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Abstract

The impact of algorithmic decision-making systems on individuals has raised significant
interest in addressing fairness concerns within such systems. Designing fair systems
entails several critical components, which have garnered considerable attention from
the research community. However, notable gaps persist in three key components. Specif-
ically, in this thesis, we address gaps in following components: i) evaluating existing
approaches and systems for (un)fairness, ii) updating deployed algorithmic systems
fairly, and iii) designing new decision-making systems from scratch. Firstly, we evaluate
fairness concerns within foundation models. The primary challenge is that fairness
definitions are task-specific while foundation models can be used for diverse tasks. To
address this problem, we introduce a broad taxonomy to evaluate the fairness of popular
foundation models and their popular bias mitigation approaches. Secondly, we tackle the
issue of fairly updating already deployed algorithmic decision-making systems. To this
end, we propose a novel notion of update-fairness and present measures and efficient
mechanisms to incorporate this notion in binary classification. However, in cases where
there is no deployed system or updating an existing system is prohibitively complex, we
must design new fair decision-making systems from scratch. Lastly, we develop new
fair decision-making systems for three key applications scenarios. Major challenges in
designing these systems include computational complexity, lack of existing approaches
to tackle fairness issues and designing human-subject based studies. We develop a
computationally efficient mechanism for fair influence maximization to make the spread
of information in social graphs fair. Additionally, we address fairness concerns under
model uncertainty, i.e., uncertainty arising due to lack of data or the knowledge about the
best model. We propose a novel approach for training nondiscriminatory systems that
differentiate errors based on their uncertainty origin and provide efficient methods to
identify and equalize errors occurring due to model uncertainty in binary classification.
Furthermore, we investigate whether algorithmic decision-aids can mitigate inconsis-
tency among human decision-makers through a large-scale study testing novel ways to
provide machine advice.
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Zusammenfassung

Der Einfluss algorithmischer Entscheidungssysteme auf das Leben von Menschen hat
ein großes Interesse daran geweckt, dass solche Systeme fair sind. Die Entwicklung
fairer Systeme umfasst mehrere kritische Komponenten, mit denen sich die Forschung
intensiv beschäftigt hat. Bei drei Schlüsselkomponenten gibt es allerdings noch erhe-
bliche Lücken: i) die Bewertung bestehender Ansätze und Systeme im Hinblick auf
(Un-)Fairness, ii) faire Updates von Systemen im laufenden Betrieb und iii) der Entwurf
neuer Entscheidungssysteme von Grund auf. Diese Arbeit befasst sich mit diesen drei
Themen. Zum Ersten bewerten wir Fairnessbedenken in Basismodellen (Foundation
Models). Die größte Herausforderung besteht dabei darin, dass Fairnessdefinitionen
anwendungsspezifisch sind, während Basismodelle für unterschiedliche Anwendungen
verwendet werden können. Um dieses Problem zu lösen, führen wir eine umfassende
Taxonomie ein, um die Fairness gängiger Basismodelle und typischer Ansätze zur Ver-
meidung von Verzerrungen zu bewerten. Zum Zweiten befassen wir uns mit fairen
Updates bereits laufender algorithmischer Entscheidungssysteme. Zu diesem Zweck
entwickeln wir das Konzept der Update-Fairness, sowie Maßnahmen und effiziente
Mechanismen, um das Konzept in der binären Klassifizierung zu nutzen. Zum Dritten,
in Fällen in denen es noch kein System gibt oder die Aktualisierung eines bestehenden
Systems zu komplex ist, müssen wir neue, faire Entscheidungssysteme von Grund auf
entwickeln. Zu den größten Herausforderungen bei der Entwicklung fairer Systeme
gehören dabei i) die Komplexität der Berechnungen, ii) der Mangel an bestehenden
Ansätzen zur Lösung von Fairnessproblemen und iii) die Konzeption von Studien mit
menschlichen Probanden. Deshalb entwickeln wir einen rechnerisch effizienten Mech-
anismus zur fairen Einflussmaximierung, um die Verbreitung von Informationen in
sozialen Graphen fair zu gestalten. Darüber hinaus befassen wir uns mit Fairness bei
Modellunsicherheiten, d.h. Unsicherheiten, die sich aus dem Mangel an Daten oder
dem Wissen über das beste Modell ergeben. Dazu schlagen wir einen neuen Ansatz für
das Training nicht- diskriminierender Systeme vor, der Fehler aufgrund der Art ihrer
Unsicherheit unterscheidet, und entwickeln effiziente Methoden zur Identifizierung
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und zum Ausgleich von Fehlern, die aufgrund von Modellunsicherheit in der binären
Klassifikation auftreten. Darüber hinaus untersuchen wir, ob algorithmische Entschei-
dungshilfen die Inkonsistenz zwischen menschlichen Entscheidungsträgern reduzieren
können, indem wir in einer groß angelegten Studie neuartige Wege maschinelle Unter-
stützung zu kommunizieren, testen.
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3.7 [Retrieval - Cosine similarity - Subjective - FairFace ] These figures
are heatmaps that show the absolute difference in cosine similarity,
scaled up by a factor of 100, for different image retrieval queries
using different methods for gender (left) and race (right) attributes
on FairFace dataset. The figures demonstrate the efficiency of each
methods to equalize the representation for different protected attribute
groups on average. It shows that in general, fair PCA and mutual
information based methods equalize the cosine similarity for gender and
race attribute for a variety of queries. . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 [Retrieval - Cosine similarity - Subjective - Flickr30k ] The figure
is heatmap that show the absolute difference in cosine similarity,
scaled up by a factor of 100, for different queries using different
methods for gender attribute on Flickr30K dataset. The figure
demonstrates the efficiency of each methods to equalize the representation
for different protected attribute groups on average. It shows that in
general, fair PCA based methods and the mutual information based
methods equalize the cosine similarity for gender attribute for a variety of queries. 41

3.9 [Retrieval - Cosine similarity - Subjective - MSCOCO ] The figure
is a heatmap that shows the absolute difference in cosine similarity,
scaled up by a factor of 100, for different queries using different
methods for gender attribute on MSCOCO dataset. The figure
demonstrates the efficiency of each methods to equalize the representation
for different protected attribute groups on average. It shows fair PCA
based methods and mutual information based methods equalize the cosine
similarity for gender attribute for a variety of queries. . . . . . . . . . . . . . . 42
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3.10 [Retrieval - Cosine similarity - Subjective - FairFace - OpenCLIP]
These figures are heatmaps that show the absolute difference in
cosine similarity, scaled up by a factor of 100, for different image
retrieval queries using different methods for gender (left) and
race (right) attributes using FairFace dataset with the OpenCLIP.
The figures demonstrate the efficiency of each methods to equalize the
representation for different protected attributes groups on average. It
shows that in general, fair PCA based methods reduce the difference in
cosine similarity for gender and race attribute for a variety of queries. . . . . . . 44

3.11 [Classification - DDP - Subjective - FairFace - OpenCLIP] These
figures show DDP for classification, given by Eq. (3.5), using Open-
CLIP using FairFace dataset. It demonstrates that fair PCA based
methods perform the best in reducing bias. . . . . . . . . . . . . . . . . . . . . 45

3.12 [Retrieval - DDP - Subjective - FairFace - OpenCLIP] These figures
show DDP for image retrieval, given by Eq. 3.6, using OpenCLIP
on FairFace dataset. It demonstrates that gender balanced queries
and fair PCA are most effective in reducing demographic disparity in
subjective image retrieval tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.13 [Classification - DDP - Subjective - Flickr30K - OpenCLIP] These
figures show DDP for classification, given by Eq. 3.5, using Open-
CLIP on Flickr30K dataset. It demonstrates that fair PCA based
methods are the most effective in reducing bias in classification tasks. . . . . . . . 50

3.14 [Retrieval - DDP & Cosine similarity - Subjective - Flickr30K -
OpenCLIP] These figures show DDP, given by Eq. (3.6), for re-
trieval task using OpenCLIP using Flickr30K dataset on the left,
and absoulte differences in the cosine similarity between men and
women for different queries on the right. . . . . . . . . . . . . . . . . . . . . 51
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3.15 [Retrieval - DDP - Subjective - MSCOCO ] The figure on the top
shows DDP, given by Eq. (3.6), for retrieval tasks using MSCOCO
dataset. These results demonstrate bias in human-centric subjective
tasks. At the bottom, we observe the fraction of query results that actually
include a person. Surprisingly, for many human-related queries, the
retrieved images do not feature any humans at all. Additionally, this
demonstrates that the simple baseline of gendered queries perform very
well in reducing disparity. However, the mutual information-based
approaches, although effective in reducing disparity in some cases, fail
to retrieve images containing humans. Interestingly, Fair PCA, trained
on the inferred gender attribute, manages to return appropriate images
while still reducing some disparity. One possible reason for this could be
that the gender labels derived from the captions, which serve as ground
truth, are quite noisy. In contrast, training fair PCA on on the inferred
gender attribute directly from the CLIP model appears to yield better
results in this context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.16 [Classification - DDP - Subjective - MSCOCO ] The figure on the
top shows DDP, given by Eq. (3.5), for classification tasks using
MSCOCO dataset. These results show bias for human-centric subjective
tasks. They demonstrate that for most methods reduce disparity across
gender in classification tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 [Synthetic dataset. Enforcing statistical parity] These figures show
a comparison between the solutions of Problem (P4.1), using SP
proxies, and Problem (P4.3). Left panel shows the beneficial out-
come rates, i.e., , positive class acceptance rates, for a classifier
only enforcing SP constraint (solid lines), and a classifier addition-
ally enforcing the “loss-averse” constraint (dotted lines). Right
panel shows the nondiscrimination-accuracy tradeoff for both the
classifiers. Enforcing “loss-averse” constraint, defined in Eq. (4.7),
leads to significant additional loss in accuracy for the same level
of discrimination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 [Synthetic dataset. Enforcing equality of opportunity] Figure on
the left shows the beneficial outcome rates, i.e., , true positive rates,
for a classifier only enforcing EOP constraint (solid lines) and a
classifier additionally enforcing the “loss-averse” constraint, given
in Eq. (4.8), is shown in dotted lines. Figure on the right shows
nondiscrimination-accuracy tradeoff for both the classifiers. . . . . . . . . 70
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4.3 [Adult dataset. Enforcing statistical parity] Left panel shows the
beneficial outcome rates, i.e., , positive class acceptance rates, for
a classifier only enforcing SP constraint, i.e., , solution of Prob-
lem (P4.1) using SP proxies (solid lines), and a classifier addition-
ally enforcing the “loss-averse” constraint, i.e., , solution of Prob-
lem (P4.3) (dotted lines). Right panel shows the nondiscrimination-
accuracy tradeoff for both the classifiers. Enforcing “loss-averse”
constraint, defined in Eq. (4.7), leads to a significant additional
loss in accuracy for the same level of discrimination. . . . . . . . . . . . . 72

4.4 [SQF dataset. Enforcing equality of opportunity] These figures
show similar results as Figure (4.2) using SQF dataset. . . . . . . . . . . . 74

5.1 An example to illustrate the disparity across groups in the stan-
dard approaches to TCIM. (Left) Graph with |V| = 38 nodes
belonging to two groups shown in “blue dots" (|V1| = 26) and “red
triangles" (|V2| = 12). (Right) We compare an optimal solution to
the standard TCIM-BUDGET problem P5.1 and an optimal solu-
tion to our formulation of TCIM-BUDGET with fairness consider-
ations given by FAIRTCIM-BUDGET problem P5.4. For different
time critical deadlines τ , normalized utilities are reported for the
whole population V , for the “blue dots" group V1, and for the “red
triangles" group V2. As τ reduces, the disparity between groups
is further exacerbated in the solution to TCIM-BUDGET prob-
lem P5.1. Solution to FAIRTCIM-BUDGET problem P5.4 achieves
high utility and low disparity for different deadlines τ . . . . . . . . . . . . 79

5.2 Demonstration of concave function encouraging picking seeds
which influence under-represented group. X-axis represents group
influence and y-axis represents the value ofH for the correspond-
ing group influence. In this example we have two groups, V1 and
V2. V1 is under-influenced compared to V2, using the seed set S.
In the next iteration we have an option to either include node a
or b in our seed set, both of which add the same amount of total
influence. Adding node a in our seed set influences V1which is the
under-influenced group, while adding node b influences nodes
from V2, as demonstrated in the figure. The traditional method,
given by problem P5.1, would treat both of these nodes as equally
good. However, since we are passing the group influences through
a concave function the increase in the value ofH(z) will be more
if we pick node a, i.e., our method will pick node a because δ1 > δ2. . . . . 85
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5.3 where F(z) = min

{
fτ (S;Vi,G)
|Vi| , Q

}
. Demonstration of the constraint

in problem P5.6. X-axis represents the fraction of group influences
and y-axis represents the value of per group constraint in prob-
lem P5.6 for the corresponding group influence. In this example
we have two groups, V1 and V2 of roughly same size. V1 has not
reached the prescribed quota, Q, while V2 has already been influ-
enced up to the prescribed quota. In the next iteration we have
an option to either include node a or node b in our seed set, both
of which add the same amount of total influence. Adding node a
in our seed set influences only V1, while adding node b influences
nodes from only V2, as demonstrated in the figure. The traditional
method, problem P5.2, would treat both of these nodes as equally
good candidates for including in the seed set because they add
equal fraction of total influence. However, since we require all
the groups to be influenced up to the required quota, selecting
node a will increase our constraint value, F(z), while by selecting
node b the constraint value would stay the same as V2 has already
reached the required quota of influence. . . . . . . . . . . . . . . . . . . . . 89

5.4 [Synthetic Dataset: Budget Problem] The figures show that solving
TCIM-BUDGET problem P5.1 can lead to disparity in number of
influenced nodes belonging to different groups, while FAIRTCIM-
BUDGET problem P5.4 fares better in terms of achieving parity of
influence, with marginally lower total influence. See Section 5.4.2
for further details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 [Synthetic Dataset: Budget Problem] These figures demonstrate
that lower activation probabilities, uneven group sizes, and cliquish-
ness can lead to higher disparity of influence between different
groups with TCIM-BUDGET problem P5.1. In comparison our
proposed method, FAIRTCIM-BUDGET given by problem P5.4,
leads to solutions which yield lower disparity. For further details,
see Section 5.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 [Synthetic Dataset: Cover Problem] These figures show a compari-
son of TCIM-COVER problem P5.2, in red, and FAIRTCIM-COVER
problem P5.6, in blue. They show that FAIRTCIM-COVER achieves
lower disparity of influence between different groups with slightly
bigger solution set sizes. See Section 5.4.3 for further details. . . . . . . . . 94
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5.7 [Rice-Facebook Dataset: Budget Problem] Comparison of results
solving TCIM-BUDGET problem P5.1 and FAIRTCIM-BUDGET P5.4.
We experimented with 4 groups and total influence includes all
the groups, but we show group influences and disparity for only
two groups which showed the maximum disparity. The results
demonstrate that our method, given by problem P5.4, yields seed
set which propagate influence in a more fair manner, at the cost
of a marginally lower total influence. See Section 5.5.2 for further
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.8 [Rice-Facebook Dataset: Cover Problem] These figures demon-
strate the results of TCIM-COVER problem P5.2, in red, and
FAIRTCIM-COVER problem P5.6, in blue. We experimented with
4 groups and total influence includes all the groups but we show
group influences for the two groups which had maximum dis-
parity. The results show that our method achieves a more equal
coverage for all the groups at the expense of only slightly larger
seed sets. See Section 5.5.3 for further details. . . . . . . . . . . . . . . . . . 97

5.9 [Instagram-Activities Dataset] These figures demonstrate a com-
parison of TCIM-BUDGET (Problem P5.1)vs FAIRTCIM-BUDGET
(Problem P5.3) and TCIM-COVER (Problem P5.2) vs FAIRTCIM-
COVER (Problem P5.5) problems. The results show that our meth-
ods fare better compared to the traditional methods. Even though
the fraction of influence seems small, since the graph comprises
0.5m nodes, the differences in fractions are significant in total
numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.10 [Facebook-Snap dataset] These figures demonstrate a comparison
of TCIM-BUDGET (Problem P5.1) vs FAIRTCIM-BUDGET (Prob-
lem P5.3)and TCIM-COVER (Problem P5.2) vs FAIRTCIM-COVER
(Problem P5.5) problems. The results show that our method im-
proves the disparity of the influence between different groups.
The results for the budget problem show some improvement in
the disparity. However, in comparison the reduction in the total
influence is also small. One can consider a concave wrapper with a
larger curvature to improve the disparity. The results for the cover
problem, show a clear improvement in the disparity between the
groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
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6.1 Illustrative example: Consider a binary classification task with
two features and a sensitive feature represented by the shape
of the points, i.e., circles and triangles. Green and red colors
represent ground truth positive and negative labels, respectively.
Classifiers C1 and C2 are equally accurate classifiers achieving
79% accuracy. The difference between false positives of triangles
and circles for C1 is 22% and −12% with C2. However, these two
classifiers disagree on their decision on 17% of the data, i.e., which
lies in the ambiguous region shown in the shaded blue region.
If we were to pick one of these classifiers it would be unfair to
the points receiving a favorable decision with the other classifier.
On the other hand, a fair classifier equalizing false positive rates,
using [275], gives an accuracy of only 71%. However, it changes
the decisions of several points that clearly belong to the positive
cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 [Synthetic dataset] Figure demonstrates that state of the art fair-
ness methods are effected by label noise. . . . . . . . . . . . . . . . . . . . 113

6.3 [Synthetic dataset] Figure shows the expected class while equaliz-
ing FPRs using the classifiers solving P6.4. It demonstrates that
our method is stable under label noise, as it consistently identifies
same regions as ambiguous for different levels of noise values. . . . . . . 114

6.4 [Synthetic dataset] This figure shows the ambiguous regions (in
red) identified by the four methods discussed in the paper. It
demonstrates that our methods identify similar ambiguous re-
gions compared to the exact methods proposed by Marx et al.
[191]. The results correspond to ε = 0.03. We see similar results
for different values of ε. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1 Graphical overview of experimental conditions T1-T5. In T1 and
T2, respondents review their decisions one-by-one, while in T3-T5
they review decisions in randomly (T3) or meaningfully selected
(T4 and T5) pairs. In T2 and T5 respondents are additionally
provided with (different kinds of) explicit machine advice. . . . . . . . . . 127

7.2 Description of the experimental design shown to participants at
the beginning of the experiment. . . . . . . . . . . . . . . . . . . . . . . . . 133

7.3 Stimulus material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
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7.4 Average duration of the experiment, per experimental condition,
and per experimental phase. The experimental conditions T1–T5
are shown on the x-axis. The values for the pre-review experi-
mental phase are shown in blue, while the post-review values
are shown in orange. We report mean values calculated across
respondents ± 1.96 standard errors of the mean (SEM). . . . . . . . . . . . 137

7.5 H1: Effect of the interventions on people’s propensity to update
decisions, across all 30 apartments. The experimental conditions
T1–T5 are shown on the x-axis. We report mean values calculated
across respondents ± 1.96 standard errors of the mean (SEM). . . . . . . . 141

7.6 H1’: Effect of the interventions on people’s propensity to update
decisions, across the subset of apartments that were shown in the
review phase. The experimental conditions T1–T5 are shown on
the x-axis. We report mean values calculated across respondents
± 1.96 standard errors of the mean (SEM). . . . . . . . . . . . . . . . . . . . 144

7.7 H2: Effect of the interventions on the accuracy of respondents’
decisions. The experimental conditions T1–T5 are shown on the
x-axis. We report mean values calculated across respondents ±
1.96 standard errors of the mean (SEM). . . . . . . . . . . . . . . . . . . . . 146

7.8 H3: Effect of the interventions on the consistency between respon-
dents’ decisions. The experimental conditions T1–T5 are shown on
the x-axis. We report mean values calculated across respondents
± 1.96 standard errors of the mean (SEM). . . . . . . . . . . . . . . . . . . . 147

7.9 Error in people’s implicit relative judgments. The y-axis shows
the fraction of instances where people’s implicit relative ordering
of apartments (>,< or =) did not match the ground truth ordering
based on the listing price. We report mean values calculated across
all respondents and pairs of apartments ± 1.96 standard errors of
the mean (SEM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.10 Distribution of errors in respondents’ estimates, across all treat-
ments. The x-axis shows the magnitude of errors, i.e., the differ-
ence between the apartments’ true prices and the respondents’ es-
timates. The y-axis shows the number of responses in our dataset
that exhibited a certain magnitude of error. . . . . . . . . . . . . . . . . . . 149

7.11 Directionality of response updates. The y-axis shows the frac-
tion of revised responses that were updated to increase (blue) or
to decrease (orange) the initial price estimates, for each of the
experimental conditions T1-T5, shown on the x-axis. . . . . . . . . . . . . . 150

7.12 Effect of the interventions on the consistency of people’s absolute
judgments. The experimental conditions T1–T5 are shown on the x-axis. . 151
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7.13 Effect of the interventions on the consistency of people’s implicit
relative judgments. The experimental conditions T1–T5 are shown
on the x-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.1 [Synthetic dataset-non-linear] The figure on the left shows the 2
moons dataset, the middle figure shows the best non-linear bound-
ary with green regions classified as positive and red regions as
negative and the one on the right shows the ambiguous regions
identified using our method. The figure demonstrate that un-
like Marx et al. [191] our methods can also be used to identify
predictive multiplicity for non-linear classifiers. . . . . . . . . . . . . . . . 181
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3.4 [Retrieval - Recall - Flickr30k] The table below shows recall@K for
randomly selected 50% Flickr30K dataset using different gender
bias mitigation methods. Specifically, we are using the captions of
each image as a query and report the fraction queries that retrieve the
images correctly in top 1, 5 or 10 results. The results show that mutual
information based methods perform worse, which makes sense as the
number of dimensions are reduced, while Prompt-GT method performs
the best. Since the Prompt-GT method was finetuned using the Flickr
dataset, it is not surprising that it outperforms even the CLIP model. It
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3.9 [Retrieval -Statistical Tests - Subjective - FairFace ] This table shows
Alexander-govern statistical tests using FairFace. This test checks
whether there are differences in the mean value of cosine similarity be-
tween men and women for a given query. The pair of numbers represent
the test statistic and the p-value. A low value of the statistic and high
p-value is desirable, the former means the statistical difference for the
given query has low impact and the later means that the differences are
statistically insignificant. It shows that fair PCA and MI-GT meth-
ods generally achieve the lowest disparity in cosine similarity and the
differences are generally statistically insignificant. . . . . . . . . . . . . . . . . . 36
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3.10 [Retrieval -Statistical Tests - Subjective - FairFace] This table shows
statistical tests to check if for a given query all the races have same
mean cosine similarity. A large value of the test statistic and less
than 0.05 pvalue implies that there is a large and statistically significant
different in the mean value of the cosine similarity for one of the races. . . . . . . 37

3.11 [Retrieval - Statistical tests - Subjective - Flickr30k ] This table
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between the two groups for different retrieval tasks. . . . . . . . . . . . . . . . . 38

3.12 [Retrieval - Statistical tests - Subjective - MSCOCO ] This table
shows Alexander Govern statistical test for the cosine similariy
of various queries between men and women. The first number
refers to the test statistic while the second number is the p-value.
If there is a statisitically significant difference among different
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differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.13 [Classification - Accuracy - Objective - FairFace] This table shows
the accuracy of a logistic regression classifier trained on the corre-
sponding CLIP features for FairFace dataset. The top and the bottom
parts of the table correspond to the cases where the mitigation methods
were supposed to remove the gender and race information, respectively,
from the CLIP embeddings, while preserving the other information. The
results show that fair PCA based methods are more effective in removing
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original CLIP embeddings. We do not provide the results for the prompt
method because they do not alter the image representation and results
are similar as the original CLIP. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.14 [Retrieval - Skew - Subjective - FairFace - OpenCLIP] This table
shows the maximum absolute skew, given by Eq. (3.8), using the
FairFace dataset and gender and race attributes using OpenCLIP.
It demonstrates that all the methods are able to reduce the skew. Gen-
der/Race balanced queries and fair PCA are the most effective in reducing
the skew. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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3.15 [Retrieval - Statistical tests - Subjective - FairFace - OpenCLIP] This
table shows the statistical tests for the cosine similarities among
different groups of the protected groups. The first number refers
to the test statistic while the second number is the p-value. If there
is a statisitically significant difference among different groups the
test statistic would be high and p-value would be low. Specifically,
it shows the Alexander-govern statistical test which measures whether
the mean of cosine similarity among different groups for a given query
are statistically significant or not. It shows that fair PCA trained on
ground truth protected attribute labels yields statistically insignificant differences. 49

3.16 [ Retrieval - Skew - Subjective - Flickr30K - OpenCLIP] This table
shows the skew metric, given by Eq. (3.8), using OpenCLIP model,
for the gender attribute average over several image retrieval task
using the Flickr data. It shows that gender balanced queries are most
effective in reducing skew. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.17 [Retrieval - Statistical tests - Subjective - Flickr30K - OpenCLIP]
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refers to the test statistic while the second number is the p-value.
If there is a statisitically significant difference among different
groups the test statistic would be high and p-value would be
low.Specifically, it shows the Alexander-govern statistical test whether
the mean of cosine similarity between men and women for a given query
are statistically significant. It shows that fair PCA trained on ground
truth protected attribute labels yields statistically insignificant differences. . . . . 53

3.18 [Retreival - Precision - Objective - MSCOCO & CelebA ] This ta-
ble shows average precision@K for image retrieval tasks using
different methods for 80 categories of MSCOCO dataset and 9 at-
tributes of CELEBA. It demonstrates that CLIP and fair PCA methods
usually yield similar precision. On the other hand, fair sampling which
is trained on MSCOCO does very well on the MSCOCO dataset but has
a poor performance on CELEBA dataset. The mutual information based
methods have a better performance where more dimensions of the CLIP
embeddings are used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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6.1 [Synthetic dataset] Signed differences in FPR/FNR: This table
demonstrates that our method is effective in removing unfairness
at a very small cost of decrease in the accuracy. Please refer to Section 6.4.4 117
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6.2 Comparison identifying ambiguous regions: The tables show max-
imum discrepancy and ambiguity between any two classifiers in
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CHAPTER 1
Introduction

In this chapter, we first discuss the gaps in different aspects of designing fair decision-
making systems, then we highlight the challenges of solving these problems and lastly
we discuss the contributions of this thesis.

1.1 Motivation

The motivation to create fair decision-making systems stems from the significant impact
these decisions have on human lives. Examples of such systems include reviewing
research papers for conferences, determining bail eligibility, sentencing in prisons, real
estate appraisals, job performance evaluations, and the shortlisting of applicants for job
interviews. These systems may involve solely human decision-makers, a combination
of humans and algorithms, or exclusively algorithmic decision-making systems. We
refer to the the later two types of the systems as algorithmic decision-making systems
(ADMSs) and focus on addressing fairness concerns in these ADMSs.

Aspects of designing fair ADMSs

There are several components of designing fair ADMSs, which have received a lot interest
from the research community. However, there are still gaps in three component that we
address in this thesis, namely: i) understanding and evaluating (un)fairness in an ADMS
ii) fairly updating an already deployed ADMS iii) or designing a new fair ADMS, from
scratch where updating an existing system is infeasible or there is no existing system.

1.1.1 Evaluating unfairness of existing approaches/systems

In order to design fair decision-making systems, a key step is to understand and evaluate
the unfairness of the application scenarios or systems currently in place.
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Foundation models. In the past few years, large models trained on huge amounts of
data, primarily crawled from the internet, have become popular (e.g., BERT [74], CLIP
[220], GPT-3 [38], DALL-E [222], Stable Diffusion [227]). Many of these models have
gained attention even in the general public and extensive news coverage, which typically
also addresses the risks and shortcomings of these models (e.g., [197, 211]). These
large models are now commonly referred to as foundation models, a name coined by
researchers from Stanford to “underscore their critically central yet incomplete character”
[32].

These foundation models can be broadly divided into two categories: generative
and discriminative models. Following the machine learning literature [30], a generative
model is one that can generate synthetic data, such as images or text, and a discriminative
model is one that can distinguish between types of data, for example, by classifying
images as cats or dogs.
Potential for harm in discriminative foundation models. Popular generative founda-
tion models, such as ChatGPT [204] and Stable Diffusion [227], regularly make the news,
both because of the rapid rate of progress in the field [254, 268] and the potential harms
[105] including copyright violation [256] and the hallucination of incorrect and possibly
libelous data [135]. However, in many ways the dangers of discriminative models can
be more insidious. Discriminative models such as CLIP [220] allow for the zero-shot
classification of data, i.e., without access to labeled training data they can assign images
to a set of previously unseen labels. As zero-shot solutions do not require conventional
data sources, models can be optimistically deployed without systematically evaluating if
they are accurate, fair, or even if the task they are deployed on makes sense (e.g., identify
hard workers from resume photographs). Because discriminative models may be used to
make decisions about individuals, their behavior can have a direct impact on a person’s
life, e.g., through controlling access to education, employment or medical care.

Later, in Section 1.2.1 we discuss the challenges of evaluating discriminative founda-
tion models and in Section 1.3.1 we discuss an overview of our contributions to address
these challenges.

1.1.2 Fairly updating an already deployed ADMS

Another important aspect of a discriminative system is how to update it. In many
decision-making scenarios such as banking or judiciary or insurance, a newly deployed
system often replaces an existing decision-making system. This could be a human
decision maker, an older learning model without discrimination-awareness, or a learning
model trained on outdated data (e.g., when features of users in a society evolve).
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Existing literature in behavioral economics and psychology shows that people’s
perceptions of fairness of a new decision-making system are influenced by how the
decision outcomes change from the status quo, i.e., how the new outcomes differ from
the old outcomes [21, 138, 141, 248]. In several fields, ranging from software updates
to domestic/foreign policy making [122] and public budgeting [229], the status quo is
considered when updating existing systems.

However, current works on fair learning do not account for the status quo when
reasoning about fairness of an ADMS. Neglecting the status quo could have a severe
impact on the lives of the people affected by ADMSs. For example, consider a company
where men tend to have higher salaries than women. If the company tries to implement
a new salary policy to equalize this gender pay gap by reducing the salaries of men, the
men might perceive it as unfair, feeling entitled to their previous salary amounts based
on the status quo.

We discuss challenges of updating learning based systems while accounting for the
status quo in Section 1.2.2 and provide an overview of our contributions to address these
challenges in Section 1.3.2.

1.1.3 Designing new fair ADMSs

In certain situations, there may not be an already deployed ADMS or it might be pro-
hibitively complex to take status-quo into account when updating an existing system
or the fairness concerns in the current system might outweigh the benefits of update-
fairness. In these cases, it is more sensible to design a fair ADMS from the ground
up.

In this section, we discuss the fairness concerns in three different and crucial scenar-
ios: influence maximization problem, model uncertainty and inconsistency in human
decision-makers. We use a running example of company X

¯
which wants to expand its

business by hiring several new employees.
Influence maximization. In order to reach to a broader talent-pool company X

¯
wants to

advertize the job openings. It is common to use social media platforms such as Twitter,
LinkedIn or Facebook for such advertisements. Usually the advertizers can only pay for
the advertisements to be seen by selected individuals. A popular method of selecting
such individuals is by using influence maximization. The idea is to identify a set of
initial sources (i.e., seed nodes) in a social network who can influence other people (e.g.,
by propagating key information), and traditionally the goal has been to maximize the
total number of people influenced in the process (e.g., who received the information
being propagated) [49, 106, 147].
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Real-world social networks, however, are often not homogeneous and comprise
different groups of people. Due to the disparity in their population sizes, potentially
high propensity towards creating within-group links [194], and differences in dynamics
of influences among different groups [235], the structure of the social network can cause
disparities in the influence maximization process. For example, selecting most of the seed
nodes from the majority group might maximize the total number of influenced nodes,
but very few members of the minority group may get influenced. In many application
scenarios such as propagation of job or health-related information, such disparity can
end up impacting people’s livelihood and some groups may become impoverished in
the process.

Moreover, some applications are also time-critical in nature [54]. For example, many
job applications typically have a deadline by which one needs to apply; if information
related to the application reaches someone after the deadline, it is not useful. Similarly, in
viral marketing, many companies offer discount deals only for few days (hours); getting
this information late does not serve the recipient(s). More worryingly, if one group of
people gets influenced (i.e., they get the information) faster than other groups, it could
end up exacerbating the inequality in information access. This is possible if the majority
group is better connected and more central in the network than the minority group. Thus,
in time-critical application scenarios, focusing on the traditional criteria of maximizing
the number of influenced nodes can have a disparate impact on different groups. This
disparity in time-critical applications, in turn, can put minority and under-represented
groups at a big disadvantage with far-reaching consequences.
Model uncertainty. In response to the advertisement by company X

¯
, a large number of

people apply for the jobs making it difficult for human decision-makers to go through all
the CVs. So as a first phase, they are sorted by an ADMS (a.k.a applicant tracking systems)
into reject and potential hire. Such systems have been known to be discriminatory, e.g.,
Amazon has discontinued its AI recruitment tool because it showed bias against women1.
To mitigate bias in such and other prediction systems that are being used for several
socially impactful tasks, e.g., predicting recidivism risk in order to help judges make
bail decisions, assessing credit ratings, assessing the risk of defaulting on a loan and
predicting the risk of accident for insurance purposes, researchers have proposed a class
of group fairness methods, which seek to equalize overall errors across different groups
of sensitive attributes such as gender or race [13, 120, 273, 275]. This approach treats all
errors as equal. However, not all errors are the same.

1https://www.reuters.com/article/idUSKCN1MK0AG/
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It is well-known that errors in prediction models arise out of both epistemic (model)
uncertainty and aleatoric (inherent) uncertainty [72, 124, 189]. Epistemic/model errors
occurs due to lack of data or lack of knowledge about the best model that would suit
the given data. Aleatoric errors either occur due to inherent uncertainty of the task or
random noise in the data. Treating epistemic errors and aleatoric errors equally could
lead to unjustifiably wrong decisions for some datapoints.

Moreover, even if the initial ADMS (such as the applicant tracking system in our
example) is not inherently discriminatory but has errors due to model uncertainty, it
suggests that there could be another equally effective ADMS with differing outcomes
for certain data points. Deploying one of these systems could result in some users
being adversely affected, as the system deployed may provide an unfavorable outcome
compared to another equally effective system, leading to perceptions of unfairness.
Human Decision-Makers. Finally, a select number of CVs have made it to a panel
of human decision-makers at the company X

¯
and they have to make the final hiring

decision. However, prior research in psychology has found that presented with identical
information, the same person might make different decisions at different points in time,
and the decisions of different people are likely to vary even more [139, 140]. Such
inconsistencies between decision-makers have been identified in numerous settings
including sentencing [15], job performance evaluations [243], real estate appraisals [3],
and—especially close to the research community—conference reviewing [26, 39, 68, 167,
246].

In certain settings, variation in people’s decisions is indispensable; it may contain
invaluable information that reflects the variation in people’s background knowledge,
political or moral stances, life experiences, and other factors [226, 265, 266]. However,
in other settings, consistency may be considered normatively desirable instead. For
instance, Kahneman et al. [139] argue that organizations such as credit-rating and in-
surance agencies expect that, regardless of the particular professional handling each
case, “identical cases should be treated similarly, if not identically”—a notion in line
with that of “individual fairness” in the algorithmic fairness literature [80]. In conference
reviewing, inconsistencies between different groups of reviewers have raised concerns
about the peer-review process in the scientific community [26, 39, 68, 167, 246]. In the
organizational justice literature, consistency of decisions is recognized as an important
aspect of procedural justice [168, 172].

We discuss the challenges of designing these three systems in Sections 1.2.3 and we
discuss our contributions addressing these challenges in Sections 1.3.3.
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1.2 Challenges

1.2.1 Evaluating unfairness of existing approaches/systems

Guided by the principles from law, ethics, and philosophy, numerous metrics have
been suggested to assess the fairness of ADMSs. Some of these metrics focus on the
outcomes. For instance, Statistical parity [89, 93, 144] is applied when ground truth labels
are uncertain, requiring the ADMS to distribute favorable outcomes proportionally
among socially significant groups, such as genders or races. Equal opportunity [120,
153, 274] is relevant when trustworthy ground truth labels are available, demanding
equal error-rates for different groups. Diversity-based measures [276] mandate sufficient
representation of different groups in the beneficial class label.

While these metrics are valuable in specific applications, they can sometimes conflict
with each other [255]. The choice of the appropriate metric for evaluating fairness is
crucial. A study by ProPublica [18] highlighted issues with the COMPAS software tool,
designed to assist judges in bail decisions by providing recidivism risk predictions. De-
spite having similar accuracy across races, the tool exhibited distinct errors for different
racial groups. Notably, it consistently misclassified white defendants as low risk more
frequently than black defendants. This underscores the importance of selecting the right
metric to evaluate the fairness of a system.

The advent of discriminative foundation models like CLIP, which enable zero-shot ap-
plications without labeled training data, further complicates these challenges. Zero-shot
solutions do not rely on conventional data sources, allowing models to be optimistically
deployed without systematic evaluation of their accuracy, fairness, or even the relevance
of the tasks they are applied to (e.g., identifying hard workers from resume photographs).
In summary, evaluating such models is particularly challenging due to two factors: the
commodotization of zero-shot machine learning across diverse tasks and the abundance
of fairness definitions that could often be inconsistent.

1.2.2 Fairly updating an already deployed ADMS

Updating decision-making systems while accounting for the status quo system has been
largely ignored in fairness research. To address this gap, the first major challenge is
to establish a plausible notion of fairness grounded in existing social sciences research.
Additionally, we need to demonstrate how this proposed notion applies to the practical
scenarios of ADMSs.
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The second challenge involves operationalizing this notion of fair-update in practical
terms. Specifically, we need to determine how the fairness concept can be translated and
integrated into an ADMS given a particular application scenario.

In this thesis, we focus on the fair update of convex margin-based binary classification
systems. This brings us to the third challenge: how to efficiently incorporate the proposed
notion into the training mechanism of such systems. It turns out that integrating the
notion of fair-update as constraints in the training process of margin-based binary
classification systems results in non-convex and intractable problem formulations. To
address this, we must develop mechanisms that can be seamlessly integrated into existing
learning algorithms for efficient implementation.

1.2.3 Designing new fair ADMSs

Lastly, in this thesis we address challenges in designing new fair ADMSs in three different
settings.
Model uncertainty. The primary challenge is to devise a sensible proposal that distin-
guishes between various types of errors based on their uncertainty-origin in algorithmic
discrimination. The second challenge involves the efficient and effective identification of
errors based on their uncertainty-origin. Lastly, we need to put forth an efficient mecha-
nism for training non-discriminatory classifiers in the presence of model uncertainty.
Influence maximization. The initial challenge is to operationalize existing notions
of discrimination within the time-critical influence maximization (TCIM) framework.
While TCIM is an NP-hard problem, it is submodular which lends itself to efficient
approximation with performance guarantees. Unfortunately, incorporating fairness
notions into TCIM yield formulations which are no longer submodular. Hence, the
second challenge involves devising computationally efficient methods to incorporate fairness
notions into the TCIM problem.
Human decision-makers. To our knowledge, no prior studies have examined how
algorithmic assistance influences the consistency among human decision-makers. To
explore this, the main challenge is to design an experiment that tests the effectiveness
of various methods of improving consistency, including giving machine advice. Ad-
ditionally, in many tasks, gathering the ground-truth labels is costly or defining the
ground-truth is difficult. For such cases, another challenge is to devise different methods
of algorithmic assistance without relying on the ground-truth labels. Furthermore, we
have to develop different types of decision-aids. Lastly, we need to explore different
definitions of consistency and determine whether our results are robust across these
different definitions.
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1.3 Overview of thesis contributions

1.3.1 Evaluating the Fairness of Discriminative Foundation Models

Research questions. 1) What constitutes a fair behavior for discriminative foundation models
in downstream tasks? 2) How fair are the current bias mitigation methods for these models? 3)
How do simple baseline for bias mitigation perform?

• Conceptual contribution: We propose a novel taxonomy for bias evaluation of dis-
criminative foundation models, such as Contrastive Language-Pretraining (CLIP),
that are used for labeling tasks. Using this broad taxonomy, we try to consolidate
several contradictory notions of fairness.

• Empirical contribution: i) We systematically evaluate OpenAI’s CLIP and Open-
CLIP models for key applications, such as zero-shot classification, image retrieval
and image captioning with respect to our taxonomy. ii) Additionally, we evaluate
all existing methods for mitigating bias in these models. We also evaluate some sim-
ple baselines and compare their performance to existing bias mitigation methods.
iii) Finally, we provide quantitative fairness evaluations for both binary-valued
and multi-valued protected attributes over ten diverse datasets. We find that fair
PCA, a post-processing method for fair representations, works very well for debi-
asing CLIP models in most cases while incurring only a minor loss of performance.
However, different debiasing approaches vary in their effectiveness depending
on the task. Hence, one should choose the debiasing approach depending on the
specific use case.

In Chapter 3, we discuss this work in detail.

1.3.2 Fairly updating an already deployed ADMS: Loss-Aversively Fair

Classification

Research questions. 1) How can one update an ADMS fairly? 2) How can we operationalize
the notion of fairness? 3) Does the proposed notion of fairness work in practice?

• Conceptual contribution: Motivated by extensive literature in behavioral eco-
nomics and behavioral psychology (prospect theory), we propose a notion of fair
update of a deployed ADMS that we refer to as loss-averse update.

• Technical contributions: i) We operationalize the notion of loss-aversive fairness
for binary classification setting. However, this leads to non-convex formulations.
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ii) To address this, we provide covariance based mechanisms to train linear and
non-linear convex boundary-based non-discriminatory classifiers (e.g., SVM and
logistic regression).

• Empirical contributions: i) Using both synthetic and real-world datasets, we show
how this notion of fairness can be combined with existing parity based notions of
discrimination, such as demographic parity and equality of opportunity. ii) We
find that adding the loss-aversive constraint leads to the desired result at the cost
of a small decrease in accuracy.

