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Abstract

Translated texts exhibit systematic linguistic differences compared to original texts
in the same language. These differences are referred to as translationese, and can
be categorised as either source language dependent or universal. Basic research
on translationese aims to understand and characterise the language-specific and
language-independent aspects of translationese. Additionally, translationese has prac-
tical implications in the context of natural language processing tasks that involve
translation. Translationese effects can cause biased results in a variety of cross-lingual
tasks. Therefore, understanding, analysing and mitigating translationese is crucial for
improving the accuracy and effectiveness of cross-lingual natural language processing.
Focusing on representation learning, this dissertation addresses both foundational as
well as practical aspects of translationese.

Our first task is to investigate the effectiveness of representation learning-based meth-
ods in mono- and multilingual translationese classification. Traditional manual feature-
engineering based methods for translationese classification may result in potentially
partial, non-exhaustive linguistic features and often require linguistic annotation tools.
In contrast, our approach involves developing a suite of representation-learning meth-
ods based on word embeddings, eliminating the need for manual feature engineering.
Our experiments demonstrate superior performance, outperforming previous tradi-
tional hand-crafted linguistically inspired feature-selection methods for translationese
classification on a wide range of tasks.

Translationese artifacts have been found to exert a substantial influence on diverse
downstream tasks involving translated data. Therefore, to mitigate the impact of trans-
lationese on downstream tasks, we propose a new approach: translationese debiasing.
Our research is the first to adapt the Iterative Null Space Projection (INLP) algorithm,
originally designed to mitigate gender attributes, to translationese-induced bias in both
word and sentence embedding spaces. Additionally, we develop two techniques for
debiasing translationese at the word level representations. We confirm the effectiveness
of our debiasing approach by comparing the classification performance before and
after debiasing on the translationese classification task. Additionally, we demonstrate
the practical utility of our debiasing method by applying it to a natural language
inference task involving translated data, where we observed improved accuracy as a
result of reduced translation-induced bias.

Next, we address the foundational question of whether translationese signals can be
observed in semantic word embedding spaces and, if so, what practical implications this
observation may have. To this end, we propose a novel approach for unsupervised
tracking of translationese in semantic spaces, which does not rely on explicit linguistic
labels. Our method is based on graph-isomorphism approaches that examine depar-
tures from isomorphism between embedding spaces built from original language data
and translations into this language. By comparing the normalised distances between
these spaces, we are able to identify systematic evidence of translationese. Specifically,
we find that as isomorphism weakens, the linguistic distance between etymologically
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distant language families increases, providing evidence that translationese signals are
linked to source language interference. Following this, we show that the proposed
methods are robust under a variety of training conditions, encompassing data size,
type, and choice of word embedding models. Additionally, our findings indicate our
methods are language-independent, in the sense that they can be applied to multiple
languages and are not limited to a specific language or language family.

We extend the work on unsupervised tracking of translationese in semantic spaces
to evaluate the impact of domain in translationese data. Translationese signals are subtle
and may compete with other signals in the data, particularly those related to domain.
To address this, we mask domain information by applying our graph-isomorphism
methods to different delexicalized representations using various views, including
words, parts of speech, semantic tags, and synsets. Our results demonstrate that while
source-language interference is most pronounced in lexicalised embeddings (word),
it is also present in delexicalised views. This indicates that our lexicalised findings
are not only the result of possible topic differences between original and translated
texts. Additionally, we show that, regardless of the level of linguistic representation,
language family ties with characteristics similar to linguistically motivated phyloge-
netic trees can be inferred from the degree of departures from isomorphism, using all
combinations of original target language and translations into this target language
from different source languages.

Finally, we explore whether the graph-based divergence from isomorphism in
embeddings can serve as a viable proxy for surprisal at the the level of surface
texts. To do this, we explicitly compute the correlation between (a) differences in
surface string entropy of original vs. translated data computed by language models
trained on originally authored data and (b) divergence from isomorphism between
embedding spaces computed on the same text data. Our results show a positive
correlation between these two measures with a higher departure from isomorphism
between embedding spaces corresponding to a greater difference in surface entropy.
Additionally, similar to the findings of graph-based divergence from isomorphism
between embedding spaces where higher divergence from isomorphism implicitly
indicates higher linguistic distance in terms of language families and, supposedly,
surface structural linguistic distance between languages — our entropy-based findings
demonstrate that the observed differences in surface string representations between
the original and translated datasets also correspond, at a higher level, with the surface
structural linguistic distance between the source languages themselves. These results
establish an explicit link between our two measures: divergence from isomorphism
between original and translated embedding spaces and entropy differences of the
surface strings of the same text data.
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Zusammenfassung

Übersetzte Texte weisen im Vergleich zu Originaltexten in derselben Sprache systema-
tische sprachliche Unterschiede auf, die zu einer einzigartigen Teilsprache mit eigenen
Unterscheidungsmerkmalen führen. Diese Unterschiede werden als Translationese
(Gellerstam, 1986) bezeichnet und können entweder als ausgangssprachabhängig oder
universell kategorisiert werden. Es ist wichtig zu beachten, dass Translationese keine
eigenständige Sprache ist, sondern vielmehr eine Reihe von sprachlichen Merkmalen
(Baker et al., 1993; Toury, 1980), die übersetzte Texte von denen unterscheiden, die
ursprünglich in der Zielsprache geschrieben wurden.

Verschiedene Faktoren tragen zu den Unterschieden zwischen den Originaltexten
und übersetzten Texten bei, von denen viele unter die Kategorie der universellen Merk-
male der Übersetzung fallen. Zu diesen universellen Merkmalen gehören die Verein-
fachung, d. h. die Vereinfachung komplexer Ausgangsstrukturen in der Zielsprache,
die Standardisierung, d. h. die Neigung, sich eng an die Normen der Zielsprache zu
halten, und die Explizierung, d. h. die Verdeutlichung impliziter Ausgangsstrukturen
in der Zielsprache. Im Gegensatz zu diesen übersetzerischen Universalien spiegelt die
Interferenz den Einfluss der Ausgangssprache auf das Übersetzungsprodukt wider.
Interferenz ist von Natur aus ein sprachpaarspezifisches Phänomen, bei dem isomor-
phe Strukturen, die Ausgangs- und Zielsprache gemeinsam haben, einander leicht
ersetzen können. Dies verdeutlicht den zugrunde liegenden sprachübergreifenden
Einfluss der Ausgangssprache auf das Übersetzungsergebnis.

Nach dieser Definition wird das Übersetzen als eine besondere Form der sprachüber-
greifenden Sprachvarietät betrachtet, die einen Sonderfall innerhalb der breiteren Land-
schaft des Sprachkontakts darstellt. Trotz des beträchtlichen Umfangs der Forschung
zu verschiedenen sprachübergreifenden Sprachvarietäten gibt es eine auffällige Lücke,
wenn es um die spezifische Untersuchung des Translationese geht.

Bisherige Studien haben sich vor allem auf zwei Aspekte konzentriert, nämlich auf
die Identifizierung charakteristischer Merkmale von Übersetzungen und auf die Klas-
sifizierung von Translationese, wobei sorgfältige korpusbasierte Studien (Baker et al.,
1993) verwendet wurden, die Unterschiede in der Verteilung linguistischer Merkmale
zwischen Originalen und übersetzten Texten aufzeigen, oder klassifikationsbasierte
Ansätze bei denen ein Klassifikator trainiert wird und dann Merkmalsbedeutungs-
maße verwendet werden, um darauf zu schließen, welche Merkmale bei der Klassi-
fizierung von Übersetzungen besonders wichtig sind (Rabinovich and Wintner, 2015;
Rubino, Lapshinova-Koltunski, and Genabith, 2016; Volansky, Ordan, and Wintner,
2015). Die praktischen Implikationen von Translationswissenschaft gehen jedoch über
die Identifizierung linguistischer Merkmale und die Klassifizierung hinaus.

Die ausgeprägten sprachlichen Unterschiede, die zwischen Originaltexten und
übersetzten Texten in derselben Sprache zu beobachten sind, lassen sich im Großen
und Ganzen entweder als quellsprachenabhängig oder als universell klassifizieren.
Die Durchführung von Grundlagenforschung zum Translationese ist wichtig, da
sie wertvolle Einblicke sowohl in sprachspezifische als auch in sprachunabhängige
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Aspekte dieses sprachlichen Phänomens liefert. Die Grundlagenforschung ermöglicht
ein tieferes Verständnis der zugrundeliegenden Muster und Strukturen, die das
Translationese definieren, sowie der Variationen, die in verschiedenen Sprachen und
Sprachfamilien beobachtet werden.

Es ist jedoch auch wichtig, eine bestehende Lücke in der Erforschung des Trans-
lationese zu schließen. Translationese hat spürbare Auswirkungen auf verschiedene
sprachübergreifende Aufgaben der natürlichen Sprachverarbeitung (NLP), was zu
verzerrten Ergebnissen und verminderter oder künstlich aufgeblähter Leistung führen
kann. Daher ist die Untersuchung und Abschwächung von Translationese für die
Verbesserung der Genauigkeit und Effektivität dieser Aufgaben von entscheidender
Bedeutung. Die Abschwächung von Translationese ist bisher ein wenig erforschtes
Gebiet. Ein wichtiger Teil der in dieser Arbeit vorgestellten Forschung besteht darin,
diese Lücke zu schließen.

In dieser Arbeit konzentrieren wir uns auf das Repräsentationslernen als einen
umfassenden Ansatz, um sowohl die grundlegenden als auch die praktischen As-
pekte von Translationese zu behandeln. Mit dieser Forschungsarbeit wollen wir einen
Beitrag zum breiteren Feld der sprachübergreifenden Sprachstudien leisten und eine
bestehende Lücke im Verständnis und in der Behebung von Translationese schließen.

Zunächst befassen wir uns mit den praktischen Aspekten von Translationese.
Frühere Studien haben gezeigt dass die Verwendung verschiedener manuell erstellter
Merkmale für überwachtes Lernen für die Klassifizierung von Translationese effektiv
sein kann (Avner, Ordan, and Wintner, 2016; Baroni and Bernardini, 2005; Rabi-
novich, Ordan, and Wintner, 2017; Rubino, Lapshinova-Koltunski, and Genabith, 2016;
Volansky, Ordan, and Wintner, 2015). Dies hat sich als nützlich für eine Vielzahl von
Aufgaben erwiesen, wie z. B. die Analyse von Übersetzungsstrategien (Lapshinova-
Koltunski, 2015), die Untersuchung der Merkmale (Koppel and Ordan, 2011; Rubino,
Lapshinova-Koltunski, and Genabith, 2016) von Translationese oder die Bewertung
von maschinellen Übersetzungssystemen (Graham, Haddow, and Koehn, 2019; Zhang
and Toral, 2019). In Anlehnung an diese Forschungslinie in der Erforschung des Trans-
lationese, konzentrieren wir uns auf zwei praktische Aufgaben: (i) mehrsprachige
Klassifizierung von Translationese, und (ii) wir schlagen eine neue Aufgabe vor,
nämlich die Milderung von Translationese-Artefakten.

Im Rahmen von (i) entwerfen, entwickeln und evaluieren wir verschiedene Repräsen-
tationslernansätze zur Klassifikation mehrsprachigen Translationese und vergleichen-
de sie mit klassischen manuellen, auf Feature-Engineering basierenden Ansätzen
für dieselben Daten. In (ii) führen wir die neue Aufgabe ein, Translationese Arte-
fakte aus latenten Repräsentationsräumen zu entfernen. Dies bezieht sich auf den
Prozess der Entfernung oder die Reduzierung des Einflusses von Artefakten auf die
gelernten Repräsentationen von Texten, um die Eigenschaften der Originaltexte besser
wiederzugeben.

Translationese wurde als eine Reihe von spezifischen linguistischen Merkmalen und
Konventionen charakterisiert, die Übersetzungen von Originaltexten unterscheiden
(Baker et al., 1993; Teich, 2003; Toury, 1979). Frühere bahnbrechende Forschungen
zur automatischen Klassifizierung von Übersetzungen (Baroni and Bernardini, 2005;
Koppel and Ordan, 2011) verwendeten traditionelle, handgefertigte, linguistisch in-
spirierte, auf Features basierende, überwachte maschinelle Lernansätze, um Klassi-
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fikatoren zu trainieren. Häufig wurden Feature-Ranking-Methoden verwendet, um
herauszufinden, welche der Features wichtige Indikatoren für Translationese sind
(Avner, Ordan, and Wintner, 2016; Rubino, Lapshinova-Koltunski, and Genabith, 2016;
Volansky, Ordan, and Wintner, 2015). Manuelle, linguistisch inspirierte, auf Feature-
Engineering basierende Ansätze haben den Vorteil, dass die verwendeten Merkmale
(und ihre Rangfolge) für menschliche Experten leicht zu interpretieren sind. Es gibt
jedoch einige Gründe, warum es problematisch sein kann, sich bei der überwachten
Klassifizierung von Übersetzungen auf manuell erstellte linguistische Merkmale zu
verlassen. Eines der Hauptprobleme bei diesem Ansatz ist, dass die manuell erstellten
Merkmale möglicherweise nicht vollständig sind und nicht alle wichtigen Unterschei-
dungsmerkmale der Eingabedaten während des Trainings erfassen. Dies liegt daran,
dass die Merkmale auf linguistischen Intuitionen beruhen und möglicherweise nicht
alle möglichen Variationen in den Eingabedaten berücksichtigen. Darüber hinaus
erfordert die Annotation linguistischer Daten in großem Umfang (automatische) An-
notationswerkzeuge, und die Beschaffung linguistischer Annotationswerkzeuge, wie
Tokenisierer, Tagger, morphologische Analysatoren, NERs, Chunkers, Parser usw.,
kann für viele Sprachen eine Herausforderung darstellen (insbesondere für Sprachen
mit geringen Ressourcen), was den Nutzen dieses Ansatzes einschränkt. Darüber
hinaus ist die automatische Annotation im großen Maßstab immer verrauscht, und
die Merkmale können sprach- oder linguistiktheoriespezifisch sein.

Teilweise als Reaktion auf die Beschränkungen der von der linguistischen Theorie
inspirierten Merkmale wurden in früheren Arbeiten auch einfache lexikalisierte Merk-
male wie Wort-Token und Zeichen-N-Gramme (Avner, Ordan, and Wintner, 2016) oder
Merkmale auf der Grundlage von Zählmodellen, Informationsdichte, Überraschung
und Komplexität für die Textklassifizierung, insbesondere bei der Bewertung der
Übersetzungsqualität, untersucht. Diese Merkmale dienen als Indikatoren für Transla-
tionese sowohl von ursprünglich verfassten als auch von manuell übersetzten Texten
(Rubino, Lapshinova-Koltunski, and Genabith, 2016). Diese Forschung stützt sich
jedoch auf diskrete zählbasierte Ansätze, die Wörter als diskrete Einheiten behandeln,
was zu begrenzten Möglichkeiten der Kontextmodellierung führt. In dieser Arbeit
erforschen wir einen alternativen Ansatz zur Klassifizierung von mehrsprachigem
Translationese, ohne uns auf manuelles Feature Engineering zu verlassen, was uns
dazu motiviert, unsere erste Forschungsfrage zu formulieren.

RQ1: Inwieweit können Techniken des Repräsentationslernens, wie z. B. Einbettungen,
übersetzte und nicht übersetzte Texte ohne vorherige linguistische Annahmen unterscheiden?

Der erste Beitrag dieser Dissertation in Kapitel 3 besteht darin, eine Reihe von
auf Repräsentationslernen basierenden Methoden zu entwerfen, zu implementieren
und zu evaluieren, so dass die manuelle Erstellung von Merkmalen überflüssig wird.
Auf Merkmalen und Repräsentationen basierende Lernmethoden werden in erster
Linie von Faktoren wie den Daten, der Aufgabe und dem Lerner beeinflusst, ohne
sich auf vorherige linguistische Annahmen oder Vorurteile zu stützen. Dies steht im
Gegensatz zu linguistisch inspirierten, handgefertigten Feature-Engineering-Ansätzen,
die keine Garantie dafür bieten, dass die Features und Repräsentationen vollständig
sind. Daher wollen wir die Ergebnisse, die mit auf Repräsentationslernen basierenden
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Ansätzen für die Klassifikation mehrsprachiger Übersetzungen erzielt werden, mit
denen unserer früheren klassischen, auf manuellem Feature-Engineering basieren-
den Ansätze vergleichen, die linguistisch informierte Methoden und automatische
Annotationswerkzeuge für dieselben Daten verwenden, um RQ1 zu behandeln.

In Kapitel 3 zeigen wir, dass bereits statisch eingebettete, auf Repräsentationsler-
nen basierende Ansätze handgefertigte, linguistisch inspirierte Feature-Selection-
Methoden für die Übersetzungsklassifikation bei einer Vielzahl von Aufgaben übertre-
ffen. Darüber hinaus führen wir Experimente mit einer Reihe von Ausgangs-/Ziel-
spachenkombinationen in ein- und mehrsprachigen Umgebungen durch, die belegen,
dass auf Repräsentationslernen basierende Methoden bei der Generalisierung auf
verschiedene mehrsprachige Aufgaben effektiver sind. Darüber hinaus vergleichen wir
unsere Ansätze mit sprachübergreifende neuronalen Ansätzen auf denselben Daten
und heben hervor, dass die Klassifizierung von Übersetzungen tiefe neuronale Modelle
mit starker Kontextmodellierung erfordert, um optimale Ergebnisse zu erzielen.

Übersetzungsartefakte üben einen erheblichen Einfluss auf verschiedene nachge-
lagerte Aufgaben aus, die mit Übersetzung zu tun haben. In jüngster Zeit wurde die
Aufmerksamkeit auf den Einfluss von Translationese auf Bewertungsmetriken gelenkt
(Graham, Haddow, and Koehn, 2019; Toral, 2019; Zhang and Toral, 2019). Edunov
et al. (2020) and Freitag, Caswell, and Roy (2019) identifizierten Translationese als eine
signifikante Quelle für die Diskrepanz zwischen BLEU-Scores (Papineni et al., 2002)
und menschlichen Bewertungen. Die Auswirkung der Übersetzungssprache in den
Testsätzen ist mit der Auswirkung in den Trainingsdaten (Bogoychev and Sennrich,
2019; Kurokawa, Goutte, and Isabelle, 2009; Lembersky, Ordan, and Wintner, 2012;
Riley et al., 2020a) verbunden, unterscheidet sich aber von dieser. Daher ist es für die
Verbesserung der Genauigkeit und Effektivität von sprachübergreifendem NLP von
entscheidender Bedeutung, Translationese in der Übersetzungsausgabe zu verstehen,
zu analysieren und vor allem abzuschwächen. Dies führt uns zur Formulierung un-
serer nächsten Forschungsfrage.

RQ2:Ist es möglich, Übersetzungsartefakte effektiv abzuschwächen?

Bis heute ist diese wichtige Forschungsfrage unteruntersucht. Die RQ2 zu adressieren,
ist der zweite Beitrag, den die Dissertation liefert. Wir präsentieren einen Ansatz zur
Minderung der negativen Auswirkungen von Translationese auf sprachübergreifende
Aufgaben.

Um dies zu erreichen, schlagen wir einen neuen Ansatz vor: Translationese-Debiasing.
Wir entwerfen, implementieren und evaluieren diesen Ansatz, der auf latenten
Repräsentationen arbeitet. Durch die Reduzierung der Effekte von Translationese
auf nachgelagerte Aufgaben zielt dieser Ansatz darauf ab, die Genauigkeit und Wirk-
samkeit der überlingualen natürlichen Sprachverarbeitung zu verbessern.

Um dieses Ziel zu erreichen, passen wir den Iterativen Nullraumprojektionsalgorith-
mus (Ravfogel et al., 2020), der ursprünglich zur Reduzierung von Geschlechtsattri-
buten in neuronalen Repräsentationen entwickelt wurde, an übersetzungsbedingte
Verzerrungen in Wort- und Satzeinbettungsräumen an. Zusätzlich entwickeln wir zwei
Techniken zum Debiasing von Übersetzungsfehlern auf der Wortebene. Wir evaluieren
unseren Ansatz, indem wir die Klassifizierungsleistung von Übersetzungsfehlern vor
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und nach dem Debiasing vergleichen, und stellen erwartungsgemäß eine geringere
Genauigkeit als Folge fest. Darüber hinaus evaluieren wir die Auswirkungen des Debi-
asing von Übersetzungsartefakten auf die extrinsische Aufgabe der Natural Language
Inference (NLI) in zwei verschiedenen Datenumgebungen. Unsere Ergebnisse zeigen,
dass das entzerrte Modell in der Lage ist, die Beziehungen zwischen den Sätzen in
der Inferenzaufgabe besser zu erhalten und genauere Inferenzen zu produzieren.

Im zweiten Teil befasst sich die Dissertation mit grundlegenden Fragen zum Tran-
lationese, einschließlich der Frage, ob die Signale des Translationese in semantis-
chen Worteinbettungsräumen beobachtet werden können und welche praktischen
Auswirkungen dies hat. Übersetzte Texte weisen häufig Muster von Interferenzen
in aus Ausgangssprache auf, wobei Merkmale des Ausgangstextes auf den Zieltext
übertragen werden Teich, 2003; Toury, 1980. Während frühere Studien mit Hilfe von
überwachter Klassifikation und Feature-Engineering (Baroni and Bernardini, 2005;
Koppel and Ordan, 2011; Rabinovich, Ordan, and Wintner, 2017) systematische Belege
für Translationese in übersetzten Texten aufzeigen konnten, sind die Auswirkungen
von Translationese auf semantische Räume noch weitgehend unerforscht.

Wir entwerfen, implementieren und evaluieren einen strukturierten und nicht
überwachten Ansatz zur Erkennung von Translationese in semantischen Räumen
ohne die Notwendigkeit expliziter linguistischer Annotationen. Unser Ansatz verfolgt
drei Ziele: erstens die Identifizierung von Translationese-Effekten in semantischen
Repräsentationen von Texten; zweitens die Entwicklung einer unüberwachten Meth-
ode zur Erkennung dieser Effekte ohne menschliche Annotation; und drittens die
Bewertung, ob mögliche Domänenunterschiede für einige unserer Ergebnisse verant-
wortlich sein könnten. Um diese Ziele zu erreichen, konzentrieren wir uns auf zwei
primäre Aufgaben: (i) das Aufspüren von Translationese in semantischen Räumen
(ii) die Untersuchung des Einflusses der Domäne auf diese Aufgabe.

Die charakteristischen Merkmale übersetzter Texte werden traditionell in zwei
Hauptkategorien eingeteilt: Eigenschaften, die sich aus der Interferenz der Aus-
gangssprache ergeben, und universelle Merkmale, die sich aus der Übersetzung
als kommunikativem Prozess selbst ergeben. Frühere Studien verwenden eine Kombi-
nation aus lexikalischen und syntaktischen Merkmalen, um zu zeigen, dass Spuren
der Ausgangssprache oder shining-through (Teich, 2003) in Übersetzungen sichtbar
bleiben. Dies ist darauf zurückzuführen, dass lexikalische und syntaktische Merk-
male Hinweise auf die Ausgangssprache eines übersetzten Textes geben können (z. B.
Wortstellung, grammalische Strukturen).

Während lexikalische und syntaktische Merkmale für die Identifizierung bestimmter
Merkmale von Translationese nützlich sein können, ist es wichtig, Translationese zu
identifizieren, ohne dass eine explizite Kennzeichnung oder Überwachung erforderlich
ist. So können beispielsweise bestimmte Muster oder Strukturen im semantischen
Raum eines übersetzten Textes auf Translationese hinweisen, auch wenn sie nicht
direkt mit spezifischen lexikalischen oder syntaktischen Merkmalen übereinstimmen.
Dies führt uns zu der nächsten Forschungsfrage.

RQ3:Ist es möglich, Translationese in semantischen Räumen in einer unüberwachten Weise
auf zu spüren?
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Um diese Frage zu beantworten, führt der dritte Beitrag dieser Dissertation eine
neue Forschungsrichtung ein: das Aufspüren von Translationese-Signalen in einem
semantischen Raum, ohne dass eine explizite Kennzeichnung oder Überwachung
erforderlich ist. Im Gegensatz zu früheren Arbeiten, die sich auf überwachte Klas-
sifikation und Feature-Engineering stützten, um Translationese zu identifizieren, ist
unser Ansatz völlig unbeaufsichtigt und basiert auf einem Schlüsselkonzept: dem
Begriff des Isomorphismus.

Das Isomorphie-Prinzip besagt, dass Sprachen ein hohes Maß an Übereinstim-
mung zwischen Bedeutung und Form auf einer Eins-zu-Eins-Basis aufweisen (Barone,
2016). Im Zusammenhang mit der Erkennung von Translationese in semantischen
Räumen würde Isomorphie bedeuten, dass der semantische Raum, der aus den Origi-
naldaten der Zielsprache erstellt wurde, derselbe sein sollte wie der Raum, der aus
den Übersetzungen in diese Sprache erstellt wurde, und zwar in Bezug auf die Art
und Weise, wie die Wörter innerhalb des Einbettungsraums miteinander verbunden
sind. Unser Ziel ist es, Translationese auf der Grundlage von Abweichungen von
der Graphen-Isomorphie nachzuvollziehen, wobei die ursprüngliche Zielsprache und
die Übersetzungen in diese Zielsprache als Graphenstrukturen in den semantischen
Räumen dargestellt werden. Die Abweichungen von der Isomorphie zwischen diesen
Graphen deuten auf systematische Anzeichen von Translationese hin. Insbesondere
stellen wir fest, dass mit abnehmender Isomorphie der linguistische Abstand zwischen
etymologisch weit entfernten Sprachfamilien zunimmt, was den Nachweis erbringt,
dass die durch die Abweichung von der Isomorphie erkannten Translationese Signale
mit der Interferenz der Ausgangssprache verbunden sind. Unsere Ergebnisse sind
vergleichbar mit früheren Ansätzen, die auf oberflächlichen Merkmalen wie Wörtern,
n-Grammen oder Parser-Ausgaben basieren.

Anschließend zeigen wir, dass die vorgeschlagenen Methoden unter einer Vielzahl
von Trainingsbedingungen robust sind, die die Datengröße, den Datentyp und die
Wahl der Worteinbettungsmodelle umfassen. Außerdem zeigen unsere Ergebnisse,
dass unsere Methoden sprachunabhängig sind, in dem in dem Sinne, dass sie auf
mehrere Sprachen angewendet werden können und nicht auf eine bestimmte Sprache
oder Sprachfamilie beschränkt sind.

Schließlich setzen wir das Aufspüren von Translationese in semantischen Räumen
fort und reduzieren dabei die Auswirkungen möglicher unterschiedlicher Domänen
in übersetzten und ursprünglichen Daten, indem wir verschiedene Sichten auf die
Daten verwenden (Wörter, PoS, Synsets und semantische Tags). Im vorangegangenen
Kapitel haben wir gezeigt, dass Translationese-Signale in semantischen Worteinbet-
tungsräumen, die aus übersetzten und Originaldaten erstellt wurden, erkannt werden
können, aber es bleibt unklar, ob die Signale wirklich auf Translationese hinweisen
oder ob sie von anderen Faktoren beeinflusst werden, wie z.B. von möglichen thema-
tischen oder Domänen Unterschieden zwischen dem Original und übersetzten Texten.
Translationese Signale sind subtil und können mit anderen Signalen in den Daten
konkurrieren, insbesondere mit denen, die Spezifika von Domänen zusammenhängen.
Dies veranlasst uns zu unserer letzten Forschungsfrage.

RQ4: Inwieweit lassen sich die in der Antwort auf RQ3 beobachteten Ergebnisse auf
Domänenunterschiede zwischen Original und übersetztem Text zurückführen, im Gegensatz
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zu echten Translationese Signalen?

Unser vierter Beitrag in Kapitel 6 untersucht das Zusammenspiel verschiedener
linguistischer Repräsentationen (lexikalisch, morphologisch und syntaktisch) und
die Frage, ob die Maskierung lexikalischer Informationen und die dadurch bed-
ingte Verringerung potenzieller Domänensignale die Aufgabe der unüberwachten
Rückverfolgung von Übersetzungen in semantischen Räumen beeinflussen, um RQ4
anzugehen. Bei der Analyse von übersetzten Daten, die Texte enthalten, die aus
mehreren Quellen (z. B. aus entfernten Sprachen wie Deutsch und Bulgarisch) in
dieselbe Zielsprache (z. B. Englisch) übersetzt wurden, können die Ergebnisse unserer
Analyse des semantischen Raums durch Domänenunterschiede in den Daten verzerrt
werden und nicht durch eigentliche Tranlationese-Signale wie die Ausgangssprachen
der Übersetzungen bedingt sein.

Um dies zu berücksichtigen, maskieren wir lexikalische Domäneninformationen
in den Daten. Bei diesem Ansatz werden entlexikalisierte Darstellungen verwendet,
die Wörter durch Wortarten (Parts of Speech, PoS), semantische Tags oder Synsets
ersetzen. Durch die Anwendung unserer Graph-Isomorphismus-Methoden auf diese
Darstellungen können wir bestimmte linguistische Merkmale (wie morphologische
Informationen oder einfache syntaktische Konfigurationen - PoS-Sequenzen) erfassen
und den Einfluss domänenspezifischer lexikalischer Merkmale (insbesondere des
Vokabulars) auf die Analyse von Übersetzungen minimieren.

Unsere Ergebnisse zeigen, dass delexikalisierte Darstellungen (PoS, Synsets oder
semantische Tags) immer noch erhebliche Interferenzen mit der Ausgangssprache
aufweisen. Dies deutet darauf hin, dass die lexikalisierten Ergebnisse auf der niedrig-
sten Abstraktionsebene (d. h. Wörter) nicht nur auf mögliche Unterschiede in der
Domäne zwischen Original- und Translationese Text zurückzuführen sind. Insgesamt
ist dies ein Beleg dafür, dass morphologische und einfache syntaktische Repräsenta-
tionen in den Daten auch Translationese Signale enthalten. Um das unüberwachte
Aufspüren von Translationese Signalen in semantischen Räumen zu bewerten, un-
tersuchen wir außerdem, inwieweit es möglich ist, die Sprachphylogenie oder die
genetischen Beziehungen zwischen Sprachen mit diesen delexikalisierten Repräsen-
tationen zu clustern. Wir zeigen, dass unabhängig von der Ebene der sprachlichen
Repräsentation aus den Isomorphieabständen Familenverbindungen der Sprachen mit
ähnlichen Eigenschaften wie linguistisch motivierte phylogenetische Bäume abgeleitet
werden können, wobei alle Kombinationen von ursprünglicher Zielsprache und Über-
setzungen in diese Zielsprache aus verschiedenen Ausgangssprachen verwendet
werden.

Im vorigen Kapitel haben wir einige implizite Hinweise darauf gegeben, dass
die Abweichung von der Isomorphie zwischen Einbettungsräumen auf strukturelle
Oberflächenunterschiede zwischen Sprachfamilien hinweisen, die wir aus der linguis-
tischen Literatur kennen. Eine größere Abweichung von der Isomorphie zwischen
Einbettungsräumen deutet auf eine größere sprachliche Distanz in Bezug auf von
Sprachfamilien und damit auf einen vermeintlich oberflächlichen strukturellen lin-
guistischen Abstand (z. B. Morphologie, Syntax) zwischen Sprachen, wie sie in der
linguistischen Literatur beschrieben werden. Dies wird in Kapitel 6 indirekt durch

xiii



die POS-Experimente (und die anderen verschiedenen Ansichten) gezeigt die von
lexikalischen Informationen in der ursprünglichen und übersetzerischen Einbettung
abstrahieren Experimente, bei denen maskierte Ansichten (POS usw.) immer noch
vernünftige Unterschiede in der Isomorphie zwischen den Einbettungsräumen im
Original und in der Übersetzung zeigen, und darauf aufbauend phylogenetische
Stammbaumergebnisse. Dies wirft die Frage auf, ob es explizite Beweise für den
Zusammenhang zwischen Einbettungen und strukturellen Oberflächenunterschieden
gibt, was uns dazu veranlasst, unsere letzte Forschungsfrage zu formulieren.

