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A single-cell atlas to map sex-specific
gene-expression changes in blood upon
neurodegeneration
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The clinical course and treatment of neurodegenerative disease are compli-
cated by immune-system interference and chronic inflammatory processes,
which remain incompletely understood. Mapping immune signatures in larger
human cohorts through single-cell gene expression profiling supports our
understanding of observed peripheral changes in neurodegeneration. Here,
we employ single-cell gene expression profiling of over 909k peripheral blood
mononuclear cells (PBMCs) from 121 healthy individuals, 48 patients withmild
cognitive impairment (MCI), 46 with Parkinson’s disease (PD), 27 with Alz-
heimer’s disease (AD), and 15with both PDandMCI. Thedataset is interactively
accessible through a freely available website (https://www.ccb.uni-saarland.
de/adrcsc). In this work, we identify disease-associated changes in blood cell
type composition and the gene expression in a sex-specific manner, offering
insights into peripheral and solid tissue signatures in AD and PD.

Neurodegenerative disorders such as Alzheimer’s disease (AD) and
Parkinson’s disease (PD) show increasing rates of prevalence in the
global population and severely affect the quality of life of the elderly1,2.
Common risk factors include the genetic background, personal life-
style, environmental exposure and age3. Although the clinical mani-
festation, diagnosis and course of progression vary substantially
between AD and PD, underlying common and converging cellular

pathways have been proposed4. Thereby, both diseases can arise from
distinct precursor stages of varying duration and co-occur with certain
shared symptoms, including (mild) cognitive decline5,6. Notably, the
interplay of the adaptive immune system and brain inflammation in
neurodegenerative diseases is increasingly appreciated7,8. In this con-
text, substantial efforts have carved out the primary affected central
nervous system (CNS) cell types and key risk genes driving the
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underlying pathology, e.g., APOE and TREM2 in microglia for AD, or
alpha-synuclein (SNCA) contained in Lewy-bodies in dopaminergic
neurons for PD9–13. In a similar direction, single cell technologies
facilitate to uncover the role of the human brain vasculature for the
development of neurodegenerative disorders14,15.

While the brain regions selectively affected in these diseases are
subject to intense but predominantly small-scale research due to the
apparent difficulties to obtain fresh-frozen human tissue samples and
associated costs, research has focused on model organisms e.g.,
genetically modified mice, in vitro cell systems, or on the in human
better accessible peripheral organic system, for example blood or
cerebrospinal fluid (CSF) and their connecting interfaces such as the
blood-brain barrier (BBB)16–18. Indeed, accumulating evidencepoints to
a partial breakdown of the BBB with age and during age-related dis-
eases, suggesting a still underestimated role of the peripheral immune
system in neurodegenerative conditions, potentially through infor-
mation exchange between these otherwise restrictively isolated phy-
siological environments19–22. These findings raise questions about how
and at which point during the disease progression the peripheral
immune system is implicated, especially in the context of driving
systemic inflammation23–26. One key factor which is increasingly con-
sidered in the pathology of AD and PD is the patients’ biological sex.
Single-cell studies for AD for instance suggest that female cells are
overrepresented in disease-associated subpopulations and that tran-
scriptional responses are different between sexes in oligodendrocytes
andother cell types11. Sex-dependent changes in brain and the bloodof
ADpatients havebeen repeatedly reported (SupplementaryTable 1). In
contrast, sex-dependent changes in PD patients in the blood have so
far only been reported in monocytes27.

Broadly accessible and low-invasively collectable plasma samples
offer great promise for the detection of circulating biomarkers in neu-
rodegeneration through a screening of peripheral blood mononuclear
cells (PBMC), especially in large-scale settings28–32. Substantial efforts on
clinical cohorts showed that plasma markers measured with analytical
methods can be used to partially predict or track neurodegenerative
disease development while bearing also its own challenges33–37. Thus, a
next logical step is to comprehensively map molecular pathways cor-
relating with, or even causative for these disease biomarker signatures
using high-throughput techniques at high resolution. Single-cell RNA
sequencing (scRNA-seq) holds the promise of unraveling cell type-
specific homeostatic conditions and their alterations in human disease,
as recently demonstrated for parenchymal brain tissue, brain vascu-
lature, or PBMCs in neurodegenerative diseases11,12,14,15,38–44. Reaching
numbers of up to one million cellular gene expression profiles per
publication, the amount of transcriptomic data generated ranges on
exponential scales and is expected to further increase45–48.

In this work, we sought to characterize the peripheral response
through the transcriptional landscape49 in neurodegeneration by
profiling over 909k PBMCs of 290 blood samples including 155 sam-
ples of individuals with clinical neurodegeneration compared to
135 samples of healthy controls (Fig. 1a, Supplementary Data 1). We
thus surpass all other currently published datasets of RNA-sequencing
data of PBMCs in Alzheimer’s and Parkinson’s disease in both the
number of patients and the number of cells (Supplementary Fig. 1,
Supplementary Table 2). Our dataset offers insights into the general
sensing of strongly CNS-associated diseases in the periphery, for the
first time evaluating the potential of low-invasive cellular biomarkers
for these, both at single-cell resolution and at scale. By including time-
series follow-ups for a subset of the patients, as well as additional gray
and white matter volume measurements and protein-levels of known
AD-diseasemarkers in the CSF, we combine a variety of patient-centric
data. A companion web browser is available at https://www.ccb.uni-
saarland.de/adrcsc and enables researchers to easily access the pre-
processed dataset without requiring technical expertise and simplifies
the testing of data-driven hypotheses.