In Chapter 4, we discuss this work in detail.

1.3.3 Designing new fair ADMSs

In this Section, we give an overview of our contributions on designing three different
systems, i) fairness in influence maximization, ii) fairness under model uncertainty and
iii) consistency among human decision-makers.

1.3.3.1 Fairness in Time-Critical Influence Maximization

Research questions. 1) What constitutes fairness in TCIM? 2) How can we operationalize
fairness in TCIM? 3) How is (un)fairness affected by various graph properties and aspects of
TCIM algorithms? 4) How can we efficiently solve TCIM with fairness constraints? 5) Do the
proposed mechanisms work in practice?

• Conceptual contribution: We formally introduce the notion of fairness in time-
critical influence maximization, which requires that within a prescribed time deadline,
the fraction of influenced nodes should be equal across different groups.

• Technical contributions: i) We introduce fairness constraints in two formulations
of TCIM problem. In order to solve these formulations computationally efficiently,
we propose monotone submodular surrogates for solving both of these NP-Hard
problems. Though the surrogate problems are still NP-Hard, we propose a greedy
approximation with provable guarantees. ii) We provide theoretical bounds on our
proposed formulations, showing that our solutions are provably efficient.

• Empirical contributions: i) We highlight, via experiments and an illustrative ex-
ample, that the standard algorithmic techniques for solving TCIM problems lead
to unfair solutions, and the disparity across groups could get worse with tighter
time deadline. ii) Secondly, we study the effect of disparity of influence between
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groups: (a) by varying graph properties, such as connectivity and relative group
sizes etc., and (b) by varying TCIM algorithmic properties, such as seed budget,
reach quota and time deadline etc. iii) We evaluate our proposed solutions over
several synthetic and three real-world social networks and show that they are
successful in enforcing the aforementioned fairness notion. Enforcing fairness does
come at the cost of a reduction in performance. However, as guaranteed by our
theoretical results, our experiments indeed demonstrate that this cost of fairness,
i.e., reduction in performance, is bounded for our approach.

In Chapter 5, we discuss this work in detail.

1.3.3.2 Accounting for model uncertainty in algorithmic fairness

Research questions:. What constitutes a fair model under model uncertainty? 2) How can we
identify epistemic errors efficiently? 3) How can we achieve fairness under model uncertainty? 4)
Do our proposed methods work in practice?

• Conceptual contribution: i) We argue that uncertainty in prediction should be
accounted for when designing fairness approaches. To this end, we propose to
only equalize errors occurring due to model uncertainty, i.e., the epistemic errors,
as opposed to the existing fairness approaches which equalize total errors. ii) We
draw a connection between model uncertainty and predictive multiplicity, which
refers to the scenario where multiple predictive models have similar predictive
performance (e.g., similar accuracy) but assign contradictory predictions on a
subset of the datapoints, which characterize the ambiguous regions.

• Technical contributions: i) We propose tractable scalable convex proxies to identify
errors in ambiguous regions. ii) We also propose efficient mechanisms to only
equalize the errors in the ambiguous regions.

• Empirical contributions: i) Our experimental results show that our proposed scal-
able convex proxies to identify regions with predictive multiplicity are comparable
in performance and up to four orders of magnitude faster than the current state-of-
the-art . ii) Our experimental results on a synthetic and two real-world datasets
show that our methods improve fairness in the ambiguous regions while achieving
comparable accuracy to the best classifier.

In Chapter 6, we discuss this work in detail.
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1.3.3.3 Moderating inconsistency in human Decision-Makers

Research questions. 1) Can algorithmic decision aids moderate inconsistency among
human decision-makers? 2) Can we construct decision aids that make human decision-
makers more consistent and accurate without relying on the ground truth?

• Experimental design: i) We design a human-subject based study where we ex-
plore various approaches to moderating human inconsistency. Specifically, we ask
participants to estimate real estate prices, using a real estate price dataset studied
by Poursabzi-Sangdeh et al. [215]. Then, we ask the participants to review their
decision in a review-phase, using different approaches. ii) We leverage prior work
in psychology and HCI to develop a set of algorithmic decision aids which may
influence the degree of inconsistency of human decisions. iii) Finally, we propose a
novel way of giving machine advice which does not rely on the ground-truth labels.

• Analysis contribution: In our pre-registered confirmatory analysis we find that
compared to reviewing past decisions one-by-one (baseline), our interventions
showed i) a higher propensity of updating initial decisions, ii) a higher accuracy of
decisions after the review phase, and iii) a higher degree of consistency amongst the
post-review decisions of different respondents. Notably, our proposed methods
of giving advice are able to reduce inaccuracy and inconsisitency among people’s
post-review decisions without relying on the ground-truth labels. Furthermore,
we also conducted detailed exploratory analyses of the effects of our interventions
on different measures of accuracy and consistency, and report a series of other
descriptive statistics.

In Chapter 7, we discuss this work in detail.

1.4 Thesis outline

Rest of the thesis is organized as follows:

• In Chapter 2, we provide a brief background on various notions of fairness and
discuss different approaches of achieving fairness in existing literature.

• In Chapter 3, we present a taxonomy for evaluating (un)fairness in discriminative
foundation models. Additionally, we thoroughly evaluate two representative
discriminative models and their bias mitigation methods for three key applications,
i.e., image classification, image retrieval and image captioning.
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• In Chapter 4, we propose a new notion of update-fairness and demonstrate how it
can be operationalized and incorporated into binary classification. We also propose
efficient mechanisms to learn linear and non-linear non-discriminatory binary
classifiers combined with our notion of update-fairness.

• In Chapter 5, we operationalize a notion of fairness in time-critical influence maxi-
mization (TCIM) problem. Additionally, we show how it can be incorporated into
two versions of the TCIM problem and efficiently solved. We explore the effect of
different graph and algorithmic properties on unfairness.

• In Chapter 6, we propose a new approach to train a class of non-discriminatory
classifiers. We also provide mechanisms to efficiently categorize errors based
on their uncertainty-origin. Additionally, we provide mechanisms to deal with
fairness issues under model uncertainty.

• In Chapter 7, we present a human-subject based study on the efficacy of algorith-
mic decision-aids on moderating inconsistency among human decision-makers.
Additionally, we propose novel ways to provide machine advice to human decision-
makers which do not rely on the ground truth. Furthermore, we explore several
notions of accuracy and inconsistency to test various interventions to moderate
inconsistency among people.

• In Chapter 8, we discuss the implications and limitation of our work. Additionally,
we discuss potential avenues of future works.



CHAPTER 2
Background

In this section, we present a brief background on different notions of fairness and how
they are operationalized and implemented in ADMSs.
Socially salient groups. For different notions of groups fairness we consider socially
salient groups in the population such as gender, race and sexuality, also referred to as sen-
sitive features. Following the fairness in machine learning literature [275] [154], we use
the terms sensitive group, protected group and socially salient groups interchangeably.

2.1 Different notions of fairness in ADMSs

Disparate treatment. Motivated by anti-discrimination laws, a prevalent notion of fair-
ness is group fairness. This notion entails a fair distribution of favorable outcomes among
socially salient groups. A popular measure of group fairness is disparate treatment, also
referred to as ‘direct discrimination’. This form of discrimination arises when sensitive
group membership is directly utilized in an ADMS. Various learning methods have been
proposed to integrate and address this measure [80, 89, 187], primarily by omitting the
protected group.
Disparate impact. This popular measure of discrimination is also referred to as ‘indirect
discrimination’. Disparate impact requires that the beneficial outcomes rates among
different groups of the sensitive feature should not be significantly different [60, 89, 275].
Several works in ADMSs have operationalized this notion of fairness as statistical parity
(SP) or demographic parity (DP) [93, 144], which calls for statistical independence
between the outcomes and the value of the sensitive attribute. Specifically, SP requires
that the beneficial outcomes of the ADMS should be distributed proportionally among
the protected groups. For example if 10% of the applicants for a job are women, 10%
of the jobs should go to women. This measure of fairness tries to address the historical
biases, specially in cases where we do not have reliable ground truth data.
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Equal opportunity. On the other hand, in cases where we have access to ground truth,
e.g., which candidates are actually suitable for the job, equality of mistreatment or equality
of opportunity (EOP) has been proposed [120, 153, 274]. This notion requires that true
positive rates, i.e., classifying a person into positive class who belongs to the positive
class, should be equal across different groups of the sensitive attribute. A similar notion
of fairness is also proposed by Hardt et al. [120], namely equalized odds(EOD), where
they argue that the true positive rates and the false positive rates should be equal across
different groups of the sensitive attribute.
Preferred treatment/impact. Zafar et al. [273] extended the group fairness from equality
among the socially salient groups to preferred treatment. Specifically, they propose group-
conditional classifiers such that each groups receives the most beneficial outcomes by
their own classifier. In some cases parity based notions of fairness might reduce the
benefits for one group without necessary increasing the benefits for the other group, in
such cases this notion of might be more acceptable by all the groups.
Individual fairness. Beyond the group fairness approaches, there also exist work in
ADMSs on individual fairness. The notion of individual fairness was introduced by Dwork
et al. [80] in learning based systems. They operationalize the principle ‘similar individu-
als should be treated similarly’ by considering an ADMS as a mapping function from the
input feature space to the decision space and argue that the individuals who are close
together in the feature space should also be close in the decision space. However, Dwork
et al. [80] rely on a given distance metric. Zemel et al. [278] further extend this work by
providing a method to learn a distance metric.
Counterfactual fairness. Kusner et al. [162] introduced the notion of counterfactual
fairness. They argue that the decisions should be fair for an individual in the actual world
as well in the counterfactual world. Consider an example of university admissions where
applicants belong to different races. Counterfactual fairness posits that changing the race
of applicant, in the causal graph, should not impact the decision of the system.
Diversity. In addition to parity based notion of fairness, there have also been notions of
diversity, especially for information retrieval applications [276]. This notion demands that
different socially salient groups should be ‘well-represented’, especially for applications
such as ranking. This notion of fairness is of particular interest when retrieving a small
subset of items from a large dataset. In such cases it is important to capture the entire
support of the distribution.
Fairness of features. There is also much research on human perception of the fairness in
ADMSs. Specifically, in a study Grgic-Hlaca et al. [115] found that using features that
do not have a causal relationship to the outcomes or are not volitional were considered
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unfair. Additionally, Grgić-Hlača et al. [114] found that people’s perception of the fairness
of a feature depends on their political views and demographic features.

In this thesis, we address different notions of group fairness and individual fairness
for evaluating ADMSs for (un)fairness, fairly updating ADMSs and designing fair
ADMSs.

2.2 Approaches of achieving fairness

A learning based ADMS constitutes utilizing features from input datapoints to generate
decisions through an algorithm. For instance, consider an algorithmic system tasked
with classifying applicants’ CVs into rejection or potential hire categories. Suppose we
aim to ensure fairness in this system, specifically to eliminate gender discrimination.
This objective can be pursued through three methods: i) pre-processing the input data
to prevent the inference of gender information, ii) training a fair classifier with explicit
constraints that enforce non-discrimination, or iii) taking the classifier output and redis-
tributing favorable outcomes in a non-discriminatory manner. These processes align
with i) pre-processing, ii) in-processing, and iii) post-processing approaches for achieving
fairness in an ADMS.

Below we briefly describe popular works in each of these approaches.

2.2.1 Pre-processing

Pre-processing approaches constitute methods which try to alter the input data to achieve
a prescribed fairness metric, e.g., by relabelling or reweighing the input data or by
finding different data representations. Seminal works in achieving fairness through
pre-processing are described below.

One pre-processing approach comprises of relabelling the data. Luong et al. [187]
proposed a method to detect discrimination in a KNN-based binary classification system
by examining pairs of similar points, differing only in their protected group membership.
To mitigate this discrimination, they modify the class labels of discriminated datapoints
in the training set. Kamiran and Calders [143] proposed a relabelling approach for binary
classification tasks. In this approach, for a given classifier (e.g., an accuracy maximizing
classifier) they relabel datapoints near the decision boundary in the training data until
there is no discrimination. These approaches are focused on enforcing statistical parity.

Another class of methods reweighs the dataset instead of changing its contents.
Calders et al. [43] introduced a reweighing approach across different groups of the
sensitive attributes and the ground truth class labels in order to eliminate discrimination
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in the dataset. For instance, in a biased dataset against the protected class, they proposed
increasing the weights of datapoints belonging to the protected group with favorable
outcomes. Other reweighing methods include works by Krasanakis et al. [157] and Jiang
and Nachum [134].

Kamiran and Calders [143] also introduced a preferential sampling method. For a given
dataset and a classifier trained on it, their method involves resampling datapoints near
the decision boundary to build a fair dataset. For instance, in a dataset biased against the
protected class, they suggest oversampling datapoints belonging to the protected groups
with favorable outcome and undersampling datapoints belonging to the unprotected
groups with favorable outcomes. This method tries to enforce statistical parity. Other
approaches based on resampling includes Iosifidis et al. [132] and Zelaya et al. [277].

A popular method for achieving fairness through pre-processing is learning fair
representations. Zemel et al. [278] propose to learn a ‘fair’ mapping of a given dataset
by optimizing to learn faithful representations while obscuring sensitive feature group
membership. These representations can be employed for various downstream tasks,
including classification and regression problems. As a hybrid of pre-processing and
in-processing approach, Zemel et al. [278] also presented a method to jointly learn a
classifier while learning fair representations. Their work demonstrated that this jointly
learned classifier alleviated both statistical disparity and individual unfairness.

Generative models learn representations for a given dataset for the purpose of
generating new data, which can subsequently be utilized in various downstream ap-
plications. Generative models can be used in diverse application for fairness in ADMS,
primarily for pre-processing approaches. Some examples include augmenting imbal-
anced classes [279], generating counterfactuals [119, 188], achieving fairness without
access to sensitive attributes [109] and enhancing fairness for collaborative filtering in
recommender systems [34]. There are two popular generative models i) Variational
autoencoders (VAEs) [152] and Generative adversarial networks (GANs) [104]. Both of
these models have been studied for potential biases and corresponding bias mitigation
strategies have been proposed by Louizos et al. [186] and Xu et al. [270].

A key advantage of pre-processing is its task-agnostic nature, applicable to various
downstream tasks. However, it solely addresses bias in the data, neglecting other sources
of bias like algorithmic bias [196]. Moreover, pre-processing requires access to and
permission to modify the data. Another drawback includes challenges in interpretability
of the modified features, making it difficult to trace the importance of original features
in the ADMS.
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2.2.2 In-processing

The in-processing approach involves methods that explicitly integrate fairness con-
straints into the optimization problem of the algorithm within an ADMS. The following
summarizes notable in-processing methods for achieving fairness in ADMS.

Zafar et. al propose several in-processing methods to enforce fairness in linear and
non-linear boundary based classifiers (e.g., logistic regression and SVM). Their methods
entail converting fairness constraints into disciplined convex programs (DCP) or disci-
plined concave and convex programs (DCCP) [233] that can be efficiently incorporated
into popular classifiers during training. To mitigate disparate impact in binary classifica-
tion, Zafar et al. [275] propose constraints that threshold covariance between the decision
boundary and the sensitive features. In other words, they train classifiers where decision
boundary is uncorrelated with the sensitive feature values. Furthermore, they find that
decreasing the covariance results in lower accuracy hence creating an accuracy-fairness
trade-off. This method does not use the sensitive feature values during test time and
reduces disparate treatment. To enforce equality of opportunity, Zafar et al. [274] propose
covariance-based constraints that enforce parity of false positive rates or false negative
rates across different groups of the sensitive attribute. As before, this method does not
use the sensitive feature value at the test time. To address preference-based notions
of fairness, Zafar et al. [273] train sensitive group conditional classifiers using DCCP
constraints. This approach relies on knowing the sensitive group membership at the test
time so it does not satisfy disparate treatment.

Calders et al. [44] propose methods to tackle fairness issues in regression problem.
Similar to demographic parity, they propose that similar individuals from different
sensitive feature groups should have similar mean prediction values regardless of their
ground truth values. Similar to equal opportunity, they propose that the residual errors
across different groups of the sensitive attributes should be similar. They propose to solve
linear regression with the corresponding constraints and propose closed form solutions
for each problem. In a more recent work, Agarwal et al. [5] propose fair regression where
they incorporate demographic parity in regression problem and solve the proposed
constrained regression problem by converting it into a constrained classification problem.

In order to train counterfactually fair classifiers Kusner et al. [162] rely on a given
causal graph for the dataset. Using this causal graph, they propose to train counterfac-
tually fair classifier at three increasing levels of assumptions and accuracy, requiring
varying degrees of knowledge about the causal model and the unobserved variables
influenced by sensitive features. The crux of their approach is to eliminate the effect
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of the sensitive features on outcomes using a causal graph. Kilbertus et al. [151] also
address counterfactual fairness but similarly rely on the knowledge about causal graphs.

A key benefit of in-processing approach to achieving fairness is the fine grained
control it provides. In many cases, these methods provide a knob to trade-off between
accuracy and fairness, allowing policymakers to select an appropriate accuracy/fairness
trade-off [275]. Unlike pre-processing methods, in-processing methods directly address
the bias caused due to the inductive bias of a model. Additionally, given the right fairness
metric in-processing methods can produce fair outcomes regardless of the biased data.
However, a major challenge lies in the need to operationalize and implement a custom
in-processing method for each application scenario.

2.2.3 Post-processing

Post-processing approaches involve methods that take the output of an ADMS and
redistribute outcomes to align with a specified notion of fairness. This section outlines
notable works utilizing post-processing techniques for enhancing fairness.

Hardt et al. [120] propose a post-processing method to enforce the notions of equal
opportunity (EOP) and equal odds (EOD) for classification tasks. Their approach is
designed for binary prediction systems mapping input features to a score R ∈ [0, 1] such
as a logistic regression classifier. The method involves setting thresholds on the score to
obtain predictions. They propose to find a threshold such that there is no disparity in EOP
or EOD among different groups of the sensitive attributes. If such a universal threshold
does not exist, they suggest employing group-specific thresholds for different sensitive
feature groups. Their approach assumes knowledge of sensitive group membership at
test time. Additionally, they also provide optimality guarantees, given a Bayes optimal
regressor. Corbett-Davies et al. [65] also propose a similar approach to enforce statistical
parity and EOP. Woodworth et al. [269] show that post-processing methods, like the one
proposed by Hardt et al. (2016), can yield poor accuracy when the loss is not strictly
convex and recommend a hybrid in-processing and post-processing approach to address
this issue.

A recent work by Petersen et al. [212] introduces a post-processing method to enforce
individual fairness. They frame the problem as a graph smoothing problem, treating
datapoints as nodes and weighted edges as degree of similarity between points. They
establish an equivalence between the graph smoothing problem and individual fairness,
as outlined by Dwork et al. [79]. Specifically, higher edge weights in their method
correspond to a greater encouragement of smoothness, i.e., nodes with higher weights
between them are given similar outcomes. In other words, given the outcomes of the
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model, the method seeks to achieve individual fairness by finding a new mapping
of nodes to outcomes. This mapping maintains proximity to the previous one while
ensuring local smoothness based on edge weights, ultimately assigning similar outcomes
to similar individuals.

A notable advantage of post-processing approaches is their ability to operate without
the need to design a new ADMS. These methods tend to treat the ADMS as a black box
and can be applied to the outcomes of different types of systems. However, a drawback
is the requirement for access to sensitive features during test time, which constitutes
disparate treatment. Additionally, current methods do not provide a clear mechanism
for balancing accuracy and fairness.

In this thesis, we primarily focus on in-processing methods.



CHAPTER 3
Fairness Evaluation of Discriminative

Foundation Models

In this chapter, we look at the potential harms associated with classifying, retrieving and
captioning image data using discriminative multi-modal foundation models, and ask a
key question:

What constitutes the desired behavior for discriminative foundation models in downstream tasks?

As mentioned in the Section 1.2, our goal is challenging due to a combination of
two factors: first, the rise and commoditization of zero-shot machine learning; and
second, the plethora of inconsistent fairness definitions [255]. Intrinsically, zero-shot
hinges on the idea that a single system should perform well on diverse unseen datasets
without specialist training [165], while algorithmic fairness has consolidated on the
idea that specific fairness definitions are more appropriate for specific tasks [255]. The
intersection of these ideas creates a tension. Indeed, how can we check the fairness of a
general-purpose system if we cannot agree on a general definition of fairness?

Rest of the chapter is organized as follows:

• In Section 3.1, we propose a new taxonomy to attempt to answer our research
question. We also discuss the appropriate fairness metrics corresponding to our
taxonomy.

• In Section 3.2, we provide a background on foundation models and Contrastive
Language–Image Pre-training (CLIP). Additionally, we discuss popular bias miti-
gation methods for CLIP and new baselines that we evalaute.

• In Section 3.3, we discuss the details of the three tasks, i.e., image classification,
image retrieval and image captioning, that we use for evaluating the fairness on
CLIP and its bias mitigation methods.
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• In Section 3.4, we discuss the fairness metrics corresponding to our taxonomy and
the evaluation tasks.

• In Section 3.5, using our taxonomy, we provide a systematic evaluation of OpenAI’s
CLIP [220] and OpenCLIP [130] models, for binary (gender) and multi-valued
(race) attributes.2 Additionally, we evaluate a range of existing bias mitigation
methods for these models. We perform these evaluations using ten diverse and large
scale real-world datasets. We argue that existing fairness methods are designed to
encourage either independence or diversity in the groups of the protected attribute,
and show empirically that they prioritize one or the other. As such, the choice
of a particular fairness method should be driven by the intended use case, and a
decision as to which harms are relevant (Section 3.4).

• In Section 3.6, we discuss additional related work and, finally in Section 3.7, we
conclude the chapter.

Relevant publication

The results presented in this chapter have been published in [11].

3.1 New Taxonomy for (Un)Fairness Evaluation of Discrim-

inative FMs

To address the research question, we propose a coarse taxonomy of tasks and describe
the ideal behavior of a foundation model on such tasks. We base our taxonomy around
three concepts:

(1) Human centricity: Do the labels concern humans?
Examples of human-centric tasks include classifying photos of people into different
professions, retrieving pictures of doctors from a set of images and captioning an
image including people. Non-human-centric tasks includes task like classifying
images of animals (e.g., cats vs dogs) or retrieving a particular type of car from a
dataset.

(2) Label consistency: Is there likely to be an agreement on how data should be labeled
both within a culture and across a wide range of cultures?

2 As an artifact of the available datasets, we make use of annotations that indicate perceived gender and
race. Labels are assigned coarsely by a third party into binary bins for gender and into seven racial groups
(see [145] for details). They do not reflect how people in the dataset identify.
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Table 3.1: The range of desiderata and their corresponding measures. The motivation underlying
our desiderata is straightforward: where consistent labelings exist, we expect foundation
models to reproduce them, and in human-centric tasks we should reproduce them equally
well for all groups. Where labels are subjective (i.e., likely to be labeled inconsistently by
different groups), reproducing labels is less of a concern, and instead we prioritize groups
to be represented equally. The question then is what does ‘equally’ mean? For much of the
fairness literature, ‘equally’ refers to the idea that decisions should be made independently
of protected attributes such as race or gender (potentially conditioned on the true label). This
leads to notions such as equal opportunity [120] (see “independence measures” in the top left
part of the table) or demographic parity [143] (“independence measures” in the bottom left
part of the table). However, this is not the only relevant notion of equal representation. In
some cases, we may wish to sample uniformly from the support of the distribution rather than
the distribution, and this leads to analogous notions provided under “diversity measures” in
the table. By Y, Ŷ , Z we denote a datapoint’s ground-truth label, predicted label, and protected
attribute, respectively; P denotes a generic probability distribution over these three variables.

HUMAN-CENTRIC NON-HUMAN-CENTRIC

Objective
task

Labels should be reproduced Labels should be reproduced
consistentlyconsistently for all groups

Independence measures:
High performance per group on standard metrics and

High performance on standard
metrics

Tables 3.2, 3.4, and 3.18

P (Ŷ = 1|Z = z1, Y = 1) = P (Ŷ = 1|Z = z2, Y = 1) ∀z1, z2
Figures 3.2 and 3.6

Diversity measures:
High performance per group on standard metrics and

P (Ŷ = 1 ∧ Z = z1 ∧ Y = 1) = P (Ŷ = 1 ∧ Z = z2 ∧ Y = 1) ∀z1, z2
Table 3.3

Subjective
task

Labels should represent all groups equally

Out of scope

Independence measures:
P (Ŷ = 1|Z = z1) = P (Ŷ = 1|Z = z2) ∀z1, z2

Figures 3.1, 3.3, 3.4, 3.5, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13 3.14, 3.15 and 3.16.
Tables 3.9, 3.10, 3.11, 3.12, 3.13, 3.15, and 3.17.

Diversity measures:
P (Ŷ = 1 ∧ Z = z1) = P (Ŷ = 1 ∧ Z = z2) ∀z1, z2

Tables 3.5, 3.6, 3.7, 3.8, 3.14, 3.16

Based on the answer to this question, we classify tasks into subjective and objective
categories. We consider labeling tasks objective when there is likely to be a high
agreement among different groups regarding the outcome. For instance, in a picture
where a person is wearing a lab coat and a stethoscope, surrounded by medical
equipment, individuals from diverse backgrounds would probably agree that it is
a picture of a doctor, not an engineer or a firefighter. On the other hand, labeling
the same image as ‘a picture of a doctor’ versus ‘a picture of a nurse’ might result
in more disagreements among diverse labelers across cultures.

However, we acknowledge that this definition is not foolproof and it is difficult
to quantify the objectivity of some tasks, as it does not imply within group dis-
agreement. For example groups of labelers may consistently label data in a way
that other people would disagree with. For example, Microsoft discontinued their
services in the Azure system that infers emotional state, stating that “Experts inside
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Figure 3.1: [Classification - DDP - Subjective - FairFace] We plot DDP, given in Eq. (3.5) for
gender (left) and race (right), summarizing the distribution over multiple zero-shot
classification tasks (provided in Appendix A.1) using FairFace dataset. “GT” and “INF”
refers to whether the value of the protected attributes used to train the corresponding method
were ground truth or inferred using CLIP. These figures shows that fair PCA based methods
are more effective in reducing demographic disparity for different groups of the protected
attributes. Additionally, mutual information based methods are more effective when more
dimensions are reduced.

and outside the company have highlighted the lack of scientific consensus on the
definition of “emotions””3.

(3) Purpose of the task: Can the task be perceived to be assigning labels to individuals,
or to be recovering diverse samples that characterize the spread of data?

While fairness typically concerns itself with the harm to an individual or groups of
individuals that a decision is being made about, for example, the harm induced by
failing to offer someone a loan, schedule follow-up medical treatment, or in hiring
someone, other harms are possible. For example, if someone intends to use images
of scientists for recruiting materials, it is often desirable to show diverse images
capturing scientists of a range of races and genders, i.e. capturing the support of
the distribution. Repeatedly failing to capture the entire support can discourage
some people viewing the images, from considering becoming scientists as they
might feel that scientists are not people like them, referred to as the role model
effect [45].

3https://blogs.microsoft.com/on-the-issues/2022/06/21/microsofts-
framework-for-building-ai-systems-responsibly/

https://blogs.microsoft.com/on-the-issues/2022/06/21/microsofts-framework-for-building-ai-systems-responsibly/
https://blogs.microsoft.com/on-the-issues/2022/06/21/microsofts-framework-for-building-ai-systems-responsibly/
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Figure 3.2: [Classification - DTPR - Objective - CelebA] The plots show the TPR disparity, given
by Eq. (3.7), between men and women for three zero-shot classification tasks using
the CelebA dataset on top and the accuracy on the bottom. The results demonstrate
that mutual information and fair PCA based methods reduce disparity. However where the
dimension of the CLIP embeddings is reduced significantly, using mutual information based
methods, accuracy can also lower significantly.

3.1.1 Measures based on our taxonomy

Based on the answers to the questions above, we discuss the measures that encode the
values implicit in these decisions (see Table 3.1).

Importantly, we find that different answers to these questions naturally lead to
different measures. Consequently, we observe that many of the existing works in fairness
for foundation models, which propose new methods evaluated with respect to particular
measures, are enforcing unexamined value judgments about what the ideal behavior
should be. Moreover, as part of the taxonomy depends not only on the type of task but
also on the purpose, it is impossible to satisfy all measures simultaneously.

3.1.1.1 Human-Centric Tasks

Let Y ∈ {0, 1}, Ŷ ∈ {0, 1}, Z ∈ {0, 1...k} be the ground-truth label, predicted label and
the protected attribute. Let P be the probability distribution over all the three variables.

• Objective Tasks: In these task, the assumption is that the ground truth Y is avail-
able.
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Figure 3.3: [Classification - DDP - Subjective - Flickr30k ] Using Flickr30K dataset, this figure
shows box plots of DDP, given by Eq. (3.5), for several subjective zero-shot classi-
fication tasks. Most methods effectively reduce classification bias, except for the prompt
based method. One reason could be that the model provided by the authors was trained to
have a higher importance for maintaining representational powers of the embedding (itc loss:
Section 3.2.3.2) as opposed to reducing bias.

– Independence Assumption: This reflects the typical fairness concerns that
relate to decisions made about individuals, where the independence of out-
come w.r.t. protected attribute is desirable. This leads to the notions of equal
opportunity [120, 274], i.e., the probability of the positive prediction should
be independent of the protected group membership for ground truth positive
datapoints, i.e.,

P (Ŷ = 1|Z = z1, Y = 1) = P (Ŷ = 1|Z = z2, Y = 1) ∀z1, z2 (3.1)

Consider a classification system tasked with identifying ‘car mechanics’ from
a set of images that includes both men and women. Given the traditional
perception of car mechanics as a predominantly male profession, there is a
possibility that women may not be identified as car mechanics. In such cases,
we anticipate that the true positive rate should be consistent across genders.

– Diversity Assumption: In certain downstream usage of image retrieval lack
of diversity could be deemed as unfair [276]. We require that the probability
of accurately retrieving a subset of images should be uniform across all the
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Figure 3.4: [Retrieval - DDP - Subjective - FairFace ] These figures show the average DDP, given
by Eq. (3.6), for gender (left) and race (right) attributes averaged over several image
retrieval tasks, given in Appendix A.1, using the FairFace dataset. The results demon-
strate that protected attribute specific queries and fair PCA based methods do well in removing
bias for image retrieval tasks. Mutual information based methods also perform well for the
gender attribute.

groups of the protected attributes, i.e.,

P (Ŷ = 1 ∧ Z = z1 ∧ Y = 1) = P (Ŷ = 1 ∧ Z = z2 ∧ Y = 1) ∀z1, z2 (3.2)

Let’s take an example of retrieving 10 images of astronauts from a dataset
containing 90% male astronauts and 10% female astronauts. Now, imagine
using these images in a presentation aimed at motivating school children
to pursue STEM. If we show 9 images of male astronauts and only 1 of a
female astronaut, aligning with the dataset’s proportions, it could potentially
be demotivating for young girls. Therefore, for such applications, we aim to
retrieve an equal number of relevant images for different groups based on the
protected attribute.

• Subjective Tasks: For these tasks the ground truth labelings are not available.

– Independence Assumption: In the case, where ground truth is not available
in fair learning this leads to the notion of demographic parity (DP) [274]. It
requires that the classification into positive class should be independent of the
protected attribute, i.e.,

P (Ŷ = 1|Z = z1) = P (Ŷ = 1|Z = z2) ∀z1, z2 (3.3)
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Figure 3.5: [Retrieval - DDP - Subjective - Flickr30k ] The plot shows the DDP, given by Eq. (3.6),
for gender attribute using Flickr30K dataset. All the methods, except the prompt based
method, decrease the disparity between men and women for the retrieval tasks.

Consider the example of classifying images of men and women into doctors vs
nurses. Given the close relation between both the professions and the difficulty
of establishing an objective ground truth from images alone, in these cases,
we expect that the classification system to adhere to demographic parity.

– Diversity assumption: To enforce diversity in some of the application of
image retrieval application where we do not have the ground truth available,
we expect that the retrieved images equally represent all the groups of the
protected attribute, i.e.,

P (Ŷ = 1 ∧ Z = z1) = P (Ŷ = 1 ∧ Z = z2) ∀z1, z2 (3.4)

Consider the example of retrieving images of ‘a beautiful person’ for an
advertising campaign from a dataset comprising images of different races.
Since the notion of the beauty is subjective across cultures, it would make
sense to display an equal number of images from all races.

3.1.1.2 Non-Human-Centric Tasks

Examples of tasks that are not centered around humans include classifying animals
(distinguishing between dogs and cats), retrieving images of objects (such as pencils,
houses, etc.), and captioning images that do not contain people. We consider harms
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Table 3.2: [Classification - Accuracy - Objective - StanfordCars, Food-101, VOC objects & Ima-
genet] The bias mitigation methods shown in the table were trained using the FairFace Dataset.
We used the test splits for all the datasets. The results show that fair PCA based methods retain
performance on non-human objective tasks. We would like to note that we only show results
with a prompt of “a photo of a {label}”, while the original CLIP paper aggregates results using
several prompts, which they did not disclose. In some cases this can result in a difference in
evaluation numbers that we are reporting compared to the original CLIP paper. However, our
results are within the margin of improvement that the original CLIP paper claims to achieve
using prompt engineering.

Mitigated Dataset Backbone CLIP MI-400-GT MI-256-GT MI-400-INF MI-256-INF Prompt-GT FPCA-GT FPCA-INF

Gender Food-101 ViTB/32 82.3 79.2 67.6 79.3 67.0 – 82.3 82.3
Race Food-101 ViTB/32 82.3 77.7 66.3 77.7 68.6 – 81.5 81.5
Gender Food-101 ViTB/16 87.0 85.1 76.6 85.0 76.0 87.3 87.1 87.0
Race Food-101 ViTB/16 87.0 85.1 76.5 85.0 77.6 – 86.3 86.4
Gender StanfordCars ViTB/32 60.2 53.6 44.9 53.5 46.1 – 60.1 60.2
Race StanfordCars ViTB/32 60.2 54.4 43.0 55.2 43.8 – 60.0 59.5
Gender StanfordCars ViTB/16 65.6 59.7 50.2 61.3 51.8 64.7 65.3 65.3
Race StanfordCars ViTB/16 65.6 59.8 49.0 61.7 48.8 – 65.3 65.4
Gender VOC ViTB/32 83.8 83.0 77.0 82.3 74.9 – 83.7 83.7
Race VOC ViTB/32 83.8 82.7 65.8 83.3 63.9 – 84.5 84.6
Gender VOC ViTB/16 85.7 76.6 67.9 76.3 71.7 82.9 85.6 85.7
Race VOC ViTB/16 85.7 87.9 76.5 89.0 75.8 – 85.7 85.3
Gender Imagenet ViTB/32 59.2 54.4 37.1 54.3 37.5 – 59.2 59.2
Race Imagenet ViTB/32 59.2 53.5 34.6 53.7 34.8 – 58.9 58.9
Gender Imagenet ViTB/16 63.8 55.4 40.3 55.5 41.2 63.2 63.8 63.8
Race Imagenet ViTB/16 63.8 58.3 43.4 58.2 43.4 – 63.5 63.6

associated with these tasks to be beyond the current scope, even though they certainly
can exist. For instance, labelings of sacred places (such as churches, mosques, and
temples) should be respectful. We defer the investigation of such tasks to future studies.
In the case of these tasks, we expect that the performance should not deteriorate when
evaluated using standard metrics.

3.2 Foundation Models, CLIP, and Fairness of CLIP

In the past few years, large models trained on huge amounts of data, primarily crawled
from the internet, have become popular (e.g., BERT [74], CLIP [220], GPT-3 [38], DALL-
E [222], Stable Diffusion [227]). Many of these models have gained attention even in
the general public and extensive news coverage, which typically also addresses the
risks and shortcomings of these models (e.g., [197, 211]). These large models are now
commonly referred to as foundation models, a name coined by researchers from Stanford
to “underscore their critically central yet incomplete character” [32]. They exist in
various flavors that cover a wide range of data modalities (e.g., language, vision or
multi-modal), training objectives (e.g., predicting a word deleted from a piece of text or
aligning images and their captions in a joint embedding space) and application areas
(e.g., data generation tasks such as image synthesis or data analysis tasks such as image
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Table 3.3: [Retrieval - DDP & Precision - Objective - IdenProf ] This table shows fairness evalua-
tion for representational bias on objective tasks for image retrieval of CLIP model and
different bias mitigation methods. Using IdenProf dataset, we show DDP-rep, given by
Eq. (3.9), for each method as well as its average precision for retrieving images of 9 different
professions of the IdenProf dataset. We exclude the profession ‘Firefighters’ because in many
cases their faces are hidden and gender is difficult to identify. Additionally, we do not show
results for EOP like measure because this dataset does not have the annotations for the gender
attribute. The gender annotations for the retrieved images per profession were manually done
by one of the authors. The results demonstrates that gender balanced queries perform the best
to reduce the representational unfairness in the objective tasks. All the methods are trained on
FairFace dataset to remove the gender bias.

Clip MI-400-GT MI-256-GT Prompt-GT Gender-BLN FPCA-GT

DDP(rep) @ 10
0.80±0.05 0.61±0.07 0.55±0.08 0.73±0.07 0.22±0.10 0.49±0.10

DDP(rep) @ 20
0.66±0.06 0.46±0.08 0.49±0.09 0.63±0.07 0.19±0.07 0.44±0.10

DDP(rep) @ 30
0.63±0.06 0.49±0.06 0.49±0.06 0.62±0.04 0.24±0.07 0.39±0.09

Precision @ 10
0.99±0.02 1.00±0.00 0.99±0.02 0.97±0.07 0.99±0.02 1.0±0.0

Precision @ 20
0.98±0.04 0.99±0.01 0.97±0.03 0.97±0.06 0.97±0.05 0.98±0.02

Precision @ 30
0.97±0.04 0.98±0.02 0.96±0.04 0.96±0.06 0.97±0.05 0.98±0.04

classification, retrieval or captioning). What foundation models have in common is that
they were trained on broad data, where the quantity of data was prioritized over its
quality, and that they can be adapted to a wide range of downstream tasks, often with
no or only minimal supervision. The former property makes foundation models prone
to concerning behavior, ranging from algorithmic bias [220] over toxicity and offensive
content [58] to privacy concerns [47]. The latter property increases the risk that any
concerning behavior could spread much wider than with a traditional model trained to
solve a specific task.

In this section, we briefly describe the required background of the CLIP model as an
illustration of a typical discriminative foundation model and relevant fairness concerns.
We discuss additional related work in Section 3.6.
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Table 3.4: [Retrieval - Recall - Flickr30k] The table below shows recall@K for randomly selected
50% Flickr30K dataset using different gender bias mitigation methods. Specifically, we
are using the captions of each image as a query and report the fraction queries that retrieve
the images correctly in top 1, 5 or 10 results. The results show that mutual information based
methods perform worse, which makes sense as the number of dimensions are reduced, while
Prompt-GT method performs the best. Since the Prompt-GT method was finetuned using the
Flickr dataset, it is not surprising that it outperforms even the CLIP model. It is worth noting
that the queries also include gendered queries and some reduction in recall is expected or may
even be desirable.

CLIP MI-400-GT MI-256-GT MI-400-INF MI-256-INF Prompt-GT FPCA-GT FPCA-INF

ViTB/32 Top 1
0.29 0.19 0.13 0.18 0.12 – 0.26 0.26

ViTB/16 Top 1
0.32 0.23 0.15 0.23 0.15 0.35 0.29 0.29

ViTB/32 Top 5
0.51 0.38 0.27 0.37 0.27 – 0.48 0.48

ViTB/16 Top 5
0.55 0.42 0.31 0.42 0.30 0.59 0.51 0.51

ViTB/32 Top 10
0.62 0.48 0.35 0.46 0.35 – 0.58 0.58

ViTB/16 Top 10
0.65 0.51 0.39 0.51 0.38 0.69 0.61 0.61

3.2.1 Contrastive Language Image Pretraining (CLIP)

OpenAI’s CLIP [220] is a discriminative foundation model for computer vision trained
on 400 million image-text pairs to align corresponding image and text examples within a
joint embedding space. To that end, CLIP uses a contrastive loss which tries to push the
representations of the corresponding image and text examples together and the represen-
tations of the non-corresponding examples far apart. This joint multi-modal embedding
space can then be used for several downstream tasks such as image retrieval, image
captioning or zero-shot classification. CLIP achieves remarkable zero-shot classification
performance in several tasks, which in some cases rivals that of the classical supervised
competitors. In certain scenarios, the downstream applications could result in direct
harm to individuals, e.g., classifying images into professionals vs non-professionals,
retrieving a set of doctors from a dataset or captioning images for assisting blind people,
which give rise to several fairness concerns. While OpenAI’s CLIP is proprietary, we
also present results (Section 3.5.6) for its open source implementation OpenCLIP [130].
OpenCLIP has the same objective function and architecture as the original OpenAI CLIP,
but it was trained on the publicly available LAION-400M dataset [230].



Chapter 3. Fairness Evaluation of Discriminative Foundation Models 31

Table 3.5: [Retrieval - Skew - Subjective - FairFace ] This table shows the maximum absolute
skew, given by Eq. (3.8), using the FairFace dataset and gender attribute. It demonstrates
that all the methods are able to reduce the skew. Gender balanced queries yield the lowest skew.

CLIP MI-400-GT MI-256-GT MI-400-INF MI-256-INF Prompt-GT Gender-BLN FPCA-GT FPCA-INF

Top 10
2.47±0.86 0.84±0.68 0.67±0.7 1.06±0.64 0.51±0.3 2.12±0.88 0.08±0.06 0.36±0.2 0.51±0.28

Top 50
1.99±0.62 0.4±0.26 0.24±0.14 0.37±0.24 0.32±0.2 1.6±0.56 0.06±0.02 0.19±0.1 0.23±0.12

Top 100
1.64±0.48 0.38±0.3 0.24±0.12 0.33±0.24 0.2±0.12 1.3±0.36 0.04±0.02 0.23±0.12 0.26±0.12

3.2.2 Existing (Un)Fairness Evaluations of CLIP

Recent works highlighted some biases present in the CLIP model. The original CLIP
paper [220] demonstrated gender and race biases in certain zero-shot tasks including
classifying facial images into crime-related vs. non-crime-related categories or into
human vs. non-human animal categories. These fairness evaluations were limited in
scope to a small number of tasks and datasets.

