4.6)

4.2. Querying a Database to Return a Subdatabase 77

4.2 Querying a Database to Return a Subdatabase

We propose to change SQL and relational algebra to return a subdatabase. That subdatabase
is well-defined: for each relation in a query that is part of the final projection, we return the
tuples that contribute to the query result.

4.2.1 Preliminaries

Let R be set of all relations and let Q be the set of all select-project-join queries that project to
a set of attributes from its input relations.

Definition 6 (A Query Returning a Relation). Let𝑄 ∈ Q be a query. We define the evaluation
of 𝑄 and its input relations 𝑅 ⊆ R that produces a single-table (ST) result as follows:

𝑄ST : Q × 2R → R, (𝑄, 𝑅) ↦→ 𝑇

Here, 𝑇 is a relation with the schema from 𝑄 ’s final projection.

4.2.2 A Query Returning a Subdatabase

Definition 7 (A Query Returning a Subdatabase). Let 𝑄 ∈ Q be a query over a set of input
relations 𝑅 = {𝑅1, . . . , 𝑅𝑛} ⊆ R that projects to a set of attributes 𝐴 = 𝐴1 ∪ · · · ∪ 𝐴𝑛 where
each 𝐴𝑖 is a subset of the attributes of relation 𝑅𝑖 . We define the evaluation of 𝑄 and its input
relations 𝑅 ⊆ R that produces a subdatabase as follows:

𝑄RDB : Q × 2R → 2R, (𝑄, 𝑅) ↦→ 𝐷𝐵,where

𝐷𝐵 := {𝑅′
𝑖

�� 𝑅𝑖 ∈ 𝑅 ∧𝐴𝑖 ≠ ∅}, with 𝑅′
𝑖 := 𝜋𝐴𝑖

(
𝑄ST(𝑄, 𝑅)

)
In other words,𝑄RDB returns a subdatabase. This subdatabase contains a set of relations𝑅′

𝑖 ⊆ 𝑅𝑖 ,
where each relation is part of the projections in 𝑄 . The subset 𝑅′

𝑖 is defined as the result of the
single-table execution of 𝑄 , projected to the attributes 𝐴𝑖 .

To avoid confusion, the prefix ‘sub’ in subdatabase refers to the fact that (1.) 𝑄DB returns a
subset of the input relations, and (2.) those relations contain a subset of the tuples from the
input relations 𝑅. Notice that we assume set semantics of relation algebra, i.e., 𝜋 returns a
duplicate-free set. However, extending this to bag semantics is straightforward: our definitions

78 Chapter 4. Extending SQL to Return a Subdatabase

remain unchanged, with the sole adjustment being that the projection operation must preserve
duplicates.

4.2.3 Relationship-Preserving Subdatabase

Definition 8 (Relationship-Preserving Subdatabase). Let𝑄 ∈ Q be a query over a set of input
relations 𝑅 = {𝑅1, . . . , 𝑅𝑛} ⊆ R that projects to a set of attributes 𝐴 = 𝐴1 ∪ · · · ∪𝐴𝑛 where each
𝐴𝑖 is a subset of the attributes of relation 𝑅𝑖 . Let 𝐴𝐽

𝑖 be the subset of attributes of relation 𝑅𝑖

that are part of the join predicates in 𝑄 . We then define 𝐴′
𝑖 := 𝐴𝑖 ∪𝐴𝐽

𝑖 and the evaluation of 𝑄
and its input relations 𝑅 ⊆ R that produces a relationship-preserving subdatabase as follows:

𝑄RDB𝑅𝑃 : Q × 2R → 2R, (𝑄, 𝑅) ↦→ 𝐷𝐵,where

𝐷𝐵 := {𝑅′
𝑖

�� 𝑅𝑖 ∈ 𝑅 ∧𝐴′
𝑖 ≠ ∅}, with 𝑅′

𝑖 := 𝜋𝐴′
𝑖

(
𝑄ST(𝑄, 𝑅)

)
In other words, we extend the set of projected attributes 𝐴𝑖 by the attributes 𝐴𝐽

𝑖 required to
compute the joins of 𝑄 . In particular, we require a relationship-preserving subdatabase to be
able to obtain the original single-table result again. Specifically, we can reconstruct the original
single-table result by computing 𝑄ST on the reduced database 𝑄RDB𝑅𝑃 (𝑄, 𝑅):

𝑄ST(𝑄, 𝑅) =𝑄ST
(
𝑄,𝑄RDB𝑅𝑃 (𝑄, 𝑅)

)
.

Note that in some cases it is only necessary to consider a subset of the join predicates to re-
compute the single-table result, e.g., if a join does not contribute to the reconstruction of the
original result.

4.2.4 Extending SQL: SELECT RESULTDB

Given a read-only query𝑄 ∈ Q over a set of input relations 𝑅 = {𝑅1, . . . , 𝑅𝑛} ⊆ R. We propose
to extend the SELECT clause of 𝑄 to

SELECT RESULTDB

This statement will return𝑄RDB(𝑄, 𝑅) as defined in Definition 7. In order to compute the post-
join, i.e., to recompute the original single-table result again, we have to return 𝑄RDB𝑅𝑃 (𝑄, 𝑅)
as defined in Definition 8. Listing 4.3 shows an example SQL statement and Figure 4.4 the
corresponding result sets produced by that statement.

4.3. SQL-Based Rewrite Methods 79

Listing 4.3 Example SQL query showcasing our extension.

1 SELECT RESULTDB c.id , c.name , c.state ,
2 o.cid , o.pid ,
3 p.id , p.name , p.category
4 FROM customers AS c, order AS o, products AS p
5 WHERE c.state = ’NY’ AND
6 c.id = o.cid AND
7 p.id = o.pid

customers

id name state

0 custA NY
2 custC NY

order

cid pid

0 1
2 2
2 1
0 2

products

id name category

1 laptop electronics
2 shirt clothing

Figure 4.4: The computed subdatabase for the SELECT RESULTDB query in Listing 4.3.

Furthermore, SELECT RESULTDB does not require full materialization of the returned relations.
Results can be returned through pipelines, akin to standard single-table query processing, with
each relation mapping to an iterator (or cursor) that uses a pull- or push-based streaming in-
terface.

4.3 SQL-Based Rewrite Methods

In this section, we discuss four SQL-based rewrite methods (RMs) that allow us to implement
the query semantics introduced in Section 4.2. Since these rewrites happen entirely on the
SQL level and do not require access to the source code of the database management system,
this allows for very easy integration into every system, in particular closed source database
systems. Our rewrite methods can be classified along two dimensions, as depicted in Figure 4.5.

Dimension 1: SQL semi-join strategy. SQL does not provide a keyword for semi-joins.
Hence, we have to write semi-joins implicitly, either through an inner join followed by a
SELECT DISTINCT on a single relation or through a subquery using the IN keyword. Seman-
tically, both rewrites express the same query and return the same result set. Unfortunately,
the two rewrites may yield very different plans in many database systems (breaking the strict
separation of SQL’s declarativeness from query optimization).

80 Chapter 4. Extending SQL to Return a Subdatabase

Dimension 2: Materialization strategy. Instead of dynamically computing join results for
the semi-join strategies, we can prematerialize or cache data. For example, using materialized
views (MVs), we can precompute the entire query result or relevant portions, achieving a trade-
off between pre-materialization effort and query processing time.

SELECT DISTINCT Subquery

Dynamic RM 1 RM 3
Materialized RM 2 RM 4

Figure 4.5: SQL semi-join × materialization landscape.

In the following, we first present the intuition behind each RM, followed by a formal definition
using relational algebra. Let 𝑄 ∈ Q over the input relations 𝑅 = {𝑅1, . . . , 𝑅𝑛} ⊆ R be defined
as:

𝑄 := 𝜋𝐴
(
𝜎𝐽

(
𝜎𝐹 (𝑅×)

))
,

with𝐴 = 𝐴1∪· · ·∪𝐴𝑛 , where each𝐴𝑖 is a subset of the attributes of the relation𝑅𝑖 , 𝐽 = 𝐽1∧· · ·∧𝐽𝑛
where each 𝐽𝑖 is the set of join predicates of 𝑅𝑖 , 𝐹 = 𝐹1∧· · ·∧𝐹𝑛 where each 𝐹𝑖 is the set of filter
predicates of𝑅𝑖 , and𝑅× = 𝑅1×· · ·×𝑅𝑛 is the Cartesian product of all relations in𝑅. Furthermore,
we illustrate the application of each rewrite method using the query shown in Listing 4.1.

4.3.1 RM 1: Dynamic SELECT DISTINCT

The first rewrite method transforms a single query into multiple queries where each query
projects to the unique attributes of exactly one relation that participates in the query output.
Formally, RM 1 rewrites 𝑄 into multiple 𝑄𝑖 := 𝜋𝐴𝑖 (𝜎𝐽 (𝜎𝐹 (𝑅×))), ∀𝑖 where 𝐴𝑖 ≠ ∅. Listing 4.4
provides an example.

Listing 4.4 RM using multiple SELECT DISTINCTs.

1 BEGIN TRANSACTION;
2 SELECT DISTINCT c.name
3 FROM customers AS c, order AS o, products AS p
4 WHERE c.state = ’NY’ AND c.id = o.cid AND p.id = o.pid;
5
6 SELECT DISTINCT p.name , p.category
7 FROM customers AS c, order AS o, products AS p
8 WHERE c.state = ’NY’ AND c.id = o.cid AND p.id = o.pid;
9 COMMIT;

We use the DISTINCT keyword to prevent any duplicated entities due to the join and wrap the

4.3. SQL-Based Rewrite Methods 81

queries into a transaction to guarantee correct results w.r.t. the current committed state of the
database.

While RM 1 is relatively straightforward, the primary disadvantage is that it executes the same
queries with slightly different SELECT clauses multiple times, including potentially costly joins.

4.3.2 RM 2: Materialized SELECT DISTINCT

To proactively circumvent that a potentially expensive join is executed multiple times, RM 2
makes use of MVs. In this rewrite method, we first explicitly create a (temporary and unmain-
tained) MV once. This represents a snapshot as of the time the MV is created. Second, we
execute the individual queries against that MV and third, we drop the MV. Formally, RM 2 first
creates 𝑄MV := 𝑄 and then creates multiple 𝑄𝑖 := 𝜋𝐴𝑖 (𝑄MV), ∀𝑖 where 𝐴𝑖 ≠ ∅. Listing 4.5
provides an example.

Listing 4.5 RM using an MV.

1 CREATE MATERIALIZED VIEW MV AS
2 SELECT c.name , p.name , p.category
3 FROM customers AS c, order AS o, products AS p
4 WHERE c.state = ’NY’ AND c.id = o.cid AND p.id = o.pid;
5
6 SELECT DISTINCT c.name FROM MV;
7 SELECT DISTINCT p.name , p.category FROM MV;
8
9 DROP MATERIALIZED VIEW MV;

RM 2 has the advantage that it avoids the repeated computation of the same query. However,
the disadvantage is that we need to materialize a potentially large query result within the
DBMS, which can be particularly costly in a disk-based system. Overall, RM 2 trades upfront
costs for materializing the join result versus repeated cost for the computation of the join result.

4.3.3 RM 3: Dynamic Subquery

The third rewrite method tries to steer the query optimizer into using semi-joins internally
by providing a hint using subquery syntax. Formally, RM 3 rewrites 𝑄 into multiple 𝑄𝑖 using

82 Chapter 4. Extending SQL to Return a Subdatabase

semi-joins, ∀𝑖 where 𝐴𝑖 ≠ ∅ as follows:

𝑄𝑖 := 𝜋𝐴𝑖

(
𝜎𝐽

(
𝜎𝐹 (𝑅×)

))
1.
= 𝜋𝐴𝑖

(
𝜎𝐹𝑖 (𝑅𝑖) ⊲⊳𝐽𝑖

(
𝜎𝐽 \𝐽𝑖

(
𝜎𝐹\𝐹𝑖 (𝑅× \ 𝑅𝑖)

)))
2.
= 𝜋𝐴𝑖

(
𝜎𝐹𝑖 (𝑅𝑖) ⋉𝐽𝑖

(
𝜎𝐽 \𝐽𝑖

(
𝜎𝐹\𝐹𝑖 (𝑅× \ 𝑅𝑖)

)))
Transformation step 1. explicitly performs the join between 𝑅𝑖 and the rest of the relations
𝑅 \ 𝑅𝑖 . In transformation step 2., the application of the left semi-join is equivalent to the join
as we only project to the attributes of 𝑅𝑖 anyway. Note that the subquery does not necessarily
have to contain all other relations but only those required to compute the relevant primary key
values, which depends on the specific join graph. Listing 4.6 provides an example.

Listing 4.6 RM using dynamic subqueries.

1 BEGIN TRANSACTION;
2 SELECT DISTINCT c.name
3 FROM customers AS c
4 WHERE c.state = ’NY’ AND c.id IN -- c.id = o.cid
5 (SELECT o.cid
6 FROM order AS o, products AS p
7 WHERE o.pid = p.id);
8
9 SELECT DISTINCT p.name , p.category
10 FROM products AS p
11 WHERE p.id IN -- p.id = o.pid
12 (SELECT o.pid
13 FROM order AS o, customers AS c
14 WHERE c.state = ’NY’ AND o.cid = c.id);
15 COMMIT;

With this rewrite, the query optimizer of a database system like PostgreSQL can efficiently exe-
cute a semi-join in certain cases without materializing a potentially large join result. However,
the effectiveness of the query optimizer in utilizing a semi-join operator depends on various
factors and may not always be guaranteed.

4.3.4 RM 4: Materialized Subquery

The fourth rewrite method essentially materializes a join index, i.e., for all participating
relations, it only projects to their primary keys. Formally, RM 4 first creates 𝑄MV :=
𝜋𝐴PK (𝜎𝐽 (𝜎𝐹 (𝑅×))), with 𝐴PK = {𝐴PK

𝑖 |1 ≤ 𝑖 ≤ 𝑛 ∧ 𝐴𝑖 ≠ ∅}, where each 𝐴PK
𝑖 is the set of pri-

4.4. ResultDBsemi-join Algorithm 83

mary key attributes of 𝑅𝑖 . Afterward, RM 4 creates multiple 𝑄𝑖 := 𝜋𝐴𝑖 (𝑅𝑖 ⋉𝐽 PK𝑖
𝑄MV), ∀𝑖 where

𝐴𝑖 ≠ ∅. 𝐽 PK𝑖 denotes the join on the primary key attributes. Listing 4.7 provides an example.

Listing 4.7 RM using an MV and multiple subqueries.

1 CREATE MATERIALIZED VIEW MV AS
2 SELECT DISTINCT c.id , p.id
3 FROM customers AS c, order AS o, products AS p
4 WHERE c.state = ’NY’ AND c.id = o.cid AND p.id = o.pid;
5
6 SELECT DISTINCT c.name
7 FROM customers AS c
8 WHERE c.id IN
9 (SELECT c.id from MV);
10
11 SELECT DISTINCT p.name , p.category
12 FROM products AS p
13 WHERE p.id IN
14 (SELECT p.id from MV);
15
16 DROP MATERIALIZED VIEW MV;

RM 4’s rationale is that it typically requires significantly less storage than RM 2 and has the
potential to leverage semi-joins internally.

4.4 ResultDBsemi-join Algorithm

In Section 4.3, we focused on how we can implement queries returning a database only using
SQL-based rewrites. While this approach is widely applicable due to its ease of implementation
and because we do not need access to the source code, each presented method comes with its
own drawbacks. We either perform a potentially expensive join multiple times, materialize a
large join result, or try to enforce a semi-join optimization using subqueries.

Therefore, in this section, we present an algorithm that can be integrated into a DBMS to
efficiently compute SELECT RESULTDB queries. Our algorithm allows us to fully reduce all rela-
tions of a join graph with an arbitrary topology. For this, we first discuss how we can leverage
Yannakakis’ algorithm for acyclic join graph topologies in Section 4.4.2. Next, in Section 4.4.3,
we show how to transform cyclic queries into acyclic ones to reuse the algorithm from Sec-
tion 4.4.2. Finally, we present our complete algorithm in Section 4.4.4.

84 Chapter 4. Extending SQL to Return a Subdatabase

4.4.1 Preliminaries

The core idea is to efficiently reduce each individual relation to the minimal set of tuples that
participate in the result set as defined in Definition 7. For this, we are going to make use of
semi-joins. The (left) semi-join between two relations R and S is defined as R⋉ S = 𝜋 [R] (R ⊲⊳ S).
Similar to previous work [Cod70; BC81], we use the term semi-join reduction or just reduction
when performing a semi-join. In particular, we say ‘R is reduced by S’ if we perform R ⋉ S.
Depending on the context, a semi-join reduction can also refer to the reduction of every relation
that is part of a query.