Results
A scRNA-seq dataset of PBMCs in neurodegenerative diseases
From the Stanford Alzheimer’s Disease Research Center (ADRC) we
selected patients diagnosed with mild cognitive impairment (individual
patients n =48, total samples from thepatients nt = 55;MCI), Alzheimer’s
disease (n = 27, nt = 34; AD), Parkinson’s disease (n =46, nt = 48; PD), PD
with MCI (n = 15, nt = 18; PD-MCI), and healthy individuals (n = 121,
nt = 135; HC) (Fig. 1b, Table 1). We ensured a well-balanced ratio of both
biological sex and age between the subgroups (Supplementary Fig. 2a).
For each sample, we performed droplet-based single-cell RNA-
sequencing49 on collected PBMCs, totaling 1,374,714 cellular expres-
sion profiles.We then kept the top 909,322 single cells of highest quality
(66%) that passed stringent quality control filtering (Supplementary
Fig. 2b). Following a cluster-based cell type annotation and manual
marker curation, we found 13 major PBMC types that were further
divided into 33 fine-granular sub-cell types (Fig. 1c, d, Supplementary
Fig. 3). The downstream analysis described in this paper was performed
using only the baseline sample of each patient (unless stated otherwise).

Sex-specific changes in cell type proportions
As visualizing those large cell numbers in a 2-dimensional embedding
becomes unclear - a phenomenoncommonlydenoted asoverplotting -
we estimated the density of cells to highlight the distribution of cells
for each diagnosis group (Supplementary Fig. 4a). Interpreting the
projected densities, we found slight differences in the distribution of
cells, suggesting a disease-specific transcriptomics shift in the overall
abundance of different cell type populations. In light of previous
reports indicating that changes in cell type proportions in PBMC
samples may differ between males and females50, we separated the
data by sex to independently examine disease-related changes. In
general, we observed distinct changes in the cell type proportions in
men and women (Supplementary Fig. 4b). A density analysis depicts
these effects in the integrated data space (Fig. 2a).

These sex-dependent changes were confirmed using scCODA,
which did not show significant changes in the cell-type distributions
(abs log2FC >0.35, significant according to scCODA) when leaving out
sex as a covariate (Supplementary Fig. 4c). Split by male and female
patients, wewere able to observe significant changes (Fig. 2b), some of
which were different dependent on the sex. In Parkinson’s disease,
CD8 + T cells and Plasma cells show a positive fold-change inmales but
a negative fold-change in females. Similarly, B cells aremore abundant
in females with PD-MCI but less abundant in males with PD-MCI.
Although a sex-dependent change in B and NK cells of AD patients was
indicated in the density embedding, scCODAdid not showa significant
difference. In the finer cell-annotation, we observed significant chan-
ges in only 3 cases in males and 9 cases in females using the raw cell
type proportions (Fig. 2c). The significant changes in AD, MCI and PD
match the ones found in the female patients (Supplementary Fig. 4d).
Using scCODAon the finer Annotation, we found a lower proportion of
Tfh cells in AD, as previously reported (Fig. 2d). When comparing these
findings with previously reported changes, some were previously
described by others, such as the increased proportion ofMonocytes in
AD, and changes in B cells in PD (Fig. 2e).

Severalbut not all of the changeswereport in this study havebeen
previously described by others, such as the increased proportion of B
cells in AD, and changes in CD8 +T cells in PD. Overall, our results
suggest a significant shift in the cellular composition of male and
female patients, with disease-specific differences. An important ques-
tion to consider is whether these changes are driven by small, distinct
sets of genes, or broader transcriptomic perturbations.

Differences in the sex-specific transcriptome
To gain further insight into the respective molecular changes among
male and female patients with MCI, AD, or PD, we conducted a DEG
analysis (Supplementary Data 2). As the sample sizes of PD-MCI is too
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small for most analysis we excluded it from further in-depth considera-
tion. Our analysis aims to identify both, sex- and disease-related differ-
ences in gene expression. We revealed a stark contrast between sexes in
the number of DEGs, particularly in Alzheimer’s patients, which has been
previously noted byMathys et al. 11 (Fig. 3a). Specifically, we detected de-
regulated genes in only 12 cell types in male patients, whereas in female
patients 20 cell types exhibited de-regulated genes. A similar, albeit less
sex-pronounced trend was observed in the comparison between PD and
HC, aswell asMCI vs.HCpatients.We thencompared the fold-changes in
male and female subgroups and found a positive correlation for MCI vs.

HC (overall correlation of 0.35, p-value < 2.2 ∗ 10− 16) and AD vs. HC
(overall correlation of 0.32, p-value < 2.2 ∗ 10− 16), particularly in cell types
with a high number of significantly de-regulated genes (Fig. 3b). Con-
versely, cell types inPDvs.HCexhibited lowerornocorrelation at all that
are often negative (overall correlation = −0.0064, p-value =0.098).
Overall, our analysis revealed thatmost of the cell types in the PD vs. HC
comparison were either negatively (9 cell types) correlated or not sig-
nificantly correlatedwhilemost cell types exhibitedapositive correlation
in both AD (22 cell types) and MCI (22 cell types) (Fig. 3c). In total, we
identified only 84 genes that were de-regulated independent of the sex.
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Fig. 1 | Cohort and single-cell data characterization. a Overview on the dataset.
PBMC samples were collected fromhealthy patients (HC), patientswith Parkinson’s
Disease (PD), and patients with Cognitive Impairment (CI), more detailed withMild
Cognitive Impairment (MCI), Alzheimer’s Disease (AD), and Parkinson’s Disease
with Mild Cognitive Impairment (PD-MCI). For a subset of patients, blood samples
were drawn at multiple time-points. The samples were then profiled using single-
cellRNA sequencing. For a subset ofpatients, additionaldatawas collectedonbrain
volumes (158 patients) and knownAlzheimer biomarkersweremeasured in the CSF
(40 patients).bDistribution of biological sex and ageper patient group (dividedby