RQ5: Inwieweit kann graphbasierte Divergenz von Isomorphie in Einbettungsräumen als
Proxy für Surprisal auf der Ebene von Oberflächentexten dienen?

Wir behandeln RQ5 als den fünften Beitrag dieser Dissertation. Um dieser Frage
nachzugehen, berechnen wir die Korrelation zwischen (a) Unterschieden in der Ober-
flächenstringentropie von Original- und übersetzten Daten, die von Sprachmodellen
berechnet werden, die auf Originaldaten trainiert wurden, und (b) der Abweichung
von der Isomorphie zwischen Einbettungsräumen, die auf denselben Textdaten berech-
net werden.

Unsere Ergebnisse zeigen eine Korrelation zwischen diesen beiden Maßen, d. h. eine
größere Abweichung von der Isomorphie zwischen Einbettungsräumen entspricht
einem größeren Unterschied in der Oberflächenentropie. Dies stellt eine direkte
Verbindung zwischen dem Einbettungsraum und der Darstellung von Oberflächen-
strings her, wobei letztere durch die Entropie des Sprachmodells gemessen wird.
Darüber hinaus zeigen unsere Ergebnisse, dass Übersetzungen in dieselbe Zielsprache
aus strukturell unterschiedlichen Ausgangssprachen im Allgemeinen höhere Entropie-
unterschiede aufweisen, während solche aus strukturell ähnlichen Ausgangssprachen
geringere Unterschiede aufweisen. Diese Ergebnisse spiegeln die Muster wider, die
bei der Divergenz von Isomorphie zwischen Einbettungsräumen beobachtet wur-
den, wo Übersetzungen aus strukturell stärker divergierenden Sprachen zu einer
größeren Divergenz bei der Isomorphie führen. Diese Ergebnisse stellen explizit eine
Verbindung zwischen unseren beiden Messgrößen her: der Isomorphiedivergenz zwis-
chen Original- und übersetzten Einbettungsräumen und den Entropieunterschieden
in den Oberflächenstrings derselben Textdaten.
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1
Introduction

Language contact is described as a cover term for the ways in which speakers of
different languages or language varieties interact with each other and influence each
other’s language use. This may entail speaker-internal restructurings of language
constructs, such as the adoption of new vocabulary or grammatical structures, as well
as the influence of other languages or language varieties on the bi- or multilingual
repertoire (Kerswill, 1996) of a speaker. Language contact can occur in a variety of
contexts, such as migration, trade, colonisation, or general multilingual settings where
exposure to different languages is common.

One specific instance of language contact arises when a particular language system
is influenced by another. Translated texts exhibit systematic linguistic differences
compared to original texts in the same language, resulting in a unique sub-language
with its own distinctive features. These differences are referred to as translationese
(Gellerstam, 1986), and can be categorised as either source language dependent or
universal. It is important to note that translationese is not a distinct language in and
of itself, but rather a set of linguistic characteristics (Baker et al., 1993; Toury, 1980)
that differentiate translated texts from those originally written in the target language.

Various factors contribute to the distinctions observed between original texts and
their translated counterparts, many of which fall under the category of universal
features of translation. These universals include simplification, which involves sim-
plifying complex source structures or content in the target language; standardisation,
which refers to an inclination to adhere closely to the standards of the target language;
and explicitation, which entails making implicit source structures or content more
explicit in the target language. In contrast to these translation universals, interference
reflects the influence of the source language on the translation product. Interference,
inherently, is a language-pair specific phenomenon; where isomorphic structures
shared between the source and result of the translation can readily replace each other
(Toury, 2012). This highlights the underlying cross-linguistic influence of the source
language on the translation outcome. Under this definition, translationese is viewed
as a distinct form of cross-lingual language variety, representing a unique case within
the broader landscape of language contact.

1
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Despite the considerable amount of research conducted on various cross-lingual
language varieties, there is a noticeable gap when it comes to the specific investigation
of translationese. Previous studies have predominantly focused on two aspects, namely
identifying distinctive features of translationses and classifying translationese, using
careful corpus-based studies (Baker et al., 1993; Chesterman, 2004; Gellerstam, 1986)
showing differences in the distribution of linguistic features between original and
translated texts or classification-based approaches where a classifier is trained and then
feature importance measures are used to reason back to which features are specifically
important in translationese classification (Baroni and Bernardini, 2005; Ilisei et al.,
2010; Koppel and Ordan, 2011; Rabinovich and Wintner, 2015; Rubino, Lapshinova-
Koltunski, and Genabith, 2016). However, the practical implications of translationese
extend beyond identifying linguistic features of and classifying translationese.

The distinctive linguistic variations observed between original texts and their trans-
lated counterparts within the same language can be broadly classified as either source
language dependent or universal in nature. Conducting basic research on transla-
tionese is important as it provides valuable insights into both language-specific and
language-independent aspects of this linguistic phenomenon. Basic research enables
a deeper understanding of the underlying patterns and structures that define trans-
lationese, as well as the variations observed across diverse languages and language
families.

However, it is also important to address an existing gap in translationese research.
Translationese has tangible effects on various cross-lingual natural language processing
(NLP) tasks, potentially leading to biased results and decreased or artificially inflated
performance (Graham, Haddow, and Koehn, 2019; Toral et al., 2018; Zhang and Toral,
2019). Therefore, investigating and mitigating translationese becomes essential for
improving the accuracy and effectiveness of these tasks. Mitigating translationese is
to date an under-researched area. An important part of the research presented in the
thesis is to address this gap.

In this thesis, we focus on representation learning as a comprehensive approach to
address both the foundational and practical aspects of translationese. By undertaking
this research, we aim to contribute to the broader field of cross-lingual language
studies and address an existing gap in understanding and mitigating translationese.

In the next section, we provide a conceptual overview of the work, including the
motivation, problem, research questions, and contributions of each chapter.

1.1 Overview

The dissertation is divided into two thematic parts, each examining different aspects
of translationese. The first part concentrates on the practical aspects of translationese,
while the second part delves into its foundational aspects. The practical section of the
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dissertation aims to develop highly performant methods for classifying translationese
and, importantly, mitigating the impact of translationese on cross-lingual NLP tasks,
whereas the foundational part intends to better trace and understand the linguistic
patterns and structures underlying translationese in embedding spaces. To achieve
these goals, we employ a representation learning-based approach, which allows
us to investigate both the practical and foundational aspects of translationese in a
comprehensive manner.

These two parts are based on and extend four peer-reviewed publications presented
at major NLP conferences where the author of this thesis is the first author. The specific
contributions to the papers by the author of the thesis are detailed in Section 1.4 below.
The order of the chapters follows the logical progression of this dissertation. At the
same time, the structure of this dissertation is intentionally not kept chronological1 but
rather reflects the evolution of the ideas and arguments supporting the dissertation.
Each chapter is self-sufficient: it poses its own research questions, presents related
work, proposes a methodology, and describes the experimental results. However, there
is also a clear thread that connects all the chapters.

In Figure.1, we outline the interconnections between the various chapters, with
higher-level chapters in the hierarchy as foundational chapters pointed to below.

Figure 1: Overview of the dissertation structure.

1 Publications are presented in the thesis chapters in an order that does not necessarily correspond to
the order in which they were published.
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1.2 Part I: Practical Aspects of Translationese

First, we address practical aspects of translationese. Earlier studies have shown that
using various hand-crafted features for supervised learning can be effective for trans-
lationese classification (Avner, Ordan, and Wintner, 2016; Baroni and Bernardini, 2005;
Rabinovich, Ordan, and Wintner, 2017; Rubino, Lapshinova-Koltunski, and Genabith,
2016; Volansky, Ordan, and Wintner, 2015). This has been shown to be useful for
a variety of tasks, such as analysing translation strategies (Lapshinova-Koltunski,
2015), studying the characteristics (Koppel and Ordan, 2011; Rubino, Lapshinova-
Koltunski, and Genabith, 2016) of translationese or evaluating machine translation
systems (Graham, Haddow, and Koehn, 2019; Zhang and Toral, 2019). Following
this line of research in translationese studies, we focus on two practical tasks: (i)
multilingual translationese classification, and (ii) we propose a novel task, namely
debiasing of translationese artifacts.

In the context of (i), we design, develop and evaluate various representation learning
approaches to multilingual translationese classification and compare them to classical
manual feature-engineering-based approaches on the same data. In (ii), we introduce
a new task of debiasing translationese artifacts from latent representation spaces. This
refers to the process of removing or reducing the influence of translationese on the
learned representations of texts, in order to better reflect characteristics of original
texts.

1.2.1 Chapter 3: Multilingual Translationese Classification

Translationese has been characterised as the set of specific linguistic features and
conventions that distinguish translations from originally authored text (Baker et al.,
1993; Teich, 2003; Toury, 1979). Earlier seminal research on automatic translationese
classification (Baroni and Bernardini, 2005; Ilisei et al., 2010; Koppel and Ordan, 2011)
used traditional hand-crafted linguistically inspired feature-engineering-based super-
vised machine learning approaches to train classifiers. Often feature-ranking methods
were used to reason back to which of the features would be important indicators of
translationese (Avner, Ordan, and Wintner, 2016; Rubino, Lapshinova-Koltunski, and
Genabith, 2016; Volansky, Ordan, and Wintner, 2015). Manual linguistically inspired
feature engineering-based approaches have the advantage that the features used (and
their rankings) are readily interpretable to human experts. However, there are a few
reasons why relying on hand-crafted linguistic features for supervised translationese
classification can be problematic. One of the main concerns with this approach is that
manually designed hand-crafted features may not be exhaustive and may not capture
all the important discriminative characteristics of the input data during training. This
is because the features are based on linguistic intuitions and may not account for all
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Figure 2: In Chapter 3, the task involves identifying whether a given text is original (O) or translated (T)
in multilingual settings. The output of the model is a label (O or T) for each input during inference.

possible variations in the input data. Furthermore, annotating linguistic data at scale
with linguistic information requires (automatic) annotation tools, and the availability
of linguistic annotation tools, such as tokenisers, taggers, morphological analysers,
NERs, chunkers, parsers etc., for many languages can be challenging (particularly
for low resource languages), which limits the usefulness of this approach. Further-
more, automatic annotation at scale is always noisy, and features may be language or
linguistic theory-specific. Partially as a response to the limitations of linguistic theory-
inspired features, some earlier seminal work also explored simple lexicalised features
including word tokens and character n-grams (Avner, Ordan, and Wintner, 2016), or
features based on count models, information density, surprisal, and complexity for
text classification, especially in translation quality estimation (Rubino, Lapshinova-
Koltunski, and Genabith, 2016). These features serve as indicators of translationese for
distinguishing between originally authored and manually translated texts. However,
this research relied on discrete count-based approaches that treat words as discrete
units, leading to limited context modelling capabilities.

In this thesis, we explore an alternative approach to multilingual translationese
classification without reliance on hand-crafted feature engineering, which motivates
us to formulate our first research question.

RQ1: To what extent can representation learning techniques, such as embeddings,
discern translated and non-translated texts, without prior linguistic assumptions?

As the first contribution of this dissertation in Chapter 3, we design, implement and
evaluate an array of representation-learning-based methods based on neural networks,
eliminating the need for manual feature engineering. Figure 2 presents a brief chapter
overview.

Feature and representation learning-based methods are primarily influenced by
factors such as the data, the task, and the learner, without relying on prior linguistic
assumptions or preconceptions. This stands in contrast to linguistically inspired
hand-crafted feature engineering approaches, which provide no guarantees that
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Figure 3: Chapter. 4 aims to debias translationese signals from latent representation spaces. The input for
the model is labeled data, with O representing original texts and T representing translated texts. The
output is labeled as O’, which is assumed to be the generated surface form of the translated input (T)
after removing translationese artifacts through debiasing. The resulting output is expected to be more
similar to original texts, hence labeled as O’: Original Like.

the features and representations are in any sense comprehensive. Therefore, we
compare the results obtained from representation learning-based approaches for
multilingual translationese classification with those of our previous classical manual
feature-engineering-based approaches, using linguistically informed methods and
automatic annotation tools on the same data, to address RQ1.

In Chapter 3, we show that already static embedding-based representation-learning-
based approaches outperform hand-crafted linguistically inspired feature-selection
methods for translationese classification on a wide range of tasks. In addition, we
perform experiments across a range of source-target language combinations in mono-
and multilingual settings, providing evidence that representation learning-based
methods are more effective in generalising to different multilingual tasks. Further,
we compare our approaches to more sophisticated neural approaches on the same
data and highlight that translationese classification requires deep neural models with
strong context modelling for optimum results.
The content presented in Chapter 3 is based on:

Daria Pylypenko*, Kwabena Amponsah-Kaakyire*, Koel Dutta Chowdhury*, Josef van
Genabith & Cristina España-Bonet (2021). “Comparing Feature-Engineering and Feature-
Learning Approaches for Multilingual Translationese Classification”. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing (EMNLP). Online and
Punta Cana, Dominican Republic. Association for Computational Linguistics.
URL: https://aclanthology.org/2021.emnlp-main.676/

1.2.2 Chapter 4: Debiasing of Translation Artifacts

Translationese artifacts may exert a substantial influence on diverse downstream tasks
that involve translation. Recently, attention has been directed towards the influence
of translationese on Machine Translation evaluation metrics and evaluation (Graham,
Haddow, and Koehn, 2019; Toral, 2019; Zhang and Toral, 2019). Edunov et al. (2020)
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and Freitag, Caswell, and Roy (2019) identify translationese as a significant source of
misalignment between BLEU scores (Papineni et al., 2002) and human evaluations.
The impact of translationese in test sets is related to but distinct from its impact in the
training data (Bogoychev and Sennrich, 2019; Kurokawa, Goutte, and Isabelle, 2009;
Lembersky, Ordan, and Wintner, 2012; Riley et al., 2020a). Therefore, understanding,
analysing and and, most importantly mitigating translationese in translation output is
crucial for improving the accuracy and effectiveness of cross-lingual NLP. This leads
us to formulate our next research question.

RQ2: Is it possible to effectively attenuate translation artifacts from latent representation
spaces?

To date, this important research question remains understudied. Addressing RQ2 is
the second contribution provided by the dissertation. Figure 3 presents a brief chapter
overview. We present an approach to mitigate the negative impact of translationese on
cross-lingual tasks. To accomplish this, we propose a new approach: translationese
debiasing. We design, implement and evaluate this approach operating on latent
representations. By reducing the effects of translationese on downstream tasks, this
approach seeks to improve the accuracy and efficacy of cross-lingual natural language
processing.

To achieve this goal, we adapt the Iterative Null Space Projection algorithm (Ravfogel
et al., 2020), which was originally designed to reduce gender attributes in neural
representations, to translationese-induced bias in both word and sentence embedding
spaces. Additionally, we develop two techniques for debiasing translationese at the
level of word representations. We evaluate our approach by comparing translationese
classification performance before and after debiasing and as expected, observe reduced
accuracy as a result of debiased translationese artifacts. Further, we evaluate the effects
of debiasing translation artifacts on the extrinsic task of Natural Language Inference
(NLI) in two different data settings. Our findings show that the debiased model is
able to better preserve the relationships between the sentences in the inference task
and produce more accurate inferences.

The content presented in Chapter 4 is based on:

Koel Dutta Chowdhury, Rricha Jalota, Cristina España-Bonet, & Josef van Genabith
(2022). “Towards Debiasing Translation Artifacts”. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL). Seattle, United States. Association for Computational Linguistics.
URL: https://aclanthology.org/2022.naacl-main.292/
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Figure 4: Chapter 5 studies the task of detecting interference in semantic spaces using graph-based
departures from isomorphism. The input for the model is labeled data with O representing original texts
and T representing translated texts. The model’s output shows that the topology of the semantic space
for original texts (O) is more structurally similar to the source S than that of the translated texts (T).

1.3 Part II: Foundational Aspects of Translationese

In the second part, the dissertation addresses foundational questions about transla-
tionese, including whether translationese signals can be observed in semantic word
embedding spaces and the practical implications of this. Translated texts often ex-
hibit patterns of source language interference, where characteristics of the source text
transfer to the target text (Teich, 2003; Toury, 1980). While previous studies have used
supervised classification and feature engineering (Baroni and Bernardini, 2005; Koppel
and Ordan, 2011; Rabinovich, Ordan, and Wintner, 2017) to demonstrate systematic
evidence of translationese in translated texts, the impact of translationese on semantic
spaces remains largely unexplored.

We design, implement and evaluate a structured and unsupervised approach to
detect translationese in semantic spaces without the need for explicit linguistic labels.
Our approach has three objectives: first, to identify translationese effects in semantic
representations of text; second, to develop an unsupervised method to detect these
effects without human annotation; and third, to assess whether possible domain
differences may account for some of our results. To achieve these objectives, we focus
on two primary tasks: (i) tracing of translationese in semantic spaces (ii) investigating
the impact of domain on this task.

1.3.1 Chapter 5: Unsupervised Tracing of Translationese in Semantic Spaces

The distinguishing characteristics of translated texts have been traditionally classified
into two main categories: properties that stem from interference of the source language
(Toury, 1979), and universal traits resulting from translation as a communicative
process itself. Previous studies use a combination of lexical and syntactic features to
show that footprints of the source language or shining-through (Teich, 2003) remain
visible in translations. This is due to the fact that lexical and syntactic features can
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Figure 5: Chapter 6 analyses the influence of domain on translationese tracing in semantic spaces at
different levels of data abstraction. The input for the model is a sequence of tags. The distances between
clusters in the semantic space, represented by ∆, reflect the degree to which a target translated text
exhibits the characteristics of the source language.

provide clues (e.g., word order choices, grammatical structures) about the source
language of a translated text. While lexical and syntactic features can be useful
for identifying certain characteristics of translationese, it is important to identify
translationese without the need for explicit labeling or supervision. For example,
certain patterns or structures in the semantic space of a translated text may be
indicative of translationese, even if they do not correspond directly to specific lexical
or syntactic labels or features. This prompts us to the next research question.

RQ3: Is it possible to track translationese in semantic spaces in an unsupervised manner?

Thus, to address RQ3, the third contribution of this dissertation introduces a new
line of research: tracking of translationese signals in a semantic space without the
need for explicit labelling or supervision. Figure 4 presents a brief chapter overview.
Unlike previous work that relied on supervised classification and feature engineering
to identify translationese, our approach is fully unsupervised and based on a key
concept: the notion of isomorphism.

The isomorphic principle maintains that languages have a high level of correspon-
dence between meaning and form on a one-to-one basis (Barone, 2016). In the context
of detecting translationese in semantic spaces, strict isomorphism would imply that the
semantic space created from original target language data should be the same as the
space created from translations into that language in terms of how words are intercon-
nected within the embedding space. We aim to trace translationese based on deviation
from graph-isomorphism, where the original target language and translations into
this target language are represented as graph structures connecting word embeddings
in the semantic spaces. The departures from isomorphism between these graphs indi-
cate systematic evidence of translationese. Specifically, we find that as isomorphism
weakens, the linguistic distance between etymologically distant language families
increases, providing evidence that the translationese signals detected by departure
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from isomorphism are linked to source language interference. Our results perform on
par with previous approaches (Bjerva et al., 2019; Rabinovich, Ordan, and Wintner,
2017) based on surface-level features such as words, n-grams, or parser outputs.

Following this, we show that the proposed methods are robust under a variety of
training conditions, encompassing data size, type, and choice of word embedding mod-
els. Additionally, our findings indicate that our methods are language-independent,
in the sense that they can be applied to multiple languages and are not limited to a
specific language or language family.
The content presented in Chapter 5 is based on:

Koel Dutta Chowdhury, Cristina España-Bonet, & Josef van Genabith (2021). “Tracing
Source Language Interference in Translation with Graph-Isomorphism Measures”. In
Proceedings of the International Conference on Recent Advances in Natural Language Processing
(RANLP). Online. URL: https://aclanthology.org/2021.ranlp-1.43.pdf

1.3.2 Chapter 6: Influence of Domain on Translationese using Multi-View Semantic
Spaces

We continue tracking translationese in semantic spaces while reducing the impact of
possible different domains in translated and original data using various views of the
data (words, PoS, synsets, and semantic tags). In the previous chapter, we show that
translationese signals can be detected in semantic word embedding spaces built from
translated and original data, but it remains inconclusive if they are truly indicative of
translationese, or whether they may be influenced by other factors such as possible
domain differences between the original and translated texts reflected in the lexical
dimensions of the original and the tranlated texts. Translationese signals are subtle
and can compete with other signals in the data, particularly those related to domain.

This prompts us to our next research question.

RQ4: To what extent can the outcomes observed in response to RQ3 be attributed to
variations in domain between original and translated texts, as opposed to true translationese
signals?

Our fourth contribution in Chapter 6 explores the interplay of different linguistic
representations (lexical, morphological, and syntactic) and whether masking lexical
information and thereby reducing potential domain signals influence the task of
unsupervised tracing of translationese in semantic spaces to address RQ4. Figure
5 presents a brief chapter overview. When analysing translated data that contains
texts translated from multiple sources (such as distant languages like German and
Bulgarian) into the same target language (e.g., English), the results of our semantic
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space analysis may be skewed towards domain differences in the data rather than
proper translationese signals such as the source languages of the translations.

To account for this, we mask lexical domain information in the data. This approach
involves using delexicalised representations that replace words with parts of speech
(PoS), semantic tags, and synsets. By applying our graph-isomorphism methods to
these representations, we can capture distinct linguistic dimensions (such as, morpho-
logical information or simple syntactic configurations - PoS sequences) and minimise
the influence of domain-specific lexical features (in particular vocabulary) on the
analysis of translationese.

Our results show that delexicalised representations (PoS, Synsets, and Semantic
Tags) still exhibit significant source language interference. This indicates that the
lexicalised results from the lowest level of abstraction (i.e., words) are not solely due
to possible differences in the domain between original and translated texts. Overall,
this provides evidence that morphological and simple syntactic representations in
the data also carry translationese signals. Additionally, to evaluate the unsupervised
tracing of translationese signals in semantic spaces, we examine the extent to which
it is possible to cluster language phylogeny or the genetic relationships between
languages with these delexicalised representations. We show that, regardless of the
level of linguistic representation, language family ties with characteristics similar to
linguistically motivated phylogenetic trees can be inferred from the isomorphism
distances, using all combinations of original target language and translations into this
target language from different source languages.
The content presented in Chapter 6 is based on:

Koel Dutta Chowdhury, Cristina España-Bonet, & Josef van Genabith (2020). “Under-
standing Translationese in Multi-view Embedding Spaces”. In Proceedings of the 28th
International Conference on Computational Linguistics (COLING). Barcelona, Spain (Online).
International Committee on Computational Linguistics.
URL: https://aclanthology.org/2020.coling-main.532/

1.3.3 Chapter 7: Divergence from Isomorphism and Surprisal in Translationese

In the previous chapter, we provide some implicit evidence that divergence from
isomorphism between embedding spaces indicates structural surface differences
between language families we know from the linguistic literature. Higher divergence
from isomorphism between embedding spaces indicates higher linguistic distance
in terms of language families and with that supposedly surface structural linguistic
distance (e.g. morphology, syntax) between languages as from the linguistic literature
(Haspelmath et al., 2005). This is shown indirectly in Chapter 6 by the POS (and
the other different views) experiments that abstract from lexical information in the
original and translationese embedding experiments where masked views (POS etc.)
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Figure 6: Chapter 7 explores the relationship between graph-based divergence from isomorphism at the
level of embedding spaces and surprisal at the the level of surface texts. The input includes isomorphic
divergence measures (GH, SGM, EV) and entropy differences, while the output is the correlation between
these measures.

still show reasonable original vs. translationese differences in isomorphism between
the embedding spaces and based on this, phylogenetic family tree results. This raises
the question of whether there is any explicit evidence to support the connection
between embeddings and structural surface differences, prompting us to formulate
our last research question.

RQ5: To what extent can graph-based divergence from isomorphism in embedding spaces
act as a proxy for surprisal at the the level of surface texts?

Figure 6 presents a brief chapter overview. We address RQ5 as the fifth contribu-
tion of this dissertation. To demonstrate this, we compute the correlation between
(a) differences in surface string entropy of original vs. translated data computed
by language models trained on originally authored data and (b) divergence from
isomorphism between embedding spaces computed on the same text data. Our results
show a correlation between these two measures, showing that a higher departure
from isomorphism between embedding spaces corresponds to a greater difference in
surface entropy. Additionally, our findings show that translations into the same target
language from structurally divergent source languages generally exhibit higher en-
tropy differences, while those from structurally similar source languages show smaller
differences. These results mirror the patterns observed in the findings of graph-based
divergence from isomorphism between embedding spaces, where translations into
the same target language from structurally more divergent source languages lead
to increased divergence in isomorphism, implying an implicit connection between
embeddings and structural surface differences as generally assumed in the linguis-
tic literature regarding language family relations and surface structural differences
(Haspelmath et al., 2005). In contrast, in this chapter, we provide hard evidence for
these patterns by linking our two explicit measures: divergence from isomorphism
between original and translated embedding spaces and entropy differences of the
surface strings of the same text data.
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1.4 Contributions

The dissertation is composed of the following peer-reviewed articles, each accompa-
nied by citations that include the names of (co-)authors, conference details, abstracts,
and author contributions.

• Chapter 6: Understanding Translationese in Multi-view Embedding Spaces
Koel Dutta Chowdhury, Cristina España-Bonet & Josef van Genabith (2020).
In Proceedings of the 28th International Conference on Computational Linguistics
(COLING).
Abstract: Recent studies use a combination of lexical and syntactic features
to show that footprints of the source language remain visible in translations,
to the extent that it is possible to predict the original source language from
the translation. In this paper we focus on embedding-based semantic spaces,
exploiting departures from isomorphism between spaces built from original
target language and translations into this target language to predict relations
between languages in an unsupervised way. We use different manifestations of
the same data, in the form of different features, such as words, Part-of-Speech,
Semantic Tags, and Synsets to understand these relations. Our analysis shows
that (i) semantic distances between original target language and translations
into this target language can be detected using the notion of isomorphism,
(ii) language family ties with characteristics similar to linguistically motivated
phylogenetic trees can be inferred from the distances and (iii) that, perhaps
surprisingly, even delexicalised embeddings exhibit significant source language
interference, indicating that the lexicalised results are not “just” due to possible
differences in topic between original and translated texts. To the best of our
knowledge, it is the first time, departures from isomorphism between embedding-
based semantic spaces is used to detect translationese.
Author Contribution: As a first author, Koel Dutta Chowdhury conceptualized
the core research idea, conducted the experiments, performed the analysis
and wrote the paper. Cristina España-Bonet provided useful references on
unsupervised clustering and was involved in shaping the research questions.
Josef van Genabith advised the project, presented the need for delexicalisation,
and provided feedback to improve the final version of the paper.

• Chapter 5: Tracing Source Language Interference in Translation with Graph-
Isomorphism Measures
Koel Dutta Chowdhury, Cristina España-Bonet & Josef van Genabith (2021). In
In Proceedings of the International Conference on Recent Advances in Natural Language
Processing (RANLP).
Abstract: Previous research has used linguistic features to show that trans-
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lations exhibit traces of source language interference and that phylogenetic
trees between languages can be reconstructed from the results of translations
into the same language. Recent research has has been shown that instances
of translationese (source language interference) can even be detected in em-
bedding spaces, comparing embeddings spaces of original language data with
embedding spaces resulting from translations into the same language, using
a simple Eigenvector-based divergence from isomorphism measure. To date it
remains an open question whether alternative graph-isomorphism measures
can produce better results. In this paper, we (i) explore Gromov-Hausdorff
distance, (ii) present a novel spectral version of the Eigenvector-based method,
and (iii) evaluate all approaches against a broad linguistic typological database
(URIEL). We show that language distances resulting from our spectral isomor-
phism approaches can reproduce genetic trees at par with previous work without
requiring any explicit linguistic information and that the results can be extended
to non-Indo-European languages. Finally, we show that the methods are robust
under a variety of modeling conditions.
Author Contribution: As a first author, Koel Dutta Chowdhury conceptualized

the core research idea, conducted the experiments, performed the analysis and
wrote the paper. Cristina España-Bonet presented the need for introducing low
resource settings, and robustness analysis. Josef van Genabith supervised the
project and provided important insights on isomorphism studies and helped
with proofreading.

• Chapter 3: Comparing Feature-Engineering and Feature-Learning Approaches
for Multilingual Translationese Classification
Daria Pylypenko*, Kwabena Amponsah-Kaakyire*, Koel Dutta Chowdhury*,
Josef van Genabith & Cristina España-Bonet (2021). In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing (EMNLP).
Abstract: Traditional hand-crafted linguistically-informed features have often
been used for distinguishing between translated and original non-translated
texts. By contrast, to date, neural architectures without manual feature engi-
neering have been less explored for this task. In this work, we (i) compare the
traditional feature-engineering-based approach to the feature-learning-based
one and c analyse the neural architectures in order to investigate how well the
hand-crafted features explain the variance in the neural models’ predictions.
We use pre-trained neural word embeddings, as well as several end-to-end
neural architectures in both monolingual and multilingual settings and compare
them to feature-engineering-based SVM classifiers. We show that (ii) neural
architectures outperform other approaches by more than 20 accuracy points,
with the BERT-based model performing the best in both the monolingual and
multilingual settings; (iii) while many individual hand-crafted translationese

https://aclanthology.org/2021.ranlp-1.43.pdf
https://aclanthology.org/2021.ranlp-1.43.pdf
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features correlate with neural model predictions, feature importance analysis
shows that the most important features for neural and classical architectures
differ; and (iv) our multilingual experiments provide empirical evidence for
translationese universals across languages.
Authors Contribution: First author∗. Koel Dutta Chowdhury jointly conceptu-
alized the research, conducted experiments related to embedding-based clas-
sification and performed analysis. Daria Pylypenko and Kwabena Amponsah-
Kaakyire implemented the deep neural models and helped with paper writing.
Josef van Genabith and Cristina España-Bonet supervised the project and pro-
vided important feedback on the final drafts of the manuscript.

• Chapter 4: Towards Debiasing Translation Artifacts
Koel Dutta Chowdhury, Rricha Jalota, Cristina España-Bonet, & Josef van Gen-
abith (2022). In Proceedings of the 2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL).
Abstract: Cross-lingual natural language processing relies on translation, either
by humans or machines, at different levels, from translating training data to
translating test sets. However, compared to original texts in the same language,
translations possess distinct qualities referred to as translationese. Previous
research has shown that these translation artifacts influence the performance
of a variety of cross-lingual tasks. In this work, we propose a novel approach
to reducing translationese by extending an established bias-removal technique.
We use the Iterative Null-space Projection (INLP) algorithm, and show by mea-
suring classification accuracy before and after debiasing, that translationese is
reduced at both sentence and word levels. We evaluate the utility of debiasing
translationese on a natural language inference (NLI) task, and show that by
reducing this bias, NLI accuracy improves. To the best of our knowledge, this is
the first study to debias translationese as represented in latent embedding space.
Author Contribution. As a first author, Koel Dutta Chowdhury conceptualized
the research, identified the problem, conducted the experiments, performed the
analysis and wrote the paper. Josef van Genabith advised and helped with the
conceptualization of translationese subspaces. Rricha Jalota ran the extrinsic eval-
uation pipeline. Cristina España-Bonet suggested ideas on intrinsic evaluations
of the debiased word representations. All co-authors provided feedback.





2
Literature Survey and Related Work

This chapter introduces fundamental concepts related to the two main topics in this
dissertation: (1) translationese, and (2) representation learning (i.e., approaches for
inducing semantic representations of text).