As already shown in previous work [BC81], the shape of the join graph is an essential factor
for computing a semi-join reduction. A join graph for some query𝑄 is defined as 𝐽𝐺𝑄 = (𝑅, 𝐽),
where 𝑅 is the set of relations and 𝐽 is the set of joins in𝑄 . We will always assume a connected
join graph. In the following, we look separately at both acyclic and cyclic join graph topologies
and discuss how we can algorithmically compute our result subdatabases.

Notion of Acyclicity. Note that acyclicity can be defined in various ways, with one com-
mon definition being 𝛼-acyclicity. Intuitively, it can be defined as follows (see Definition 18.2
of Arenas et al. [Are+22] for a more formal definition):

Definition 9 (𝛼-acyclicity). A query𝑄 is acyclic iff there exists an equivalent query𝑄 ’ whose
join graph 𝐽𝐺𝑄 ′ is a tree.

However, in the scope of this work, wewill use a simpler definition solely based on the structure
of the join graph:

Definition 10 (JG-acyclicity). A query 𝑄 is acyclic iff its join graph 𝐽𝐺𝑄 is acyclic.

The problem with these different notions of acyclicity is that a query may be 𝛼-acyclic but not
JG-acyclic. In this work, we decided to use JG-acyclicity due to the following two reasons. First,
checking for JG-acyclicity can be done very efficiently. A join graph is cyclic iff the number of
joins is equal to or greater than the number of relations. In contrast, checking for 𝛼-acyclicity
requires for example the application of the GYO algorithm (see Proposition 18.6 of Arenas et
al. [Are+22]), which is computationally more expensive. Second, under 𝛼-acyclicity, there can
be multiple tree-shaped queries 𝑄 ’ for a given query 𝑄 . Deciding which𝑄 ’ to consider for our
algorithm basically represents another enumeration problem.

This presents a trade-off: identifying and constructing acyclic queries under 𝛼-acyclicity is
computationally more expensive but may save the effort required to transform a cyclic query

4.4. ResultDBsemi-join Algorithm 85

R T

S

U

1. S′ = S ⋉ R 2. S′′ = S′ ⋉ T

3. U′ = U ⋉ S′′ 4. S′′′ = S′′ ⋉ U′

6. R′ = R ⋉ S′′′
5. T′ = T ⋉ S′′′

Figure 4.6: Acyclic join graph topology visualizing a possible semi-join order with U as root.
→ shows the bottom-up and → the top-down pass.

into an acyclic one (cf. Section 4.4.3). For the remainder of this paper, we use (a)cyclicity to
refer specifically to JG-(a)cyclicity. However, exploring𝛼-acyclicity will be considered in future
work.

4.4.2 Acyclic Join Graph Topology

The Yannakakis algorithm [Yan81] provides an efficient way for solving acyclic (tree) conjunc-
tive queries, i.e., select-project-join (SPJ) queries that have an acyclic join graph. The algorithm
essentially works in three main steps. After choosing an arbitrary root node, we first perform
consecutive semi-joins bottom-up from the leaves to the root. Second, we perform consecutive
semi-joins top-down from the root to the leaves. After executing both bottom-up and top-down
passes through the tree, all relations are reduced to their minimal set of tuples that participate
in the join. Lastly, the Yannakakis algorithm joins the reduced relations to obtain a single out-
put relation. The main motivation of this algorithm is to keep intermediate results as small
as possible by reducing all relevant relations to their minimal set of tuples that participate in
the join before actually joining the relations. Algorithm 4 shows the high level steps of this
algorithm.

Algorithm 4 Yannakakis’ Algorithm.
(0) Choose an arbitrary node in the join graph as root.
(1) Perform bottom-up semi-joins from leaves to root.
(2) Perform top-down semi-joins from root to leaves.
(3) Compute join result.

Figure 4.6 shows an acyclic join graph consisting of four relations and visualizes one possible
semi-join order. In this example, we select U as the root and then compute a breadth-first
search order for the edges starting at U. The reversed order now gives us a suitable sequence

86 Chapter 4. Extending SQL to Return a Subdatabase

for the bottom-up semi-joins while we perform the top-down semi-joins in the original order.
The semi-joins are performed in the direction of the arrows, i.e., an arrow from R to S repre-
sents the semi-join S ⋉ R. Note, that for a specific node with multiple children, the order in
which the semi-joins are applied does not matter for correctness but might have an impact on
performance.

Algorithm 5 Reduce relations of a join graph using Yannakakis’ algorithm.
1: function reduce_relations(𝐺) ⊲𝐺 is an acyclic join graph
2: root = choose_node(𝐺) ⊲(0) root node
3: edges_bfs_order = bfs_edges(𝐺 , root)
4: for join ∈ reversed(edges_bfs_order) do ⊲(1) bottom-up
5: semi_join(join.left, join.right)
6: end for
7: for join ∈ edges_bfs_order do ⊲(2) top-down
8: semi_join(join.right, join.left)
9: end for
10: return𝐺 ⊲𝐺 contains reduced relations
11: end function

Algorithm 5 shows pseudocode for the computation of our result subdatabase based on the
fundamental steps in Yannakakis’ algorithm depicted in Algorithm 4. In line 2, we choose a
root node of our tree-structured join graph (step 0). Instead of randomly selecting a root node,
we employ a heuristic that favors relations included in the projections, prioritizing those with
higher degrees when multiple such relations exist. This heuristic is based on two key reasons.
First, since we only need to reduce relations that we eventually return, choosing a relation
in the projections as root can reduce the number of semi-joins needed in the top-down pass.
Second, choosing high-degree nodes typically leads to shallower trees, allowing us to perform
subsequent semi-joins more effectively. The selection of the root node, which we refer to as
the Root Node Enumeration Problem, can have a substantial impact on performance. In line 3,
we order the edges of the join graph in a breadth-first-search order starting at the root node.
Additionally, we assume the join operands are ordered relative to the root node, meaning there
are directed edges from the root to the leaves. This is crucial because the semi-join operation
is not commutative, and we must ensure that semi-joins are executed in the correct direction.
In lines 4-5, we perform the bottom-up semi-joins (step 1), and in lines 6-7, we perform the top-
down semi-joins (step 2). In contrast to Yannakakis’ algorithm, we no longer need to execute
step 3, as the reduced relations already form our desired result database. This is a very crucial
characteristic of RESULTDB queries.

The most obvious reason Yannakakis’ algorithm is not used in traditional query processing is

4.4. ResultDBsemi-join Algorithm 87

R

id

0
1

S

rid tid

0 0
0 1
1 0

T

id

0
1

(a) Example data.

S

R T

id=
rid

tid=id
id=id

(b) Cyclic join graph topology.
R ⊲⊳ S ⊲⊳ T

R.id S.rid S.tid T.id

0 0 0 0

(c) Actual join result.

R

id

0

S

rid tid

0 0

T

id

0

(d) Expected RESULTDB output.

Figure 4.7: Example that shows why Yannakakis’ algorithm cannot be applied to cyclic queries.

the uncertainty about whether the overhead of an initial semi-join reduction outweighs the
benefits of smaller subsequent join results. However, we need not worry about this since we
focus solely on the reduced relations, allowing us to fully leverage the efficiency of Yannakakis’
algorithm while avoiding its potential drawbacks.

4.4.3 Cyclic Join Graph Topology

Yannakakis’ algorithm is explicitly only defined for acyclic conjunctive queries. Furthermore,
Bernstein et al. [BC81] show that for cyclic queries, semi-joins either cannot be used to fully

reduce the relations or we need a very long sequence of semi-joins. ‘Fully reduced’ refers to
a relation where only the minimal set of tuples needed for the final join result remains. In
Figure 4.6 for example, after performing the first semi-join S ⋉ R, the relation S is only partially
reduced. Once S is reduced by all neighboring relations, i.e., after the fourth semi-join, it cannot
be further reduced anymore and thus, we call it fully reduced.

Figure 4.7 shows an example why Yannakakis’ algorithm cannot be applied to cyclic queries.
Assume we have the data given in Figure 4.7a and the join graph with a cyclic topology in Fig-
ure 4.7b. The actual join result only consists of a single row as depicted in Figure 4.7c. Fig-
ure 4.7d shows the corresponding expected result database. Applying Yannakakis’ algorithm
on this example has two fundamental problems. First, we cannot even choose a root node for
this join graph. Second, no matter in which order we apply potential semi-joins, we will never
filter out any of the tuples from our example data. The reason is that every row in each rela-
tion has a join partner in every other relation. As a result, Yannakakis’ algorithm produces the
original subdatabase shown in Figure 4.7a, and we cannot obtain our expected output.

88 Chapter 4. Extending SQL to Return a Subdatabase

R S

T U

(a) JG 1

⇒
T⊲⊳U

R S

T⊲⊳U

(b) JG 2

⇒
R⊲⊳S

R⊲⊳S

T⊲⊳U

(c) JG 3

Figure 4.8: Transformation of a cyclic join graph into an acyclic one by folding vertices, i.e., com-
puting join results of neighboring vertices.

So, in order to leverage Yannakakis’ algorithm, we need to ‘transform’ cyclic queries into tree
queries. There is already some work on transforming graphs into a tree structure called tree de-
compositions [RS86]. We discuss this line of work in more detail in the related work Section 4.5.
However, we decided to employ a more pragmatic and accessible way to get rid of cycles in a
join graph.

Algorithm 6 Transform cyclic join graph into acyclic one.
1: function fold_join_graph(𝐺)
2: while 𝐺 .is_cyclic() do ⊲#joins >= #relations
3: 𝑥 = choose_node(𝐺)
4: 𝑦 = choose_neighbor(𝐺 , 𝑥)
5: 𝐺 .replace(𝑥 , 𝑦, 𝑥 ⊲⊳ 𝑦) ⊲fold 𝑥 and 𝑦; adjust affected joins
6: end while
7: return𝐺 ⊲acyclic join graph
8: end function

The general idea is to fold relations together such that the cycles in the join graph are resolved.
Algorithm 6 shows pseudocode for the construction of an acyclic join graph. At the core, the
algorithm consists of two steps. First, we choose a (random) node 𝑥 in the join graph and one
of its neighbors 𝑦 (lines 3-4). Second, we replace those two nodes 𝑥 and 𝑦 with their join result
and adjust other affected joins accordingly (line 5). We repeat these steps until our join graph
is acyclic (line 2). Since our join graph is undirected and connected, we can easily check for
cycles by comparing the number of joins to the number of relations. If the number of joins is
equal to or greater than the number of relations, the join graph is cyclic.

Figure 4.8 shows an example transformation of a cyclic join graph into an acyclic one by folding
multiple vertices. Our initial join graph (JG 1) has multiple cycles (e.g., R–S–U–T–R or R–S–T–
R). In the first step, we choose the nodes T and U and replace them in the join graph with their

4.4. ResultDBsemi-join Algorithm 89

join result T ⊲⊳ U. Note that we now have a conjunctive join predicate between S and T ⊲⊳ U
which is visualized by having multiple edges in their respective color between two nodes. After
this transformation, we still have a cyclic join graph (JG 2). Therefore, we repeat the process
and join the nodes R and S. The final join graph (JG 3) consists of two nodes connected by a
single join containing three join predicates.

Note, that this is just one possible outcome because we did not specify how to choose either
node 𝑥 or𝑦 in Algorithm 6. Choosing nodes S and T initially would have yielded an acyclic join
graph already after folding the first two nodes. The choice of folds is very likely to have a sig-
nificant impact on the performance of the algorithm. This opens up a whole new optimization
problem that we coin the Folding Enumeration Problem. Exploring this problem goes beyond
the scope of this paper, and we will investigate it as part of future work. However, instead of
just randomly picking the two nodes 𝑥 and 𝑦, our implementation heuristically chooses the
nodes with the highest degree. The rationale for this is that nodes with many join partners are
more likely to be part of a cycle and with that, we might need fewer folds to reach an acyclic
state.

Lemma 1. The folding process does not alter the join result and eventually results in an
acyclic join graph.

Proof. Let 𝑄 ∈ Q be a cyclic query and 𝐽𝐺𝑄 = (𝑅, 𝐽) be the corresponding connected join
graph, where 𝑅 = {𝑅1, 𝑅2, . . . , 𝑅𝑛} is the set of relations and 𝐽 is the set of joins in 𝑄 . Joining
two arbitrary but connected relations 𝑅𝑖 and 𝑅 𝑗 and replacing them with the join 𝑅𝑖 ⊲⊳ 𝑅 𝑗 = 𝑅𝑖 𝑗

in 𝑄 does not change the overall join result. This follows directly from the associativity of the
join operation.

Q = 𝑅1 ⊲⊳ · · · ⊲⊳ 𝑅𝑖 ⊲⊳ · · · ⊲⊳ 𝑅 𝑗 ⊲⊳ · · · ⊲⊳ 𝑅𝑛
= 𝑅1 ⊲⊳ · · · ⊲⊳ (𝑅𝑖 ⊲⊳ 𝑅 𝑗) ⊲⊳ · · · ⊲⊳ 𝑅𝑛
= 𝑅1 ⊲⊳ · · · ⊲⊳ 𝑅𝑖 𝑗 ⊲⊳ · · · ⊲⊳ 𝑅𝑛

A connected, undirected join graph is acyclic iff the number of joins |𝐽 | is equal to the number
of relations |𝑅 | minus 1, i.e., |𝐽 | = |𝑅 | − 1. Each folding step reduces the number of relations
in the join graph by exactly one by merging two nodes. However, folding two nodes reduces
the number of joins in the join graph by at least one, depending on the structure of the query
graph and the relations to be joined. Therefore, we can successively join two relations until

90 Chapter 4. Extending SQL to Return a Subdatabase

the number of joins is less than the number of relations in the folded join graph. In the worst
case, we apply the folding steps until we are left with exactly two nodes and one edge, which
by definition is acyclic. From this, it follows that the folding process eventually results in an
acyclic join graph. □

4.4.4 Putting It All Together

With the transformation of cyclic queries into acyclic queries complete, we can now present
our final ResultDBsemi-join Algorithm 7.

Algorithm 7 SELECT RESULTDB on arbitrary join graph topologies.
1: function ResultDBsemi-join(𝐺)
2: if 𝐺 .is_cyclic() then
3: 𝐺 = 𝐺 .fold_join_graph(𝐺) ⊲transform into acyclic JG
4: end if
5: 𝐺 = reduce_relations(𝐺) ⊲use Yannakakis’ algorithm
6: for 𝑟 ∈ 𝐺.relations do
7: if 𝑟 .is_fold() then ⊲𝑟 could be a join result
8: 𝑏𝑎𝑠𝑒_𝑟𝑒𝑙𝑠 = 𝐺 .decompose(𝑟) ⊲split join into base relations
9: 𝐺 .deduplicate(𝑏𝑎𝑠𝑒_𝑟𝑒𝑙𝑠) ⊲remove potential dups
10: else
11: 𝐺 .deduplicate(𝑟) ⊲projection could introduce dups
12: end if
13: end for
14: return𝐺 .relations ⊲result database
15: end function

Given an arbitrary join graph 𝐺 , we first check if the join graph is cyclic (line 2). In that case,
we use our folding algorithm (line 3) to construct an acyclic join graph. Afterward, we can
reuse Yannakakis’ algorithm to reduce the relations (line 4). At this point, a relation can also
represent a join result, and the algorithm performs the semi-joins based on the modified join
predicates. These join predicates can now be conjunctions of multiple joins predicates (cf. Fig-
ure 4.8). Finally, we have to break up the joins again and remove potential duplicates. For this,
we iterate over all nodes in the join graph (line 5) and check if this node is a fold (line 6). If so,
we decompose this node again (line 7) by projecting each involved base relation and remove po-
tential duplicates (line 8). In general, this operation can basically be seen as the inverse of the
folding algorithm. We also remove duplicates due to the projection from base relations (line 10)
and finally return the reduced relations (line 11).

Theorem 1. The algorithm ResultDBsemi-join (Algorithm 7) is correct, i.e., we obtain the

4.5. Related Work 91

correct and fully reduced relations.