Wang et al. [262], Berg et al. [25] and Dehouche [70] demonstrated that CLIP em-
beddings have a gender or race bias in certain tasks. In their study, Wang et al. [262]
highlighted gender bias in CLIP embeddings when used for image retrieval tasks. In their
experiments, they first created gender-neutral test queries by replacing the gendered
words with neutral alternatives in the captions of the MSCOCO 1K test set. Subsequently,
they utilized the CLIP embeddings to retrieve images based on these neutral queries.
Their findings reveal that, on average, 6.4 out of top 10 results were images of men.
However, it is important to consider a few factors while considering their results. i)
They did not provide additional metrics that account for differences in the base rate
of men and women. ii) They did not evaluate the fairness of CLIP embeddings using
well-known fairness measures, such as demographic parity or equality of opportunity.
iii) Their approach involved aggregating the signed biases of all queries. This aggrega-
tion method can potentially lead to the cancellation of systematic biases across different
queries, thereby reducing the apparent bias of the system. For instance, if a search for
‘home-maker’ predominantly returns women and a search for ‘technician’ predominantly
returns men, aggregating the two together suggests greater gender neutrality than when
considering any one on its own.

Berg et al. [25] have also raised concerns in gender-related fairness issues of the CLIP
embeddings. Their findings indicate that the CLIP model exhibits a representation bias
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Figure 3.6: [Classification - DTPR - Objective - MIAP ] The x-axis shows three classification tasks: i)
‘inconspicuous photo of a person’ vs ‘prominent photo of a person’, where ground truth was
based on whether the bounding box of the person occupied more than 50% of the image. ii)
‘child’ vs ‘adult’ iii) ‘one person’ vs ‘more than one person’. On top we show the disparity in
the true positive rates across the gender attribute and in the bottom we show the accuracy. We
see that mutual information based methods while in some cases do reduce the disparity but
they incur a reduction in accuracy. On the other hand fair PCA based methods reduce the
disparity while incurring almost no loss in accuracy.

with respect to gender in image retrieval tasks, particularly for queries such as clever,
lazy, hardworking, kind, or unkind. However, it is worth noting that their analysis is
limited to the face-focused FairFace and UTKFace datasets. Additionally, their evaluation
of zero-shot classification was limited to the classification categories presented in the
original CLIP paper [220]. Another aspect that their analysis is missing is the evaluation
on well-established fairness metrics such as demographic parity and equal opportunity.
Instead, they primarily focus on ranking metrics like Skew [98] and KL-divergence.

Dehouche [70] studied the fairness of CLIP by performing zero-shot classification to
classify 10000 synthetically generated portrait photos into male vs. female, white person
vs. person of color, attractive vs. unattractive, friendly vs. unfriendly, rich vs. poor, and
intelligent vs. unintelligent. They found a strong correlation between classification as
female and attractive, between male and rich, and between white person and attractive.
They applied the strategy of Bolukbasi et al. [31] for debiasing word embeddings, by
removing gender bias, and found that this strategy reduced the correlation between
classification as female and attractive or between male and rich. Compared to Dehouche
[70], we perform a more extensive fairness evaluation, considering not only zero-shot
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Table 3.6: [Retrieval - Skew - Subjective - FairFace ] This table shows the results for representation
bias for subjective labelling. Specifically, it show skew metric , given by Eq. (3.8), for
the race attribute of FairFace dataset. Race balanced queries perform well in general but fair
PCA based methods perform the best when the number of retrieved items are larger.

CLIP MI-400-GT MI-256-GT MI-400-INF MI-256-INF Race-BLN FPCA-GT FPCA-INF

Top 10
2.66±0.0 2.66±0.0 2.66±0.0 2.46±0.4 2.66±0.0 1.56±0.84 2.66±0.0 2.66±0.0

Top 50
2.49±0.34 2.23±0.36 2.05±0.4 1.88±0.6 1.91±0.52 1.09±0.68 1.66±0.56 1.38±0.52

Top 100
2.2±0.48 1.85±0.5 1.84±0.5 1.71±0.48 1.45±0.3 1.15±0.78 1.06±0.3 0.89±0.2

classification but also image retrieval and image captioning, and we compare several
bias mitigation methods.

3.2.3 Bias Mitigation Methods for CLIP

In this section, we discuss two existing bias mitigation methods explicitly proposed
for CLIP and the modifications we make to run them. To our knowledge, this is an
exhaustive list — it contains every method claiming to improve the fairness of CLIP at
the time of the submission of our paper. We also discuss a recently introduced version of
fair PCA [154], which is a general approach to make representations fair and which we
investigate in our experiments. In Section 3.6 we discuss concurrent works for debiasing
CLIP.

3.2.3.1 CLIP-clip (referred to as MI in the results)

Wang et al. [262] proposed a simple post-processing approach to make CLIP represen-
tation fair w.r.t. gender. Given a dataset with gender annotations, they calculate the
mutual information between CLIP embedding on the training split of the dataset and
its corresponding values of the gender attribute. Then, they greedily select a prescribed
number of dimensions with the highest mutual information to cut, and retain the rest
of the m dimension in the CLIP representations. The smaller the value of m, the more
debiased the CLIP representations, as shown in Figures 3.1, 3.2, 3.4 and 3.5. However,
the performance using the reduced CLIP embeddings worsens on several non-gender
related tasks, as shown in Tables 3.2, 3.3, 3.4, 3.13 and 3.18. This demonstrates the
well-known accuracy-fairness trade-off.
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Table 3.7: [Retrieval - Skew - Subjective - Flickr30K ] This table shows the skew metric, given
by Eq. (3.8), for the gender attribute average over several image retrieval task using
the Flickr data. It shows that gender balanced queries and mutual information based methods
with a lot reduction in number of CLIP dimensions reduce the skew the most.

CLIP MI-400-GT MI-256-GT MI-400-INF MI-256-INF Prompt-GT Gender-BLN FPCA-GT FPCA-INF

Top 10
2.28±1.12 0.6±0.28 0.71±0.22 0.9±0.38 0.47±0.16 2.08±1.3 0.44±0.04 1.25±0.92 1.2±0.94

Top 20
1.76±0.86 0.77±0.54 0.68±0.1 0.92±0.46 0.44±0.18 1.69±0.92 0.32±0.04 0.72±0.24 0.6±0.18

Top 30
1.52±0.62 0.64±0.28 0.69±0.22 0.87±0.6 0.52±0.1 1.11±0.52 0.27±0.08 0.66±0.28 0.53±0.16

Wang et al. [262] did not show results using non-binary (e.g. race) attributes. We
extend their method to the multi-valued attributes and show results using the race
attribute (see Figures 3.1 and 3.4).

3.2.3.2 Prompt Learning (referred to as Prompt in the results)

Berg et al. [25] proposed a method to reduce bias the CLIP model by incorporating
learnable text prompts into sensitive queries. To achieve this, they select a set of queries
such as ‘a photo of a good/evil/smart person’ and utilize a dataset of images annotated
with the protected group information. For each query, they add learnable text prompts.
Subsequently, they calculate the text and image embeddings using the CLIP’s text and
image encoders. Next, they compute the similarity logits by taking the dot product
between each pair of image-text embeddings. These similarity logits are then fed into
an adversarial classifier, which aims to predict the protected attribute. The training
objective aims to learn the text prompts in a manner that prevents the adversarial network
from accurately predicting the protected attribute. The ultimate goal is to reduce the
correlation between the similarity logits and the protected attributes. Additionally, they
use an image-text contrastive (itc) loss to maintain the performance of the embeddings.
They maintain the balance between the two loss values using a hyperparameter λ.

Berg et al. [25] utilized FairFace dataset for the debiasing loss and Flickr30K dataset
for the itc loss, focusing on the gender attribute. Consequently, we evaluate their method
only for the gender attributes using these datasets and the trained model shared by
the authors. Just to note, they do not provide the value of the λ used to train the pro-
vided model.
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Table 3.8: [Retrieval -Skew - Subjective - MSCOCO ] This table shows absolute skew, given by
Eq. (3.8), for image retrieval tasks using MSCOCO dataset. The results show that the
simple baseline with gender balanced queries perform the best for reducing skew.

CLIP MI-400-GT MI-256-GT MI-400-INF MI-256-INF Gender-BLN FPCA-GT FPCA-INF

Top 10
2.61±1.16 2.24±1.16 2.62±1.14 2.12±1.26 3.12±0.76 0.36±0.14 2.56±1.24 1.68±1.2

Top 50
1.38±0.68 1.95±0.82 2.33±0.82 2.07±0.9 2.06±0.78 0.34±0.12 1.51±0.84 1.36±1.16

Top 100
1.46±0.9 2.23±0.86 2.03±0.5 1.9±0.78 2.0±0.52 0.29±0.06 1.38±0.48 1.02±0.62

3.2.3.3 Fair PCA (referred to as FPCA in the results)

This is a general bias mitigation method that tries to find a linear approximation of
the data that removes sensitive information (such as gender or race) while retaining as
much non-sensitive information as possible. Specifically, the goal of fair PCA is to find a
projection of datapoints xi such that any function h applied to a projected datapoint is
statistically independent of the protected attribute zi. However, such a projection may
not exist, so Kleindessner et al. [154] proposed to solve a relaxed version of the problem.
They restrict h to only linear functions. In addition, they relax the statistical indepen-
dence requirement between h(xi) and zi and only require h(xi) and zi to be uncorrelated.
We use this as a post-processing method for making the representation space of OpenAI’s
CLIP [220] and OpenCLIP [130] models fair. We show results for this method w.r.t. to
gender and race attributes in Section 3.5.

3.2.3.4 Baselines

To remove the gender bias in image retrieval tasks we also show results where we search
for gendered versions of given queries and return balanced results from the gendered
queries. For example, if we wanted to retrieve 10 images for the query “a photo of a
doctor” we search for “a photo of a female doctor” and “a photo of a male doctor” and
return 5 images for each of these. This is an instance of affirmative action [97]. We refer
to this method as Gender-BLN in the results. Similarly, to address the racial bias in image
retrieval we make race-specific queries for images and return the balanced results. We
call this Race-BLN.

For the image captioning method, we propose a baseline in which we train the
captioning system on MSCOCO by removing gendered words from the captions, e.g., “a
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Table 3.9: [Retrieval -Statistical Tests - Subjective - FairFace ] This table shows Alexander-govern
statistical tests using FairFace. This test checks whether there are differences in the mean
value of cosine similarity between men and women for a given query. The pair of numbers
represent the test statistic and the p-value. A low value of the statistic and high p-value is
desirable, the former means the statistical difference for the given query has low impact and
the later means that the differences are statistically insignificant. It shows that fair PCA and
MI-GT methods generally achieve the lowest disparity in cosine similarity and the differences
are generally statistically insignificant.

Statistical tests: ANOVA- Alexander-Govern: (statistic, p-val)

Query CLIP MI-400-GT MI-256-GT MI-400-INF MI-256-INF Prompt-GT FPCA-GT FPCA-INF

CEO (1444 , 0.0) (23 , 0.0) (2 , 0.11) (73 , 0.0) (3 , 0.048) (978 , 0.0) (0 , 0.863) (7 , 0.005)
boss (2025 , 0.0) (24 , 0.0) (0 , 0.906) (7 , 0.008) (1 , 0.309) (673 , 0.0) (0 , 0.909) (5 , 0.02)
convict (300 , 0.0) (4 , 0.032) (0 , 0.473) (7 , 0.007) (1 , 0.168) (328 , 0.0) (0 , 0.484) (18 , 0.0)
criminal (327 , 0.0) (28 , 0.0) (2 , 0.084) (43 , 0.0) (0 , 0.443) (453 , 0.0) (0 , 0.78) (17 , 0.0)
director (668 , 0.0) (0 , 0.5) (14 , 0.0) (0 , 0.553) (8 , 0.004) (787 , 0.0) (0 , 0.452) (8 , 0.003)
drug dealer (621 , 0.0) (6 , 0.01) (3 , 0.069) (12 , 0.0) (9 , 0.003) (718 , 0.0) (1 , 0.277) (4 , 0.043)
engineer (1190 , 0.0) (83 , 0.0) (3 , 0.07) (1 , 0.207) (18 , 0.0) (1126 , 0.0) (7 , 0.007) (13 , 0.0)
genius (3145 , 0.0) (34 , 0.0) (9 , 0.003) (99 , 0.0) (16 , 0.0) (1023 , 0.0) (0 , 0.476) (15 , 0.0)
leader (1326 , 0.0) (68 , 0.0) (21 , 0.0) (0 , 0.64) (24 , 0.0) (1138 , 0.0) (0 , 0.391) (0 , 0.388)
nurse (4142 , 0.0) (308 , 0.0) (37 , 0.0) (232 , 0.0) (43 , 0.0) (3762 , 0.0) (0 , 0.494) (0 , 0.76)
prostitute (2738 , 0.0) (156 , 0.0) (9 , 0.002) (27 , 0.0) (18 , 0.0) (241 , 0.0) (0 , 0.651) (7 , 0.005)
secretary (3269 , 0.0) (299 , 0.0) (22 , 0.0) (291 , 0.0) (50 , 0.0) (385 , 0.0) (0 , 0.999) (6 , 0.014)
suspect (1740 , 0.0) (4 , 0.041) (4 , 0.025) (3 , 0.082) (5 , 0.023) (820 , 0.0) (0 , 0.566) (12 , 0.0)

man standing on the road” to “a person standing on the road”. We explain the results in
Section 3.5.5.

3.3 Expected Behaviour and Evaluation Criteria

In this section, we discuss the tasks for which we evaluate different methods introduced
in Section 3.2.

3.3.1 Binary Zero-Shot Classification

To evaluate fairness for binary zero-shot classification, we first define a pair of classes,
e.g., nurse and doctor. Then, we encode all the images, using CLIP’s image encoder
or an image encoder provided by the corresponding method. Similarly, we tokenize
and encode the names of different classes using CLIP’s text encoder or a text encoder
provided by the corresponding method with a fixed text prompt, e.g., “a photo of a
nurse” and “a photo of a doctor”. Depending on the methods we do further processing,
e.g., for CLIP-clip we clip the prescribed embedding and for fair PCA we transform the
text and image embeddings using a transformation matrix learned from the training split
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Table 3.10: [Retrieval -Statistical Tests - Subjective - FairFace] This table shows statistical tests
to check if for a given query all the races have same mean cosine similarity. A large
value of the test statistic and less than 0.05 pvalue implies that there is a large and statistically
significant different in the mean value of the cosine similarity for one of the races.

Statistical tests: ANOVA- Alexander-Govern: (statistic: p-val)

Query CLIP MI-400-GT MI-256-GT MI-400-INF MI-256-INF FPCA-GT FPCA-INF

cleaning person (746 , 0.0) (166 , 0.0) (488 , 0.0) (135 , 0.0) (286 , 0.0) (7 , 0.251) (14 , 0.021)
director (544 , 0.0) (1440 , 0.0) (416 , 0.0) (1204 , 0.0) (257 , 0.0) (10 , 0.108) (67 , 0.0)
engineer (1276 , 0.0) (760 , 0.0) (511 , 0.0) (752 , 0.0) (290 , 0.0) (28 , 0.0) (51 , 0.0)
labourer (1316 , 0.0) (474 , 0.0) (703 , 0.0) (755 , 0.0) (451 , 0.0) (11 , 0.068) (162 , 0.0)
secretary (661 , 0.0) (362 , 0.0) (280 , 0.0) (334 , 0.0) (402 , 0.0) (5 , 0.459) (21 , 0.001)
smart person (682 , 0.0) (872 , 0.0) (646 , 0.0) (371 , 0.0) (467 , 0.0) (18 , 0.005) (56 , 0.0)
sophisticated person (1274 , 0.0) (636 , 0.0) (548 , 0.0) (462 , 0.0) (485 , 0.0) (19 , 0.003) (44 , 0.0)
terrorist (1603 , 0.0) (882 , 0.0) (1017 , 0.0) (642 , 0.0) (828 , 0.0) (14 , 0.025) (84 , 0.0)

of a given dataset. We then take the dot product and the softmax over the two classes.
Then, from the two classes, we pick the one which yields the maximum value.

We define a set of binary classification tasks for which we believe different genders
and races should have no disparity. We provide the list of these classes in Appendix A.1.
As described in the introduction, Table 3.1, we focus on human-centric subjective tasks, e.g.,
‘criminal’ vs ‘innocent person’, for which demographic parity is desirable across different
values of the protected attributes. Similarly in datasets where we do not have access
to the ground-truth professions we expect that classification tasks such as ‘doctor’ vs
‘nurse’ or ‘CEO’ vs ‘Secretary’ should have demographic parity across protected groups.
The results for these tasks are shown in Figures 3.1, 3.3, 3.11, 3.13 and 3.16.

We also show results for human-centric objective tasks, where we evaluate different
methods for the independence of the gender attribute w.r.t. the true positive rates in
predicting CelebA dataset’s objective categories, such as wearing glasses, and wearing
a necklace in Figure 3.2 and MIAP dataset’s categories, based on age, prominence
in the image, i.e., whether the bounding box of the person occupied more than 50%
of the image, and the number of people in Figure 3.6.

3.3.2 Image Retrieval

Similar to zero-shot classification, for the image retrieval task we select a set of queries
for which we believe there should not be any difference in the retrieved image across
different gender groups or races, we show these queries for each dataset in Appendix A.1.
We similarly convert the images and the queries into their representations and calculate
their cosine similarity. Then, we select the top k results from the list of the decreasing
order of the cosine similarity for each query. Similar to zero-shot classification, we show
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Table 3.11: [Retrieval - Statistical tests - Subjective - Flickr30k ] This table shows Alexander
Govern statistical test for the cosine similariy of various queries between men and
women. It demonstrates that fair PCA based methods do very well to equalize the cosine
similarity between the two groups for different retrieval tasks.

Statistical tests: ANOVA- Alexander-Govern: (statistic, p-val)

Query CLIP MI-400-GT MI-256-GT MI-400-INF MI-256-INF Prompt-GT FPCA-GT FPCA-INF

doctor ( 271 , 0.0) ( 23 , 0.0) ( 43 , 0.0) ( 2 , 0.125) ( 60 , 0.0) ( 222 , 0.0) ( 1 , 0.225) ( 12 , 0.001)
nurse ( 1252 , 0.0) ( 42 , 0.0) ( 76 , 0.0) ( 2 , 0.151) ( 49 , 0.0) ( 1541 , 0.0) ( 0 , 0.481) ( 2 , 0.186)
secretary ( 1567 , 0.0) ( 47 , 0.0) ( 27 , 0.0) ( 3 , 0.09) ( 1 , 0.335) ( 676 , 0.0) ( 0 , 0.484) ( 59 , 0.0)
boss ( 588 , 0.0) ( 35 , 0.0) ( 31 , 0.0) ( 10 , 0.001) ( 18 , 0.0) ( 487 , 0.0) ( 0 , 0.774) ( 65 , 0.0)
lawyer ( 218 , 0.0) ( 2 , 0.157) ( 2 , 0.161) ( 36 , 0.0) ( 41 , 0.0) ( 166 , 0.0) ( 0 , 0.932) ( 13 , 0.0)
paralegal ( 522 , 0.0) ( 10 , 0.002) ( 0 , 0.825) ( 45 , 0.0) ( 65 , 0.0) ( 185 , 0.0) ( 0 , 0.77) ( 15 , 0.0)

results for human-centric subjective tasks under independence assumption in Figures 3.4,
3.5, 3.12, 3.14, and 3.15.

For image retrieval, fairness of representation or diversity assumption is desirable
for certain scenarios, i.e., showing images of different protected groups in the top k

results. We show results for representational fairness for human-centric subjective tasks in
Tables 3.5, 3.6, 3.7, 3.8, 3.14 and 3.16. For human-centric objective tasks, we show results
in Table 3.3 under the diversity assumption.

We report the differences in cosine similarity for each query across different genders
and races, shown in Figures 3.7, 3.8, 3.9, 3.10 and 3.14. We also perform statistical
tests, specifically Alexandar-govern (ANOVA) 4 test which allows for different variances
across the groups, to demonstrate how successful different methods are in equalizing
representations for different protected group values. The results for these are shown in
Tables 3.9, 3.10, 3.11, 3.12, 3.15 and 3.17.

3.3.3 Image Captioning

To test fairness concerns of using CLIP models for captioning we study CLIP-CAP [201]
which uses CLIP and GPT2 embeddings. Mokady et al. [201] proposed two methods:
one where they froze the CLIP embedding space as well as GPT2 embedding space and
just learnt a transformer based mapping network and second where they only froze the
CLIP embedding space and learnt a few layers of GPT2 network in addition to learning
a simpler MLP network. In our experiments, we found that the first variant does not
generalize very well to out of distribution images, which makes sense since training
additional layers of the GPT2 model results in a more expressive model. So, we use the

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
alexandergovern.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.alexandergovern.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.alexandergovern.html
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Table 3.12: [Retrieval - Statistical tests - Subjective - MSCOCO ] This table shows Alexander
Govern statistical test for the cosine similariy of various queries between men and
women. The first number refers to the test statistic while the second number is the
p-value. If there is a statisitically significant difference among different groups the
test statistic would be high and p-value would be low. It demonstrates that fair PCA GT
yields statistically insignificant differences.

Statistical tests: ANOVA- Alexander-Govern: (statistic, p-val)

Query CLIP MI-400-GT MI-256-GT MI-400-INF MI-256-INF FPCA-GT FPCA-INF

boss ( 352 , 0.0) ( 27 , 0.0) ( 40 , 0.0) ( 0 , 0.408) ( 175 , 0.0) ( 0 , 0.393) ( 6 , 0.013)
secretary ( 950 , 0.0) ( 6 , 0.011) ( 34 , 0.0) ( 7 , 0.007) ( 82 , 0.0) ( 1 , 0.201) ( 325 , 0.0)
genius ( 198 , 0.0) ( 0 , 0.477) ( 15 , 0.0) ( 3 , 0.072) ( 103 , 0.0) ( 1 , 0.306) ( 47 , 0.0)
helpful person ( 44 , 0.0) ( 0 , 0.744) ( 23 , 0.0) ( 2 , 0.153) ( 123 , 0.0) ( 2 , 0.088) ( 81 , 0.0)
affectionate person ( 286 , 0.0) ( 18 , 0.0) ( 20 , 0.0) ( 42 , 0.0) ( 43 , 0.0) ( 1 , 0.307) ( 55 , 0.0)
funny person ( 36 , 0.0) ( 16 , 0.0) ( 104 , 0.0) ( 26 , 0.0) ( 54 , 0.0) ( 2 , 0.09) ( 135 , 0.0)

second variant. The authors shared the training code and hyperparameters for MSCOCO
dataset [177] and Conceptual Captions dataset. We show results using MSCOCO dataset
as the training times are faster. For demonstrating fairness concerns in CLIP embeddings,
the experiments using MSCOCO show interesting insights as discussed in Section 3.5.5.

We train the CLIP-CAP model with original CLIP as well as by transforming CLIP
embeddings using different debiasing methods. We also experiment with making the
captions of MSCOCO gender neutral, e.g., by changing ‘He/She’ into ‘They’. We then
train the GPT2 layers and the MLP network. To generate captions we encode images
with the CLIP image encoders, as well as any additional processing necessary for a
particular debiasing method, and pass it through the learned MLP and GPT2 which
generates captions.

3.3.4 Performance Measures

It is important that performance for different downstream tasks does not suffer while
reducing bias. To demonstrate the well-known accuracy-fairness trade-off, we report
the accuracy of a logistic regression classifier to predict different attributes using CLIP
embeddings as input, shown in Table 3.13. We also report the recall@k performance for
different values of k, shown in Table 3.4, as well as precision shown in Tables 3.3 and
3.18. We report accuracy for zero-shot classification tasks in Table 3.2.
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Figure 3.7: [Retrieval - Cosine similarity - Subjective - FairFace ] These figures are heatmaps
that show the absolute difference in cosine similarity, scaled up by a factor of 100,
for different image retrieval queries using different methods for gender (left) and
race (right) attributes on FairFace dataset. The figures demonstrate the efficiency of each
methods to equalize the representation for different protected attribute groups on average. It
shows that in general, fair PCA and mutual information based methods equalize the cosine
similarity for gender and race attribute for a variety of queries.

3.4 Metrics Based on Our Taxonomy

Here, we outline the task-specific Desiderata and discuss relevant metrics corresponding
to the measures and evaluation tasks described in Sections 3.1 and 3.3, respectively.
Inherently, this is a coarse division and excludes many potential harms. One of the
challenges of open-labeling tasks is that many subtle harms are possible.

3.4.1 Human-Centric (Un)Fairness Metrics

We describe image classification, retrieval and captioning tasks where the labels are
highly-related to people in the image as human-centric labelings. This section presents
the unfairness metrics used.

3.4.1.1 Independence Assumptions:

We focus on two independence-based notions of fairness — demographic parity (DP) [80,
90] and equal opportunity (EOP) [120, 274] for subjective and objective tasks, respectively.

3.4.1.1.1 Subjective Labeling Tasks: In classification, DP requires that the prediction
of a datapoint be independent of the value of the protected attribute. Specifically, given
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Figure 3.8: [Retrieval - Cosine similarity - Subjective - Flickr30k ] The figure is heatmap that show
the absolute difference in cosine similarity, scaled up by a factor of 100, for different
queries using different methods for gender attribute on Flickr30K dataset. The figure
demonstrates the efficiency of each methods to equalize the representation for different protected
attribute groups on average. It shows that in general, fair PCA based methods and the mutual
information based methods equalize the cosine similarity for gender attribute for a variety of
queries.

a binary classification task where Ŷ ∈ {−1, 1} is the predicted variable and Z ∈ Z+

represents protected membership, DP is given as P (Ŷ = 1|Z = z) = P (Ŷ ).
Zero-shot Binary Classification: For zero-shot classification, notions of independence
are desirable. In this section, we present metrics corresponding to DP. We define demo-
graphic disparity (DDP) as the maximum absolute difference in the fraction datapoints
classified in the positive class among any pair of groups of the protected group. Let Zi
be the set of datapoints with protected attribute i. We define the DDP as5

DDP: max
i,j∈[p]

∣∣∣∣∣∣ 1

|Zi|
∑
x∈Zi

1[f(x) = 1]− 1

|Zj|
∑
x∈Zj

1[f(x) = 1]

∣∣∣∣∣∣ , (3.5)

where f(x) is a binary classifier. DDP ranges between 0 and 1, i.e., from least to most
disparity. We use gender as a binary attribute, due to the limited availability of datasets
with multi-valued gender attributes. In this case, the above equation reduces to the
absolute difference between the fraction of men classified in the positive class and the
fraction of women classified in the positive class. Race consists of multiple groups, and

5We use the notation [p] := {1, . . . , p}.
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Figure 3.9: [Retrieval - Cosine similarity - Subjective - MSCOCO ] The figure is a heatmap that
shows the absolute difference in cosine similarity, scaled up by a factor of 100, for
different queries using different methods for gender attribute on MSCOCO dataset.
The figure demonstrates the efficiency of each methods to equalize the representation for
different protected attribute groups on average. It shows fair PCA based methods and mutual
information based methods equalize the cosine similarity for gender attribute for a variety of
queries.

we report the maximum absolute disparity of classification between any two groups.

Image Retrieval: Depending on the downstream application, either notions of indepen-
dence or diversity of different values of the protected attribute may be desirable.

For independence, we present metrics corresponding to DP. Let K be the set of the
retrieved images, comprising subset Ki of images of the protected group i, Zi is the set
of images belonging to the group i and Z is the set of all images. Following, Wachter
et al. [257] we define the DDP in this context as follows:

DDP: max
i,j∈[p]

∣∣∣∣( |Ki|
|K|︸︷︷︸

Advantaged group i

− |Zi| − |Ki|
|Z| − |K|︸ ︷︷ ︸

Disadvantaged group i

)
−

(
|Kj|
|K|︸︷︷︸

Advantaged group j

− |Zj| − |Kj|
|Z| − |K|︸ ︷︷ ︸

Disadvantaged group j

)∣∣∣∣. (3.6)

Wachter et al. [257] showed that this measure only takes the value 0 when Eq. (3.5) does,
given that |Ki| > 0∀i. However, this variant is more suitable for asymmetric labelings
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Table 3.13: [Classification - Accuracy - Objective - FairFace] This table shows the accuracy of a
logistic regression classifier trained on the corresponding CLIP features for FairFace
dataset. The top and the bottom parts of the table correspond to the cases where the mitigation
methods were supposed to remove the gender and race information, respectively, from the
CLIP embeddings, while preserving the other information. The results show that fair PCA
based methods are more effective in removing the corresponding sensitive information, i.e., the
accuracy for predicting the corresponding sensitive attributes is nearly random. Additionally,
the fair PCA methods do not reduce the predictive power of the embeddings, i.e., the accuracy
in predicting other attributes stays similar to the original CLIP embeddings. We do not
provide the results for the prompt method because they do not alter the image representation
and results are similar as the original CLIP.

Feature Clip MI-400-GT MI-256-GT MI-400-INF MI-256-INF FPCA-GT FPCA-INF

Mitigation methods w.r.t gender: ViTB/32
age 0.60 0.60 0.60 0.60 0.60 0.60 0.60
gender 0.95 0.94 0.90 0.94 0.90 0.53 0.60
race 0.71 0.71 0.71 0.71 0.71 0.71 0.71

Mitigation methods w.r.t gender: ViTB/16
age 0.62 0.62 0.61 0.62 0.61 0.62 0.62
gender 0.96 0.95 0.91 0.95 0.91 0.53 0.57
race 0.74 0.73 0.73 0.73 0.73 0.74 0.74

Mitigation methods w.r.t race: ViTB/32
age 0.60 0.60 0.59 0.60 0.59 0.60 0.60
gender 0.95 0.95 0.94 0.95 0.94 0.94 0.94
race 0.71 0.71 0.70 0.71 0.70 0.19 0.34

Mitigation methods w.r.t race: ViTB/16
age 0.62 0.62 0.61 0.62 0.61 0.61 0.61
gender 0.96 0.96 0.95 0.95 0.96 0.96 0.95
race 0.74 0.73 0.73 0.73 0.73 0.19 0.39

where a small proportion of individuals receive positive decisions. This measure returns
values ranging from 0 to 1.

3.4.1.1.2 Objective Labeling Tasks – Zero-shot Binary Classification: EOP requires
that the prediction of all datapoints with positive labels should be independent of the
protected attribute. Specifically, a binary classification task where Ŷ ∈ {−1, 1} is the
predicted variable, Y ∈ {−1, 1} is the ground truth variable and Z ∈ Z+ represents the
protected attribute EOP requires P (Ŷ = 1|Y = 1, Z = z) = P (Ŷ ).

Similar to DDP, given in Eq. (3.5), we can extend the definition for EOP to disparity
in true positive rates (DTPR):
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Figure 3.10: [Retrieval - Cosine similarity - Subjective - FairFace - OpenCLIP] These figures are
heatmaps that show the absolute difference in cosine similarity, scaled up by a factor
of 100, for different image retrieval queries using different methods for gender (left)
and race (right) attributes using FairFace dataset with the OpenCLIP. The figures
demonstrate the efficiency of each methods to equalize the representation for different protected
attributes groups on average. It shows that in general, fair PCA based methods reduce the
difference in cosine similarity for gender and race attribute for a variety of queries.

DTPR: max
i,j∈[p]

∣∣∣∣ 1

|Zi+|
∑
x∈Zi+

1[f(x) = 1]−

1

|Zj+|
∑
x∈Zj+

1[f(x) = 1]

∣∣∣∣, (3.7)

where Z∗+ is the set of datapoints with protected attribute ∗.
For image retrieval tasks, we could easily extend Eq. (3.6) for EOP, e.g., by confining

all the sets to positive examples.

3.4.1.2 Diversity Assumptions – Image Retrieval:

We use the following metrics to measure unfairness in the representation.

3.4.1.2.1 Subjective Labeling Tasks: We use the Skew metric proposed by Geyik et al.
[98]. Let K be the set of |K| items we want to retrieve comprising of sets Ki that belong
to the protected attribute group i. Let df i be the desired fraction of items belonging to
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Figure 3.11: [Classification - DDP - Subjective - FairFace - OpenCLIP] These figures show DDP
for classification, given by Eq. (3.5), using OpenCLIP using FairFace dataset. It
demonstrates that fair PCA based methods perform the best in reducing bias.

the group i in the top |K| results, and rf i := |Ki|
|K| be the retrieved fraction of items.

Skew@k: max
i,j∈[p]

∣∣∣∣ loge(rf i/df i)

∣∣∣∣ (3.8)

We set dfi = 1
p
, where p is the number of protected groups.

3.4.1.2.2 Objective Labeling Tasks: Let K+ be the set of ground truth positive images
retrieved for a given query, out of which Ki

+ are the retrieved images that belong to
the protected attributes group i. We report the maximum absolute disparity in the
representation (DDP-Rep) of any two protected attribute groups, i.e.,

DDP-rep: max
i,j∈[p]

1

|K+|

∣∣∣∣|Ki
+| − |Kj

+|
∣∣∣∣. (3.9)

This metric shows how well different groups are represented in a retrieval task even if
the ground truth is imbalanced.

3.4.2 Non-Human-Centric Labelings: Performance Metrics

By non-human-centric labelings, we refer to image classification, image retrieval and
image captioning tasks where the labels are unrelated to people in the image. While we
do not consider the harms associated with this task, performance remains important.
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Figure 3.12: [Retrieval - DDP - Subjective - FairFace - OpenCLIP] These figures show DDP for
image retrieval, given by Eq. 3.6, using OpenCLIP on FairFace dataset. It demonstrates
that gender balanced queries and fair PCA are most effective in reducing demographic
disparity in subjective image retrieval tasks.

For objective non-human-centric tasks, e.g., categorizing images as showing either
‘cats’ or ‘dogs’, or searching for ‘a photograph of an oak tree’, performance is important,
and the correct notion of performance is task dependent. Following Radford et al.
[220] we use accuracy to measure the performance of zero-shot classifiers, recall@k and
precision@k. Ideally, there should be no decrease in performance for these tasks, as we
do not have fairness concerns.

For subjective non-human-centric tasks we might also have fairness concerns, e.g., that
a search for “beautiful building” might be biased towards Christian churches and omit
buildings associated with other religions. However, these concerns are harder to evaluate
especially due to lack of data and ground truth labels.

3.5 Evaluation

In this section, we present the results according to our proposed taxonomy introduced in
Table 3.1. Given that IND refers to the independence of the protected attribute w.r.t. to
the outcome variable (metrics: Eqs. (3.5), (3.6) and (3.7)) and DIV refers to the diversity
of the protected attribute groups in the retrieval results (metrics: Eqs. (3.8) and (3.9)), we
answer the following questions in this section.
Q1: How fair (IND) are different methods w.r.t. gender for zero-shot binary classification
on subjective and objective tasks?
Q2: How fair (IND) are different methods w.r.t. race for zero-shot binary classification
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on subjective tasks?
Q3: How fair (IND or DIV) are different methods w.r.t. gender for image retrieval tasks
on subjective and objective tasks?
Q4: How fair (IND or DIV) are different methods w.r.t. race for image retrieval subjective
tasks?
Q5: How is the performance on the attributes on which fairness was not enforced af-
fected?
Q6: Are there statistically significant differences in representations for different methods
w.r.t. gender?
Q7: Are there statistically significant differences in representations for different methods
w.r.t. race?
Q8: What are the fairness (IND) concerns using CLIP embeddings for captioning sys-
tems?
Q9: Do CLIP bias mitigation methods help alleviate fairness concerns in captioning?

3.5.1 Datasets

In this section, we describe the datasets used for evaluation. We use the test split for
the evaluation. In some cases, where the test images are little or the ground truth for
the test set is not available we evaluate on the validation set, please refer to the dataset
descriptions below. We use the training split for training the bias mitigation methods.

FairFace [145] comprises about 100k images, split into 85k training images and 10K

validation images. The images are focused on the faces and come with a binary labelling
of the gender attribute (53% male images), 9 bins of age attribute (0− 2 : 2%; 3− 9 : 12%;
10 − 19 : 11%; 20 − 29 : 30%; 30 − 39 : 22%; 40 − 49 : 12%; 50 − 59 : 7%; 60 − 69 : 3%;
70+ : 1%) and 7 values of the race attribute, specifically, East Asian (14%), Indian (14%),
Black (14%), White (19%), Middle Eastern (11%), Latino Hispanic (15%) and South east
Asian (13%). The dataset is fairly balanced for the race and gender attributes. However
for the age attribute, there is less amount of data for older categories.

Flickr30K [214, 272] contains about 30k images with 5 human annotated captions per
image. We split the data into 50% train and 50% test data. This dataset contains a variety
of images containing humans and animals. These images contain diverse backgrounds
and have natural lighting conditions.

MSCOCO [177] contains about 120K images with 80K training images and 40K

validation images. The dataset contains at-least 5 hand annotated captions per image.
It additionally contains 80 categories as labels. The categories include person, several
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Table 3.14: [Retrieval - Skew - Subjective - FairFace - OpenCLIP] This table shows the maximum
absolute skew, given by Eq. (3.8), using the FairFace dataset and gender and race
attributes using OpenCLIP. It demonstrates that all the methods are able to reduce the skew.
Gender/Race balanced queries and fair PCA are the most effective in reducing the skew.

Clip MI-400-gt MI-256-GT MI-400-inf MI-256-INF Gender/Race-BLN FPCA-GT FPCA-INF

Gender: Top 10
2.38±0.74 0.83±0.36 1.04±0.66 0.72±0.26 0.43±0.3 0.15±0.1 0.42±0.28 0.41±0.2

Gender: Top 50
1.94±0.38 0.63±0.26 0.33±0.12 0.55±0.22 0.34±0.12 0.11±0.04 0.25±0.12 0.25±0.14

Gender: Top 100
1.77±0.32 0.56±0.22 0.26±0.1 0.48±0.2 0.31±0.1 0.07±0.02 0.21±0.1 0.21±0.08

Race: Top 10
2.37±0.58 2.66±0.0 2.66±0.0 2.42±0.48 2.42±0.48 2.37±0.58 2.37±0.58 2.66±0.0

Race: Top 50
1.4±0.46 1.35±0.4 1.4±0.36 1.52±0.36 1.35±0.48 1.16±0.38 1.01±0.36 0.82±0.26

Race: Top 100
1.33±0.44 1.07±0.3 1.25±0.3 1.04±0.14 1.21±0.44 1.06±0.42 0.7±0.12 0.63±0.18

animals such as cat, dog and giraffe, and objects such as scissors, bicycle and hairdryer.
The images have a diverse background and are in the natural lighting conditions.

We extract the gender information from the captions of Flickr30K and MSCOCO. To
this end, we define a 3-valued attribute, type_of ∈ {male, female, neutral}, and a set of
male and female words, given in Appendix A.1. type_of an image is considered (fe)male

if any of its captions contain any of the (fe)male words otherwise it is considered neutral.
Additionally, if the caption contains both male and female words type_of an image is
considered neutral.

IdenProf 6 consists of 11,000 images of identifiable professionals. It contains images
of 10 professionals, i.e, chef, doctor, engineer, farmer, firefighter, judge, mechanic, pilot,
police and waiter. We use roughly an 80-20 test and train split7, i.e., 900 images of test
data per profession. We use this data for image retrieval tasks and annotated the gender
of the retrieved images by hand.

CelebA [180] comprises about 200k images of celebrities. These images are focused
on faces and additionally provide 40 binary attributes per image, including gender. The
dataset is split into 80% training images, 10% validation images and 10% test images.
We train on the training set and test on the test set.

6https://github.com/OlafenwaMoses/IdenProf
7In the official dataset the dataset split is 80-20 for the train and test splits, respectively. We invert it to

get more robust results for evaluating image retrieval and captioning tasks.

https://github.com/OlafenwaMoses/IdenProf
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Table 3.15: [Retrieval - Statistical tests - Subjective - FairFace - OpenCLIP] This table shows the
statistical tests for the cosine similarities among different groups of the protected
groups. The first number refers to the test statistic while the second number is the
p-value. If there is a statisitically significant difference among different groups the test
statistic would be high and p-value would be low. Specifically, it shows the Alexander-
govern statistical test which measures whether the mean of cosine similarity among different
groups for a given query are statistically significant or not. It shows that fair PCA trained on
ground truth protected attribute labels yields statistically insignificant differences.