2.1 Translationese

The study of translation has been a topic of interest for scholars across various
disciplines, including linguistics, computational linguistics, literature, translation
studies, and cultural studies, among others. Translation, defined as the transfer of
meaning from one language to another, is a complex process that involves not only
linguistic competence but also cultural knowledge and contextual understanding. The
goal of translation is to produce a target text that conveys the meaning and intent of
the source text while also taking into account the linguistic and cultural differences
between the two languages.
One unique characteristic of translated texts is the presence of what is known as
translationese (Gellerstam, 1986). Translationese refers to the presence of unique
features in translated texts which are not present (to the same extent) in texts originally
authored in the same language. These features may include syntactic constructions,
lexical choices, and other linguistic patterns that are influenced by the source language
and the process of translation itself. Translationese has been the subject of much
discussion and analysis in the field of translation studies, and various hypotheses and
theories have been proposed to explain its nature and impact.

One of the earliest works on this topic, Toury (1979) identified translationese as a
linguistic system, being a form of interlanguage, that “enjoys an intermediate status
between the source language and target language”, and exhibits an “interference of
these two codes [source language, target language] in the performance of the learner”.
More recently, Toury (2012) has also suggested that translations can be thought of as
distinct dialects of the target language, highlighting the ways in which translated text
differs from originally authored text in the same language.

17
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Duff (1981) used the term “the third code” or “the third language” to describe
this phenomenon, emphasizing the influence of the source language on translated
texts. However, Frawley (1984) was the first to identify translated language as an
autonomous and distinctive sub-language, introducing the term “the third code”.
According to Frawley (1984),

“the translation itself [is] essentially a third code which arises out of the
bilateral consideration of the matrix and target codes: it is, in a sense, a
sub-code of each of the codes involved.”

Gellerstam (1986) adopted the term translationese and demonstrated that there were
statistically significant differences in the frequencies of loan words and colloquialisms,
among other lexical features, between texts in original Swedish and in Swedish texts
originating from translation from English. He noted that these differences between
the original and translated texts do not necessarily reflect poor translation but rather
a statistical phenomenon brought on by the systematic effect of the source language
on the target language.

Baker et al. (1993) proposed translation universals, which are features that are
considered invariant and apply to all translated texts independently of the source
language and translation direction. Baker et al. (1993) points out that:

“it will be necessary to develop tools that will enable us to identify uni-
versal features of translation, that is features which typically occur in
translated text rather than original utterances and which are not the result
of interference from specific linguistic systems.”

In other words, Baker’s theory postulated the existence of universal tendencies that
can be found in all translations, irrespective of the source text or target language. Her
proposed initial translation universals hypotheses are grouped around three funda-
mental tendencies: Simplification, Levelling out (also referred to as conventionalisation)
and Explicitation.

In addition to the aforementioned translation universals, Toury (2012) proposed two
other general properties of translated texts, called Normalisation (also referred to as
homogeneisation) and the law of Interference (also referred to as shining-through (Teich,
2003) from the source text.

While Toury (2012)’s laws of translation and Baker et al. (1993)’s universal translation
hypotheses are significant breakthroughs in the research methods within translation
studies, other scholars also have made important contributions regarding understand-
ing the nature of translated texts and different standards, hypotheses or tendencies
such as transfer, translation unique items, asymmetry (Kenny, 1998; Mauranen, 2008;
Pastor et al., 2008). In the following section, we outline the translational language
hypotheses.
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2.1.1 Translational Language Hypotheses

There have been several studies that have identified specific linguistic patterns that
occur frequently in translated languages. These patterns can be grouped into five main
hypotheses: simplification, explicitation, levelling out, interference, and normalization.

1. Simplification: This refers to “the tendency to simplify the language used in
translation” (Baker et al., 1993). For example, this can take the form of shorter
sentences, the use of simpler words and phrases, avoidance of repetitions, dis-
ambiguation, and the removal of punctuation marks. As a result, translated
texts are easier to understand than original texts as translators tend to simplify
the intricate linguistic features found in the source text into less complicated,
simplified features in the target text for the readers. Subsequently, translated
texts may exhibit a lower lexical density and variety compared to original texts.

2. Explicitation: This refers to the tendency to “spell things out rather than leave
them implicit” in translated texts (Baker et al., 1993), resulting in translated
texts that tend to be longer than their original counterparts. This can manifest
in various ways, such as increased length of translations, overuse of explana-
tory vocabulary and conjunctions, more frequent use of cohesive markers (e.g.,
therefore, thus, hence) or the replacement of pronouns with more explicit noun
phrases in translated texts (Koppel and Ordan, 2011).

3. Levelling out or Conventionalisation: This refers to the fact that translational
languages tend to “steer a middle course between any two extremes, converging
towards the centre”(Baker et al., 1993), i.e. translated texts exhibit relatively more
similar language features or higher level of homogeneity to each other than
their sources. For example, Baker et al. (1993) notes that translated texts tend to
exhibit similar values in measures such as lexical density, type-token ratio, and
mean sentence length, whereas non-translated texts exhibit greater variation in
these measures.

4. Interference or Shining-through: The prominent characteristics of source-language
interference (Toury, 1979) in the translated text are also popularly termed as
“shining-through” (Teich, 2003) in the literature. Toury (1979) observed that
when a source text is translated, structural elements of the source text tend
to be transferred to the target text. This refers to the fact that translated texts
often retain the linguistic characteristics of the source language, rather than
conforming to the norms of the target language. Volansky, Ordan, and Wintner
(2015) notes that this phenomenon can operate on different levels from transcrib-
ing source-language words to applying loan translations to exerting structural
influence.
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5. Normalisation or Conservatism: This refers to the tendency of translations to
conform to patterns and practices that are typical of the target language, even
to the extent of exaggerating them (Baker et al., 1993). This can manifest in a
variety of ways, such as the use of certain language patterns or conventions that
are more common in the target language, or the exaggeration of certain language
features in order to align more closely with target language norms.

In the second part of the thesis, we specifically focus on tracing and analysing the
properties that stem from interference of the source language (Chapters 5 and 6)
because it relates to the direct transfer of features from the source language to the
target language.

2.2 Representation Learning

Representation learning is a central aspect of modern natural language processing
(NLP) and involves identifying principles that allow machines to learn linguistic
representations from raw input data. The approaches discussed in this thesis fall
within the framework of representation learning, which consists of machine learning
techniques that learn helpful representations for various tasks from raw input.

In this section, we briefly introduce the representation learning methods that are
used to learn meaningful and useful word embeddings for the study of translationese
in this thesis.

2.2.1 Language Representation Methods

For many years, the standard practice in language representation involved human-
crafted features. The conventional approach centered around two key methodologies:
the bag-of-words (BoW) model, developed by Harris (1954), and n-gram models,
introduced by Baker (1975), Jelinek (1976), and Shannon (1948). In the bag-of-words
(BoW) model, a text is represented as a list of words and how often they appear (a
word frequency list). It assumes documents are similar if they share similar words.
However, BoW does not consider grammar or word order. Alternatively, the n-gram
model keeps track of word sequences by predicting the probability of the next word
based on its previous n− 1 words.

As with all NLP tasks, a numerical representation of text input is required for
translationese detection in order for computational models to process it. This section
introduces embeddings, which are dense representations of words or subwords and
are used in the research work presented in this thesis. Generally, embeddings can
be divided into two broad categories: (i) static word representations and (ii) con-
textualised word representations. Embeddings reflect distributional properties in the
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data: words in similar contexts tend to have similar meanings (Harris, 1954) and will
be mapped close to each other in the embedding space. In this thesis, we focus on
embeddings that are obtained through neural architectures.

2.2.1.1 Static Representations

Static word embedding methods are a type of method for learning word vectors
that map words from large text corpora to a numerical representation, or a real-
valued vector representation in a high-dimensional space. The representations are
static as the end result of the process is a single dense vector for a word type (or
sub-word type). These word vector representations are used to capture the semantic
relationships between words based on the context in which they appear, and they
can be learned using a variety of approaches, including unsupervised learning with
document statistics or self-supervised learning with a neural network model on a
particular task.

Static word embedding methods, such as word2vec, GloVe, and fastText , have been
widely used in natural language processing tasks and have been shown to produce
high-quality word vectors that can capture the semantic relationships between words.
In addition to their use in NLP, these methods have also been applied in other areas,
such as information retrieval and recommendation systems, due to their ability to learn
meaningful word vectors from large amounts of unannotated data. These methods
have proven to be valuable tools for a variety of applications, and they continue to
be an active area of research in the field of natural language processing. Below, we
discuss some of these methods.

The word2vec approach, developed by Mikolov et al. (2013) in 2013 at Google, is a
method for learning word vectors from unannotated text data using a feed-forward
neural network-based model. The goal of word2vec is to learn meaningful word
vectors that capture the semantic relationships between words. To achieve this, the
model is trained to predict the context words (i.e., the words that occur in the vicinity
of a target word) given the target word.

There are two different learning models that are commonly used as part of the
word2vec approach: Continuous Bag-of-Words (CBOW) and Continuous Skip-gram.
CBOW predicts a target word based on a window of context words, while Skip-gram
uses a target word to predict a window of context words. Both models are based on
the idea of using distributed representations of words, where each word is represented
by a dense vector of real numbers. These models are shown in Figure 7.

The (Continuous bag-of-words, CBOW) model is a method for learning word vectors
that involves predicting a target word based on a window of context words. Specifically,
given a window of context words Wt = wt−n, . . . ,wt, . . . ,wt+n surrounding a target
word wt, the CBOW model aims to minimize the negative log-likelihood of the
training data under the objective:
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Figure 7: CBOW and Skip-gram model architectures.

LCBOW = − logP(wt|Wt)

where P(wt|Wt) is the probability of the target word wt being the center word,
conditioned on the context words Wt.

Intuitively, the Skip-gram with Negative Sampling (SGNS) model is a method for
learning word vectors that can be viewed as the opposite of the Continuous Bag-
of-Words (CBOW) model. While CBOW predicts a target word based on a window
of context words, SGNS uses a target word to predict a window of context words.
In SGNS, each word in a text is used as input to a neural network-based classifier
to predict words in a certain range (referred to as a window) before and after the
given word. However, the traditional Skip-gram model suffers from computational
intractability and overfitting issues when dealing with large vocabularies.

Mikolov et al. (2013) introduced negative sampling to address these problems by
reformulating the objective function. Instead of trying to maximize the probability of
all context words given a target word, SGNS maximises the probability of true context
words and minimizes the probability of negative samples. During training, for each
target word, the model randomly selects a small number of negative samples from a
noise distribution that is defined separately from the data. These negative samples are
selected based on their low likelihood of co-occurring with the target word.
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The objective of the SGNS model is then to maximize the probability of true context
words and minimize the probability of negative samples. This is achieved by training
a binary logistic regression classifier that takes as input the target word and a word
representation and predicts whether the word is a true context word or a negative
sample. The word representations are learned by maximizing the dot product between
the word vector and the context vector for true context words and minimising the dot
product for negative samples.

Given a sequence of words wt−n, . . . ,wt, . . . ,wt+n with a center word wt, the
SGNS model predicts a window of context words by minimising the Skip-gram
objective:

Lskipgram =
1

T

T∑
t=1−n⩽j⩽n,j̸=0

logP(wt+j|wt)

where T represents the total number of terms in the sequence and n represents the
size of the context before and after the center word.
In contrast to the shallow window-based method like word2vec which only uses local
context windows, Pennington, Socher, and Manning (2014) proposed an analytical
approach to learn efficient word representations (Global Vectors for Word Representa-
tion, GloVe) that can capture global relationships between words. In particular, this
method is based on matrix factorization techniques on aggregated global word-to-
word co-occurrence statistics from a corpus. Concretely, the semantic relationship
of word wi and word wj is determined based on the ratio of their co-occurrences
probabilities with a third context word wk, expressed as P(wi,wk)

P(wj,wk)
.

Bojanowski et al. (2017) proposed a method for generating word vectors or word
embeddings that involves representing each word as the sum of the vectors of its
character n-grams. Specifically, let a word w be represented as a sequence of character
n-grams n1,n2, . . . ,nm, where each character n-gram ni is associated with a unique
vector representation vni

. Then, the word vector vw for word w can be defined as:

vw =

m∑
i=1

vni

This approach allows the model to generate word vectors for out-of-vocabulary
words i.e. words unseen during training by using the vectors of their individual
character n-grams.

2.2.1.2 Contextualised Representations

Recent advances in NLP rely on contextual word embeddings. These embeddings use
deep neural networks to incorporate the context of each word in a sentence in their
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representations. Static word embeddings assign a single numerical representation to
each token, which can be limiting in understanding the ambiguity of word meanings
in different contexts. Contextualised embedding models, on the other hand, have the
ability to capture context-dependent semantics, making them particularly useful for
tasks that require an understanding of the contextual usage of words. These models
are typically trained on large datasets using a self-supervised learning approach,
and the resulting representations can be fine-tuned for specific tasks. One popular
architecture for learning contextualised word embeddings is the Transformer archi-
tecture (Vaswani et al., 2017) which employs self-attention mechanisms to model
contextual dependencies across an entire input sequence. A major breakthrough in
contextual embeddings was ELMo (Embeddings from Language Model) (Peters et al.,
2018), which generates word representations using a bidirectional LSTM(Hochreiter
and Schmidhuber, 1997). ELMo captures hierarchical linguistic features across lay-
ers, producing dynamic embeddings that reflect entire sentence structures. A more
powerful approach emerged with BERT (Bidirectional Encoder Representations from
Transformers) Devlin et al. (2019), a Transformer-based model that learns contextual
word representations through bidirectional pretraining. BERT is trained using two key
objectives: masked language modeling (MLM) and next sentence prediction (NSP). In
MLM, the model randomly masks a portion of the input tokens (typically 15%) and
learns to predict the masked words based on surrounding context. This helps BERT
capture bidirectional dependencies within a sentence. The NSP task is designed to
improve the understanding of sentence relationships by BERT. During pretraining,
the model is given two sentences and must determine whether the second sentence
naturally follows the first. When processing a pair of sentences, BERT treats them as
separate segments. Segment embeddings help distinguish tokens belonging to differ-
ent sentences, enabling the model to correctly interpret sentence relationships. These
segment embeddings are combined with word embeddings and position embeddings
to form the final input representation for each token. For a given token, its input rep-
resentation is constructed by adding the corresponding token, segment, and position
embeddings. Additionally, BERT uses two special tokens that have specific meanings:
the separator token ([SEP]) which indicates different segments of the input sequence
and the sequence start token ([CLS]) which represents the whole input sequence, and
accordingly, its final hidden state is used to predict for sequence classification tasks. A
multilingual BERT (mBERT) (Devlin et al., 2019) extends this model by pretraining on
Wikipedia texts from 104 languages, using a shared word-piece vocabulary. Unlike the
original English BERT (EN-BERT), which is trained only on English data, mBERT is
designed to support cross-lingual learning. Fine-tuning the BERT model has led to
state-of-the-art results for various natural language processing tasks. Following BERT,
OpenAI introduced the GPT (Generative Pre-trained Transformer) series (Radford
et al., 2018), based on a decoder-only Transformer. Unlike BERT, which learns bidirec-
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tional representations, GPT is autoregressive, predicting the next token sequentially.
GPT-2 (Radford et al., 2019) achieved state-of-the-art results on benchmarks such as
the WebText language modeling dataset and the BLiMP image captioning dataset. To
improve efficiency, ALBERT (A Lite BERT) (Lan et al., 2019) introduced parameter
reduction techniques, including factorized embedding parameterization, cross-layer
parameter sharing, and Sentence Order Prediction (SOP), reducing model size while
maintaining performance. For multilingual tasks, XLM (Cross-Lingual Language
Model) Lample and Conneau (2019) uses three key components: Causal Language
Modeling (CLM), which involves predicting the next token, similar to GPT; Masked
Language Modeling (MLM), which is similar to BERT’s pretraining objective; and
Translation Language Modeling (TLM), a unique component in XLM that learns from
aligned parallel texts across languages, improving cross-lingual transfer. This allows
XLM to learn more general and transferable representations for words across different
languages, making it better suited for cross-lingual tasks. Other optimizations include
RoBERTa (Robustly Optimized BERT Approach) (Liu et al., 2019b), which removes
NSP, trains with larger batches, and improves token masking strategies. Additionally,
BART (Bidirectional and Auto-Regressive Transformer) (Lewis et al., 2020) combines
denoising autoencoding with Transformer-based sequence generation, excelling at
tasks like summarization and machine translation, and has obtained state-of-the-art
results on benchmarks including the WMT machine translation dataset and the CN-
N/Daily Mail summarization dataset. Currently, NLP is experiencing a paradigm
shift with large language models (LLMs), which scale Transformer-based architectures
to trillions of tokens (Zhao et al., 2023). GPT-3 (Brown et al., 2020), with 175 billion
parameters, introduced in-context learning, where models follow natural language
instructions without additional training. FLAN (Wei et al., 2021) demonstrates the
benefits of fine-tuning a pre-trained LLM with a 137 billion-parameter model based on
a collection of formatted task instances. This approach enables the model to effectively
tackle held-out tasks described in terms of text instructions.

Despite their impressive performance, LLMs often misunderstand human instruc-
tions, generate factually incorrect (hallucinated) information (Bender et al., 2021; Lin,
Hilton, and Evans, 2021) or produce biased content (Ferrara, 2023). In response, the
research community explores ways to align LLMs with human expectations (Wang
et al., 2023). A noteworthy strategy, reinforcement learning from human feedback
(Ouyang et al., 2022) stands out as a prominent approach post the success of ChatGPT1.
This method includes learning from human preferences through a reward model,
which is trained with human-rated outputs.

We employ contextualised representations (BERT, mBERT, XLM) in
Chapters 3, 4 and 6.

1 https://chat.openai.com/
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2.2.2 Evaluation

Since we employ word representations using different approaches throughout the
dissertation, it is crucial to evaluate the quality of these representations. In recent
years, a number of approaches to evaluate word representations in a vector space
have been put forth. In this section, we outline the intrinsic evaluations for word
representations that recur throughout this thesis and are essential to each chapter.

Intrinsic evaluation is a common method for evaluating the quality of word vectors,
which are numerical representations of words that capture their meaning or semantics.
In intrinsic evaluation, a set of word pairs is collected, and humans assign each
pair a score indicating the similarity or relatedness of the words. The scores are
then compared to the similarity or relatedness scores produced by the word vectors,
allowing researchers to evaluate the ability of the word vectors to capture the meaning
of words and the relationships between them.

Similarity refers to how much two words or concepts are alike or share common
features in their meanings, making words that are similar in meaning tend to be inter-
changeable in certain contexts (e.g., car and vehicle). Relatedness, on the other hand,
measures the association between words or concepts in meaning or context, where
related words may not share similar meanings but are linked or frequently co-occur
(e.g., scissors and paper). Some datasets, like RG-65 (Rubenstein and Goodenough,
1965), SimLex-999 (Hill, Reichart, and Korhonen, 2015) and WordSim (Finkelstein
et al., 2001), focus on measuring similarity, while others, like MTurk-771 (Halawi et al.,
2012), focus on measuring relatedness. In either case, intrinsic evaluation is a useful
method for evaluating the quality of word vectors and understanding their ability to
capture the meaning of words and the relationships between them. Table 1 provides
an overview of these datasets.

When evaluating the similarity of word vectors or word embeddings, it is common
to use cosine similarity as the evaluation metric. Cosine similarity is a measure of
similarity between two vectors a and b in a vector space, and it is calculated as:

cos(θ) =
a · b
|a||b|

where θ is the angle between vectors a and b, and |a| and |b| are the magnitudes of
vectors a and b, respectively. A high cosine similarity indicates that the vectors are
closely aligned, while a low or negative cosine similarity indicates that the vectors are
not closely aligned.

After computing the cosine similarity between the word vectors, it is common to
compare the similarity scores produced by the model with human-assigned similarity
scores using a correlation coefficient like Spearman’s rank correlation coefficient (ρ).
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Dataset Description

RG-65 65 pairs were evaluated for semantic similarity on a scale
from 0 to 4.

SimLex-999 999 pairs evaluated on a scale from 0 to 10 for semantic
similarity

WordSim-353 ALL 353 pairs were evaluated for semantic similarity on a scale
from 0 to 10

WordSim-353 REL 252 pairs, a subset of WordSim-353 containing no pairs of
similar concepts

MTurk-287 287 pairs were evaluated for semantic relatedness on a scale
from 0 to 5

MTurk-771 771 pairs were evaluated for semantic relatedness on a scale
from 0 to 5

WordSim-353 353 pairs were evaluated for semantic similarity on a scale
from 0 to 10

Table 1: Datasets for evaluation of word similarity/relatedness

Spearman’s rank correlation coefficient is a measure of the strength and direction of
the relationship between two variables, and it is calculated as:

ρ =
cov(X, Y)
σXσY

where cov(X, Y) is the covariance between variables X and Y, and σX and σY are the
standard deviations of variables X and Y, respectively. A high Spearman’s correla-
tion coefficient indicates that the word vectors produced by the model are able to
capture the similarity relationships between words as judged by humans, while a
low Spearman’s correlation coefficient indicates that the word vectors are not able
to capture these relationships well. Beyond intrinsic evaluation methods like cosine
similarity and correlation coefficients, some additional methods that are commonly
used include:

Extrinsic evaluation: This involves evaluating the performance of the word vectors
on downstream natural language processing tasks, like language translation, text
classification, or question answering. By integrating the word vectors into task-specific
models and measuring their impact on performance, researchers can determine
their practical utility and generalization ability. Common evaluation metrics include
accuracy, F1-score, BLEU (for translation), and perplexity (for language modeling).
Strong performance in these tasks indicates that the embeddings effectively capture
meaningful linguistic patterns.

Human evaluation: Instead of using automated metrics like cosine similarity or
correlation coefficients, researchers can also directly ask human annotators to evaluate
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the quality of the word vectors. This process includes rating word pairs for similarity
and relatedness, evaluating the contextual accuracy of embeddings—particularly for
polysemous words—and performing sentence completion or association tasks to test
logical and linguistic coherence. Human evaluation is especially useful in detecting
subtleties, biases, and inconsistencies that automated methods might overlook.

Visualization: Another effective approach to evaluating word vectors is through di-
mensionality reduction techniques that map high-dimensional word embeddings into
a lower-dimensional space, making their relationships more interpretable. Methods
like t-SNE (t-distributed stochastic neighbor embedding), PCA (principal component
analysis), and UMAP (Uniform Manifold Approximation and Projection) help in un-
derstanding the structure of embeddings by revealing clusters of semantically similar
words. These techniques provide insights into how well embeddings capture linguistic
regularities, synonymy, antonymy, and word associations.

The word similarity evaluation recurs throughout the dissertation in all chapters
and is integral to it.



3
Multilingual Translationese Classification

This chapter demonstrates how to distinguish between translated and non-translated
(original) texts. We start with a stylistic analysis of the two, and we then investigate
the effectiveness of representation learning-based methods in mono- and multilingual
translationese classification. Traditional methods for translationese classification rely
on manually selecting potentially partial, non-exhaustive linguistic features and often
require linguistic annotation tools. In contrast, our approach involves developing a
suite of representation-learning methods, eliminating the need for manual feature
engineering. We perform our experiments across a range of source-target language
combinations in mono- and multilingual settings and demonstrate that representation
learning-based approaches outperform the traditional feature engineering methods
for all tasks.

3.1 Introduction

Translationese classification is a well-studied area in modern computational Transla-
tion Studies often drawing on work in computational stylometry. Previous research
(Baroni and Bernardini, 2005; Koppel and Ordan, 2011; Rabinovich and Wintner, 2015;
Volansky, Ordan, and Wintner, 2015) has shown that there are discernible differences
between original texts and their translated versions, and identifying these differences
using supervised classification has been a major area of investigation. Many of the
classifiers presented in previous work make use of features that are based, at least in
part, on translational language hypotheses (simplification, explicitation, levelling out,
interference, and normalization), as detailed in Section 2.1.1. However, while some of
these features are directly tied to a particular hypothesis, others are not, and many
features can belong to multiple hypotheses.

The conventional approach to identifying translationese has been to use supervised
machine learning algorithms (mostly classification) with hand-crafted features. These
features include character n-grams, part-of-speech (POS), function words, discourse
markers, etc. and represent potentially important measures of translationese. However,

29
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there are a number of reasons why relying on hand-crafted linguistic features for
supervised translationese classification can be problematic:

Dependence on expert knowledge: Hand-crafted features are frequently cre-
ated by domain experts who have in-depth knowledge of linguistics and the
distinctive characteristics of the translated text. This can be a time-consuming
and expensive process, and thus it might be difficult to create features for every
possible language and domain.

Non-Exhaustiveness: Manually designed features may be partial and nonexhaus-
tive in a sense that they are based on our linguistic theories and intuitions, and
thus may not be guaranteed to capture all important characteristics of the input
data with respect to translationese seen during training.

Lack of Scalability and Generalisation: Hand-crafted features are particularly
specific to the task and language for which they were extracted, which can
restrict the scalability of the classifier. When tested on different languages or
domains than the one it was originally trained on, the classifier might not
perform well due to the features being too specific. This lack of adaptability
makes it challenging to use the classifier with new data or in different languages
or domains without substantial modifications.

The last problem mentioned in the previous paragraph is not unique to translationese
classification but can occur in other machine learning tasks as well. However, they are
also relevant to the task of translationese classification. In view of these limitations, we
believe there is clearly a need to classify translationese without the use of hand-crafted
linguistic features.

With this, we formulate our first research question:

RQ1: To what extent can representation learning techniques, such as embeddings,
discern translated and non-translated texts, without prior linguistic assumptions?

To answer this, we investigate the effectiveness of representation learning-based
methods in mono- and multilingual translationese classification. We develop a suite of
representation-learning methods based on word embeddings, eliminating the need
for manual feature engineering. Some of these representations are static and do not
require further training, while others may undergo fine-tuning during the training
process. We find that our embedding-based approaches are a superior alternative to the
previous hand-crafted linguistically inspired methods as measured by classification
accuracies. Further, we compare our approaches to current state-of-the-art neural
representation learning models (fine-tuned BERT and LSTM).
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The remainder of this chapter is structured as follows. In Section 3.2 we describe
related work on translationese classification. We profile our our data set (Amponsah-
Kaakyire et al., 2021) in Section 3.3. In Section 3.5 we define our experimental settings
and analyse the results in Section 3.6. Finally, we summarise the main findings in
Section 3.7.

3.2 Related Work

Previous studies (Baroni and Bernardini, 2005; Ilisei et al., 2010; Koppel and Ordan,
2011; Volansky, Ordan, and Wintner, 2015) show that translated texts differ from their
original counterparts to the extent that they can be accurately identified by means of
automatic classification. The seminal work of Baroni and Bernardini (2005) marked
the beginning of the machine learning (ML) paradigm in translationese research.
Baroni and Bernardini (2005) relied on the use of Support Vector Machines (SVM) with
n-gram features for the task of classifying Italian texts as translated or non-translated.
According to their results, the SVMs were highly dependent on lexical cues, the
distribution of function word n-grams, and morpho-syntactic categories in general.
As a result, it was possible to automatically distinguish professional translations
from non-translated texts using only shallow features. According to their analysis of
bi-grams, they conclude that translations tend to reuse topic-dependent sequences
and structural patterns, but non-translated texts tend to reuse topic-independent
sequences. Another key finding from their study was that an ML algorithm (SVMs)
could accurately distinguish between translations and non-translations even when
professional translators were unable to do so.

Ilisei et al. (2010) employed supervised machine learning classifiers, trained with
21 simplification universal features such as average sentence length, type-token ra-
tio, etc., to differentiate between original texts and human translated texts. Their
dataset focused on medical and technical domains and involved comparisons between
translated texts by students and professionals, and originals, demonstrating that the
Support Vector Machine (SVM) classifier achieved a notable 97.62% accuracy.

Using function word frequencies to represent chunks of text, Koppel and Ordan
(2011) used a Bayesian logistic regression approach on the Europarl corpus (Koehn,
2005) to automatically identify translated and non-translated texts. Their high accu-
racy results based on the Europarl corpus lend support to the translationese and
interference hypotheses. Their findings also indicate that the classification accuracy
of translationese in language L1 using a classifier trained on L2 data is higher if
languages L1 and L2 are typologically close, such as two languages like French and
Spanish coming from the same Romance language family.

Volansky, Ordan, and Wintner (2015) proposed and explored an extensive set of
translationese features based on translation hypotheses outlined in Section 2.1.1 to
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differentiate translationese from original text. In support of the Interference hypothesis,
the analysis involved lexical features, including part-of-speech, character uni-grams,
bi-grams, and tri-grams. Except for character unigrams, which exhibited an accuracy
rate of only 85%, all others yielded results surpassing 90% accuracy in translationese
classification. Beyond the lexical features tied to the Interference property, cohesive
markers, serving as an Explicitation feature, achieved 81% accuracy; threshold point-
wise mutual information (PMI) as a Normalisation feature achieved 66% accuracy, and
mean word rank, a Simplification feature, achieved 77% accuracy.

Some earlier seminal work also explored simple lexicalised features including
word tokens and character n-grams (Avner, Ordan, and Wintner, 2016; Popescu,
2011), part-of-speech tags or lemmas (Baroni and Bernardini, 2005; Halteren, 2008;
Kurokawa, Goutte, and Isabelle, 2009), or features based on count models, information
density, surprisal, and complexity for text classification, especially in translation quality
estimation (Rubino, Lapshinova-Koltunski, and Genabith, 2016). These features serve
as indicators of translationese for both originally authored and manually translated
texts (Rubino, Lapshinova-Koltunski, and Genabith, 2016). However, this research
relied on discrete count-based approaches that treat words as discrete units, leading
to limited context modelling capabilities. However, until recently, neural approaches
to translationese have received much less attention. To the best of our knowledge,
the only work is that of Sominsky and Wintner (2019) who used a BiLSTM-based
architecture to automatically detect the translation direction of each bilingual parallel
(bitext) training sample, where the network is presented with two parallel sentences
simultaneously and has to determine which sentence is original and which is a
translation. They report accuracy up to 81.0% on the Europarl corpus.

More recently, Riley et al. (2020b) used a CNN classifier to differentiate translated
from original target text, and then used this classifier to tag the training data for an
NMT model to produce translations that look like the original text. Human evaluation
demonstrated that this produced more accurate and natural translations and showed
fewer translationese effects.

3.3 Multilingual Data Analysis

In this section, we employ a portfolio of well-known measures from stylometry,
including both surface and information-theoretic features, as well as readability scores
to linguistically profile the data we use in our classification experments. Our aim is
to uncover observable stylistic differences between our original and translated data,
setting the context in which we aproach RQ1.

Our stylometric analysis highlights several key points. Firstly, it indicates distinct
stylistic aspects between original and translated texts. Secondly, we show that stylistic
variation exists between texts translated into the same target language but from
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Corpus Train Dev Test

TRG–SRC 30,000 6,000 6,000

TRG–ALL 30,000 6,000 6,000

ALL–ALL[3] 89,000 19,000 19,000

ALL–ALL[8] 67,000 14,000 14,000

Table 2: The total number of paragraphs in each dataset. On average there are about 80 tokens each
paragraph.

different source languages. Lastly, this study contributes to extended data analysis by
providing insights into the unique stylistic characteristics of the multilingual datasets
used to address RQ1.
In the following sections, we provide a brief description of the data we used, the
measures we employed to analyse the data, and the results of our analysis.

3.3.1 Datasets

We utilise the Multilingual Parallel Direct Europarl (MPDE) corpus, as described by
Amponsah-Kaakyire et al. (2021). The MPDE is a parallel corpus sourced from a subset
of European Parliament proceedings. This corpus includes annotations indicating
which sections are original and which are translated, presented in parallel paragraphs1.
For more details, refer to the MPDE repository2. Annotations identify the source (SRC)
and target languages (TRG) with the term “original” or “translationese”.