Proof. Let 𝑄 ∈ Q be a query over a set of relations 𝑅 = {𝑅1, 𝑅2, . . . , 𝑅𝑛} and 𝑄ST(𝑄, 𝑅)
be the single-table evaluation of 𝑄 and its inputs 𝑅 (see Definition 6). Further, let
Yannakakisreduce be the reduction phase of Yannakakis’ algorithm depicted in Algorithm 5,
let Decomp

(
𝑄ST(𝑄, 𝑅)

)
=

{
𝜋𝑅1

(
𝑄ST(𝑄, 𝑅)

)
, . . . , 𝜋𝑅𝑛

(
𝑄ST(𝑄, 𝑅)

)}
be the operation that decom-

poses a query result into its base relations, and let Decompfolds analogously split all folds into
their base relations.

We have to show that applying Yannakakis’ reduction phase to an arbitrary join graph
yields the same result as performing the decomposition operation on the single-table result.
In Lemma 1, we have already shown that an arbitrary query 𝑄 can be transformed into an
acyclic query 𝑄 ′ with its corresponding set of relations 𝑅′ without changing the query result,
i.e.,𝑄ST(𝑄, 𝑅) =𝑄ST(𝑄 ′, 𝑅′). If𝑄 is already acyclic, the folding process is a no-op. Let 𝐽𝐺𝑄 ′ be
the corresponding join graph instantiated with the underlying relations 𝑅′. Since𝑄 ′ is acyclic,
we can apply Yannakakis’ algorithm. Therefore, Yannakakisreduce(𝐽𝐺𝑄 ′) produces the fully
reduced relations 𝑅′

reduced. Since the folds in 𝑅′
reduced are fully reduced as well, applying the

Decompfolds operator to those folds yields the fully reduced base relations in turn. Therefore,
we can conclude:

Decomp
(
𝑄ST(𝑄, 𝑅)

)
= Decompfolds

(
Yannakakisreduce(𝐽𝐺𝑄 ′)

)
□

4.5 Related Work

SQL Flaws. SQL having some flaws is no secret. There are many publications [Dat84; TSV18;
Gra08; DKK05] and blog posts [SQLFlaws14; Pra19] that present some major shortcomings of
SQL as a language. For example, they criticize SQL’s NULL value semantic, that SQL is hard to
compose due to its different kinds of expressions (table vs scalar), or that it is generally very
inconsistent and error-prone. In this work, we also discuss a number of problems which mainly
stem from the single-table limitation causing the denormalization of tables through joins. In
addition, we provide a single keyword extension that is able to fix all problems mentioned in
this work and even addresses some of the flaws mentioned in related work.

92 Chapter 4. Extending SQL to Return a Subdatabase

SQL Extensions. Throughout the years, many different variations of SQL extensions have
been introduced. Regarding single keyword extensions, the Data Cube [Gra+96] operator and
the Skyline [BKS01] operator are probably the most well-known. The Data Cube operator en-
ables N-dimensional aggregate computation while the Skyline operator allows for filtering out
‘interesting’ data points. Our work also introduces a new keyword that enables the computa-
tion of a result database instead of a single-table result. To the best of our knowledge, this is
the first work with this contribution.

Another way of extending SQL is to move away from the traditional relational data model and
introducing a query language tailored to semi-structured or unstructured data. SQL++ [OPV14]
is a semi-structured query language of AsterixDB [Als+14] that basically represents a superset
of the SQL and JSON data model. Extending SQL with JSON features enables the arbitrary
nesting and composition of data values. While this is definitely a valid approach, our proposed
extension explicitly stays in the relational word, keeping schema and relational information. In
addition, it is minimally invasive since it only requires the addition of a single keyword instead
of using a new query language with many different features.

Malloy [Tab21] is a new query language for describing data relationships and transformations.
It compiles queries to SQL and excels at handling nested data, addressing one of our primary
objectives. However, the key focus of this work is to generate multiple result sets without
introducing an entirely new query language.

Semi-joins & Yannakakis’ Algorithm. To implement our idea to return a result database,
the fundamental idea is to use semi-joins to reduce all involved relations. Bernstein et al. [BC81]
already introduces the idea to use semi-joins to solve relational queries. By ‘solve relational
queries’ they refer to efficiently computing the reduced relations using semi-joins and subse-
quently computing the final join result using these reduced relations. This algorithm is also
well-known as Yannakakis’ [Yan81] algorithm. In their work, they show that queries with a
tree-structured query graph can be solved using semi-joins. Conversely, queries with cyclic
graphs generally require large semi-join programs or cannot be solved at all. Both works in-
spired our algorithmic solution.

Yang et al. [Yan+24] recently published another work utilizing Yannakakis’ algorithm. The
general idea is also to optimize join performance by reducing the corresponding relations as
much as possible before joining them. However, instead of using semi-joins to filter the re-
lations, they utilize Bloom filters, which turn out to be computationally more efficient. Their
technique is called predicate transfer and can be seen as a generalization of Bloom joins. Unlike

4.5. Related Work 93

their approach, we cannot use Bloom filters without further ado due to potential false positives.
While they remove false positives in the final join, we return the filtered relations directly. We
could use such a probabilistic data structure only if the post-join is always executed on the
client.

Bitmaps, Bitvectors, Bitmap Join Indexes, & BloomFilters. Value bitmaps [OQ97; CI98],
bitvector filters [DCN20], bitmap join indexes [Aou+05], and their probabilistic counterparts
like bloom filter [Blo70; PSS09; Lan+19] are useful optimization techniques for read-mostly
scenarios. An early variant of this is the technique described by Graefe [Gra93]. Especially
bitvector filters and bloom filters can be seen as a variant of sideways information passing
(see paragraph below). Since ResultDB essentially only filters the base relations of a query,
any existing DBMS already supporting these techniques can directly apply them to ResultDB
queries. A detailed experimental evaluation of the different techniques and trade-offs is beyond
the scope of this work, but we believe that it will considerably improve the performance of
ResultDB queries.

Sideways Information Passing & Factorization. The underlying idea of sideways infor-
mation passing (SIP) is to optimize query processing by exchanging information between ar-
bitrary parts in a query plan. This optimization is often aimed at reducing intermediate (join)
results by reducing relations early on. Therefore, a semi-join reduction [BC81] is actually a
special case of SIP, whose application is very broad. Shrinivas et al. [Shr+13] present how side-
ways information passing in the context of materialization strategies can be used to improve
the performance in the Vertica Analytical Database [Lam+12]. Neumann andWeikum [NW09],
show how SIP can be used to speed up index scans at query runtime in RDF graphs. Another
work [Zhu+17] by Zhu et al. is able to produce robust query plans in star schemas by making
use of bloom filters, a SIP data structure. While SIP applies a certain reduction in a specific
scenario, we unconditionally reduce all relations that are part of a query. Furthermore, we
explicitly compute this reduced state of a relation whereas SIP only uses it as a means to speed
up query processing.

Factorized Databases [OS16] is another concept that tries to minimize intermediate join results.
However, in contrast to the aforementioned SIP methods, factorization is essentially a compres-
sion technique for join results that tries to get rid of redundancies. With that, it also targets
the problem of relational information redundancies (cf. Problem 1 in Section 4.1). In contrast
to factorized databases, we primarily try to avoid the redundancies in join results instead of
hiding those redundancies using compression techniques.

94 Chapter 4. Extending SQL to Return a Subdatabase

Tree decompositions. As discussed in Section 4.4.3, tree decompositions [RS86] can be used
to transform a cyclic graph into a tree structure by grouping nodes connected by edges into
‘bags’, adhering to specific properties. While tree decompositions are useful, particularly in
database theory [Are+22; GMS09; Bod96; BCM22] for efficiently solving NP-hard problems
like evaluating conjunctive queries with bounded treewidth, they have some practical issues.
The main issue with tree decompositions is that they often result in trees where original nodes
appear in multiple bags, increasing the join effort. To avoid this, we use a straightforward
approach that joins (folds) relations until the graph is acyclic. This method provides better
control over which relations are joined and allows for easier optimization with regard to the
subsequent reduction phase.

Worst-case optimal joins. A key advantage of our algorithm presented in Section 4.4 is
that we avoid computing potentially large intermediate results. Similarly, worst-case optimal
joins (WCOJ) avoid producing large intermediate results by computing multi-way joins instead
of binary joins [Ngo+12]. However, WCOJ come with some major downsides. First, they are
predominantly useful in contexts like large graphs with many self-joins [Szá+22]. Second, they
aremainly efficient for cyclic queries [WWS23]. Third, andmost importantly, existing andwell-
known algorithms like the Leapfrog Triejoin [Vel12] come with impractical requirements such
as the existence of ordered index structures on their input. Freitag et al. [Fre+20] provide an
approach to integrate WCOJ in relational databases without such hard requirements. While
this work makes WCOJ more accessible outside the database theory community, we argue that
Yannakakis’ algorithm is better suited, as we can use it to efficiently compute multiple result
sets while avoiding large intermediate join results.

Data Provenance. There are fascinating relationships of ResultDB to lineage and prove-
nance. For instance, the seminal work by Cui, Widom, andWiener [CWW00] introduced query
rewrites to track the derivation set of an output tuple 𝑡 , i.e., all tuples from the input database
that contributed to computing 𝑡 (see Definition 8.2 of Cui, Widom, and Wiener [CWW00]).
Consider any SPJ query 𝑄 and reduce its output to a single tuple by applying filters, resulting
in 𝑄𝑡 . Then, the derivation set of 𝑡 is equal to the ResultDB query of 𝑄𝑡 by definition (as long
as ResultDB returns all attributes from all referred input relations)! This is because we return
only those tuples that somehow contribute to at least one of the tuples in the single-table result.
In a way, ResultDB queries can be seen as multi-tuple derivation set queries.

Similarly, the work by Niu et al. [Niu+17] and Arab et al. [Ara+14] provides techniques for
optimizing provenance queries. All these techniques should be revisited to leverage ResultDB
style query processing. However, this goes beyond the scope of this work.

4.6. Experiments 95

4.6 Experiments

In this section, we first get an overview of the result set sizes of various SQL queries. After-
ward, we investigate the rewrite methods discussed in Section 4.3 and our ResultDBsemi-join

algorithm presented in Section 4.4. Through our experiments, we address the following four
research questions (RQs):

RQ 1 What is the level of data redundancy in the result sets of a real-world benchmark, and
what is the potential data redundancy in a theoretical scenario? (Section 4.6.1)

RQ 2 How do the rewrite methods compare to each other, and what is their overhead relative
to the single-table approach? (Section 4.6.2)

RQ 3 What is the query execution time of our ResultDBsemi-join algorithm compared to the
single-table approach? (Section 4.6.3)

RQ 4 How does the end-to-end runtime of our ResultDB approach compare to that of the
single-table approach, including data transfer time and post-join time? (Section 4.6.4)

Setup. All experiments were conducted on an AMD Ryzen Threadripper 1900X 8-Core pro-
cessor with 32 GiB main memory. The underlying operating system is Arch Linux with kernel
version 6.8.2.arch2-1 on an x86_64 architecture.

Systems. We integrated our ResultDBsemi-join algorithm from Section 4.4 into
mutable [HD23c], an open-source relational DBMS with a compiling query engine [HD23a].
Currently, mutable is an early-stage research project supporting core functionality like query
execution, different data layouts, and plan enumerators [HD23b]. However, mutable is still
missing some functionality like indexes, multithreading, or advanced language features.

Due to the lack of certain features, we decided to use PostgreSQL for evaluating the rewrite
methods presented in Section 4.3. In particular, we use PostgreSQL 16.2 and measure the
client-side runtime using the \timing command of the accompanying interactive terminal psql.
Furthermore, we increase the shared_buffers size to 16 GiB and the work_mem size to 1 GiB
based on empirical analysis, as these parameters significantly impact performance, and use
default settings otherwise.

Datasets & Workloads. To evaluate our algorithms, we use the Join Order Bench-

mark (JOB) [Lei+15], which is based on the real-world IMDb dataset and exclusively contains

96 Chapter 4. Extending SQL to Return a Subdatabase

SPJ queries with a variable number of joins. Some queries were slightly modified for use in
mutable due to missing keywords like IN or BETWEEN, without changing their semantics.

Query Types. We distinguish the following query types:

1. Single Table (ST): refers to the SQL query that produces a potentially denormalized single-
table join result and serves as a baseline (cf. Definition 6).

2. ResultDB without post-join information (RDB): refers to the query that returns only the
individual relations that are part of the SELECT clause of the original query, i.e., we ex-
clusively project those attributes (cf. Definition 7).

3. ResultDB with post-join information (RDBRP): additionally projects the attributes neces-
sary for the post-join, effectively creating a relationship-preserving query (cf. Defini-
tion 8).

4.6.1 Result Set Sizes

In this section, we first have a closer look at the result set sizes of several JOB queries. Af-
terward, we will examine a star schema dataset to illustrate the potential extent of data re-
dundancy. We investigate the result set sizes for the three different approaches ST, RDB, and
RDBRP. We compute the size of a result set by adding up the individual sizes of all attributes
that are returned. The size of an attribute is calculated by multiplying the datatype size by the
number of tuples for numeric attributes, or by summing the actual string length of each tuple
for character attributes.

JOB. Table 4.1 shows the result set sizes for a subset of the JOB queries in kilobytes (KiB),
as well as the compression ratio defined as size(Single Table)/size(subdatabase). We limit ourselves to
those queries that we investigate in more detail later on in Section 4.6.4. In general, most JOB
queries have relatively small result set sizes, typically just a few kilobytes, and also exhibit
small compression ratios. This is due to the fact that those JOB queries often return a very
small number of rows, project a limited set of attributes, or both. Note that, the result set sizes
of some queries like 4a for RDBRP (19.07 KiB > 18.91 KiB) are even larger because they need
to project additional attributes. The queries that stand out are 16b with a very large result set
size of roughly 130, 376 KiB (≈ 127 MiB) and 11c with a compression ratio of 1410. In general,
most queries that return a subdatabase, regardless of whether they are relationship-preserving,

4.6. Experiments 97

Table 4.1: JOB result set sizes in KiB (compression ratio).

Method 3c 4a 9c 11c

ST 166.16 (1.0) 18.91 (1.0) 497.56 (1.0) 267.85 (1.0)
RDBRP 101.66 (1.6) 19.07 (1.0) 57.07 (8.7) 0.19 (1409.7)
RDB 101.66 (1.6) 13.15 (1.4) 35.29 (14.1) 0.19 (1409.7)

Method 16b 18c 21a 22c

ST 130376.72 (1.0) 686.85 (1.0) 68.06 (1.0) 783.46 (1.0)
RDBRP 7884.8 (16.5) 627.69 (1.1) 0.61 (111.6) 122.68 (6.4)
RDB 3821.99 (34.1) 254.96 (2.7) 0.29 (234.7) 33.53 (23.4)

Method 25b 28c 31a 33c

ST 0.25 (1.0) 310.66 (1.0) 45.76 (1.0) 9.32 (1.0)
RDBRP 0.18 (1.4) 53.32 (5.8) 7.5 (6.1) 1.37 (6.8)
RDB 0.1 (2.5) 15.47 (20.1) 3.51 (13.0) 0.76 (12.3)

tend to produce significantly smaller result sets. This, in turn, leads to high compression ratios
due to substantial redundancy in the output.

Star Schema. To illustrate the extent to which data redundancy can occur, let us consider
a typical star schema consisting of a fact table and several dimension tables. In the worst
case, each tuple from a specific dimension table joins with all tuples from the other dimension
tables, i.e., the fact table contains the Cartesian product of the dimension tables. This results
in maximum redundancy. Assume we query the star schema by joining all relations, selecting
all attributes, and scaling the result set size using filters with varying selectivity across all
dimension tables. Figure 4.9 shows the result set sizes of this dataset and workload. Note that,
in this case, RDB only projects the payload of the dimension tables and the fact table, meaning
that no primary or foreign keys are returned. In comparison, both Single Table and RDBRP

include this key information.

In general, the result set size for all three approaches increases quadratically with respect to
the selectivity due to the characteristics of the fact table. However, the increase of the Single
Table approach is much steeper since the data of all dimension tables gets repeated. The higher
the selectivity value, the more tuples from the fact table participate in the join result and with
that, more data from the dimension tables gets duplicated. As a result, the gap between Single
Table and RDBRP widens as the selectivity value increases. This redundancy is depicted in
gray. Clearly, the gap widens significantly the more dimension tables we have and the larger
the tuples in the dimension tables are.

RegardingRQ 1, these results demonstrate that denormalization through joins, whether in JOB

98 Chapter 4. Extending SQL to Return a Subdatabase

0.2 0.4 0.6 0.8 1.0
Filter selectivity on dimension tables

0

500

1000

1500

Re
su

lt
se

ts
iz

e
[M

iB
]

Single Table
RDBRP

RDB
Denormalization redundancy

Figure 4.9: Theoretical star schema result set sizes.