sex). The violin plots show the shape of the distribution, while the boxes encom-
pass the first through third quartiles, with the central line marking themedian. The
whiskers mark the minimum or maximum values or, if outliers are present, the
values within 1.5 times the interquartile range of the first or third quartile. Outliers
are shown as dots. c Two-dimensional representation of the n = 909k cells using
Uniform Manifold Approximation and Projection (UMAP). Cells are colored by
assigned cell type. dCells are annotated on different levels. This allows the analysis
on a broad level with 13 bigger clusters or on a finer level with 33 clusters.
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Most of these genes were found in CD4+ Tcm/Tscm T cells, NKT-like cells
(Fig. 3d) or inCD56-Dim, CD16NK cell. These findings lead us to evaluate
if the similarities between the different diseases varies by sex. We thus
determined the overlap between the significantly de-regulated genes in
the three diseases to control comparisons. The distribution of shared
genes between diseases in males (Fig. 3e) compared to those in females
(Fig. 3f) is similar and significantly de-regulated genes are mainly shared
between MCI vs. HC and PD vs. HC. In particular, 35 genes are differen-
tially expressed in all three comparisons for male and 27 for female
patients. Overall, our results thus suggest rather sex-independent
expression patterns in the different diseases, while in certain cases -
depending on the disease and cell type - the signatures for the sexes
differ substantially.When comparing the gene-expression changes in the
different cell-types, we observed that the changes in sub-cell types from
the same cell type show a high similarity (Supplementary Fig. 5).

Peripheral pathways affected in neurodegeneration
In the light of the significant variability in gene expression patterns
among diseases, cell types, and sexes, we sought to verify that sig-
natures in our dataset reflect the dysregulation of known disease gene
markers. To accomplish this, we specifically analyzed genes from
the KEGG Alzheimer’s disease and Parkinson’s disease pathways that
were de-regulated in our PBMCs. Astonishingly, we found that gene
expression in the KEGG Alzheimer’s disease pathway is largely inde-
pendent of both sex and cell type. This might be due to a bias in how
the genes on the pathways are identified in previous studies, largely
excluding sex specific effects. While the fold-changes in some cell
types differ between sexes, the direction of the de-regulation is con-
sistent (Supplementary Fig. 6a). Conversely, we observed differences
in gene expression between males and females and between different
cell types for some genes in the KEGG Parkinson’s disease pathway
(Supplementary Fig. 6b).

This poses the question, which pathways are affected specifically in
males and females. The results of a pathway analysis of the change in all
cell-types and sexes (Supplementary Data 3) shows that the affected
pathways in AD and in MCI are similar in both sexes (Fig. 4a). In PD the
pathways are more sex specific. The overall most frequently enriched
pathway in AD is “SRP-dependent cotranslational protein targeting to
membrane”. This is also themost frequently enrichedpathway in females
MCI and males with PD (Fig. 4b). In PD, the “Asthma” pathway is most
affected in females and in MCI “Oxidative phosphorylation” in males.

InPD,MCIand inmales inAD, thepathways are similar acrossall cell-
types (Supplementary Fig. 7). In females with AD, B cells show a similar

clusterofpathways consistingofpathways related to junctions (adherens
junction, cell-substrate junction, cell-substrate adherens junction) and
pathways related to catabolic and biosynthetic processes (“amide bio-
synthetic process”, “aromatic compoundcatabolic process”,…). Inmales,
these pathways appear across all groups of cell-types.

Overall, there are 15 pathways shared between PD, MCI and AD in
females, but 53 in males (Fig. 4c, d). 114 pathways are shared between
AD and PD in males and 24 in females.

Similar disease signatures in PBMCs and neural cells
Havingdetermined changes that can beobservedbetweenAlzheimer’s
disease and healthy controls in PBMC samples, we sought to contrast
peripheral cell transcriptomes to those from the brain. A large number
of studies describe single cell gene expression across multiple regions
in the brain with respect to different disease phenotypes and physio-
logical conditions, complicating a joint analysis.

We thus used a database that integrates single cell gene expression
data from 21 studies, allowing for precise insights into the regulation of
genes across cell types in relation to age, sex, and disease (Fig. 5a)51. As
there are not enough cells from the same cell-type in both brain and
blood, we rely on overlaps of gene-expression patterns and pathways
when looking for similar patterns in neurodegenerative diseases.

We identified genes that exhibit differential expression patterns
between Alzheimer’s disease and healthy individuals in male and
female patients for the PBMCs and investigated whether these exhibit
similar expression patterns in brain cells of Alzheimer’s patients
(Supplementary Data 4, Supplementary Fig. 8a). Our findings suggest
that gene expression changes in peripheral cells may not necessarily
reflect those in the brain, given the natural disparity of cell types
between blood and brain. However, emphasizing the need for further
in-depth investigation knowing the role of the immune system in
Alzheimer’s, the associated brain inflammation and infiltration by
specifically activated immune cells.

Overall, there were 36 genes in males and 7 genes in females that
were significantly de-regulated in both PBMCs and the brain in the
main cell-types (Fig. 5b, c). The genes in males (adj. P-value < 0.05 and
abs. log2 Fold-change > 0.5 in both datasets) were enriched for path-
ways related to the regulation of the immune system and the mem-
brane (Supplementary Fig. 8b, c). The female genes (adj. P-value < 0.05
in both datasets) were enriched for the Herpes Simplex Virus 1 path-
way. Herpes simplex haspreviously been linked to an increased risk for
the development of Alzheimer’s and is discussed as a key factor in
disease development52,53.