For our task, we use the portion of MPDE that only provides translations of
originally authored texts as texts already translated from another language may
differ from directly translated texts (i.e. where the source is originally authored) in
some ways. We focus on three European languages for the initial experiment: German
(DE), English (EN), Spanish (ES). Subsequently, we expand the scope to include Greek
(EL), French (FR), Italian (IT), Dutch (NL), and Portuguese (PT) in our multilingual
multi-source classification experiments. In the following, we use the “TRG–SRC”
notation (with a dash) to identify monolingual translationese corpora (i.e. corpora
where half of the data is originals, half translationese): TRG is the language of the
corpus, SRC is the source language, from which the translation into the TRG language
was done in order to produce the translationese half. The “TRG←SRC” notation (with
an arrow) denotes the result of translating a text from SRC into TRG language. It is
used to refer to the translationese half of the monolingual corpus.

For our analysis, we create four data sets with statistics summarised in Table 2:

1 This results from the fact that the translations of paragraphs are not aligned sentence-wise. While the
original paragraph may have i sentences, one translation may have j sentences, and another k.

2 github.com/UDS-SFB-B6-Datasets/Multilingual-Parallel-Direct-Europarl

github.com/UDS-SFB-B6-Datasets/Multilingual-Parallel-Direct-Europarl
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Corpus Tokens Types %Digits %Punct. %FW Sent.len Tok.len Syl

EN−DE 212140 412 0.08 0.12 1.54 7.37 0.11 484219

EN− ES 48405 6670 0.08 0.13 0.21 3.28 0.06 54003

ES− EN 126091 3820 0.05 0.43 0.36 8.54 0.03 780776

ES−DE 378489 6160 0.01 0.41 0.49 15.47 0.03 780766

DE− EN 187025 21851 0.03 0.18 2.49 12.67 0.17 268801

DE− ES 277916 16211 0.02 0.11 2.14 18.82 0.08 498169

EN−ALL 134262 1329 0.08 0.13 0.84 8.1 0 188846

ES−ALL 252935 7925 0.03 0.41 0.42 17.17 0.03 524599

DE−ALL 229160 12567 0.1 0.16 2.35 15.69 0.13 389825

Table 3: Stylistic absolute differences in text statistics measures between original and translated halves.
White cells indicate an increase in the original split, while teal cells indicate a decrease. White cells
denote no significant difference.

Monolingual single-source data: DE–EN, DE–ES, EN–DE, EN–ES, ES–DE, ES–EN.
For each corpus, there is an equal number of translated and original paragraphs
in the same language.

Monolingual multi-source data: DE–ALL, EN–ALL, ES–ALL. For DE–ALL, e.g.,
half of the data is DE original texts, and the other half contains equal proportions
of DE←ES and DE←EN.

Multilingual multi-source data: ALL–ALL[3]. There is an equal number of
originals: DE, EN and ES, which together make up 50% of the examples. The
other 50% which are translated are equal proportions of DE←EN, DE←ES,
EN←DE, EN←ES, ES←DE and ES←EN.

DE, EN and ES are relatively close typologically. We conduct additional experiments
in order to investigate how well classification can be performed when more and more
distant languages are involved:

Multilingual multi-source data large: ALL–ALL[8], balanced in the same way
as ALL–ALL[3], but with the addition of Greek (EL), French (FR), Italian (IT),
Dutch (NL) and Portuguese (PT).

3.3.2 Measures

This section describes the stylometric features based on text statistics, richness (infor-
mation) and readability measures used in our study.

Text Statistics Measures.
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Corpus Lexical Density TTR Legomena Dislegomena Yule-I GF WS FHR

EN−DE 0.01 0.46 0.19 0.07 14.54 1.99 - -
EN− ES 0.02 0.57 0.17 0.04 16.16 1.15 - -
ES− EN 0.01 0.14 0.02 0.01 4.25 - - 5.024

ES−DE 0.01 0.27 0.19 0.06 3.47 - - 5.032

DE− EN 0.02 0.06 0.07 0.01 2.64 - 4.12 -
DE− ES 0.02 0.12 0.22 0.02 6.08 - 9.00 -
DE−ALL 0.02 0.24 0.07 0.05 7.15 - 0.22 -
ES−ALL 0.01 0.04 0.03 0.02 2.22 - - 5.007

EN−ALL 0.02 0.29 0.1 0.05 13.19 1.94 - -

Table 4: Stylistic absolute differences in text richness measures between original and translated halves.
White cells indicate an increase in the original split, while teal cells indicate a decrease. White cells
denote no significant difference.

Tokens: Number of words in text.

Types: Number of different words in text.

Digits (%digits): The percentage of digits in a text.

Punctuations (%punct.): The percentage of punctuation symbols in a text.

Function Words (% FW): The percentage of function words in a text.

Sentence Length (sent.len): This measures the number of tokens in a sentence.

Token Length (tok.len): The average token length in terms of characters.

Syllables (syl.): Number of syllables in a text.

Text Richness Measures.

Lexical Density: Lexical Density is described in Toral (2019) as the proportion of
content words (adverbs, adjectives, nouns and verbs) to total number of words.
This is also described as information load in Ilisei et al. (2010).

Type-Token Ratio (TTR): This measures the ratio of the vocabulary (types) to
the sample size (tokens). Higher value of TTR indicates higher degree of lexical
variety. For ease of readability and comparison, we multiplied TTR scores by
500.

Hapax Legomenon: The percentage of words with frequency 1 in the text
segment.

Hapax DisLegomenon: The percentage of words with frequency 2 in the text
segment.
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Yule-K (Yule, 2014): Vocabulary richness index that exhibits stability in different
text sizes.

K = 104 × [
[
∑X

X=1 fxX
2] −N

N2
] (1)

where, X is vector of frequencies of each type; N is the number of tokens and
fx represents frequencies for each x. That is, it indicates how constant the
vocabulary is across the text, with higher values suggesting more repetitive
vocabulary. In practice, we use the inverse of Yule-K- Yule’s I measure, which is
considered to be a more robust measure of vocabulary diversity because they
are less affected by changes in text length3.

Text Readability Measures.

Gunning Fog: The Gunning fog index (Gunning et al., 1952) is a measure of
text complexity of reading English-language texts that are based on the average
number of complex words (those with three or more syllables) and the average
number of long sentences in a text. The Gunning Fog index (GF) is calculated
using the formula:

GF = 0.4×
[
(
w

s
) + 100× (

c

w
)
]

where w is the number of words, s is the number of sentences, and c is the
number of complex words (defined as words containing more than 2 syllables).

The higher the GF index, the more difficult the text is to understand. Generally, a
score of 8 or lower indicates that the text is easily understandable by an average
11-year-old student, while a score of 9-10 indicates that the text is understandable
by an average 13- to 15-year-old student. A score of 11-12 indicates that the text
is understandable by an average 16- to 18-year-old student, while a score of
13 or higher indicates that the text is generally only understandable by college
graduates.

Wiener Sachtext formula: The Wiener Sachtextformel (Bamberger and Vanacek,
1984) is a readability formula used to measure the difficulty of reading German-
language texts. The formula takes into account the average sentence length and
average number of syllables per word in the text and produces a score that
indicates how easy or difficult the text is to read. The Wiener Sachtext formula
is calculated as follows:

WS = 180− (asl× 1.2) − (asw× 56)

3 Scores are multiplied by 100 for ease of readability.
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where asl is the average sentence length in words, and asw is the average
number of syllables per word. A higher score indicates easier readability, while
a lower score indicates more difficult readability. The maximum score is 100,
which indicates the text is very easy to read, and the minimum score is 0, which
indicates the text is very difficult to read.

Fernández-Huerta Readability Formula: The Fernández-Huerta (Fernández
Huerta et al., 1983) readability formula is a method of measuring the readability
of Spanish language texts. It calculates the readability score based on the number
of syllables per word and the number of words per sentence.

The Fernández-Huerta Readability Formula is calculated as follows:

FHR = 206.84− (0.6× sy

w
) − (1.02× w

s
)

where sy is the total number of syllables in the text, w is the total number
of words in the text, and s is the total number of sentences in the text. The
Fernandez-Huerta index ranges from 0 to approximately 206, with higher scores
indicating an easier-to-read text.

3.3.3 Results

The result of the absolute differences in stylometric measures between original and
translated halves are shown in Tables 3 and 4. Table 3 shows that the number of tokens
and average sentence length varies depending on the target language regardless of
the source language. Translated text into Spanish has longer sentences than original
Spanish text, indicating that human translation creates longer sentences compared
to the originals. In contrast, translations into German have shorter average sentence
lengths than German originals, implying that translators conveyed the same message
more efficiently in the target language. However, no clear trend is observed in English
translations. Sentence splitting is common in translation and is seen as a form of
simplification, where longer and more complex statements are divided into shorter,
simpler ones. Thus, variations in sentence length in the same target language are
observed depending on the specific source language from which the translations were
made. Table 3 further shows that there are some differences in the use of punctuation
between original and translated texts in our MPDE dataset. Punctuation marks are
used to structure information within sentence boundaries, significantly reducing
ambiguity. The explicitation hypothesis posits that translated texts are characterized
by reduced ambiguity. However, from Table 3, we find that this tendency is only
reflected in translations into English.

Another indicator of translationese is the ratio of syllables. Previous studies have
shown that translated texts tend to have longer words and sentences compared
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to original texts in the target language. Based on our findings, it appears that the
number of syllables is consistently greater in translated texts for translations into
English and Spanish, regardless of the source language. However, there is no clear
trend observed for translations into German. Translationese is also manifested in the
inflated frequencies of function words (Volansky, Ordan, and Wintner, 2015). Table 3

shows that the percentage of function words is generally higher in translated texts
as compared to original texts for translations into English, while the percentage of
function words is higher in the original text for translations into German and Spanish.

In Table 4 we measure lexical density as the percentage of content words. Previous
research has demonstrated that translated texts have a lower percentage of content
words (adverbs, adjectives, nouns and verbs) compared to original texts, indicating
that they are lexically simpler than the source text (Scarpa, 2006). This trend has
also been observed in a study by Toral (2019), where they discovered that machine-
translated outputs have lower lexical diversity than both human translations and
the original text in the same target language. Our results align with these findings,
showing that, regardless of monolingual single-source or multi-source data, original
texts consistently demonstrate higher lexical density than their translated counterparts.

The type-token ratio has been used in previous studies to measure the lexical
variety in translated texts (Riley et al., 2020b; Toral, 2019). Our results indicate that
original texts have a greater richness of vocabulary across all language pairs. Another
characteristic of translated texts is that they tend to exhibit a substantially lower rate
of words that occur only once (hapax legomena) or twice (hapax dislegomena) in a
text than original texts (De Clercq et al., 2021). We see the same in our results. Table 4

shows that originals always exhibit more hapax legomena or dislegomena than their
translated counterparts, indicating higher lexical diversity in the original texts.

Finally, we also analyse readability scores between originals and translated texts
using language-dependent readability measures. For English, we use Gunning-Fog
(G.Fog), for German we use Wiener Sachtext (W.Sachtext) and for Spanish, we use the
Fernandez-Huerta (F.Huerta) formula. For German texts, we observe that in all cases,
originals achieve lowers scores than their translated counterparts, implying that the
original texts are easier to read than translated ones. This indicates that translationese
features tend to retain source language interferences which might hamper the overall
readability of the text. However, for Spanish texts, we see that translated texts show
higher scores, indicating easier readability. In case of English, no distinct pattern is
identified in this regard.

Overall, this analysis revealed a stylistic disparity between original and human-
translated texts. We find that there is significant variation in the languages used
within each label, original and translated. In fact, we discover that stylistic results
differ substantially for specific language pairs, and even for the same target language
with different source languages. This highlights the need for a language-agnostic
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approach to translationese classification. Based on the findings of the stylometric
analysis, especially those related to semantics (vocabulary richness and diversity),
we extend previous studies on translationese classification based on classical feature
engineering methods (Ilisei et al., 2010; Koppel and Ordan, 2011; Volansky, Ordan,
and Wintner, 2015) by using embedding-based representation learning approaches.
We briefly outline the classification task and classical feature-engineering as well as
representation learning-based models in the section that follows.

3.4 Multilingual Translationese Classification

For all datasets introduced in Section 3.3.1, we perform translationese classification on
tasks in the following settings:

Single-source and Multi-source: We perform binary classification – original vs.
translated, where for a given target language, the model is trained to detect transla-
tionese from monolingual single-source e.g. TRG–SRC1 and TRG–SRC2, or is transla-
tions from multi-source e.g. TRG–ALL.

Multilingual multi-source and Cross-language: We evaluate the models trained
on one dataset on the other ones, in order to verify how well the model trained to
detect translationese in multilingual data performs on monolingual data: ALL–ALL[3]
on TRG–ALL, and ALL–ALL[3] on TRG–SRC.

3.5 Experimental Setup

3.5.1 Model Specifications

For the tasks defined above, we employ the following models:

3.5.1.1 Feature-Engineering-Based Classification

We draw inspiration from the feature set presented in (Rubino, Lapshinova-Koltunski,
and Genabith, 2016) based on translationese properties and extract our selected
features using the INFODENS toolkit (Taie, Rubino, and Genabith, 2018) to train and
evaluate a classifier. We apply a support vector machine classifier (SVM) with a linear
kernel and fit the hyperparameter C on the validation set. The results are labeled as
Handcr.+SVM throughout this chapter. In particular, we use:

surface features: average word length, syllable ratio, paragraph length.

lexical features: lexical density, type-token ratio.

unigram bag-of-PoS
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language modelling features: log probabilities and perplexities with and without
considering the end-of-sentence token, according to forward and backward n-
gram language models (n ∈ [1; 5]) built on tokens and POS tags.

n-gram frequency distribution features: percentages of n-grams in the para-
graph occurring in each quartile (n ∈ [1; 5]).

Our experiments use the training data to build language models and n-gram fre-
quency distributions. POS-tagging is performed using SpaCy4. The n-gram language
models are calculated using SRILM (Stolcke, 2002). Features are scaled based on their
highest absolute values. Note that all our features are delexicalised.

3.5.1.2 Embedding-Based Classification

Previous research (Lebret and Collobert, 2015; Mitchell and Lapata, 2008) employ
distributed representations of words to address a variety of NLP tasks. The straight-
forward approach simply adds up the word vector representations in a sentence or
document to produce sentence or document-level representations which are then
used for the downstream applications. However, for translationese classification tasks,
these representation-based approaches are yet to be explored. Our primary goal is
twofold: (i) firstly, there is no guarantee that hand-crafted feature engineering-based
approaches really capture everything relevant to the classification at stake; and (ii)
explore whether performance can be enhanced beyond (i).

In the next section, we present several methods based on vector representations
for classifying original and translated data that are not biased towards particular
linguistic features as the SVM model presented in Section 3.5.1.1. All these models use
semantic word representations.

Average pre-trained embeddings + SVM (Wiki+SVM). In this approach, we
compute an average of all token vectors in the paragraph to be classified and use this
mean vector as a feature vector to train a SVM classifier with linear kernel. We work
with the publicly available language specific 300-dimensional pre-trained Wiki word
vector models trained on Wikipedia using fastText5 (Joulin et al., 2016).

Gaussian distributions for similarity-based classification
(Wiki+Gauss.+SVM). Here, we introduce a method that represent words not as
vector points but as continuous densities in latent space. In particular, we explore
Gaussian function embeddings (with diagonal covariance), in which both means
and variances are learned from data. We follow Das, Zaheer, and Dyer (2015) and
Nikolentzos et al. (2017), Gourru, Velcin, and Jacques (2020) and represent a text as

4 https://spacy.io/
5 https://fasttext.cc/docs/en/pretrained-vectors.html

https://spacy.io/
https://fasttext.cc/docs/en/pretrained-vectors.html
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a multivariate Gaussian distribution based on the distributed representations of its
words.

The method assumes that each word w is a sample drawn from a Gaussian distribu-
tion with mean vector µ and covariance matrix σ2:

w ∼ N(µ, σ2) (2)

A paragraph is then characterized by the average of its words and their covariance.
More specifically, let the mean vector of the two texts be µi and µj and their covariance
matrices be σ2

i an σ2
j , then the similarity between these mean vectors can be calculated

using cosine similarity between them, i.e.,

sim(µi,µj) =
µi.µj

||µi||||µj||
(3)

Similarly, the similarity between the co-variance matrices of the two texts can be
computed using the element-wise product between matrices:

sim(σ2
i ,σ2

j ) =
Σσ2

i ◦ σ2
j

||σ2
i ||F × ||σ2

j ||F
(4)

where (· ◦ ·) indicates the Hadamard or element-wise product between the matrices
with summation over all elements and || · ||F is the Frobenius norm for matrices.

Finally, the similarity between texts is represented by the convex combination of the
similarities of their mean vectors µi and µj and their covariances matrices σ2

i and σ2
j :

similarity = α(sim(µi,µj)) + (1−α)(sim(σ2
i ,σ2

j )) (5)

where α ∈ [0,1]. Finally, a SVM classifier is employed using the kernel matrices of Equa-
tion 5 to perform the classification where the kernel represents similarities between
pairs of texts. We work with the same pre-trained Wikipedia fastText embeddings as
in Wiki+SVM for the words in the model and initialize the ones not contained in the
model to random vectors.

fastText classifier (FT). As a first neural classifier, we use fastText (Joulin et al., 2016)
which is an efficient neural network model with a single hidden layer. The fastText
model represents texts as a bag of tokens and bag of n-gram tokens. Embeddings are
averaged to form the final feature vector. A linear transformation is applied before
a hierarchical softmax function to calculate the class probabilities. Word vectors are
trained from scratch on our data (refer to Section 3.3.1).
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Corpus Handcr. Wiki Wiki fastText Wiki LSTM BERT
+SVM +SVM +Gauss. (FT) +FT

+SVM

DE–EN 71.5±0.0 77.7±0.1 67.6±0.1 88.4±0.0 89.2±0.0 89.5±0.4 92.4±0.2
DE–ES 76.2±0.0 79.4±0.3 68.2±0.2 90.9±0.0 91.9±0.0 91.9±0.2 94.4±0.1
EN–DE 67.6±0.7 72.5±0.2 64.5±0.2 85.1±0.0 85.9±0.1 86.8±0.5 90.7±0.1
EN–ES 70.1±0.2 77.5±0.4 67.1±0.4 87.6±0.0 88.7±0.0 89.1±0.3 91.9±0.4
ES–DE 71.0±0.0 75.7±0.4 70.1±0.4 88.4±0.0 89.1±0.0 90.2±0.2 92.3±0.2
ES–EN 66.7±0.0 70.1±0.3 67.0±0.7 87.0±0.1 87.9±0.0 88.8±0.4 91.4±0.3
DE–ALL 72.6±0.0 64.3±0.0 65.1±0.1 87.4±0.0 88.3±0.0 88.5±0.2 90.9±0.3
EN–ALL 65.3±0.0 64.6±0.0 62.5±0.1 82.7±0.0 84.4±0.0 84.2±0.4 87.9±0.4
ES–ALL 67.4±0.0 67.3±0.0 66.5±0.2 84.9±0.0 85.9±0.0 87.0±0.3 89.9±0.1
ALL–ALL[3] 58.9±0.0 – – 85.0±0.0 – 84.4±0.3 89.6±0.2
ALL–ALL[8] 65.4±0.1 – – 70.4±0.1 – 77.2±0.3 84.6±0.2

Table 5: Translationese classification average accuracy on the mono- and multilingual test sets (average
and standard deviation over 5 runs).

Pre-trained embeddings + FT (Wiki+FT). In this model we work with the pre-
trained word vectors from Wikipedia to initialize the fastText classifier. The data
setting is directly comparable to Wiki+SVM, a non-neural classifier.

3.5.1.3 Deep learning based Classification

We use two other neural models for the classification task: an LSTM and a transformer.
While the LSTM is trained from scratch, we fine-tune a pre-trained BERT model
(Devlin et al., 2019) on our training set.

LSTM. We train a single-layer uni-directional LSTM with 128 embedding and
hidden dimensions. We then take all the hidden states using average pooling, and
pass the resulting 128-dimensional representation to a binary linear classifier. We use
a batch size of 16, learning rate of 1 · 10−3, and the Adam optimiser with Pytorch
defaults.

Bidirectional Encoder Representations from Transformers (BERT). We use the
BERT-base multilingual uncased model (12 layers, 768 hidden dimensions, 12 attention
heads) (Devlin et al., 2019). Fine-tuning is done with the simpletransformers6 library. For
this, the representation of the [CLS] token goes through a pooler, where it is linearly
projected, and a tanh activation is applied. Afterwards, it undergoes dropout with a
probability of 0.1 and is fed into a binary linear classifier. We use a batch size of 32, a
learning rate of 4 · 10−5, and the Adam optimiser with epsilon 1 · 10−8. Models were
fine-tuned on 4 GTX1080Ti GPUs.

6 github.com/ThilinaRajapakse/simpletransformers

github.com/ThilinaRajapakse/simpletransformers
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DE–EN DE–ES EN–DE EN–ES ES–DE ES–EN DE–ALL EN–ALL ES–ALL

DE–EN 92.4±0.2 76.6±0.7 - - - - 90.5±0.3 - -
DE–ES 82.6±1.1 94.4±0.1 - - - - 91.8±0.4 - -
EN–DE - - 90.7±0.1 64.7±1.4 - - - 87.3±0.4 -
EN–ES - - 72.9±0.9 91.9±0.4 - - - 88.6±0.4 -
ES–DE - - - - 92.3±0.2 78.8±0.9 - - 90.6±0.1
ES–EN - - - - 78.8±1.6 91.4±0.3 - - 89.0±0.2
DE–ALL 87.3±0.6 85.3±0.4 - - - - 90.9±0.3 - -
EN–ALL - - 81.7±0.5 78.3±0.7 - - - 87.9±0.4 -
ES–ALL - - - - 85.9±0.9 85.0±0.6 - - 89.9±0.1

Table 6: BERT translationese classification accuracy of all TRG–SRC and TRG–ALL models on TRG–SRC
and TRG–ALL test sets (average and standard deviation over 5 runs). Columns: training set; rows: test
set.

3.6 Evaluation and Analysis

Paragraph-level translationese classification results in Single-source and Multi-source
settings with mean and standard deviations over 5 runs are reported in Table 5.
We observe that all our embedding-based approaches, except for Wiki+Gauss.+SVM

perform better than Handcr.+SVM. This answers RQ1 that is — can word embedding
based feature and representation leaning approaches discern translated and non-
translated texts? Among the approaches with the SVM classifier, Wiki+SVM performs
best in the single-source settings, but shows a lower accuracy than Handcr.+SVM in
the multi-source (TRG–ALL) settings. Wiki+Gauss.+SVM performs worst apart from on
ES–EN and ES–ALL.

In the monolingual single-source settings, we observe that overall accuracy is slightly
lower when the source language of a translation is typologically closer to the original
text language, i.e. it becomes more difficult to detect translationese. Specifically, DE–
EN tends to have lower accuracy than DE–ES; EN–DE lower accuracy than EN–ES;
and ES–EN lower accuracy than ES–DE. Accuracy generally drops when going from
single-source to the multi-source setting, e.g. from DE–EN and DE–ES to DE–ALL.
The EN–ALL dataset is the most difficult for most of the models among the TRG–ALL
datasets. The ALL–ALL[3] setting exhibits comparable accuracy to the TRG–ALL
setting for the neural models, but for the SVM there is a drop of around 9 points.
Throughout our discussion, we always report absolute differences between systems.
The ALL–ALL[8] data results in reduced accuracy for most architectures, except
Handcr.+SVM. Using the pre-trained Wiki embeddings helps improve the accuracy of
the fastText method in all cases.

Overall, the BERT model outperforms other architectures in all settings, followed
closely by the other deep-learning architecture, LSTM. Neural-classifier-based models
substantially outperform the other architectures: the SVMs trained with hand-crafted
linguistically-inspired features, e.g., trail BERT by ∼20 accuracy points.
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3.6.0.1 Multilinguality and Cross-Language Performance

Since neural architectures perform better than the non-neural ones, we perform the
multilingual and cross-language analysis only with the neural models. We evaluate
the models trained on one dataset on the other ones, in order to verify:

• Whether for a given target language, the model trained to detect translationese
from one source language, can detect translationese from another source lan-
guage: TRG–SRC1 on TRG–SRC2, and TRG–SRC on TRG–ALL;

• How well the model trained to detect translationese from multiple source lan-
guages can detect translationese from a single source language: TRG–ALL on
TRG–SRC, and ALL–ALL[3] on TRG–SRC;

• How well the model trained to detect translationese in multilingual data per-
forms on monolingual data: ALL–ALL[3] on TRG–ALL, and ALL–ALL[3] on
TRG–SRC.

Table 6 shows the results of cross-data testing for the monolingual models for the
best-performing architecture (BERT). For the single-source monolingual models, we
observe a relatively smaller drop (up to 13 percentage points) in the worst configuration
in performance when testing TRG–SRC on TRG–ALL (as compared to testing TRG–
SRC on TRG–SRC), and a larger drop (up to 27 points) when testing TRG–SRC1

on TRG–SRC2 (as compared to testing TRG–SRC1 on TRG–SRC2). The fact that
classification performance stays above 64% confirms the hypothesis that translationese
features are source-language-independent.

Another trend is that in cross testing TRG–SRC1 and TRG–SRC2, the model where
the source language is more distant from the target suffers a larger performance
drop when tested on the test set with the closer-related source language, than the
other way around. For instance, the DE–ES model tested on the DE–EN data suffers
a decrease of 17.8 points, and DE–EN model tested on the DE–ES data suffers a
decrease of 9.8 points. This may be due to DE–EN having learned more of the general
translationese features, which helps the model to obtain higher accuracy on the data
with a different source, while the DE–ES model may have learned to rely more on
the language-pair-specific features, and therefore it gives lower accuracy on the data
with the different source. A similar observation has been made by Koppel and Ordan
(2011).

For the multi-source monolingual models (TRG–ALL), testing on TRG–SRC1 and
TRG–SRC2 datasets shows a slight increase in performance for a source language
that is more distant from the target, and a slight decrease for the more closely-related
source language (as compared to testing TRG–ALL on TRG–ALL).

Table 7 displays the results of testing the multilingual (ALL–ALL[3]) models on
all test sets for the neural architectures, as well as Handcr.+SVM. We observe that the
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largest performance drop (as compared to testing on ALL–ALL[3] test set) happens
for the EN–DE test set. For the DE–ES set, the performance actually increases for the
neural models, but not for the Handcr.+SVM. We extended this experiment in Table
8, testing the ALL–ALL[8] on all test sets to further complement our multilingual
analysis with more diverse languages and observe a similar trend, which is in line
with the accuracy of the ALL–ALL[3] models on all test sets.

We also compare the performance of ALL–ALL[3] on different test sets to the
original performance of the models trained on these datasets (in parentheses). There is
a relatively larger drop in accuracy for the TRG–SRC data, than for TRG–ALL data. The
largest drop for neural models is 6.7 accuracy points whilst the smallest performance
drop for the Handcr.+SVM is 12.7. This highlights the ability of the neural models
to learn features in a multilingual setting which generalize well to their component
languages whereas the Handcr.+SVM method does not seem to work well for such
a case. However, for ALL–ALL[8] models, Table 8 shows a large performance drop
across all architectures as compared to the results from the models specifically trained
for the task. The actual models are trained on language-specific features, whereas the
ALL–ALL[8] model is trained on more diverse data containing typologically distant
languages and thus captures less targeted translationese signals.

In summary, we observe that:

• For a given target language, even though a neural model trained on one source
language can decently identify translationese from another source language, the
decrease in performance is substantial.

• Neural models trained on multiple sources for a given target language perform
reasonably well on single-source languages.

• Neural models trained on multilingual data ALL–ALL[3] perform reasonably
well on monolingual data, especially for multi-source monolingual data.

• Using more source and target languages (ALL–ALL[8]) leads to a larger decrease
in cross-testing accuracy.

Overall, the neural models perform well in such scenarios, with fastText performing
not far behind the BERT- and LSTM-based deep learning approaches. These results
demonstrate the effectiveness of feature and representation-learning approaches for
translationese classification, where models are able to learn the features and patterns
of translated text without the need for manual feature engineering, answering research
question RQ1. Furthermore, the improved performance of transfer learning-based
models like BERT and LSTM suggests that pre-training on large amounts of text
data can significantly enhance the ability of the model to learn relevant features for
translationese classification.
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Corpus Handcr. fastText LSTM BERT
+SVM (FT)

DE–EN 58.5±0.0 (↓13.0) 85.9±0.0 (↓2.5) 86.6±0.7 (↓2.9) 90.5±0.3 (↓1.9)
DE–ES 57.0±0.0 (↓19.2) 88.3±0.0 (↓2.6) 85.3±0.3 (↓6.9) 91.5±0.2 (↓2.9)
EN–DE 50.0±0.0 (↓17.6) 81.5±0.1 (↓3.6) 80.9±0.3 (↓5.8) 87.2±0.4 (↓3.5)
EN–ES 50.5±0.0 (↓19.6) 84.6±0.0 (↓3.0) 83.8±0.6 (↓5.3) 88.9±0.3 (↓3.0)
ES–DE 50.0±0.0 (↓21.0) 85.6±0.0 (↓2.8) 85.7±0.5 (↓4.6) 90.4±0.4 (↓1.9)
ES–EN 51.3±0.0 (↓15.4) 84.1±0.0 (↓2.9) 82.1±0.4 (↓6.7) 89.0±0.4 (↓2.4)
DE–ALL 59.9±0.0 (↓12.7) 87.2±0.0 (↓0.2) 85.9±0.5 (↓2.6) 90.8±0.1 (↓0.1)
EN–ALL 50.2±0.0 (↓15.1) 82.9±0.0 (↑0.2) 82.2±0.2 (↓2.1) 88.1±0.5 (↑0.2)
ES–ALL 50.0±0.0 (↓17.4) 84.8±0.0 (↓0.1) 85.2±0.5 (↓1.8) 89.8±0.3 (↓0.1)
ALL–ALL[3] 58.9±0.0 (0.0) 85.0±0.0 (0.0) 84.5±0.2 (0.0) 89.6±0.2 (0.0)

Table 7: Translationese classification accuracy of the ALL–ALL[3] model on all the other test sets (average
and standard deviations over 5 runs). The difference from the actual trained model performance is
indicated in parentheses

Corpus Handcr. fastText LSTM BERT
+SVM (FT)

DE–EN 53.0±0.5 (↓18,5) 71.0±0.3 (↓17.4) 79.9±0.5 (↓9.6) 85.5±0.4 (↓6.9)
DE–ES 51.3±0.3 (↓24.9) 73.2±0.3 (↓17.7) 79.0±0.5 (↓12.9) 87.9±0.3 (↓6.5)
EN–DE 48.3±0.1 (↓19.3) 65.8±0.2 (↓19.3) 72.9±0.4 (↓13.8) 79.0±0.5 (↓11.7)
EN–ES 50.3±0.1 (↓19.8) 68.9±0.3 (↓18.7) 75.6±0.8 (↓13.5) 83.2±0.4 (↓8.7)
ES–DE 50.0±0.0 (↓21.0) 71.1±0.2 (↓17.3) 76.0±0.7 (↓14.2) 83.8±0.3 (↓8.5)
ES–EN 53.2±0.5 (↓13.5) 69.9±0.2 (↓17.1) 75.4±0.7 (↓13.4) 82.8±0.2 (↓8.6)
DE–ALL 53.1±0.5 (↓19.5) 72.1±0.3 (↓15.3) 79.7±0.6 (↓8.8) 86.8±0.2 (↓4.1)
EN–ALL 48.4±0.2 (↓16.9) 67.0±0.2 (↓15.7) 74.4±0.5 (↓9.9) 81.1±0.1 (↓6.8)
ES–ALL 50.8±0.3 (↓16.6) 70.4±0.2 (↓14.5) 75.9±0.6 (↓11.1) 83.2±0.3 (↓6.7)
ALL–ALL[3] 53.2±0.3 (↓5.7) 70.5±0.2 (↓14.5) 76.7±0.5 (↓7.7) 83.7±0.1 (↓5.9)
ALL–ALL[8] 65.4±0.1 (0.0) 70.4±0.1 (0.0) 77.2±0.3 (0.0) 84.6±0.2 (0.0)

Table 8: Translationese classification accuracy of the ALL–ALL[8] model on all test sets (average and
standard deviations over 5 runs). The difference from actual trained model performance is indicated in
parentheses.