Table 4.2: Overhead of the best rewrite method compared to the single-table execution time
for the IMDb dataset and JOB queries.

Query 1b 2a 3c 4a 5c 6a 7a 8a 9c 10c 11c

Overhead 10.7% 0.8% 1.8% 12.9% -2.0% 19.0% 0.6% 0.9% 23.4% -0.6% -84.1%
Best RM RM 4 RM 3 RM 1 RM 4 RM 3 RM 4 RM 4 RM 4 RM 4 RM 4 RM 3

Query 12a 13b 14a 15d 16b 17a 18c 19a 20b 21a 22c

Overhead 3.0% 1.8% -1.2% 43.2% 48.6% -53.5% 4.7% 2.6% -90.5% -1.7% 3.1%
Best RM RM 4 RM 4 RM 4 RM 4 RM 4 RM 3 RM 2 RM 4 RM 3 RM 4 RM 4

Query 23a 24a 25b 26a 27a 28c 29a 30c 31a 32a 33c

Overhead -4.9% 0.9% -0.0% -75.8% 6.7% 1.2% -0.0% 4.6% -0.1% 9.5% 12.2%
Best RM RM 4 RM 4 RM 4 RM 2 RM 4 RM 4 RM 4 RM 4 RM 4 RM 4 RM 4

queries or in a theoretical star schema workload, can introduce a significant amount of data
redundancy. This motivates computing and returning a subdatabase instead of a potentially
denormalized single-table result.

4.6.2 Rewrite Methods

In this section, we investigate the performance of our rewrite methods introduced in Section 4.3
with respect to the end-to-end client-side runtime in PostgreSQL. For each JOB query template
(1–33), we show the results for one specific instantiation (a–d), selected based on whether the
query is supported by mutable or chosen at random otherwise. We first compare the perfor-
mance of the different rewrite methods against each other. Afterward, we examine the over-

4.6. Experiments 99

1b 2a 3c 4a 5c 6a 7a 8a 9c 10c 11c 12a 13b 14a 15d 16b 17a 18c 19a 20b 21a 22c 23a 24a 25b 26a 27a 28c 29a 30c 31a 32a 33c

JOB queries

102

103

104

105

�
er

y
ex

ec
ut

io
n

tim
e

[m
s]

RM1. Dynamic SELECT DISTINCT

RM2. Materialized SELECT DISTINCT

RM3. Dynamic Subquery
RM4. Materialized Subquery

Figure 4.10: Query execution time of the rewrite methods in PostgreSQL for the IMDb dataset.

head or potential speed-up the rewrite methods introduce in comparison to the single-table
execution. It is crucial to approach this comparison with caution, as the methods yield differ-
ent results; it primarily aims to provide an intuition of the difference in query execution time.
For this experiment, we use the RDB approach, i.e., we use the original query and do not add
additional attributes for the post-join. To avoid data transfer overhead, we use COUNT(*) to
aggregate the results. Since every rewrite method might consist of multiple queries, we sum-
marize the measured runtime of the individual queries to obtain a single query execution time.
For example, for RM 2 we first measure the time to create the MV and then the time to execute
each SELECT DISTINCT query. We report the median query execution time of five runs.

Figure 4.10 shows the query execution time on a logarithmic scale for JOB. In general, it is
evident that the rewrite methods exhibit significant differences in performance. No method
is consistently better or worse than the others. The dynamic rewrites RM 1 and RM 3 exhibit
very often a similar performance. While RM 1 is rather consistent in comparison to the other
methods, RM 3 contains some noticeable outliers. For example, for 7a, 21a, 27a, and 30c the
query execution time of RM 3 is up to an order of magnitude slower. However, RM 3 also has
some positive applications, e.g., for 11c or 20b, where it outperforms the other RMs by far.
Looking at the physical execution plan in PostgreSQL, we can see that RM 3 uses a different
join order and essentially computes a semi-join between the outer relation and the subquery
through the use of the IN keyword. In comparison to the other rewrites, RM 1 and RM 3

100 Chapter 4. Extending SQL to Return a Subdatabase

perform best if there is only a single relation referenced in the projections of the query, which
is the case for 2a, 3c, 5c, 11c, 17a, and 20b. As soon as there are two or more relations, they
fall behind. The materialization rewrites RM 2 and RM 4 exhibit very similar query execution
times as well, with RM 4 being faster in almost all cases. This is most likely due to the fact
that RM 4 simply requires less data to be materialized since it only materializes the join index
instead of the complete join result (all required attributes).

Table 4.2 shows the overhead in percent for each query using the best performing rewrite
method, comparing it to the single-table query execution time as baseline. A negative over-
head represents an improvement. Except for a few queries like 15d (43.2%), and 16b (48.6%), at
least one of the rewrite methods performs comparably to the single-table execution. For exam-
ple, q2a and q31a have 0.8% and −0.1% overhead, respectively. However, there are also a few
queries like 11c (−84.1%) and 20b (−90.5%) where our rewrite methods significantly outper-
form the single-table execution. In those cases, RM 3 is able to successfully apply a semi-join.
This comparison underscores the small performance overhead of our approach, which is occa-
sionally even faster.

Regarding RQ 2, we conclude that query execution times vary significantly across different
rewrite methods depending on the type of query, with occasional outliers. However, most
importantly, the best rewrite method often introduces only amarginal overhead over the single-
table execution and sometimes even outperforms it. As a general rule, we recommend using
RM3 in case there is just a single output relation and RM4 otherwise, as it is the best performing
rewrite method in 75% of the cases.

4.6.3 ResultDBsemi-join Algorithm

In this section, we evaluate the performance of our ResultDBsemi-join algorithm described in
Section 4.4 integrated into mutable. Specifically, we compare the query execution time of our
implementation with the single-table execution. To ensure a fair comparison despite the dif-
fering results of both approaches, we implemented a new logical/physical operator called De-

compose. This operator is placed on top of the standard projection operator at the root of a
plan. Instead of returning a single-table result set, it provides the ResultDB output by splitting
the result into individual relations and removing duplicates. We briefly compare the ResultDB
performance, in particular the post-join times, to the unchanged baseline in Section 4.6.4.

We implemented Algorithm 7 with one additional optimization. Once we fully reduced all re-
lations that are part of the projections, we stop early and return the result, as there is no need

4.6. Experiments 101

1b 2a 3c 4a 5c 7a 8a 9c 10c 11c 12a 14a15d18c 19a 21a 22c 23a 24a25b26a 27a 28c 30c 33c
JOB queries

0

5000

10000

15000

20000

25000

�
er

y
ex

ec
ut

io
n

tim
e

[m
s]

1520

1540

Single Table
Decompose
ResultDBsemi-join

Figure 4.11: Query execution time of the ResultDBsemi-join algorithm in mutable for the IMDb
dataset. The zoom-in highlights the negligible overhead of the decompose operation.

to always reduce all relations. In addition, we minimize data transfer by returning only the
number of qualifying rows instead of the complete result. As for the rewrite methods, we use
the RDB approach without adding attributes for the post-join. Furthermore, we inject the real
cardinalities of filtered relations and join results to avoid negative effects on the query execu-
tion time due to poor cardinality estimation. Note that, mutable’s query engine is currently
limited to 16 GiB and does not support varying-length character data types. To run a meaning-
ful amount of JOB queries, we manually limit the corresponding attributes in the IMDb schema
to a fixed length, determined empirically. Nevertheless, some queries still exhaust this mem-
ory limit and therefore, we were not able to include all queries. We report the median query
execution time of five runs.

Figure 4.11 compares the query execution time of Single Table plus Decompose as a stacked
bar plot with ResultDBsemi-join for several JOB queries. The key observation is that ResultDB
is consistently slightly slower than the Single Table plus Decompose approach. Notably, due
to small result set sizes, the Decompose step introduces hardly any overhead, making it nearly
imperceptible in our plot. For instance, as depicted in the zoom-in, the decomposition for 18c
requires roughly just 10ms, which is just a tiny fraction of the overall execution time. The same
applies to all other queries in this experiment. Note that, preliminary experiments show that
the Decompose step can be quite time-consuming for sufficiently large data sets. In general,
for most queries the overhead introduced by our prototype implementation is still manageable.
For example, for q5c, ResultDBsemi-join has a runtime of 2396ms, compared to 1821ms for the

102 Chapter 4. Extending SQL to Return a Subdatabase

single-table execution. However, there are also a few outliers were ResultDBsemi-join performs
considerably worse like for 26a or 33c.

Regarding RQ 3, we conclude that the current implementation of the ResultDBsemi-join algo-
rithm does not yet match the single-table execution times, even when factoring in the decom-
position. However, despite our implementation lacking many optimization opportunities, such
as improved folding or an optimized semi-join reduction order, these experiments yield promis-
ing results. Furthermore, the very small Decompose overhead essentially provides us with the
possibility to compute a result subdatabase very efficiently.

4.6.4 Runtime with Data Transfer & Post-join

In this section, we compare the rewrite methods and our ResultDBsemi-join algorithm to the
single-table execution in terms of end-to-end runtime, including query execution, data transfer,
and post-join time. For this experiment, we use RDBRP queries to be able to compute the post-
join after transferring the data. We focus on a subset of the JOB queries, aiming to cover a
diverse range of query types. The data transfer rate (DTR) – the time required to transfer a
query result – plays a critical role in overall performance. For the following experiments, we
assume a DTR of 100Mbps, a speed commonly regarded as reliable for general use. While data
centers and cloud-based networks often achieve DTRs in the tens or even hundreds of gigabits
per second, these environments typically handle significantly larger datasets. As a result, our
chosen DTR provides a meaningful basis for evaluating performance in more conventional
settings. To measure the post-join times, we compute and materialize the reduced relations
and use the respective system, PostgreSQL or mutable, to compute the final join result.

Rewrite Methods. Table 4.3 shows the end-to-end performance of the best rewrite
method (RM) in PostgreSQL compared to the single-table (ST) approach. In general, for
queries with larger result set sizes and high compression ratios (e.g., 9c, 16b, and 22c), the
transfer time is noticeably higher for the single-table result than for the result subdatabase. For
example, transferring the single-table result of 16b takes approximately 10, 186 ms, whereas
transferring the result subdatabase requires only around 616 ms. Furthermore, the post-join
times are almost negligible in the overall runtime and in comparison to the single-table execu-
tion. In particular, many JOB queries have post-join times of just a few milliseconds, which
typically represents only a small fraction of the original single-table query execution time.
However, some queries, such as 16b, have high post-join times.

In general, most queries exhibit similar performance across both approaches due to the small

4.6. Experiments 103

Table 4.3: End-to-end performance of the best rewrite method (RM) compared to the Single
Table (ST) execution on JOB.

JOB Query 3c 4a 9c
Approach ST RM ST RM ST RM

Query Execution [ms] 226.48 367.33 101.97 173.89 505.92 656.25
Data Transfer [ms] 12.98 7.94 1.48 1.49 38.87 4.46
Post-join [ms] - 4.93 - 5.6 - 13.87∑

[ms] 239.46 380.2 103.44 180.98 544.79 674.58

JOB Query 11c 16b 18c
Approach ST RM ST RM ST RM

Query Execution [ms] 1098.98 195.59 10959.35 21559.84 2783.83 3217.37
Data Transfer [ms] 20.93 0.01 10185.68 616.0 53.66 49.04
Post-join [ms] - 0.78 - 314.06 - 35.67∑

[ms] 1119.9 196.38 21145.03 22489.9 2837.49 3302.08

JOB Query 21a 22c 25b
Approach ST RM ST RM ST RM

Query Execution [ms] 121.85 100.94 2219.48 2356.31 250.47 360.65
Data Transfer [ms] 5.32 0.05 61.21 9.58 0.02 0.01
Post-join [ms] - 1.85 - 6.16 - 2.45∑

[ms] 127.17 102.83 2280.69 2372.05 250.49 363.12

JOB Query 28c 31a 33c
Approach ST RM ST RM ST RM

Query Execution [ms] 2792.73 2886.34 953.03 931.46 90.56 123.34
Data Transfer [ms] 24.27 4.17 3.58 0.59 0.73 0.11
Post-join [ms] - 6.83 - 2.37 - 11.22∑

[ms] 2817.0 2897.34 956.61 934.42 91.29 134.66

104 Chapter 4. Extending SQL to Return a Subdatabase

overhead introduced by the data transfer and the post-join. Note that, the query execu-
tion times are slightly higher than the ones reported in Figure 4.10 because we compute a
relationship-preserving subdatabase. However, there are cases where the high data transfer
time has a significant impact. For instance, the time for computing a result subdatabase for
16b is almost twice as high as computing the single-table result, with an execution time of
10, 959ms compared to 21, 560ms. However, due to the reduced transfer time of approximately
616 ms – compared to nearly 10, 186 ms – and the small post-join time of 314 ms, the rewrite
method almost performs comparably to the single-table execution in terms of overall execution
time with 21, 145 ms versus 22, 490 ms.

ResultDBsemi-join. Because mutable’s query execution is significantly faster compared to
PostgreSQL, the post-join times are also considerably reduced. For most JOB queries in this
experiment (excluding 16b as it does not run in mutable), the post-join times consistently fall
below 1ms, with the highest one being 4.65ms for 18c. The transfer times are the same as the
ones in Table 4.3. As a result, the overall query execution times are similar or higher (due to
computing RDBRP) to those in Figure 4.11, leading to the decision to omit the corresponding
visualization.

Regarding RQ 4, we conclude that in terms of end-to-end runtime, ResultDB approaches the
single-table execution and that fast data transfer times can have a significant impact as for 16b.

4.7 Future Work

In the following, we suggest possible topics for further investigation that were beyond the
scope of this initial work.

Query Optimization. As discussed throughout this work, there is significant optimization
potential yet to be explored, which our research group is actively investigating. We areworking
on several different algorithms that address the Root Node Enumeration Problem and the Folding
Enumeration Problem.

Data Transformations. This initial paper focuses on the data retrieval aspect of SQL, i.e., SPJ
queries. However, we also have ongoing research regarding data transformation. In this con-
text, we plan to extend our definitions in Section 4.2 accordingly. We envision to integrate
arbitrary data transformation alongside data retrieval, including grouping on different criteria
on different relations at the same time. Consequently, our approach naturally supports true

4.8. Conclusion 105

grouping sets semantics without shoehorning the different results into the same single output
table.

Subqueries. For non-correlated subqueries, we already explored the idea to naturally extend
table-valued subqueries to subdatabase-valued subqueries. Instead of a single-table result, the
outer query receives multiple reduced tables. For correlated subqueries, we plan to explore
rewrite techniques similar to [NK15] and investigate how this affects query optimization.

Views. In contrast to traditional views, a subdatabase view offers a view on a set of relations
rather than a single relation. Similar to correlated subqueries, we want to investigate which
optimization potential querying a subdatabase view exhibits.

Subdatabase Snapshot. In this paper, returning a subdatabase is restricted to the relevant
tuples of a subset of the tables. However, a result subdatabase could also include metadata,
statistics, indexes, or the query execution plan for performing the post-join. For instance, the
query execution plan could be sent in WebAssembly and executed within a sandbox by the
client, eliminating the need for users to perform the post-join manually.

API Integration. Current database APIs like JDBC drivers, expect a single-table result,
i.e., cursor of tuples, to be returned. We propose a minimally invasive extension, enabling
to return a set of cursors, with each cursor corresponding to a distinct result set. Further, we
aim to explore the feasibility of a cursor that iterates over the join co-groups of multiple result
sets, reducing the user’s burden of performing the post-join on the client.

4.8 Conclusion

SQL comes with the very hard limitation that each query result is shoehorned into a single
table. In this work, we initially discuss the fundamental problems, data redundancy and infor-
mation loss, that stem from this limitation. To address these problems, we propose to extend
the SQL SELECT clause by a single keyword: RESULTDB. This extension enables us to return a
subdatabase, i.e., a subset of tables, each containing only the tuples that contribute to the over-
all query result, instead of a single, potentially denormalized, table. Furthermore, we introduce
a formalization of our SQL extension showing that it is well-defined and has clear semantics.