Statistical tests: ANOVA- Alexander-Govern: (statistic: p-val)

Query CLIP MI-400-GT MI-256-GT MI-400-INF MI-256-INF FPCA-GT FPCA-INF

Gender

CEO (1554 , 0.0) (114 , 0.0) (56 , 0.0) (62 , 0.0) (41 , 0.0) (0 , 0.758) (23 , 0.0)
boss (3354 , 0.0) (612 , 0.0) (99 , 0.0) (552 , 0.0) (196 , 0.0) (0 , 0.501) (8 , 0.003)
convict (2519 , 0.0) (589 , 0.0) (39 , 0.0) (460 , 0.0) (90 , 0.0) (2 , 0.127) (12 , 0.0)
criminal (1158 , 0.0) (320 , 0.0) (18 , 0.0) (163 , 0.0) (35 , 0.0) (1 , 0.19) (2 , 0.085)
drug dealer (2503 , 0.0) (257 , 0.0) (3 , 0.056) (176 , 0.0) (34 , 0.0) (3 , 0.055) (19 , 0.0)
engineer (1745 , 0.0) (80 , 0.0) (2 , 0.086) (54 , 0.0) (8 , 0.005) (1 , 0.309) (0 , 0.474)
genius (822 , 0.0) (307 , 0.0) (5 , 0.015) (292 , 0.0) (31 , 0.0) (3 , 0.065) (14 , 0.0)
nurse (4889 , 0.0) (115 , 0.0) (8 , 0.003) (191 , 0.0) (2 , 0.131) (0 , 0.511) (0 , 0.424)
prostitute (3088 , 0.0) (0 , 0.469) (46 , 0.0) (5 , 0.015) (131 , 0.0) (0 , 0.947) (0 , 0.384)
secretary (4269 , 0.0) (212 , 0.0) (42 , 0.0) (315 , 0.0) (71 , 0.0) (0 , 0.708) (24 , 0.0)
suspect (1732 , 0.0) (228 , 0.0) (34 , 0.0) (281 , 0.0) (39 , 0.0) (0 , 0.372) (0 , 0.793)

Race

cleaning person (1069 , 0.0) (214 , 0.0) (355 , 0.0) (375 , 0.0) (534 , 0.0) (4 , 0.577) (46 , 0.0)
director (232 , 0.0) (83 , 0.0) (57 , 0.0) (151 , 0.0) (177 , 0.0) (4 , 0.579) (27 , 0.0)
engineer (642 , 0.0) (332 , 0.0) (391 , 0.0) (206 , 0.0) (334 , 0.0) (10 , 0.116) (62 , 0.0)
labourer (1349 , 0.0) (203 , 0.0) (374 , 0.0) (240 , 0.0) (380 , 0.0) (19 , 0.003) (180 , 0.0)
secretary (322 , 0.0) (105 , 0.0) (146 , 0.0) (96 , 0.0) (204 , 0.0) (5 , 0.482) (67 , 0.0)
smart person (741 , 0.0) (350 , 0.0) (155 , 0.0) (272 , 0.0) (250 , 0.0) (11 , 0.071) (50 , 0.0)
sophisticated person (85 , 0.0) (174 , 0.0) (228 , 0.0) (296 , 0.0) (351 , 0.0) (12 , 0.061) (37 , 0.0)
terrorist (642 , 0.0) (595 , 0.0) (564 , 0.0) (617 , 0.0) (590 , 0.0) (5 , 0.514) (202 , 0.0)

Food101[35] comprises 101 food categories with 750 training and 250 test images per
category. The test images have been manually cleaned. We show results on the test split.

Pascal VOC 2007 [84] is a multi-class dataset. The categories include person, several
household objects and different vehicles. We show results on the c.a. 5K test images. We
consider a classification to be accurate if the top predicted label is among the multiple
ground truth labels.

ImageNet 2012[71] comprises of 1000 classes, including animals, e.g., goldfish, great
white shark, scorpion, etc. ; objects , e.g., bath-towel, accordion, guitar, assault rifle, etc.;
place or buildings, e.g., church, cinema; and concepts, e.g., groom. Images are divers
and in natural lighting. We use the 100K test set images to show the results.
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Figure 3.13: [Classification - DDP - Subjective - Flickr30K - OpenCLIP] These figures show
DDP for classification, given by Eq. 3.5, using OpenCLIP on Flickr30K dataset.
It demonstrates that fair PCA based methods are the most effective in reducing bias in
classification tasks.

Stanford Cars [160] comprises 8K test images of 196 types of cars. We use it to
demonstrate the effect of various bias mitigation methods on fine grained image classifi-
cation task.

MIAP (More Inclusive Annotations for People) [231] has c.a. 22K test images and
c.a. 70K training images, which contain at least one person. Each image comes with
the bounding box(es) of the person(s); age, i.e., young, middle, older or unknown; and
gender,i.e., predominantly masculine, predominantly feminine or unknown. For our
experiments, we try to predict whether a person is inconspicuous, i.e., occupies less than
50% of the image; whether they are an adult, i.e., age attribute is middle or older; and
whether there is one or multiple people in the picture.

3.5.2 Experimental Details

We show results for the methods of Section 3.2.3. For different fairness metrics we show
results using OpenAI’s CLIP ViTB-16 architecture. We find similar trends in results using
ViTB-32 architecture. For performance results on objective tasks, we show results using
both ViTB-16 and ViTB-32 architectures.

For mutual-information (MI) based method described in Section 3.2.3.1 we show
results where we retain m ∈ {400, 256} dimensions of the total 512 CLIP embedding
dimensions. FPCA refers to fair PCA as described in Section 3.2.3.3. Prompt is the
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Figure 3.14: [Retrieval - DDP & Cosine similarity - Subjective - Flickr30K - OpenCLIP] These
figures show DDP, given by Eq. (3.6), for retrieval task using OpenCLIP using
Flickr30K dataset on the left, and absoulte differences in the cosine similarity between
men and women for different queries on the right.

method described in Section 3.2.3.2. Gender-BLN refers to the baseline for the image
retrieval task, where we add the words ‘female’ and ‘male’ to the query and return
K
2

results from each of these queries. Race-BLN works similarly for the multi-valued
race attribute.
Addressing lack of demographic features. For our fairness evaluations we use datasets
where we have access to the demographic features. However, in real-world scenarios we
might not have access to such features. To demonstrate results for such cases, we use the
CLIP model to predict the gender attribute. The tags GT and INF indicate whether the
protected attribute was ground truth or inferred. It is important to note that we only use
the inferred attributes for training the bias mitigation method. The evaluation always
uses the ground truth labels of the protected attributes.

3.5.3 Zero-shot Classification

Q1, Q2, Q5 i) Figures 3.1, 3.2, 3.3, 3.6 and 3.16 demonstrate that most mitigation
methods can enforce independence assumption of fairness w.r.t. gender. ii) However,
mutual information based methods can lead to a significant reduction in performance
as show in Tables 3.2, 3.4, 3.13 and 3.18. iii) Prompt based method does not reduce the
bias as well as the other methods. A possible reason could be that the trained model
tries to preserve the expressiveness of the representations while putting too little weight
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Table 3.16: [ Retrieval - Skew - Subjective - Flickr30K - OpenCLIP] This table shows the skew
metric, given by Eq. (3.8), using OpenCLIP model, for the gender attribute average
over several image retrieval task using the Flickr data. It shows that gender balanced
queries are most effective in reducing skew.

CLIP MI-400-GT MI-256-GT MI-400-INF MI-256-INF Gender-BLN FPCA-GT FPCA-INF

Top 10
1.58±0.76 1.49±1.28 1.55±1.26 1.59±1.24 0.64±0.24 0.4±0.1 0.59±0.28 0.59±0.28

Top 20
1.4±0.92 0.92±0.5 0.93±0.62 0.59±0.2 0.42±0.1 0.37±0.04 0.5±0.16 0.46±0.18

Top 30
1.48±0.96 0.89±0.5 0.72±0.64 0.46±0.14 0.38±0.06 0.34±0.04 0.54±0.3 0.4±0.14

on debiasing. iv) Fair PCA based methods do very well compared to the other methods
in the multi-valued race attribute. v) In general, fair PCA based methods reduce the
bias for both race and gender attributes while retaining the performance of the CLIP
embeddings for other tasks.

3.5.4 Image Retrieval

Q3, Q5 i) For both subjective tasks and objective tasks, simple baselines, where gender
or race was appended with the query, do very well in both enforcing demographic
parity (Figures 3.4, 3.5 and 3.15) and enforcing representational fairness (Tables 3.3,
3.5, 3.6, 3.7, 3.8). A reason for the good performance on both demographic parity
and representational fairness is that the protected groups in most of the datasets we
consider are roughly balanced. However, the obvious drawback of this method is that
it does not produce generalizable embedding to be used for other tasks. ii) Mutual
information based methods and fair PCA based methods are also good at enforcing
independence assumption of fairness for the gender attribute, as shown in Figures 3.4, 3.5
and 3.15. This is further supported by their effectiveness in reducing the disparity in
the maximum average cosine similarity per query as shown in Figures 3.7, 3.8 and 3.9.
However, mutual information based methods incur a performance drop as shown in
Tables 3.4 and 3.18. iii) Mutual information based methods and fair PCA based method
are also effective in reducing the representational bias, however mutual information
based methods could lead to a loss in accuracy.

In scenarios where the tasks are not complex one can use the mutual information
based methods as they are easy to compute, as shown in Table 3.3, where retaining
400 dimension seems to be enough to achieve decent performance to retrieve images
of different professions. On the other hand, if the task is complex (such as for queries
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Table 3.17: [Retrieval - Statistical tests - Subjective - Flickr30K - OpenCLIP] This table shows
the statistical tests for the cosine similarities for different queries between men and
women. The first number refers to the test statistic while the second number is the
p-value. If there is a statisitically significant difference among different groups the test
statistic would be high and p-value would be low.Specifically, it shows the Alexander-
govern statistical test whether the mean of cosine similarity between men and women for
a given query are statistically significant. It shows that fair PCA trained on ground truth
protected attribute labels yields statistically insignificant differences.

Statistical tests: ANOVA- Alexander-Govern: (statistic, p-val)

Query CLIP MI-400-GT MI-256-GT MI-400-INF MI-256-INF FPCA-GT FPCA-INF

Gender

boss (958 , 0.0) (280 , 0.0) (63 , 0.0) (19 , 0.0) (0 , 0.374) (0 , 0.364) (52 , 0.0)
doctor (27 , 0.0) (2 , 0.096) (67 , 0.0) (10 , 0.001) (5 , 0.017) (0 , 0.395) (5 , 0.019)
lawyer (18 , 0.0) (24 , 0.0) (59 , 0.0) (61 , 0.0) (7 , 0.005) (1 , 0.281) (4 , 0.035)
nurse (1396 , 0.0) (4 , 0.037) (5 , 0.024) (29 , 0.0) (1 , 0.306) (0 , 0.612) (5 , 0.015)
paralegal (1112 , 0.0) (0 , 0.608) (0 , 0.935) (13 , 0.0) (12 , 0.001) (0 , 0.909) (21 , 0.0)
secretary (1729 , 0.0) (104 , 0.0) (2 , 0.091) (80 , 0.0) (18 , 0.0) (0 , 0.846) (19 , 0.0)

‘a funny person’ or ‘an affectionate person’) even retaining 400 dimensions can lead to
random results as shown in Figure 3.15. The results seem much worse where we retain
only 256 dimensions.

Q6, Q7 To check if statistically significant differences in cosine similarity exist be-
tween different groups of the protected attribute, we performed the Alexander Govern
test8 for every subjective query. The null hypothesis is that all the groups have the same
mean cosine similarity for a given query, while accounting for heterogeneity of variance
across the groups. The results show that while the effect size of the differences in cosine
similarity across different groups is reduced with all the debiasing methods, only with
fair PCA these differences are statistically insignificant for most queries, as shown in
Tables 3.9, 3.10, 3.11 and 3.12. It is interesting to notice that even though fair PCA based
methods produce embeddings that do not have statistically significant differences in the
cosine similarities for different queries, they still do not necessarily produce the most
fair results in all cases for image retrieval. The main reason for this is that we select a
subset of images from a dataset and even if the representations are unbiased, we might
pick a subset that is skewed towards one group.

8https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
alexandergovern.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.alexandergovern.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.alexandergovern.html
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Figure 3.15: [Retrieval - DDP - Subjective - MSCOCO ] The figure on the top shows DDP, given
by Eq. (3.6), for retrieval tasks using MSCOCO dataset. These results demonstrate bias
in human-centric subjective tasks. At the bottom, we observe the fraction of query results
that actually include a person. Surprisingly, for many human-related queries, the retrieved
images do not feature any humans at all. Additionally, this demonstrates that the simple
baseline of gendered queries perform very well in reducing disparity. However, the mutual
information-based approaches, although effective in reducing disparity in some cases, fail to
retrieve images containing humans. Interestingly, Fair PCA, trained on the inferred gender
attribute, manages to return appropriate images while still reducing some disparity. One
possible reason for this could be that the gender labels derived from the captions, which serve
as ground truth, are quite noisy. In contrast, training fair PCA on on the inferred gender
attribute directly from the CLIP model appears to yield better results in this context.

3.5.5 Image Captioning

Difficulty addressing fairness in captioning One would expect that an image caption-
ing system should perform equally well for different groups on the standard metrics
such as Bleu [208], METEOR [20], Rouge [175], CIDEr [253], SPICE [16]. Using the data
by Zhao et al. [281] we evaluated the captions generated by CLIP-CAP system for both
original and trained on gender-neutral captions, but similar to Zhao et al. [281] we only
found a slightly better performance of these metrics on the images of light skin individu-
als. Additionally, we did not find any difference on the aforementioned performance
metrics for the captions between men and women or intersectional groups (considering
both race and gender).

One can extend the notion of independence of protected attribute w.r.t. to a pre-
scribed set of words in caption generation systems as follows: Given an image, pre-
defined relevant words used in the captions should be independent of the protected
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attribute. For example, given images of doctors the occurrence of the word doctor, hospi-
tal etc. in the generated captions should be independent of gender or race. However,
evaluating for such fairness issues requires appropriate image datasets with demographic
features. Additionally, it requires to define a set of relevant words for every (type of)
image. Unfortunately, several available datasets crawled from the web contain biased
images (e.g., female doctors wearing a halloween costume or having cartoonized images).
So, it is difficult to draw broader conclusions from such datasets.

Q8 Fairness issues in captioning: We report qualitative results using handpicked images
from google search. We found that images of women factory-workers were misgendered.
A woman fixing a light-fixture was described as holding a blow-dryer. A woman shown
fixing a car is captioned “kneeling over a car" while a man shown fixing a car is captioned
“fixing a car”. Women who appeared to be medical professionals were captioned “talking
to a man/woman", or a woman wearing a lab-coat is referred to “wearing a dress talking
to a man". While images of men who appeared to be medical professionals were referred
to as “a couple of doctors". In general, captions for images of men more often had the
words, “hospital", “check-up on a patient" , compared to images of women. In some
cases women medical professionals were referred to as “nurse", while in none of the
cases men were referred to as nurses.

Using gender information extracted from CLIP, we found that on IdenProf dataset’s
images labeled as doctor, the word nurse was used in 1.7% of the generated captions for
women, vs for men it was only used in 1.2% of the captions. Similarly, for Chef’s images
of women the word “Chef" only appeared in 17% of the generated captions while it
appeared for 36% of the captions for men. Additionally, we saw that the word “Kitchen"
appeared in 45% of the captions for Chef’s images labeled as women and it appeared 40%

of the captions for the Chef’s images labeled as men. The waiter’s images in IdenProf
had the word “Chef" in 1.2% of the captions for women vs 4.1% of the captions for men.
These are just preliminary findings and a more thorough analysis requires ground truth
demographic features as opposed to using CLIP’s predictions.

Using the dataset by Kay et al. [146] we find that for Chef’s images the word chef
appears 33% of the images for men while it occurred 0% of the images for women labeled
as chef. On the other hand, the word “chef’s” appears 13% of the images for men and
24% of the images for women. This occurs in the context of ‘chef’s hat’ or ‘chef’s uniform’.
This shows that the captioning system recognizes women as wearing chef’s clothings
but does not associate the word ‘chef’ with them. We would like to point out that this
dataset did not seem appropriate as it was crawled from Google search and had several
biases, e.g., it sometimes showed women as a cartoon.
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Figure 3.16: [Classification - DDP - Subjective - MSCOCO ] The figure on the top shows DDP,
given by Eq. (3.5), for classification tasks using MSCOCO dataset. These results show
bias for human-centric subjective tasks. They demonstrate that for most methods reduce
disparity across gender in classification tasks.

Q9 Effects of bias mitigation methods: We only discuss results on handpicked images.
To fix the misgendering of images, we trained the captioning system with gender neutral
words, that is we changed words like “man" or “woman" to “person". This helped fix
the misgendering issue. In some cases it even helped with changing the captioning all
together, i.e., we saw more mentions of the word hospital for women in the appropriate
images. Using mutual information and fair PCA based methods on CLIP embeddings
plus the gender-neutral training captions seemed to lower the use of the biased language.
For example, there were more medical terms, e.g., “hospital" or “doctor", used in the
captions for women. In one cases the caption changed from "nurse" to a "doctor". We
only tested the bias mitigation methods on few handpicked images from the web which
we cannot show for copyright reasons.

3.5.6 OpenCLIP Results

We show results using OpenCLIP [130] for zero-shot classification on FairFace dataset
(gender and race attributes) in Figure 3.11. We also show results using Flickr30K dataset
in Figure 3.13. We find that i) OpenCLIP has more bias compared to OpenAI’s CLIP.
ii) CLIP bias mitigation methods are effective in enforcing independence assumption
for different protected attribute groups. iii) In general, fair PCA based methods are
more effective. We also evaluate OpenCLIP and different bias mitigation methods using
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OpenCLIP for image retrieval tasks, both for enforcing independence of the protected
attribute w.r.t. top-k selection, FairFace Figure 3.12 and Flickr30K Figure 3.14, as well
as the representation bias mitigation, FairFace Table 3.14 and Flickr30K Table 3.16. i)
The results show that OpenClip has a higher bias compared to OpenAI CLIP. ii) All
the methods are effective in reducing different biases. iii) However, fair PCA based
methods are the most effective, which is supported by the low disparity in the average
cosine similarity for different gendered queries, as shown in Figures 3.10 and 3.14. iv)
Fair PCA based methods produce embeddings that show no statistical difference in the
cosine similarity across different protected groups for different queries, as shown in
Tables 3.15 and 3.17.

3.5.7 In-processing Fairness for CLIP-Like Models

FairSampling (referred to as FairSamp in the results) This is the second mitigation
method proposed by Wang et al. [262], which requires to train a CLIP-like model from
scratch. Even though it provides embeddings which could be used for other downstream
tasks, one prominent difference from CLIP-like models is that it is trained on MSCOCO,
a much smaller dataset. So, its zero-shot capabilities are quite limited. We add these
results for the sake of completeness.

During training this method picks the training examples in a balanced manner w.r.t.
gender. Specifically, in contrastive loss the goal is to maximize the similarity scores
between matching image and text examples (positive samples), while minimizing the
similarity score between non-matching examples (negative samples). Wang et al. [262]
hypothesize that there could be a gender imbalance in the negative samples in each
batch, i.e., the negative samples could be biased towards the majority class which results
in the bias during retrieval. To correct this, firstly, they assign male, female or neutral
labels to each image-text pair in the training set. They extract these labels from the texts
or captions of each image. Then, they propose to pick negative sample from the male
and female datapoints with probability 0.5 for every neutral query, while for male and
female labelled queries they sample the negative samples randomly.

We found that on MSCOCO dataset, which was used for training this method,
it enforced demographic parity, and had good performance for recall. However, as
Table 3.18 shows, this method is not directly comparable to foundation models and its
performance is limited to the dataset it was trained on.
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Table 3.18: [Retreival - Precision - Objective - MSCOCO & CelebA ] This table shows average
precision@K for image retrieval tasks using different methods for 80 categories of
MSCOCO dataset and 9 attributes of CELEBA. It demonstrates that CLIP and fair
PCA methods usually yield similar precision. On the other hand, fair sampling which is
trained on MSCOCO does very well on the MSCOCO dataset but has a poor performance on
CELEBA dataset. The mutual information based methods have a better performance where
more dimensions of the CLIP embeddings are used.

Precision@20 using MSCOCO
CLIP MI-400-GT MI-256-GT MI-400-INF MI-256-INF Fair-Samp FPCA-GT FPCA-INF

0.9±0.04 0.9±0.04 0.87±0.04 0.87±0.04 0.86±0.04 0.91±0.04 0.9±0.04 0.9±0.04

Precision@50 using MSCOCO
0.86±0.04 0.87±0.04 0.83±0.04 0.83±0.04 0.83±0.04 0.87±0.2 0.86±0.04 0.86±0.04

Precision@70 using MSCOCO
0.85±0.04 0.85±0.04 0.81±0.06 0.81±0.04 0.82±0.04 0.85±0.04 0.85±0.04 0.84±0.04

Precision @20 using CELEBA
0.88±0.06 0.82±0.1 0.67±0.18 0.71±0.12 0.71±0.14 0.67±0.16 0.84±0.08 0.87±0.06

Precision@50 using CelebA
0.85±0.08 0.78±0.1 0.65±0.16 0.72±0.12 0.71±0.12 0.68±0.16 0.81±0.1 0.84±0.08

Precision@100 using Celeba
0.82±0.08 0.76±0.1 0.65±0.14 0.73±0.12 0.69±0.1 0.67±0.18 0.78±0.1 0.81±0.08

3.6 Related Work

3.6.1 Text Embeddings and Bias

Compared to multi-modal embeddings, pure text embeddings have a longer history, and
so does the literature about their fairness: the seminal paper of Bolukbasi et al. [31] found
that word embeddings encode stereotypes such as “man is to computer programmer as
woman is to homemaker.” Such bias is attributed to the consistent bias prevalent in text
corpora [24, 258]. Bolukbasi et al. [31] proposes a debiasing approach that is conceptually
similar to the fair PCA approach [154] that we study in this paper. Concretely, it aims
to project gender-neutral words to a subspace orthogonal to the gender-direction in the
embedding space (when trying to remove gender bias). A different approach to debias
word embeddings has been proposed by Zhao et al. (2018), which alters the loss of the
word embedding model. Both approaches have been criticized by Gonen and Goldberg
[103] to only hide the bias, rather to remove it.
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3.6.2 Further (Fairness) Aspects of CLIP

Birhane et al. [29] examined the LAION-400M dataset [230], which has become a popular
dataset for training CLIP-like foundation models [57], and found that the dataset contains
problematic content, including malign stereotypes and racist and ethnic slurs. Such
problematic content is likely to be picked up by large models trained on this dataset.
CLIP-like models can be adapted to support multiple languages by means of cross-
lingual alignment [63]. Wang et al. [263] study the fairness of Multilingual CLIP [48] w.r.t.
different languages and find significant accuracy disparity across different languages.
Liang et al. [174] presented the modality gap phenomenon in multi-modal models: for
example, CLIP maps an image and its corresponding text to completely separate regions
of the joint embedding space. They showed that varying the modality gap distance
can significantly improve CLIP’s fairness. Qiu et al. [217] studied the robustness of
multi-modal foundation models to distribution shifts [267].

In a concurrent work Seth et al. [232] proposed a new bias mitigation method for
vision-language models. They propose to train a residual network on top of the image
embeddings (φ̄) of CLIP-like models with the goal to produce representations (φ) such
that protected attributes cannot be recovered from it. They do so by first training a
protected attributes classifier (PAC) using φ̄ which is then frozen. Then they train the
residual network while trying to maximize PAC’s loss for the learnt φ. They show that
they can reduce the maximum and minimum Skew for gender, age and race attributes
on FairFace and PATA (newly introduced) dataset.

In another parallel work, Chuang et al. [61] presented an approach that addresses
bias in CLIP’s embeddings space by projecting out the biased directions. They iden-
tify the biased directions in the embedding space by using prompts like ‘a photo of a
male/female’ and then construct a projection matrix that would remove these biased
directions in any query. To reduce noise in the estimation of the ‘biased directions’, they
defined a set of queries on which the CLIP model should have similar embeddings, e.g.,
‘a photo of a female doctor’ and ‘a photo of a male doctor’. They additionally added
this constraint to find the debiasing projection matrix. They showed that they reduce
the Skew for gender, race and age attributes for image retrieval tasks using the FairFace
dataset.

3.7 Conclusion

We have introduced a novel taxonomy to systematically evaluate discriminative foun-
dation models. It is based on three axes: (i) whether the task involves a human; (ii)
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whether the task is subjective; and (iii) whether independence-based or diversity-based
fairness is better suited for the intended use case. Then we thoroughly evaluated the
fairness of discriminative foundation models (FM) taking OpenAI’s CLIP and OpenCLIP
models as examples. Additionally, we evaluated different bias mitigation approaches
for these models. Our evaluation focused on three key tasks: zero-shot classification,
image retrieval and image captioning. We specifically examined two protected attributes:
gender (binary) and ethnicity (multi-valued). We found that, while fair PCA generally
emerged as one of the top-performing approaches in most cases, selecting the appropri-
ate debiasing method should be based on the intended use of the model. For instance,
when aiming to enhance diversity in image retrieval tasks, simpler methods that involve
constructing gender or race-specific queries may be more suitable.



CHAPTER 4
Fairly updating an ADMS:

Loss-Aversively Fair Classification

In this chapter, we focus on a crucial aspect of desigining algorithmic deicions-making
systems ignored by existing studies on fair learning namely, fairness of updates to decision-
making systems. We ask the following key questions:

What constitutes a fair update of an already deployed ADMS?

As mentioned in Sections 1.2, our goal is challenging as there is no existing notion of
update-fairness. So, firstly we have to propose a reasonable notion of update-fairness that
is grounded in exisiting research in social sciences. Then, we have to design measures
and mechanisms for this notion which can be incorporated into existing algorithms.

In order to address our research question in this chapter, we proceed as follows:

• In Section 4.1, we briefly describe the prior work particularly related to this chapter.

• In Section 4.2, we propose a new notion of fair update inspired by existing literature
in behavioral economics. We also operationalize our proposed notion of fairness
and provide mathematical formalism.

• In Section 4.3, we propose mechanisms to incorporate our proposed notion of
fairness in binary classification problems. We also provide convex proxies for our
notion to be incorporated along with existing notions of non-discrimination into a
variety of linear and non-linear classifiers.

• In Sections 4.4 and 4.5, using synthetic datasets, we demonstrate the effectiveness
of training classifiers with our proposed update-fairness combined with statistical
parity and equality of opportunity, respectively.
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• In Sections 4.6 and 4.7, using real-world datasets, we demonstrate the effectiveness
of training classifiers with our proposed update-fairness combined with statistical
parity and equality of opportunity, respectively.

• In Section 4.8, we conclude this chapter.

Relevant publication

The results presented in this chapter have been published in [13].

4.1 Related work

In this section, we briefly describe the prior work related for this chapter. Normative
vs. Descriptive Notions of Fairness. Our fairness consideration for updating decision
making systems has roots in normative vs. descriptive approaches in behavioral eco-
nomics [138, 141]. For example, Kahneman et al. [138] show how certain changes to
an economic model that are accepted on the normative standards might be deemed
unacceptable on the descriptive standards. Our work here is motivated by such observa-
tions: while anti-discrimination laws (normatively) prescribe how nondiscriminatory
decisions ought to be done, if people (descriptively) preceived the changes in outcomes
with the new nondiscriminatory decision system to be too disruptively disadvantageous
to them, they would resist adopting the new system. Our notions of update fairness can
be thought of as addressing such practical considerations.

4.2 New notion of fairness: Loss-aversive updates

In this work, inspired by existing literature in behavioral economics, we formally define a
notion of update fairness namely, loss-aversively fair updates. Intuitively, our notion of
loss-averse updates accounts for the “endowment effect” in human behavior [138, 141],
where an individual or a group of users perceives the fairness of the new system based on
whether their new outcomes were more or less beneficial than their status quo outcomes
from the existing system.

We also show that our new notion of fair update can be easily integrated with existing
mechanisms for training non-discriminatory classifiers. For instance, when attempting
to equalize rates of beneficial outcomes such as positive class acceptance rate or true
positive rate across different groups, adding our loss-averse update constraint ensures
that “no group of users is worse-off” than before. Such a constraint may be necessary in
practice when training non-discriminatory classifiers as Bazerman et al. [21] point out
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that same “don’t make anyone worse off’ principle likely underlines Supreme Courts
decision [241] that firing personnel from historically advantaged groups to achieve parity
(in order to overcome past discrimination) is prohibited.

4.2.1 Formalizing Notion of Loss-Averse Updates

In this section, we formally define a notion of fairness that can be useful when updating
algorithmic decision making systems. Specifically, we focus on decision making tasks
centered around binary classification.
Preliminaries. In a binary classification task, given a training dataset D = {(xi, yi)}Ni=1,
the goal is to learn a function θ : Rd → {−1, 1} between the feature vectors x ∈ Rd and
class labels y ∈ {−1, 1}. For convex decision boundary-based classifiers like logistic
regression and (non)linear SVM, this task boils down to finding a decision boundary θ∗

in the feature space that minimizes a given loss L(θ) overD, i.e., , θ∗ = argminθ L(θ). The
convexity of the loss function ensures that the optimal decision boundary parameters
can be found in an efficient manner. Then, for a given (potentially unseen) feature vector
x, one predicts the class label ŷ = 1 if dθ∗(x) ≥ 0 and ŷ = −1 otherwise, where dθ∗(x)

denotes the signed distance from x to the decision boundary. Without loss of generality,
we consider ŷ = 1 to be the beneficial (desired) label, e.g., , being granted the loan or
being released on bail.
Setup. We consider scenarios where we need to update an existing, status quo, binary
classifier, whose decision boundary is denoted by θsqo. We assume that the boundary
of the new classifier, θnew is learnt from the training dataset D. The outcomes of the
updated (new) classifier may differ from the status quo for many reasons such as the
status quo classifier being a human or an older (simpler) learning model, or the status
quo classifier being trained on out-dated training data, or the status quo classifier being
trained using models without awareness of potential for discrimination. Our notion of
fair update defines the conditions in which the changes in decision outcomes caused by an
update would be deemed as fair.
Existing Notions: Discrimination in Classification.
Anti-discrimination laws require classification outcomes are also required to be nondis-
criminatory with respect to a sensitive feature z ∈ {0, 1}, e.g., , gender, race. Most of
the existing studies differentiate between the following two notions of discrimination:
statistical parity [79, 89]—also referred to as disparate impact, and equality of opportu-
nity [120, 274]—also referred to as disparate mistreatment. Both notions require that
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certain group-conditional beneficial outcome rates be the same for each group, i.e., :

Bz=0(θ) = Bz=1(θ), (4.1)

where the definition of the benefit function Bz depends on the notion of discrimination
under consideration.

Under the notion of statistical parity (SP) [79, 89], the benefits function is defined as
the positive class acceptance rate (AR), i.e., , the positive class acceptance rate should be
the same for both the groups. More formally,

— SP: P (ŷ = 1|z = 0) = P (ŷ = 1|z = 1), (4.2)

Under equality of opportunity (EOP) notion [120, 274], the benefit function is defined
as the true positive rate, i.e., the true positive rate (TPR) should be the same for both the
groups. More formally,

— EOP: P (ŷ = 1|y = 1, z = 0) = P (ŷ = 1|y = 1, z = 1), (4.3)

Note that, current notions of nondiscrimination do not take into account status quo
classifier. In the following section we introduce a notion of updating status quo classifier.
New Notion: Loss-Averse Updates. We now formally describe a new consideration of
fair updates, introduced in Section 1. We draw inspiration from human behavior and
behavioral economics and we consider how people might perceive fairness of an updated
classifier in comparison to status quo. Specifically, any disadvantageous effect of an
updated classifier would be considered unfair. Prospect theory, proposed by Kahneman
and Tversky [141], states that equal amounts of loses result in a bigger loss in utility
than the increase in utility by the same amount of gains. In other words people percieve
losses much worse than gains, i.e., , they are loss-averse. Given the status quo classifier
θsqo, a new classifier θnew constitutes a loss-averse update only when the new classifier
increases the beneficial outcome rates for all groups. More formally,

Bz=k(θnew) ≥ Bz=k(θsqo), for all k ∈ {0, 1} (4.4)

where Bz can be any one of the benefit functions proposed in the existing literature on
nondiscriminatory classification.
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4.3 Updating Classifiers Loss-Aversively

In this section, we devise mechanisms to update status quo classifier, θsqo to θnew that
follow the practical considerations of “loss-averse updates”. We specifically focus on
training convex decision boundary based classifiers (e.g., , logistic regression, linear and
non-linear SVMs), i.e., , the classifiers that learn the decision boundary parameters by
optimizing a convex loss function L(θ).
Existing Mechanisms: Nondiscriminatory Classification. Existing mechanisms to train
nondiscriminatory classifiers involve solving an optimization problem maximizing
accuracy while equalizing benefits, i.e., , enforcing Eq. (4.1), for different sensitive feature
groups. More formally,

minimize L(θ) (P4.1)

subject to Bz=0(θ) = Bz=1(θ),

Constraints in Problem (P4.1), as operationalized in Eqs. (4.2) and (4.3) are non-convex.
However, prior studies [22, 274, 275] propose tractable convex or convex-concave proxies
for enforcing the equality of benefits constraint in Eqs. (4.2) and (4.3). Borrowing these
proxies from [22, 274, 275], one can replace the equal benefits condition with proxies as
follows:

— SP:
1

|D|

∣∣∣∣ ∑
(x,z)∈D

(z − z̄)dθ(xi)

∣∣∣∣ ≤ c, (4.5)

— EOP:
1

|D+|

∣∣∣∣ ∑
(x,z)∈D+

(z − z̄)dθ(xi)

∣∣∣∣ ≤ c, (4.6)

where D+ are data points with y = 1. Here equality of opportunity limits discrimination
in true positive rates of different groups. The covariance threshold c ∈ R+ determines
the level of discrimination, with c = 0 aiming for a perfectly fair classifier.
New Mechanism: Loss-Averse Updates. For updating the status quo classifier, θsqo, in
a nondiscriminatory and loss-aversive manner, one can add the respective conditions to
the classifier formulation as a constraint, i.e., ,

minimize L(θ) (P4.2)

subject to Bz=0(θ) = Bz=1(θ)

Bz=k(θ) ≥ Bz=k(θsqo), for all k ∈ {0, 1}.
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The constraints in the above problem are nonconvex functions of the classifier parameters
θ, if B is defined in terms of probabilities as given in Eqs. (4.2) and (4.3), for example, this
would make it very challenging to solve the resulting problem in an efficient manner.

We used the convex proxies from prior studies [22, 274, 275] for the first constraint as
given by Eqs. (4.5) and (4.6). We propose the following convex proxies to approximate
the new loss-averse constraints in Problem (P4.2):
Under SP, when the benefit function is AR we suggest:

1

|Dz=k|
∑

x∈Dz=k

dθ(x) ≥ 1

|Dz=k|
∑

x∈Dz=k

dθsqo(x) + γ, (4.7)

for all k ∈ {0, 1}, γ ∈ R+.

Under EOP, when the benefit function is TPR we suggest:

1

|D+
z=k|

∑
x∈D+

z=k

dθ(x) ≥ 1

|D+
z=k|

∑
x∈D+

z=k

dθsqo(x) + γ, (4.8)

for all k ∈ {0, 1}, γ ∈ R+,

where Dz=k are the data points whose sensitive attribute value z = k, and D+
z=k are data

points in the dataset with label y = 1 and sensitive attribute value z = k. Here, γ controls
the strength of the constraint. We pick an appropriate γ using a validation set. Note that
the right hand side in Eqs. (4.7) and (4.8) represents constant terms since θsqo is already
known.

Both of the proposed proxies are convex with respect to the optimization variables.
The convexity of the proxies (4.7 and 4.8) means that for any convex function L(θ) the
optimization problem stays convex and can be solved in an efficient manner.
Logistic Regression: SP. We can specialize Problem (P4.2), using logistic regression
classifier with L-2 norm regularizer, SP as a notion of discrimination, given by Eq. (4.5),
and loss-averse constraint, given by Eq. (4.8), as follows:
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Figure 4.1: [Synthetic dataset. Enforcing statistical parity] These figures show a comparison be-
tween the solutions of Problem (P4.1), using SP proxies, and Problem (P4.3). Left panel
shows the beneficial outcome rates, i.e., , positive class acceptance rates, for a classifier
only enforcing SP constraint (solid lines), and a classifier additionally enforcing the
“loss-averse” constraint (dotted lines). Right panel shows the nondiscrimination-
accuracy tradeoff for both the classifiers. Enforcing “loss-averse” constraint, defined
in Eq. (4.7), leads to significant additional loss in accuracy for the same level of
discrimination.

minimize − 1

|D|
∑

(x,y)∈D

log p(y|x,θ) + λ||θ||2 (P4.3)

subject to
1

|D|

∣∣∣∣ ∑
(x,z)∈D

(z − z̄)dθ(xi)

∣∣∣∣ < c

1

|Dz=k|
∑

x∈Dz=k

dθ(x) ≥ 1

|Dz=k|
∑

x∈Dz=k

dθsqo(x) + γ,

for all k ∈ {0, 1}, γ ∈ R+.

Logistic Regression: EOP. Similarly, considering equality of opportunity as a notion of
nondiscrimination we can approximate Problem (P4.2), by adding Eqs. (4.6 and 4.8) as
constraints to logistic loss, as follows:

minimize − 1

|D|
∑

(x,y)∈D

log p(y|x,θ) + λ||θ||2 (P4.4)

subject to
1

|D+|

∣∣∣∣ ∑
(x,z)∈D+

(z − z̄)dθ(xi)

∣∣∣∣ < c

1

|D+
z=k|

∑
x∈D+

z=k

dθ(x) ≥ 1

|D+
z=k|

∑
x∈D+

z=k

dθsqo(x) + γ,

for all k ∈ {0, 1}, γ ∈ R+.
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4.4 Evaluation on Synthetic Dataset: SP

In this section we evaluate the effectiveness “Loss-averse” constraint (4.7), using a
synthetic dataset on a binary classification task. We consider a known notion of nondis-
crimination, namely statistical parity.

4.4.1 Dataset and Experimental Set up

In this subsection we describe the results for statistical parity using a synthetic dataset.
Dataset and Experimental Set up. We used synthetic dataset with binary ground truth
class labels y ∈ {+1,−1}. Each data point comprises of 2 features besides a binary
sensitive feature, i.e., , z ∈ {0, 1}, where z = 0 is the protected group. We do not use the
sensitive attribute during training.
Synthetic Dataset. For demonstrating the results of loss-averse updates with statistical
parity, given by Eq. (4.2), as a notion of nondiscrimination, we used the dataset proposed
by Zafar et al. [275]. This dataset comprises of 6000 data points, the class labels were
drawn uniformly at random. Conditioned on the class membership, each data point was
sampled from the following distributions:

p(x|y = 1) = N([2; 2][5, 1; 1, 5]),

p(x|y = −1) = N([−2;−2][10, 1; 1, 3]).

Value of the sensitive attribute was sampled from the following Bernoulli probability
distributions:

p(z = 1) =
p(x

′|y = 1)

p(x′|y = 1) + p(x′ |y = −1)
,

where, x′ = [cos(φ),− sin(φ); sin(φ), cos(φ)]x, i.e., , the rotated feature vector, x. On
average there were 3280 points in the protected group and 2720 were in non-protected
group.
Experimental Setup. The dataset is split into 70%-30%, train-test folds. Additionally,
hyperparameters are validated using a 30% hold out set from the training data. All the
results have been averaged over 5 shuffles of the data initialized by different random
seed. In order to pick the penalization parameter, λ in Problem (P4.3), multiplied with
the regularizer, we trained the unconstrained classifier for λ ∈ [1e− 5, 1e− 2]. Then, we
picked a value which yielded the highest accuracy on the validation set, for a particular
shuffle of the data . We used this value of the parameter for all the experiments on that
shuffle of the data. We use CVXPY [75] library to solve all the optimization problems.
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4.4.2 Loss-aversively Fair Updates

In this section we experiment with Problems (P4.1 and P4.3). First we consider statistical
parity, where beneficial outcome rates are defined as positive class acceptance rate, as a
notion of discrimination, i.e., , solving Problems (P4.1) using SP proxies. Then, we show
results combining SP and loss-averse constraints and we update θsqo with loss-averse
nondiscriminatory classifiers.
Training Loss-aversively Fair Classifier. We initialize θsqo with the solution of uncon-
strained problem. Then, given a value of covariance threshold c, as used in Eqs.(4.5 and
4.6), and a range of γ, as used in Eqs.(4.7 and 4.8), we solve Problem (P4.3). We, then,
pick the gamma values whose solutions yield a higher benefits compared to θsqo, for all
the groups, on the validation set. In case there are multiple such values, we pick the one
whose solution yields maximum accuracy. We then report the results on the test set.
SP. Accuracy of an unconstrained classifier, on Synthetic dataset, is 88%, and the accep-
tance rates for the protected and non-protected groups are 31% and 72%, respectively.
There is a clear disparity in acceptance rates of both the groups. In order to remove this
disparity we solve Problem (P4.1), replacing the first constraint with SP proxy, given by
Eq. (4.5). For a covariance threshold c = 0, this leads to a classifier with an acceptance rate
of 51% and 52%, for protected and non-protected groups respectively, and an accuracy
of 72%.
The results for this formulation, Problem (P4.1) specialized with SP, are shown in Fig-
ure (4.1). The x-axis is covariance multiplicative factor m : c = m × c∗, where c∗ is the
covariance values of the unconstrained classifier and c is covariance threshold as given
in Eq.(4.5). Solid lines in Figure (4.1a) represent the statistics of the classifiers resulting
from the solutions of this formulation. Figure (4.1b) shows the accuracies of classifiers
resulting from solving this formulation in purple colored points.
Note that: i) Figure (4.1b) demonstrates that as the covariance is decreased the accuracy of
the resulting, less discriminatory, classifiers also decreases. ii) Figure (4.1a) shows that as
the covariance decreases, the discrimination also reduces. iii) However it should be noted
that discrimination is decreased by reducing the acceptance rate of the non-protected
group.
Loss-Aversiveness + SP. In order to train a classifier enforcing loss-averse update of
θsqo, Eq. (4.4), combined with statistical parity, Eq (4.2), on the Synthetic dataset, we
solve Problem (P4.3). Loss-averse updates yield a classifier with an accuracy of 65% and
acceptance rates of 80% and 86% for protected and non-protected groups, respectively,
for the covariance value c = 0.
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Figure 4.2: [Synthetic dataset. Enforcing equality of opportunity] Figure on the left shows the
beneficial outcome rates, i.e., , true positive rates, for a classifier only enforcing
EOP constraint (solid lines) and a classifier additionally enforcing the “loss-averse”
constraint, given in Eq. (4.8), is shown in dotted lines. Figure on the right shows
nondiscrimination-accuracy tradeoff for both the classifiers.

The results are shown in Figure (4.1a) in dotted lines and in green colored points in
Figure (4.2b). i) The figures demonstrate that loss-aversively fair updates yield a less
discriminatory classifier while increasing the benefits for both the groups, ii) however
this comes at a higher cost of accuracy.

4.5 Evaluation on Synthetic Dataset: EOP

In this section we will present the “loss-averse” fairness results combined with equal-
ity of opportunity, using synthetic dataset. We show the results of the optimization
Problem (P4.4).