3.7 Conclusion

In this chapter, we explore the ability of feature and representation learning-based
methods to discern between translated and non-translated texts, addressing RQ1.
Traditional approaches to translationese classification involve designing and selecting
linguistic features manually, which can be a time-consuming and potentially non-
exhaustive process. In contrast, feature and representation learning-based methods
are highly performant and eliminate the need for manual feature engineering, making
them more efficient and effective.

To provide context for our classification-based analysis, we also conduct a series
of stylistic analyses on our monolingual single-source and multi-source data. Our
analysis revealed that there is significant variation in the languages used within
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each label, original and translated. In fact, we found that stylistic results could differ
substantially for specific language pairs, and even for the same target language with
different source languages. This highlights the need for a language-agnostic approach
to translationese classification.

We propose a suite of word-embedding-based and representation learning ap-
proaches that rely on static or contextual embeddings and can be used with or without
pre-trained model weights. We experiment with these approaches across a range of
source-target language combinations in mono- and multilingual settings. Our results
indicate that even simple representation learning-based approaches, such as fastText,
can be a viable and less expensive alternative to hand-crafted, linguistically inspired
feature-selection methods for the translationese classification task. Interestingly, while
the results from fastText were pretty comparative, deep neural models achieved
the highest accuracy in the multilingual translationese classification task. We show
that feature and representation learning approaches : (i) comprehensively outper-
form classical hand-crafted feature engineering based methods and (ii) exhibit better
generalisation across languages.

Overall, these findings suggest that it is possible to distinguish between translated
and non-translated texts using feature and representation learning-based methods.
These methods are effective in identifying translationese without the need for prior
linguistic knowledge or intuitions. We believe that the community can benefit from
further analysis of what these systems actually learn in such tasks, and we encourage
further exploration of representation learning-based approaches for translationese
classification. However, it is worth noting that using traditional hand-crafted and
linguistically inspired features, along with feature engineering in classification-based
approaches to translationese, provides the advantage of using established feature
ranking to reason about the linguistic properties identified as important by the
classifier (Rubino, Lapshinova-Koltunski, and Genabith, 2016; Volansky, Ordan, and
Wintner, 2015). This is more challenging with representation learning-based neural
networks, where explainable artificial intelligence (XAI) approaches, such as those
referenced in Amponsah-Kaakyire et al. (2022) using Integrated Gradients (IG), must
be employed.





4
Debiasing of Translation Artifacts

Translation artifacts have been shown to bias the performance of NLP tasks involving
translated data. In an effort to address this issue, this chapter examines the role of debi-
asing these artifacts in NLP tasks. We adapt the Iterative Null Space Projection (INLP)
algorithm, originally designed to mitigate gender attributes, to translationese-induced
bias in both word and sentence embedding spaces. INLP requires the direction of
the bias in the representation space for it to work. This is challenging for word-based
debiasing as unlike in e.g. gender bias, translationse cannot in general be captured
in terms of contrastive word pairs. We show how to overcome this challenge. Addi-
tionally, we develop two techniques for debiasing translationese at the word level
representations. We confirm the effectiveness of our debiasing approach by comparing
the classification performance before and after debiasing on the translationese classifi-
cation task. Additionally, we demonstrate the practical utility of our debiasing method
by applying it to a natural language inference (NLI) task involving translated data,
where we observed improved accuracy as a result of reduced translation-induced bias.

4.1 Introduction

Translationese artifacts have been found to exert a substantial influence on diverse
downstream tasks. In Machine Translation (MT), Toral et al. (2018) found that translat-
ing source sentences that are already the result of a translation are easier to translate
than original sentences. Similarly, Edunov et al. (2020) show that back-translation
results in larger BLEU1 scores when translationese is on the source side and original
text is used as reference. To avoid such artifacts, recent works (Graham, Haddow,
and Koehn, 2020; Zhang and Toral, 2019) advise using original source sentences for
machine translation (MT) evaluation. Freitag, Caswell, and Roy (2019) draw attention
to translationese as a factor contributing to the mismatch between BLEU scores and
human evaluation, expressing concerns that metrics based on overlap might favor hy-
potheses containing translationese language over those using more originally authored

1 BLEU, or the Bilingual Evaluation Understudy, is a metric based on n-gram match precision for
comparing a candidate translation to one or more reference translations (Papineni et al., 2002).
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language. In contrast to the influence of Translationese on evaluation, the effect of
Translationese in the training data has been investigated in several studies (Bogoychev
and Sennrich, 2019; Kurokawa, Goutte, and Isabelle, 2009; Lembersky, Ordan, and
Wintner, 2012). Riley et al. (2020a) train a sentence-level classifier to differentiate
translationese from original target text, and use this classifier to tag the training data
for an NMT model to produce output that shows fewer translationese effects.

In other cross-lingual applications, Singh et al. (2019) show that substituting seg-
ments of original training samples by their translations from another language im-
proves performance on natural language inference (NLI) tasks. Clark et al. (2020)
introduce a translation-free question-answering dataset to avoid having inflated gains
from translation artifacts in transfer-learning tasks. Artetxe, Labaka, and Agirre (2020)
show that cross-lingual models suffer from induced translation artifacts when evalu-
ated on translated test sets. These examples motivate the need to reduce translation
artifacts, which leads to our second research question:

RQ2: Is it possible to effectively attenuate translation artifacts from latent representation
spaces?

To mitigate the impact of translationese from representation of (word and sentence)
embeddings, we propose a new approach: translationese debiasing. However, remov-
ing translationese signals is not as straightforward as removing human-like biases such
as gender and profanity, which can be captured in terms of simple lists of contrastive
word pairs. Translationese signals are complex and multi-faceted, manifesting as a
mix of morphological, lexical, syntactic, and semantic phenomena and they cannot
in general be captured in terms of contrastive word pairs as (or to the extent it can
be done) in gender or profanity debiassing. While there have been recent proposals
to remove or attenuate human-like biases in both static and contextualised word
embeddings, there has been no study on attenuating and eliminating implicit signals
such as translationese in embeddings.
To achieve this, we adapted the Iterative Null Space Projection (INLP) algorithm
(Ravfogel et al., 2020), which was originally designed to address gender attributes, to
mitigate translationese-induced bias in both word and sentence embedding spaces.
Our approach represents the first attempt to debias translationese signals from latent
representations, which has not been previously explored, and our findings demon-
strate its effectiveness in reducing this type of bias.

Specifically in addition to word-level, we also utilise the INLP method with several
neural sentence-level classification architectures, including fastText, mBERT, and XLM,
to debias translationese at sentence levels. For INLP to work it requires a vector
indicating the direction of the bias to be mitigated. For sentence-level representations,
we can compute this as our data are labelled original or translationese. However,
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computing the direction of the bias is challenging for word representations as unlike
e.g. for gender bias, translationese cannot be captured well in terms of simple con-
trastive word pairs. Below we show how we can solve this challenge. Furthermore, we
propose two alternative methods for detecting and debiasing translationese bias in
word embeddings. We confirm the effectiveness of our debiasing approach in terms of
an intrinsic evaluation by comparing the classification performance before and after
debiasing on the translationese classification task. Our evaluation results show that
after debiasing, the performance of the models in classifying translationese decreases
to that of a random classifier.

To assess the practical usefulness of our proposed debiasing approach in an extrinsic
evaluation, we integrate it into the natural language inference (NLI) task (Bowman
et al., 2015), demonstrating that it enhances NLI accuracy by reducing translation-
induced bias.

The remainder of this chapter is structured as follows. In Section 4.2, we outline
the related work. We describe our debiasing strategies in Section 4.3. In Section 4.4,
we describe our experimental settings with data, task and model specifications. We
analyse the findings in Section 4.5 and finally, conclude the chapter in Section 4.6.

4.2 Related Work

Biases in language representations can have wide-ranging adverse affects in machine
learning applications. Models built from stereotyped associations learned from data
propagate these biases into the decisions they produce. As a result, eliminating or
at least mitigating biases is essential before using representations. Much previous
research (Bolukbasi et al., 2016; Dev and Phillips, 2019; Ravfogel et al., 2020; Zhao
et al., 2018a) provides evidence that (i) word embeddings do capture societal biases,
(ii) models perpetuate these biases to influence various tasks such as abusive language
detection (Park, Shin, and Fung, 2018; Zhao et al., 2018a), co-reference resolution
(Rudinger et al., 2018), etc.

There exist a plethora of efforts to debias societal bias in word embeddings. The
first work in debiasing gender influence in embeddings was by Bolukbasi et al. (2016)
who show that word embeddings trained on news articles exhibit societal gender
stereotypes, for example, ‘woman’ is associated with nurse in the same way ‘man’
is associated with doctor. Through the use of principle component analysis (PCA),
they identified a gender subspace from gendered word pairs (e.g., “man-woman”,
“he-she”). Through re-embedding all words such that they do not, or less significantly
project onto the gender subspace, they attenuate gender bias while retaining the
representation of all neutral words. However, Gonen and Goldberg (2019) makes
the case against these debiasing strategies geared towards static word embeddings,
claiming that these methods simply cover up the biases - and that they can resurface.
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Also related is the work of Niu and Carpuat (2017) that analyses a stylistic subspace
to capture the degree of formality in word embeddings.

Following in the footsteps of these authors, Caliskan, Bryson, and Narayanan (2017)
illustrates how human-like racial biases exist in data, i.e., black people’s names are
found to be considerably more associated with unpleasant stereotypes than with
pleasant terms when compared to names associated with white people. These biases
exhibited in the data might be transmitted on the model built on for the task of
sentiment or opinion mining. Similarly, Zhao et al. (2018b) develops a gender-neutral
version of (GloVe) called GN-GloVe that tries to preserve gender information in some
of the learned dimensions of the word embedding while guaranteeing that other
dimensions are free from this gender effect. Similarly, there has been an effort to
investigate the amount of ethnic and religious bias within word representations in
multi-class settings (Garg et al., 2018; Manzini et al., 2019), and personality stereotypes
(Agarwal et al., 2019). In contrast to the approaches discussed above, Kaneko and
Bollegala (2020) presents GP-GloVe, a post-processing method for preserving gender-
related information with an autoencoder, while eliminating discriminatory biases
from stereotyped instances. Dev and Phillips (2019) find that orthogonal projection to
gender direction can be used to debias word representations. More recently, Ravfogel
et al. (2020) show that iteratively projecting word representations to the null space of
the gender direction can improve debiasing performance. In Section 4.3.1, a detailed
discussion on this approach is presented.

Despite the extensive literature on debiasing unfair and discriminative biases at
the word-level, very little work has focused on sentence representations. For instance,
Liang et al. (2020) detect gender and religion bias in sentence representations. Liu
et al. (2019a) present a test dataset for dialogue created counterfactually by combining
templates and manually created lists of word pairs; this work demonstrates that
models generate dialogue that is less diverse when given sentences that contain
words that describe individuals of underrepresented groups. May et al. (2019) extend
the research in detecting bias in word embedding techniques to that of sentence
embeddings. They try to generalize bias-measuring techniques, such as using the
Word Embedding Association Test (WEAT) (Caliskan, Bryson, and Narayanan, 2017)
in the context of sentence encoders by introducing their new sentence encoding bias-
measuring techniques, the Sentence Encoder Association Test (SEAT). Liang et al.
(2020) adapt the Hard-Debias technique for debiasing word embeddings (Bolukbasi
et al., 2016) to debias sentence representations. More recently, Schick, Udupa, and
Schütze (2021) propose a post-hoc debiasing technique that utilizes a model’s internal
knowledge to discourage the generation of biased text.
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4.3 Translationese Debiasing Strategies

Up till now, researchers have detected, captured and mitigated specific biases (e.g.,
gender, profanity, etc.) in word embeddings, using lists of contrastive word pairs (e.g.,
woman-man, she-he). However, attenuating and eliminating a more implicit signal
like translationese in embeddings has yet to be studied. Translationese signals are
complex and multi-faceted and, unlike e.g. gender and profanity, can in general not
be captured in terms of simple lists of contrastive word pairs, but rather manifest as a
complex mix of morphological, lexical, syntactic and semantic phenomena.

In order to address this issue, we investigate whether it is possible to debias
translationese artifacts and evaluate the results through the task of translationese
classification. Given that there are no predefined word lists for translationese, we
instead rely on labeled data at the sentence level, which includes both translated
(i.e. translationese) and original sentences to identify translationese signals using the
INLP algorithm in Section 4.4.2.1. This is followed by exploring debiasing at the word
level without using predefined word lists. Specifically, we develop two techniques for
debiasing translationese at the word level representations detailed in Section 4.4.2.2. To
the best of our knowledge, we are the only ones to deal with translationese at the level
of word embedding spaces leveraging distances between graph-based representations
of original and translated data.

4.3.1 Iterative Nullspace Projection

INLP was proposed by Ravfogel et al. (2020) to remove linearly decipherable features
from vector representations by iteratively projecting onto null-space. Their approach
was originally developed for gender bias mitigation. Given a set of labeled data with
data points X = x1, ..., xn and task labels Y = y1, ...,yn, INLP uses a standard classi-
fication setup with a neural network and a simple classifier τ on top to mitigate the
protected attribute T . Specifically, encoded representations h(xk) up to the last hidden
layer are taken from the data (i.e., representations that extract effective protected
attributes for predicting O/T), and an intervention is performed on these to obtain
the debiased last hidden representation.

INLP neutralises the ability of the classifier τ to linearly predict T from h. Concretely,
it is assumed that τ is parameterised by a matrix W and trained to predict T from
h. Using W, one can collapse the data onto its nullspace N(W)2 with a projection
matrix PN(W). This guarantees WPN(W)h(T) = 0 , i.e., the information used to classify
T is linearly removed. By repeating this process i times until no classifier achieves

2 The nullspace represents the subspace of the input feature that is not used by the classifier to predict
the protected attribute. In this case, the protected attribute is translationese.



54 debiasing of translation artifacts

above-majority accuracy, INLP neutralises all features that Wi uses for predicting T

from h̃:

h̃ := PN(W1)PN(W2)...PN(Wi)h (6)

Debiased embedding dINLP(w) is represented as:

dINLP(w) := Pw (7)

where P is the guarding projection matrix, obtained by iteratively obtaining nullspace
projections PN(Wi) and computing P = PN(Wi)PN(Wi−1)...PN(W0), and h(x) = Px

is the guarding function.
The steps of the algorithm are as follows:

Algorithm 1 Iterative Nullspace Projection (INLP)

Require: Training set X of vectors and their corresponding protected attributes Z,
with the specified number of iterations denoted as n

Output: The resulting projection matrix P

function GetProjectionMatrix(X, Z, n)
Initialize Xprojected ← X and P ← I

for i = 1 to n do
Wi ← TrainClassifier(Xprojected,Z)
Bi ← GetNullSpaceBasis(Wi)

PN(Wi) ← BiB
⊤
i

P ← PN(Wi)P

Xprojected ← PN(Wi)Xprojected

end for
return P

end function

We are interested in debiasing translation artifacts T from latent representation
spaces. To achieve this, we adapt the Iterative Null Space Projection (INLP) algorithm
to mitigate translationese-induced bias in both word and sentence embedding spaces.
To address bias in sentence representations, we use predefined labels (original vs. trans-
lated), where translated labels correspond to protected attributes T . However, unlike
sentence-level bias, identifying simple contrastive word pairs to capture translationese
is not always possible for word-level bias. Therefore, we develop two techniques to
remove translationese bias in word representations. The following sections detail these
approaches.
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4.3.2 Translationese Directions

To mitigate translationese-induced bias in both word and sentence embedding spaces
using the Iterative Null Space Projection (INLP) algorithm, a unique direction in the
latent space that corresponds to translationese, our protected attribute, is required.
For the direction in sentence representations, we use pre-defined labels (originals
vs. translated), where the translated labels correspond to the protected attribute T .
However, this poses a challenge for getting translationese direction at the word-level,
as unlike gender and profanity, translationese cannot generally be captured using

simple contrastive word pairs, such as
→
he −

→
she, for gender mitigation. Therefore, to

quantify the contrastive subspaces of translationese (i.e., original and translated), we
propose two techniques:

(i) Stepwise Aligned Space Projection, where we construct the subspaces based on
the concept of word-usage between original and translated data. We extract lists of
identical word pairs and analyse how their use differs in translated and original data.
Instead of contrasting word pairs, we identify differences in original and translated
word embedding spaces for the same word, indicating the presence of translationese
in the embeddings.
(ii) Alternatively, we suggest a simpler approach, Direct Joint Space Projection,

that utilises a joint embedding space where words are simply tagged according to
their origin (translated or original), without the need for a word list.

In the following sections, we describe these two approaches in detail.
Stepwise Aligned Space Projection. In order to estimate the unique translationese

direction, we derive a list of words (G) used differently in translationese T and original
O data using the usage change concept from Gonen et al. (2020). The same word used in
different data sets (original and translated) is likely to have different neighbours in the
two embedding spaces. We only use words from the intersection of both vocabularies
O and T . We compute the score for context change across the embeddings O and T of
the two data sets by considering the size of the intersection of two sets where each
word in a corpus is represented as its top-k nearest neighbours (NN) in its embedding
space:

scorek(w) = −|NNk
O(w)∩NNk

T(w)| (8)

where NNk
i (w) is the set of k-NN of word w in embedding space i.

The smaller the size of the intersection, the more different the word is used in the
two data sets (and words with the smallest intersection can be seen as indicators of
translationese). Given O and T, we collect a ranked list of about 500 words with the
smallest intersection as our translationese word list G. G allows us to identify the seed
translationese direction for INLP. This translationese direction is later used to obtain
the debiased space.
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Next, we compute a joint word embedding space J from the concatenation of the
translated and original data, T and O. Since this joint space J includes both original
and translationese signals, we then align the previously unrelated O and T spaces to
this embedding space J, using VecMap3 (Artetxe, Labaka, and Agirre, 2018), producing
aligned spaces Õ and T̃, and resulting in an extended single embedding space where
T and O are aligned to J. Next, we compute the translationese direction v of the same
word w in the two embeddings spaces, Õ and T̃, using,

v(w) = T̃[w] − Õ[w],∀w ∈ G

v =
1

N

N∑
i=1

vi

(9)

where T̃[w] is the embedding of the word w in the translated data, Õ[w] is the
embedding of the word w in the original data, N is the number of words in the
wordlist, and vi is the translationese direction vector for the ith word in the wordlist.
Finally, we compute the similarity of words in J along the directions v and −v, to
divide them into two subspaces, translationese and non-translationese, respectively.

Direct Joint Space Projection. This approach involves directly building the em-
beddings of a specific word w from the original (O) and translated (T) datasets into a
single joint space J ′. We achieve this by annotating w as either wo or wt on surface
word forms to distinguish between the two embeddings of the same word coming
from the original and translated datasets. By doing so, we can easily track and dif-
ferentiate between the two embeddings of w in the same embedding space J ′, which
is a simple concatenation of the two datasets. This approach eliminates the need to
compute the translationese direction vector v to group the subspaces, as well as the
complexity of maintaining and aligning O, T, J, Õ and T̃ spaces.

4.4 Experimental Setup

4.4.1 Datasets

Data. We use the Europarl corpus annotated with translationese information from
Amponsah-Kaakyire et al. (2021) previously detailed in Section 3.3.1. We focus on
three languages: English (En), German (De) and Spanish (Es). The corpus provides
originals in the three languages (L1) and translations into these three languages that

3 VecMap is a mapping algorithm proposed by (Artetxe, Labaka, and Agirre, 2018) that learns a linear
transformation from the source language to the target language using a bilingual dictionary, and
it aligns new embeddings from the source and target languages in a common vector space. The
mapping algorithm involves a multi-step series of transformations of the source and target spaces
that generalises many previous approaches. Their code is open-sourced at-https://github.com/
artetxem/vecmap

https://github.com/artetxem/vecmap
https://github.com/artetxem/vecmap
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fastText mBERT mBERT XLM de-
Avg. CLS pool CLS biased

En-De 0.64 0.73 0.79 0.71 0.50

En-Es 0.71 0.78 0.83 0.77 0.50

De-En 0.68 0.78 0.84 0.77 0.50

De-Es 0.69 0.79 0.86 0.79 0.50

Es-De 0.71 0.77 0.85 0.77 0.50

Es-En 0.72 0.76 0.82 0.77 0.50

Table 9: Sentence Embedding Classification accuracy on original versus translationese using different
models. After INLP debiasing, translationese classification reduces to random 50% accuracy in all cases.

Direct Joint Stepwise Aligned de-
INLP.Single INLP.Avg biased

En-De 0.98 0.99 1.00 0.50

En-Es 0.92 1.00 1.00 0.50

De-En 0.96 1.00 0.99 0.50

De-Es 0.91 1.00 1.00 0.50

Es-De 0.93 0.99 0.99 0.50

Es-En 0.95 1.00 1.00 0.50

Table 10: Classification accuracy on original versus translationese with word embeddings using our two
approaches, before and after debiasing with INLP.

come from original texts in the other two (L2). We use the notation L1–L2 to refer to
the different sets in Table 9 and Table 10. For example, in En-De, L2 refers to English
text translated from German. For each corpus, there is an equal number of translated
and original sentences: 42k for De–En, De–Es, En–De, En–Es, Es–De and Es–En. We
use 70% of the sentences for training, 15% for development and 15% for testing, and
note that we do not provide a stylistic analysis as previously discussed in Section 3.3.

4.4.2 Model Specifications

We apply the debiasing strategies described in Section 4.3 using the following model
specifications.

4.4.2.1 Translationese in Sentence Representations

We use INLP to study the impact of removing the translationese attributes T from
semantic representations, via a binary classification task. The binary classifier learns
to distinguish between original and translationese sentences. In our setup, labels Y
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correspond to original and translationese and act as protected attributes. We consider
three input representations as follows:

(i) fastText (Joulin et al., 2016): we compute an average of all token vectors in
the sentence.

(ii) mBERTCLS (Devlin et al., 2019): we use the [CLS] token in mBERT as sentence
representation.

(iii) mBERTpool(Devlin et al., 2019): we use mean pooling of mBERT’s contex-
tualised word embeddings.

(iv) XLMCLS(Conneau et al., 2019): we use the [CLS] token from XLM-RoBERTa.

In our experiments, we use a logistic classifier on top of sentence embeddings h

obtained with 4 models defined above, without any additional fine-tuning to the
translationese classification task.

4.4.2.2 Translationese in Word Representations

In our word-level experiments, we use the translated and original parts of the data
described in Section 4.4.1 to estimate the word embeddings O and T and use k=1000

nearest neighbours in Equation 8. We observe a significant value of k results in
large neighbour sets for each word in the two corpora, resulting in a more stable
translationese wordlist G. For our experiments in Section 4.3.2 we only consider words
attested at least 200 times in the data. The extraction of translationese wordlists is
shown in Figure 8. Section 4.5.4 shows the top 50 elements for all the word lists.

To initialise the INLP algorithm for the experiments in Section 4.3.2, we use Equa-
tion 9 in two ways: (i) INLP.single: with a direction vector created from the dif-
ference between two aligned spaces for the single highest ranked word in G, and
(ii) INLP.avg: by averaging the differences of all words in G.

4.5 Evaluation and Analysis

4.5.1 Translationese Classification Performance

First, we evaluate the effectiveness of mitigating translationese bias from latent repre-
sentations for the internal task of classifying translationese.

The first four columns in Table 9 summarise the translationese classification at
sentence level accuracy achieved by the four models. mBERTpool achieves the best
performance for all languages, while fastText trails the pack. The final column in
Table 9 shows that INLP is close to perfection in removing translationese signals for the



4.5 evaluation and analysis 59

Figure 8: Extraction of the translationese wordlists based on the intersection of their top-k nearest
neighbours in Original and Translationese spaces.

linear classifiers, reducing accuracy to a random 50%. This indicates the effectiveness
of INLP in debiasing translationese from sentence representations.

We compare the performance before and after debiasing using our two word-
level debiasing methods in Table 10. As expected, debiasing reduces classification
accuracy for all language pairs from ∼100% to ∼50% for both methods, indicating the
effectiveness of INLP in debiasing translationese from word representations.

4.5.2 Semantic evaluation

To ensure that the quality of the word representations is not compromised by the
debiasing process, we conducted an evaluation on the performance of the original and
debiased embeddings using the MultiSIMLEX benchmark (Vulić et al., 2020) for word
analogy tasks. However, as MultiSIMLEX does not include German, we utilised the
German-Simlex dataset from Leviant and Reichart (2015) for semantic evaluation for
German.

We found that after debiasing, the Spearman’s ρ correlation coefficients showed
negligible decreases of only 0.02 on En-De and En-Es, 0.01 on Es-En and Es-De, and
a slight decrease of 0.3 on De-En. However, there was an increase of 0.01 on De-Es.

De-En De-Es En-De En-Es Es-De Es-En

466 510 429 483 547 504

Table 11: Size of translationese word lists created with the usage change algorithm (Gonen et al., 2020).
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Figure 9: Clustering on Direct Joint Space, before (up-side) and after (down-side) debiasing.

These results indicate that the debiasing process had a minimal impact on the quality
of the debiased word representations.

4.5.3 Clustering

The visualization in Figure 9 depicts the t-SNE (Maaten and Hinton, 2008) projection
of the tagged tokens in Direct Joint Space Projection before and after debiasing with
INLP. It is evident from the results that the original and translationese classes are
no longer linearly separable after the debiasing process, which was followed by the
projection of the representations on their null-spaces. Similar to Ravfogel et al. (2020),
we also quantify this change using V-measure, which evaluates cluster purity. To assess
the difference, we perform K-means clustering with K = 2 clusters on the vectors.
Specifically, we calculate the V-measure (Rosenberg and Hirschberg, 2007), which
measures the degree of overlap between the two clusters and the groups. Figure 9

illustrates that, after intervention, the vectors become increasingly mixed and are no
longer clustered by translationese.

4.5.4 Translationese Word Lists

Table 11 displays the size of the translationese word lists produced by the usage
change algorithm of Gonen et al. (2020), which varies depending on the language.
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N Stability Score

50 100 500 1000

0.7 0.71 0.88 0.93

Table 12: Stability of Joint Space Wordlist

4.5.5 Stability of Stepwise Aligned Space Wordlist

We determine the stability of the word lists with the intersection of top-N words in
the ranked lists, l1 and l2, retrieved from three runs of the usage change algorithm
(Gonen et al., 2020), taking the two corpora O and T as input. We formulate this as:

N-sized overlap(l1, l2,N) =
|lN2 ∩ lN2 |

N
(10)

where lNi is the set of top N ranked words in ranking li. As the value of N increases,
the stability score also increases. This suggests that larger joint space wordlists are
more stable and consistent across different sources than smaller ones. Specifically, the
stability score increases from 0.7 for N=50 to 0.93 for N=1000, which is a substantial
improvement.

4.5.6 Extrinsic Evaluation

We demonstrate the practical utility of our translationese debiasing method on the
practical task of Natural Language Inference (NLI). To achieve this, we investigate the
impact of removing translation-induced bias from the translated data and analyse its
effect on NLI performance. In NLI, the goal is to determine the relationship between
two sentences - a premise and a hypothesis - and classify it into one of three categories:
entailment, contradiction, or neutral.

Recent work by Artetxe, Labaka, and Agirre (2020) has shown that existing NLI
datasets contain a significant amount of lexical overlap between the premise and
the hypothesis. This overlap is often utilised by neural NLI models to achieve high
accuracy in their predictions. However, when the premise and hypothesis are inde-
pendently paraphrased using translation and back-translation, the lexical overlap
is reduced, leading to decreased model performance. Even though reducing lexical
overlap may lead to a reduction in model performance, it may well improve model
generalisation. If the model is trained on data where the premise and hypothesis are
translated together, it may learn to rely on superficial patterns, e.g., a high degree of
lexical overlap to make predictions that the premise and hypothesis entail each other.
This is also demonstrated in the work of Artetxe, Labaka, and Agirre (2020) on other
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Approach SNLI Model
Original Back-translated Debiased

Sym
Word-Joint 67.2±0.1 64.1±0.2 64.7±0.1

Word-Aligned 67.8±0.1 64.6±0.2 64. 9±0.2

Asym
Word-Joint 67.2±0.1 64.4±0.2 65.1±0.2

Word-Aligned 67.8±0.1 65.2±0.2 65.7±0.2

Table 13: Test set accuracies (5 runs average) for models trained and tested on original SNLI, back-
translated with German as pivot and back-translated debiased at word-level

tasks such as XQuAD (Artetxe, Ruder, and Yogatama, 2019) and MLQA (Lewis et al.,
2019).

To address this issue, we evaluate the impact of our INLP-based translationese
debiasing approach on the performance of NLI models trained on translated data. We
create a Back-Translated (BT) NLI dataset by translating the premise and hypothesis
of the original SNLI data independently. We then train two NLI models: one on the
Original data and the other on the BT data. To reduce the impact of translationese
artifacts resulting from back-translation, we apply sentence and word embedding
debiasing techniques, as described in Sections 4.4.2.1 and 4.4.2.2, to the embeddings
generated from the BT data. We then use these debiased-BT embeddings to train a
third debiased NLI model (Debiased), as shown in Table 13.

To evaluate the effectiveness of our translationese debiasing approach, we conduct
experiments in two different scenarios: (i) Symmetric [Sym] and (ii) Asymmetric
[Asym]. In the Symmetric scenario, we test the Original NLI model on an original
test set, while the BT and debiased NLI models are tested on BT test data. In the
Asymmetric scenario, all models are tested on original test data. We use the Symmetric
scenario to determine if debiasing the model trained on the translated train-test data
can bring its performance closer to that of the model trained on the original train-
test data. In the Asymmetric scenario, we investigate the asymmetry between the
original test data and the BT-NLI training data and assess whether our translationese
debiasing of the BT training data can compensate for this asymmetry and improve
NLI performance. Below, we describe our experimental settings.

4.5.6.1 Experimental Setup

Data. We use the large-scale Stanford Natural Language Inference (SNLI) dataset
(Bowman et al., 2015), which contains 570,000 sentence pairs in the training set that
have been manually labeled as entailment, contradiction, or neutral. The development
and test sets consist of 10,000 examples each, and are used in the same manner as
in the original SNLI dataset. The back-translated variant of the data is generated
using German as the pivot language. This is accomplished by utilising the pre-trained
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Figure 10: Sentence level NLI debiasing in Symmetric settings (left), Asymmetric settings (right)

models of Facebook-FAIR’s WMT-19 news translation task submission (Ng et al., 2019)
to translate the English sentences into German and then back into English. This results
in a new set of English sentences that differ slightly from the original sentences.
Models. We train three distinct natural language inference (NLI) models, with each
model intended for use with a different set of embeddings. The models were trained
using the embeddings from the original data, embeddings from the back-translated
data, and debiased embeddings from the backtranslated data, respectively.

For the word-level setup, we use a single hidden BiLSTM layer followed by a
standard feedforward output layer on top of frozen fastText word embeddings for
the 3-class NLI classification. The computation of word embeddings and debiasing
follows the setup described in Section 4.4.2.2.

In the case of sentence-level debiasing, we use the BERTpool approach discussed in
Section 4.4.2.1. This involved using a multiclass logistic classifier on top to predict the
labels.