Table 1 | Demographic breakdown of the patients included in this study

Age in females (mean, sdandnumberofpatients) Age in males (mean, sd and number of patients) Adj. P-value
(m vs. f)

Diagnosis HC 72 ± 7 (n = 82) 75 ± 9 (n = 53) 0.318

AD 71 ± 10 (n = 21) 73 ± 8 (n = 13) 1

PD 69 ± 7 (n = 23) 69 ± 6 (n = 25) 1

MCI 73 ± 8 (n = 29) 76 ± 6 (n = 26) 1

PD-MCI 68 ± 7 (n = 6) 73 ± 6 (n = 12) 1

Race White (w) 71 ± 8 (n = 144) 74 ± 7 (n = 116) 0.101

Asian (a) 72 ± 7 (n = 12) 72 ± 14 (n = 9) 1

Other (o) 73 ± 7 (n = 5) 74 ± 7 (n = 4) 1

Race w a o w a o w a o

Diagnosis HC 72 ± 7 (n = 72) 71 ± 6 (n = 6) 71 ± 6 (n = 4) 76 ± 7 (n = 49) 64 ± 20 (n = 4) - (n = 0) 0.148 1 -

AD 70 ± 10 (n = 18) 75 ± 8 (n = 3) - (n = 0) 73 ± 8 (n = 13) - (n = 0) - (n = 0) 1 - -

PD 69 ± 7 (n = 22) 67 - (n = 1) - (n = 0) 68 ± 6 (n = 23) 73 ± 4 (n = 2) - (n = 0) 1 - -

MCI 73 ± 8 (n = 26) 69 ± 11 (n = 2) 83 - (n = 1) 75 ± 6 (n = 20) 83 ± 1 (n = 2) 74 ± 7 (n = 4) 1 - -

PD-MCI 68 ± 7 (n = 6) - (n = 0) - (n = 0) 72 ± 7 (n = 11) 78 - (n = 1) - (n = 0) 1 - -

More detailed information can be found in Supplementary Data 1.
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To further validate these findings and to see if the expression
changes with different brain-regions, we tested for the general overlap
of differentially expressed genes (abs. log2 Fold-change > 0.5 and adj.
P-value < 0.05) in this PBMC dataset, the ZEBRA dataset (21 studies)
and an additional ROSMAP dataset (4 studies; 6 brain regions) (Sup-
plementary Data 5). Of note, two studies from the prefrontal cortex

samples of the ROSMAP dataset are a subset of the ZEBRA dataset and
thus not independent. The other brain-regions are independent
between the datasets. We found an overlap of 32 genes in the male
patients and 8 genes in the femalepatients. 24out of the 32male genes
and 5 out of the 8 female genes have been previously reported in the
context of Alzheimer’s disease, most in the context of the immune

Fig. 2 | Sex-dependent changes of cell type proportions. a Differential density
UMAP embedding for male and female patients shows differences in the cell type
distribution for AD, PD andMCI. Each embedding shows the spots with the highest
density of the diseased patient group (red) or the healthy control group (blue).
bComparisonof the cell type proportions (on the broadannotation) using scCODA
with Age and ApoE as covariates. Celltypes with an absolute Fold-change of at least
0.5 that were reported as significant by scCODA are marked with a dot. c Relative
change in the cell type-proportion in % between Healthy and the diagnosis groups
for the different cell types reveals sex-specific changes. Significant values (adj.

p-value < 0.05, unpaired Student’s t-test) are marked by a frame, previously
described changes from the literature are marked with a dot. d Comparison of the
changes of cell type proportions found in the literature and the cell typeproportion
changes found in our PBMC data using scCODA. Changes are only considered if
they were reported as significant by scCODAbetween healthy and disease. If no sex
is given, the test was performed without considering the sex. e Comparison of the
cell type proportions on the fine Annotation using scCODA as described in (b).
Celltypeswith an absolute Fold-change of at least 1 thatwere reported as significant
by scCODA are marked with a dot.
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system, blood-brain barrier, Astrocytes andMicroglia (Supplementary
Table 3, Fig. 5d, e).

To gain a deeper understanding for the changes in PBMCs and
brain cells and how theymight interact, we compared the de-regulated
genes with the CellChat signaling database54. We found genes from the
CCL (Supplementary Fig. 8d) and the MHC-I signaling pathway in the
de-regulated genes in females and the CD45 and the CCL signaling
pathway in males. All of these genes have already been reported in the
context of Alzheimer’s in the literature55–57. This indicates that changes
in the blood might influence the brain or vice versa, but as there are
only few genes of these pathways de-regulated, further experiments
would be necessary to confirm this.

Additionally, we performed a pathway analysis using both the de-
regulated genes in male and female samples (Supplementary
Data 6 and 7). We observed a general enrichment of membrane,
ribosome, and adherens junction-related pathways in both blood and
brain (Fig. 5f). Especially the “SRP-dependent cotranslational protein
targeting to membrane” pathway is frequently enriched in all three
datasets. This suggests that the observed symptoms might be caused
by a systemic change that affects both blood and the brain.

To further investigate the relationship between changes in the gene-
expression inboth tissues,we compared themtoan additional bulkRNA-

sequencing dataset from the ROSMAP cohort (Synapse https://www.
synapse.org/#!Synapse:syn3388564, Supplementary Fig. 8e). Although
fold-changes in the brain single-cell and bulk data showed a significant
positive correlation (overall correlation: 0.14, p-value: 0.00025), we did
not find a significant correlation of the PBMC single-cell with the brain
bulk data (Supplementary Fig. 8f).