4.5.1 Dataset and Experimental Setup

In this section we explain the synthetic dataset used for demonstrating the loss-averse
consideration and the experimental setup used to solve the optimization Problem (P4.4).
Synthetic Dataset. Each data point comprises of 2 features apart from the sensitive at-
tribute. Each data point also has a binary ground truth label. For equality of opportunity,
as given by Eq. (4.3), we are considering true positive rates as a notion of benefit. To
demonstrate the results of fair updates combined with EOP, we use a synthetic dataset
proposed by Zafar et al. [274], except that we flip the ground truth labels in order to have
a disparity in the false negative rates instead of the false positive rates. We generated
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16000 data points with the probability distributions of the features given as follows:

p(x|z = 0, y = 1) = N([2; 2][3, 1; 1, 3])

p(x|z = 1, y = 1) = N([2; 2][3, 1; 1, 3])

p(x|z = 0, y = −1) = N([1; 1][3, 3; 1, 3])

p(x|z = 1, y = −1) = N([−2;−2][3, 1; 1, 3])

Both, class labels, y, and value of the sensitive attribute, z, were sampled uniformly at
random.
Experimental Setup. We use the same data split and method of validating the hyperpa-
rameters as explained in the Section 4.4.

4.5.2 Loss-Aversively Fair Updates

Now, we will show the results of Problem (P4.1), using EOP as a notion of nondiscrimi-
nation. We also show results for the loss-averse formulation combined with EOP, given
by Problem (P4.4).
EOP. An unconstrained classifier trained on Synthetic dataset yields an accuracy of 86%

and true positive rates (TPRs) of 94% and 77% for non-protected and protected groups,
respectively. To equalize the TPRs we solve Problem (P4.1) using proxies for EOP given
in Eq. (4.6).
These results are show in Figure (4.2a) in solid lines and Figure (4.2b) in purple colored
points. i) In order to reduce discrimination, this formulation yields a classifier which
lowers the TPR of the non-protected class to 72% and raises the TPR of the protected
group to 79%, for covariance threshold c = 0, while achieving an accuracy of 74%. ii)
Figure (4.2a) shows the limitation of equality of opportunity proxy proposed by Zafar et
al. [274], as it achieves a lower discrimination for higher value of the covariance.
Loss-Aversiveness + EOP. To avoid lowering the benefits for any group while reducing
discrimination, we solve the Problem (P4.4). We encountered some issues in convergence
for some values of covariance factor, specifically smaller ones. Out of 7 random seeds
that we tried we find the results for all covariance factors for only 5 seeds, we report the
average of these results. One reason for the lack of convergence could be that a very high
base TPR might make it difficult to find a nondiscriminatory classifier.For covariance
threshold c = 0, this formulation leads to a classifier whose true positive rates are 95%

and 99% for non-protected and protected groups, respectively, with an accuracy of 64%.
We show these results in Figure (4.2a) in dotted lines and Figure (4.2b) in green colored

crosses. i) These figures illustrate the effectiveness of the loss-averse formulation, as the
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Figure 4.3: [Adult dataset. Enforcing statistical parity] Left panel shows the beneficial outcome
rates, i.e., , positive class acceptance rates, for a classifier only enforcing SP constraint,
i.e., , solution of Problem (P4.1) using SP proxies (solid lines), and a classifier addition-
ally enforcing the “loss-averse” constraint, i.e., , solution of Problem (P4.3) (dotted
lines). Right panel shows the nondiscrimination-accuracy tradeoff for both the clas-
sifiers. Enforcing “loss-averse” constraint, defined in Eq. (4.7), leads to a significant
additional loss in accuracy for the same level of discrimination.

resulting classifiers achieve nondiscrimination by increasing TPR for both groups, ii)
however this results in a significant drop in the accuracy.
Summary. In sections 4.4 and 4.5, we demonstrated the effectiveness of our proposed
formulation on synthetic datasets. We illustrated the effectiveness of loss-aversively
making the status quo classifiers nondiscriminatory, albeit at the cost of accuracy.

4.6 Evaluation on Real-World Dataset: SP

In this section, we evaluate the effectiveness of our proposed schemes in updating the
status quo classifier, θsqo, compliant with the “loss-aversively fair updates” consideration,
on real-world dataset using statistical parity as a notion of nondiscrimination.

4.6.1 Dataset and Experimental Setup

In this section, we explain the real-world dataset used to evaluate our proposed consid-
erations.
Adult Dataset. We show result for loss-aversively fair update mechanism, introduced
in section 4.3, using Adult dataset [4]. Specifically, we illustrate the effectiveness of Prob-
lem (P4.3) to train loss-aversively fair classifiers, using Adult dataset. For experiments in
this section, we consider statistical parity as a notion of nondiscrimination.

The Adult Dataset consists of 45, 222 subjects and 14 features like gender, race, educa-
tional level, etc. The classification task is to predict whether a person earns more than
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50K USD per annum (positive class) or not (negative class). We consider gender to be a
sensitive feature for this dataset.
Experimental Setup. For the experiments conducted on the Adult dataset we use the
same data split as used for Synthetic dataset. We also randomize the data, as well as
validate the hyperparameters in a similar manner.

4.6.2 Loss-Aversively Fair Updates

In this section we compare the results of Problem (P4.1), using SP proxies, and Loss-
aversively fair updates given by Problem (P4.3) using Adult dataset.
SP. On the Adult dataset, logistic regression classifier leads to an accuracy of 84.6%.
However, the classifier leads to the beneficial outcome rates of 8% and 26% for women
and men respectively, showing a clear disparity in the beneficial outcome rates for the
two groups. Next, using the method of Zafar et al. [275], we train a nondiscriminatory
classifier while reducing the value of the covariance threshold c, (Eq. (4.5)), towards
0. The results are shown in solid lines in Figure (4.3a) and in purple colored points in
Figure (4.3b). The least discriminatory classifier in this case achieves the beneficial
outcome rates of 13% and 20% for women and men respectively, with an accuracy of
83.7%. We notice that the discrimination is reduced by lowering the beneficial outcome
rates for men, which leads to a violation of “loss-averse” consideration.
Loss-Aversiveness + SP. We next train classifier with the loss-averse constraints (Eq. (4.7))
combined with SP, i.e., , solve Problem. (P4.3). The least discriminatory classifier in this
case achieves the beneficial outcome rates of 24% and 27% for women and men, respec-
tively, while achieving an accuracy of 80.8%. However, the reduction in discrimination
is achieved by only increasing the beneficial outcome rate for both groups. Results are
shown in Figures (4.3a and 4.3b), in dotted lines and green colored points, respectively.
The figure shows the beneficial outcome rates for (i) a classifier with statistical parity
constraint and (ii) a classifier with loss-averse and statistical parity constraints. The
figure shows that at successively decreasing values of the covariance threshold c, while
classifier (i) achieves lower discrimination by increasing benefits for one group and
decreasing them for the other, classifier (ii) does so by only increasing benefits for both the
groups. Figure (4.3b) shows the nondiscrimination-accuracy tradeoff achieved by both
the classifiers. The figure demonstrates that, as expected, classifier (ii) incurs a much
higher cost in terms of accuracy for the same level of discrimination due to the additional
loss-averse constraint.
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Figure 4.4: [SQF dataset. Enforcing equality of opportunity] These figures show similar results
as Figure (4.2) using SQF dataset.

4.7 Evaluation on Real-World Dataset: EOP

In this section we will present the “loss-averse” fairness results combined with equality
of opportunity, using a real-world dataset.

4.7.1 Dataset and Experimental Setup

In this section we explain the dataset and the experimental setup. We show result of
Problem (P4.1), with EOP as a notion of nondiscrimination, as well as Problem (P4.4),
which combines EOP and loss-averse constraints.
SQF Dataset. For experiments in this section we consider NYPD SQF dataset [1]. The
NYPD SQF dataset consists of pedestrians who were stopped in the year 2012 on the
suspicion of having a weapon. The task is a binary prediction task which indicates
whether (negative class) or not (positive class) a weapon was discovered. For our
analysis, we consider the race to be the sensitive feature with values African-American
and white. After balancing the classes and considering same features as Goel et al. [101],
with the exception that we exclude the highly sparse features ‘precinct’ and ‘timestamp
of the stop’, we obtain 5,832 subjects and 19 features.
Experimental Setup. We used similar experimental setup as explained in section 4.4.

4.7.2 Loss-Aversively Fair Updates

In this section we show the results of Problem (P4.4), which enforces EOP and loss-averse
constraints and compare them with the results of Problem (P4.1), which only enforces
EOP using the proxy given by Eq. (4.6), on NYPD SQF dataset.
EOP. With equality of opportunity constraint, where beneficial outcome rates are defined
in terms of true positive rate, we experiment with NYPD SQF dataset. Unconstrained



Chapter 4. Fairly updating an ADMS: Loss-Aversively Fair Classification 75

logistic regression on SQF yields an accuracy of 74.4%, while the beneficial outcome rates
are 69% and 82% for Whites and African-Americans, respectively. Least discriminatory
classifier, trained with c = 0, given in constraint Eq. (4.6), yields benefits of 72% and
76% for Whites and African-Americans, respectively, while achieving an accuracy of
71.4%. Similar to the previous cases, this classifier also achieves lower discriminations
by raising the benefits for one group while increasing them for the other group.
Loss-Aversiveness + EOP. Next, we combine the nondiscrimination constraint with the
loss-averse constraint, given by Problem (P4.4), in order to update θsqo. A least discrimi-
natory loss-averse classifier trained on NYPD SQF dataset yields an accuracy of 71% and
benefits of 84% and 81% for African-Americans and White, respectively. Figure (4.4a)
shows the beneficial outcome rates for (i) a classifier with only nondiscrimination con-
straints and (ii) a loss-averse classifier with nondiscrimination constraints. Again, we
notice that classifier (ii) removes discrimination by only increasing the beneficial outcome
rates whereas classifier (i) does so by increasing benefits for one group and decreasing
them for the other. Finally, the comparison of nondiscrimination-accuracy tradeoff in
Figure (4.4b) shows no significant difference between both the classifiers.
Summary. Our proposed methodology, in Section 4.3, successfully enforces the loss
averse constraint while updating the status quo classifier, θsqo, to a nondiscriminatory
classifier. However, enforcing these constraints could be at a significant additional cost
in terms of accuracy, as demonstrated in Sections 4.6 and 4.7 using real-world datasets.

4.8 Conclusion

A number of recent works have explored various aspects of fairness related to algorithmic
decision making. In this chapter, we focused on an aspect of decision making that
crucially affects people’s fairness perceptions, yet has been overlooked: it is the fairness
of updating decision making, i.e., how the decision outcomes change when updating a
decision making system.

Based on observations in behavioral economics and psychology, we note that any
“disadvantageous” changes in outcomes to individual subjects or groups of subjects
would be perceived as unfair. Accordingly, we proposed a complementary notion of
update fairness that we call loss-averse updates. Loss-averse updates try to constrain
updates to only yield more advantageous (more beneficial) outcomes compared to status
quo.

In this work, we formalized this notion in the context of classification tasks. We
proposed measures that would allow these notions to be incorporated in the training of
any convex decision-boundary based classifiers (like logistic regression or linear/non-
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linear SVM) as convex constraints. We also showed how this notion can be combined
with prior notions and measures of non-discrimination in classification. Our evaluation
using synthetic and real-world datasets demonstrated the benefits of loss-averse updates
in practice.



CHAPTER 5
Designing a new fair ADMS:

Time-Critical Influence Maximization

As described in Section 1.1.3, time-critical influence maximization (TCIM) has several
impactful applications that affect humans. While existing algorithmic techniques usually
aim at maximizing the total number of people influenced, the population often comprises
several socially salient groups, e.g., based on gender or race. As a result, these techniques
could lead to disparity across different groups in receiving important information. Fur-
thermore, in many applications, the spread of influence is time-critical, i.e., it is only
beneficial to be influenced before a deadline. In this chapter, we try to address fairness
concerns in the TCIM problem. Specifically, we answer the following research question:

How can we design computationally efficient mechanisms to mitigate unfairness in TCIM
problem?

As outlined in Section 1.2.3, we acknowledge that our goal is challenging. At first,
we have to define what constitutes fairness in TCIM. Then, we have to formalize this
problem and propose mechanisms to efficiently solve it.

We answer our research question as follows:

• In Section 5.1, we provide the necessary background on TCIM. Specifically, we
discuss the influence propagation mechanism, the influence function and its prop-
erties, time-criticality model and two popular constraints for the TCIM problem:
TCIM-BUDGET and TCIM-COVER. Furthermore, we discuss the solutions pro-
posed in the existing literature for both of these problems.

• In Section 5.2, we operationalize a notion of group fairness for TCIM and discuss a
measure of unfairness.

• In Section 5.3, we discuss how to incorporate the proposed measure of fairness
in TCIM-BUDGET and TCIM-COVER problems. Solving these problems with the
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fairness constraints directly is challenging. To address this issue, we present proxy
measure that can solved efficiently. Lastly, we also present theoretical guarantees
for the performance of our proposed mechanisms.

• In Section 5.4, using several synthetic datasets, we explore the effect of different
graph and algorithmic properties on unfairness. We also test our proposed mecha-
nisms and demonstrate their efficacy in mitigating unfairness in TCIM-BUDGET

and TCIM-COVER problems.

• In Sectin 5.5, using three real-world datasets, we demonstrate the efficacy of our
methods to mitigate unfairness in TCIM-BUDGET and TCIM-COVER problems.
We also explore the effect of different algorithmic properties on unfairness.

• In Section 5.6, we review the related work on influence maximization and other
contemporary works.

• In Section 5.7, we present the conclusion of this chapter.

Relevant publication

The results presented in this chapter have been published in [9].

5.1 Background on Time-Critical Influence Maximization

(TCIM)

In this section, we provide the necessary background on the problem of time-critical
influence maximization (henceforth, referred to as TCIM for brevity). First, we for-
mally introduce a well-studied influence propagation model and specify the notion of
time-critical influence that we consider in this paper. Then, we discuss two discrete
optimization formulations to tackle the TCIM problem.

5.1.1 Influence Propagation in Social Network

Consider a directed graph G = (V , E), where V is the set of nodes and E is the set of
directed edges connecting these nodes. For instance, in a social network the nodes
could represent people and edges could represent friendship links between people.
An undirected link between two nodes can be represented by simply considering two
directed edges between these nodes.
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Figure 5.1: An example to illustrate the disparity across groups in the standard approaches to
TCIM. (Left) Graph with |V| = 38 nodes belonging to two groups shown in “blue
dots" (|V1| = 26) and “red triangles" (|V2| = 12). (Right) We compare an optimal
solution to the standard TCIM-BUDGET problem P5.1 and an optimal solution to
our formulation of TCIM-BUDGET with fairness considerations given by FAIRTCIM-
BUDGET problem P5.4. For different time critical deadlines τ , normalized utilities are
reported for the whole population V , for the “blue dots" group V1, and for the “red
triangles" group V2. As τ reduces, the disparity between groups is further exacerbated
in the solution to TCIM-BUDGET problem P5.1. Solution to FAIRTCIM-BUDGET

problem P5.4 achieves high utility and low disparity for different deadlines τ .

There are two classical influence propagation models that are studied in the literature
[147]: (i) Independent Cascade model (IC) and (ii) Linear Threshold (LT) model. In this
paper, we will consider IC model and our results can easily be extended to the LT model.

In the IC model, there is a probability of influence associated with each edge denoted
as pE := {pe ∈ [0, 1] : e ∈ E}. Given an initial seed set S ⊆ V , the influence propagation
proceeds in discrete time steps t = {0, 1, 2, . . . , } as follows. At t = 0, the initial seed
set S is “activated" (i.e., influenced). Then, at any time step t > 0, a node v ∈ V which
was activated at time t − 1 gets a chance to influence its neighbors (i.e., set of nodes
{w : (v, w) ∈ E}). The influence propagation process stops at time t > 0 if no new nodes
get influenced at this time. Under the IC model, once a node is activated it stays active
throughout the process and each node has only one chance to influence its neighbors.

Note that the influence propagation under IC model is a stochastic process: the
stochasticity here arises because of the random outcomes of a node v influencing its neigh-
bor w based on the Bernoulli distribution p(v,w). An outcome of the influence propagation
process can be denoted via a set of timestamps {tv ≥ 0 : v ∈ V}where tv represents the
time at which a node v ∈ V was activated. We have tv = 0 iff v ∈ S and for convenience
of notation, we define tv = −1 to indicate that the node v was not activated in the process.

5.1.2 Utility of Time-Critical Influence

As mentioned earlier, we focus on the application settings where the spread of influence is
time-critical, i.e., it is more beneficial to be influenced earlier in the process. In particular,
we adopt the well-studied notion of time-critical influence as proposed by [54]. Their
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time-critical model is captured via a deadline τ : If a node is activated before the deadline,
it receives a utility of 1, otherwise it receives no utility. This simple model captures the
notion of timing in many important real-world applications such as viral marketing
of an online product with limited availability, information propagation of job vacancy
information, etc.

Given the influence propagation model and the notion of time-critical aspect via a
deadline τ , we quantify the utility of time-critical influence for a given seed set S on a
set of target nodes Y ⊆ V via the following:

fτ (S;Y,G) = E
[ ∑
v∈Y,tv≥0

I(tv ≤ τ)
]
, (5.1)

where the expectation is w.r.t. the randomness of the outcomes of the IC model. The
function is parametrized by deadline τ , set Y ⊆ V representing the set of nodes over
which the utility is measured (by default, one can consider Y = V), and the underlying
graph G along with edge activation probabilities pE . Given a fixed value of these parame-
ters, the utility function fτ : 2V → R≥0 is a set function defined over the seed set S ⊆ V .
Note that the constraint tv ≥ 0 represents the node was activated and the constraint
tv ≤ τ represents that the activation happened before the deadline τ .

5.1.3 TCIM as Discrete Optimization Problem

Next, we present two settings under which we study TCIM by casting it as a discrete
optimization problem.

5.1.3.1 Maximization under Budget Constraint (TCIM-BUDGET)

In the maximization problem under budget constraint, we are given a fixed budgetB > 0

and the goal is to find an optimal set of seed nodes that maximize the expected utility.
Formally, we state the problem as

max
S⊆V

fτ (S;V ,G) subject to |S| ≤ B. (P5.1)

5.1.3.2 Minimization under Coverage Constraint (TCIM-COVER)

In the minimization problem under coverage constraint, we are given a quota Q ∈ [0, 1]

representing the minimal fraction of nodes that must be activated or “covered" by the
influence propagation in expectation. The goal is then to find an optimal set of seeds
of minimal size that achieves the desired coverage constraint. We formally state the
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problem as

min
S⊆V
|S| subject to

fτ (S;V ,G)

|V|
≥ Q. (P5.2)

5.1.4 Submodularity and Approximate Solutions

Next, we present some key properties of the utility function fτ (.) to get a better under-
standing of the above-mentioned optimization problems. In their seminal work, [147]
showed that the utility function without time-critical deadline, i.e., f∞(.) : S → R+, is a
non-negative, monotone, submodular set function w.r.t. the optimization variable S ⊆ V .
Submodularity is an intuitive notion of diminishing returns and optimization of submod-
ular set functions finds numerous applications in machine learning and social networks,
such as influence maximization [147], sensing [159], information gathering [234], and
active learning [118] (see [158] for a survey on submodular function optimization and its
applications).

Chen et. al [54] showed that the utility function for the general time-critical setting for
any τ also satisfies these properties. Submodularity is an intuitive notion of diminishing
returns, stating that, for any sets A ⊆ A′ ⊆ V , and any node a ∈ V \ A′, it holds that
(omitting the parameters V and G for brevity):

fτ (A ∪ {a})− fτ (A) ≥ fτ (A
′ ∪ {a})− fτ (A′).

Existing works [88, 158, 203] have shown that P5.1 and P5.2 are NP-Hard and hence
finding the optimization solution is intractable. However, on a positive note, one can
exploit the submodularity property of the function to design efficient approximation
algorithms with provable guarantees [158, 203]. In particular, we can run the following
greedy heuristic: start from an empty set, iteratively add a new node to the set that
provides the maximal marginal gain in terms of utility, and stop the algorithm when the
desired constraint on budget or coverage is met. This greedy algorithm provides the
following guarantees for these two problems:

• for the TCIM-BUDGET problem P5.1, the greedy algorithm returns a set Ŝ that guar-
antees the following lower bound on the utility: fτ (Ŝ;V ,G) ≥ (1− 1

e
) · fτ (S∗;V ,G)

where S∗ is an optimal solution to problem P5.1.

• for the TCIM-COVER problem P5.2, the greedy algorithm returns a set Ŝ that
guarantees the following upper bound on the seed set size: |Ŝ| ≤ ln(1 + |V|) · |S∗|
where S∗ is an optimal solution to problem P5.2.
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5.2 Measuring Unfairness in TCIM

In this section, we highlight the disparity in utility across population resulting from
the solution to the standard TCIM problem formulations, and introduce a measure of
unfairness in TCIM.

5.2.1 Socially Salient Groups and Their Utilities

The current approaches to TCIM consider all the nodes in V to be homogeneous. We
capture the presence of different socially salient groups in the population by dividing
individuals into k disjoint groups. Here, socially salient groups could be based on some
sensitive attribute such as gender or race. We denote the set of nodes in each group
i ∈ {1, 2, . . . , k} as Vi ⊆ V , and we have V = ∪iVi. For any given seed set S, we define
the utilities for a group i as fτ (S;Vi,G) by setting target nodes Y = Vi in Eq. 5.1.

5.2.2 Disparity in Utility Across Groups

In the standard formulations for TCIM problem, i.e., TCIM-BUDGET problem P5.1 and
TCIM-COVER problem P5.2, the utility fτ (S;V ,G) is optimized for the whole population
V without considering their groups. Clearly, a solution to TCIM problem can, in general,
lead to high disparity in utilities of different groups.

In particular, this disparity in utility across groups arises from several factors in
which two groups differ from each other. One of the factors is that the groups are of
different sizes, i.e., one group is a minority. The different group sizes could, in turn, lead
to selecting seed nodes from the majority group when optimizing for utility fτ (S;V ,G)

in problems P5.1 and P5.2. Another factor is related to the connectivity and centrality of
nodes from different groups. The solution to the optimization problems P5.1 and P5.2
tend to favor nodes which are more central and have high-connectivity. Finally, given the
above two factors, we note that the disparity in influence across groups can be further
exacerbated for lower values of deadline τ in the time-critical influence maximization.

In Figure 5.1, we provide an example to illustrate the disparity across groups in the
standard approaches to TCIM. In particular, to show this disparity, we consider the
TCIM-BUDGET problem P5.1, and it is easy to extend this example to show disparity in
TCIM-COVER problem P5.2. The graph that we consider in this example (see Figure 5.1
caption for details) has the two characteristic properties that we discussed above: (i)
group V2 is in minority with less than half of the size of group V1, (ii) group V1 has more
central nodes compared to group V2, and (iii) nodes in group V1 have higher connectivity
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than nodes in group V2. We consider the probability of influence in the graph to be
pe = 0.7 for all edges, and study the optimization problem P5.1 for budget B = 2.

For different time critical deadlines τ , we report the following normalized utilities:
f(S;V,G)
|V| for the whole population V , f(S;V1,G)|V1| for the group V1, and f(S;V2,G)

|V2| for the group
V2. Here, normalization captures the notion of “average" utility per node in a group,
and automatically allows us to account for the differences in the group sizes. As can be
seen in Figure 5.1, the optimal solution to the problem consistently picks set S = {a, b}
comprising of the most central and high-connectivity nodes. While these nodes maximize
the total utility, they lead to a high disparity in the normalized utilities across groups. As
the influence becomes more time-critical, i.e., τ is reduced, we see an increasing disparity
as discussed above. For τ = 2, the utility of group V2 reduces to 0.

5.2.3 Measure of Unfairness

Next, in order to guide the design of fair solutions to TCIM problems, we introduce a
formal notion of group unfairness in TCIM. In particular, we measure the (un-)fairness
or disparity of an algorithm by the maximum disparity in normalized utilities across all
pairs of socially salient groups, given by:

max
i,j∈{1,2,...,k}

∣∣∣∣fτ (S;Vi,G)

|Vi|
− fτ (S;Vj,G)

|Vj|

∣∣∣∣. (5.2)

As discussed above (see Section 5.2.2), normalization w.r.t. group sizes captures the
notion of average utility per node in a group and hence makes the measure agnostic to
the group size. In the next section, we seek to design fair algorithms for TCIM problems
that have low disparity (or more fairness) as measured by Eq. 5.2.

5.3 Achieving Fairness in TCIM

In this section, we seek to develop efficient algorithms for TCIM problems under fairness
considerations that have low disparity measured by Eq. 5.2 while maintaining high
performance.

5.3.1 Fair TCIM-Budget

5.3.1.1 Fairness considerations in TCIM-BUDGET

A fair TCIM algorithm under budget constraint should seek to achieve the following
two objectives: (i) maximizing total influence for the whole population V as was done in
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the standard TCIM-BUDGET problem P5.1, and (ii) enforcing fairness by ensuring that
disparity across different groups as per Eq. 5.2 is low. Clearly, enforcing fairness would
lead to a reduction in total influence, and we seek to design algorithms that can achieve
a good trade-off between these two objectives. We formulate the following fair variant of
TCIM-BUDGET problem P5.1 that captures this trade-off:

max
S⊆V

k∑
i

fτ (S;Vi,G)︸ ︷︷ ︸
Maximize number of influenced nodes

(P5.3)

subject to |S| ≤ B︸ ︷︷ ︸
Bound seed set size

,

and max
i,j

∣∣∣fτ (S;Vi,G)

|Vi|
− fτ (S;Vj,G)

|Vj|

∣∣∣ ≤ c︸ ︷︷ ︸
Minimize disparity

where c ∈ [0, 1] is a hyperparameter which indicates the maximum level of allowed
disparity among the groups. This problem might not be feasible for all the values of
c. So, one would have to tune this hyperparameter for feasibility and the desired level
of disparity. Problem P5.3 has two main objectives, i.e., finding B seeds which will
i) maximize the total influence, which is exactly the same as the traditional influence
maximization given in problem P5.1— here written as the sum of influences over all
the groups, and, additionally, ii) minimize the disparity of influence between different
groups up to the prescribed threshold.

We note that problem P5.3 is NP-Hard and a challenging discrete optimization
problem and it does not have the structural properties of submodularity as was the case
for the standard TCIM-BUDGET problem P5.1.

5.3.1.2 Surrogate FAIRTCIM-BUDGET with guarantees

Instead of directly solving problem P5.3, we introduce a novel surrogate problem that
would allow us to indirectly trade-off the two objectives of maximizing total influence
and minimizing disparity across groups, as follows:

max
S⊆V

k∑
i=1

H(fτ (S;Vi,G)) subject to |S| ≤ B, (P5.4)

whereH is a non-negative, monotone concave function.
Optimizing problem P5.4 captures both the objectives of the original: i) maximizing

influence: since the objective is monotonically increasing it encourages picking more
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Figure 5.2: Demonstration of concave function encouraging picking seeds which influence under-
represented group. X-axis represents group influence and y-axis represents the value
of H for the corresponding group influence. In this example we have two groups,
V1 and V2. V1 is under-influenced compared to V2, using the seed set S. In the next
iteration we have an option to either include node a or b in our seed set, both of which
add the same amount of total influence. Adding node a in our seed set influences
V1which is the under-influenced group, while adding node b influences nodes from
V2, as demonstrated in the figure. The traditional method, given by problem P5.1,
would treat both of these nodes as equally good. However, since we are passing the
group influences through a concave function the increase in the value ofH(z) will be
more if we pick node a, i.e., our method will pick node a because δ1 > δ2.

influential nodes, ii) minimizing the disparity of influence: Passing the group influence
functions through a monotone concave functionH rewards selecting seeds that would
lead to higher influence on under-represented groups early in the selection process; this
in turn helps in reducing disparity across groups under the assumption that the under-
represented groups not only have lower influence in terms of total number of nodes
but also have lower influence in terms of fraction of nodes w.r.t to their groups sizes.
In other words, as we are passing the group influences through a concave function, the
increase in the objective would be higher when under-represented groups are influenced,
as demonstrated in figure 5.2.
Trade-off between objectives. It is important to note that controlling the curvature of the
concave functionH provides an indirect way to trade-off between the two objectives, i.e., i)
the total influence and ii) the disparity of the solution. For instance, usingH(z) := log(z)

has higher curvature than using H(z) :=
√
z and hence leads to lower disparity at

the cost of lower total influence (this is demonstrated in the experimental results in
Figure 5.4a). For our illustrative example from Section 5.2, we report the results for an
optimal solution to FAIRTCIM-BUDGET problem P5.4 with H(z) := log(z). As can be
seen in Figure 5.1, the solution leads to a drastic reduction in disparity across groups for
different values of deadline τ compared to an optimal solution of the standard TCIM-
BUDGET problem P5.1 at the cost of reduction in total influence. So, if one wants to
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penalize disparity of influence more one can pickH function with higher curvature but
at the expense of potentially lower total influence.

While it is intuitively clear that using the concave function H(z) in problem P5.4
reduces disparity, we also need to ensure that the solution to this problem has high
influence for the whole population V and that the solution can be computed efficiently.
As proven in the theorem below, we can find an approximate solution to problem P5.4,
with guarantees on the total influence, by running the greedy heuristic (as was introduced
in Section 5.1.4).

Theorem 1. Let Ŝ denote the output of the greedy algorithm for problem P5.4. Let S∗ be an
optimal solution to problem P5.1. Then, the total influence of the greedy algorithm is guaranteed
to have the following lower bound: fτ (Ŝ;V ,G) ≥ (1− 1

e
) · H

(
fτ (S

∗;V ,G)
)
.

This is equivalent to the fact that the multiplicative approximation factor of the
utility of FAIRTCIM-BUDGET using greedy algorithm w.r.t. the utility of an optimal
solution to TCIM-BUDGET scales as

(
(1− 1

e
) · H(fτ (S∗;V,G))

fτ (S∗;V,G)

)
. Note that as the curvature

of the concave functionH increases, the approximation factor gets worse—this further
highlights how the curvature of the function H provides a way to trade-off the total
influence and disparity of the solution. In the case of H(z) := log(z), which penalizes
the disparity of the solution quite severely due to high curvature, the bound on the total
influence achieved by our solution is exponentially related to the optimal solution of
problem P5.1 which does not consider fairness. On the other hand, ifH(z) := z, i.e.,H is
an identity function, the problem reverts back to problem P5.1, whose solution might
have a higher total influence but could result in high disparity, as evidenced by our
experimental results in sections 5.4.2 and 5.5.2. One can pick H with the appropriate
curvature for the desired level of penalization of the disparity of influence at the cost of
total influence.

Proof. Since the composition of a non-decreasing concave and a non-decreasing submod-
ular function is submodular [176], the objective function in problem P5.4 is monotone
submodular function. Let S̃ be the optimal solution and Ŝ be the output of the greedy
algorithm for the problem P5.4, with a fixed budget B. Let S∗ be an optimal solutions for
the following problem

max
S⊆V

fτ (S;V ,G) subject to |S| ≤ B, (5.3)

with a fixed budget B. Then, following the standard guarantees of submodular
optimization [158, 203] (also see Section 3.4), we get the following bounds
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H(fτ (Ŝ;V,G)) ≥
(
1− 1

e

)
· H(fτ (S̃;V,G)) (5.4)

Since S̃ is the optimal solution of problem P5.4, given S : |S| ≤ B following holds,

H(fτ (S̃;V,G)) ≥ H(fτ (S;V,G))

which implies that

H(fτ (S̃;V,G)) ≥ H(fτ (S
∗;V,G)). (5.5)

Combining equations 5.4 and 5.5 we get

H(fτ (Ŝ;V,G)) ≥
(
1− 1

e

)
· H(fτ (S

∗;V,G)). (5.6)

SinceH is a concave function,

fτ (Ŝ;V,G) ≥ H(fτ (Ŝ;V,G)). (5.7)

Combining equations 5.6 and 5.7 we get

fτ (Ŝ;V,G) ≥
(
1− 1

e

)
· H(fτ (S

∗;V,G)),

which concludes the proof.

5.3.2 Fair TCIM-Cover

5.3.2.1 Fairness considerations in TCIM-COVER

A fair TCIM algorithm under coverage constraint should seek to achieve the following
two objectives: (i) minimizing the size of the seed set that achieves the desired coverage
constraint as was done in the standard TCIM-COVER problem P5.2, and (ii) enforcing
fairness by ensuring that disparity across different groups as per Eq. 5.2 is low. As
was the case for FAIRTCIM-BUDGET problem above, enforcing fairness would lead to
increasing the size of the required seed set, and we seek to design algorithms that can
achieve a good trade-off between these two objectives. We formulate a fair variant of
TCIM-COVER problem P5.2 that captures this trade-off as follows:
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min
S⊆V

|S|︸︷︷︸
Minimize seed set size

(P5.5)

subject to
∑k

i fτ (S;Vi,G)

|V|
≥ Q︸ ︷︷ ︸

Bound fraction of influenced node

,

and max
i,j

∣∣∣fτ (S;Vi,G)

|Vi|
− fτ (S;Vj,G)

|Vj|

∣∣∣ ≤ c︸ ︷︷ ︸
Minimize disparity

where c ∈ [0, 1] is a hyperparameter, which determines the amount of disparity that
is allowed. As in the case of problem P5.3, it is possible that for some values of c the
problem is infeasible. Problem P5.5 has three objectives: i) minimizing size of seed set
that ii) influences a prescribed quota of the population while ii) minimizing disparity
in the influence among the groups.

As in Section 5.3.1, we note that problem P5.5 is a challenging discrete optimization
problem and does not have structural properties as was the case for the standard TCIM-
COVER problem P5.2.

5.3.2.2 Surrogate FAIRTCIM-COVER with guarantees

Instead of directly solving problem P5.5, we introduce a novel surrogate problem that
indirectly trade-offs the two objectives of minimizing the size of selected seed set and
minimizing disparity, as follows:

min
S⊆V
|S| subject to

fτ (S;Vi,G)

|Vi|
≥ Q ∀i. (P5.6)

Optimizing problem P5.6 addresses all the objectives of problem P5.5 by i) minimiz-
ing the seed set size, ii) which influences all the groups up to the prescribed quota, Q.
iii) Thereby, disparity of the feasible solution is bounded by (1 − Q). The key idea of
using the surrogate objective function in problem P5.6 is the following: the problem has
a constraint that enforces that at least Q fraction of nodes in each group are influenced
by the selected seed set S; this in turn directly provides a bound on the disparity of any
feasible solution to the problem as (1−Q). Figure 5.3 provides a demonstration of the
constraints we propose.

While it is intuitively clear that the solution to problem P5.6 reduces disparity, we
also would like to bound the size of the final seed set and that the solution can be



Chapter 5. Designing a new fair ADMS: Time-Critical Influence Maximization 89

Figure 5.3: where F(z) = min

{
fτ (S;Vi,G)
|Vi| , Q

}
. Demonstration of the constraint in problem P5.6.

X-axis represents the fraction of group influences and y-axis represents the value of
per group constraint in problem P5.6 for the corresponding group influence. In this
example we have two groups, V1 and V2 of roughly same size. V1 has not reached
the prescribed quota, Q, while V2 has already been influenced up to the prescribed
quota. In the next iteration we have an option to either include node a or node b in
our seed set, both of which add the same amount of total influence. Adding node a
in our seed set influences only V1, while adding node b influences nodes from only
V2, as demonstrated in the figure. The traditional method, problem P5.2, would treat
both of these nodes as equally good candidates for including in the seed set because
they add equal fraction of total influence. However, since we require all the groups to
be influenced up to the required quota, selecting node a will increase our constraint
value, F(z), while by selecting node b the constraint value would stay the same as V2
has already reached the required quota of influence.

computed efficiently. As proven in the theorem below, we can find an approximate
solution to problem P5.6, with guarantees on the final seed set size, by running the
greedy heuristic (as was introduced in Section 5.1.4).

Theorem 2. Let us denote the output of the greedy algorithm for problem P5.6 by set Ŝ. For
group i ∈ {1, . . . , k}, let S∗i denote an optimal solution to the coverage problem P5.2 for the
target nodes set to Vi, i.e., solving problem P5.2 with constraint given by fτ (S;Vi,G)

|Vi| ≥ Q. Then,
the size of the seed set Ŝ returned by the greedy algorithm is guaranteed to have the following
upper bound: |Ŝ| ≤ ln(1 + |V|)

(∑k
i=1 |S∗i |

)
.

Proof. The constraint in the problem P5.6 could be rewritten as follows,

k∑
i=1

min

{
fτ (S;Vi,G)

|Vi|
, Q

}
≥ k ·Q.

The objective function in the constraint is monotone submodular function because
monotone submodular functions remain monotone submodular under truncation: if
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Figure 5.4: [Synthetic Dataset: Budget Problem] The figures show that solving TCIM-BUDGET

problem P5.1 can lead to disparity in number of influenced nodes belonging to
different groups, while FAIRTCIM-BUDGET problem P5.4 fares better in terms of
achieving parity of influence, with marginally lower total influence. See Section 5.4.2
for further details.

g(S) is monotone submodular so is f(S) := min(g(S), c) for any constant c >= 0, and
monotone submodular functions are closed under addition [158]. Let S̃ be the optimal
solution and Ŝ be the greedy solution of problem P5.6 for a fixed quota Q. Let S∗i be the
optimal solution of TCIM-COVER problem P5.2, with target nodes set to Vi and quota
set to Q. Then, following the standard guarantees of the submodular optimization [158]
(also see Section 3.4) we have the following bound:

|Ŝ| ≤ ln(1 + |V|)|S̃|. (5.8)

Since S̃ is the optimal solution of problem P5.6, where all the groups reach the prescribed
quota Q, S̃ must be at-least as small as any other other set which also reaches all the
groups up to the quota Q. Hence,

|S̃| ≤
k∑
i=1

|S∗i |. (5.9)

Combining equations 5.8 and 5.9 we get

|Ŝ| ≤ ln(1 + |V|)
( k∑
i=1

|S∗i |
)
,

which concludes the proof.
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5.4 Evaluation on Synthetic Datasets

In this section, we compare the solutions of different problems on several synthetic
datasets. We show that the disparity in influence is affected by varying different proper-
ties of the graphs and parameters of the algorithms.

5.4.1 Dataset and Experimental Setup

First we discuss how we generated the synthetic datasets and then the setup used in our
experiments.
Synthetic datasets. We consider stochastic block model to generate the synthetic datasets,
particularly we consider an undirected graph with 500 nodes, where each node belongs to
either group V1 or group V2. The fraction of nodes belonging to each group is determined
by a parameter g (e.g., setting g = 0.7 results in 70% of the nodes to be randomly assigned
to group V1). Nodes are connected based on two probabilities: (i) within-group edge
probability (Homophily) phom and (ii) across-group edge probability (Heterophily) phet.
Placing an edge between two nodes goes as follows: given a pair of nodes (v, w), if they
belong to the same group, we perform a Bernoulli trial with parameter phom; otherwise
we use the parameter phet. If the outcome of the trial is 1, we place an undirected edge
e between these two nodes. Each edge has a probability of activation, pe ∈ [0, 1], with
which the nodes can activate each other.
Experimental Setup. In our experiments we varied all the aforementioned properties
of the graph. We vary each of these graph and algorithmic properties while rest of the
properties are set to a default value. We experimented with several default values but as
an illustration we include the results for the following default values: g = 0.7 yielding
350 nodes in V1 and 150 nodes in V2. We set phom = 0.025 and phet = 0.001, which yielded
3606 total edges, out of which 2965 edges were within group V1, 514 within V2, and 127

edges connecting nodes across two groups. We used a constant activation probability
on all edges given by pe = 0.05. Finally, we consider the time deadline τ = 20, unless
explicitly stated otherwise. Evaluating utilities, as described in Eq. 5.1, in closed form is
intractable, so we used Monte Carlo sampling to estimate these utilities. We used 200

samples for this estimation, which yielded a stable estimation of the utility function. In
all the experiments, we pick a seed set by solving the corresponding problem. Then, we
use this seed set to estimate the expected number of nodes influenced in the graph using
TCIM. We report the following normalized utilities: f(S;V,G)

|V| for the whole population V ,
f(S;V1,G)
|V1| for the group V1, and f(S;V2,G)

|V2| for the group V2.
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Figure 5.5: [Synthetic Dataset: Budget Problem] These figures demonstrate that lower activation
probabilities, uneven group sizes, and cliquishness can lead to higher disparity of
influence between different groups with TCIM-BUDGET problem P5.1. In comparison
our proposed method, FAIRTCIM-BUDGET given by problem P5.4, leads to solutions
which yield lower disparity. For further details, see Section 5.4.2.

5.4.2 TCIM under Budget Constraints

Next, we compare the solutions of TCIM-BUDGET problem P5.1 with our solution to
FAIRTCIM-BUDGET problem P5.4, obtained through the greedy algorithm, i.e., , by
iteratively picking B seeds which yield maximum marginal gain. In all the figures
discussed in this section, red color represents the results of TCIM-BUDGET problem P5.1,
and blue color represents the results of our solution to the FAIRTCIM-BUDGET problem
P5.4. For the experiments in this section, we used a budget of B = 30 seeds.

5.4.2.1 Varying algorithmic properties

In this section, we vary several properties of the influence maximization algorithm and
answer following questions:
— Q1: How does the choice ofH(z) with different curvatures affect disparity and total
influence?
— Q2: How does varying seed budget affect disparity?
— Q3: How does varying time deadline affect disparity?
— Q4: How does varying activation probabilities on the edges affect disparity?
— Q5: How effective is our method in reducing disparity?
— Q6: How much cost does our method incur?

[Q1, Q5, Q6] Effect of different H(z). Figure 5.4a presents the comparison of three
algorithms: one solving TCIM-BUDGET problem P5.1, using the greedy heuristic; the
other two solving FAIRTCIM-BUDGET problem P5.4, using two realizations of the
concave monotone function, H(z), given by: (i) H(z) := log(z) and (ii) H(z) :=

√
z.