Hyperparameters. Each individual run took approximately 1.5 hours to complete
using a GTX1080Ti GPU. For the SNLI sentence-level experiment presented in Table 13,
each classification and debiasing step required approximately 2 hours on a V100-32 GB
GPU. The fastText model was set with a minimum word count of 5 and an embedding
dimension of 300. The Logistic Regression model was trained with the ’saga’ solver,
L2 regularization, a maximum of 7 iterations, and additional settings such as warm
start enabled, verbosity set to 5, and a random state of 23. The BiLSTM model used
a hidden dimension of 300, a dropout rate of 0.2, and a batch size of 32, optimized
with Adam using a learning rate of 0.0001 for 15 epochs. For SNLI experiments, the
SNLI-sentence model had 45 classifiers and a maximum of 1500 iterations, while
the SNLI-Aligned (word) and SNLI-Joint (word) models had 34 and 35 classifiers,
respectively. Each individual run took approximately 1.5 hours to complete on a
GTX1080Ti GPU, whereas the SNLI sentence-level experiments required around 2

hours per classification and debiasing step on a V100-32GB GPU.
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4.5.6.2 Results

Table 13 displays the classification accuracies at the word-level for (i) and (ii), while
Figure 10 depicts the same for the sentence level. As observed, the outcomes are
consistent with Artetxe, Labaka, and Agirre (2020) in that models trained on Original
data perform better than those trained on BT data in both the Sym and Asym scenarios.
Additionally, Table 13 indicates that debiasing of translationese leads to a modest
improvement in classification accuracy over back-translated on SNLI-debiased for all
models, with only a minor improvement at the word-level but a significant boost at
the sentence level. This may be attributed to the fact that translationese comprises both
lexical and syntactic phenomena, which are more accurately captured at the sentence
level. The results presented in Table 13 suggest that debiasing translation artifacts
aids in reducing the asymmetry between the translated train and the original test set.
Consequently, rather than translating the entire test set to align with the training set
in transfer-learning tasks, debiasing the training set for translation artifacts appears to
be a promising approach for future research.

It is important to acknowledge that when attempting to debias BT data, it is impos-
sible to recreate the same lexical overlap as in the original SNLI dataset. Consequently,
the primary objective of this investigation was not to fully restore the accuracy achieved
on the original data. Instead, its aim was to demonstrate that translation generates
additional biases that can influence the final task, and that debiasing techniques are
more effective at minimising these new machine-generated biases.

Finally, for a complex task such as translationese debiasing, linear intervention
alone may not be sufficient. As a result, non-linear guarding approaches need to be
investigated further.

4.6 Conclusion

This chapter addresses the issue of translationese artifacts, which have been shown to
bias the performance of NLP tasks involving translated data. Therefore, to mitigate the
impact of translationese, we propose a new approach: translationese debiasing. To this
end, we extend the Iterative Null Space Projection (INLP) algorithm (Ravfogel et al.,
2020), originally designed to mitigate gender attributes, to address translationese-
induced bias in both word and sentence embedding spaces, providing an answer to
RQ2.

We evaluate the effectiveness of our approach by comparing the classification
performance before and after debiasing on the translationese classification task. To
this end, we explore debiasing translationese artifacts in sentence-level embeddings
with INLP. As expected, the INLP-based linear translationese debiasing results on
static word embeddings are as “perfect” as our sentence-level results, reducing the
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performance of a linear translationese classifier on the debiased data to chance.
Additionally, we also develop two techniques for debiasing translationese at the word
level. The Stepwise Aligned subspace approach is akin to the subspace construction
method proposed by Bolukbasi et al. (2016) and Ravfogel et al. (2020) for gender
debiasing. The Direct Joint subspace approach is a simplified method that operates
directly on the joint space without the use of a separate translationese word list
and multiple independently computed and subsequently aligned subspaces. We
demonstrate that our debiasing strategies effectively attenuate translationese signals
in both of these spaces.

In addition, we evaluate the effects of debiasing translation artifacts on a prac-
tical NLI task in two settings. Although we achieve perfect performance for the
translationese classification-based debiasing task with INLP, this only translates into
modest improvements resulting from debiasing translation artifacts resulting from
back-translation with neural machine translation in an NLI task, with slightly better
but statistically significant results for sentence-level debiasing. This indicates that our
debiasing method is effective in reducing translation artifacts, but such bias is more
complex than what can be perceived and mitigated by a linear classifier.

Finally, it should be noted that our study represents the first attempt to address
translationese biases through latent representations in word and sentence embedding
spaces. However, it is important to acknowledge that our research does not analyse
the actual surface form of the debiased outputs. Therefore, we plan to incorporate
human evaluation of the generated outputs as an essential part of our future research.





5
Unsupervised tracing of Translationese in Semantic

Spaces

In this chapter, we present a new, graph structure-based approach to detect trans-
lationese in semantic spaces in an unsupervised manner without the need for any
explicit linguistic labels. Previous studies use a combination of lexical and syntactic
features to show that footprints of the source language remain visible in translations.
In this chapter, we sidestep looking at manually defined (often linguistic) features
that contribute strongly to translationese classification and introduce a methodology
for tracing translationese in semantic spaces based on word usage and the notion
of isomorphism. Specifically, we show that using our proposed graph-isomorphism
methods, semantic difference between original target language data and translations
into this target language can be detected and that such distances between both are far
from being random. We find that isomorphism weakens consistently with increased
linguistic distance among language families, reflecting the footprints of the source
language on the translation. Following this, we show that our proposed methods are
robust under a variety of training conditions, encompassing data size, type, and choice
of word embedding models. Additionally, our findings indicate that these methods
are language-independent, in the sense that they can be applied to multiple languages
and are not limited to a specific language or language family.

5.1 Introduction

Parts of linguistics have long been concerned with studying cross-linguistic variation
in order to classify languages genetically and typologically. Historical comparative
linguistic methods are used to determine the genetic relationships between languages
by analysing concept lists of words (Dyen, Kruskal, and Black, 1992; Swadesh, 1952)
that share a common origin and have similar meanings and pronunciations in multiple
languages. Linguistic typology studies the distinctness of languages and seeks to
make generalisations about cross-linguistic variation at different levels of linguistic
representations. Computational analysis methods reconstruct language distances
based on measurable linguistic patterns.

67
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Studies have also shown that some aspects of language differences are so profound
that even when translated into another language, the structure of the source language is
still preserved in translation. Rabinovich, Ordan, and Wintner (2017) cluster languages
based on linguistically inspired features of their translations into the same target
language and show that syntactic footprints of the source language exist in the
translations which can be used to estimate phylogenetic similarities between languages.
This phenomenon is known as source language interference (Toury, 2012) or shining-
through (Teich, 2003) of the source language on the translated text. Computational
approaches (Bjerva et al., 2019) have been developed to analyse raw words, part-of-
speech tags, phrase-structure, or dependency-based input sequence representations
of the data to predict language trees and investigate whether predicted trees reflect
phylogenetic, geographic proximity, or syntactic (structural) differences. However, it
remains unexplored whether interference of the source language or shining-through
exists in embedding-based semantic space, and if so, whether it can be detected in an
unsupervised manner, which leads us to formulate our third research question:

RQ3: Is it possible to track translationese in semantic spaces in an unsupervised manner?

To answer this question, we propose a novel approach for unsupervised tracking of
translationese in semantic spaces, which does not rely on explicit linguistic labels. Our
method is based on graph-isomorphism approaches that examine departures from
isomorphism between embedding spaces built from original target language data and
translations into this target language. By comparing the normalised distances between
these spaces, we are able to identify systematic evidence of translationese. Specifically,
we find that as isomorphism weakens, the linguistic distance between etymologically
distant language families increases, providing evidence that the translationese signals
are linked to source language interference.

In a multilingual context, non-isomorphic embedding spaces have been attributed
to both typological disparities between languages and a poorly conditioned training
setup (Vulić, Ruder, and Søgaard, 2020). More specifically, it has been conjectured
that there exist typological discrepancies between the languages reflected in them
having different structural or syntactical characteristics — making it difficult to align
the semantic spaces. One of the other reasons is the poorly conditioned training
setup, meaning that the model was not trained on sufficient or diverse enough data to
accurately represent the semantics of the language.

In a monolingual setting, the concept of isomorphism seems not directly applicable
because there is after all only one language involved. However, here we have two
versions of a target language: originally authored target language and translations
into the target language, and we investigate divergence from isomorphism between
independently computed representations of the two. To explore this, we examine
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our graph-isomorphism methods on a variety of data and modelling conditions, en-
compassing data size, type, and choice of word embedding models. Additionally,
we expand our research to non-Indo-European languages and show that our isomor-
phism approaches are language-independent, in the sense that they can be applied to
multiple languages and are not limited to a specific language or language family.
The rest of our chapter is structured as follows. We begin by examining related re-
search in Section 5.2. In this section, we focus on vector language representations
and language phylogeny inference. In Section 5.3, we introduce the concept of graph
isomorphism and present our novel approach, the Spectral Graph-based measure
(SGM), along with Eigenvector Similarity (EV) and Gromov Hausdorff (GH) distance.
We explain our experimental setup in Section 5.4. Then, in Section 3.6, we provide an
experimental account of the isomorphism metrics, deduce language family relation-
ships, and relate them to linguistic benchmarks. We conduct robustness experiments in
Section 5.5.4 and contrast our work with prior research in Section 5.5.3. Finally, in Sec-
tion 5.5.5, we broaden our analysis to non-Indo-European languages and summarize
and conclude our study in Section 3.7.

5.2 Related Work

Quantifying similarities between languages has been a focus in cross-lingual studies.
Cross-lingual representations are frequently evaluated by comparing distances in
vector spaces with cross-lingual semantic similarity judgments made by humans
(Cer et al., 2017). Until recently, there was no formal way to measure the degree to
which common word relations1and isomorphism, which are underlying assumptions
in cross-lingual alignment methods, actually hold true between pairs of languages.
Søgaard, Ruder, and Vulić (2018) proposed a measure of the geometric similarity of
embedding spaces in the form of Laplacian eigenvalue differences, which was inspired
by the approach proposed by Shigehalli and Shettar (2011). Later, Patra et al. (2019)
derived another metric which measures the similarity of two embedding spaces a
priori using Gromov-Hausdroff distance, and shows a strong correlation with Bilingual
Lexicon Induction (BLI) performance. Wendlandt, Kummerfeld, and Mihalcea (2018)
investigated the stability of word embeddings through various random initializations.
To measure the stability of the space, they utilised the overlap between the top K
nearest neighbours of each word in the space. To the best of our knowledge, our work

1 The term “common word relations” refers to the expectation that when translating words between
languages, a direct, one-to-one correspondence between words exists, indicating shared semantic or
syntactic relationships. However, this assumption does not always hold true. For instance, in closely
related languages like English and French, translating a word like “my” from English may result in
multiple target translations such as “mon”, “ma,” and “mes,” influenced by factors like gender, case,
and number. Similarly, English verb conjugations like “goes” and “go” may correspond to various
conjugations in French, depending on factors like person, number, case marking, agglutination,
gender, and articles, among others.
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is the first instance of spectral graph theory (Tenenbaum, De Silva, and Langford,
2000) being used to compute departures from isomorphism between representations
of two forms of a target language: originally authored target language and translations
into the target language.

Recent studies have used computational typology to investigate differences between
languages. Kolmogorov complexity metrics, for example, were utilised in statistical
modelling of linguistic distances (Kettunen et al., 2006). Seminal works of Baroni, Dinu,
and Kruszewski (2014), Eger, Hoenen, and Mehler (2016), and Thompson, Roberts,
and Lupyan (2018) provide evidence that semantic alignment between languages
correlates with the geographical distances between countries as well as with cultural
distances among societies speaking the languages.

Relations between languages can also be measured in monolingual original and
translationese representation spaces. Rabinovich, Ordan, and Wintner (2017) clustered
feature vectors with linguistically inspired features capturing morphological and
syntactic information extracted from originally authored and translated texts (in the
same target language) and show that phylogenetic language trees can be reconstructed
from the clusters. Bjerva et al. (2019) use the same dataset as Rabinovich, Ordan, and
Wintner (2017) in their neural language model (NLM)- and sequence-based approach
and argue that representation distance between languages can be better explained
by structural relatedness than by language genetics. Nikolaev et al. (2020) examined
the relationship between the predictability of translated texts and the differences in
morpho-syntax between the target and source language. The findings demonstrated
that translations from similar and distant languages were both predictable, but in dif-
ferent ways: structurally-similar source languages preferred the use of a smaller range
of syntactic patterns limited to those shared by two languages, which represented
one type of translational specificity. However, when translating from very diverse
languages, translators frequently created non-idiomatic versions that models trained
on the target language did not recognize. Several other analyses (Malaviya, Neubig,
and Littell, 2017; Oncevay, Haddow, and Birch, 2020) have attempted to disentangle
the typological factors that influence language representation distance.

At the same time, the similarity between languages can also be measured using
the (dis)similarities between their discrete linguistic properties. Such properties are
typically handcrafted and collected in typological databases such as URIEL (Littell
et al., 2017) which lists a large inventory of properties for 8000 languages of various
typological characteristics, such as overlap in syntactic features, or proximity along
phoneme features (Cysouw, 2013).

In this chapter, we investigate whether (i) translationese can be observed in
embedding-based semantic space, using (ii) unsupervised approaches in the form
of departures from isomorphism between spaces built from original target language
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Figure 11: Pruned gold tree of Serva and Petroni (2008), SP08 in text from Rabinovich, Ordan, and
Wintner (2017).

and translations into this target language. Thus, in the next section, we introduce
graph-isomorphism methods.

5.3 Isomorphism

In graph theory, two graphs X and Y are isomorphic if and only if there exists a
bijective function f : X→ Y between them, such that each node x ∈ X has exactly one
counterpart y ∈ Y, and for any two nodes x1, x2 ∈ X with an edge between them,
there must be a corresponding edge between f(x1) and f(x2) in Y, and vice versa.

Given a matrix of word embeddings, a graph representation can be constructed by
defining the nearest neighbor relations for each embedding in the embedding space
X. Specifically, for each x ∈ X, a directed graph2 can be formed such that the edges
represent the cosine nearest neighbors to x.

To test for isomorphism between two embedding spaces X and Y, we can represent
both spaces as adjacency matrices A(X) and A(Y), respectively. Then, we can examine
whether a bijective function exists that can map the adjacency matrix A(X) to A(Y). If
such a function exists, then the two embedding spaces are isomorphic.
We introduce our method to quantify a notion of distance between languages based on
the word-usage using the notion of isomorphism. For a vocabulary V = v0, v1, ...., vn
in language ℓ, we define its graph as G(V ,E,w), where V denotes the set of vertices
corresponding to the vocabulary words; E = e0, e1, ..., em is a set of edges; and w(ei)

are non-negative edge weights.
After mapping words onto points vi

ℓ as vectors, the distance between words is
defined as the distance between their vectors. We quantify the similarity between
languages ℓ1 and ℓ2 through a distance function between their graphs d(Gℓ1 ,Gℓ2).
The structural congruence in graphs, under isomorphism, naturally extends to metric
spaces (X, dX) and (Y, dY), highlighting a fundamental mathematical correlation,

2 The importance of directed edges lies in accurately representing asymmetric nearest neighbor
relations.
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where the vertex set of a graph, coupled with the standard vertex distance function,
defines a metric space. Here, X and Y represent sets of words, and dX and dY are
metric distances. Our goal is to establish an isomorphism f : X→ Y that serves as a
distance-preserving transformation. This means that for any points x1 and x2 in X,
the distance between f(x1) and f(x2) in Y mirrors the distance between x1 and x2 in
X such that, dY(f(x1), f(x2)) = dX(x1, x2).

5.3.1 Gromov-Hausdorff (GH) Distance

The first measure we use to quantify the similarity between languages is the Gromov-
Hausdorff distance (GH) proposed by Patra et al. (2019).

Given two metric spaces (X, dX) and (Y, dY), we start with the Hausdorff distance,
defined as:

dH(X,Y) = max

{
sup
x∈X

d(x,Y), sup
y∈Y

d(y,X)

}
(11)

where d(a,B) = inf b∈B∥ a− b ∥2 is the distance of point a in A from set B. Informally,
d is the largest distance needed to travel from a point in A to a point in B.

However, the Hausdorff distance is easily affected by isometric transformations.
The GH distance which is the infimum of the Hausdorff distances under all possible
isometric transformations is a more robust measure. GH distance reduces the distance
over the isometric transforms f and g between X and Y as follows:

dGH(X,Y) = inf
f,g

dH(f(X),g(Y)) (12)

The computation of Hausdorff distance is NP-hard, and hence we follow Patra et al.
(2019) and compute the Bottleneck distances (Chazal et al., 2009) which are considered
to be reasonable lower-bounds.

5.3.2 Eigenvector Similarity (EV)

Søgaard, Ruder, and Vulić (2018) used this similarity to measure the distance between
two embedding matrices corresponding to two languages ℓ1 and ℓ2, via their Laplacian
matrices, L. They argue that the Laplacian eigenvalues are good compact represen-
tations for the graph Laplacian and their comparison can consequently capture the
degree of isomorphism.

Let A be an adjacency matrix representing the nearest neighbor relations of the
top k most frequent terms in an embedding space. Let D be the degree matrix of
this adjacency matrix, which is a diagonal matrix representing the number of edges
into each node in the graph. Then the Laplacian matrix L is then given by D−A.
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Once the Laplacian matrix is obtained, its eigenvalues are calculated using eigen-
decomposition to determine the spectrum of a graph, which provides an estimate of
the interconnection between the nodes of the graph. Finally, Søgaard, Ruder, and Vulić
(2018) take the square difference of the two sets of eigenvalues corresponding to two
languages ℓ1 and ℓ2 to obtain the squared eigenvalue difference using the following
formula to obtain their EV measure:

∆ =

k∑
i=1

(λ1i − λ2i)
2 (13)

We apply the same idea to characterize distinctions between two spaces, denoted as
X and Y, representing the original data in the target language and translations from
various source languages into the same target language. We first find the smallest k1
in Equation 13 such that the sum of its k1 largest eigenvalues

∑k1

i=1 λ1i is at least 90%
of the sum of all its eigenvalues. Analogously, we find k2 and set k = min(k1,k2).

The graph similarity metric returns a value in the half-open interval [0,∞), where
values closer to zero indicate better isometry between the two languages. Or in other
words, if the value of ∆ is closer to zero, it indicates that the eigenvalues of the two
Laplacian matrices are more similar, and therefore the two spaces corresponding to
two languages ℓ1 and ℓ2 are more likely to be isomorphic. This means that the distance
between any two points in one space is approximately equal to the distance between
their corresponding points in the other space, indicating a better isometry between
the two spaces. On the other hand, if the value of ∆ is larger, it indicates that the
eigenvalues of the two Laplacian matrices are more dissimilar, and therefore the two
spaces are less likely to be isomorphic. This means that the distance between points
in the two spaces may not be preserved, leading to a poorer isometry between the
languages.

5.3.3 Spectral Graph-based Matching (SGM)

Our third and new measure is based on the Isomap algorithm of Tenenbaum, De Silva,
and Langford (2000).

Our method differs from that of Søgaard, Ruder, and Vulić (2018) in one key way:
our method to build the underlying graphs (Gℓ1 and Gℓ2) differs and is inspired by
the ideas of node representation in contemporary geometric and manifold learning
(Cayton, 2005). While EV (Søgaard, Ruder, and Vulić, 2018) samples subgraphs of
cross-lingual word pairs from the source and target language by computing the cosine
similarity, we build a weighted connected graph over the data points to capture better
neighbourhood relations and perform the spectral analysis on these.

Weights wij correspond to the distance between points i and j in the input space
(X, dX(i, j)). We connect each point only to its K nearest neighbours to consider more
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Algorithm 2 Isomap (Tenenbaum, De Silva, and Langford, 2000)

Input: Data vectors x1, x2, ..., xn ∈ Rd

Output: Lower-dimensional representation preserving data structure

Step 1: Construct Neighborhood Graph
Define graph G by connecting points i and j if dX(i, j) < ϵ (ϵ-Isomap) or if i is one
of the K nearest neighbors of j (K-Isomap). Set edge lengths equal to dX(i, j).

Step 2: Compute Shortest Paths
Initialize dG(i, j) = dX(i, j) if i, j are linked by an edge; dG(i, j) = ∞ otherwise.
for k = 1, 2, ...,N do

Update dG(i, j) = min(dG(i, j),dG(i,k) + dG(k, j)) for all i, j
end for
DG ← matrix of final shortest path distances between points in G

Step 3: Construct d-dimensional Embedding
Compute eigenvalues λp and eigenvectors vip of matrix τ(DG)
for p = 1, 2, . . . ,d do

Set the p-th component of the d-dimensional coordinate vector yi equal to√
λpv

i
p for all data points.

end for

geometrical information on the interaction between all vectors within the initial space
to improve the graph characterisation of the spaces. The value K(= 6) is chosen to
have similar edge density for all graphs. This is done for convenience, and while this
selection may seem somewhat arbitrary compared to epsilon neighbors3, its advantage
lies in capturing more contextual information from the interaction between data points
and their neighborhoods. We estimate the geodesic distances between vertices (points)
in the input space using shortest-path distances obtained with Dijkstra’s algorithm
(Dijkstra et al., 1959) on the constructed graph to minimize the sum of the weights
of their constituent edges. This resulting distance matrix captures the geometrical
information on the interaction between all vectors within the initial space, and is used
as the basis for our graphs. From this point onwards, the computation of the Laplacian
matrices and the final measure ∆ is performed in a similar fashion as Section 5.3.2.

5.4 Experimental Setup

In this section, we provide information on the data, and the vector spaces used for
computing deviation from isomorphism.

3 Epsilon neighbors define a neighborhood for a data point based on a specified radius or distance
threshold ϵ. Data points within this radius become its neighbors. Thus, the epsilon neighbors approach
adapts to the local data density, potentially capturing intricate local structures more effectively.
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5.4.1 Datasets

We use the same setup as Rabinovich, Ordan, and Wintner (2017), Bjerva et al. (2019),
and use the comparable portion of Europarl (Koehn, 2005) with translations from 21

European Union languages into English to minimize the impact of domain difference.
The tokens per language vary, ranging from 67 k tokens for Maltese to 7.2 M for
German. We refer to the multiple translations into English as Lj’s, where j=1,2,...,n;
and to originally written text in English as Le. This dataset is a superset of the one
described in Section 3.3.1; therefore, we do not conduct the stylistic analysis carried
out in Section 3.3.

We select a subset of translations from 16 languages covering four families: Romance
(French (fr), Italian (it), Spanish (es), Romanian (ro), Portugese (pt)), Germanic (Dutch
(nl), German (de), Swedish (sv), Danish (da)), Slavic (Czech (cs), Slovak (sk), Slovenian
(sl), Polish (pl), Bulgarian (bg)) and Baltic (Latvian (lv) and Lithuanian (lt)) into
English and English original (en) text.

For these 17 data sets, we define two settings, the full data condition and the small data
condition. The former makes use of the complete data in the Europarl edition available
for a language (recall that data size differs widely); for the latter, we randomly extract
m sentences, where m corresponds to the lower-bound data-size of our translated
data, i.e., the size of the Latvian corpus (118,525 words). We report results for the
full data setting and use the small data for robustness checks and comparisons with
existing literature.

5.4.2 Vector Spaces

Our data are original English Le or translations from language j into
English Lj’s. To obtain monolingual word embeddings for each dataset, we train
models under two conditions: full and small data. We tokenize and lowercase the data
using Moses (Koehn et al., 2007), and then apply fastText (Bojanowski et al., 2017) to
generate the embeddings. We select words that appear more than 5 times in the corpus
and train 300-dimensional embeddings. We use skip-gram with negative sampling
(Mikolov et al., 2013) with standard hyperparameters, such as character n-grams of
sizes 3 to 6 and a learning rate of 0.025. Finally, we mean center and unit normalise
the embeddings.

5.4.3 Typological Benchmarks

We estimate our isomorphism based results against the following two benchmarks:
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SP08 (Serva and Petroni, 2008). SPO8 is constructed by employing a pure lexico-
statistic method to measure distances between pairs of words in different languages.
To construct a distance between pairs of languages, the Levenshtein (edit) distance
is computed between words of an open cross-lingual list (Dyen, Kruskal, and Black,
1992) which contains the Swadesh list of 200 words for 96 languages for each pair of
words with the same meaning in one language pair. The distance of each language
pair is defined as the average of the distances between the word pairs resulting in a
number between 0 and 1 and is considered to be the lexical distance between the two
languages. These distances are then used to construct phylogenetic trees.

Rabinovich, Ordan, and Wintner (2017) use the pruned gold-tree of Serva and
Petroni (2008) as their gold standard, as shown in Figure 11. Their comparison metric,
is based on the L2 norm, which basically is the sum of squared deviations between
each pair’s gold-tree distance g (SP08) and their computed distance P based on
linguistic features:

Dist(P,g) =
∑
i,j

(
DP(li, lj) −Dg(li, lj)

)2 (14)

URIEL. The URIEL knowledge base is a compilation of various linguistic resources,
including the World Atlas of Language Structure (WALS) (Dryer, 2009), PHOIBLE
(Moran, McCloy, and Wright, 2014), Ethnologue (Lewis, Simons, and Fennig, 2015), and
Glottolog (Nordhoff and Hammarström, 2011). These resources provide information
on various linguistic features of languages, such as phonology, syntax, and grammar.
Based on these linguistic feature vectors, URIEL provides precomputed distance
statistics between any language pairs stored in the database in terms of various metrics
including genetic, geographical, syntactic, and phonological inventory distances. These
distances are often deemed to be very useful for guiding cross-lingual transfer tasks
(Agić, 2017; Cotterell and Heigold, 2017; Lin et al., 2019).

5.5 Evaluation and Analysis

Our analysis below provides evidence that translationese, here specifically the in-
terference of source languages in translated text, can be traced in semantic word
embedding spaces. If we observe a weakening of isomorphism going hand in hand
with an increase in the linguistic distance between etymologically distant language
families, this provides evidence that the signals of translationese are linked to source
language interference, answering RQ3.

We employ our isomorphism measures for two tasks: (i) inferring language families
and (ii) conducting correlation analyses against two benchmarks, SP08 and URIEL. In
addition, we compare our graph-isomorphism methods to previous approaches that
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Figure 12: Normalised distances between embedding spaces for original en and translations into en

from 16 languages given by our three distance measures using 2 different numbers of data points.

Figure 13: Normalised distances between embedding spaces for original en and translations into en

from 16 languages given by our three distance measures using 2 different numbers of data points.

rely on linguistic assumptions. Furthermore, we assess the robustness of our proposed
methods and investigate their applicability to non-European languages.

5.5.1 Language Distance Measures

First, we conduct an experiment to determine the distance between vector spaces
created from original target language (English) data and translations into the target
language. Specifically, we calculate each metric over the top-n-most common words
shared between originals in the target language and translations into the target
language, where we explore the impact of different graph sizes by varying n between
1000, 1500, 2500, and 3500. It should be noted that achieving isomorphism requires
having the same number of components (i.e., vertices and edges) in the graphs.

Figures 12 and 13 depict the results of our analysis using normalised distances. We
observe that the behavior of the metrics varies depending on the number of top-n most
frequent data points considered. Specifically, SGM is the most stable measure across all
configurations, with the highest variance observed for 1000 points. EV exhibits greater
variability in distinguishing language similarity, whereas GH results are relatively
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stable when considering larger datapoints (2500 and 3500 points).
These variations can be attributed to the different nature of the metrics. GH computes
the distance between spaces solely based on the subset of n words, while SGM weights
the nearest neighbors of a word, which may lie outside the top-n, to construct the
initial graph as the selection of nearest neighbours is not constrained to the top-n
words. SGM connects each data point (word) to its K nearest neighbors in the input
space, regardless of whether these neighbours fall within the top-n words or not.
Thus, this approach takes more context into account for each point and requires fewer
datapoints to successfully describe the space. As expected, the results of EV and SGM
are more similar to each other than to GH since they follow a similar methodology,
except that SGM retains more context than EV.
Across all plots, we note the smallest differences between original English and transla-
tions from Germanic, followed by Romance languages, indicating that vector spaces of
these languages are more similar to each other in terms of semantic embedding space
based isomorphism measures. We also observe consistent weakening of isomorphism
with increased linguistic distances, specifically for Baltic and Slavic families, regard-
less of the method used, providing evidence that the distance between languages in
semantic space is greater for etymologically distant language pairs.
However, there are some outliers that vary from one measure to another. GH places
Romanian far from other Romance languages, while Danish and Swedish are located
relatively far from other Germanic relatives. In contrast, SGM (and to a lesser extent
EV) places Polish close to English. These discrepancies might point towards influences
beyond linguistic family relations, potentially stemming from geographical proximity
or distance, cultural influences, and historical interactions.

5.5.2 Correlation with Typology, Geography and Phylogeny Benchmarks

In this section, we estimate the Kendall correlations 4 between our results based on the
difference from isomorphism and SP08 (which represents genetic similarities), as well
as between our results and the averaged URIEL features introduced in Section 5.4.3
(which represent other rich typological similarities beyond genetics). The Kendall
correlation between SP08 and the selection of URIEL features is 0.56 reflecting the
different nature of the two benchmarks. Although both attempt to capture genealogical
differences, the source for this kind of information is different. Our results, summarised
in the top rows of Table 14, show that correlations with URIEL are higher than with
SP08, demonstrating that other factors besides genetics are reflected in the semantic
spaces. SGM reproduces the genetic SP08 benchmark better than EV and GH, while

4 The Kendall correlation coefficient (Kendall, 1938) is a measure of the strength and direction of
association between two variables. It is a non-parametric statistical test, which means it does not
assume that the data follows a particular distribution. It is often used to assess the relationship
between ordinal (ranked) data.
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# Points SP08 URIEL

GH SGM EV GH SGM EV

Full data condition
1000 0.32 0.52 0.43 0.39 0.38 0.24

1500 0.40 0.30 0.26 0.51 0.31 0.36

2500 0.42 0.38 0.39 0.57 0.36 0.43

3500 0.40 0.39 0.31 0.58 0.45 0.36

FW 0.40 0.30 0.32 0.44 0.45 0.30

Swadesh 0.30 0.32 0.11 0.36 0.43 0.09

Small data condition
1000 0.11 0.45 0.21 0.21 0.39 0.20

1500 0.29 0.37 0.21 0.49 0.27 0.21

2500 0.39 0.45 0.23 0.40 0.39 0.30

3500 0.27 0.46 0.11 0.36 0.35 0.12

Table 14: Mean Kendall correlations with SP08 and average URIEL for various number of datapoints and
the function words experiment (FW).

Rabinovich Bjerva Our proposal
et al. 2017 et al. 2019 Full Small

Words – 0.53 ✓ ✓

FW 0.43 – – –
POS 0.35 0.52 – –
FW+POS 0.36 0.56 – –
PS – 0.36 – –
DepRel – 0.32 – –

GH – – 0.37 0.38

EV – – 0.57 0.56

SGM – – 0.54 0.58

Table 15: Mean distance between SP08 and reconstructed phylogenetic trees as compared to previous
literature using words, function words (FW), parts of speech (POS), phrase structures (PS) and depen-
dency relations (DepRel) as features.

GH clearly correlates better with structural URIEL features, followed by SGM and
EV. This corroborates NLM-based findings of Bjerva et al. (2019) in our semantic
word embedding-based spaces: the differences and similarities between languages
and language representations go beyond genetic (dis)similarities.

5.5.3 Comparison with Previous Approaches

In order to compare our results with previous work, we calculate tree distances using
the leaf-node distance in Equation 14 previously defined in Rabinovich, Ordan, and
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Wintner (2017) and compare with the best results on SP08 in Rabinovich, Ordan, and
Wintner (2017) and Bjerva et al. (2019). We report our results for 1500 most frequent
datapoints obtained with different metrics in Table 15. Notice that the results of
Table 14 and Table 15 cannot be directly compared as the later one is computed after
summing over all possible pairs of the leaves (languages), while Table 14 shows the
association with benchmarks (SP08 and URIEL) keeping only originally authored
English as its source. Table 14 correlates the results with the benchmarks and Table
15 compares the findings to Bjerva et al. (2019) and Rabinovich, Ordan, and Wintner
(2017). All distances are normalised to a zero-one scale.

According to the mean distance, our embedding and graph-based approaches,
especially GH can reproduce genetic trees on-par with previous work without re-
quiring any explicit linguistic information. Unlike previous methods which rely on
surface-level features of the source language, our graph-based isomorphism analysis
is unsupervised and still is able to detect important language differences related to
linguistic distances. Of all the methods, GH is the closest to SP08, followed by SGM
and EV in the full data settings while the trend for SGM-EV is reversed under the small
data condition.