Access for the community
To allow easy, fast and uncomplicated data access to our large-scale
findings, we developed a webserver for the dataset. The web-resource
allows the visualization of gene-expression values (Supplementary
Fig. 9a, b). The direct access to the list of de-regulated genes and its
visualization (Supplementary Fig. 9c) allow fast hypothesis-testing.

In addition to the scRNA-seq data used for the analysis shown in
this manuscript, the webserver also allows researchers to access the
longitudinal data, brain volumemeasurements andCSF-marker values.

Our dataset contains 32 patients with more than 1 time-point
(Supplementary Fig. 10a) and 3 with more than 2. All patient with 3
Visits were female and we observed differences in the age-distribution
between male and female patients in this subgroup (Supplementary
Fig. 10b). The average time between the first and second visit was less
than a year for AD and between 2 and 3 years for the other diseases

Fig. 3 | Changes in gene-expression patterns in male and female patients.
a Comparison of the number of genes that are significantly de-regulated (adj.
p-value < 0.05 and absolute log2 fold-change > 0.5, see Methods) between the
healthy and diseased patients in females and in males. b Cell types with more
significantly de-regulated genes (as in a) showhigher correlation values in AD and
MCI. The Pearson correlation coefficient was calculated between the fold-
changes in male and female of all genes in the dataset. c Correlations of the fold-
changes in male and female patients in PD is often lower and in 9 cell types
negative, but positive in most cell types in MCI and AD. Significant values

(Pearson’s correlation, adj. p-value < 0.05) are marked with a dot. d Comparison
of the log2 Fold-changes in male and female patients in CD4+ Tcm/Tscm cells and
NKT-like cells shows the number of genes that are significantly de-regulated in
both or only one sex. The genes are colored by the sex in which they are sig-
nificant in (adj. p-value < 0.05, see Methods). e, f Upset plot showing the number
of significantly de-regulated genes that are shared between the different com-
parisons of healthy with the diagnosis groups for the male sub-group (e) and for
the female sub-group (f) show similar patterns in the overlap between diseases in
both sexes.
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(Supplementary Fig. 10c). When correlating the cell-type proportions
with the number of the visit, we observed no significant correlations
(Supplementary Fig. 10d). Generally, both the cell-type proportions of
the samepatient at different visits andbetweendifferent patients show
large fluctuations (Supplementary Fig. 10e).

Although the statistical power of the longitudinal data is limited,
we included it on the website, allowing interested researchers to
study this data inmoredetail.We additionally included the data of the
brain volume measurements (Supplementary Fig. 11a) and CSF-
marker values (Supplementary Fig. 11b) for direct comparison. Simi-
larly to the time-series data, we correlated it with the cell-type pro-
portions (Supplementary Fig. 11c). We found significant correlations
(adj. P-value < 0.05) mainly in healthy controls. We still include this
data as a resource for other researchers.

Our dataset showed sex-dependent differences in the changes of
the cell type composition and in the gene-expression profiles of neu-
rodegenerative diseases and Parkinson’s disease specifically.

Discussion
The eraof single-cell -omicshas enabled studyinghumandiseases at an
unprecedented cellular resolution combined with massive

throughput, generating millions of transcriptomic profiles at ease.
While large-scale single-cell analysis of fresh-frozen post-mortem
brains seems to come in close reach for the upcoming years, it is of
great importance to understand which systemic changes precede and
co-occur neurodegeneration in the human body as to inform our
current understanding of early biomarkers as well as individualized
risk or progression markers. Our dataset is composed of 290 gene-
expression profiles of PBMCs from MCI, AD, PD, PD-MCI and HC
individuals and includes additional information about Brain volume
measurements and CSF-biomarker levels of known AD biomarkers.
This dataset allows us to generally study disease- and sex-specific
changes in patients with neuro-degenerative diseases.

To study the exact mechanisms, a more specialized dataset with
more samples (e.g. for AD)48 and additional demographic and clinical
information (e.g.medicationuse, otherdisease, lifestyle factors,…)would
be necessary. Changes in the sub-cell types and potential sub-groups in
the cell clusters furthermore need to be studied in more targeted
experiments, as the number of cells in each of these clusters is limited.

When comparing the cell type composition, we found large dif-
ferences between the changes in men and women that are often spe-
cific for certain sub-cell types. Changes in B cells and Monocytes in

Fig. 4 | Pathways analysis shows sex-dependent changes in PD and MCI. a The
number of cell types in which a pathway is enriched or depleted in males and
females in the different comparisons. The dots are colored if they occur only in
males or in females.bNumberofoccurrences of the top 5most frequently enriched

and depleted pathways in each comparison and sex. c, d Size of the overlap of the
pathways in the different comparisons, independent of cell type for males (c) and
females (d).
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Alzheimer’s diseasewere inconsistent acrossmale and femalepatients.
It has been previously shown that depletion of B cells frommice led to
cognitive deficits and an increase of Aβ plaques58. B cells also play an
important role in the regulation of local immune responses and might
thus indicate inflammatory states in Alzheimer’s. The increased levels

ofmonocytes in AD can furthermore be a sign of chronic inflammation
and may have a negative effect on structures like the blood brain
barrier (BBB)59. In contrast to the large sex-specific differences in the
PD cell type compositions that we observed, previous studies mainly
found changes in the T-cell populationof Parkinson’s patients. Of note,