We present two classes of approaches to support our new functionality. First, we propose four
SQL-based rewrite methods allowing us to transform traditional SQL queries into semantically

106 Chapter 4. Extending SQL to Return a Subdatabase

equivalent queries returning a result subdatabase. Second, we propose an efficient algorithm
that can be integrated directly into a DBMS. We also show promising experimental results.
Computing individual result sets can significantly reduce the result set size, leading to faster
data transfer times and lower storage requirements for materialized views. Further, our rewrite
methods and algorithm introduce only minimal overhead and can sometimes even outperform
the single-table execution.

Limitations As already pointed out in Section 4.7, this work opens the book for a lot of
exciting follow-upworks that should investigate some of its limitations. Our experiments show
that our native algorithm is slower than the single-table execution. However, we also showed
that we can use our decompose operator, a simple extension to any traditional query execution
plan, to efficiently compute a result subdatabase. Although ResultDB is slower, the comparison
is not entirely fair. Single-table queries benefit from 50 years of extensive research, while the
application of Yannakakis’ algorithm in real systems experienced little optimization effort so far.
However, we are confident that future work can address many of these challenges. In addition,
this work is currently limited to SPJ queries. However, we already have ongoing research that
tackles data transformation like aggregation and arithmetic expressions.

Chapter 5

Conclusion

This thesis reexamines key areas of relational query processing and indexing, approaching
them from a fresh perspective to reformulate problem statements and introduce novel solutions.
By challenging conventionalmethods, we aim to offer new insights and techniqueswithin these
domains.

5.1 Deep Query Optimization

Summary. In the first part of this thesis, we introduce the concept of deep query opti-
mization (DQO). The idea involves breaking up logical and physical operators into more fine-
granular subcomponents during the query optimization process. Rather than constructing a
query execution plan on the granularity of complete operators, we envision a series of incre-
mental unnesting steps that progressively increase the physicality of the query plan and enable
additional optimizations. To manage the expanding search space, we introduce materialized
algorithmic views (MAVs) alongside the algorithmic view selection problem (AVSP). MAVs al-
low for prematerializing parts of the query plan, whereas the AVSP addresses the challenge
of deciding which parts of a query plan can be effectively replaced by MAVs, optimizing both
performance and resource utilization.

In our experimental evaluation, we demonstrate the effectiveness of DQO using the logical
grouping operator. Depending on the characteristics of the input data, different physical im-
plementations of the logical grouping operation yield substantial variation in execution times.
Additionally, we show that DQO-enabled dynamic programming –wheremeta-relational prop-

107

108 Chapter 5. Conclusion

erties and different physical representations of logical operators are considered – can produce
query plans with significantly improved estimated plan quality.

Limitations & Future ResearchDirections. DQO is a concept that critically challenges the
existing way of optimizing queries. As a visionary work, it opens possibilities for a range of
applications within and beyond query processing. However, it is important to note that there
is currently no concrete implementation or integration of DQO into an existing system. The
experimental evaluation was conducted in an isolated environment, highlighting the potential
of DQO. However, this setup inevitably lacks the internal influences of a full system, making it
difficult to assess the real impact. Consequently, it is essential to integrate DQO into a system
and examine the trade-off between optimization time and execution time improvement for deep
query plans.

We argue that MAVs are a powerful tool for tackling the search space explosion that inevitably
accompanies a deeper optimization process. While promising, a fundamental analysis on how
MAVs impact the search space and how much overhead the AVSP introduces, is necessary.

We propose that the transformation from logical to physical plan can be seen as a physiological
design continuum, motivating the development of a physiological algebra. This requires iden-
tifying the appropriate granularity and determining which logical and physical aspects should
be included in a new subcomponent.

Lastly, the idea to approach the query optimization process more holistically is widely dis-
cussed, and there exists a plethora of research in this area, some of which is based on our DQO
work. It is important to investigate the overlaps among these studies and to explore the most
effective strategies for deepening the optimization process.

5.2 Genetic Generic Generation of Index Structures

Summary. In the second part of this thesis, we present a framework for the genetic generic
generation of index structures (GENE). Instead of treating index structures as monolithic and
hand-crafted entities, we propose to split an index into two parts: a logical and a physical index.
Based on this split, we formulate index construction as an optimization problem that we solve
using genetic programming.

In our experimental evaluation, we demonstrate that GENE is able to rediscover existing base-
line indexes. Furthermore, an optimized GENE index that is tailored to a specific dataset and

5.3. Extending SQL to Return a Subdatabase 109

workload is able to match and, in some cases, even outperform state-of-the-art index structures.

Limitations&FutureResearchDirections. To represent awide variety of index structures,
our generic framework has to offer the flexibility to support any node type and to combine ar-
bitrary node types. This flexibility is achieved through object-oriented design, which, however,
introduces a considerable runtime overhead when evaluating the performance of these indexes
during the genetic search. In contrast, state-of-the-art indexes are typically highly tuned and
optimized. Therefore, implementing some form of code generation for the index structures
resulting from our genetic search is essential to reduce interpretation overhead and achieve
competitive performance.

Currently, the range of supported data layouts and search methods defining our physical nodes
is limited to the most fundamental building blocks of traditional index structures. To explore a
broader portion of the search space and increase the potential for discovering improved index
structures, it is important to extend the generic indexing frameworkwith additional node types.

The initial implementation of our genetic algorithm serves as a proof of concept, primarily
demonstrating the feasibility of our approach. While considerable effort has gone into devel-
oping and refining the mutations and the fitness function, there remains substantial room for
improvement. For instance, evaluating the current fitness function is very time-consuming.
The performance could be significantly improved by selectively reevaluating only those parts
of the index affected by recent mutations. In general, revising and maturing our genetic op-
timization algorithm may unlock significant potential to generate higher-quality index struc-
tures more efficiently.

5.3 Extending SQL to Return a Subdatabase

Summary. In the third part of this thesis, we address a fundamental limitation of SQL: its
traditional design restricts it to returning only a single result set. Specifically, we introduce
a novel keyword extension, RESULTDB, that modifies SQL’s output semantics. This extension
ensures that the tables that are part of the query – reduced to the tuples contributing to the
traditional query result – are returned. This has a wide variety of benefits, including reduced
result set sizes, enhanced declarative simplicity, and new opportunities for query optimization.
To compute a result subdatabase, we propose four SQL-based rewrite methods and a native
algorithm, the latter of which has been integrated into a state-of-the-art compiling query exe-
cution engine.

110 Chapter 5. Conclusion

In our experimental evaluation, we show that returning a result subdatabase can significantly
reduce the result set size, which in turn leads to faster data transfer times and lower storage re-
quirements for materialized views. Additionally, our rewrite methods and algorithm introduce
minimal overhead to the query execution time compared to single-table execution. Most im-
portantly, when accounting for data transfer and post-join time, the end-to-end time required
to compute a result subdatabase is, in a fair number of cases, lower than the traditional query
execution time.

Limitations & Future Research Directions. Our initial work on implementing the com-
putation of a result subdatabase establishes a foundational framework but does not focus on
optimizing the computation process. To address this, we introduce two significant optimization
problems. Although some follow-up has already begun to tackle these issues, further research
in that domain is necessary. In particular, optimizing RESULTDB queries – including data trans-
fer and post-join – offers substantial opportunities for improving the overall execution process.

We describe the inherent issue in SQL where data retrieval and data transformation are inter-
twined, leading to a loss of relational information. In its fundamental form, SELECT RESULTDB

focuses solely on the data retrieval aspect, leaving data transformation unaddressed. However,
ongoing research already addresses this issue. In particular, we aim to integrate arbitrary data
transformation alongside data retrieval, including grouping on different criteria on different
relations at the same time.

Currently, returning a subdatabase is limited to data – specifically, the relevant tuples from a
subset of the queried tables. A natural next step would be to expand this approach to include
additional information such as metadata, statistics, indexes and the query execution plan. For
instance, including the query execution plan could eliminate the need for users to implement
the post-join logic manually. In general, expanding the data or information that is returned
could unlock entirely new possibilities in query processing.

5.4 Concluding Remarks

This thesis addresses three specific issues with well-established solutions in query processing
and indexing, offering novel perspectives and ideas to reframe and solve these issues. While
we outline several interesting and promising directions for future research within each project,
we also advocate for a critical examination of other areas in database systems by challenging
traditional views and techniques.

Bibliography

[Agt+16] Erik Agterdenbos et al. “Empirical evaluation of guarded structural indexing.”
In: Proceedings of the 19th International Conference on Extending Database Tech-
nology, EDBT. 2016, pp. 714–715. url: https://doi.org/10.5441/002/edbt.
2016.101.

[Als+14] Sattam Alsubaiee et al. “AsterixDB: A Scalable, Open Source BDMS.” In: Proc.
VLDB Endow. 7.14 (2014), pp. 1905–1916. doi: 10.14778/2733085.2733096.
url: http://www.vldb.org/pvldb/vol7/p1905-alsubaiee.pdf.

[Alv+15] Victor Alvarez et al. “A comparison of adaptive radix trees and hash tables.”
In: 31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul,

South Korea, April 13-17, 2015. IEEE Computer Society, 2015, pp. 1227–1238.
doi: 10.1109/ICDE.2015.7113370. url: https://doi.org/10.1109/ICDE.
2015.7113370.

[Aou+05] Kamel Aouiche et al. “Automatic Selection of Bitmap Join Indexes in Data
Warehouses.” In: DataWarehousing and Knowledge Discovery, 7th International

Conference, DaWaK 2005, Copenhagen, Denmark, August 22-26, 2005, Proceed-

ings. Ed. by AMin Tjoa and Juan Trujillo. Vol. 3589. Lecture Notes in Computer
Science. Springer, 2005, pp. 64–73. doi: 10.1007/11546849_7. url: https:
//doi.org/10.1007/11546849%5C_7.

[Ara+14] Bahareh Arab et al. “A Generic Provenance Middleware for Queries, Up-
dates, and Transactions.” In: 6th Workshop on the Theory and Practice of Prove-

nance, TaPP’14, Cologne, Germany, June 12-13, 2014. Ed. by Adriane Chapman,
Bertram Ludäscher, and Andreas Schreiber. USENIX Association, 2014. url:
https://www.usenix.org/conference/tapp2014/agenda/presentation/

arab.

111

https://doi.org/10.5441/002/edbt.2016.101
https://doi.org/10.5441/002/edbt.2016.101
https://doi.org/10.14778/2733085.2733096
http://www.vldb.org/pvldb/vol7/p1905-alsubaiee.pdf
https://doi.org/10.1109/ICDE.2015.7113370
https://doi.org/10.1109/ICDE.2015.7113370
https://doi.org/10.1109/ICDE.2015.7113370
https://doi.org/10.1007/11546849_7
https://doi.org/10.1007/11546849%5C_7
https://doi.org/10.1007/11546849%5C_7
https://www.usenix.org/conference/tapp2014/agenda/presentation/arab
https://www.usenix.org/conference/tapp2014/agenda/presentation/arab

112 Bibliography

[Are+22] Marcelo Arenas et al. Database Theory. Open source at https://github.com/
pdm-book/community, 2022.

[Arg95] Lars Arge. “The Buffer Tree: ANewTechnique for Optimal I/O-Algorithms (Ex-
tended Abstract).” In: Algorithms and Data Structures, 4th International Work-

shop, WADS ’95, Kingston, Ontario, Canada, August 16-18, 1995, Proceedings.
Vol. 955. Lecture Notes in Computer Science. Springer, 1995, pp. 334–345. doi:
10.1007/3-540-60220-8_74. url: https://doi.org/10.1007/3-540-
60220-8%5C_74.

[Bar+97] Elena Baralis et al. “Materialized Views Selection in a Multidimensional
Database.” In: VLDB (1997). url: http://www.vldb.org/conf/1997/P156.
PDF.

[Bat+07] Hardik Bati et al. “A genetic approach for random testing of database systems.”
In: Proceedings of the 33rd International Conference on Very Large Data Bases.
2007, pp. 1243–1251. url: http://www.vldb.org/conf/2007/papers/
industrial/p1243-bati.pdf.

[BC81] Philip A. Bernstein and Dah-Ming W. Chiu. “Using Semi-Joins to Solve Re-
lational Queries.” In: J. ACM 28.1 (1981), pp. 25–40. doi: 10.1145/322234.
322238. url: https://doi.org/10.1145/322234.322238.

[BCM22] Karl Bringmann, Nofar Carmeli, and Stefan Mengel. “Tight Fine-Grained
Bounds for Direct Access on Join Queries.” In: PODS ’22: International Con-

ference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022. Ed.
by Leonid Libkin and Pablo Barceló. ACM, 2022, pp. 427–436. doi: 10.1145/
3517804.3526234. url: https://doi.org/10.1145/3517804.3526234.

[Ber+01] Jochen Van den Bercken et al. “XXL - A Library Approach to Supporting Ef-
ficient Implementations of Advanced Database Queries.” In: VLDB 2001, Pro-

ceedings of 27th International Conference on Very Large Data Bases, Septem-

ber 11-14, 2001, Roma, Italy. Morgan Kaufmann, 2001, pp. 39–48. url: http:
//www.vldb.org/conf/2001/P039.pdf.

[Ber+81] Philip A. Bernstein et al. “Query Processing in a System for Distributed
Databases (SDD-1).” In: ACM Trans. Database Syst. 6.4 (1981), pp. 602–625. doi:
10 . 1145 / 319628 . 319650. url: https : / / doi . org / 10 . 1145 / 319628 .
319650.

https://github.com/pdm-book/community
https://github.com/pdm-book/community
https://doi.org/10.1007/3-540-60220-8_74
https://doi.org/10.1007/3-540-60220-8%5C_74
https://doi.org/10.1007/3-540-60220-8%5C_74
http://www.vldb.org/conf/1997/P156.PDF
http://www.vldb.org/conf/1997/P156.PDF
http://www.vldb.org/conf/2007/papers/industrial/p1243-bati.pdf
http://www.vldb.org/conf/2007/papers/industrial/p1243-bati.pdf
https://doi.org/10.1145/322234.322238
https://doi.org/10.1145/322234.322238
https://doi.org/10.1145/322234.322238
https://doi.org/10.1145/3517804.3526234
https://doi.org/10.1145/3517804.3526234
https://doi.org/10.1145/3517804.3526234
http://www.vldb.org/conf/2001/P039.pdf
http://www.vldb.org/conf/2001/P039.pdf
https://doi.org/10.1145/319628.319650
https://doi.org/10.1145/319628.319650
https://doi.org/10.1145/319628.319650

Bibliography 113

[BFI91] Kristin P. Bennett, Michael C. Ferris, and Yannis E. Ioannidis. “A Genetic Algo-
rithm for Database QueryOptimization.” In: Proceedings of the 4th International
Conference on Genetic Algorithms. 1991, pp. 400–407.

[BG21] Maximilian Bandle and Jana Giceva. “Database Technology for the Masses:
Sub-Operators as First-Class Entities.” In: Proc. VLDB Endow. 14.11 (2021),
pp. 2483–2490. doi: 10.14778/3476249.3476296. url: http://www.vldb.
org/pvldb/vol14/p2483-bandle.pdf.

[Bin18] Timo Bingmann. TLX: Collection of Sophisticated C++ Data Structures, Algo-

rithms, and Miscellaneous Helpers. https://github.com/tlx/tlx, accessed
November 8, 2021. 2018.

[BKS01] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. “The Skyline Op-
erator.” In: Proceedings of the 17th International Conference on Data Engineer-

ing, April 2-6, 2001, Heidelberg, Germany. Ed. by Dimitrios Georgakopoulos
and Alexander Buchmann. IEEE Computer Society, 2001, pp. 421–430. doi:
10.1109/ICDE.2001.914855. url: https://doi.org/10.1109/ICDE.
2001.914855.

[Blo70] Burton H. Bloom. “Space/Time Trade-offs in Hash Coding with Allowable Er-
rors.” In: Commun. ACM 13.7 (1970), pp. 422–426. doi: 10 . 1145 / 362686 .
362692. url: https://doi.org/10.1145/362686.362692.

[BM72] Rudolf Bayer and Edward M. McCreight. “Organization and Maintenance of
Large Ordered Indices.” In: Acta Informatica 1 (1972), pp. 173–189. doi: 10 .
1007/BF00288683. url: https://doi.org/10.1007/BF00288683.

[Bod96] Hans L. Bodlaender. “A Linear-Time Algorithm for Finding Tree-
Decompositions of Small Treewidth.” In: SIAM J. Comput. 25.6 (1996),
pp. 1305–1317. doi: 10.1137/S0097539793251219. url: https://doi.org/
10.1137/S0097539793251219.

[Bon+05] Peter A. Boncz et al. “MonetDB/X100: Hyper-Pipelining Query Execution.” In:
CIDR (2005). url: http://cidrdb.org/cidr2005/papers/P19.pdf.