5.5.4 Robustness Analysis

After showing that exploiting departures from isomorphism between spaces can
be used to predict relations between languages, we analyse the impact of various
modeling assumptions and different training conditions that might have an effect in
skewing the results of Table 15.

5.5.4.1 Data Size Effects

Large differences in data sizes between high and low-resource languages have played
a pivotal role in the performance of monolingual embeddings (Sahlgren and Lenci,
2016; Vulić, Ruder, and Søgaard, 2020). In our work, to some extent this is already
minimised by taking only the most frequent n words to estimate the distances between
embedding spaces, but still the quality of even these embeddings might differ. To
examine the impact of the data size for our experiments, we use the embeddings
obtained under the small data condition (see Section 5.4) and compare the results in
the bottom rows of Table 14.

The results show that SGM correlates best with SP08 under all training conditions
(number of datapoints and corpus size), but the correlation decreases with respect
to URIEL features. GH shows good correlation in some instances (1500 and 2500

datapoints) for both SP08 and URIEL, while EV shows no consistent correlation. For
EV, we consider frequent words and mutual nearest neighbors, thus in the small data
condition, it has even less access to contexts. Our spectral graph-based measure SGM,
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Figure 14: Normalised distances between original texts and their translationese counterparts in English
(en). Embedding spaces are constructed using only function words from the Europarl corpus (left) and
the UN parallel corpus (Tolochinsky et al., 2018) (right).

which is inspired by the ideas of node representation in contemporary geometric
and manifold learning (Cayton, 2005), provides better robustness with respect to
measuring linguistic distances under varied data settings.

5.5.4.2 Word Embedding Models

Köhn (2015) showed that different methods to obtain word embeddings (CCA, skip-
gram, CBOW, GloVe, etc.) behave similarly when capturing syntactic and morpho-
logical information. We check that this is also the case with our distance methods by
comparing the performance obtained with skip-gram and CBOW architectures, and
observe small variations with similar global trends. To give an example, correlation
results for SGM under the full data condition with CBOW and skip-gram vary only in
the ±0.05 range.

We also performed experiments with lower embedding dimensions (50,100,200)
which may lead to reduced expressivity, but, very interestingly, we obtained similar
performance as we did with 300 dimensions. For example, comparing 100-dimensional
monolingual word embeddings with 300 dimensional embedings, the differences are:
GH (±0.077), SGM (±0.013), and EV (±0.088).

5.5.4.3 Function Words

Function words, also known as closed class or grammatical words, are words that do
not carry lexical meaning but perform important syntactic functions in a sentence. By
experimenting with function words, we can get a better understanding of how our
different approaches to constructing graphs affect the measurement of isomorphism
between languages and whether these approaches are able to capture the nuances
of language use beyond just distributional patterns of word usage. Thus, we focus
on function words which e.g. introduce and identify key discourse referents and
represent relationships between entities but are considered to be not well-modelled
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by distributional semantics (Bernardi et al., 2015). Specifically, we use the list of
function words defined in Koppel and Ordan (2011) to construct the language distance
measures of Section 5.5.1 in Figure 14. In this case, the number of data points is 468,
well below the minimum number of points used with content words (1000). However,
the performance of all three methods (GH, EV and SGM) show similar trends as in
Figures 12 and 13. Figure 14 demonstrates that function words are able to capture
departures from isomorphism in a similar way as the complete set of words, indicating
that source languages carry over grammatical constructs into the translation product,
corroborating prior findings of Rabinovich, Ordan, and Wintner (2017) and Bjerva
et al. (2019) with function words.

Additionally, we explore the much smaller cognate collection of Swadesh word lists
(Swadesh, 1952) to capture the relatedness between languages in Table 14. As this
concept-aligned resource ensures a consistent set of word lists across all our languages,
thereby enhancing comparability, these findings are particularly important. The results
show that the large context (6 neighbours) exploited by SGM estimations exceeds other
isomorphism methods while highlighting the limitations of EV in low-data regimes
with limited access to contexts.

5.5.5 Results on Non-European Languages

Previous research focused on investigating translationese and source language inter-
ference for European language families Bjerva, Plank, and Bos (2016) and Rabinovich,
Ordan, and Wintner (2017). Here we extend this work, for the first time, to the best
of our knowledge, to translations from non-Indo-European languages into English.
We investigate the language distance measures of Section 5.5.1 on the UN corpus
(Tolochinsky et al., 2018) which consists of translations covering typologically different
languages such as Arabic (ar) and Chinese (zh), as well as Indo-European languages
(i.e., Russian (ru), Spanish (es) and French (fr)).

We present results with 2500 words in Figure 14. Figure 14 shows that the vector
spaces constructed from translations of Romance languages (i.e., fr and es) are closer to
original English in terms of semantic embedding space based isomorphism measures.
However, the difference between original English and translations from non-Romance
languages (i.e., ar, zh, and ru) are larger, indicating a larger distance between their
vector spaces and original English. This is in line with our previous results in Figures
12 and 13 on the same-domain monolingual Europarl data under different data
settings, demonstrating that the language distance measures we used are language-
independent and can be applied to multiple languages. These findings suggest that
our methods are not limited to a specific language or language family, and can be
used to analyse the translations of typologically different languages.
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Of all measures, SGM, which captures more context from the interaction between
data-points and their neighborhoods, is the best indicator of linguistic (dis)similarities
and explains more variance than previous isomorphism measures, as shown in Figure
14. Among the non-Romance languages, translations from Chinese (zh) has the highest
values for all three measures, indicating a larger distance between its vector space and
original English compared to Arabic (ar) and Russian (ru).

5.6 Conclusion

In this chapter, we introduce a novel unsupervised approach to tracking signals of
translationese in word embedding spaces. Our method utilises graph-isomorphism
measures to trace translationese without relying on explicit linguistic labels or surface-
level features, answering RQ3. This new approach enables us to trace translationese
in embedding spaces that have not been explored before. Specifically, our approach
lets as much as possible “lets the data speak for itself” uncoloured by manual feature
engineering in detecting important language differences related to linguistic typology.
We provide systematic evidence of translationese in embedding-based semantic spaces,
which is a novel contribution to the field.

To demonstrate the effectiveness of our approach, we compare the distances between
graphs for original English and translations into English from 16 different languages.
Our results align with expectations, showing a greater distance between English and
translations from Slavic languages and a smaller distance between English and trans-
lations from Germanic languages providing evidence of source language interference.
We also compare our results to two benchmarks: a language phylogeny tree based on
structural features (URIEL) and a tree based on a combination of genetic and struc-
tural features (SP08) and found that our novel spectral graph-based approach (SGM)
performs as well as and in low resource scenarios better than previous approaches
that rely on linguistic features.

Finally, we perform robustness tests to ensure that our methods are stable and
reliable under different modelling and training conditions. This includes testing the
robustness of our results to variations in the size and type of the data (function words
used, as well as the robustness of our methods to different choices of word embedding
models, data size and type. By demonstrating the stability of our methods, we show
greater confidence in the validity of our results and the generalisability of our findings.
In addition to this, we not only investigate the phenomenon of translationese in Indo-
European languages but also extend our analysis to non-Indo-European languages
(Chinese and Arabic). This allows us to determine if the tracing of translationese is
specific to certain language families.





6
Influence of Domain on Translationese using

Multi-View Semantic Spaces

In this chapter, we evaluate the impact of domain on our unsupervised tracking of
translationese in semantic spaces. We aim to determine whether the results presented
in the previous chapter are primarily a result of domain variations between the
original and translated data, rather than, or to a lesser extent, from proper translationse
signals. Translationese signals are subtle and compete with other signals in the data,
particularly those related to domain. To address this, we mask domain information by
applying our graph-isomorphism methods to different delexicalized representations
using various views, including words, parts of speech, semantic tags, and synsets.
Our results demonstrate that while source-language interference is most pronounced
in lexicalised embeddings (reported in the previous chapter), it is also present in
delexicalised views. This indicates that our lexicalised findings are not just the result
of possible domain differences between original and translated texts.

Regardless of the level of linguistic representation, we present clustering experiments
that show that various translationese “dialects” in the same language, arising from
translations originating from different source languages, exhibit a clustering pattern
akin to linguistically motivated phylogenetic trees, aligned with the source languages.
In addition, we show that the distinction between language families in the translated
texts partially originates from the typological characterisation of the source languages.

6.1 Introduction

In the previous chapter (Chapter 5), we explore the impact of source language on
translations from this source language into the same target language as compared to
originally authored text in the target language using departures of isomorphism in
semantic spaces. We find that embedding spaces created from raw word representa-
tions exhibit traces of the source languages of the translations. However, translationese
signals are subtle and can compete with other signals in the data, particularly those
related to domain. Domain is often reflected in lexical signals. Thus it is important
to examine the robustness of the results obtained in our previous research under
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delexicalisation in order to determine whether the patterns identified in the data are
truly indicative of translationese, or whether they may be influenced by other factors
such as domain differences between the original and translated texts. This leads us to
formulate our next research question.

RQ4: To what extent can the outcomes observed in response to RQ3 be attributed to
variations in domain between original and translated texts, as opposed to true translationese
signals?

To address this, we mask lexical domain information and apply our
graph-isomorphism methods to different delexicalized representations using vari-
ous views and quantify departure from isomorphism for each of the multiple views
of the same underlying data. Specifically, we are using different manifestations of the
same data based on the words (Raw), Part-of-Speech (PoS), Semantic Tags (ST), and
Synsets (SS) to create a multi-view of the embedding spaces. Using these multi-views
can help to reduce the influence of the lexical aspects of domain on the results. For
example, using part-of-speech tags as a view may be less sensitive to domain-specific
words than using Raw word representations because PoS tags capture grammatical
information rather than lexical content. This means that even if the texts (i.e., original
and translated) are about different domains and might use different sets of words
corresponding to those domains, the part-of-speech tags would be more similar across
the texts, allowing us to compare the non-lexical translationese characteristics of
the texts. The further apart the embedding spaces for a given view are, the more
predominant the information captured by this view is in translationese.

Our results demonstrate that while source-language interference is most pronounced
in lexicalised embeddings (word), it is also present in delexicalised views. This sup-
ports our claim that the delexicalised embeddings are just as able as lexical ones to
identify important translationese artifacts, providing evidence that our lexicalised
results capture more than just possible domain divergences between originals and
translated texts. We observe that in particular, a larger departure from isomorphism
in semantic space computed from delexicalised views, by and large, corresponds to
a larger distance in terms of linguistically motivated language families and that lan-
guage family ties with characteristics similar to linguistically motivated phylogenetic
trees can be inferred from the isomorphism distances even for delexicalised views.

The rest of the chapter is organised as follows. We review related work in Section 6.2.
Section 6.3 briefly outlines data settings, views and methods used in the study. In
Section 6.4, we describe our evaluation methods. Specifically, Section 6.4.1 outlines
the classification task using different views of the data and Section 6.4.2 shows the
hierarchical clustering of the results obtained from our approaches. Finally, we analyse
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the source language interference properties in Section 6.4.3 and draw conclusions in
Section 6.5.

6.2 Related Work

A significant amount of research in historical linguistics and linguistic typology seeks
to quantify how languages are related to one another. One way of visualizing the rela-
tions between languages are phylogenetic trees. Computational analysis techniques
attempt to automatically construct phylogenetic relationships between languages
based on linguistic patterns. For example, Nouri and Yangarber (2016) constructs
phylogenetic relations based on the lexical overlap between languages using manually
compiled lists of cognates. There are a large number of techniques for automatically
extracting cognates (Serva and Petroni, 2008), however, these methods rely on the sur-
face structure of words and are a time-consuming and somewhat subjective procedure.
Other than quantifiable lexical overlap, structural similarity across languages are often
used to measure how (dis)similar they are (Cysouw, 2013).

Rabinovich, Ordan, and Wintner (2017) showed that differences in languages are
so strong that vestiges of the structure of a language are approximately preserved
even when translating into another language, that is, translations show translationese
effects from the source language. They show that footprints of the source language
remain visible in translations, to the extent that it is possible to predict the original
source language from the translation and reconstruct phylogenetic trees. To show this,
they experimented with English and French translations of European parliamentary
speeches from languages derived from mainly three language families: Germanic, Ro-
mance and Balto-Slavic. Bjerva et al. (2019) explored the structural similarity between
languages using phrase structure trees and dependency relations. Both approaches
were able to generate relatively faithful phylogenetic trees using surface-oriented lexi-
cal, morphological and syntactic similarities. The similarity between languages is often
measured by their semantic similarities. Eger, Hoenen, and Mehler (2016) induced
bilingual vector spaces for 21 Europarl languages and calculated a representation
distance between them by averaging pairwise similarity between word representations.
They discovered that geographic factors of the countries where these languages are
spoken explain the differences better than phylogenetic factors.

Similar findings have been made by Lupyan and Winter (2018) who found that
the semantic similarity of languages is correlated with the cultural distance between
them. They propose the idea that the structure and content of language is shaped by
the culture in which it is used, and that this cultural influence can be measured by
a concept they refer to as “cultural distance”. However, the (Youn et al., 2016) note
that there are other factors, such as polysemy (the ability of a word to have multiple
meanings) and context-sensitivity (the way in which the meaning of a word or phrase
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can change depending on the context in which it is used) that can influence semantic
similarity across languages.

Recent research that learns cross-lingual word embeddings for downstream tasks
such as bilingual dictionary induction or machine translation suggests that phyloge-
netic features are encoded in the final representations, even if language information is
not explicitly provided during training. For example, (Beinborn and Choenni, 2020)
demonstrated that phylogenetic relationships across languages can be reconstituted
from cross-lingual representations if the training objective optimizes monolingual
semantic constraints for each language individually, as in the multilingual MUSE
model (Conneau et al., 2017). Along the same line, (Malaviya, Neubig, and Littell,
2017) also probed missing features in typological databases from cross-lingual rep-
resentations. More recently, Oncevay, Haddow, and Birch (2020) used multi-view
language representations for typological feature prediction and language clustering
and adapted the ranking of related languages for multilingual transfer.

Linguists usually determine phylogenetic relationships between languages using
concept lists of words in multiple languages with a common origin that share a similar
meaning and a similar pronunciation (Dyen, Kruskal, and Black, 1992; Swadesh, 1952).
Rabinovich, Ordan, and Wintner (2017) reconstructed phylogenetic trees by performing
hierarchical language clustering with Ward’s variance minimization algorithm (Ward
Jr, 1963) with Euclidean distance as a linkage method. Specifically, they leverage
interference features (POS trigrams and function words) and one translation universal
features (cohesive markers) through the use of classifiers to compute the trees. More
recently, Bjerva et al. (2019) built on this work and investigated causal relationships
between language representations and similarities from structural similarities (Pearl
et al., 2009).

The evolution of phylogenetic trees remains a highly debated domain in the history
of linguistics and the quality of phylogenetic language trees has been evaluated using
a variety of methodologies (Nouri and Yangarber, 2016; Pompei, Loreto, and Tria, 2011;
Wichmann and Grant, 2012). However, there exists no standard agreed on the method
that covers all reconstructions (Ringe, Warnow, and Taylor, 2002). Rabinovich, Ordan,
and Wintner (2017) proposed comparing their generated trees to a binary Levenshtein-
based approximation developed by Serva and Petroni (2008) as a reference tree. This
reference tree was constructed by computing the Levenshtein (edit) distance between
words of an open cross-lingual list (Dyen, Kruskal, and Black, 1992). Lexicostatistic
strategies such as this one typically depend on lists of cognates (Swadesh, 1952) and
are not well suited for isolated languages, and are inaccurate in capturing the more
subtle variations for the Indo-European language family (Fortson IV, 2011).
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6.3 Experimental Setup

6.3.1 Datasets

As in the previous Chapter 5, we experiment with the comparable portion of Europarl
(Koehn, 2005) with translations from 21 European Union languages into English (refer
to Section 5.4) to minimise the impact of genre, style and to some extent domain
difference. The amount of tokens per language in this dataset varies, ranging from
67 k tokens for Maltese to 7.2 M for German. We refer to the multiple translations into
English as Lj’s, where j=1,2,...,n; and to originally written text in English as Le. We
select the subset of translations from 16 languages covering three language families:
Romance (French, Italian, Spanish, Romanian, Portugese), Germanic (Dutch, German,
Swedish, Danish) and Balto-Slavic (Latvian, Lithuanian, Czech, Slovak, Slovenian,
Polish and Bulgarian) into English and English original text.

Further, to control the impact of corpus size we modify the training setup of a
high-resource language to simulate a low-resource scenario. For the departure from
isomorphism experiments, for each view, we choose the size of the common overlapped
vocabulary list corresponding to the range of low-resource translated data (see Table
16).

6.3.2 Views

We make use of the data described in Section 7.3.1 to create multiple sources of input
(views) at the morphological (PoS), syntactic (ST) and conceptual-semantic (SS) levels.
Each view provides a different perspective on the data.
To create Part-of-Speech (PoS) annotations, we utilised the SpaCy toolkit (Honnibal and
Johnson, 2015). This toolkit provides us with fine-grained morphological information,
enabling us to assign PoS tags to each word in the text. There are 37 possible PoS tags,
which provide detailed information about the grammatical role of each word in the
sentence.
For extracting semantic tags (SemTag), we employed the best model of Abzianidze
and Bos (2017), which is language-neutral and abstracts over PoS and named-entity
classes. Their implementation achieves an accuracy of around 95% when evaluated on
short Parallel Meaning Bank (Abzianidze et al., 2017) sentences.
To obtain conceptual semantic (Synset) annotations, we followed the approach of
España-Bonet and Genabith (2018), retrieving synsets based on the PoS of a token using
the WordNet knowledge base (Miller, 1998). We selected a subset of PoS tags, namely
NN, ADV, ADJ, and VB, and use the first synset for each word/tag combination.

An overview and examples of each type of annotation used in this study are
presented in Table 16. We utilised these multi-view datasets throughout this chapter to
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Feature Annotated Output Overlapped Vocab

PoS DET NOUN VERB DET NOUN ADP ADJ NOUN 37

SemTag DEF CON EPS DIS CON REL HAS CON 57

Synset ministry.n.04 send.v.02 answer.n.04 inquiry.n.01. 1667

Raw the ministry sent an answer to our inquiry 6739

Table 16: Examples of the level of abstraction

examine the influence of domain to the task of unsupervised tracing of translationese
in semantic spaces.

6.3.3 Multi-view Embedding Representations

We generate embedding representations for each view by creating separate monolin-
gual word embedding spaces for both Le and Lj’s. To accomplish this, we treat each
tag as a word and use fastText (Bojanowski et al., 2017). We produce embeddings
with 300 dimensions and only include words that occur more than 5 times. We use
skip-gram with negative sampling (Mikolov et al., 2013) with default hyper-parameters
for training. This process allows us to create embedding spaces for each view, which
is important for addressing RQ4.

6.3.4 Isomorphism

We now provide a brief overview of the methods for measuring approximate isomor-
phism between the embedding spaces computed from our different views in order
to quantify the (dis)similarity between languages. Further technical details of these
measures are discussed in Section 5.3.

Gromov Hausdorff distance (GH). This distance was described in Patra et al. (2019)
to test how well two language embedding spaces are aligned under an isometric
transformation. Particularly, it calculates the worst-case distance between two metric
spaces, which is the maximum distance of a set of points to the nearest point in
another set.

Eigenvector Similarity measure (EV). This measure was introduced by Søgaard,
Ruder, and Vulić (2018) based on spectral analysis of the Laplacian eigenvalues of the
nearest neighbourhood graphs that result from the initial language embedding spaces.
They argue that these eigenvalues are compact representations of the graph Laplacian
and their comparison indicates the degree of (approximate) isomorphism.

Spectral Graph Based Measure (SGM). Although similar in spirit to the Eigen-
Vector Similarity approach, we introduce this measure (Dutta Chowdhury, España-
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Families Raw PoS ST SS

Germanic 0.72 0.65 0.63 0.59

Romance 0.76 0.67 0.65 0.60

Balto-Slavic 0.78 0.69 0.67 0.62

Table 17: Classification accuracy (%) of English O vs. English T on different levels of abstractions

Bonet, and Genabith, 2021) to consider more geometrical information on the interaction
between all vectors within the initial space. We do this by connecting each point to its
K nearest neighbours.

6.4 Evaluation and Analysis

6.4.1 Classification Analysis

First, we investigate the impact of interference on different levels of linguistic abstrac-
tions, such as lexical, morphological and semantic, and determine whether originals
and translations can be easily distinguished based on these views.

To achieve this, we select 1000 test sentences from both the English original (Le)
and each of the translated languages (Lj) as test data, and down-sample the training
data to the lowest overall number of instances in order to ensure balance. We then
apply logistic regression as the classification algorithm, using the default settings of
the scikit-learn toolkit (Pedregosa et al., 2011). We perform 10-fold cross-validation
to evaluate the results, reporting accuracy as the percentage of sentences correctly
classified as either English originals or translations. Since the classification task is
binary and the training corpus is balanced, the baseline accuracy for this experiment
is 50%.

We further extend this experiment to include 16 languages, representing 3 language
families in our study. Table 17 presents the classification accuracy of English origi-
nals versus translations using each level of abstraction (view) across each language
family. Our results indicate that our selected delexicalised features can capture source
language interference a.k.a. shining-through across texts, even with our simple lo-
gistic regression based classifier. Notably, the highest accuracy is achieved with the
lexicalised feature (Raw), indicating a possible influence of domain bias.

6.4.2 Hierarchical Clustering

In this section, we investigate whether, and if so to what extent, source interference
(Toury, 2012) or shining-through (Teich, 2003) is traceable in lexical as well as delex-
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icalised embedding spaces. We perform a cluster-based analysis using each of the
isomorphism metrics described in Section 7.3.2. To evaluate our isomorphism methods
on multi-view data representations, we cluster the language representations for each
view of the data using the isomorphism measures in Figures 15-26, resulting in 3 x 4

(number of isomorphism metrics x number of views) cluster matrices.
While this is similar in concept to the evaluation presented in Section 5.5, the

phylogenetic reconstruction presented here is based on a 17x17 distance matrix,
whereas in Section 5.5, we calculate normalised distances between embedding spaces
for original English and translations into English from 16 languages using three
different distance measures.

Figures 15-26 illustrate heatmaps with dendograms representing phylogenetic trees
using agglomerative clustering with variance minimisation (Ward Jr, 1963). For each
method and every view of the data, we include the 17*17 matrix. This matrix accounts
for distances between original English (Le) and translations into English from 16 non-
English languages (Lj), as well as the distances between each pair of these translations
(Lj to Lk, where j ̸= k).

Each heatmap tile represents the deviations in isomorphism values between the
corresponding source and target languages. In this context, the source languages
encompass both original English (Le) and translations into English from 16 non-English
languages (Lj). The target languages cover both original English and translations
into English from the same set of languages (Lk, where j ̸= k). The color scale
indicates correlation, a value closer to 1 implies a higher correlation while a negative
correlation is indicated using the contrasting colour in each graph. Additionally, we
plot dendrograms to cluster the language-language relationships, i.e. they represent
possible phylogenetic trees.

This evaluation is similar in approach to the evaluation method outlined in Sec-
tion.5.5.1 but with more views of the data and here using all possible combinations
of Le and Lj’s. From the heatmaps, we see that language family groupings can be
inferred from both lexicalised and delexicalised embedding data. The language clus-
ters obtained from the lexical (Raw) embedding spaces are the most distinctive ones
for all divergence from isomorphism metrics. This reconfirms our results with lexi-
calised representations in Chapter 5. Furthermore, we find that the clusters generated
using Synset, ST and PoS representations also exhibit coarse-grained language family
traces. This provides evidence that translationese is reflected in semantic spaces gen-
erated from different representations. The differences are traced without reliance on
fine-grained linguistic knowledge (annotations) and the comparison shows that the
lexicalised results are not just due to possible lexical differences in domain between
texts.

Next, we study what the dendrograms imply in the Figures 15-26. In all the predicted
phylogeny trees, regardless of the representations, we observe trends that indicate
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groupings based on important language-language relationships. Specifically, we find
that translationese dialects generated by typologically similar languages tend to
demonstrate more similarities than those derived from typologically distant source
languages. Or in other words, cross-linguistic transfer in translation is guided by the
typological properties of the source language. Germanic languages, for example, are
almost perfectly clustered together, with only a minor association with the Baltic and
Slavic language families.

This demonstrates clear intra-family linguistic ties, lending support to the fact that
translations from related sources tend to resemble each other more than translations
from more distant languages. Finally, we show that our constructed phylogentic trees
show language family ties that resemble linguistically motivated phylogenetic trees.
Unlike supervised lexicostatistic approaches relying on aligned multilingual cognate
lists, our isomorphism analysis is unsupervised and still able to trace important
language differences related to linguistic typology. In a sense, and compared to some
previous approaches, departures from isomorphism in embedding spaces lets “the
data speak more for itself”.

Among the three metrics, we find that EV fails to reasonably group individual
languages into three language-family branches as compared to the trees generated
by GH and SGM. While in general we identify some well-known language–language
relationships in all twelve trees such as clustering of the Germanic and Romance
languages closer to each other than the Balto-Slavic, there are many divergences
visible. For example, in most of cases, Romanian is far from the other Romance
languages, but close to Slavic languages (Bulgarian, Czech, Slovak, Slovenian and
Polish). Such a divergence could be from the influence of geographical factors such as
language contact or structural interactions (Balkan Sprachbund, BS) as the geography
of Romanian opens it to cross-pollination with the other languages of the BS area
and the figures provide evidence for that. Portuguese in many instances is located
far away from its other Romance counterparts under EV and GH reconstructions.
Polish is always misplaced into the Germanic language group, despite its Slavic
origin. As future work we intend to include a thorough quality assessment by native
speakers on the data before performing clustering divergence from isomorphism
based analyses. Another possible reason for such divergences could be adherence to
the target language (i.e., English in this case) norms or explicitation. This is something
that would need to be further explored in future work.

Finally, our analysis demonstrates that all embedding views exhibit source language
interference a.k.a. shining-through. In turn, this allows us to conclude that the lexi-
calised results are not just due to possible domain differences between original and
translated texts, thus addressing RQ4.
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Figure 15: GH-RAW Figure 16: GH-PoS

Figure 17: GH-SemTag Figure 18: GH-Synset

6.4.3 Typological Characterisation

We demonstrated in Section 6.4.2 that source-language traces (shining-through) exist in
semantic spaces that can establish genetic relations between languages without the
need for any etymological information. Building on this, our next step is to analyse
how the source languages are reflected in the translations, as represented by the PoS
and Semantic tagsets described in Section 7.3.1. Specifically, we aim to explore whether
differences in the frequency of these features in translations into English from different
source languages correspond to the usage of the same features in the original source
languages.
To do this, we calculate the frequency of these structural characteristics (as opposed
to embeddings) in texts translated into English from each particular source language
and average the measures across each language family group (Germanic, Romance,
and Balto-Slavic). The results are shown in Tables 18 (PoS) and 19 (ST).
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Figure 19: EV-RAW Figure 20: EV-PoS

Figure 21: EV-SemTag Figure 22: EV-Synset

Analysis. All Romance, nearly all Germanic, and some Balkan languages have both
indefinite and definite articles. Balto-Slavic languages traditionally lack articles (Rabi-
novich, Ordan, and Wintner, 2017). The acquisition of article usage in English is noto-
riously challenging, resulting in errors among non-native speakers (Han, Chodorow,
and Leacock, 2006). Notably, individuals with Slavic language backgrounds, as native
speakers, often exhibit an inclination to overuse definite articles when expressing
themselves in Germanic languages (Hirschmann et al., 2013). Similarly to this, we
expect an excessive usage of the indefinite articles in translations into English from
Balto-Slavic languages. The findings reveal a notable overuse of “DET” as one single
class in Table 18 and fine-grained “DEF” in Table 19 in translations from Balto-Slavic
languages into English as well as a minor overuse in translations from Romance
languages.

A contributing factor to the higher frequency of adjectives (ADJ) (Table 18) in
translations from Romance languages into English may be that particles are frequently
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Figure 23: SGM-RAW Figure 24: SGM-PoS

Figure 25: SGM-SemTag Figure 26: SGM-Synset

expressed through adjectives or verbs, unlike in Romance languages where they are
separate. In contrast, Balto-Slavic languages tend to use nouns or participles to modify
the meaning of other nouns, relying less on adjectives. This linguistic distinction
may contribute to the lower frequency of adjectives in Balto-Slavic languages, a
characteristic also reflected in translations into English from this language family.

Nouns (NOUN) have a higher frequency in the translations into English from
Balto-Slavic language group (20.82) than in the Germanic (18.75) and Romance (20.22)
language groups. This could be influenced by a range of factors such as cultural,
historical, and linguistic factors. For example, some linguists (Beck, 2013; Nichols,
1992) have suggested that the Slavic branch of the Balto-Slavic language family may
have been more influenced by the structure of ancient Indo-European languages, which
tended to have more complex noun declension systems. Additionally, the morphology
of Balto-Slavic languages may also contribute to the frequency of nouns, as the system
of noun declension in these languages is complex, with different cases and declension
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Tag Description Germanic Romance Balto-Slavic

ADJ adjective 7.21 7.69 1

NOUN noun 18.75 20.22 20.82

VERB verb 11.25 11.05 10.82

ADV adverb 5.02 3.91 4.07

ADP adposition 10.80 11.55 11.67

AUX auxiliary 5.82 4.59 4.43

CCONJ coordinating conjunction 3.41 3.59 3.89

DET determiner 12.43 12.69 13.06

INTJ interjection 0.027 0.020 0.013

NUM numeral 0.83 0.97 0.87

PART particle 2.84 2.60 2.50

PRON pronoun 4.87 3.83 3.57

PROPN proper noun 4.50 4.62 5.17

PUNCT punctuation 9.69 9.54 9.21

SCONJ subordinating conjunction 2.61 2.21 2.10

PUNCT punctuation 9.79 9.67 9.21

Table 18: Average frequency distributions of Parts-Of-Speech tags for translations into English across
language families. Cell colors indicate higher frequencies.

patterns, which allows for the formation of compound words that combine several
noun stems. On the other hand, Germanic and Romance languages have undergone
significant simplification of noun declension systems over time, resulting in a relatively
smaller number of distinct noun forms and fewer opportunities for the formation of
complex compounds.