Fig. 5 | Comparison of gene-expression in brain and blood of Alzheimer’s
patients. a Single-cell RNA-sequencing data from the cortex from the ZEBRA-
dataset was used for the comparison of changes in PBMC samples and brain sam-
ples. b Fold-changes in PBMCs and cortex of the genes with an adj. p-value <0.05
(see Methods) in the PBMCs the brain in males. c De-regulation of genes in PBMCs
and cortexwith an adj. p-value < 0.05 in PBMCs and the brain and an abs. log2 fold-
change bigger than 0.6 in the PBMCs (see Methods). d, e Deregulation of the

significantly de-regulated genes in all three datasets (see Methods) and the direc-
tion of de-regulation inmales (d) and females (e) ( + : Up-regulated in all cell-types,
-: Down-regulated in all cell-types and *: Mixed signals). Genes are annotated with
the context in which they have been previously reported in for Alzheimer’s (see
SupplementaryTable3). fTop 10most frequently enrichedordepletedpathways in
both brain datasets and in PBMCs and the proportion of cell-types they are enri-
ched/depleted in.
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the findings of the previous studies sometimes contradict each other.
This can be partially explained by the large fluctuations in the cell type
composition that can be observed even of the same patient60 so that
differences in the cell type composition can vary largely between
samples. Moreover, some of our findings have not yet been docu-
mented, or only partially align with previous studies. This could be
attributed to biases in the cohorts used (such as differences in ethni-
city, disease severity, or other factors), technological limitations, or
other biases.

To identify sex- and disease-specific gene signatures, a machine-
learning model was applied to the dataset (Supplementary Notes 1,
Supplementary Data 8). Testing out a random forest-based feature
selection and three other machine-learning methods, we concluded
that the application on an Alzheimer’s disease dataset is too complex
and would require a larger dataset (ideally with different studies) to
reliably predict disease-specific features across patients.

The data furthermore suggest sex-specific differences between
gene-expression signatures of PD, more similarities, but still sex-specific
differences in AD. Sex-specific differences in PD have been previously
found in Monocytes27 but sex-independent expression-changes were
reported in T-Memory cells61.Wehave found an anti-correlation of gene-
expression changes in male and female indicating large differences
between the disease-specific changes in PD, while the sex-specific dif-
ferences in AD can be mainly observed by the effect size of the gene-
expression change. We have seen that we found much more DEGs in
female patients than in male patients. Even though this effect can be
observed across all diseases in this study, it is particularly strong in AD,
which has previously been reported by Mathys et al. 11. In Parkinson this
effect has been described previously in bloodMonocytes27, whereas the
exact opposite case has been observed in the brain62.

The changes that were observed in Alzheimer’s disease indepen-
dent of the sex mainly focused on genes from the “SRP-dependent
cotranslational protein targeting to membrane” pathway. This pathway
has been previously reported in Alzheimer’s disease63 and Parkinson’s
disease64,65. This indicates similar changes in male and female Alzhei-
mer’s patients and male Parkinson’s patients. Changes in those genes
havebeen showing an increased expressionduringmicroglia activation,
a state that has previously been associated with Alzheimer’s63.

The “SRP-dependent cotranslational protein targeting to mem-
brane” pathway has also been observed in brain samples fromboth the
ZEBRA and the ROSMAP dataset. The genes involved thus do not only
show changes in PBMC, but also the Brain. The genes of this pathway
have previously been discussed in the context of periodontitis, a
condition mainly caused by Porphyromonas gingivali63,66. This bacter-
ium is known to secrete gingipains, which have been linked to Alz-
heimer’s pathology in mice and humans67,68.

Diving deeper into the changes that are observed in both the
blood and the brain, we found 30 overlapping genes in males and 7 in
females that are significantly deregulated in both blood and the brain.
A majority of those genes have been previously reported in relation to
Alzheimer’s disease in different tissues and cell-types (Supplementary
Table 3). These include genes related to changes in the Immune system
and the Blood-brain barrier (especially in females) and changes related
to Astrocytes and Microglia. This indicates general changes in the
immune system, possibly in relation to an infection (such as herpes
simplex) or age-related inflammation processes. The infection with
Herpes simplex can lead to a higher risk of developing Alzheimer’s in
APOE4 carriers52,53 and is discussed to play a major role in the disease
development.

As patients of the ADRC cohort are continuously monitored, two
major shortcomings of our study will be addressed in the future. First,
longitudinal trajectories will be important to trace down the temporal
dynamics on the molecular level. Second, a patient-matched analysis
of both brain and blood tissue will enable us to validate the here
reported effects ruling out inter-individual variation.

In sum, our dataset indicates that there are strong sex-related
differences in the neuro-degenerative diseases discussed in this
study. While the exact relationship between the immune-system
and the brain remains unknown, this study highlights the
importance to consider possible influences of the immune system
and the sex on the development of these diseases. Beyond
the analyses that we provide in the present study, we are convinced
that exploring the very broad dataset supports a broad range
of further research topics. We thus make not only the raw data
available but also implemented a convenient web interface with
substantial functionality to explore the data (https://www.ccb.uni-
saarland.de/adrcsc).

Methods
Cohort
The patients included in the study were enrolled by the Stanford Alz-
heimer’s Disease research Center (ADRC). The group of patients
includes patients diagnosed with mild cognitive impairment (indivi-
dual patients n = 51, total samples from the patients nt=63; MCI), Alz-
heimer’s disease (n = 31, nt=43; AD), Parkinson’s disease (n = 55, nt=61;
PD), PD with MCI (n = 20, nt=24, PD-MCI), and healthy individuals
(n = 154, nt=172, HC). We selected patients with respect to a similar
ratio of both biological sex and age between the subgroups. The
Stanford University IRB approved the study and all patients provided
written informed consent. Due to the strict quality control, the final
dataset only contains a total of 290 samples from 257 individuals. CSF
measurements were performed for NFL, UCHL1, Tau and
GFAP (Quanterix4plex), Ab40, Ab42 and Tau (Quanterix3plex) and
pTau181 (Quanterix). Brain Volume measurements were performed
using PET and MRI imaging.