Figure 5.4a shows the fraction of population influenced, both overall and for every
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group. We can observe that solving the traditional TCIM-BUDGET problem leads to
large disparity between the fraction of nodes influenced from each group: while 30% of
nodes in group V1 are influenced, this fraction is only 2% for group V2.

On the other hand, our proposed solution to FAIRTCIM-BUDGET problem results in
lower disparity between the groups, ensuring similar fraction of influenced nodes. We
can further see that

√
z, with lower curvature, performs worse than log(z) in removing

the disparity, however incurring lower loss in total influence, as guaranteed by our
theoretical results in Theorem 1. One could consider higher powers of the root to
increase the curvature or multiplying the input ofH with a scalar ≥ 1 in problem P5.4
for the under-represented group. The key points are: i)H(z) with higher curvature results
in lower disparity of influence at the expense of lower total influence. ii) FAIRTCIM-
BUDGET problem results in lower disparity and iii) the reduction in the total influence is
only marginal as guaranteed by Theorem 1. In the subsequent figures, we only show the
results ofH(z) := log(z) for the solution to problem P5.4.
[Q2, Q5, Q6] Effect of seed budget. Figure 5.4b shows the effect of different seed budgets
on the number of influenced nodes (from different groups). Dotted and dash-dotted
lines correspond to groups V2 and V1 respectively, while solid lines represent the total
influence. The figure demonstrates that: (i) Disparity in the utility between both the
groups increases with the increase in allowed seed budget. A reason for these differences
could be the imbalances in groups sizes and average degrees, between both the groups—
V1 and V2 comprise 70% and 30% of the nodes respectively. If a very big seed budget
is allowed the disparity in influence might also reduce, however in many applications,
due to limited resources, it is not practical to have a big budget; (ii) FAIRTCIM-BUDGET

problem results in a lower disparate utility between the two groups compared to TCIM-
BUDGET problem; (iii) this reduction in disparity is achieved at a very low cost to the
total influence, as guaranteed by Theorem 1.
[Q3, Q5] Effect of deadline. Figure 5.4c compares disparity in the solutions of prob-
lems P5.1 and P5.4 as we vary the value of the deadline τ . Disparity is computed as the
absolute difference between the fraction of individuals influenced in each group, given
by Eq. 5.2. The figure demonstrates that: (i) disparity in group utilities does not have a
unidirectional trend with increasing time deadline τ . One explanation for the increasing
disparity— for τ = {1, 2, 5}, could be that the seed nodes or the most influential nodes
are propagating influence in both the groups, but as we increase the time deadline, Group
V1, with more nodes and edges, is more efficient at propagating influence compared to
Group V2, so it results in a larger disparity. But, after a threshold of increase in τ both
groups are being influenced because longer cascades are allowed. Hence the disparity
lowers and then plateaus, for τ = {5, 10, 20,∞}. One could imagine a case, as shown in
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Figure 5.6: [Synthetic Dataset: Cover Problem] These figures show a comparison of TCIM-
COVER problem P5.2, in red, and FAIRTCIM-COVER problem P5.6, in blue. They
show that FAIRTCIM-COVER achieves lower disparity of influence between different
groups with slightly bigger solution set sizes. See Section 5.4.3 for further details.

the motivating example in Figure 5.1, where seed nodes are surrounded by nodes of only
one group, in this case increasing time deadline could yield a lower disparity. (ii) Our
proposed method, given by problem P5.4, yields solutions which result in much lower
disparity.
[Q4, Q5] Effect of activation probabilities. Figure 5.5a shows the disparity in influence
for different activation probabilities pe ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0}. The results
show that: i) lower activation probabilities could result in larger disparity. This makes
intuitive sense, since with lower activation probabilities less nodes have a chance to be
influenced. We are using an imbalanced graph, both in terms of group sizes and within
and across group connectivity. It is very likely that the seeds selected might belong to
the majority group and will have more connections to the nodes from their own group.
With low activation probabilities less number of nodes are expected to be influence and
the biases in the graph structure would become more pronounced, as evidenced by the
results. With the high activation probabilities more number of nodes are expected to be
influenced so the disparity in the influence is lower, as demonstrated by the results. ii)
Lower values of τ tend to have a higher disparity compared to the higher values of τ .
The intuition presented in the previous paragraph is confirmed with this experiment.
iii) Our method consistently results in a lower disparity. The difference in disparities
resulting from the solution of our method compared to the solution of traditional method
in more pronounced for lower activation probabilities.

5.4.2.2 Varying graph properties

In this section, we vary several graph properties and answer following evaluation ques-
tions:
— Q1: How does varying group sizes affect the disparity?
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— Q2: How does varying connectivity among the groups affect the disparity?
— Q3: How effective is our method in reducing disparity?

[Q1, Q3] Effect of group sizes. Figure 5.5b shows the effect of group sizes g ∈ {0.55, 0.6, 0.7, 0.8}.
x-axis represents ratio of the nodes belonging to the two groups and y-axis represents
disparity. i) The figure confirms our hypothesis that imbalance in a graph could lead to
disparate influence, as motivated in the illustrative example given in Figure 5.1. Since we
are considering a 1 : 25 of phet : phom, i.e., across vs within group edge probability ratios,
even slight imbalance in the group sizes could result in a high disparity. The seed nodes
or influential nodes are more likely to be from the dominant group and are more likely
to be connected with nodes from their own groups. ii) On the other hand our proposed
method results in almost no or very little disparity of influence, as it encourages to pick
seeds which influence under-represented group.
[Q2, Q3] Effect of graph connectivity. Figure 5.5c demonstrates the importance of the
graph structure, particularity connectivity between the two groups, characterized by
(phet, phom) ∈ {(0.025, 0.025), (0.015, 0.025), (0.01, 0.025), (0.001, 0.025)}. x-axis shows the
ratio of across and within group edge probabilities. i) The figure validates our hypothesis
that the majority group containing more influential nodes fares better in TCIM-BUDGET

problem, as proposed in figure 5.1. Groups V1 and V2 comprise 70% and 30% of the nodes,
respectively. As we increase the group-preferential attachment, represented by x-axis
of figure 5.5c, influential nodes are more likely to have connections within the group
V1, which in turn results in disparate influence propagation. ii) However, our proposed
method performs better because it gives less weight to the nodes influenced from the
majority group compared to the minority. Hence, our method encourages picking seed
nodes which will influence the minority group, as explained in figure 5.2.
Takeaways. In this section we demonstrated that: (i) solving TCIM-BUDGET problem
can lead to disparity of influence in different groups; (ii) the amount of disparity depends
on the time deadline, activation probability, relative group sizes, budget, and connectivity
of the graph; and (iii) instead, solving FAIRTCIM-BUDGET results in lower disparity of
influence, with marginal reduction in overall influence, as guaranteed by Theorem 1.

5.4.3 TCIM under Coverage Constraints

Next, we compare solutions of TCIM-COVER problem P5.2, and our solution to
FAIRTCIM-COVER problem P5.6. We solve both the problems using the greedy al-
gorithm, i.e., iteratively picking seeds which maximize the constraints of problems P5.2
and P5.6 until the required quota is reached. The goal is to reach the prescribed quota
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Figure 5.7: [Rice-Facebook Dataset: Budget Problem] Comparison of results solving TCIM-
BUDGET problem P5.1 and FAIRTCIM-BUDGET P5.4. We experimented with 4 groups
and total influence includes all the groups, but we show group influences and dispar-
ity for only two groups which showed the maximum disparity. The results demon-
strate that our method, given by problem P5.4, yields seed set which propagate
influence in a more fair manner, at the cost of a marginally lower total influence. See
Section 5.5.2 for further details.

Q, with minimum number of seeds. In all the figures discussed in this section, red
color represents the results of TCIM-COVER problem P5.2, and blue color represents the
results of our solution to FAIRTCIM-COVER problem P5.6. We answer the following
question in this section:
— Q1: How does our method fare compared to the traditional method over the iterations
of the algorithm?
— Q2: How effective is our method in reducing disparity for different reach quotas?
— Q3: How much cost does our method incur?

[Q1] Effect of iterations. Figure 5.6a shows how the fraction of population influenced
changes with seed selection at each iteration. Solid lines represent total influence while
dash-dotted lines and dotted lines represent groups V1 and V2, respectively. In this
experiment, Q was set to 0.2 which is represented by the horizontal green line. The
figure demonstrates that: (i) both methods reach the required quota of the population; (ii)
however, only the solution set of FAIRTCIM-COVER problem P5.6 reaches the required
quota in both the groups; (iii) while maintaining roughly similar utility for both the
groups throughout the iterations; (iv) and it does so at a small expense of additional seeds,
as guaranteed in Theorem 2.

[Q2, Q3] Effect of quota Q. Figure 5.6b shows fractions of individuals that are influenced
for different quota Q: (i) for different values of the required quota, traditional method
given by problem P5.2 results in disparate utility between both the groups which is
most likely due imbalance in group sizes and connectivity. (ii) Seeds selected by solving
problem P5.6 result in a more equal utility because our method explicitly requires every
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Figure 5.8: [Rice-Facebook Dataset: Cover Problem] These figures demonstrate the results of
TCIM-COVER problem P5.2, in red, and FAIRTCIM-COVER problem P5.6, in blue. We
experimented with 4 groups and total influence includes all the groups but we show
group influences for the two groups which had maximum disparity. The results show
that our method achieves a more equal coverage for all the groups at the expense of
only slightly larger seed sets. See Section 5.5.3 for further details.

group to be influence up to quotaQ. Depending on the graph structure, our method could
result in a disparity up to 1−Q. The objective in the constraint given in problem P5.6
only increases if nodes belonging to the groups are influenced which have not reached
the required quota, as demonstrated in figure 5.3. A higher disparity between groups
could occur when it is not possible to influence the under-influenced group without
influencing the already over-influenced group. In practice a higher disparity could occur,
e.g, if one of the groups is very small and very sparsely connected within the group,
which is unlikely to occur in practice. (iii) FAIRTCIM-COVER problem P5.6 uses only a
small number of additional seeds, as guaranteed by Theorem 2.
Takeaways. We compared the result of TCIM-COVER problem P5.2 and our solution
to FAIRTCIM-COVER problem P5.6. The results show that: (i) both methods reach the
same fraction of the population; (ii) however, only FAIRTCIM-COVER problem results in
seed sets influencing the required quota in all the groups and results in a very low disparity
between groups; and (iii) lastly, FAIRTCIM-COVER yields only slightly larger solution
sets as guaranteed by Theorem 2.

5.5 Experiments on Real-World Datasets

In this section, we evaluate our proposed solutions using two real-world datasets. We
describe the datasets and the details of the experiments, and then present our findings.

5.5.1 Dataset and Experimental Setup

Next, we describe the datasets we used to evaluate our proposed methods, followed by
the experimental setup.
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Rice-Facebook dataset. To evaluate our proposed methods, we used Rice-Facebook
dataset collected by [200], where they capture the connections between students at
the Rice University. The resulting network consists of 1205 nodes and 42443 undirected
edges. Each node has 3 attributes: (i) the residential college id (a number between [1−9]),
(ii) age (a number between [18− 22]), and (iii) a major ID (which is in the range [1− 60]).

We grouped the nodes (students) into four groups based on their age attributes.
We experimented with all four groups while running our algorithms but present the
results using only 2 groups which showed the highest disparity. We considered nodes
with ages 18 and 19 as group V1 and age 20 as group V2. Group V1 has 97 nodes and
513 within-group edges. Whereas, group V2 has 344 nodes and 7441 within-group edges.
Overall, there are 3350 across-group edges going between nodes in V1 and V2.
Instagram-Activities dataset. This dataset was gathered by [239]. It comprises 553628

nodes and 652830 undirected edges. The nodes represent a subset of Instagram users.
There exists an edge between two nodes if either of them have liked or commented
on each other’s photos. Each node has a binary-valued gender attribute, i.e., male or
female. 45.5% of the nodes belong to the male group. There are 179668 within-group edge
among males and 201083 within-group edges among females, while there are 136039

across-group edges.
Facebook-Snap dataset. was proposed by [193]. The dataset comprise 4039 nodes and
88234 undirected edges. We used spectral clustering to identify 5 topological groups
in the graph. The five groups comprise 546, 1404, 208, 788 and 1093 nodes. We run our
algorithms for the entire dataset but report the results only for groups 1 and 4, as these
groups showed the most disparity in influence using the traditional methods of influence
maximization.
Experimental Setup. In all the experiments using Rice-Facebook dataset, we show the
results for activation probability pe = 0.01. All the other parameter were the same as
described in section 5.4.1. For experiments using Instagram-Activities dataset we show
the results with activation probability pe = 0.06, time deadline τ = 2, reach quota
Q = {0.0015, 0.002} and seed budget B = 30. We also experimented with other values of
these parameters and get similar results. For Instagram-Activities we restrict the seeds to
be picked from 5000 randomly selected nodes from the graph. However the influence
was evaluated and propagated on the entire network. We used 500 sample for Facebook-
Rice dataset and 10000 samples for Instagram-Activities dataset for Monte Carlo estimation
of the influence of a node, which yielded very low-variance influence estimates. For
Facebook-Snap dataset, we used edge weight on 0.01 and τ = 20. Rest of the parameters
were similar to the experiments described in in section 5.4.1.
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Figure 5.9: [Instagram-Activities Dataset] These figures demonstrate a comparison of TCIM-
BUDGET (Problem P5.1)vs FAIRTCIM-BUDGET (Problem P5.3) and TCIM-COVER

(Problem P5.2) vs FAIRTCIM-COVER (Problem P5.5) problems. The results show
that our methods fare better compared to the traditional methods. Even though
the fraction of influence seems small, since the graph comprises 0.5m nodes, the
differences in fractions are significant in total numbers.

5.5.2 TCIM under Budget Constraint

In this section, we compare the results of TCIM-BUDGET problem P5.1 and our solu-
tion to FAIRTCIM-BUDGET problem P5.4. Red color in all the figures discussed in this
section corresponds to the solution of TCIM-BUDGET problem P5.1 and the blue color
corresponds to our solution of FAIRTCIM-BUDGET problem P5.4. In all the experiments
in this section we used a seed budget B = 30. We answer the following evaluation
questions using two real-world datasets in this section:
— Q1: How does the choice ofH(z) with different curvatures affect disparity?
— Q2: How does varying seed budget affect disparity?
— Q3: How does varying time deadline affect disparity?
— Q4: How effective is our method in reducing disparity?
— Q5: How much cost does our method incur?
— Q6: How effective are our methods on topological groups?

[Q1, Q4, Q5] Effect of differentH(z). In Figures 5.7a and 5.9a, we compare the results
of TCIM-BUDGET problem P5.1 and FAIRTCIM-BUDGET problem P5.4 using two re-
alizations of H(z), given by: (i) H(z) := log(z) and (ii) H(z) :=

√
z. In Figures 5.7a the

total influence are shown for all the 4 groups while the group influences are shown for
2 out of the 4 groups which showed the maximum disparity. The results demonstrates
that: (i) At a marginal reduction of total influence, as guaranteed by Theorem 1, our
proposed method significantly reduces disparity in influence in case of Rice-Facebook
dataset. However, in the Instagram-Activities dataset solving FAIRTCIM-BUDGET prob-
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lem results in a higher total influence while achieving same or lower disparity for both
the groups. This is in line with the finding by [238], which, using this dataset, shows
that picking more diverse seeds could increase the total influence compared to greedy
degree based seeding strategy. Greedy heuristic is just an approximation of the optimal
solution. The optimal solution of the unfair problem cannot yield a lower influence
compared to the optimal solution of the fair problem, as it adds additional constraints;
(ii) as hypothesized in Section 5.3.1, a higher curvature function,H(z) := log(z), leads to
a bigger reduction in disparity compared toH(z) :=

√
z. In Instagram-Activities dataset

H(z) :=
√
z does not reduce disparity, however it does result in a higher fraction of

influence in under-influenced group.
[Q2, Q4, Q5] Effect of seed budget. Figure 5.7b demonstrates the effect of allowed seed
budget on the group and total influences. Groups V1 and V2 are represented by dash-
dotted lines and dotted lines respectively and solid lines correspond to total influence.
Similar to the results on synthetic dataset presented in section 5.4.2, i) the disparity
between the groups seems to increase with increasing budget and ii) our method con-
sistently results in lower disparity for different seed budgets, iii) while incurring a very
small cost of total influence.
[Q3, Q4] Effect of time deadline. Figure 5.7c shows the effect of different time deadlines
on the disparity between group influences, as calculated by Eq. 5.2. It demonstrates that:
(i) the disparity of influence among groups increases as the value of τ increase, refer to
section 5.4.2 for an intuitive explanation and, ii) our method is very effective in reducing
disparity for different values of τ .
[Q1, Q4, Q5, Q6]. Figure 5.10a shows are our methods are able to reduce disparity
among groups when we consider groups based on the graph topology. However, in
this case the reduction in disparity does not seem to be substantial and as expected the
over influence also does not decrease. In the case of Sqrt surrogate the overall influence
marginally increases. In order to reduce disparity further one could consider a surrogate
function with a higher curvature.
Takeaways. We demonstrated that: (i) FAIRTCIM-BUDGET, our proposed method,
yields more fair solutions; (ii) this fairness is achieved at a very small reduction of the
total influence compared to TCIM-BUDGET problem, as guaranteed by Theorem 1.

5.5.3 TCIM under Coverage Constraint

Next, we compare TCIM-COVER problem P5.2 and our solution to FAIRTCIM-BUDGET

problem P5.6. Red color in all the figures discussed in this section corresponds to the
solution of TCIM-COVER problem P5.2 and the blue color corresponds to our solution
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Figure 5.10: [Facebook-Snap dataset] These figures demonstrate a comparison of TCIM-BUDGET

(Problem P5.1) vs FAIRTCIM-BUDGET (Problem P5.3)and TCIM-COVER (Prob-
lem P5.2) vs FAIRTCIM-COVER (Problem P5.5) problems. The results show that
our method improves the disparity of the influence between different groups. The
results for the budget problem show some improvement in the disparity. However,
in comparison the reduction in the total influence is also small. One can consider a
concave wrapper with a larger curvature to improve the disparity. The results for
the cover problem, show a clear improvement in the disparity between the groups.

of FAIRTCIM-COVER problem P5.6. We answer the following evaluation question using
a real-world dataset.
— Q1: How does our method fare compared to the traditional method over the iterations
of the algorithm?
— Q2: How effective is our method in reducing disparity for different reach quotas?
— Q3: How much cost does our method incur?
— Q4: How effect are our methods for topological groups?

[Q1] Effect of iterations. In Figures 5.8a we compare iterations of problem P5.2 and
problem P5.6, realized with the log function. In each iteration, one seed is selected. Green
line represents the required quota of coverage. Dashed-dotted lines, dotted lines and
solid lines represent group V1, group V2 and total population, respectively. Similar to
the results on Synthetic dataset, i) our method consistently results in lower disparity
between the two groups, which showed the highest disparity, throughout the iteration
of the seed selection algorithm; ii) our method influences all the groups up to prescribed
quota; iii) by using small number of additional seeds.
[Q2, Q3] Effect of quota. Figures 5.8b, 5.8c, 5.9a and 5.9c demonstrate similar results to
the synthetic dataset described in section 5.4.3. The keypoint is that all the groups are
covered up to the required quotas with the solution set of FAIRTCIM-COVER problem
by using only a small number of additional seeds.
[Q4] Topological groups. The results are shown in figure 5.10 show that our methods
are effective in reducing disparity when considering topological grouping of graphs.
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Takeaways. We compared the TCIM-COVER and FAIRTCIM-COVER problems in this
section using a real world dataset. The results demonstrate that our method is i) effective
in reducing disparity ii) by using a small additional number of seeds.

5.6 Related Work

In this section, we briefly review the related literature on influence maximization and
contemporary works.
Influence Maximization. Richardson et al. [225] first introduced Influence Maximization
as an algorithmic problem, and proposed a heuristic approach to find a set of nodes
whose initial adoption of a certain idea/product can maximize the number of further
adopters. Over the years, extensive research efforts have focused on the cascading
behavior, diffusion and spreading of ideas or containment of diseases, by identifying
the set of influential nodes that maximizes the influence through a network (often in
real-time) [102, 147, 171, 225, 259].

Typically, identifying the most influential nodes is studied in two ways: (i) using
network structural properties to find the set of most central nodes [147, 156], and (ii)
formulating the problem as discrete optimization [19, 106, 147]. Kempe et al. [147],
studied influence maximization under different social contagion models and showed that
submodularity of the influence function can be used to obtain provable approximation
guarantees. Since then, there has been a large body of work studying various extensions
[27, 41, 49, 106, 125]. However, the notion of fairness in the influence maximization
problem has not been studied by this line of previous works.

Contemporary Works. Very recently, Fish et al. [92], proposed a notion of individual
fairness in information access, but did not consider the group fairness aspects. In addi-
tion, some prior works have proposed constrained optimization problems to encourage
diversity in selecting the most influential nodes [6, 23, 36, 85].

A recent paper by Rahmattalabi et al. [221], proposes group fairness in influence
maximization for robust covering problems. This method is different from ours in
the following ways: i) their notion of fairness is maximizing the minimum influence
for any group, while we propose parity of influence among different groups; ii) they
consider a setting where seeds could be deactivated randomly while we do not have any
stochasticity in seed activation; iii) they consider seed nodes to spread influence only
to their immediate neighbors, while we vary the allowed time deadline and show its
effect on disparity among different groups. We also demonstrate the effectiveness of our
methods for different time deadlines on several datasets; iv) they propose an integer
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linear programming set up while we propose submodular proxies, akin to the traditional
methods, which can be approximately solved using the greedy heuristic.

In concurrent works, Khajehnejad et al., [149], and Tsang et al., [247], proposed
methods to achieve group fairness in influence maximization. However, their works
are very different from our approach in three ways: i) they propose a different problem
formulation with objective that does not have submodular structural properties, ii) they
only study the problem under budget constraint, and iii) they do not consider the time-
critical aspect of influence in their definition of fairness for influence maximization. This
could result in majority groups being influenced before the minority, and can lead to
disparity in applications where the timing of being influenced/informed is critical. In our
work, we introduce a submodular objective that directly addresses the time-criticality in
influence maximization problem under budget constraint as well as coverage constraint.

5.7 Conclusion

In this chapter, we considered the important problem of time-critical influence maximiza-
tion (TCIM) under (i) budget constraint (TCIM-BUDGET) and (ii) coverage constraint
(TCIM-COVER). We showed that the existing algorithmic techniques aimed at maxi-
mizing total influence in the population could lead to a huge disparity in utility across
the underlying groups. This can put minority groups at a big disadvantage with far-
reaching consequences. To ensure that different groups are fairly treated, we proposed
a notion of fairness and formulated two novel problems to solve TCIM under fairness
considerations, namely, FAIRTCIM-BUDGET and FAIRTCIM-COVER. By introducing
surrogate objective functions with submodular structural properties, we provided com-
putationally efficient algorithms with desirable guarantees. Experiments over synthetic
and real-world datasets demonstrated that our algorithms lead to low disparity in the
time-critical influence propagation.



CHAPTER 6
Designing a new fair ADMS: Model

Uncertainty

In this chapter, we address the fairness concerns arising due to model uncertainty in
binary classification, as discussed in Section 1.1.3. Specifically, we ask the following
question:

What constitutes a fair model under model uncertainty?

As discussed in section 1.2.3, answering this questions presents several challenges.
In order to enforce group fairness, typically, a class of methods try to equalize errors.
However, not all errors are the same. Errors could occur due to model/epistemic
uncertainty or they could occur due to aleatoric uncertainty. So, firstly, we have to
propose a sensible way to differentiate between different types of errors. Secondly, we
have to come up with computationally efficient methods to identify different types of
errors. Thirdly, we have to propose an efficient mechanism to enforce fairness under
model uncertainty.

In this chapter, we address these challenges as follows:

• In Section 6.1, we discuss different aspects of our key idea to distinguish between
types of errors based on their uncertainty-origin when training non-discriminatory
classifiers, using a motivating example.

• In Section 6.2, we present the necessary background on binary classification and
predictive multiplicity.

• In Section 6.3, we propose two scalable methods to identify errors arising based on
their uncertainty-origin. Additionally, we propose efficient mechanisms to equalize
errors arising due to model uncertainty.
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• In Section 6.4, we evaluate our proposed methods using a synthetic and two
real-world datasets.

• In Section 6.5, we discuss the related work on model uncertainty and predictive
multiplicity.

• In Section 6.6, we present the conclusion of this chapter.

Relevant publication

The results presented in this chapter have been published in [12].

6.1 A proposal to differentiate between types of errors

As discussion in Section 1.1.3, it is well-known that errors in prediction models arise out
of both epistemic (model) uncertainty and aleatoric (inherent) uncertainty [72, 124, 189].
Equalizing total error could lead to unjustifiably wrong decisions for some datapoints.
Consider Figure 6.1, where a traditional fair classifier that equalizes total errors including
the irreducible ones that arise due to aleatoric uncertainty. This results in many data-
points getting a negative outcome even though they clearly belong to the positive cluster.
These errors are particularly consequential in socially impactful applications.

In this chapter, we argue to distinguish between the errors caused by different types
of uncertainty. Specifically, we introduce the notions of aleatoric errors and epistemic errors.
We refer to the errors that occur only due to model or epistemic uncertainty as epistemic
errors and the ones that occur due to aleatoric uncertainty, we call the aleatoric errors.
Figure 6.1 shows an example of both types of errors. The errors made by the classifiers
C1 and C2 that are highlighted by the region A are due to the noise in the data, as these
wrongly predicted datapoints are surrounded by predominantly the other class label,
i.e., ground truth positive or ground truth negative datapoints. We refer to these types of
errors as aleatoric errors. While the errors in the region marked by E are due to model
uncertainty as one could resolve this uncertainty by gathering more data or by choosing
a more complex model. These types of errors are epistemic errors. Our proposal is to
ignore the aleatoric errors which are likely to be irreducible due to inherent uncertainty
in the data or the prediction task at hand and we argue to only equalize the epistemic
errors, i.e., the ones that occur due to methodological limitations.

In order to identify the epistemic errors that are caused by model uncertainty, we
leverage the work on predictive multiplicity by Marx et al. [191]. Predictive multiplicity



Chapter 6. Designing a new fair ADMS: Model Uncertainty 106

Figure 6.1: Illustrative example: Consider a binary classification task with two features and a
sensitive feature represented by the shape of the points, i.e., circles and triangles.
Green and red colors represent ground truth positive and negative labels, respectively.
Classifiers C1 and C2 are equally accurate classifiers achieving 79% accuracy. The
difference between false positives of triangles and circles for C1 is 22% and −12%
with C2. However, these two classifiers disagree on their decision on 17% of the data,
i.e., which lies in the ambiguous region shown in the shaded blue region. If we were
to pick one of these classifiers it would be unfair to the points receiving a favorable
decision with the other classifier. On the other hand, a fair classifier equalizing false
positive rates, using [275], gives an accuracy of only 71%. However, it changes the
decisions of several points that clearly belong to the positive cluster.

refers to the scenario where multiple predictive models have similar predictive perfor-
mance (e.g., similarly accurate) but assign contradictory predictions on a subset of the
datapoints, which characterize the ambiguous regions. We draw a connection between
predictive multiplicity and model uncertainty.

Model uncertainty is defined as the level of spread or ’disagreement’ in the decisions
of an ensemble sampled from the posterior [189]. We use predictive multiplicity to iden-
tify model uncertainty, i.e., we argue that the disagreement in equally well performing
models signals uncertainty in the model parameters. Specifically, we argue that if the
classifiers exhibiting predictive multiplicity are chosen from a complex enough hypothe-
sis class, then the regions in the feature space with high model uncertainty that are likely
to have the epistemic errors would coincide with the ambiguous regions produced by
predictive multiplicity. Therefore, our proposal of equalizing only the epistemic errors
translates into equalizing errors in the ambiguous regions, while ignoring the ones in the
unambiguous regions.

One of the key properties of our proposal is that people whose outcomes are affected
by our fairness requirements are the people whose outcomes are ambiguous or uncertain
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in the first place. Put differently, we do not alter the outcomes of people with unam-
biguously positive or negative outcomes. In contrast, current methods for achieving
equal error rates might alter outcomes for people with unambiguous outcomes as well,
creating a difficult accuracy-fairness tradeoff dilemma. We believe that our proposal
would be easier to justify in many practical scenarios.

Key technical contributions of our approach are (a) designing efficient and scalable
methods for identifying ambiguous regions, and (b) designing mechanisms for equal-
izing group error rates in the ambiguous regions. In order to solve the first challenge,
we propose convex proxies to find models that exhibit predictive multiplicity. For the
second challenge, our key insight is to reuse the highly accurate models trained to identify
the ambiguous regions in the first place. Specifically, given the set of classifiers identifying
ambiguous regions, we propose to stochastically pick a classifier from this set when making
a decision. The probabilities of picking the classifiers are chosen in a way that equalizes
group error rates in the ambiguous regions in expectation. An additional benefit of our
approach compared to the traditional way of making a deterministic decision is that
we account for model uncertainty by introducing stochasticity in our predictions, and
thus many datapoints in the ambiguous region have a non-zero probability of receiving
a favorable outcome. As there is some chance of getting a favorable outcome for most
datapoints affected by our fairness notion, it would make our proposal more desirable
than the traditional approach of assigning decisions deterministically.

6.2 Preliminaries and Background

In this section, we present the necessary background on binary classification and predic-
tive multiplicity.

6.2.1 Binary Classification

Given a training dataset D = {(xi, yi)}Ni=1, the goal of a binary classifier is to learn a
function φ : Rd → {−1, 1} between the feature vectors x ∈ Rd and the class labels
y ∈ {−1, 1}. In order to learn this function one has to solve φ∗ = argminφRD(φ) :

RD(φ) = 1
N

∑
xi,yi

1[φ(xi) 6= yi]. However, this function is non-convex in φ and worse,
it is intractable, which makes it especially difficult to solve for large datasets. In the
rest of the text we drop the subscript, D, for brevity. To efficiently solve the problem, it
is a standard practice to use a convex proxy. One minimizes a given convex loss L(θ)

over D, i.e., , θ∗ = argminθ L(θ), in order to find θ∗ for convex decision-boundary-based
classifiers like linear/non-linear SVM and logistic regression, where θ ∈ Rd. Then,



Chapter 6. Designing a new fair ADMS: Model Uncertainty 108

for a given (potentially unseen) feature vector x, one predicts the class label ŷ = 1 if
dθ∗(x) ≥ 0 and ŷ = −1 otherwise, where dθ∗(x) denotes the signed distance from x to the
decision boundary. For convenience, we define θ∗(x) = 1 if dθ∗(x) ≥ 0 and θ∗(x) = −1

if dθ∗(x) < 0.
In the rest of the chapter, we consider θbest to be the most accurate classifier yielded by

minimizing logistic regression loss with L2 regularizer, where weights of the regularizer
were picked based on the performance on the validation set. Similarly, we consider φbest
to be the best classifier using 0-1 loss (RD), selected using a validation set.

6.2.2 Background on Predictive Multiplicity

In this section, we formally introduce the notion of predictive multiplicity and discuss
the existing measures and mechanisms to compute predictive multiplicity.
Predictive multiplicity. A prediction problem exhibits predictive multiplicity if one can
find a classifier φ for a given small value ε such that R(φ)−R(φbest) <= ε, and there
exists at least one datapoint with feature vector xi such that φ(xi) 6= φbest(xi) [191]. The
definition for classifiers trained with proxy loses is similar. One could consider ε to be
0 but in practice a classifier that is slightly less accurate on the training data might be
equally or even more accurate on the test data.

Predictive multiplicity is defined for a set of two or more classifiers, referred to as
the ε-level set. Given the most accurate classifier φbest, the ε-level set of φbest is a set
of classifiers which have an accuracy only up to ε lower than φbest. Formally, over the
dataset D, Cε,φbest = {φ : R(φ)−R(φbest) ≤ ε}.
Measures of predictive multiplicity. Marx et al. [191] propose two measures for predic-
tive multiplicity for a given set of classifiers, namely Discrepancy and Ambiguity.

For a given set of classifiers, Discrepancy is defined as the maximum fraction of the
datapoints on which any classifier in the set disagrees on the outcomes with the most
accurate classifier. Formally, given Cε,φbest and dataset D,

δε(φ) = max
φ∈Cε

1

n

∑
xi∈D

1[φ(xi) 6= φbest(xi)], (6.1)

i.e., discrepancy is the maximum fraction of conflicting decisions yielded by any classifier
in Cε,φbest compared to φbest.

Ambiguity of a set of classifiers for a prediction task is defined as the fraction of
datapoints given a different decision than the best classifier. Formally, given set Cε,φbest
and dataset D,

αε(φ) =
1

n

∑
xi

max
φ∈Cε,φbest

1[φ(xi) 6= φbest(xi)], (6.2)
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where maxφ∈Cε,φbest
1[φ(xi) 6= φbest(xi)] is 1 if there exists at least one classifier in Cε,φbest

which gives a datapoint with features xi a different outcome than φbest, otherwise it
is 0. Hence, ambiguity is the fraction of datapoints on which any classifiers in Cε,φbest
disagrees on the outcome with φbest.
Methods to identify predictive multiplicity. Inspired by the measures discrepancy and
ambiguity, Marx et al. [191] propose two methods that maximize these measures in
order to find the classifiers that exhibit maximum predictive multiplicity for the given
allowance of accuracy reduction. This would indicate the extent of predictive multiplicity
for the prediction task at hand.
Exact discrepancy maximization (Dsc-Exact). Given a value of ε, the authors propose
to train classifiers that minimize the agreement to φbest under the constraint that its
accuracy is only up to ε lower than φbest, i.e.,

min
φ

∑
xi

1[φ(xi) = φbest]︸ ︷︷ ︸
maximize discrepancy

(P6.1)

subject to R(φ) ≤ R(φbest) + η︸ ︷︷ ︸
bound accuracy reduction

where η ∈ (0, ε). One can obtain a set Cε,φbest by solving the above formulation for
several η values.
Exact ambiguity maximization (Amb-Exact). In order to find the classifiers that max-
imize the ambiguity measure for a given threshold of accuracy reduction, Marx et al.
[191] propose to train a classifier for each datatpoint in the training data that gives the
datapoint a different decision than the most accurate classifier. Then, they pick the
classifiers whose accuracy lies within the threshold of the allowed accuracy reduction.
Specifically, they propose to train classifiers that change their decisions compared to φbest
for individual datapoints while minimizing 0-1 loss, i.e.,

min
φ
R(φ)︸ ︷︷ ︸

maximize accuracy

subject to φ(xi) 6= φbest(xi)︸ ︷︷ ︸
change decision of xi w.r.t φbest

∀xi. (P6.2)

Then, one can select Cε,φbest by pruning the set of classifiers resulting from the
solution of the problem above, i.e., by selecting classifiers which are only ε lower in
accuracy than φbest.
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To solve both Problems P6.1 and P6.2, Marx et al. [191] propose mixed integer pro-
gramming formulations. However, these formulations i) work only for linear classifiers
and ii) have slow performance as these are exact, intractable and non-convex.

6.3 Proposed approach

In this section, we aim to answer the question: What is a fair model under model uncertainty?
We characterize model uncertainty using predictive multiplicity. Given a set of

classifiers Cε,θbest that exhibit predictive multiplicity, we consider xi to have an ambiguous
decision if any of the classifiers in Cε,θbest gives it a conflicting decision compared to any
other classifier. Formally a set of ambiguous points are defined as:

A := {xi : θj(xi) 6= θk(xi)∀θj,θk ∈ Cε,θbest}.

These points characterize the ambiguous region. By choosing a single model from Cε,θbest
as the final model we might be unfair to some group in the ambiguous region. Our
proposal of only equalizing the epistemic errors boils down to equalizing group error
rates in the ambiguous region A.

The key assumption we make is that the hypothesis class for the classifiers, Cε,θbest ,
exhibiting predictive multiplicity is sufficiently complex, i.e., if the data is nonlinearly
separable the hypothesis class should include nonlinear classifiers. Under this assump-
tion, all the errors in the the unambiguous region, i.e., where all the classifiers in the set
Cε,θbest agree in their decisions, would only be due aleatoric uncertainty. The argument
is as follows: Given the classifiers in set Cε,θbest are picked from a sufficiently complex
hypothesis class for the given data. Under this assumption, if all the classifiers agree in
their prediction for a subset of the datapoints, then the resulting errors for these data-
points could only be due to inherent stochasticity of the prediction task or random noise,
i.e., aleatoric errors. On the other hand, the ambiguous region, A, would identify regions
with high model uncertainty. The intuition is as follows: Given that the classifiers for set
Cε,θbest are chosen from a sufficiently complex hypothesis class. Under this assumption,
if these equally accurate classifiers disagree on some datapoints this would include all
the datapoints whose decisions are uncertain due to lack of data. This implies that all
the epistemic errors will lie in the ambiguous region. The ambiguous region could also
have random noise hence causing some aleatoric errors. The results using the Synthetic
dataset in Section 6.4.4 confirm our hypotheses.
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Next, we present our proposals for identifying the ambiguous region using scalable
convex methods. Then, we discuss our methods for equalizing groups errors in the
ambiguous region A.

6.3.1 Scalable Methods for Predictive Multiplicity

In this section, we propose two convex methods to find the ambiguous region A.
Approximate Discrepancy maximization (Dsc-Approx). We propose the following con-
vex and tractable proxy constraint that bounds similarity between θ and θbest, akin to
the objective in Problem P6.1 that maximizes discrepancy:

1

N

∑
x

max(0, dθ(x)dθbest(x)) ≤ γ, (6.3)

where dθ(x) represents the distance of the datapoint with feature vector x from the
decision boundary of θ. max(0, ·) represents the agreement of decisions between θ and
θbest. Specifically, if the decision for a subject with feature vector x stays the same under
θ compared to θbest, only then does the term max(0, ·) produce a non-zero number. Thus,
by bounding the left hand side we are limiting the average allowed distance of the
datapoints which have the same decisions under θ and θbest. Making this bound tighter
would preferably admit θ whose decisions are different on some of the datapoints than
θbest, as those datapoints contribute 0 to the sum on the left hand side. This implies that
one can control the number of decisions allowed to be the same between θ and θbest by
changing the value of γ ∈ R+. For example, γ = +∞would yield θ = θbest meaning that
all the decisions between θ and θbest are the same, i.e., θ would yield a discrepancy of 0

compared to θbest. Similarly, for γ = 0 one aims to learn θ whose decisions are different
on all datapoints than to θbest, i.e. a classifier yielding maximum discrepancy compared
to θbest. The value of γ also controls the reduction in accuracy under θ compared to θbest.

For linear boundary-based classifiers (logistic regression, linear SVM), dθ(x) =

θTx. For nonlinear SVM, one can write dβ(x) =
∑N

i=1 βiyik(xi,x) for the optimization
variables β and a positive semidefinite kernel function k(., .). Hence, in both linear and
nonlinear cases the constraint stays convex since the distance from the decision boundary
is linear with respect to the optimization variables.

One can write a convex and tractable version of Problem P6.1 using the logistic
regression loss as follows:
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min
θ

− 1

N

∑
xi,yi

p(yi|xi;θ)︸ ︷︷ ︸
maximize accuracy

(P6.3)

subject to
1

N

∑
xi

max(0, dθ(xi)dθbest(xi)) ≤ γ︸ ︷︷ ︸
enforce discrepancy

where p(y = 1|x,θ) = 1
1+exp(−θTx) .

One can learn an appropriate γ value using a validation set, for a given η in P6.1. We
construct Cε,θbest by training classifiers with varying values of γ and then picking the
ones whose accuracy is only ε lower than θbest.
Approximate ambiguity maximization (Amb-Approx). We propose the following con-
vex and tractable constraints equivalent to the constraint in Problem P6.2.

dθ(xi) < 0 if dθbest(xi) ≥ 0 ∀xi (6.4)

dθ(xi) ≥ 0 if dθbest(xi) < 0 ∀xi,

where dθ is the distance from decisions boundary of θ. The constraints above require θ to
make a different decision than θbest on the datapoint xi . The constraints stay convex for
both linear and nonlinear boundary based classifiers because one can write the distance
from the decision boundary as a linear function of the optimization parameter in both
cases. One can write a convex and scalable version of Problem P6.2 as follows:

min
θ

− 1

N

∑
xi,yi

p(yi|xi;θ)︸ ︷︷ ︸
maximize accuracy

(P6.4)

subject to dθ(xi) < 0 if dθbest(xi) ≥ 0 ∀xi
dθ(xi) ≥ 0 if dθbest(xi) < 0 ∀xi︸ ︷︷ ︸

change decision of xi w.r.t θbest

,

where p(y = 1|x,θ) = 1
1+exp(−θTx) . We pick Cε,θbest by training a set of classifiers which

assign conflicting decisions to all the datapoints in the training set. Then, we pick the
classifiers which are only ε lower in accuracy than θbest.
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Figure 6.2: [Synthetic dataset] Figure demonstrates that state of the art fairness methods are
effected by label noise.

6.3.2 Leveraging Predictive Multiplicity towards Fairness under Model

Uncertainty

In this section, we propose to learn a meta classifier in order to equalize group errors
arising due to model uncertainty.

In order to do that, our key insight is to use the highly accurate classifiers that
we trained to identify the ambiguous regions in the first place. Specifically, given
the validation set of datapoints and Cε,θbest , picked by solving DSC-APPROX, P6.3, or
AMB-APPROX, P6.4, we first identify the points with ambiguous decisions. We then
construct a meta classifier by picking the classifiers stochastically from the set Cε,θbest .
The probabilities for picking these classifiers are chosen in a way that aims to equalize
group error rates on the ambiguous datapoints among different groups of a sensitive
feature such as race or gender. For a binary valued sensitive feature z = {0, 1}, we
propose

min
w

|
∑
θ∈Cε

wθ · (Errz=1(θ)− Errz=0(θ)︸ ︷︷ ︸
FPR/FNR difference

)| (P6.5)

subject to 0 ≤ wθ ≤ 1 and
∑
θ

wθ = 1,

where Errz=0(θ) and Errz=1(θ) are false positive rates (FPR) or false negative rates (FNR)
for group 0 and 1 of the sensitive feature in the ambiguous region,A. As the set of classifiers
is predetermined, the error rates can be precomputed. Hence, the problem is convex and
efficiently solvable, as the objective function is a linear function of optimization variable
w.