[BS01] Jochen Van den Bercken and Bernhard Seeger. “An Evaluation of Generic Bulk
Loading Techniques.” In: VLDB 2001, Proceedings of 27th International Confer-

ence on Very Large Data Bases, September 11-14, 2001, Roma, Italy. Morgan Kauf-
mann, 2001, pp. 461–470. url: http://www.vldb.org/conf/2001/P461.pdf.

https://doi.org/10.14778/3476249.3476296
http://www.vldb.org/pvldb/vol14/p2483-bandle.pdf
http://www.vldb.org/pvldb/vol14/p2483-bandle.pdf
https://github.com/tlx/tlx
https://doi.org/10.1109/ICDE.2001.914855
https://doi.org/10.1109/ICDE.2001.914855
https://doi.org/10.1109/ICDE.2001.914855
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1007/BF00288683
https://doi.org/10.1007/BF00288683
https://doi.org/10.1007/BF00288683
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1137/S0097539793251219
http://cidrdb.org/cidr2005/papers/P19.pdf
http://www.vldb.org/conf/2001/P461.pdf

114 Bibliography

[BSW97] Jochen Van den Bercken, Bernhard Seeger, and Peter Widmayer. “A Generic
Approach to Bulk Loading Multidimensional Index Structures.” In: VLDB’97,
Proceedings of 23rd International Conference on Very Large Data Bases, August

25-29, 1997, Athens, Greece. Morgan Kaufmann, 1997, pp. 406–415. url: http:
//www.vldb.org/conf/1997/P406.PDF.

[CB74] Donald D. Chamberlin and Raymond F. Boyce. “SEQUEL: A Structured English
Query Language.” In: Proceedings of 1974 ACM-SIGMODWorkshop on Data De-

scription, Access and Control, Ann Arbor, Michigan, USA, May 1-3, 1974, 2 Vol-

umes. Ed. by Gene Altshuler, Randall Rustin, and Bernard D. Plagman. ACM,
1974, pp. 249–264. doi: 10.1145/800296.811515. url: https://doi.org/10.
1145/800296.811515.

[CI98] Chee Yong Chan and Yannis E. Ioannidis. “Bitmap Index Design and Evalua-
tion.” In: SIGMOD 1998, Proceedings ACM SIGMOD International Conference on

Management of Data, June 2-4, 1998, Seattle, Washington, USA. Ed. by Laura
M. Haas and Ashutosh Tiwary. ACM Press, 1998, pp. 355–366. doi: 10.1145/
276304.276336. url: https://doi.org/10.1145/276304.276336.

[Cod70] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks.” In:
Commun. ACM 13.6 (1970), pp. 377–387. doi: 10.1145/362384.362685. url:
https://doi.org/10.1145/362384.362685.

[Cod71] E. F. Codd. “Further Normalization of the Data Base Relational Model.” In: Re-
search Report / RJ / IBM / San Jose, California RJ909 (1971).

[Cod72] E. F. Codd. “Relational Completeness of Data Base Sublanguages.” In: Research
Report / RJ / IBM / San Jose, California RJ987 (1972).

[Cra+20] Miles D. Cranmer et al. “Discovering Symbolic Models from Deep Learn-
ing with Inductive Biases.” In: Advances in Neural Information Processing Sys-

tems 33: Annual Conference on Neural Information Processing Systems 2020,

NeurIPS 2020, December 6-12, 2020, virtual. Ed. by Hugo Larochelle et al.
2020. url: https : / / proceedings . neurips . cc / paper / 2020 / hash /
c9f2f917078bd2db12f23c3b413d9cba-Abstract.html.

[Cro21] Andrew Crotty. “Hist-Tree: Those Who Ignore It Are Doomed to Learn.” In:
11th Conference on Innovative Data Systems Research, CIDR 2021, Virtual Event,

January 11-15, 2021, Online Proceedings. www.cidrdb.org, 2021. url: http://
cidrdb.org/cidr2021/papers/cidr2021%5C_paper20.pdf.

http://www.vldb.org/conf/1997/P406.PDF
http://www.vldb.org/conf/1997/P406.PDF
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/276304.276336
https://doi.org/10.1145/276304.276336
https://doi.org/10.1145/276304.276336
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://proceedings.neurips.cc/paper/2020/hash/c9f2f917078bd2db12f23c3b413d9cba-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c9f2f917078bd2db12f23c3b413d9cba-Abstract.html
http://cidrdb.org/cidr2021/papers/cidr2021%5C_paper20.pdf
http://cidrdb.org/cidr2021/papers/cidr2021%5C_paper20.pdf

Bibliography 115

[CWW00] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. “Tracing the lineage of
view data in a warehousing environment.” In: ACM Trans. Database Syst. 25.2
(2000), pp. 179–227. doi: 10.1145/357775.357777. url: https://doi.org/
10.1145/357775.357777.

[Dat84] C. J. Date. “A Critique of the SQL Database Language.” In: SIGMOD Rec. 14.3
(1984), pp. 8–54. doi: 10.1145/984549.984551. url: https://doi.org/10.
1145/984549.984551.

[DCN20] Bailu Ding, Surajit Chaudhuri, and Vivek R. Narasayya. “Bitvector-aware
Query Optimization for Decision Support Queries.” In: Proceedings of the 2020
International Conference on Management of Data, SIGMOD Conference 2020, on-

line conference [Portland, OR, USA], June 14-19, 2020. Ed. by David Maier et al.
ACM, 2020, pp. 2011–2026. doi: 10.1145/3318464.3389769. url: https:
//doi.org/10.1145/3318464.3389769.

[Din+20] Jialin Ding et al. “ALEX: An Updatable Adaptive Learned Index.” In: Proceed-
ings of the 2020 International Conference on Management of Data, SIGMOD Con-

ference 2020, online conference [Portland, OR, USA], June 14-19, 2020. ACM, 2020,
pp. 969–984. doi: 10.1145/3318464.3389711. url: https://doi.org/10.
1145/3318464.3389711.

[Dit+02] Jens-Peter Dittrich et al. “ProgressiveMerge Join: A Generic and Non-blocking
Sort-based Join Algorithm.” In: VLDB (2002). doi: 10.1016/B978-155860869-
6/50034-2. url: http://www.vldb.org/conf/2002/S09P03.pdf.

[DKK05] Jens-Peter Dittrich, Donald Kossmann, and Alexander Kreutz. “Bridging the
Gap between OLAP and SQL.” In: Proceedings of the 31st International Con-

ference on Very Large Data Bases, Trondheim, Norway, August 30 - September

2, 2005. Ed. by Klemens Böhm et al. ACM, 2005, pp. 1031–1042. url: http:
//www.vldb.org/archives/website/2005/program/paper/tue/p1031-

dittrich.pdf.

[DN20] Jens Dittrich and Joris Nix. “The Case for Deep Query Optimisation.” In: 10th
Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam, The

Netherlands, January 12-15, 2020, Online Proceedings. www.cidrdb.org, 2020.
url: http://cidrdb.org/cidr2020/papers/p3-dittrich-cidr20.pdf.

[DNS21] Jens Dittrich, Joris Nix, and Christian Schön. “The next 50 Years in Database
Indexing or: The Case for Automatically Generated Index Structures.” In: Proc.

https://doi.org/10.1145/357775.357777
https://doi.org/10.1145/357775.357777
https://doi.org/10.1145/357775.357777
https://doi.org/10.1145/984549.984551
https://doi.org/10.1145/984549.984551
https://doi.org/10.1145/984549.984551
https://doi.org/10.1145/3318464.3389769
https://doi.org/10.1145/3318464.3389769
https://doi.org/10.1145/3318464.3389769
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1016/B978-155860869-6/50034-2
https://doi.org/10.1016/B978-155860869-6/50034-2
http://www.vldb.org/conf/2002/S09P03.pdf
http://www.vldb.org/archives/website/2005/program/paper/tue/p1031-dittrich.pdf
http://www.vldb.org/archives/website/2005/program/paper/tue/p1031-dittrich.pdf
http://www.vldb.org/archives/website/2005/program/paper/tue/p1031-dittrich.pdf
http://cidrdb.org/cidr2020/papers/p3-dittrich-cidr20.pdf

116 Bibliography

VLDB Endow. 15.3 (2021), pp. 527–540. doi: 10.14778/3494124.3494136. url:
http://www.vldb.org/pvldb/vol15/p527-dittrich.pdf.

[DT07] David DeHaan and FrankWm. Tompa. “Optimal top-down join enumeration.”
In: Proceedings of the ACM SIGMOD International Conference onManagement of

Data, Beijing, China, June 12-14, 2007. Ed. by Chee Yong Chan, Beng Chin Ooi,
and Aoying Zhou. ACM, 2007, pp. 785–796. doi: 10.1145/1247480.1247567.
url: https://doi.org/10.1145/1247480.1247567.

[Fag+79] Ronald Fagin et al. “Extendible Hashing - A Fast Access Method for Dynamic
Files.” In: ACM Trans. Database Syst. 4.3 (1979), pp. 315–344. doi: 10.1145/
320083.320092. url: https://doi.org/10.1145/320083.320092.

[FG89] Farshad Fotouhi and Carlos E. Galarce. “Genetic Algorithms and the Search for
Optimal Database Index Selection.” In: Computing in the 90’s, The First Great

Lakes Computer Science Conference. Vol. 507. Lecture Notes in Computer Sci-
ence. 1989, pp. 249–255. url: https://doi.org/10.1007/BFb0038500.

[Fle+09] George H. L. Fletcher et al. “A methodology for coupling fragments of XPath
with structural indexes for XML documents.” In: Inf. Syst. 34.7 (2009), pp. 657–
670. url: https://doi.org/10.1016/j.is.2008.09.003.

[FM11] Pit Fender and Guido Moerkotte. “A new, highly efficient, and easy to imple-
ment top-down join enumeration algorithm.” In: Proceedings of the 27th Inter-

national Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Han-

nover, Germany. Ed. by Serge Abiteboul et al. IEEE Computer Society, 2011,
pp. 864–875. doi: 10.1109/ICDE.2011.5767901. url: https://doi.org/10.
1109/ICDE.2011.5767901.

[Fre+20] Michael J. Freitag et al. “Adopting Worst-Case Optimal Joins in Relational
Database Systems.” In: Proc. VLDB Endow. 13.11 (2020), pp. 1891–1904. url:
http://www.vldb.org/pvldb/vol13/p1891-freitag.pdf.

[FV20] Paolo Ferragina and Giorgio Vinciguerra. “The PGM-index: a fully-dynamic
compressed learned index with provable worst-case bounds.” In: Proc. VLDB
Endow. 13.8 (2020), pp. 1162–1175. url: http : / / www . vldb . org / pvldb /
vol13/p1162-ferragina.pdf.

[GMS09] Georg Gottlob, Zoltán Miklós, and Thomas Schwentick. “Generalized hyper-
tree decompositions: NP-hardness and tractable variants.” In: J. ACM 56.6
(2009), 30:1–30:32. doi: 10 . 1145 / 1568318 . 1568320. url: https : / / doi .
org/10.1145/1568318.1568320.

https://doi.org/10.14778/3494124.3494136
http://www.vldb.org/pvldb/vol15/p527-dittrich.pdf
https://doi.org/10.1145/1247480.1247567
https://doi.org/10.1145/1247480.1247567
https://doi.org/10.1145/320083.320092
https://doi.org/10.1145/320083.320092
https://doi.org/10.1145/320083.320092
https://doi.org/10.1007/BFb0038500
https://doi.org/10.1016/j.is.2008.09.003
https://doi.org/10.1109/ICDE.2011.5767901
https://doi.org/10.1109/ICDE.2011.5767901
https://doi.org/10.1109/ICDE.2011.5767901
http://www.vldb.org/pvldb/vol13/p1891-freitag.pdf
http://www.vldb.org/pvldb/vol13/p1162-ferragina.pdf
http://www.vldb.org/pvldb/vol13/p1162-ferragina.pdf
https://doi.org/10.1145/1568318.1568320
https://doi.org/10.1145/1568318.1568320
https://doi.org/10.1145/1568318.1568320

Bibliography 117

[Gra+93] Goetz Graefe et al. “The Volcano Optimizer Generator: Extensibility and Effi-
cient Search.” In: ICDE (1993). doi: 10.1109/ICDE.1993.344061. url: https:
//doi.org/10.1109/ICDE.1993.344061.

[Gra+96] Jim Gray et al. “Data Cube: A Relational Aggregation Operator Generalizing
Group-By, Cross-Tab, and Sub-Total.” In: Proceedings of the Twelfth Interna-

tional Conference on Data Engineering, February 26 - March 1, 1996, New Or-

leans, Louisiana, USA. Ed. by Stanley Y. W. Su. IEEE Computer Society, 1996,
pp. 152–159. doi: 10.1109/ICDE.1996.492099. url: https://doi.org/10.
1109/ICDE.1996.492099.

[Gra04] Goetz Graefe. “Write-Optimized B-Trees.” In: (e)Proceedings of the Thirtieth In-
ternational Conference on Very Large Data Bases, VLDB 2004, Toronto, Canada,

August 31 - September 3 2004. Ed. by Mario A. Nascimento et al. Morgan Kauf-
mann, 2004, pp. 672–683. doi: 10.1016/B978-012088469-8.50060-7. url:
http://www.vldb.org/conf/2004/RS18P2.PDF.

[Gra08] John Grant. “Null values in SQL.” In: SIGMOD Rec. 37.3 (2008), pp. 23–25. doi:
10.1145/1462571.1462575. url: https://doi.org/10.1145/1462571.
1462575.

[Gra93] Goetz Graefe. “Query Evaluation Techniques for Large Databases.” In: ACM
Comput. Surv. 25.2 (1993). doi: 10.1145/152610.152611. url: https://doi.
org/10.1145/152610.152611.

[GUW02] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Sys-
tems - the Complete Book (International Edition). Pearson Education, 2002.

[HD23a] Immanuel Haffner and Jens Dittrich. “A simplified Architecture for Fast, Adap-
tive Compilation and Execution of SQL Queries.” In: Proceedings 26th Inter-

national Conference on Extending Database Technology, EDBT 2023, Ioannina,

Greece, March 28-31, 2023. Ed. by Julia Stoyanovich et al. OpenProceedings.org,
2023, pp. 1–13. doi: 10.48786/EDBT.2023.01. url: https://doi.org/10.
48786/edbt.2023.01.

[HD23b] Immanuel Haffner and Jens Dittrich. “Efficiently Computing Join Orders with
Heuristic Search.” In: Proc. ACM Manag. Data 1.1 (2023), 73:1–73:26. doi: 10.
1145/3588927. url: https://doi.org/10.1145/3588927.

[HD23c] Immanuel Haffner and Jens Dittrich. “mutable: A Modern DBMS for Research
and Fast Prototyping.” In: 13th Conference on Innovative Data Systems Research,

https://doi.org/10.1109/ICDE.1993.344061
https://doi.org/10.1109/ICDE.1993.344061
https://doi.org/10.1109/ICDE.1993.344061
https://doi.org/10.1109/ICDE.1996.492099
https://doi.org/10.1109/ICDE.1996.492099
https://doi.org/10.1109/ICDE.1996.492099
https://doi.org/10.1016/B978-012088469-8.50060-7
http://www.vldb.org/conf/2004/RS18P2.PDF
https://doi.org/10.1145/1462571.1462575
https://doi.org/10.1145/1462571.1462575
https://doi.org/10.1145/1462571.1462575
https://doi.org/10.1145/152610.152611
https://doi.org/10.1145/152610.152611
https://doi.org/10.1145/152610.152611
https://doi.org/10.48786/EDBT.2023.01
https://doi.org/10.48786/edbt.2023.01
https://doi.org/10.48786/edbt.2023.01
https://doi.org/10.1145/3588927
https://doi.org/10.1145/3588927
https://doi.org/10.1145/3588927

118 Bibliography

CIDR 2023, Amsterdam, The Netherlands, January 8-11, 2023. www.cidrdb.org,
2023. url: https://www.cidrdb.org/cidr2023/papers/p41-haffner.pdf.

[Hel+02] Joseph M. Hellerstein et al. “On a model of indexability and its bounds for
range queries.” In: J. ACM 49.1 (2002), pp. 35–55. url: https://doi.org/10.
1145/505241.505244.

[Hel+97] Joseph M. Hellerstein et al. “Online Aggregation.” In: SIGMOD (1997). doi: 10.
1145/253260.253291. url: https://doi.org/10.1145/253260.253291.