Single-cell suspension preparation
Frozen PBMCs vials were rapidly thawed in a 37 °C water bath for
2minutes, and the vials were removed when a tiny ice crystal was left.
Thawed PBMCs were quenched with 13ml 37 °C pre-warmed 1X
phosphate-buffered saline (PBS, Thermo Fisher Scientific, #10010031)
supplemented with 10% fetal bovine serum (FBS, Thermo Fisher Sci-
entific, #A3160601). Cells were centrifuged at 300 x g for 10minutes at
room temperature. The supernatant was removed, and cell pellet was
resuspended in 3ml 1X PBS containing 10% FBS, passed through a
40 µm cell strainer (Falcon, #352340), then centrifuged at 300 x g for
10minutes at room temperature. Dead cells were removed by mag-
netic beads purification (Miltenyi Biotech, #130-090-101) according to
the manufacturer’s protocol. Cells were resuspended with cell resus-
pension buffer at a concentration of 1000 viable cells/µl.

Single-cell RNA-seq with DNBelab C4 system
TheDNBelab C Series Single-Cell Library Prep Set (MGI, #1000021082)
was utilized as previously described49. In brief, single-cell suspensions
were used for droplet generation, emulsion breakage, beads collec-
tion, reverse transcription, and cDNA amplification to generate bar-
coded libraries. Indexed scRNA-seq libraries were constructed
according to the manufacturer’s protocol. The DNA nanoballs (DNBs)-
based libraries were sequenced by the ultra-high-throughput DIPSEQ
T1 sequencer at China National GeneBank (CNGB). The read structure
was paired-end with Read 1, covering 30 bases inclusive of 10-bp cell
barcode 1, 10-bp cell barcode 2 and 10-bp unique molecular identifier
(UMI), and Read 2 containing 100 bases of transcript sequence, 10-bp
sample index.

Primary single-cell RNA-seq data processing
Raw sequencing reads from DIPSEQ T1 sequencer were filtered and
demultiplexed using PISA (version 0.2) (https://github.com/shiquan/
PISA). Reads were aligned to hg38 genome using STAR69 (version
2.7.4a), and sorted by sambamba70 (version 0.7.0). Genes were
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annotated according toGENCODE71. Cell versus geneUMI countmatrix
was generated with PISA.

Quality control and data processing
For each count matrix, SoupX72 (1.4.8) was used to estimate and
remove ambient RNA contamination. Only samples with at most 10%
estimated contamination were kept for further analyses. Subsequently
samples were filtered such that each sample contained at least 300
cells, each cell contained at most 7% mitochondrial gene counts and
between 300 and 4000 genes were expressed per cell. Doublet fil-
tering was also performed sample-wise using the R Bioconductor
package scDblFinder73 1.2 with an expected doublet ratio of 1% per
1000 cells. Next, all samples were merged.

Dimensionality-reduction and clustering
Dimensionality-Reduction and clustering were performed using
Seurat (version 4.0.0)74. First the data were again normalized, scaled
and the top 2000 variable genes were selected using Seurats Nor-
malizeData, FindVariableFeatures and ScaleData functions. For the
diemensionality-reduction, we used the RunPCA and the RunUMAP
function with the first 10 dimensions, which was determined using
Seurats ElbowPlot-Function. We performed clustering using the
FindNeighbors-function with the first 10 dimensions and the
FindClusters-Function with a resolution of 0.1.

Cell type annotation
This resulted in multiple clusters which could be assigned to B cells, T
and NK cells, myeloid cells, Plasma cells and a cluster with mixed cell
populations. To identify cell subclusters we next performed a second
round of dimensionality-reduction and clustering of each of the pre-
vious clusters. The T/NK cell clusters arefirst processed independently
for each batch for the filtering and thenmerged afterwards to perform
cell type annotation. We then filtered out sub-clusters with more than
50% cells that originate only from one sample and repeated the
dimensionality-reduction and clustering on the filtered data, as
described for the complete set of cells. We repeated this step until no
cells are filtered out. Cell sub-clusters are then checked for known
marker-genes. Clusters that did not express known markers of PBMC
cells or that are indicated to be low-quality or doublets are removed
from the dataset, followed by another dimensionality-reduction and
clustering step. The T/NK cells of the different batches are then
merged, dimensionality-reduction and clustering were performed and
the cells were split into CD4 + , CD8+ and NK cells before continuing
with the sub-clustering and the cell type annotation. After having fil-
tered out the unwanted cells, the final sub-clusters were annotated
based on known markers from literature.

Low dimensional embedding and density computation
An overall cell density per cell type and patient cohortwas determined
by first estimating the cell density per sample and cell type with the
two-dimensional kernel density estimation implemented in the kde2d
function of the MASS R-package (version 7.3-55). Subsequently, the
density estimateswere aggregated per patient cohort by averaging the
obtained density estimates.

Cell-type composition analysis
Changes in the cell-type composition were evaluated using an
unpaired Student’s t-Test on the raw cell-type proportions and the
p-values were corrected using the Benjamini-Hochberg procedure.
scCODA (version 0.1.9)75 was first used with an automatically selected
reference cell type and Age and AgoE as covariates. Using the selected
reference cell type (CD4 +T cell for the broad annotation and Treg
CD4+ cell for the fine annotation), the analysiswas repeated separately
formales and females. The corrected Fold-changes were reported, and
significant changes were determined using a p-value cut-off of 0.05.