The intuition is that the difference of the errors rates between the two groups, i.e.,
Errz=1(θ)−Errz=0(θ), might be positive for some of the classifiers in Cε,θbest and it might
be negative for the others. We can then assign the probabilities wθ to these classifiers in a
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Figure 6.3: [Synthetic dataset] Figure shows the expected class while equalizing FPRs using the
classifiers solving P6.4. It demonstrates that our method is stable under label noise,
as it consistently identifies same regions as ambiguous for different levels of noise
values.

way such that they cancel each others biases and the expected unfairness is minimized.
Our experimental results on the real-world and synthetic datasets confirm our intuition
(Tables 6.1, 6.3, 6.4).

In the case of a non-binary valued sensitive feature, one can replace the error rate
difference between two groups with pair-wise differences among all the groups. We learn
the probability mass function w using the validation datapoints, and when classifying
the unseen test datapoints we use w to pick the classifiers from Cε,θbest .

6.4 Experiments

In this section, we demonstrate the effectiveness of our methods using synthetic and
real-word datasets. Specifically, we answer the following evaluation questions:
– Q1. How effective and fast are our methods in identifying the ambiguous regions?
– Q2. What is the fairness and accuracy trade-off of our methods?
– Q3. Are our methods robust to noisy data?

6.4.1 Datasets

We use a Synthetic dataset because i) we could easily alter the size of the datasets, which
is useful as DSC-EXACT and AMB-EXACT have slow performance on larger complex
datasets, especially with continuous valued features; ii) we could provide intuition for
the type of ambiguous regions identified by our methods; iii) we could introduce noise
in the data and check the robustness of our methods vs the existing methods. The data
comprises 10000 datapoints and 2 features and a binary valued sensitive feature, z. The
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data is sampled from the following Gaussian distributions:

N1([−35; 65], [60, 1; 1, 120]), N2([15;−25], [60, 1; 1, 120]),

N3([30; 65], [70, 1; 1, 100]), N4([35; 40], [70, 1; 1, 100]),

N5([−55; 5], [70, 1; 1, 100]) andN6([−55;−20], [70, 1; 1, 100])

FromN1, 4500 points were sampled. Amongst these, 95% of which were labeled ground
truth positive and 65% of these points were uniformly at random assigned to the non-
protected class of the sensitive feature, i.e, z = 0. A total of 4500 points were sampled
from N2, 95% of which are ground truth negative points and 65% of these points were
uniformly at random assigned to the protected class of the sensitive feature, i.e., z = 0.
Finally, 250 points were sampled from N3 and N5 each, with ground truth negative
labels, and 250 points were sampled from N4 and N6 each and were assigned ground
truth positive labels. 80% of the points sampled from N3 and N4 and 20% of the points
sampled from N5 and N6, were uniformly at randomly assigned z = 1. After sampling
these points they were normalized to have a unit mean and a unit variance. A visual
representation is shown in Figure 6.2. We flipped the class label of a fraction of datapoints
which induced aleatoric errors through out the data. However, model uncertainty only
exists in the sparse clusters shown in Figure 6.2 as that could be reduced by gathering
more data. Our hope is that predictive multiplicity would be able to identify regions
with predominantly model uncertainty, i.e., the sparse clusters as the ambiguous regions
for different levels of aleatoric uncertainty. We also experimented with other variations
of the parameters and got similar results.

We processed the ProPublica COMPAS dataset [166] similar to Zafar et al. [274], which
resulted in 5, 287 subjects and 7 features. Given these features we have to predict whether
a criminal defendant would recidivate within two years (positive class) or not (negative
class). We consider race, with values African-Americans, z = 0, and white, z = 1, to be a
sensitive feature in this dataset.

The NYPD SQF dataset comprises features of pedestrians, such as race, gender, height
etc. and the goal is to predict whether (negative class) or not (positive class) a weapon
was discovered on inspection. We use race as a sensitive feature, z, in our experiments,
with African-Americans (z = 0) and white (z = 1) as two values of this feature. After
processing the data similar to Zafar et al. [274] the dataset consists of 5, 832 subjects and
22 features.
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(a) DSC-EXACT (b) AMB-EXACT (c) DSC-APPROX (d) AMB-APPROX

Figure 6.4: [Synthetic dataset] This figure shows the ambiguous regions (in red) identified by
the four methods discussed in the paper. It demonstrates that our methods identify
similar ambiguous regions compared to the exact methods proposed by Marx et al.
[191]. The results correspond to ε = 0.03. We see similar results for different values of
ε.

6.4.2 Experimental Setup

The datasets were split into 50% training, 25% validation and 25% test datapoints. Train-
ing data was used to train the classifiers, validation data for tuning hyper parameters
and test data to report the results. The CVXPy library [75] was used to solve all the
formulations. We show results using linear classifiers, as decisions made by the linear
classifiers are relatively easier to explain, which is an import goal for applications with
social significance such as recidivism risk prediction. Additionally, data are likely to
be linearly separable in higher dimensions. We show some results using nonlinear
boundaries with our methods in the appendix.
Selecting Cε,θbest . We generate Cε,θbest by solving DSC-APPROX, given by Problem P6.3,
for a range of γ values or AMB-APPROX, given by Problem P6.4, for each training
datapoint. Then, we use the validation data to prune the resulting classifiers which lie
within a given ε threshold of the most accurate classifier. The results are averaged over 5
runs of these steps using different seed values to initialize the data-split and the solver.
For DSC-APPROX, we pick the Cε from the aggregated solutions of all the seeds and
present the averaged statistics over all the seeds.

We assume that ε is chosen by the experts for the prediction task at hand. We present
results for ε = 0.02 for the synthetic dataset, and ε = 0.01 for real-world datasets. We
experimented with several values of ε and obtained similar results.

6.4.3 Benchmarks and Metrics

In this section, we discuss the benchmarks and metrics we used to evaluate our proposals.
Ambiguous regions computation benchmarks. In order to demonstrate the efficiency
of our methods to identify the ambiguous regions using DSC-APPROX and AMB-APPROX,
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Table 6.1: [Synthetic dataset] Signed differences in FPR/FNR: This table demonstrates that our
method is effective in removing unfairness at a very small cost of decrease in the
accuracy. Please refer to Section 6.4.4

Unfairness Accuracy

total unamb amb

Acc. 0.13/-0.14 0.05/-0.06 0.46/-0.45 0.89
Fair 0.03/-0.02 0.05/-0.06 -0.14/0.29 0.77/0.89

Uni-P6.3 0.04/-0.04 0.05/-0.06 -0.22/0.20 0.89 / 0.89
Our-P6.3 0.07/-0.07 0.05/-0.06 0.0/-0.01 0.89/0.89

With P6.4

Acc. 0.13/-0.14 0.06/-0.07 0.30/-0.35 0.89
Fair 0.03/-0.02 0.05/-0.07 -0.06/0.18 0.77/0.89

Uni-P6.4 0.10/-0.10 0.06/-0.07 0.16/-0.16 0.88 / 0.88
Our-P6.4 0.06/-0.07 0.06/-0.07 0.01/-0.03 0.88/ 0.88

we compare with DSC-EXACT and AMB-EXACT. We solved the DSC-EXACT and AMB-
EXACT problems using the CPLEX library, with the code provided by the authors [191].
Metrics for evaluating ambiguous regions computation. Since the best classifiers for
non-scalable and our scalable methods, i.e., φbest and θbest, are different, we report the
ambiguity α̂ and discrepancy δ̂ between any two classifiers in Cε, for the respective
methods. They are formally defined as follows:

δ̂ε(φ) = max
φ,φ̂∈Cε

1

n

∑
xi

1[φ(xi) 6= φ̂(xi)] (6.5)

α̂ε(φ) =
1

n

∑
xi

max
φ,φ̂∈Cε

1[φ(xi) 6= φ̂(xi)]. (6.6)

High values of these measures are desired, as that would imply that the Cε contains di-
verse classifiers which can identify more number of datapoints that have a contradictory
decision for a given value of ε. We also report the time it takes to compute the set of
classifiers Cε.
Fairness benchmark. For results on fairness in the ambiguous regions, we compare our
method given by Problem P6.5 using Cε,θbest , picking classifiers uniformly at random
from Cε,θbest , the most accurate classifier and a traditional fair classifier. We chose one
traditional fair method as a baseline, as Zafar et al. [275] show comparison to other
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Table 6.2: Comparison identifying ambiguous regions: The tables show maximum discrepancy
and ambiguity between any two classifiers in the Cε,ψ:ψ∈{φbest,θbest}. The bottom table
shows the time it took to compute the ambiguous regions with each method. It shows
that our methods, given by P6.3 and P6.4, achieve comparable performance compared
to P6.1 and P6.2 and they are upto four orders of magnitude faster. Please refer to
Section 6.4.4

ε P6.1 P6.2 P6.3 P6.4

- δ̂ α̂ δ̂ α̂ δ̂ α̂ δ̂ α̂
0.03 0.15 0.16 0.18 0.28 0.14 0.16 0.18 0.26
0.05 0.17 0.19 0.22 0.38 0.16 0.17 0.23 0.36
0.09 0.22 0.24 0.32 0.56 0.2 0.20 0.32 0.51

Training Time
Time P6.1 P6.2 P6.3 P6.4
mins 510 19227 5 5

approaches and get similar results. Its formulation ([275] and [13]) is given as follows,

minimize − 1

|D|
∑

(x,y)∈D

log p(y|x,θ) + λ||θ|| (P6.6)

subject to
1

|D∗|

∣∣∣∣ ∑
(x,z)∈D∗

(z − z̄)dθ(xi)

∣∣∣∣ < c,

where D∗ was set to datapoints with ground truth negative labels and ground truth
positive labels for equalizing false positive rates (FPR) and false negative rates (FNR),
respectively. z represents the value of the sensitive feature and c represents the allowed
correlation between z and the decision boundary, dθ.

We train accurate classifiers by solving
minimize − 1

|D|
∑

(x,y)∈D log p(y|x,θ) + λ||θ|| for different λ. Logistic regression loss
was used to train all the classifier. More details such as ranges for the hyper parameter
search values, seeds, specifications of the machines used and other training details are
included in the appendix.
Metrics for fairness. We assume a binary valued sensitive attribute and report a signed
difference of FPR and FNR between the unprotected and the protected group for the
sensitive feature z.

unfairness-FPR = FPRz=1 − FPRz=0, (6.7)

unfairness-FNR = FNRz=1 − FNRz=0 (6.8)

We present these numbers for the overall data, for the unambiguous regions, i.e., where
all the classifiers give unanimous decisions, and for the ambiguous regions. We also
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Table 6.3: [COMPAS] Signed differences in FPR/FNR : This table demonstrates that our methods
are effective in removing unfairness in the ambiguous regions at no expense of accuracy.
Please refer to Section 6.4.5

Unfairness Accuracy

total unamb amb

Acc. -0.19/0.33 -0.23/0.41 0.08/-0.20 0.66
Fair 0.02/0.03 -0.09/0.18 0.83/-0.92 0.66/0.65

Uni-P6.3 -0.20/0.35 -0.23/0.41 -0.08/-0.004 0.66 /0.66
Our-P6.3 -0.20/0.35 -0.23/0.41 -0.08/-0.02 0.66/0.66

With P6.4

Acc. -0.19/0.33 -0.24/0.54 -0.11/0.15 0.66
Fair 0.02/0.03 -0.24/0.54 0.34/0.-0.42 0.66/0.65

Uni-P6.4 -0.19/0.34 -0.24/0.54 -0.11/0.15 0.66/ 0.66
Our-P6.4 -0.14/0.26 -0.24/0.54 -0.01/0.03 0.66/ 0.66

report the accuracies. We aim to achieve low disparity in group error rates in the
ambiguous regions, while achieving an accuracy similar to the most accurate classifier.

6.4.4 Synthetic Experiments

In this section, we answer the evaluations questions using the synthetic dataset.
Q1: Ambiguous regions coverage and speed. We compared our methods, DSC-APPROX

and AMB-APPROX, of identifying the ambiguous regions with DSC-EXACT and AMB-
EXACT. Table 6.2 reports the time it took to compute the ambiguous regions as well as
the metrics described in Section 6.4.2. The results demonstrates that our methods are
comparable or even better in coverage of the ambiguous regions on the test data, while
being up to four orders of magnitude faster.
Q2: Accuracy fairness trade-off. We compare our method with the benchmarks de-
scribed in Section 6.4.2. The results in Table 6.1 demonstrate that:

Existing fairness methods sometime achieves overall fairness at the expense of a
significant decrease in accuracy. Additionally, overall fairness is achieved by being biased
towards different groups for different types of errors, i.e., ones in the unambiguous vs
ambiguous regions. On the other hand, our method is effective in removing unfairness
in the ambiguous regions and ignoring the unfairness in the unambiguous regions, as
desired. Our method also achieves accuracy similar to the most accurate classifiers.
Q3: Robustness to noisy data. In order to demonstrate the sensitivity of existing fairness
methods towards noise, we flipped the ground truth labels of 0.0% to 20% of the data-
points uniformly at random. Figures 6.2 and 6.3 present our findings. We compare an
accurate classifier, a fair classifier and our method equalizing FPR using AMB-APPROX.
The key takeaways are as follows: In an effort to equalize all errors, existing fairness
methods are affected by label noise and end up classifying a significant number of data-
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points in the wrong class, as hypothesized in the introduction. In contrast, our method is
robust to noise as it identifies similar regions as ambiguous for varying level of noise.
Secondly, this experiment also confirms our hypothesis, by showing that the ambiguous
region coincide with regions with predominantly high model uncertainty, i.e., the sparse
clusters.

6.4.5 Evaluation on Real-World Datasets

In this section, we answer our evaluation questions using two real-world datasets.
Q1: Ambiguous regions coverage and speed. We identify the datapoints with ambigu-
ous decisions using DSC-APPROX, given by Problem P6.3 and AMB-APPROX, given
by Problem P6.4, for the same value of ε. We also tried DSC-EXACT and AMB-EXACT,
however after several hours of computations they still did not yield any results. So,
we compare the results of our two proposals, using α̂ metric given by Equation 6.6.
Takeaways remain similar for δ̂, given by Equation 6.5.

For the Compas data, our method DSC-APPROX and AMB-APPROX categorized 0.12

and 0.5 of the datapoints as having an ambiguous decision, respectively. While for the
SQF dataset, 0.12 and 0.53 of the datapoints were identified as having an ambiguous
decision by DSC-APPROX and AMB-APPROX, respectively. It is noteworthy that AMB-
APPROX identifies more datapoints as ambiguous. This is due to the fact that with AMB-
APPROX we train one classifier per training datapoint, i.e., we perform a more exhaustive
search for the classifiers that exhibit predictive multiplicity. This process, however, takes
a longer time. Hence, there is a trade-off between the speed and effectiveness for both
the proposed methods of identifying the ambiguous regions.
Q2: Accuracy fairness trade-off. Similar to the synthetic dataset, we compare our
method of equalizing group error rates (FPR and FNR) in the ambiguous regions, iden-
tified by DSC-APPROX and AMB-APPROX, with three benchmarks described in Sec-
tion 6.4.2. The takeaways from results presented in Tables 6.3 and 6.4 are the following.

Existing fair classifiers that focus on equalizing overall error have high unfairness in
the ambiguous regions in most cases, which confirms our hypothesis. Although these
classifiers achieve fairness in the overall data, they sometimes result in a significant drop
in accuracy. Additionally, in many cases, existing fair classifiers achieve overall fairness
by being unfair to different groups in the ambiguous vs unambiguous regions.

In comparison, our method that only equalizes errors in the ambiguous regions, in
most cases, provides the fairest solution in the ambiguous regions while achieving a
comparable accuracy to the most accurate classifier.
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Table 6.4: [SQF] Signed differences in FPR/FNR: This table demonstrates effectiveness of our
methods. Please refer to Section 6.4.5

Unfairness Accuracy

total unamb amb

Acc. -0.28/0.12 -0.29/0.13 -0.07/0.017 0.75
Fair 0.04/0.02 0.02/0.03 0.07/-0.15 0.65/0.71

Uni-P6.3 -0.28/0.12 -0.29/0.13 -0.05/0.014 0.75 / 0.75
Our-P6.3 -0.28/0.11 -0.29/0.13 -0.02/-0.017 0.75/ 0.75

With P6.4

Acc. -0.28/0.12 -0.24/0.17 -0.25/0.07 0.75
Fair 0.04/0.02 -0.06/0.12 0.15/-0.08 0.65/0.71

Uni-P6.4 -0.27/0.14 -0.24/0.17 -0.25/0.09 0.74/ 0.74
Our-P6.4 -0.24/0.13 -0.24/0.17 -0.18/0.07 0.73/ 0.74

In a few cases where our approach is not the only best solution, it provides additional
benefits, e.g., in one case our solution is equally fair in the ambiguous region compared
to the accurate classifier (cf. Table 6.4). However, our method assigns decisions to
datapoints in the ambiguous regions stochastically. So, in practice, most datapoint in
the ambiguous region have a non-zero probability to be in the favorable class. This is
desirable over a deterministic decision, since there is ambiguity in decisions for these
datapoints. In another case, Table 6.3, selecting classifiers uniformly at random is 1.6%

more fair on the test data. However, our solution is still 90% and 18% better than the
benchmark fair classifier and the accurate classifier, which are the current standards.

6.5 Related Work

Modeling uncertainty. Prior works on categorizing uncertainties have proposed to dis-
tinguish between aleatoric (irreducible) uncertainty and model (reducible) uncertainty[73,
124, 128]. A lot of works in machine learning have addressed this distinction in different
subfields. Depeweg et al. [72] propose to decompose the two types of uncertainties
using bayesian neural networks and latent variables. Kendall and Gal [148] consider this
distinction in computer vision problems. McAllister [192] distinguish between the types
of uncertainties in reinforcement learning problems.

We believe that we are the first ones to propose to distinguish between different
types of uncertainties for fairness in predictive tasks.

Predictive multiplicity. In their seminal work, Breiman et al. [37] introduced the concept
of the Rashomon effect in the context of model explanations. The Rashomon effect refers
to the scenario where data admits multiple different models that yield similar accuracy.
Breiman et al. [37] argue that one should not use the explanations of a single model to
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draw conclusions about the data and the prediction task at hand. Rashomon sets, defined
as ε-set of models, i.e. those whose empirical training loss is within ε-loss of a baseline
classifier, are used by Dong and Rudin [78], Fisher et al. [94] to study the problem of
variable importance.

The notion of predictive multiplicity in a classification setting was introduced by
Marx et al. [191]. They proposed mixed integer programming methods using non-
convex loss functions to train classifiers which would yield predictive multiplicity for
linear classifiers. We build on this work, and extend it by proposing tractable convex
problem formulations which yield fast solutions, and work for both linear and non-linear
classifiers.

There is a growing interest in predictive multiplicity due to its societal implications
on algorithmic decision-making system. Bhatt et al. [28] look at it from a fairness
perspective, and aim to find counterfactual accuracy of a classifier which would give a
selected test datapoint favorable outcome. Specifically, they aim to find the minimum
decrease in accuarcy, ε, that would give an individual a favorable outcome. Pawelczyk
et al. [210] provide an upper bound for the costs of finding counterfactual explanations
under predictive multiplicity. However, none of these works have made the connections
between predictive multiplicity and model uncertainty.

6.6 Conclusion

In this chapter, we proposed that while designing fairness approaches one must account
for the uncertainties of the prediction task at hand. Specifically, we argue that only the
errors arising due to lack of knowledge about the best model or due to lack of data, i.e.,
the epistemic errors should be taken into account while designing fairness methods and
errors due to inherent noise should be ignored. Our proposal stands in contrast to the
current group fairness approach that aims to equalize ’total’ errors. With this goal in
mind, we build upon predictive multiplicity techniques to identify the regions with
model uncertainty.

In addition, we propose convex and scalable formulations to find classifiers that
exhibit predictive multiplicity, which are approximately equally effective compared to
their non-convex counterparts, while being up to four orders of magnitude faster. We
also propose convex formulations to equalize errors arising due to model uncertainty.
Using synthetic and real-world datasets, we demonstrate that our methods are effective
and more robust to label noise compared to existing group fairness methods.



CHAPTER 7
Designing a new fair ADMS: Human

decision-makers

In this chapter, we focus on settings where consistency between decision makers might
be deemed desirable, and study how the degree of inconsistency of human decisions
could be moderated with algorithmic assistance. This has immediate implications for
the development of algorithmic assistance to support cooperative work by enabling
the distribution of decision-making tasks amongst multiple decision-makers, without
sacrificing consistency. Specifically, we ask the following research questions:

Can algorithmic decision aids moderate inconsistency among human decision-makers?

In order to answer our research questions, we leverage prior work in psychology
and HCI to develop a set of algorithmic decision aids which may influence the degree of
inconsistency of human decisions, and we rigorously experimentally evaluate the effect
of these decision aids on human decisions.

The rest of the chapter is organized as follows:

• In Section 7.1, we discuss prior works on machine-assisted decision-making, differ-
ent notions of consistency, existing heuristic for reducing inconsistency and how
people may react on the feedback of their inconsistency.

• In Section 7.2, we describe the details of our experimental set-up including experi-
mental conditions, hypotheses, stimulus material, details about the data collection,
design of the decision-aids and format of the advice.

• In Section 7.3, we discuss the results of the confirmatory analysis that we pre-
registered before performing the study.

• In Section 7.4, we present additional results for different notions of accuracy and
consistency. Additionally, we further explore the effect on people’s responses after
observing the machine advice. Finally, in Section 7.5, we conclude the paper.
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Relevant publication

The results presented in this chapter have been published in [10].

7.1 Background

Machine-Assisted Decision-Making. With the increasing popularity of algorithmic de-
cision aids, much research has studied how algorithmic advice shapes human decisions.
On a high-level, we can discuss the findings of this research in terms of the factors that
were identified to influence people’s advice taking behavior, and the measures used to
evaluate the effects of machine advice on people’s decisions.

Research has identified a plethora of factors that influence people’s advice taking
behavior. The likelihood of accepting advice varies based on the advisor’s identity, with
a preference for human guidance in certain scenarios [42, 76, 77], and a preference for
algorithmic advice in other settings [182, 183]. Receptiveness to machine advice depends
on the algorithm’s errors. People are more likely to take advice from algorithms that are
stated or observed to exhibit a higher predictive accuracy [271], and that make errors
more similar to typical human errors [112]. People are also more likely to take advice
from decision aids that are explainable [53, 215, 264]. On the other hand, strong graphical
warnings about algorithmic decision aids may lower the influence of their advice [83].
Advice taking also depends on the specific advice that is provided; for instance, in the
legal domain, people are more likely to take advice to grant a defendant bail than advice
to deny bail [113].

Prior work has studied how machine advice affects human decisions with respect
to a variety of measures. As a first step, most studies measure people’s likelihood of
taking machine advice, be it in terms of the overall advice taking propensity [271], the
propensity to take advice pointing towards a specific decision [113], or the propensity
to take (in)correct advice [215]. Some studies have gone beyond measuring people’s
likelihood of taking advice, and measured the effects of machine advice on the quality of
people’s decisions. For instance, in settings where one can define the notion of correct
predictions and ground truth labels, prior work has measured whether machine advice
increases the alignment between people’s decisions and ground truth labels—that is, the
accuracy of people’s decisions [112, 215, 280]. In settings where decisions have important
societal implications, prior work has also studied the effects of algorithmic assistance on
the fairness of people’s decisions [110, 111]. However, little prior work considered the
effects of algorithmic assistance on the consistency of human decisions.
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We contribute to research on machine-assisted decision-making by studying how
different algorithmic decision aids impact human decisions with respect to two mea-
sures established in prior work—people’s propensity to take advice and the accuracy
of people’s decisions—as well as a novel measure: the consistency between people’s
decisions.
Notions of Inconsistency. Much prior work has studied the (in)consistency of human
decisions. A bulk of research has documented the inconsistency between decisions of
different decision-makers [139, 140]—that is, a lack of inter-annotator consistency—in
tasks as diverse as sentencing [15], evaluating job performance [243], estimating real
estate prices [3], and reviewing submissions to top-tier CS conferences, such as NeurIPS
[26, 68, 167], CSCW [39] and ICLR [246]. We contribute to this line of research by
exploring if algorithms can be used to support cooperative work in such settings where
consistency is deemed to be desirable. Namely, we propose methods for alleviating the
inconsistency between the decisions of different decision-makers for the same set of
inputs.

Much research has also studied the consistency of individual decision makers, or
intra-annotator consistency. Cognitive biases such as dynamic inconsistency and hyper-
bolic discounting are known to result in the inconsistency of an individual’s decisions across
time [181, 244]. Individual’s judgments are found to substantially vary across time in
various settings [139]: pathologist’s biopsy assessments of the same sample at different
points in time were found to exhibit a correlation of only 0.61 [82]; expert’s estimates
of the amount of time required to complete the same software development task were
found to vary by 71% [116].

Prior work has also documented the inconsistency of an individual’s judgments across
inputs. A particularly well-studied aspect of this problem is the inconsistency of people’s
pairwise preferences. Decades of research in this area have led to the development of
numerous methods for identifying, measuring, and reducing the inconsistency of human
pairwise preferences [2, 40, 155], as well as a plethora of approaches to the difficult task
of learning human pairwise preferences [56, 96, 127], which we consult when developing
our decision aids in Section 7.2.4.
Human Heuristics for Reducing Inconsistency. Many decision-making settings require
people to make decisions on a case-by-case basis: granting or denying loans, making
bail decisions, reviewing papers, etc. However, prior research in psychology has doc-
umented that people might find it easier to make comparative judgments than absolute
ones in various contexts [198, 237]. Pairwise comparisons are also used to assist people
with developing and refining their beliefs [169]. Hence, it is not surprising that people
often rely on comparative judgments to assist them with making case-by-case decisions.
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For instance, the analytical hierarchy process that is widely used to assist with making
complex decisions in domains ranging from governance to engineering relies on com-
parative judgments at its core [95, 250]. Research on crowdsourcing has also proposed
eliciting respondents’ relative pairwise labels, rather than absolute ones, as a strategy for
improving response quality [55, 202, 240].

To illustrate how one may leverage comparative judgments to assist with absolute
judgments, let us consider the task of grading papers. After (i) assigning initial grades
to a set of papers, one might (ii) compare pairs (or larger subsets) of papers to identify
mutually inconsistent decisions, in order to (iii) revise the final grades. In T4 and T5, we
develop a decision aid that identifies pairs of decisions that are inconsistent with the
majority’s comparative valuations, hence providing a tool for automating step (ii) in the
above-described procedure.
Reducing Inconsistency with Algorithmic Assistance. Kahneman at al. [139, 140]
extensively study the problem of noise in human judgments. In [139], they discuss several
approaches to reducing inconsistency in human decisions, proposing interventions of
varying strengths. The first and most radical proposal is to replace human decision
makers with algorithms. Still, they highlight the need for people to retain ultimate
control. Hence, as the second and weaker proposal, they propose the use of algorithmic
decision aids to assist human decisions. Depending on the estimated accuracy of human
and algorithmic decisions and the normative importance of accuracy, they highlight
the possibility of advising against overruling algorithmic predictions. The third and
weakest intervention is ensuring that decision-makers use similar procedures to gather
and integrate information, and to translate this information into a decision.

The first two proposals rely on algorithmic assistance to reduce human inconsistency.
The underlying idea is to use algorithms to predict correct decisions, which would steer
(second proposal) or even replace (first proposal) human decisions, thereby making them
more consistent. In this paper, we study the effects of the second proposal in treatment
T2. However, we also study an alternative approach in treatments T4 and T5: using
algorithms to identify inconsistencies in human decisions, and to help people reduce their
inconsistency by themselves.
Reactions to Feedback about Inconsistency. Algorithmic decision aids have proven to
be effective in a plethora of settings. Here we review literature in social psychology that
may help us form hypotheses about the effectiveness of algorithmic decision aids for the
task of reducing inconsistency in human decisions, and guide the design of our decision
aids. Specifically, we leverage prior work in social psychology to anticipate how people
may react to being provided with feedback about their inconsistency.
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Figure 7.1: Graphical overview of experimental conditions T1-T5. In T1 and T2, respondents
review their decisions one-by-one, while in T3-T5 they review decisions in randomly
(T3) or meaningfully selected (T4 and T5) pairs. In T2 and T5 respondents are
additionally provided with (different kinds of) explicit machine advice.

Kahneman et al. [139] argue that inconsistency is undesirable in a variety of settings.
If our respondents share this view, they might perceive feedback about their inconsis-
tency as negative feedback. Prior work in organizational psychology has shown that
people may not react positively to negative feedback about their performance. Negative
feedback is not perceived as useful, results in negative reactions, and is not associated
with a recipient’s willingness to change their behavior [236]. It is also found to evoke
defensiveness and denial [184]. The main strategy employees use to reduce the impact
of such negative feedback is to reject it [129]. To mitigate these effects, we will avoid
framing the machine advice as negative feedback, and utilize strategies for softening
the blow proposed by Steelman and Rutkowski [236]: providing high quality feedback
delivered in a considerate manner.

Kahneman et al. [139] also show that people tend to vastly underestimate the degree
of inconsistency in human decision-making. Hence, feedback about inconsistency may
conflict with people’s beliefs. Much prior work in psychology has found that people resist
evidence that is contradictory to their preconceptions [14]. Two psychological concepts
that are particularly relevant for predicting how people will react to conflicting informa-
tion are cognitive dissonance [91, 121] and biased assimilation [185] or disconfirmation
bias [81]. Both lines of research point to the same conclusion: due to overestimating
their consistency, people may discount or reject the decision aids’ feedback about their
inconsistency. We attempt to mitigate this effect by familiarizing people with their lack of
expertise with the task at hand: at the beginning of the experiment, participants complete
a tutorial where they can observe the (in)accuracy of their real-estate price estimates.
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7.2 Methodology

7.2.1 Experimental Design

In a large-scale, pre-registered human-subject experiment9 run on Prolific we studied how
different interventions influence people’s estimates of real estate prices. The interventions
included asking respondents to review their initial estimates one by one (treatments
T1 and T2) or as pairwise comparisons (treatments T3, T4 and T5), and providing
respondents with different forms of algorithmic assistance (treatments T2, T4 and T5).
Scenario. In this work, we focused on the task of estimating real estate prices. In our
experiments, we utilized a dataset of New York City real estate prices introduced by
Poursabzi-Sangdeh et al. [215]. The dataset contains information about 393 apartments
located on the Upper West Side of New York City, which were listed for sale on the real
estate website StreetEasy.com between 2013 and 2015. For each listing, we had access to
basic information about the apartment, including the listing price, number of bedrooms,
bathrooms and total number of rooms, the apartments’ square footage and monthly
maintenance fees, the number of days the apartment has been on the market, and the
distance from the apartment to the nearest subway and school. We preprocess the data
as proposed by Poursabzi-Sangdeh et al. [215]. Specifically, we remove the apartments
where the number of bedrooms is greater than the total number of rooms or where the
apartment’s square footage is less than 200 sqft. With this preprocessing, we were left
with 387 apartments. From these, we utilized 30 apartments as stimulus material in
the human-subject experiments (Section 7.2.2), and the remaining 357 apartments for
training the decision aids (Section 7.2.4).
Experimental Conditions. In each experimental condition, respondents were first asked
to complete a tutorial, in order to familiarize themselves with real estate prices in New
York City. Next, all respondents were asked to estimate the prices of the same 30
apartments. After gathering the respondents’ initial estimates of apartment prices, we
asked them to review their estimates in one of five different ways, as described below
and summarized in Figure 7.1 and Table 7.1.

In the control condition T1, respondents were asked to perform the simplest revision
procedure. They were asked to revise their initial estimates one-by-one.

9Prior to conducting the human-subject experiment, we have obtained the approval of <our anony-
mous Institution’s> ethical review board (ERB), and pre-registered our experiment on AsPredicted. The
anonymized pre-registration documentation can be found on the following url: https://aspredicted.
org/D7X_NKL.

https://aspredicted.org/D7X_NKL
https://aspredicted.org/D7X_NKL
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Table 7.1: Overview of the characteristics of the 5 experimental conditions in our study. Re-
viewing Procedure: Are instances reviewed one-by-one or pairwise? Algorithmic
Assistance: Do respondents have access to any form of algorithmic assistance? Data
Required: Do the utilized decision aids require any type of labeled data?

Reviewing Procedure Algorithmic Assistance Data Required
T1 one-by-one none none
T2 one-by-one explicit advice ground truth
T3 pairwise comparisons none none
T4 pairwise comparisons implicit advice human perceptions
T5 pairwise comparisons implicit and explicit advice human perceptions

T1: Respondents were asked to review all of their estimates one-by-one, in the same
format as they originally made them: 30 apartments, one per page, shown in
random order.

T2 was inspired by decision aids that are commonly used in the machine-assisted
decision-making literature [113, 271]. It corresponds to the standard machine-assisted
decision-making setting in the judge-advisor system (JAS) paradigm [33].

T2: Compared to T1, we manipulated the information provided in the review phase.
Respondents were again asked to review all of their initial estimates one-by-one (30
apartments, one per page, shown in random order), but the apartment descriptions
were accompanied by machine advice. Specifically, respondents were shown the
estimates of a linear regression model which we trained to estimate real estate
prices using the dataset introduced by Poursabzi-Sangdeh et al. [215], as described
in Section 7.2.4.

While T1 and T2 required respondents to review their decisions one-by-one, in T3–T5
decisions were reviewed in pairs. This pairwise revision procedure was motivated by
past research in psychology [198, 237] and computer science [202], which found that, in
certain contexts, people are better at making comparative judgments than absolute ones.

One of the main difficulties in introducing a reviewing procedure based on pairwise
comparisons is selecting which pairs one should review. Our set of 30 apartments
results in 30 choose 2 = 435 possible pairwise comparisons. Since it is not feasible to
review all of these pairs, one must select which pairs to review. A naive approach,
employed in treatment T3, would consist of randomly selecting which pairs to review.
An ideal approach would consist of reviewing exactly those pairs that would lead to an
improvement in the quality of decisions with respect to a metric of interest. In treatments
T4 and T5 we utilize algorithmic assistance to identify pairs of apartments for which
people’s estimates are not aligned with the majority’s estimates.
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In T3, respondents were asked to review randomly selected pairs of apartments. This
is the simplest of the three treatments that rely on pairwise comparisons, since it does not
utilize any algorithmic assistance beyond the random selection of pairs of apartments.

T3: In T3, respondents were asked to review their decisions in a series of 15 pairwise
comparisons of randomly selected pairs of apartments. Respondents were asked to
review 15 pairs of apartments in order to keep the number of decisions reviewed
equal to 30 across all treatments. The same apartment may have been shown
in multiple pairs. Hence, even though the 15 pairwise comparisons provided
respondents with 30 opportunities to update their estimates, this does not imply
that they had an opportunity to update their initial estimate for each of the 30
unique apartments.

Due to its simplicity and lack of an algorithmic component, we treat T3 as a secondary
baseline rather than an experimental condition. This baseline is particularly useful for
studying the effects of T4 and T5, since—unlike the main baseline T1—it utilizes a
reviewing procedure based on pairwise comparisons.

T4 builds upon T3 by including the component of algorithmic assistance. Instead of
asking respondents to review randomly selected pairs of apartments, the decision aid
selects the pairs of apartments that the respondent will review.

T4: While T3 presents respondents with random pairs of apartments, T4 selects pairs
where respondents’ estimates are not aligned with the majority’s view. Specifically, we
implicitly provided machine assistance by asking participants to review pairs of
apartments for which their initial price estimates did not align with most people’s
comparative valuations of those apartments. We trained a model to predict the
majority’s comparative valuations of apartment prices using a dataset of human-
annotated pairwise comparisons of apartments that we gathered, as described in
Section 7.2.4.

Treatment T5 builds upon T4 by additionally providing explicit algorithmic advice.
The addition of explicit advice makes the decision aid used in T5 more similar to the
decision aids that are typically considered in the machine-assisted decision-making
literature, such as the decision aid used in T2.

T5: The format of the review phase and the pair selection procedure remained the
same as in T4, but we additionally explicitly informed people about the difference
between their initial estimates and the predicted comparative valuations of most
people.
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Hypotheses.
We leverage prior research on machine-assisted decision-making in psychology and

HCI (reviewed in Section 7.1) to form hypotheses about the effects of our interventions
T2, T4 and T5, compared to the control condition T1.10

Prior work has demonstrated that algorithmic decision aids can influence people’s
decisions [113]. In line with these findings, in H1 we hypothesize that our decision
aids will prompt respondents to revise their estimates. Specifically, we hypothesize that
compared to the control condition T1, our interventions T2, T4 and T5 will lead to:

H1: A higher number of decisions updated in the review phase.

H1’: A higher propensity to update decisions for the particular apartments shown in the
review phase.

We include both hypotheses H1 and H1’ since they capture different aspects of the
interventions’ effects on people’s propensity to update decisions. H1 focuses on the
overall effect of the intervention across all apartments, while H1’ captures the effective-
ness in prompting respondents to review their estimate for specific apartments that are
shown in the review phase. (These are the same for T1 and T2.) The effect captured by
H1 may be deemed more important in settings where the goal is to maximize the overall
effect across all apartments, while H1’ may be more appropriate if we are interested in
measuring engagement with the algorithmic assistance.

Furthermore, past research has demonstrated that accurate decision aids help in-
crease the accuracy of people’s decisions [112, 271]. In H2, we hypothesize that our
decision aids—which exhibit high predictive accuracy11—will do the same. Namely, we
hypothesize that compared to the control condition T1, our interventions T2, T4 and T5
will result in:

H2: A higher accuracy of post-review decisions.

Finally, we expect the decision aids to lead to an increase in the consistency between
people’s responses. We hypothesize that compared to T1, the interventions T2, T4 and
T5 will lead to:

H3: A higher degree of consistency between the post-review decisions of different
respondents.

10Since two of our algorithmic interventions (T4 and T5) rely on revising pairs of decisions, we include
another control condition T3, in which respondents review pairs of decisions, but without algorithmic
assistance. However, given our focus on algorithmic forms of assistance, we do not hypothesize about the
effects of T3, and only study its effects exploratively.

11More details about the decision aids’ performance can be found in Section 7.2.4.
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Dependent Variables. For each apartment we measured the respondents’ pre-review
estimates and post-review estimates. Note that in treatments T3–T5, respondents were
not given an opportunity to update their estimates for some apartments. In those cases,
we defined their post-review estimate to be equal to their pre-review estimate.

To test our hypotheses, we formed dependent variables based on these measurements
as follows:

H1 magnitude: Absolute difference between pre and post-review estimates.

H1’ magnitude: Absolute difference between pre and post-review estimates, limited to
only those apartments shown during the review phase.

H1 binary: 0 if the pre and post-review estimates are equal, otherwise 1.

H1’ binary: 0 if the pre and post-review estimates are equal, otherwise 1, limited to only
those apartments shown during the review phase.

H2: Difference between pre-review error and post-review error. The pre- and post-
review errors are calculated as the absolute difference between the respondent’s
estimate and the ground truth for a given apartment. Intuitively, this measure
captures the treatments’ effects on the degree of agreement between respondents’
estimates and the true apartment prices.

H3: Difference between pre-review inconsistency and post-review inconsistency. The
pre- and post-review inconsistency are calculated as the absolute difference between
the respondent’s estimate and the average estimate (namely, the mean value of all
respondents’ estimates) for a given apartment. Intuitively, this measure captures
the treatments’ effects on the degree of agreement between the estimates of different
respondents.

Analysis. In Section 7.3, we report the findings of our confirmatory analyses related to
hypotheses H1–H3. In the text, we report the findings of our statistical hypothesis testing,
accompanied with plots that illustrate our findings using descriptive statistics. To test
our hypotheses we rely on linear mixed models.12 Due to our repeated measures design,
we include crossed random effects to account for differences between participants and

12In hypotheses H1 binary and H1’ binary our dependent variables are binary. The choice between
using a linear and a logistic regression in such settings has been much debated in prior work, and we refer
the readers to the work of Hellevik [123] for an in-depth discussion on this topic. Hence, we replicated
our analyses for binary dependent variables using both a linear and a logistic regression. The results are
qualitatively the same for both models. In the paper we report the results of the linear regression for ease of
interpretation of the coefficients and consistency with other hypotheses, in line with our pre-registration.
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Powered by Qualtrics A

You are here to predict New York City apartment prices in the Upper West Side
. 

There will be a training phase, a testing phase and a review phase:
In the training phase, you will be shown examples of apartments along with
their actual price.
In the testing phase, you will be shown a description of apartments and you
will have to estimate their price.
In the review phase, you will be shown the apartments whose price you
estimated in the testing phase and you could change your estimates if you
wish to do so.

→

Figure 7.2: Description of the experimental design shown to participants at the beginning of the
experiment.

apartments.13,14,15 The dependent variables vary across hypotheses as described in the
previous subsection. In all of the models, the experimental conditions are used as the
independent variables. We one-hot encode the five experimental conditions T1–T5 using
four binary variables corresponding to T2–T5, and we treat T1 as the reference category.
That is, our models’ unstandardized regression coefficients capture how the effects of
treatments T2–T5 differ from the effects of T1. To compare the effects of other pairs of
treatments we utilize Wald tests to test the equality of the corresponding coefficients.
For the Wald tests, we report Bonferroni-adjusted p-values to account for the multiple
comparisons problem.

In the appendix we conduct an additional exploratory analysis of our data. There
we report a series of descriptive statistics, including results related to the effect of the
treatments on other measures of accuracy and consistency.