Table 18 shows that the frequencies of “AUX” and “VERB” have are the highest for
translations into English from Germanic languages, followed by Romance and Balto-
Slavic languages respectively. A similar trend is observed with “NOW” in Table 19. The
order of Germanic and Romance language “EPS” (past simple) in Table 19 is swapped.
This could be because verbs play a more central role in the syntax of the Germanic
languages, where the main verb usually comes second in the sentence and auxiliary
verbs are used to show tense, mood, and aspect. Languages vary greatly in their
use of tense and aspects. Germanic languages generally use auxiliary verbs to form
compound tenses and express aspect and modality, rather than relying on inflectional
endings as the Romance languages do. For example, in German, the auxiliary verb
“haben” is used to form the present perfect tense (e.g. “Ich habe gegessen”) and the
auxiliary verb “werden” is used to express future tense (e.g. “Ich werde essen”). In
contrast, in Romance languages, verb endings are often used to indicate the tense
and mood of the verb, rather than through auxiliary verbs. For example, in French,
the verb “parler” (to speak) can be conjugated as “je parle” (present tense), “j’ai
parlé” (past tense), or “je parle rais” (conditional), where the different endings indicate
the tense and mood. In Balto-Slavic languages, such as Lithuanian and Polish, the
distinction between perfective and imperfective aspect is marked by using different
lexical verbs rather than by using auxiliary verbs as in Germanic languages. For
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Tag Description Germanic Romance Balto-Slavic

PRO pronoun 4.31 3.50 3.11

DEF definite 6.53 7.26 7.50

HAS possessive 1.02 0.98 1.04

REF reflexive 0.16 0.10 0.10

EMP emphasizing 0.09 0.06 0.05

GRE greeting 0.003 0.004 0.007

ITJ interjection 0.005 0.004 0.003

QUE interrogative 0.52 0.37 0.31

UOM measurement 0.30 0.33 0.33

IST intersective 7.41 7.90 8.29

REL relation 14.21 15.36 14.93

INT intensifier 0.59 0.41 0.43

ALT alternative 0.91 0.71 0.77

IMP implication 0.15 0.09 0.09

AND conjunct./univ. 1.98 2.08 1.91

BUT contrast 0.50 0.42 0.36

LES comparative neg. 0.038 0.035 0.04

TOP pos. superlative 0.19 0.21 0.23

BOT neg. superlative 0.001 0.001 0.001

ORD ordinal 0.15 0.15 0.16

PRX proximal 1.29 1.27 1.16

Tag Description Germanic Romance Balto-Slavic

SUB subordinate 1.42 1.14 1.04

COO coordinate 0.85 0.92 0.93

NOT negation 1.11 0.86 0.83

NEC necessity 0.82 0.68 0.67

POS possibility 0.48 0.35 0.33

CON concept 20.56 21.92 22.96

ROL role 1.79 1.87 1.97

GPE geo-political ent. 0.005 0.004 0.003

MOR comparative pos. 0.41 0.36 0.39

PER person 0.02 0.02 0.02

ORG organisation 0.004 0.003 0.004

ART artifact 0.001 0.001 0.001

HAP happening 0.0007 0.0004 0.0003

EXS untensed simple 4.82 4.50 4.43

ENS present simple 3.49 3.25 3.16

EPS past simple 1.40 1.50 1.38

EFS future simple 0.028 0.025 0.021

EXG untensed prog. 1.43 1.78 1.67

NOW present tense 3.00 2.41 2.27

PST past tense 0.46 0.38 0.40

FUT future tense 0.92 0.85 0.98

Table 19: Averaged frequency distributions for translations into English across language families using
Semantic Tags from Bjerva, Plank, and Bos (2016). Cell colors highlight higher frequencies.

example, in Lithuanian, the perfective aspect is marked by using the prefix “su-” with
the verb, while the imperfective aspect is marked by using a different verb stem
altogether. This is different from Germanic languages, where the distinction is often
marked using auxiliary verbs such as “have” or “be”, exhibiting the highest frequency
in translations from Germanic languages.

The majority of Slavic languages follow the original Proto-Slavic pattern of seven
case forms (nominative, genitive, dative, accusative, locative, instrumental, vocative),
which exist in both the single and plural. The genitive case, in particular, is head-
marked, which alters the order of the two nouns in comparison to the standard English
clitic “s” construction (Eetemadi and Toutanova, 2014). Thus, we anticipate translations
of Balto-Slavic languages to overuse phrases containing ‘of’ — NP constructions. Table
19 shows the overuse of possessive constructions “IST” and “REL” in translation into
English from Balto-Slavic languages, as also observed within the single class “ADP”
in Table 18.

Finally, we also identify several spurious correlations in Tables 18 and 19 that cannot
be described using the interference features. It is worth noting that the illustrating
linguistic examples used here (collected from various sources) are not meant to be
exhaustive or representative of all the ways that these PoS and Semantic tags can be
used in each language group. They are simply intended to provide a general idea of
the ways that these tags are used in each language family.
Furthermore, it is worth acknowledging that since we took average counts across
language families for our analysis, this could potentially result in the loss of individual
characteristics of each source language. Each language is unique in its own right, and
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averaging them together could have obscured important nuances and variations.
It is also worth noting that this analysis relies on rather high-level linguistic features,
either at a fine-grained (PoS) or coarse-grained (SemTag) level. Further exploration
using additional features based on deeper linguistic analyses should provide a more
comprehensive understanding of these inconsistencies.

We collected the illustrating examples used in our analysis from various online
sources and subsequently validated or refined them using commonly available lan-
guage tools1. Furthermore, these examples were verified with the help of four language
experts to ensure accuracy and consistency with established linguistic principles.

6.5 Conclusion

This chapter focuses on exploring whether and if so to what extent the results ob-
tained in Chapter 5 are due to possible differences in domains between original
and translated data as reflected in terms of lexical differences rather than on proper
translationese signals. To achieve this, we mask domain information by applying our
graph-isomorphism methods to different delexicalized representations based on word
level, morphological, structural, and semantic views of the data. We demonstrate
that translationese can be traced in semantic spaces even when lexical information is
removed, and this indicates that the influence of domain is not critical for the success
of unsupervised tracing of translationese, answering RQ4.

We find that lexicalized embeddings show the most pronounced source-language
interference, and compared to all levels of abstraction explored in our work. Our results
suggest that translated texts retain typological characteristics from the source language,
and our isomorphism-based results can infer phylogenetic language family relations
for all views without requiring any externally supplied etymological information. This
demonstrates that translated texts retain typological characteristics from the source
language and that our method is able to capture these characteristics even at different
levels of abstraction.

As future work, we intend to extend our experiments to capture the geometric
properties of the embedding features and work on isolated languages.

1 https://www.dict.cc/?s=it





7
Divergence from Isomorphism and Surprisal in

Translationese

In the previous chapter, we presented implicit evidence that divergence from isomor-
phism between embedding spaces indicates structural surface differences between
language families that are the source languages of the translations. Higher divergence
from isomorphism between embedding spaces suggests greater linguistic distance in
terms of language families and, consequently, supposedly reflects surface structural
linguistic differences (e.g., morphology, syntax) between languages, as indicated in
the linguistic literature. In this chapter, we explicitly explore the relationship between
embedding spaces and surface string representation (where the latter is measured by
LM entropy) by computing the correlation between (a) differences in surface string
entropy of original vs. translated data computed by language models trained on
originally authored data and (b) divergence from isomorphism between embedding
spaces computed on the same text data. Our results show that the two measures (a
surface measure and an embedding measure) correlate, and that higher departure
from isomorphism between embedding spaces corresponds with a higher difference
in surface entropy.

7.1 Introduction

The relationship between linguistic distance and surprisal has been extensively studied
in the context of receptive multilingualism (Vanhove, 2014) or intercomprehension
studies (Jágrová et al., 2019). Linguistic distance is commonly assessed across various
descriptive levels of languages, encompassing lexical, orthographic, and morphologi-
cal dimensions. These measurements are typically derived from parallel sets of words
or texts. Golubović and Gooskens (2015) demonstrated that the mutual intelligibility of
two languages is often predicted by their linguistic distance. A key observation in their
work is that if a text has reduced linguistic distance, then the transfer of knowledge
from a language to an unknown language is possible, for instance, Czech and Slovak
allow for mutual intelligibility without significant issues (Nábělková, 2007). On the
other hand, surprisal scores assigned by statistical models can also serve as reasonable
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indicators of the cognitive effort involved in human natural language comprehension
(Hale, 2001; Levy, 2008). High surprisal scores indicate greater processing difficulty
and higher information content.
Unlike intercomprehension studies, the interplay between these two orthogonal dimen-
sions—linguistic distance and surprisal—in the specific context of translation remains
under-explored. Translation is a complex linguistic process that entails conveying
information in a language distinct from that of the original language (Nikolaev et al.,
2020). From an information-theoretic perspective, two hypotheses in the literature
propose conflicting views about translationese: (1) that it is more predictable than the
original language and (2) that it includes non-native linguistic patterns, making it less
predictable. For example, Pastor et al. (2008) show that translated texts retain traces
of their source language, rendering them less predictable and more challenging to
process. In another example, research by Bjerva et al. (2019), building on the work
of Rabinovich, Ordan, and Wintner (2017) has demonstrated that in translations into
English, it is often possible to identify the original language based on morphosyntactic
properties alone. The assumption that translated text is more predictable also seems
to be supported by the empirical observation that translated texts tend to exhibit
lower levels of surprisal in contrast to their original counterparts (Bizzoni et al., 2020).
On the other hand, Baker et al. (1993) highlighted both a tendency to simplify the
language used in translation and also a tendency to amplify features of the target
language and adhere to its typical patterns, where the former would lead to lower
and the latter to higher perplexity scores using a language model trained on originally
authored language.

In the previous chapters, we provide some implicit evidence that divergence from
isomorphism between embedding spaces indicates structural surface differences be-
tween language families that serve as source languages for the translations. Higher
divergence from isomorphism between embedding spaces indicates higher linguistic
distance in terms of language families and with that supposedly surface structural
linguistic distance (e.g. morphology, syntax) between languages themselves as we
know from the linguistic literature (Haspelmath et al., 2005). This is shown indirectly
in Chapter 6 by the Part-of-Speech (PoS) (and the other different view) experiments
that abstract from lexical information in the original and translationese embedding
experiments where masked views (POS etc.) still show reasonable original vs. transla-
tionese differences in isomorphism between the embedding spaces and based on this,
phylogentic family tree results.

This raises the question of whether there is any explicit evidence to support the
connection between embedding spaces and structural surface differences, deviating
from the implicit approach observed in Chapter 6. This, in turn, leads us to formulate
our last research question:
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RQ5: To what extent can graph-based divergence from isomorphism in embedding spaces
act as a proxy for surprisal at the level of surface texts?

To address this question, we explore the relationship between embedding spaces and
surface strings further by explicitly computing the correlation between (a) differences
in surface string entropy of original vs. translated data computed by language models
trained on originally authored data and (b) divergence from isomorphism between
embedding spaces computed on the same text data. We do this in two ways: (i) general
correlation between differences in LM entropy on surface strings between original and
translated and divergence from isomorphism between embedding spaces for the same
data; and (ii) a more fine-grained version of (i) to verify whether larger differences
in entropy correspond with larger divergence in isomorphism. We find that the two
(a surface measure and an embedding measure) correlate, with a higher departure
from isomorphism between embedding spaces corresponding to a greater difference
in surface entropy. In fact, from our results, we find that the observed differences in
terms of surface string representations (as measured by LM entropy) between the
original and translated datasets correspond, at a high level, with surface structural
linguistic distance (e.g., morphology, syntax) between the source languages themselves,
as characterized by WALS (Haspelmath et al., 2005). This is different from the indirect
approach in Chapter 6 where the link between embeddings and structural surface
differences was only implicit through what is generally assumed in the linguistic
literature in terms of language family relations and surface structural differences. In
contrast, in this chapter, we provide hard evidence for this via linking two explicit
measures: divergence from isomorphism between original and translated embedding
spaces and entropy differences in the surface strings of the same text data.

The rest of the chapter is organised as follows. We review related work in Section 7.2.
Section 7.3 briefly outlines data settings, and methods used in the study. In Section 7.4,
we describe our evaluation methods, present the results and conclude in Section 7.5.

7.2 Related Work

Several investigations have utilized information-theoretic metrics like entropy and
perplexity to automatically classify and contrast translated and non-translated texts.
For example, Rubino, Lapshinova-Koltunski, and Genabith (2016) employ information
density encoded as surprisal at the word, part of speech, and syntax levels to help
build a state-of-the-art model for detecting mixed-domain translationese. Martínez and
Teich (2017) focus on disparities in lexical choices between professional and student
translators, leveraging word translation entropy indicating how many equally likely
translations may be produced for a source word in a given context. Higher translation
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entropy implies a broader range of lexical choices for the translator, indicating higher
cognitive effort on their part. Toral (2019) use PoS perplexity to quantify the degree
of translationese (interference of the source language) in translated text T (human
translation, post-editing, and machine translation). Given a PoS-tagged translation
T, a language model of a PoS-tagged corpus in the source language, and a language
model of a PoS-tagged corpus in the target language, they calculate the difference in
perplexities of T with respect to both language models. They show a high difference
in perplexity suggests the translation is dissimilar to the source language but similar
to the target language, while a low difference in perplexity indicates the opposite.
Bizzoni and Lapshinova-Koltunski (2021) uses perplexity to explore translationese in
English-to-German translations by professionals and students across various registers.
Despite expectations, they found professional translations show higher perplexity
scores than student translations, indicating increased stylistic diversification and
register sensitivity in the former. Teich, Martínez, and Karakanta (2020) proposes that
entropy can effectively serve as a suitable index for various translation-related factors,
including (dis)similarity between languages, level of expertise, and translation mode
(i.e., interpreting vs. translation), and demonstrating the level of production effort.
Nikolaev et al. (2020) explores whether the degree of difference in morphosyntactic
entropies between original texts and texts translated from English correlates with
the extent of morphosyntactic divergence between the languages of these texts and
English. In a more recent study, Przybyl et al. (2022) examines distinctive features of
translated and interpreted texts at the European Parliament, exploring the effects of
mediation (translation vs. interpreting) and discourse mode (written vs. spoken) using
word-based n-gram language models and relative entropy. Their study identifies
linguistic features typical of translation/interpreting, confirming the influence of
written vs. spoken mode on translation and interpreting.

7.3 Experimental Setup

7.3.1 Datasets

We use a comparable subset of Europarl (Koehn, 2005) used in Chapters 5 and 6, con-
sisting of translations from 21 European Union languages into English (refer to Section
5.4). Our focus is specifically on a subset of translations from 16 languages, covering
three language families: Romance (French, Italian, Spanish, Romanian, Portuguese),
Germanic (Dutch, German, Swedish, Danish), and Balto-Slavic (Latvian, Lithuanian,
Czech, Slovak, Slovenian, Polish, and Bulgarian), both into English and the original
English text for this study.
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7.3.2 Divergence from isomorphism as a measure for distance

Here, we provide a brief overview of the methods we used in Chapter 5 to quantify
a notion of distance between languages based on the word embedding spaces using
the notion of divergence from isomorphism. Additional technical details about these
measures are covered in Section 5.3.

Gromov Hausdorff distance (GH). This distance, as detailed in Patra et al. (2019)
tests how well two language embedding spaces are aligned under an isometric
transformation. Specifically, it computes the worst-case distance between two metric
spaces, representing the maximum distance of a set of points to the nearest point in
another set.

Eigenvector Similarity measure (EV). This measure, proposed by Søgaard, Ruder,
and Vulić (2018), analyzes the Laplacian eigenvalues of nearest neighborhood graphs
from the initial language embedding spaces. These eigenvalues, viewed as compact
representations of the graph Laplacian, are compared to assess the degree of (approxi-
mate) graph-isomorphism.

Spectral Graph Based Measure (SGM). Similar to the Eigen-Vector Similarity
approach, we introduce this measure (Dutta Chowdhury, España-Bonet, and Genabith,
2021) to account for more geometric information about the interactions among all
vectors within the initial space. This is acheived by linking each embedding to its K

nearest neighbors.

7.3.3 Surprisal as a measure for information density

To assess differences in entropy between original and translated texts, we use Shan-
non’s entropy (Shannon, 1948) as an estimate of surprisal. Surprisal, denoted as
− log2 p(x), is the measure of how unexpected an event x is. Here, − log2 p(x) is the
surprisal of x, measured in bits. This value quantifies the surprise or uncertainty
associated with the occurrence of event x based on its probability p(x). Higher values
indicate more surprising events.
Formally, the entropy of a discrete random variable X is defined as the weighted
average of the surprisal values of this distribution. In other words, entropy is the
expectation of the surprisal. The formula is given by:

H(X) = −
∑
i

PX(xi) logPX(xi)
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Figure 27: Correlation between Graph-Based Divergence Measures and Entropy

Here, H(X) denotes the entropy, and P(X) the probabilities associated with different
words in the corpora.

We calculate the surprisal of each word in the corpus using a single-layer LSTM-
based language model (Hochreiter and Schmidhuber, 1997). This involves feeding the
word into the model and then measuring the negative log probability of the word
given the model’s predictions. The surprisals were then averaged to calculate the
entropy of the surprisal distributions for both corpora: the original English data and
the translations into English language data from 16 languages covering three language
families. The resulting differences between recorded entropies (Htranslated −Horiginal) is
recorded for further analysis.

7.4 Evaluation and Analysis

To find if graph-based divergence from isomorphism at the level of embedding spaces
can act as a proxy for surprisal at the level of surface texts, we estimate entropies
to investigate whether the entropies of the originally authored target language text
significantly differ from translated texts into this target language. Figure 27 shows
the correlation coefficients between graph-based divergence from isomorphism (GH,
SGM, and EV) and entropy differences between original and translated texts. We
employ Pearson correlation analysis to perform the correlation analysis. Figure 27

shows that SGM exhibits the strongest positive correlation with surprisal, followed by
EV and GH. The plot suggests that there is a moderate positive connection between
the predictability of translated texts and the divergence in isomorphism between the
target language and the source language.

Next, we check if bigger divergences from isomorphism correspond to bigger
differences between respective entropies of the translated and original-language
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Figure 28: Pair Plot between Isomorphic Divergence and Entropic Differences (H) in Translated Texts

corpora. Specifically, we compare the mean difference in entropy between the original
English texts and translations into English from 16 source languages across three
families and then compare this to the divergences from isomorphism between the
corresponding pairs to understand whether these differences in entropy align with
the differences in isomorphism between corresponding language pairs.

The results are shown in Figure 28. Overall, the results support the hypothesis of
a positive correlation between the difference in entropies of translated and original
texts and the degree of divergence in isomorphism between texts: bigger divergences
in isomorphic measures correspond to bigger differences between the respective
entropies of the translated and original-language corpora. We see that in most cases
when texts are translated from topologically divergent languages into English, higher
levels of entropic differences are seen than those translated from structurally similar
languages. For example, from Figure 28, we see that two source languages structurally
close to English (in this case, German and Dutch) show mean difference values that
are closer to zero, while more structurally divergent languages (Latvian, Bulgarian)
demonstrate a noticeable boost in the entropy in translated texts. These results mirror
the patterns observed in divergence from isomorphism between embedding spaces,
where translations from structurally more divergent languages lead to increased
divergence in isomorphism. However, some interesting divergences, with respect to
Balkan Sprachbund (BS) are visible as well.

By combining the results from both analyses, we address the research question that
explores to what extent graph-based divergence from isomorphism at the level of
embedding spaces can act as a proxy for surprisal at the level of surface strings as
measured by a language model. The first analysis explores the correlation between
divergence from isomorphism measures (GH, SGM, and EV) and entropy differences,
indicating the predictability of translated texts compared to the original language. The
second analysis provides evidence supporting the hypothesis that larger divergence
from isomorphism are associated with more significant differences in linguistic pre-
dictability, indicating the presence of non-native linguistic patterns in translationese.
Specifically, we observe that, on average, translations from languages that to a first
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approximation are more structurally divergent from English tend to exhibit higher lev-
els of entropy difference. On the other hand, translations from languages structurally
similar to English show smaller entropy differences. At a higher level, this aligns
with the surface structural linguistic distance (e.g., morphology, syntax) between the
languages themselves, as characterized by WALS (Haspelmath et al., 2005). However,
the precise nature of this correlation remains a topic for future investigation.

7.5 Conclusion

This chapter explores whether the graph-based divergence from isomorphism at the
level of embedding spaces, as discussed in Chapters 5 and 6, can serve as a viable
proxy for surprisal at the level of surface texts as measured by a language model.
Our approach involves employing entropy estimation and correlating it with three
graph-based divergence from isomorphism measures (GH, SGM, and EV) to shed
light on the intricate relationship between surface string predictability in translated
texts and divergence from isomorphism between embedding spaces. We perform this
in two ways: (i) general correlation between differences in LM entropy on surface
strings between original and translated and divergence from isomorphism between
embedding spaces for the same data; and (ii) a more fine-grained version of (i) to
verify whether larger differences in entropy correspond with larger divergence in
isomorphism.

Our results exhibit a positive correlation between divergence from isomorphism
measures (GH, SGM, EV) and entropy differences, indicating that a higher departure
from isomorphism between embedding spaces corresponds with higher differences in
surface entropy. This explicitly links embedding space with surface string representa-
tion (where the latter is measured by LM entropy). Additionally, our findings show
that on average, translations from languages with greater structural divergence from
English tend to exhibit higher levels of entropy difference. In contrast, translations
from languages structurally similar to English show smaller entropy differences. These
outcomes align with the observed trends in divergence from isomorphism results
from Chapters 5 and 6, where embedding spaces of translations into English from
structurally similar source languages are more isomorphic nature to embedding spaces
computed from original English. Conversely, translations from structurally more diver-
gent languages result in increased divergence from isomorphism. At a broader level,
this aligns with the surface structural linguistic distance (e.g., morphology, syntax)
between the source languages themselves, as characterized by WALS (Haspelmath
et al., 2005). However, the precise nature of this correlation remains a subject for future
exploration. Collectively, these findings provide hard evidence that our two explicit
measures: divergence from isomorphism between original and translated embedding
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spaces and entropy differences of the surface strings of the same text data are linked,
addressing the overarching question in RQ5.

Finally, it is an open research question whether just entropy could be used as
effectively for translationese classification and phylogenetic tree reconstruction tasks.
Entropy mainly focuses on statistical language properties and might not be a strong
predictor by itself. Future directions could explore combining entropy with linguistic
features or neural methods to achieve a more comprehensive understanding that
encompasses both statistical language aspects and the intricate semantic and syntactic
relationships between languages.





8
Conclusion & Future Work

8.1 Summary of Dissertation

Translationese refers to systematic linguistic differences between translated texts and
texts originally authored in the same language. These differences can be categorised as
either source language dependent or universal. Basic research on translationese aims
to capture and comprehend the language-specific and language-independent aspects
of translationese. Additionally, translationese has practical implications for natural
language processing tasks that involve translation, as it can lead to biased results
and artificially inflated or decreased performance in cross-lingual tasks. Therefore,
understanding, analysing, and mitigating translationese is critical to improving the ac-
curacy and effectiveness of cross-lingual natural language processing. This dissertation
focuses on representation learning and addresses both foundational and practical as-
pects of translationese. In this final chapter, we summarize our main findings, identify
the limitations of our work, and suggest future directions.

In Chapter 3, we investigate the effectiveness of representation learning-based
methods for mono- and multilingual translationese classification. Initially, a variety
of stylistic features based on text statistics, richness, and readability measures are
examined using a broadly corpus linguistics based approach. The results show that
translated texts exhibit different characteristics compared to texts originally authored
in the same language. In fact, we found that stylistic feature based results can differ
substantially for specific language pairs, and even for the same target language with
translations from different source languages into this target language. This highlights
the need for a language-agnostic approach to translationese classification.

We then focus on translationese classification in both mono- and multilingual set-
tings using representation-learning-based models. Previous studies on translationese
classification had almost exclusively used hand-crafted, linguistically inspired features
and feature-engineering approaches. In contrast, in our work we use word repre-
sentations derived from various word embedding architectures. Our findings show
that word representation learning-based approaches, particularly those using fasttext
representations, are a superior alternative to traditional hand-crafted, linguistically
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inspired feature-selection methods for translationese classification across a wide range
of tasks.

Furthermore, we compare these approaches to fine-tuned BERT and LSTM architec-
tures, and we find that fasttext representations perform fairly close to these advanced
models, with BERT producing the best results. Most of the research presented in
Chapter 3 is published in Pylypenko et al. (2021).

In Chapter 4, we shift our focus from using representation learning-based methods
to classify original and translated texts to debiasing translationese in those repre-
sentations. Translationese artifacts are found to have a significant impact on various
downstream NLP tasks. Therefore, we propose a new approach to mitigate this impact:
translationese debiasing.

Specifically, we extend the INLP algorithm, originally designed to mitigate gender
attributes, to debias translationese. At the sentence level, we use several neural ar-
chitectures and show that classification scores reduce to that of a random classifier
after debiasing. For word representations, we propose two methods. First, we extract
translationese word lists based on their usage. A translationese word list is a list
of words that are used maximally different in original and translated data. To find
these words in the data, we consider the size of the intersection of two sets where
a word is represented as its top-k nearest neighbors (NN) once in original data and
once in the translated data embedding spaces. Words with the smallest intersection
are considered indicators of translationese as they differ most between original and
translated data. Second, we use explicit tagging to distinguish the same word used in
original and translated data when mapping them onto a shared embedding space. We
then employ INLP to linearly remove translationese features from its representation.
As expected, we observe that the INLP-based linear translationese debiasing results
on static word embeddings are as perfect as our sentence-level results. We evaluate
the effectiveness of our approach by comparing the classification performance before
and after debiasing on the translationese classification task.

Finally, we conduct an extrinsic evaluation of this debiasing method in the context
of the natural language inference (NLI) task, where we integrate the proposed trans-
lationese debiasing method. Our results show that the debiasing approach leads to
improved NLI accuracy due to reduced translation-induced bias. Most of the research
presented in Chapter 4 is published in Chowdhury et al. (2022).

In the second part of this thesis, we focus on understanding and characterising
translationese from a foundational perspective. We explore whether it is possible to
observe signals of translationese in embedding spaces and investigate the practical
implications of such observations. In Chapter 5, we introduce a novel technique based
on departures from isomorphism, which enables us to track translationese in word
embedding based semantic spaces. We model the distance between languages based
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on the departures from isomorphism between embedding spaces constructed from
original target language data and translations into that target language.

We experiment with state-of-the-art metrics to quantify divergence from isomor-
phism in embedding spaces and propose an alternative graph-based distance metric
called Spectral Graph-based Matching. By comparing the distance between embedding
spaces, we identify systematic evidence of translationese. Our findings suggest that as
isomorphism weakens, the linguistic distance between etymologically distant language
families increases, providing evidence that translationese signals are linked to source
language interference.

Furthermore, we demonstrate that our unsupervised data-driven graph and
embedding-based distance algorithms are as effective as earlier methods that relied
on linguistic features (lexical and/or syntactic) to identify source language interfer-
ence in translations. Additionally, we show that our proposed methods are robust
under a variety of training conditions, encompassing data size, type, and choice of
word embedding models. Finally, our findings also indicate that these methods are
language-independent and can be applied to multiple languages, not limited to a
specific language or language family. Most of the research presented in Chapter 5 is
published in Dutta Chowdhury, España-Bonet, and Genabith (2021).

In Chapter 6, we extended our work on unsupervised tracking of translationese
in word embedding based semantic spaces to evaluate the impact of domain on
distinguishing between original and translated data. To achieve this, we use various
perspectives (views) of the same data including words, parts of speech, semantic tags,
and synsets to detect translationese in semantic spaces by measuring departures from
isomorphism. Our findings indicate that while lexicalised embeddings demonstrate
a significant presence of source-language interference, other delexicalised levels of
abstraction also display similar tendencies, implying that lexicalised results are not
solely due to possible domain differences between original and translated texts.
Additionally, we observe that language family ties with characteristics similar to
linguistically motivated phylogenetic trees can be inferred from divergence from
isomorphism without relying on external etymological information. In particular, a
greater departure from isomorphism in semantic spaces typically corresponds to a
larger linguistic distance among language families. Lastly, we demonstrate that dis-
tinctive typological characteristics of the source languages of translations are retained
in the translation process, which helps in clustering the language families. Most of the
research presented in Chapter 6 is published in Dutta Chowdhury, España-Bonet, and
Genabith (2020).

Finally, in Chapter 7, we explore the relationship between embedding spaces and
surface strings further by explicitly computing the correlation between (a) differences
in surface string entropy of original vs. translated data computed by language models
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trained on originally authored data and (b) divergence from isomorphism between
embedding spaces computed on the same text data. We do this in two ways: (i) general
correlation between differences in LM entropy on surface strings between original and
translated and divergence from isomorphism between embedding spaces for the same
data; and (ii) a more fine-grained version of (i) to verify whether larger differences
in entropy correspond with larger divergence in isomorphism. In (i) we find that the
two (a surface measure and an embedding measure) correlate, and in (ii) we find that
a higher departure from isomorphism between embedding spaces corresponds with
a higher difference in surface entropy. This explicitly links embedding space with
surface string representation (where the latter is measured by LM entropy). This is
different from the indirect approach in Chapter 6 where the link between embeddings
and structural surface differences was only implicit through what is generally assumed
in the linguistic literature in terms of language family relations and surface structural
differences. In contrast, in Chapter 7, we provide hard evidence for this via linking
two explicit measures: divergence from isomorphism between original and translated
embedding spaces and entropy differences of the surface strings of the same text data.

8.2 Future Directions

We would like to highlight some limitations of our work, and suggest future research
directions in this section. Chapter 3 presents various approaches for learning word
representations for translationese classification. While we find that pre-trained fast-
Text models perform close to other advanced neural models (such as BERT), our
experiments show that using Gaussian distributions over a latent embedding space
(Nikolentzos et al., 2017) only leads to fairly modest results. However, we are yet to
explore an alternative approach that involves embedding objects in a hyperbolic space
(Nickel and Kiela, 2017), which can more naturally represent hierarchical relationships
(Krioukov et al., 2010). Therefore, we believe that investigating embedding spaces
with different topologies (Li et al., 2018; Vilnis et al., 2018) holds great potential as an
exciting future direction for multilingual translationese classification.

Expanding the scope and data to include non-European languages is a potential
avenue for further research in multilingual translationese classification. To achieve
this, collecting and curating multilingual data for translationese would be a valuable
step, as evaluating the extent to which the classification model is influenced by new
language features and representations is not a trivial matter. Unfortunately, due to
the lack of comparable translationese corpora in multiple languages, this was not
possible during the thesis. Another interesting area of research would be to explore
translationese classification in low-resource settings. This could e.g. involve training
multilingual language models purely on low-resource languages, without relying on
any high-resource transfer, in order to assess their competitiveness.
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In Chapter 4, we initiated a research line on mitigating translationese bias through
attenuation in the latent representation of (word and sentence) embeddings. However,
we only scratched the surface, and the effect of this on the actual output generated
(as opposed to the latent spaces) was not explored. Translationese signals are multi-
faceted and complex, encompassing a mix of morphological, lexical, syntactic, and
semantic phenomena. Linear interventions alone may not be sufficient for a complex
task such as debiasing translationese. In future work, we plan to explore non-linear
guarding mechanisms (Dev and Phillips, 2019) for such tasks. In the meantime, we
have taken the first step in this direction published in Jalota et al. (2023), but it is not
included as part of this thesis.

We also acknowledge the various other challenges involved in translationese detec-
tion and classification, such as explicitly quantifying the direction of translationese to
determine or create translationese subspaces. Additionally, there may be intersectional
subspaces that need to be addressed specifically. For instance, a text that contains
both original language and translated signals could be classified as belonging to
an intersectional subspace, rather than purely original language or translationese.
Identifying and understanding these intersectional subspaces is crucial for research on
translationese, as they may have distinct characteristics or impacts on natural language
processing tasks.

As a direct NLP application, we intend to expand our research to comprehend the
extent to which debiasing translation artifacts can improve other downstream tasks,
such as slot-filling or named entity recognition. This could be especially valuable as
translation artifacts may introduce additional complexity and uncertainty to the text,
making it more difficult for models to accurately identify and classify named entities
or fill in predefined slots.

Chapter 5 and Chapter 6 both focus on exploring translationese in semantic spaces
using self-and-unsupervised methods. However, there is still potential for further
research in this area, including investigating alternative fully unsupervised approaches
for detecting translationese, such as optimal transport or density matching methods
(Alvarez-Melis and Jaakkola, 2018; Zhou et al., 2019).

One promising direction for future work is to use the estimated similarities and
dissimilarities between languages and original and translated texts from our research
to shed light on transfer behavior in other downstream tasks between specific language
pairs. For instance, our results could help identify which languages are most likely to
influence each other in the context of machine translation. It may also involve analysing
factors such as the linguistic distance between languages, the cultural similarities and
differences between language communities, or the cognitive processes involved in
language learning and use.

In Chapter 7, we show that translations into English from source languages struc-
turally more divergent from English tend to exhibit higher entropy differences, while
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those from structurally similar languages show smaller differences. At a broader level,
this corresponds to the surface structural linguistic distance (e.g., morphology, syntax)
between the source languages themselves, as characterized by WALS (Haspelmath
et al., 2005). However, the precise nature of this correlation remains a subject for future
investigation.

We are also interested in exploring how different forms of language transfer can be
distinguished from an information-theoretic perspective. By examining the efficiency
of the language transfer process, we can determine how much information is lost or
gained during the transfer and how this affects the overall quality of the transferred in-
formation. Information-theoretic metrics, such as mutual information and conditional
entropy, can be used to measure the efficiency of such language transfer process.
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