[Hip] Richard Hipp. SQLite: Most Widely Deployed and Used Database Engine. https:
//www.sqlite.org/mostdeployed.html. Accessed: 2024-07-26.

[HNP95] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. “Generalized
Search Trees for Database Systems.” In: VLDB’95, Proceedings of 21th Inter-

national Conference on Very Large Data Bases, September 11-15, 1995, Zurich,

Switzerland. Morgan Kaufmann, 1995, pp. 562–573. url: http://www.vldb.
org/conf/1995/P562.PDF.

[Hol75] John Henry Holland. Adaptation in natural and artificial systems: an introduc-

tory analysis with applications to biology, control, and artificial intelligence. MIT
press, 1975.

[Idr+18a] Stratos Idreos et al. “The Data Calculator: Data Structure Design and Cost
Synthesis from First Principles and Learned Cost Models.” In: SIGMOD (2018).
doi: 10.1145/3183713.3199671. url: https://doi.org/10.1145/3183713.
3199671.

[Idr+18b] Stratos Idreos et al. “The Periodic Table of Data Structures.” In: IEEE Data Eng.

Bull. 41.3 (2018). url: http://sites.computer.org/debull/A18sept/p64.
pdf.

[Idr+19a] Stratos Idreos et al. “Design Continuums and the Path Toward Self-Designing
Key-Value Stores that Know and Learn.” In: CIDR 2019, 9th Biennial Confer-

ence on Innovative Data Systems Research, Asilomar, CA, USA, January 13-16,

2019, Online Proceedings. www.cidrdb.org, 2019. url: http://cidrdb.org/
cidr2019/papers/p143-idreos-cidr19.pdf.

[Idr+19b] Stratos Idreos et al. “Learning Data Structure Alchemy.” In: IEEE Data Eng. Bull.
42.2 (2019), pp. 47–58. url: http://sites.computer.org/debull/A19june/
p47.pdf.

https://www.cidrdb.org/cidr2023/papers/p41-haffner.pdf
https://doi.org/10.1145/505241.505244
https://doi.org/10.1145/505241.505244
https://doi.org/10.1145/253260.253291
https://doi.org/10.1145/253260.253291
https://doi.org/10.1145/253260.253291
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
http://www.vldb.org/conf/1995/P562.PDF
http://www.vldb.org/conf/1995/P562.PDF
https://doi.org/10.1145/3183713.3199671
https://doi.org/10.1145/3183713.3199671
https://doi.org/10.1145/3183713.3199671
http://sites.computer.org/debull/A18sept/p64.pdf
http://sites.computer.org/debull/A18sept/p64.pdf
http://cidrdb.org/cidr2019/papers/p143-idreos-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p143-idreos-cidr19.pdf
http://sites.computer.org/debull/A19june/p47.pdf
http://sites.computer.org/debull/A19june/p47.pdf

Bibliography 119

[IKM07] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. “Database Cracking.”
In: CIDR 2007, Third Biennial Conference on Innovative Data Systems Research,

Asilomar, CA, USA, January 7-10, 2007, Online Proceedings. www.cidrdb.org,
2007, pp. 68–78. url: http://cidrdb.org/cidr2007/papers/cidr07p07.
pdf.

[JG23] Michael Jungmair and Jana Giceva. “Declarative Sub-Operators for Universal
Data Processing.” In: Proc. VLDB Endow. 16.11 (2023), pp. 3461–3474. doi: 10.
14778/3611479.3611539. url: https://www.vldb.org/pvldb/vol16/
p3461-jungmair.pdf.

[Ker+05] Martin L. Kersten et al. “Cracking the Database Store.” In: CIDR (2005). url:
http://cidrdb.org/cidr2005/papers/P18.pdf.

[Ker+18] Timo Kersten et al. “Everything You AlwaysWanted to KnowAbout Compiled
and Vectorized Queries But Were Afraid to Ask.” In: PVLDB 11.13 (2018). doi:
10.14778/3275366.3275370. url: http://www.vldb.org/pvldb/vol11/
p2209-kersten.pdf.

[Kim+10] Changkyu Kim et al. “FAST: fast architecture sensitive tree search on modern
CPUs and GPUs.” In: Proceedings of the ACM SIGMOD International Conference

on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10,

2010. ACM, 2010, pp. 339–350. doi: 10.1145/1807167.1807206. url: https:
//doi.org/10.1145/1807167.1807206.

[Kip+19] Andreas Kipf et al. “SOSD: A Benchmark for Learned Indexes.” In: CoRR
abs/1911.13014 (2019). arXiv: 1911.13014. url: http://arxiv.org/abs/
1911.13014.

[Kip+20] Andreas Kipf et al. “RadixSpline: a single-pass learned index.” In: Proceedings of
the Third International Workshop on Exploiting Artificial Intelligence Techniques

for Data Management, aiDM@SIGMOD 2020, Portland, Oregon, USA, June 19,

2020. ACM, 2020, 5:1–5:5. doi: 10.1145/3401071.3401659. url: https://
doi.org/10.1145/3401071.3401659.

[KLN21] André Kohn, Viktor Leis, and Thomas Neumann. “Building Advanced SQL An-
alytics From Low-Level Plan Operators.” In: SIGMOD ’21: International Con-

ference on Management of Data, Virtual Event, China, June 20-25, 2021. Ed. by
Guoliang Li et al. ACM, 2021, pp. 1001–1013. doi: 10.1145/3448016.3457288.
url: https://doi.org/10.1145/3448016.3457288.

http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
https://doi.org/10.14778/3611479.3611539
https://doi.org/10.14778/3611479.3611539
https://www.vldb.org/pvldb/vol16/p3461-jungmair.pdf
https://www.vldb.org/pvldb/vol16/p3461-jungmair.pdf
http://cidrdb.org/cidr2005/papers/P18.pdf
https://doi.org/10.14778/3275366.3275370
http://www.vldb.org/pvldb/vol11/p2209-kersten.pdf
http://www.vldb.org/pvldb/vol11/p2209-kersten.pdf
https://doi.org/10.1145/1807167.1807206
https://doi.org/10.1145/1807167.1807206
https://doi.org/10.1145/1807167.1807206
https://arxiv.org/abs/1911.13014
http://arxiv.org/abs/1911.13014
http://arxiv.org/abs/1911.13014
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.1145/3448016.3457288
https://doi.org/10.1145/3448016.3457288

120 Bibliography

[KMH97] Marcel Kornacker, C. Mohan, and Joseph M. Hellerstein. “Concurrency and
Recovery in Generalized Search Trees.” In: SIGMOD 1997, Proceedings ACM

SIGMOD International Conference on Management of Data, May 13-15, 1997,

Tucson, Arizona, USA. ACM Press, 1997, pp. 62–72. doi: 10.1145/253260.
253272. url: https://doi.org/10.1145/253260.253272.

[Knu73] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and

Searching. Addison-Wesley, 1973. isbn: 0-201-03803-X.

[Koc13] Christoph Koch. “Abstraction without regret in data management systems.”
In: CIDR (2013). url: http://cidrdb.org/cidr2013/Papers/CIDR13%5C_
Paper149.pdf.

[Koc14] Christoph Koch. “AbstractionWithout Regret in Database Systems Building: a
Manifesto.” In: IEEE Data Eng. Bull. 37.1 (2014). url: http://sites.computer.
org/debull/A14mar/p70.pdf.

[Kor+04] Marcin Korytkowski et al. “Genetic Algorithm for Database Indexing.” In: Arti-
ficial Intelligence and Soft Computing - ICAISC. Vol. 3070. Lecture Notes in Com-
puter Science. 2004, pp. 1142–1147. url: https://doi.org/10.1007/978-3-
540-24844-6%5C_179.

[Kos+20] Jan Kossmann et al. “Magic mirror in my hand, which is the best in the land?
An Experimental Evaluation of Index Selection Algorithms.” In: Proc. VLDB
Endow. 13.11 (2020), pp. 2382–2395. url: http://www.vldb.org/pvldb/
vol13/p2382-kossmann.pdf.

[Kra+18] Tim Kraska et al. “The Case for Learned Index Structures.” In: Proceedings of
the 2018 International Conference on Management of Data, SIGMOD Confer-

ence 2018, Houston, TX, USA, June 10-15, 2018. ACM, 2018, pp. 489–504. doi:
10.1145/3183713.3196909. url: https://doi.org/10.1145/3183713.
3196909.

[Kwo+23] Yongsik Kwon et al. “DB+-tree: A new variant of B+-tree for main-memory
database systems.” In: Inf. Syst. 119 (2023), p. 102287. doi: 10.1016/J.IS.
2023.102287. url: https://doi.org/10.1016/j.is.2023.102287.

[Lam+12] Andrew Lamb et al. “The Vertica Analytic Database: C-Store 7 Years Later.”
In: Proc. VLDB Endow. 5.12 (2012), pp. 1790–1801. doi: 10.14778/2367502.
2367518. url: http://vldb.org/pvldb/vol5/p1790%5C_andrewlamb%5C_
vldb2012.pdf.

https://doi.org/10.1145/253260.253272
https://doi.org/10.1145/253260.253272
https://doi.org/10.1145/253260.253272
http://cidrdb.org/cidr2013/Papers/CIDR13%5C_Paper149.pdf
http://cidrdb.org/cidr2013/Papers/CIDR13%5C_Paper149.pdf
http://sites.computer.org/debull/A14mar/p70.pdf
http://sites.computer.org/debull/A14mar/p70.pdf
https://doi.org/10.1007/978-3-540-24844-6%5C_179
https://doi.org/10.1007/978-3-540-24844-6%5C_179
http://www.vldb.org/pvldb/vol13/p2382-kossmann.pdf
http://www.vldb.org/pvldb/vol13/p2382-kossmann.pdf
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1016/J.IS.2023.102287
https://doi.org/10.1016/J.IS.2023.102287
https://doi.org/10.1016/j.is.2023.102287
https://doi.org/10.14778/2367502.2367518
https://doi.org/10.14778/2367502.2367518
http://vldb.org/pvldb/vol5/p1790%5C_andrewlamb%5C_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1790%5C_andrewlamb%5C_vldb2012.pdf

Bibliography 121

[Lan+19] Harald Lang et al. “Performance-Optimal Filtering: Bloom overtakes Cuckoo
at High-Throughput.” In: Proc. VLDB Endow. 12.5 (2019), pp. 502–515. doi: 10.
14778/3303753.3303757. url: http://www.vldb.org/pvldb/vol12/p502-
lang.pdf.

[Lei+13] Viktor Leis et al. “The adaptive radix tree: ARTful indexing for main-memory
databases.” In: ICDE (2013). doi: 10.1109/ICDE.2013.6544812. url: https:
//doi.org/10.1109/ICDE.2013.6544812.

[Lei+14] Viktor Leis et al. “Morsel-driven parallelism: a NUMA-aware query evaluation
framework for themany-core age.” In: SIGMOD (2014). doi: 10.1145/2588555.
2610507. url: https://doi.org/10.1145/2588555.2610507.

[Lei+15] Viktor Leis et al. “How Good Are Query Optimizers, Really?” In: Proc. VLDB
Endow. 9.3 (2015), pp. 204–215. doi: 10.14778/2850583.2850594. url: http:
//www.vldb.org/pvldb/vol9/p204-leis.pdf.

[LL71] Vincent Y. Lum and Huei Ling. “An Optimization Problem on the Selection of
Secondary Keys.” In: Proceedings of the 1971 26th Annual Conference. ACM ’71.
New York, NY, USA: Association for Computing Machinery, 1971, pp. 349–356.
isbn: 9781450374842. doi: 10.1145/800184.810505. url: https://doi.org/
10.1145/800184.810505.

[Loh88] Guy M. Lohman. “Grammar-like Functional Rules for Representing Query Op-
timization Alternatives.” In: Proceedings of the 1988 ACM SIGMOD International

Conference onManagement of Data, Chicago, Illinois, USA, June 1-3, 1988. Ed. by
Haran Boral and Per-Åke Larson. ACM Press, 1988, pp. 18–27. doi: 10.1145/
50202.50204. url: https://doi.org/10.1145/50202.50204.

[Mar+20] Ryan Marcus et al. “Benchmarking Learned Indexes.” In: Proc. VLDB Endow.

14.1 (2020), pp. 1–13.

[MN11] Guido Moerkotte and Thomas Neumann. “Accelerating Queries with Group-
By and Join by Groupjoin.” In: Proc. VLDB Endow. 4.11 (2011), pp. 843–851. url:
http://www.vldb.org/pvldb/vol4/p843-moerkotte.pdf.

[Moe] Guido Moerkotte. Building Query Compilers. http://pi3.informatik.uni-
mannheim.de/~moer/querycompiler.pdf. Accessed: 2019-12-16.

[Moe+06] Guido Moerkotte et al. “Analysis of Two Existing and One New Dynamic Pro-
gramming Algorithm for the Generation of Optimal Bushy Join Trees without
Cross Products.” In: VLDB (2006). url: http://dl.acm.org/citation.cfm?
id=1164207.

https://doi.org/10.14778/3303753.3303757
https://doi.org/10.14778/3303753.3303757
http://www.vldb.org/pvldb/vol12/p502-lang.pdf
http://www.vldb.org/pvldb/vol12/p502-lang.pdf
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.1145/2588555.2610507
https://doi.org/10.14778/2850583.2850594
http://www.vldb.org/pvldb/vol9/p204-leis.pdf
http://www.vldb.org/pvldb/vol9/p204-leis.pdf
https://doi.org/10.1145/800184.810505
https://doi.org/10.1145/800184.810505
https://doi.org/10.1145/800184.810505
https://doi.org/10.1145/50202.50204
https://doi.org/10.1145/50202.50204
https://doi.org/10.1145/50202.50204
http://www.vldb.org/pvldb/vol4/p843-moerkotte.pdf
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
http://dl.acm.org/citation.cfm?id=1164207
http://dl.acm.org/citation.cfm?id=1164207

122 Bibliography

[Moe+08] Guido Moerkotte et al. “Dynamic programming strikes back.” In: SIGMOD

(2008). doi: 10.1145/1376616.1376672. url: https://doi.org/10.1145/
1376616.1376672.

[ND25] Joris Nix and Jens Dittrich. “Extending SQL to Return a Subdatabase.” In: Proc.
ACMManag. Data 3.3 (2025). doi: 10.1145/3725291. url: https://doi.org/
10.1145/3725291.

[Neu+18] Thomas Neumann et al. “Adaptive Optimization of Very Large Join Queries.”
In: SIGMOD (2018). doi: 10.1145/3183713.3183733. url: https://doi.
org/10.1145/3183713.3183733.

[Neu+19] Priscilla Neuhaus et al. “GADIS: A Genetic Algorithm for Database Index Se-
lection (S).” In: The 31st International Conference on Software Engineering and

Knowledge Engineering, SEKE. 2019, pp. 39–54. url: https://doi.org/10.
18293/SEKE2019-135.

[Neu11] Thomas Neumann. “Efficiently Compiling Efficient Query Plans for Modern
Hardware.” In: PVLDB 4.9 (2011). doi: 10 . 14778 / 2002938 . 2002940. url:
http://www.vldb.org/pvldb/vol4/p539-neumann.pdf.

[Ngo+12] Hung Q. Ngo et al. “Worst-case optimal join algorithms: [extended abstract].”
In: Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Princi-

ples of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012. Ed.
by Michael Benedikt, Markus Krötzsch, and Maurizio Lenzerini. ACM, 2012,
pp. 37–48. doi: 10.1145/2213556.2213565. url: https://doi.org/10.
1145/2213556.2213565.

[Niu+17] Xing Niu et al. “Provenance-Aware Query Optimization.” In: 33rd IEEE Inter-

national Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, April

19-22, 2017. IEEE Computer Society, 2017, pp. 473–484. doi: 10.1109/ICDE.
2017.104. url: https://doi.org/10.1109/ICDE.2017.104.

[NK15] Thomas Neumann and Alfons Kemper. “Unnesting Arbitrary Queries.” In:
Datenbanksysteme für Business, Technologie und Web (BTW), 16. Fachtagung

des GI-Fachbereichs "Datenbanken und Informationssysteme" (DBIS), 4.-6.3.2015

in Hamburg, Germany. Proceedings. Ed. by Thomas Seidl et al. Vol. P-241. LNI.
GI, 2015, pp. 383–402. url: https://dl.gi.de/handle/20.500.12116/2418.