Differential gene expression analysis
Differentially expressed genes on the PBMC data were determined
with the pseudobulk approach implemented by the muscat76 package
(version 1.6.0). Cells were aggregatedwith the aggregate data function
at cell type and sample level by summing up the SoupX corrected
counts. The pbDS function was then used with the limma-voom77

package to calculate the set of differentially expressed genes. The
designmatrix included besides the diagnosis, sample batch and sex as
factors. Multiple testing adjustment was performed with the
Benjamini-Hochberg procedure. Genes were subsequently filtered to
be expressed in at least 5% of all cells of a cell type in at least one of the
comparison patient cohorts. Genes were considered significantly de-
regulated when they showed an absolute log2 fold-change above 0.5
(i.e. a log2 FC < -0.5 or > 0.5) and an adjusted p-value smaller than 0.05.
Adjusted p-values were reported as given by the muscat package.

ZEBRA Brain Atlas preparation and DEG analysis
The study collection, pre-processing, and aggregating of the brain
single-nucleus data was performed as described in Flotho et al.51.
The Blanchard et al.78 was filtered and the Hardwick et al.79 dataset was
removed due to overlaps with other studies in the dataset. Themarker
genes have been computed using a pseudo-bulk approach with edgeR
(v3.36.0). Only cells from studies which reported a particular gene
were considered for computing the DEGs. If the cells for computing
the DEGs originated from more than a single study the study ID was
used as a latent variable in the edgeR design matrix. For significance
testing the glmQLFit method was used. Finally, the p-values have been
adjusted using Benjamini-Hochberg correction of p.adjust method
from the R stats package (v 4.1.3).

ROSMAP Brain Atlas preparation and DEG analysis
We collected and harmonized a scRNA-seq AD/CT dataset from state
of the art studies using sample from the Religous Order and Aging
Project (ROSMAP)80. In particular we used the studies syn52293433,
syn18681734, syn51062116 and syn2580853.

We utilized the Synapse client for Python (synapseclient version
4.5.1) with Python 3.11.10 to acquire all necessary metadata. For rea-
ligning the counts we use the CellRanger v8.0.1 software with the 2T2
reference genome. We removed redundancies in the data by over-
lapping cells and shared donors across studies and removed all
duplicated cells fromour downstreamanalysis.We apply the following
QC thresholds: Genes have to be present in at least 3 cells, each cell
with less than 100 unique genes has been discarded. We remove
putative doublets using scrublet v0.2.281 with default parameters, and
run CellBender v0.3.282 as well with defaults.

We use the Allen Brain Institutes MapMyCells (RRID:SCR_024672)
for cell type labeling, here only cell typeswithmore than 100 cells have
been considered for further analysis. For computingDEGswe followed
the already described methodology (Methods: Differential gene
expression analysis) and included all NCI and AD cases in our
comparison.

Pathway enrichment analysis
Enriched pathways on the whole gene-set were determined by per-
forming an unweighted gene set enrichment analysis using GeneTrail
383 and the ”GO - Biological Process”, ”GO - Cellular Component”, ”GO -
Molecular Function”, ”KEGG - Pathways”, ”Reactome - Path-
ways”, ”WikiPathways” and ”Pfam - Protein families” databases. Genes
wereorderedby the -log10 adjustedp-value and the absolute log2 fold-
change. Only genes which were used by the models were considered.
Pathway analysis for pre-selected gene subsets were performed using
over-representation analysis using GeneTrail 3 with the same
database83. Pathways with an adjusted p-value smaller than 0.05 were
considered significantly enriched or depleted. P-values were reported
as given by GeneTrail.
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Cell-cell communication analysis
Changes in the cell-cell communication were evaluated using the
CellChat package54 (version 1.5.0).

Literature Search
We performed a manually curated literature-research using PubMed-
Search by combining the key-words ”Alzheimer’s” and ”Parkinson’s”
with ”blood”, ”peripheral immunity”, ”peripheral blood”, ”pbmc”
or ” CSF marker” or ”brain” with and without the keyword ”sex” and
selected papers that provide further information and previous find-
ings on the topics of this paper. For the single-cell and bulk PBMC
datasets of Alzheimer’s and Parkinson’s, we performed a manually
curated literature-research using PubMed-Search with the
terms ”transcriptomics”, ”single-cell”, ”pbmc”, ”human”, ”RNA-
seq”, ”blood”, ”parkinson”, ”alzheimer” and ”neurodegeneration” and
selected all single-cell and bulk RNA-seq datasets.

Correlation analysis
All correlation values were determined using the Pearson’s correlation
coefficient (cor.test Function). P-valueswere adjustedusingBenjamini-
Hochberg. Correlations were considered significant if they had an
adjusted p-value smaller than 0.05.

Cosine similarity
The similarity between changes in the gene expression was calculated
as the cosine similarity between the unfiltered gene-lists ordered by
their fold-changes.

Statistics and reproducibility
All test statistics used were conducted two-tailed, if not indicated
otherwise. Computational tools requiring seed generators were set to
use randombut fixed initialization constants. Unless stated differently,
p-values were corrected for multiple hypothesis testing using
Benjamini-Hochberg. Unless stated otherwise, all analyses were per-
formed using the baseline sample for each patient, with specifically
defined analyses involving also longitudinal samples.

Webserver implementation
The interactive visualization website was implemented using Django
v2.2.16 for the backend and bootstrap v5.0.1 for the front end. For the
visualization, plotly js v2.0.0 was used for the graphs and datatables
v1.10.25 for the differential expression table. Thedatawas stored in the
h5ad format and accessed with anndata v0.7.6.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Rawsequencing data is freely available from the sequence read archive
(SRA) using accession ID SRP312418. An interactive webserver to
explore the scRNA-seq count data is freely available at https://www.
ccb.uni-saarland.de/adrcsc. Asmetadata, we publish sex and diagnosis
to comply to Nature’s scientific data policy. Source data are provided
with this paper.

Code availability
The code used to analyze the data is available from GitHub84. Source
data are provided with this paper.
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