[NW09] Thomas Neumann and Gerhard Weikum. “Scalable join processing on very
large RDF graphs.” In: Proceedings of the ACM SIGMOD International Confer-

ence onManagement of Data, SIGMOD 2009, Providence, Rhode Island, USA, June

https://doi.org/10.1145/1376616.1376672
https://doi.org/10.1145/1376616.1376672
https://doi.org/10.1145/1376616.1376672
https://doi.org/10.1145/3725291
https://doi.org/10.1145/3725291
https://doi.org/10.1145/3725291
https://doi.org/10.1145/3183713.3183733
https://doi.org/10.1145/3183713.3183733
https://doi.org/10.1145/3183713.3183733
https://doi.org/10.18293/SEKE2019-135
https://doi.org/10.18293/SEKE2019-135
https://doi.org/10.14778/2002938.2002940
http://www.vldb.org/pvldb/vol4/p539-neumann.pdf
https://doi.org/10.1145/2213556.2213565
https://doi.org/10.1145/2213556.2213565
https://doi.org/10.1145/2213556.2213565
https://doi.org/10.1109/ICDE.2017.104
https://doi.org/10.1109/ICDE.2017.104
https://doi.org/10.1109/ICDE.2017.104
https://dl.gi.de/handle/20.500.12116/2418

Bibliography 123

29 - July 2, 2009. Ed. by Ugur Çetintemel et al. ACM, 2009, pp. 627–640. doi:
10.1145/1559845.1559911. url: https://doi.org/10.1145/1559845.
1559911.

[OPV14] Kian Win Ong, Yannis Papakonstantinou, and Romain Vernoux. “The SQL++
Semi-structured Data Model and Query Language: A Capabilities Survey of
SQL-on-Hadoop, NoSQL and NewSQL Databases.” In: CoRR abs/1405.3631
(2014). arXiv: 1405.3631. url: http://arxiv.org/abs/1405.3631.

[OQ97] Patrick E. O’Neil and Dallan Quass. “Improved Query Performance with Vari-
ant Indexes.” In: SIGMOD 1997, Proceedings ACM SIGMOD International Con-

ference on Management of Data, May 13-15, 1997, Tucson, Arizona, USA. Ed. by
Joan Peckham. ACM Press, 1997, pp. 38–49. doi: 10.1145/253260.253268.
url: https://doi.org/10.1145/253260.253268.

[OS16] Dan Olteanu and Maximilian Schleich. “Factorized Databases.” In: SIGMOD

Rec. 45.2 (2016), pp. 5–16. doi: 10.1145/3003665.3003667. url: https://
doi.org/10.1145/3003665.3003667.

[PHH92] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. “Extensible/Rule
Based Query Rewrite Optimization in Starburst.” In: Proceedings of the 1992
ACM SIGMOD International Conference on Management of Data, San Diego,

California, USA, June 2-5, 1992. Ed. by Michael Stonebraker. ACM Press, 1992,
pp. 39–48. doi: 10.1145/130283.130294. url: https://doi.org/10.1145/
130283.130294.

[Pic+14] François Picalausa et al. “Principles of Guarded Structural Indexing.” In: Proc.
17th International Conference on Database Theory (ICDT). 2014, pp. 245–256.
url: https://doi.org/10.5441/002/icdt.2014.26.

[Pra19] Elvis Pranskevichus.We Can Do Better Than SQL. https://www.edgedb.com/
blog/we-can-do-better-than-sql. Accessed: 2023-11-28. 2019.

[PSS09] Felix Putze, Peter Sanders, and Johannes Singler. “Cache-, hash-, and space-
efficient bloom filters.” In: ACM J. Exp. Algorithmics 14 (2009). doi: 10.1145/
1498698.1594230. url: https://doi.org/10.1145/1498698.1594230.

[Rea+20] Esteban Real et al. “Automl-zero: Evolving machine learning algorithms
from scratch.” In: International Conference on Machine Learning. PMLR. 2020,
pp. 8007–8019.

https://doi.org/10.1145/1559845.1559911
https://doi.org/10.1145/1559845.1559911
https://doi.org/10.1145/1559845.1559911
https://arxiv.org/abs/1405.3631
http://arxiv.org/abs/1405.3631
https://doi.org/10.1145/253260.253268
https://doi.org/10.1145/253260.253268
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/130283.130294
https://doi.org/10.1145/130283.130294
https://doi.org/10.1145/130283.130294
https://doi.org/10.5441/002/icdt.2014.26
https://www.edgedb.com/blog/we-can-do-better-than-sql
https://www.edgedb.com/blog/we-can-do-better-than-sql
https://doi.org/10.1145/1498698.1594230
https://doi.org/10.1145/1498698.1594230
https://doi.org/10.1145/1498698.1594230

124 Bibliography

[Ric+15] Stefan Richter et al. “A Seven-Dimensional Analysis of Hashing Methods and
its Implications on Query Processing.” In: PVLDB 9.3 (2015). doi: 10.14778/
2850583.2850585. url: http://www.vldb.org/pvldb/vol9/p96-richter.
pdf.

[RR00] Jun Rao and Kenneth A. Ross. “Making B+-Trees Cache Conscious in Main
Memory.” In: Proceedings of the 2000 ACM SIGMOD International Conference on

Management of Data, May 16-18, 2000, Dallas, Texas, USA. ACM, 2000, pp. 475–
486. doi: 10.1145/342009.335449. url: https://doi.org/10.1145/
342009.335449.

[RR99] Jun Rao and Kenneth A. Ross. “Cache Conscious Indexing for Decision-
Support in Main Memory.” In: VLDB’99, Proceedings of 25th International Con-

ference on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK.
Morgan Kaufmann, 1999, pp. 78–89. url: http://www.vldb.org/conf/1999/
P7.pdf.

[RS86] Neil Robertson and Paul D. Seymour. “Graph Minors. II. Algorithmic Aspects
of Tree-Width.” In: J. Algorithms 7.3 (1986), pp. 309–322. doi: 10.1016/0196-
6774(86)90023-4. url: https://doi.org/10.1016/0196-6774(86)90023-
4.

[Sch+13] Felix Martin Schuhknecht et al. “The Uncracked Pieces in Database Cracking.”
In: PVLDB 7.2 (2013). doi: 10.14778/2732228.2732229. url: http://www.
vldb.org/pvldb/vol7/p97-schuhknecht.pdf.

[Sch+18] Felix Martin Schuhknecht et al. “Adaptive Adaptive Indexing.” In: ICDE (2018).
doi: 10.1109/ICDE.2018.00066. url: https://doi.org/10.1109/ICDE.
2018.00066.

[Sel+79] Patricia G. Selinger et al. “Access Path Selection in a Relational Database Man-
agement System.” In: Proceedings of the 1979 ACM SIGMOD International Con-

ference on Management of Data, Boston, Massachusetts, USA, May 30 - June 1.
ACM, 1979, pp. 23–34. doi: 10.1145/582095.582099. url: https://doi.
org/10.1145/582095.582099.

[SGL09] Benjamin Schlegel, Rainer Gemulla, and Wolfgang Lehner. “k-ary search on
modern processors.” In: Proceedings of the Fifth International Workshop on Data

Management on New Hardware, DaMoN 2009, Providence, Rhode Island, USA,

June 28, 2009. ACM, 2009, pp. 52–60. doi: 10.1145/1565694.1565705. url:
https://doi.org/10.1145/1565694.1565705.

https://doi.org/10.14778/2850583.2850585
https://doi.org/10.14778/2850583.2850585
http://www.vldb.org/pvldb/vol9/p96-richter.pdf
http://www.vldb.org/pvldb/vol9/p96-richter.pdf
https://doi.org/10.1145/342009.335449
https://doi.org/10.1145/342009.335449
https://doi.org/10.1145/342009.335449
http://www.vldb.org/conf/1999/P7.pdf
http://www.vldb.org/conf/1999/P7.pdf
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.14778/2732228.2732229
http://www.vldb.org/pvldb/vol7/p97-schuhknecht.pdf
http://www.vldb.org/pvldb/vol7/p97-schuhknecht.pdf
https://doi.org/10.1109/ICDE.2018.00066
https://doi.org/10.1109/ICDE.2018.00066
https://doi.org/10.1109/ICDE.2018.00066
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/1565694.1565705
https://doi.org/10.1145/1565694.1565705

Bibliography 125

[Shr+13] Lakshmikant Shrinivas et al. “Materialization strategies in the Vertica analytic
database: Lessons learned.” In: 29th IEEE International Conference on Data En-

gineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013. Ed. by Christian S.
Jensen, Christopher M. Jermaine, and Xiaofang Zhou. IEEE Computer Soci-
ety, 2013, pp. 1196–1207. doi: 10.1109/ICDE.2013.6544909. url: https:
//doi.org/10.1109/ICDE.2013.6544909.

[SQLFlaws14] Sql Flaws. https://wiki.c2.com/?SqlFlaws. Accessed: 2023-11-28. 2014.

[Szá+22] Gábor Szárnyas et al. “The LDBC Social Network Benchmark: Business Intel-
ligence Workload.” In: Proc. VLDB Endow. 16.4 (2022), pp. 877–890. doi: 10.
14778/3574245.3574270. url: https://www.vldb.org/pvldb/vol16/
p877-szarnyas.pdf.

[Tab21] Lloyd Tabb. Malloy. https://www.malloydata.dev. Accessed: 2024-06-27.
2021.

[TI94] Odysseas G. Tsatalos and Yannis E. Ioannidis. “A Unified Framework for In-
dexing in Database Systems.” In: Database and Expert Systems Applications,

5th International Conference, DEXA. Vol. 856. Lecture Notes in Computer Sci-
ence. 1994, pp. 183–192. url: https://doi.org/10.1007/3-540-58435-
8%5C_183.

[TSI96] Odysseas G. Tsatalos, Marvin H. Solomon, and Yannis E. Ioannidis. “The
GMAP:AVersatile Tool for Physical Data Independence.” In:VLDB J. 5.2 (1996),
pp. 101–118. url: https://doi.org/10.1007/s007780050018.

[TSV18] Toni Taipalus, Mikko T. Siponen, and Tero Vartiainen. “Errors and Complica-
tions in SQL Query Formulation.” In: ACM Trans. Comput. Educ. 18.3 (2018),
15:1–15:29. doi: 10 . 1145 / 3231712. url: https : / / doi . org / 10 . 1145 /
3231712.

[Vel12] Todd L. Veldhuizen. “Leapfrog Triejoin: a worst-case optimal join algorithm.”
In: CoRR abs/1210.0481 (2012). arXiv: 1210.0481. url: http://arxiv.org/
abs/1210.0481.

[VM96] Bennet Vance and David Maier. “Rapid Bushy Join-order Optimization with
Cartesian Products.” In: Proceedings of the 1996 ACM SIGMOD International

Conference on Management of Data, Montreal, Quebec, Canada, June 4-6, 1996.
Ed. by H. V. Jagadish and Inderpal Singh Mumick. ACM Press, 1996, pp. 35–46.
doi: 10.1145/233269.233317. url: https://doi.org/10.1145/233269.
233317.

https://doi.org/10.1109/ICDE.2013.6544909
https://doi.org/10.1109/ICDE.2013.6544909
https://doi.org/10.1109/ICDE.2013.6544909
https://wiki.c2.com/?SqlFlaws
https://doi.org/10.14778/3574245.3574270
https://doi.org/10.14778/3574245.3574270
https://www.vldb.org/pvldb/vol16/p877-szarnyas.pdf
https://www.vldb.org/pvldb/vol16/p877-szarnyas.pdf
https://www.malloydata.dev
https://doi.org/10.1007/3-540-58435-8%5C_183
https://doi.org/10.1007/3-540-58435-8%5C_183
https://doi.org/10.1007/s007780050018
https://doi.org/10.1145/3231712
https://doi.org/10.1145/3231712
https://doi.org/10.1145/3231712
https://arxiv.org/abs/1210.0481
http://arxiv.org/abs/1210.0481
http://arxiv.org/abs/1210.0481
https://doi.org/10.1145/233269.233317
https://doi.org/10.1145/233269.233317
https://doi.org/10.1145/233269.233317

126 Bibliography

[Wan+16] Wei Wang et al. “Database Meets Deep Learning: Challenges and Opportuni-
ties.” In: SIGMOD Record 45.2 (2016).

[WWS23] Yisu Remy Wang, Max Willsey, and Dan Suciu. “Free Join: Unifying Worst-
Case Optimal and Traditional Joins.” In: Proc. ACM Manag. Data 1.2 (2023),
150:1–150:23. doi: 10.1145/3589295. url: https://doi.org/10.1145/
3589295.

[Yan+24] Yifei Yang et al. “Predicate Transfer: Efficient Pre-Filtering on Multi-Join
Queries.” In: 14th Conference on Innovative Data Systems Research, CIDR 2024,

Chaminade, HI, USA, January 14-17, 2024. www.cidrdb.org, 2024. url: https:
//www.cidrdb.org/cidr2024/papers/p22-yang.pdf.

[Yan81] Mihalis Yannakakis. “Algorithms for Acyclic Database Schemes.” In:Very Large
Data Bases, 7th International Conference, September 9-11, 1981, Cannes, France,

Proceedings. IEEE Computer Society, 1981, pp. 82–94.

[Zhu+17] Jianqiao Zhu et al. “Looking AheadMakes Query Plans Robust.” In: Proc. VLDB
Endow. 10.8 (2017), pp. 889–900. doi: 10.14778/3090163.3090167. url: http:
//www.vldb.org/pvldb/vol10/p889-zhu.pdf.

https://doi.org/10.1145/3589295
https://doi.org/10.1145/3589295
https://doi.org/10.1145/3589295
https://www.cidrdb.org/cidr2024/papers/p22-yang.pdf
https://www.cidrdb.org/cidr2024/papers/p22-yang.pdf
https://doi.org/10.14778/3090163.3090167
http://www.vldb.org/pvldb/vol10/p889-zhu.pdf
http://www.vldb.org/pvldb/vol10/p889-zhu.pdf

	Introduction
	Breaking Up Operators in Query Optimization
	Breaking Up Index Structures
	Breaking Up SQL's Single-Table Results
	Contributions

	Deep Query Optimization
	Introduction
	Deep Query Optimization
	Local vs Global Effects of Deep Query Optimization
	Meta-Relational Plan Properties

	Materialized Algorithmic View Selection
	Materialized Algorithmic Views (MAVs)
	When to Materialize MAVs?
	The Algorithmic View Selection Problem (AVSP)
	But the Search Space Is Exponential!

	System Integration
	Experiments
	Setup and Methodology
	Performance of Physical Grouping Implementations
	DQO-Enabled Dynamic Programming

	Related Work
	Research Agenda
	Conclusions

	Genetic Generic Generation of Index Structures
	Introduction
	Problem 1: Indexes Are Considered Monolithic Entities
	Problem 2: Two Completely Different Methodologies to Solve a Similar Problem
	Problem Statement
	Contributions

	Generic Logical Indexing Framework
	Logical Nodes and Logical Indexes
	Logical Queries

	Generic Physical Indexing Framework
	Specify Search Algorithm
	Specify Data Layout
	Specify by Nested Logical or Physical Index

	Genetic Index Breeding
	Core Algorithm
	Initial Population Generation
	Mutations and Their Distributions
	Fitness Function

	Related Work
	Experimental Evaluation
	Hyperparameter Tuning
	Rediscover Suitable Baseline Indexes
	Optimized vs Heuristic Indexes

	Conclusion and Future Work

	Extending SQL to Return a Subdatabase
	Introduction
	Problem Statement
	Use Cases
	Contributions

	Querying a Database to Return a Subdatabase
	Preliminaries
	A Query Returning a Subdatabase
	Relationship-Preserving Subdatabase
	Extending SQL: [language=sql-nocolor]SELECT RESULTDB

	SQL-Based Rewrite Methods
	RM 1: Dynamic [language=sql-nocolor]SELECT DISTINCT
	RM 2: Materialized [language=sql-nocolor]SELECT DISTINCT
	RM 3: Dynamic Subquery
	RM 4: Materialized Subquery

	ResultDBsemi-join Algorithm
	Preliminaries
	Acyclic Join Graph Topology
	Cyclic Join Graph Topology
	Putting It All Together

	Related Work
	Experiments
	Result Set Sizes
	Rewrite Methods
	ResultDBsemi-join Algorithm
	Runtime with Data Transfer & Post-join

	Future Work
	Conclusion

	Conclusion
	Deep Query Optimization
	Genetic Generic Generation of Index Structures
	Extending SQL to Return a Subdatabase
	Concluding Remarks

	Bibliography