7.2.2 Stimulus Material

Upon opening the study link through the Prolific interface, participants were randomly
assigned to one of the five experimental conditions. All participants first completed an

13We compared models that include a participant or apartment random effects term to nested models
that do not include these random effects terms. To do so, we used likelihood-ratio tests. The likelihood-ratio
tests confirmed that including participant and apartment random effects terms makes a difference—i.e.,
there is a significant amount of variation between participants and apartments accounted for by the
random intercepts (p-val <0.001, for all 6 models, and both for participant and apartment random effects
terms).

14To alleviate convergence issues of models with crossed random effects, we initialize the starting values
of the parameters to the estimated parameters of a simpler model—a linear mixed model with a random
effects term for participants only.

15We additionally replicated all of our analyses using fixed effects models with two-way clustering of
standard errors with respect to apartments and participants. To do so, we utilized the reghdfe Stata
package [67] that implements the estimator described in Correia [66]. We found the results of both
approaches to lead to consistent findings across all hypotheses.
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Powered by Qualtrics A

Please provide your response below: 

Task 1/30

Please consider the profile below and estimate the sale price of the apartment.
 
Bedrooms 1.0

Bathrooms 1
Square footage 702
Total rooms 3.0
Monthly maintenance fee $443
Days on the market 28
Subway distance (miles) 0.122
School distance (miles) 0.278

What do you think the apartment was sold for?     

→

(a) Survey instrument used in the tutorial and for
gathering respondents’ pre-review estimates,
across all treatments.

Powered by Qualtrics A

Task: 1/10 

Please see your results below:
 
Bedrooms 1.0

Bathrooms 1
Square footage 550
Total rooms 3
Days on the market 135
Monthly maintenance fee $442
Subway distance (miles) 0.231
School distance (miles) 0.124
Your estimate $500,000
Actual price $824,000

→(b) Feedback provided to respondents during the
tutorial, in all experimental conditions.

Powered by Qualtrics A

Please provide your response below: 

Task 1/30

For the apartment below, the computer program estimated its price to be:
$1,800,000  
You initially estimated its price to be: $1,300,000 

Please provide your responses again below. If you wish to change your initial
response, please feel free to do so. 

Bedrooms 2.0

Bathrooms 2
Square footage 1320
Total rooms 4.5
Monthly maintenance fee $1,330
Days on the market 80
Subway distance (miles) 0.168
School distance (miles) 0.225
Your initial estimate $1,300,000

What do you think the apartment was sold for?     

→(c) Survey instrument used for gathering partici-
pants’ post-review estimates in T2. In T1, the
machine prediction was omitted.

Powered by QualtricsA

Please provide your response below: 

Please provide your response below:

Difference 1/15

For the two apartments shown below, our computer program estimated that
Apartment A is less expensive than Apartment B.

However, you estimated that Apartment A is equally expensive as Apartment B .

Please provide your responses again below. If you wish to change your initial response,
please feel free to do so. 

 Apartment A Apartment B

Bedrooms 1.0 2.0

Bathrooms 1 2

Square footage 1240 1160

Total rooms 3 4

Monthly maintenance fee $1,170 $1,330

Days on the market 119 71

Subway distance (miles) 0.149 0.026

School distance (miles) 0.323 0.323

Your initial estimate $1,200,000 $1,200,000

What do you think apartment A was sold for?     

What do you think apartment B was sold for?     

→

(d) Survey instrument used for gathering partici-
pants’ post-review estimates in T5. In T3 and
T4, the machine prediction was omitted.

Figure 7.3: Stimulus material.
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online consent form and entered their Prolific worker ID. Next, participants were shown
an introductory text describing the task (Figure 7.2).

Following the approach of Poursabzi-Sangdeh et al. [215], participants were asked to
complete a tutorial in order to familiarize themselves with real estate prices in New York
City. The tutorial consisted of the same ten apartments that were utilized by Poursabzi-
Sangdeh et al. [215]. The ten apartments were shown in random order, and for each
apartment respondents were first asked to estimate its price based on its brief description
(Figure 7.3a), and were then informed about the apartment’s actual listing price (Figure
7.3b).

Next, we gathered the first part of our experimental data—the respondents’ pre-
review price estimates. We asked all participants to estimate the prices of the same
30 apartments. The 30 apartments were selected uniformly at random from the 387
apartments in the dataset, excluding the 10 apartments utilized in the tutorial. The set
of apartments was kept constant across all experimental conditions and respondents.
Throughout the experiment, in all five treatments, the apartments were shown in random
order to avoid order bias [117, 223]. The phrasing and format of the questions and
response options were identical to the tutorial (Figure 7.3a), except that we did not
provide respondents with information about the apartments’ true listing price after they
reported their estimates.

The respondents were then asked to respond to one simple instructed response
item, which served as an attention-check question. Specifically, respondents were asked
to "Please respond to this question by selecting Somewhat disagree as the answer",
using a 5-point Likert scale as the response options. Similar instructed response items
are commonly used for quality assurance purposes in online surveys, as a means of
identifying inattentive or careless respondents [195].

Next, we gathered the second part of our experimental data—the respondents’
post-review price estimates. Respondents were presented with a text describing the
experimental condition they were assigned to, i.e., they were informed about the pro-
cedure they will follow in the review phase. Participants were asked to review their
initial responses in one of five different ways, based on the experimental condition they
were randomly assigned to. The experimental conditions T1–T5 are described in Section
7.2.1 “Experimental Conditions” and depicted in Figures 7.3c and 7.3d. All respondents
reviewed 30 of their estimates. However, depending on the treatment, respondents
reviewed all of their initial estimates one by one (T1 and T2) or a subset of their initial
estimates in a series of pairwise comparisons with possible repetition of the apartments,
up to 3 times, in multiple pairs (T3, T4 and T5).
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Demographic Attribute Sample Census
<35 years 56.4% 46%
35–54 years 32.6% 26%
55+ years 10.8% 28%
Male 50% 49%
Asian 10.3% 6%
Black 10.5% 12%
Hispanic - 18%
Mixed 6.1% -
White 68.5% 61%
Other 4.6% 4%

Table 7.2: Demographics of our study sample, compared to the 2019 U.S. Census [249].

Finally, we gathered participants’ feedback about their experience of participating
in the experiment. Namely, we asked respondents to tell us how much they agree with
the following statements on a 5-point Likert scale from “Strongly agree” to “Strongly
disagree”: (i) The study was interesting, (ii) I would like to take part in a similar study in
the future, (iii) The questions were easy to understand, (iv) The study was too long. At
the end of the study the respondents also had the option to provide additional comments
that they wanted to share with the researchers.

7.2.3 Data Collection

We recruited participants from Prolific—an online crowdsourcing platform which caters
to scientific researchers [205]. Using Prolific’s built-in pre-screening capabilities, we
targeted respondents who: (i) are located in the US, (ii) have participated in at least 10
Prolific studies in the past, and (iii) have an approval rate of at least 95% on these past
studies. We additionally utilized Prolific’s option to provide a sample of respondents
that is balanced with respect to gender, due to the current gender imbalance on the
platform [51].

Our goal was to recruit sufficiently many participants to detect medium-sized effects
(Cohen’s d = 0.5 16) at the significance level of α = 0.05 with power β = 0.95. Using the
statistical software G*Power [86, 87], we calculated that a conservative Wilcoxon-Mann-
Whitney two-tailed test requires 110 respondents per treatment group to detect effects of
the size, significance level and power of interest. In our study, we have five experimental
conditions, leading us to a minimum sample size of 550 respondents. To account for

16In Section C.1 we report the values of Cohen’s d calculated on the gathered dataset.
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Figure 7.4: Average duration of the experiment, per experimental condition, and per experimen-
tal phase. The experimental conditions T1–T5 are shown on the x-axis. The values for
the pre-review experimental phase are shown in blue, while the post-review values
are shown in orange. We report mean values calculated across respondents ± 1.96
standard errors of the mean (SEM).

possible exclusions, incomplete or missing responses, we increased this estimate by 20%
to 660 respondents.

We recruited a total of 660 participants from Prolific, over the course of several
days (30th November – 3rd December 2022) in order to minimize sampling bias that
could occur due to the day in the week or the time of day [50]. Participants were paid
GBP 3.1 for taking part in the study. On average, participants were paid GBP 12.03
per hour, i.e., approximately USD $14.80 per hour—well above the federal minimum
wage of USD $7.25. The median study completion time was 15 minutes and 28 seconds.
The duration of the experiment varied across treatments, as depicted in Figure 7.4. As
expected, there were no statistically significant differences between the average time
taken to complete the pre-review phase of different experimental conditions. However,
we observe significant differences across treatments in the review phase. Specifically, the
review phase in T1 and T2—where respondents reviewed decisions one-by-one—took
significantly less time than in T3–T5, where respondents reviewed pairs of decisions.
When comparing the duration of the pre-review and review phase, T1 and T2 led to
a significant increase in speed. On the other hand, the review phase in T4, where
meaningfully selected pairs were presented without explicit advice, took more time
compared to the pre-review phase. In T3 and T5 both the pre-review phase and the
review phase took a similar amount of time to complete.
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We report the demographics of our sample in Table 7.2. Since none of our hypotheses
rely on demographic data, we did not ask our respondents to complete a demographics
survey, in order to minimize the duration of our experiment, and to align with the data
minimization principle. Hence, we report the data about our participants that we had
access to through the crowdsourcing platform Prolific. Please note that this demographic
data was self reported by Prolific crowdworkers directly to Prolific. Compared to the
US census, our sample is younger, in line with typical samples recruited via online
crowdsourcing platforms [126, 207, 228]. In line with the gender balancing pre-screening
criteria employed during sampling, our sample is balanced with respect to gender. In
terms of ethnicity, we are not able to directly compare our sample to the US census,
since Prolific’s simplified ethnicity prompt did not offer "Hispanic" as a response op-
tion. However, we note that Asian respondents are slightly over-represented and Black
respondents are slightly underrepresented compared to the US census data.

Upon completing the study, participants were asked to provide feedback about their
experience of taking part in this study. Most was positive. On a 5-point Likert scale from
“Strongly agree” (coded as 5) to “Strongly disagree” (coded as 1), participants agreed
with the statements “The study was interesting” (µ = 4.1± 1.0 ), “I would like to take
part in a similar study in the future” (µ = 4.4 ± 0.9), and “The questions were easy to
understand” (µ = 4.6± 0.8), while they neither agreed nor disagreed with the statement
“The study was too long” (µ = 2.7± 1.1).

For the purposes of our analyses, we excluded all responses from participants who
did not complete the full study (i.e., missing or incomplete responses), or who failed the
instructed response attention check questions. A total of 17 respondents (2.6%) failed the
attention check, leaving us with a final sample of 643 respondents.

7.2.4 Decision Aids

7.2.4.1 Developing the Decision Aid Utilized in T2

For T2, we developed a typical example of a decision aid within the judge-advisor system
(JAS) paradigm [33]. It is trained to accurately estimate real estate prices. The algorithm’s
accurate advice can then help steer people towards making accurate estimates of real
estate prices. That is, this decision aid was designed to be aligned with our hypothesis
H2.

While it was not explicitly designed to increase people’s consistency (H3), we still
expect that it will succeed in doing so. If the decision aid successfully steers people
towards its advice, it will trivially lead to an increase in inter-respondent consistency.
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Training Procedure. We trained a linear regression model that used the apartment’s
attributes as independent variables (full list of features shown in Figure 7.3a), and the
apartment price as the dependent variable. We normalized the independent variables to
have zero mean and unit variance. We considered models with L1 (lasso) and L2 (ridge)
regularization and without regularizers, and picked the regularization hyperparameter
values which resulted in the highest coefficient of determination (R2) on a 20% held out
validation set.
Evaluation. The model without any regularizer yielded the highest R2 value: 85.86 on
a test set comprised of 30% of the data. The mean absolute error of this model was
$143,200. Amongst all of the features used in the final model, “Square footage” exhibited
the strongest positive correlation with apartment price (with a weight of 1.08), while
“Total rooms” exhibited the strongest negative correlation with price (with a weight of
-0.3).
Format of Machine Advice. In T2, we provided this model’s estimates rounded to the
nearest $100,000 as machine advice, for ease of interpretation.

7.2.4.2 Developing the Decision Aid Utilized in T4 and T5

The decision aid developed for T4 and T5 differs from the decision aids typically studied
in the machine-assisted decision-making literature. Instead of predicting apartments’
true prices, it is trained to predict people’s comparative valuations of apartments. The
algorithm’s advice can then help steer people towards making estimates that are consis-
tent with other people’s estimates. That is, this decision aid was designed to be aligned
with our hypothesis H3.

Despite being trained only to predict human comparative valuations of apartments,
the wisdom of the crowd enabled this decision aid to accurately predict the true com-
parative valuations of apartments as well. Therefore, we expect it to also succeed in
increasing the accuracy of people’s responses (H2).
Data Gathering. In order to build this tool, we gathered a dataset of human comparative
valuations of apartments. We randomly selected 1000 unique pairs of apartments from
our dataset and split them into 40 batches of 25 pairs. We recruited a total of 850
Prolific workers, who were randomly assigned to one of the batches. After excluding
respondents who failed the attention-check question, we were left with 806 participants.
From these, we excluded the last 6 responses so that each batch was labelled by exactly
20 participants. We gathered the data over several days (8th November – 11th November
2022) to minimize any bias caused by the time at which the data was gathered [50]. The
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participants were paid GBP 2 for taking part in the study, resulting in an average hourly
rate of approximately USD $13.50.

The stimulus material and the experimental procedure were similar to the ones used
in the main experiment, described in 7.2.2. The participants completed a consent form
and entered their Prolific worker IDs, prior to observing an introductory text similar to
the one shown in Figure 7.2. The participants then completed the same tutorial as in the
main experiment, in which they were asked to estimate the prices of 10 apartments prior
to observing their actual listing price, as shown in Figure 7.3b. Finally, respondents were
asked to compare pairs of apartments, which were presented as shown in Figure 7.3d.
Specifically, they were asked to estimate if “Apartment A” or “Apartment B” were more
expensive. Additionally, they were asked how confident they were in their estimate on a
5 point Likert scale, ranging from “Completely guessing” to “Completely confident.” To
avoid order bias [117, 223], both the order of the 30 pairs of apartments and the order of
apartments within a given pair were randomized.
Training Procedure. Using this data, we trained a cross validated logistic regression
classifier with L2 regularization to predict which apartment is perceived as more expen-
sive in a given pair. To form the independent variables for our classifier, we subtracted
the features of pairs of apartments (shown in Figure 7.3a) from one another. We then
normalized them to have zero mean and unit variance. As the dependent variable we
used the confidence weighted majority votes of the participant’s responses. E.g., if a
participant was “Completely guessing” their vote would count as 1

5
and if they were

“Completely confident” it would count as 1.
Evaluation. In the trained classifier “Square footage” was the most important feature,
i.e., it had the largest absolute weight (36.18). The second most important feature was
“Maintenance cost” (18.3). Our classifier predicted people’s comparative valuations of
apartments with an accuracy of 98.4%, cross-validated on five randomly chosen 30% test
sets.

While this classifier was trained to predict people’s comparative valuations of apart-
ments, it also exhibited a high degree of accuracy in predicting apartments’ true compar-
ative valuations. Namely, the accuracy of predicting the pairwise order of apartments
with respect to the ground truth prices was 88.5%. In practice, this tool would have an
even higher accuracy since we prioritized giving advice for pairs where the tool had
high confidence. Such pairs demonstrated a higher accuracy compared to those pairs
where the decision aid had low confidence. The high accuracy of this tool led us to
hypothesize that the decision aid used in Treatments T4 and T5 can increase not only the
consistency (H3) of people’s responses, but also the accuracy (H2) of the participant’s
estimates, despite being trained only on human annotations instead of ground truth labels.
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(a) H1 binary: Fraction of decisions updated. The y-
axis shows the fraction of the 30 initial decisions
that were updated in the review phase.
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(b) H1 magnitude: Magnitude of updates. The y-axis
shows by how much were the 30 initial decisions
were updated in the review phase.

Figure 7.5: H1: Effect of the interventions on people’s propensity to update decisions, across
all 30 apartments. The experimental conditions T1–T5 are shown on the x-axis. We
report mean values calculated across respondents ± 1.96 standard errors of the mean
(SEM).

Format of Machine Advice. In order to provide assistance to participants in T4 and
T5, we used the aforementioned classifier. We utilized this decision aid to identify
pairs of apartments for which people’s estimates did not align with the majority’s
comparative valuation. We prioritized giving advice for pairs where (i) our classifier was
able to accurately predict a typical person’s comparative valuation, and (ii) the predicted
ordering did not match the respondent’s ordering.

First, we converted the 30 apartments used in the main study into 435 pairs by taking
all possible combinations, and predicted which of the apartments in each pair would be
perceived as more expensive by most people. Then we ordered the pairs in a decreasing
order with respect to the classifier’s confidence. In T4 and T5 we iterated through this
list, and asked participants to review their initial decisions which did not align with our
classifier’s predictions. E.g., if they initially estimated that Apartment A cost $600, 000

and that Apartment B cost $900, 000, while the classifier predicted that most people
would perceive Apartment A as more expensive than Apartment B, participants could
have been asked to review this pair of apartments. Participants were asked to review
15 pairs of apartments from this list. A single apartment was limited to appear in at
most 3 pairs, to avoid negative reactions from repeatedly being presented with the same
information. While selecting the pairs to show respondents, we took into account the
decisions they may have updated during the review process.
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Table 7.3: Linear mixed models with crossed random effects for participants and apartments.
The dependent variables for different hypotheses are described in Section 7.2.1. In all
six models, the four independent variables T2–T5 correspond to a one-hot encoding
of the five experimental conditions T1–T5, and T1 is treated as the reference category.
I.e., intuitively, the row “Cons.” shows the estimated value of the constant term (or
intercept) that corresponds to the effects of treatment T1, while the rows T2–T5 show
how the effects of these treatments differ compared to T1. Hence, to reason about the
effects of T2–T5, one needs to sum up the values of the constant term and the treatment
of interest. N denotes the number of data points used to fit a specific model. Each
of our 643 respondents answered questions about 30 apartments, resulting in a total
of 19290 data points. Please note that in H1’ some of the data points are discarded,
as described in Sections 7.2.1 and 7.3.2. Standard errors are shown in parentheses.
Statistical significance of coefficients is indicated as follows: * p < 0.05, ** p < 0.01, *** p
< 0.001.

H1: change, H1’: change, H1: change, H1’: change, H2: H3:
bin., overall bin., specific mag., overall mag., specific accuracy consistency

T2 0.383*** 0.383*** 113634.1*** 113634.1*** 97299.5*** 119916.8***

(0.0216) (0.0260) (9608.2) (13339.4) (6022.1) (6840.6)
T3 0.00179 0.157*** 11897.4 52257.4*** -7141.5 -10044.1

(0.0215) (0.0264) (9589.6) (13489.2) (6010.5) (6827.3)
T4 0.103*** 0.395*** 55471.8*** 140695.3*** 25568.7*** 24214.8***

(0.0218) (0.0269) (9685.0) (13713.6) (6070.3) (6895.3)
T5 0.138*** 0.449*** 49783.9*** 130046.7*** 20490.2*** 24042.4***

(0.0216) (0.0266) (9608.2) (13596.1) (6022.1) (6840.6)
Cons. 0.290*** 0.290*** 65461.5*** 65461.5*** 7563.6 2271.4

(0.0212) (0.0216) (11207.0) (13277.9) (6679.6) (5555.7)
N 19290 14659 19290 14659 19290 19290

7.3 Confirmatory Results

In this section, we present the results of our confirmatory analysis. We compare the
baseline reviewing procedure T1 to our interventions T2, T4 and T5, in terms of their
effect on people’s propensity to update their initial estimates (H1 and H1’), and the
accuracy (H2) and consistency (H3) of people’s estimates.

7.3.1 H1: Overall Change in Decisions

In all five experimental conditions, we observe that people update some of their 30 initial
decisions in the review phase. However, the number of decisions that are updated and
the magnitude of these updates varies substantially between the experimental conditions.
Compared to the control condition T1 our interventions T2, T4 and T5 lead to a higher
propensity to update decisions in the review phase. That is, our results support H1.
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This holds both in terms of the number of decisions that were updated (H1 binary) and
the magnitude of the change (H1 magnitude).
H1 binary: Number of Decisions Updated. Descriptively, we find that the fraction of
decisions that are updated varies between treatments (first column of Table 7.3 and
Figure 7.5a). In both T1 and T3 people update approximately 29% of their decisions,
i.e., they update the estimated prices of 8.7 out of 30 apartments on average. In T4 and
T5 people update a larger fraction of their decisions than in T1 and T3—close to 39%

(11.8/30 apartments) and 43% (12.8/30 apartments) respectively. The treatment T2 has
proven to be the most effective in prompting people to update their decisions, with
approximately 67% of decisions (20.2/30 apartments) being updated.

These descriptive observations are corroborated by our statistical analyses. The
regression in the first column of Table 7.3 shows that all five treatments significantly
influence human decisions. T2, T4 and T5 are significantly more effective than T1, while
the effect of T3 was not significantly different than that of T1. Subsequent Wald tests
performed on the estimated model confirmed that T4 and T5 are also more effective than
T3 (p < 0.001), but did not identify a significant difference between the effects of T4 and
T5 (p = 0.35). Finally, T2 was shown to be significantly more effective than all of the
other treatments (p < 0.001).

That is, we find that people are more likely to update their decisions when reviewing
meaningfully selected pairs of apartments and when machine advice is provided.
H1 magnitude: Magnitude of Updates. Our findings related to the magnitude of the
changes are aligned with the findings about the number of decisions updated (third col-
umn of Table 7.3 and Figure 7.5b). In T1, people update their decisions by approximately
$65, 461 on average. In T3, the average update is close to $77, 359. The effect of both T1
and T3 is significantly different than zero (p < 0.001), and the difference between these
two treatments is not statistically significant (p = 0.214). In T4, the average magnitude
of the change was close to $120, 933. This is a significant increase compared to both
T1 and T3 (p < 0.001). In T5, people updated their decisions by $115, 245 on average,
which is significantly more than T1 and T3 (p < 0.001), but not significantly different
than T4 (p = 1). Finally, people changed their decisions by close to $179, 096 in T2. The
magnitude of this change is significantly larger than in any of the remaining treatments
(p < 0.001).

In short, we find that people update their decisions by a larger amount when they
review them as a series of meaningfully chosen pairwise comparisons and when they
observe machine advice.
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(a) H1’ binary: Fraction of decisions updated. The
y-axis shows the fraction of the decisions shown
in the review phase that were updated.
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(b) H1’ magnitude: Magnitude of updates. The y-axis
shows by how much the decisions shown in the
review phase were updated.

Figure 7.6: H1’: Effect of the interventions on people’s propensity to update decisions, across
the subset of apartments that were shown in the review phase. The experimental
conditions T1–T5 are shown on the x-axis. We report mean values calculated across
respondents ± 1.96 standard errors of the mean (SEM).

7.3.2 H1’: Propensity to Change Particular Decisions

H1 considers the overall effect of our interventions across all 30 apartments. However,
in T3–T5 participants were able to update only a subset of their initial decisions. In H1’
we account for this and focus on the effect of our interventions across the apartments
shown in the review phase.

In all five experimental conditions, respondents updated some of the decisions they
were shown in the review phase. As in H1, the number of decisions that were updated
and the magnitude of the updates varied significantly between treatments. When com-
pared to the baseline treatment T1, our interventions T2, T4 and T5 result in a higher
propensity to update decisions for the particular apartments shown in the review phase.
I.e., our findings support H1’. Again, this holds both for the number of decisions that
were updated (H1’ binary) and the magnitude of change (H1’ magnitude).
H1’ binary: Number of Decisions Updated. The second column of Table 7.3 and Figure
7.6a provide information about the fraction of apartments shown in the review phase
that respondents updated. For treatments T1 and T2 the results are identical to those
related to H1, since all 30 apartments were shown in the review phase. Namely, in T1
respondents updated 29% of their decisions (8.7/30 apartments), while they updated
67% of their decisions (20.2/30 apartments) in T2. For T3–T5, results change substantially
once we account for the fact that respondents could not update all 30 apartments in
the review phase. While T3 was not significantly different than T1 in H1, in H1’ we
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identified a significant difference between these two treatments. Namely, respondents
updated 44% of the decisions they were shown in the review phase in T3. The effects
of T4 and T5 were even stronger, with respondents updating 69% and 74% of decisions
they had access to in the review phase.

Our statistical analyses indicate that all treatments were significantly more effective
than the baseline treatment T1 (p < 0.001). Treatments T4 and T5 were not significantly
different from each other (p = 0.1497), but they were both more effective than T3
(p < 0.001). Unlike in H1, T2 was not the most effective treatment. While it was
significantly more effective than T1 and T3 (p < 0.001), it was not significantly different
from T4, and it was less effective than T5 (p = 0.0421).

On a high level, we found that people are more likely to update their decisions when
asked to review them as a series of pairwise comparisons and when they are provided
with machine advice.
H1’ magnitude: Magnitude of Updates. The results of our analysis about the magnitude
of changes are in line with our results about the amount of decisions that were updated
(fourth column of Table 7.3 and Figure 7.6b). For T1 and T2, the results are the same as in
H1: people update their decisions by approximately $65, 461 in T1 and by $179, 096 in
T2. In T3–T5 the magnitude of the updates is significantly higher than in H1, with an
average update close to $117, 719 in T3, $206, 157 in T4 and $195, 508 in T5.

T1 is significantly less effective than the remaining four treatments (p < 0.001), and
T3 is in turn significantly less effective than the remaining three treatments (p < 0.001),
which are not significantly different between each other.

In other words, respondents updated their decisions by a larger amount when
reviewing them as a series of pairwise comparisons and when they had access to machine
advice.

7.3.3 H2: Accuracy of Respondents’ Decisions

Next, we study the impact of our interventions on the quality of the decisions—the accu-
racy of people’s estimates. We find that interventions T2, T4 and T5 significantly improve
the accuracy of people’s post-review decisions, compared to the baseline treatment T1.
That is, our results are in line with H2.

In H1 and H1’ we found that all five of our experimental conditions influenced
people’s decisions. However, not all of the reviewing procedures led to an increase in
the accuracy of people’s decisions. As shown in the fifth column of Table 7.3 and in
line with Figure 7.7, the reviewing procedure utilized in T1 and T3 did not lead to a
significant increase in the accuracy of people’s post-review estimates, compared to their
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Figure 7.7: H2: Effect of the interventions on the accuracy of respondents’ decisions. The experi-
mental conditions T1–T5 are shown on the x-axis. We report mean values calculated
across respondents ± 1.96 standard errors of the mean (SEM).

initial estimates. However, the remaining treatments did have a significant positive
effect. Both T4 and T5 led to an increase in accuracy that is significantly higher than
the one observed in T1 and T3 (p < 0.001). In T4 people’s estimates of apartment prices
improved by an average of $33, 132, and in T5 by $28, 054. The difference between T4 and
T5 was not significant (p = 1). T2 led to a significantly higher improvement in accuracy
(p < 0.001) than the remaining treatments—people’s post review estimates were closer
to the ground truth by an average of $104, 863, compared to their initial estimates.

That is, while all treatments influenced people’s decisions, not all of them led to
an improvement in the accuracy of people’s decisions. Only reviewing meaningfully
selected pairs of apartments and having access to machine advice increased the accuracy
of people’s estimates.

7.3.4 H3: Consistency Between Respondents’ Decisions

In this Section, we investigate the effects of our interventions on the consistency between
the decisions of different respondents. The patterns we identify are qualitatively similar
to those related to the accuracy of people’s decisions (H2). Namely, our interventions T2,
T4 and T5 lead to a significantly higher increase in consistency between the post-review
decisions of different respondents, compared to the control condition T1. That is, the
results support H3.
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(b) The y-axis shows the difference between the
inconsistency in people’s pre-review and post-
review decisions.

Figure 7.8: H3: Effect of the interventions on the consistency between respondents’ decisions.
The experimental conditions T1–T5 are shown on the x-axis. We report mean values
calculated across respondents ± 1.96 standard errors of the mean (SEM).

As shown in the sixth column of Table 7.3 and in line with Figure 7.8, treatments
T1 and T3 do not lead to an increase in people’s consistency, while T2, T4 and T5 do.
Compared to the consistency between respondents’ pre-review estimates, T4 and T5
increase respondents’ post-review consistency by $26, 486 and $26, 314 respectively. The
difference between T4 and T5 is not significant (p = 1), and the increase observed in both
of these treatments is significantly higher than the effects observed T1 and T3 (p < 0.001).
Treatment T2 increases the degree of consistency in people’s post-review decisions by an
average of $122, 188, and this effect is significantly higher than the ones observed in any
of the other treatments (p < 0.001).

On a high-level, we found that while all treatments influenced the respondents’
decisions, some of them did not have an impact on the degree of consistency between
the estimates of different respondents. Comparisons of meaningfully selected pairs of
apartments and access to machine advice have yet again proven to be effective strategies.

7.4 Exploratory Results

In the previous section, we present the results of our pre-registered confirmatory statisti-
cal analyses. In this section we present the results of additional exploratory analyses.

In Section 7.4.1 and 7.4.2 we present additional results related to H2 and H3 respec-
tively. Namely, in Section 7.4.1 we explore different measures of agreement between
people’s responses and ground truth labels, while in Section 7.4.2 we explore various
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Figure 7.9: Error in people’s implicit relative judgments. The y-axis shows the fraction of in-
stances where people’s implicit relative ordering of apartments (>,< or =) did not
match the ground truth ordering based on the listing price. We report mean values
calculated across all respondents and pairs of apartments ± 1.96 standard errors of
the mean (SEM).

measures of agreement between different people’s responses. Finally, in 7.4.3 we explore
the agreement between people’s responses and machine advice.

7.4.1 Other Measures of Accuracy

In Section 7.3, we studied the effect of our interventions on the accuracy of peoples’ esti-
mates of apartment prices. In this section, we go beyond the accuracy of people’s absolute
judgments about apartment prices, and consider the accuracy of their implicit relative
judgments. We further explore the directionality of people’s errors, by investigating
whether people tend to overestimate or underestimate apartment prices.

7.4.1.1 Accuracy of People’s Implicit Relative Judgments

We start by deriving people’s implicit relative judgments from their absolute estimates.
For each pair of apartments (A,B), we check if a respondent estimated Apartment A to
be more expensive (>), less expensive (<) or equally as expensive (=) as Apartment B.
Then we compare these implicit relative judgments with the ground truth (i.e., with the
relative ordering of apartments based on their listing price).

In Figure 7.9, we report the fraction of instances where people’s implicit relative
ordering differed from the apartments’ true ordering. Descriptively, we observe that the
error in people’s pre-review relative estimates is similar across all experimental condi-
tions. In experimental conditions T1 and T3, the error in people’s pre- and post-review
estimates remained similar. However, in T2, T4 and T5, the error decreased by 5.2, 5.1 and
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(a) Distribution of errors in respondents’ pre-review
estimates.
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(b) Distribution of errors in respondents’ post-
review estimates.

Figure 7.10: Distribution of errors in respondents’ estimates, across all treatments. The x-axis
shows the magnitude of errors, i.e., the difference between the apartments’ true
prices and the respondents’ estimates. The y-axis shows the number of responses in
our dataset that exhibited a certain magnitude of error.

5.0 percentage points respectively. That is, treatments T2, T4 and T5 reduced the error
in people’s implicit relative judgments by 22.1%, 20.4% and 20.5% respectively. These
exploratory findings are in line with our findings related to people’s absolute judgments.

7.4.1.2 Directionality of Errors

In this section, we take a closer look at the directionality of people’s errors. Namely,
we explore whether respondents tend to systematically overestimate or underestimate
apartment prices.

In our experiments, we utilized a dataset of apartments introduced by Poursabzi-
Sangdeh et al. [215]. The dataset contains information about apartments located in
New York City, that were listed for sale between 2013 and 2015. Since the prices of
real-estate have increased between the mid-2010s and today, it is possible that people
systematically overestimate the prices of these apartments. On the other hand, since we
utilize a dataset of apartments located in New York City, which is significantly more
expensive than other US cities, it is possible that people systematically underestimate the
prices of these apartments. In this section, we investigate if people’s errors exhibit either
of these patterns. We note that even if people exhibited such a systematic bias in their
errors, this would not affect the validity of our results. Any systematic overestimation
or underestimation related to the apartments used as stimulus material would be the
same across treatments, since they utilize the same 30 apartments. Since our hypotheses
concern the differences between experimental conditions, this would not impact our
results.
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Figure 7.11: Directionality of response updates. The y-axis shows the fraction of revised responses
that were updated to increase (blue) or to decrease (orange) the initial price estimates,
for each of the experimental conditions T1-T5, shown on the x-axis.

We commence by exploring the directionality of errors in people’s initial estimates
of apartment prices. In Figure 7.10a we show the distribution of errors in people’s
pre-review estimates. Values on the right side of the x-axis correspond to instances where
respondents underestimated apartment prices, while values on the left correspond to
instances of overestimating apartment prices. Descriptively, the distribution is fairly close
to normal, but it exhibits a right skewness. That is, our respondents both underestimated
and overestimated apartment prices in their initial estimates, but they were more likely
to underestimate them. Next we investigate how participants updated their initial
responses in our five experimental conditions. In Figure 7.11 we report the direction
in which respondents updated their estimates in the review phase. When reviewing
their responses, respondents were found to both increase and decrease their estimates of
apartment prices, but they were were more likely to increase them. That is, respondents
were more likely to initially underestimate apartment prices, but they were more likely
to increase their initial estimates while reviewing them. This leads us to the distribution
of errors in people’s post-review estimates shown in Figure 7.10b. Descriptively, the
distribution of post-review errors is more narrow than the distribution of pre-review
errors, in line with the increase in the accuracy of people’s decisions. Additionally, the
distribution is less skewed. That is, the reviewing procedure helped people reduce the
systematic bias in the directionality of their errors.



Chapter 7. Designing a new fair ADMS: Human decision-makers 151

T1 T2 T3 T4 T50.0

0.2

0.4

0.6

0.8

In
tra

cla
ss

 c
or

re
la

tio
n 

co
ef

fic
ie

nt

Pre-Review Post-Review

(a) Intraclass correlation. The y-axis shows the Intra-
class correlation among respondents over all the
apartments. A higher value indicates a higher
degree of consistency.
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(b) Gini coefficient. The y-axis shows the Gini coeffi-
cient of people’s responses averaged across apart-
ments. A lower value indicates a higher degree of
consistency. We report mean values ± 1.96 stan-
dard errors of the mean (SEM).

Figure 7.12: Effect of the interventions on the consistency of people’s absolute judgments. The
experimental conditions T1–T5 are shown on the x-axis.

7.4.2 Other Measures of Inconsistency

In Section 7.3, we quantified consistency as the degree of agreement between respondents’
estimates. In this section, we investigate whether our findings hold for a broader set of
measures of inter-annotator consistency.

We explore the consistency of two types of dependent variables: the respondents’
absolute judgments, and their implicit relative judgments. In the former, we quantify
the consistency between respondents’ estimates of apartment prices. In the latter, we
focus on the consistency of respondents’ judgements regarding the relative ranking or
ordering of the apartments. That is, we evaluate whether different respondents assign
similar relative positions to the apartments.

We find that our results about the effects of the studied interventions on inter-
annotator consistency are robust across a variety of measures. Descriptively, we observe
that treatments T1 and T3 do not impact the degree of consistency between respondents,
neither in terms of their absolute judgments nor in terms of their implicit relative judg-
ments. On the other hand, treatments T2, T4 and T5 are found to improve both types of
consistency notions. For people’s absolute judgments, T2 leads to the greatest increase
in consistency. For implicit relative judgments, T4 and T5 increase the overall ranking
consistency the most, while all three treatments lead to a similarly large increase in
pairwise ranking consistency.
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7.4.2.1 Consistency of People’s Absolute Judgments

Intraclass Correlation Coefficient (ICC). The ICC17 is typically used as a metric to
assess annotators’ reliability. An estimate by annotator i for apartment a is modelled
as xi,a = µ + αi + βa + εi,a, where µ is the unobserved overall mean, αi models the
random effect specific to annotator i, βa represents the random effect due to the features
of apartment a, while εi,a represents the noise. With this model of annotator estimates,
ICC is defined as follows:

ICC =
σβ

σα + σβ + σε
. (7.1)

Here, σβ represents the variability in the estimates due to differences in the features of the
apartments such as their size or number of rooms. σα captures the variability resulting
from the differences in the scales used by different respondents, e.g., some respondents
may consistently provide higher estimates than others. σε accounts for the variability
arising due to noise in respondents’ evaluations.

If the variability in the estimates is predominantly due to apartments’ features the
ICC value would be high. Conversely, if there is a high variance in the magnitude of the
estimates due to differences in scales (σα) or noise (σε) ICC would be lower. Essentially,
the ICC captures how responses cluster for each apartment. A value of zero implies
that there are no clusters, and each response is likely to be independent. A value of one
implies that all the responses are the same.

Descriptively, we observe that the ICC of people’s pre-review estimates is similar
across all five treatments, as shown in Figure 7.12a. In treatments T1 and T3 the ICC of
people’s post-review estimates remained similar to the ICC of their pre-review estimates.
However, in treatments T2, T4 and T5 people’s post-review estimates exhibited a higher
ICC than their pre-review estimates. Namely, we observe an increase of 0.21, 0.14 and
0.13 in T2, T4 and T5 respectively.

It is important to note that although ICC is a consistent statistic, it has a positive bias,
i.e., it overestimates the true value. Additionally, it relies on several assumption such
as α, β and ε having an expected value of zero and β being uncorrelated with α and ε.
Below, we consider a metric that does not rely on such modeling assumptions: the Gini
coefficient.
Gini Coefficient. The Gini coefficient is a measure of dispersion commonly used to
quantify inequality within groups, such as wealth inequality within a nation. Unlike the

17We calculated the ICC using the Pingouin library [251]: https://pingouin-stats.org/
build/html/generated/pingouin.intraclass_corr.html. We report the ICC3 values, which—
in line with our setting—assume a fixed set of k respondents for each instance.

https://pingouin-stats.org/build/html/generated/pingouin.intraclass_corr.html
https://pingouin-stats.org/build/html/generated/pingouin.intraclass_corr.html
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(a) Inconsistency in people’s implicit relative judg-
ments. The y-axis shows the fraction of instances
where people’s implicit relative ordering of apart-
ments (>,< or =) did not match the relative order-
ing of the majority of respondents.

T1 T2 T3 T4 T50.0

0.2

0.4

0.6

0.8

Ke
nd

al
l's

 W

Pre-Review Post-Review

(b) Kendall’s W. The y-axis shows the values of
Kendall’s W statistic calculated on the respon-
dents’ implicit rankings. A higher value indicates
a higher degree of consistency.

Figure 7.13: Effect of the interventions on the consistency of people’s implicit relative judgments.
The experimental conditions T1–T5 are shown on the x-axis.

ICC, the Gini coefficient directly focuses on the differences in respondents’ estimates for
each apartment, without any modeling assumptions. It is defined as follows:

G =

∑k
i

∑k
j |xi − xj|

2 · k ·
∑

j xj
, (7.2)

where x∗ denotes the estimate by respondent ∗ and k is the number of respondents. This
value captures the dispersion of people’s responses for a given apartment. A value of
zero indicates that the responses are closely clustered together, while a value of one
means the estimates are completely dispersed. To quantify the dispersion across all
apartments, we calculate the average Gini coefficient across all 30 apartments.

We report our findings in Figure 7.12b. Descriptively, we found a similar trend as for
the ICC. For treatments T1 and T3, the Gini coefficients of people’s pre- and post-review
estimates remained similar. On the other hand, in treatments T2, T4 and T5, people’s
post-review estimates exhibit a lower Gini coefficient, with a decrease of 0.08 in T2, and
a decrease of 0.02 in T4 and T5.

7.4.2.2 Consistency of People’s Implicit Relative Judgments

Pairwise Consistency. We consider a measure of consistency analogous to the measure
of accuracy described in Appendix 7.4.1. We again derive people’s implicit relative



Chapter 7. Designing a new fair ADMS: Human decision-makers 154

judgments from their absolute estimates. For each respondent and for each pair of apart-
ments (A,B), we check if Apartment A was estimated to be more (>), less (<) or equally as
expensive (=) as Apartment B. However, instead of comparing a respondent’s implicit rel-
ative judgment with the ground truth ordering, we compare it to the other respondents’
orderings—namely, to the majority vote of others’ implicit relative judgments.

In Figure 7.13a, we show the average degree of disagreement between individual
respondents’ relative judgments and the majority vote. We observe that people’s pre-
review estimates are similarly consistent across all experimental conditions. In treatments
T1 and T3, people’s post-review estimates exhibit a similar degree of pairwise consistency
as their pre-review estimates. However, in treatments T2, T4 and T5 we find that the
average disagreement with the majority vote is decreased by 7.5, 6.9 and 7.1 percentage
points respectively. It is important to note that the pre-review inconsistency was already
quite low, leaving little room for improvement. The observed decrease in inconsistency
in T2, T4 and T5 respectively correspond to 38%, 32% and 35% of the total possible
decrease.

While this metric focused on pairwise consistency, below we consider a metric that
quantifies the consistency in the overall ordering of the apartments: Kendall’s W.
Kendall’s W. In order to assess the consistency of respondents’ overall ordering of apart-
ments, we treat the provided price estimates as implicitly ranking all of the apartments
from the least expensive to the most expensive, allowing for ties. We then quantify
the consistency between the respondents’ implicit rankings utilizing Kendall’s W,18 a
non-parametric statistic for rank correlation.

Kendall’s W is commonly employed to evaluate agreement amongst respondents
in ranking tasks. At a high level, Kedall’s W corresponds to the normalized sum of
squared deviations from the mean in the rankings. A value of one would indicate perfect
agreement amongst respondents, while a value of zero would indicate no agreement.

In Figure 7.13b we show the values of Kendall’s W statistic calculated on the re-
spondents’ implicit pre-review and post-review rankings. Descriptively, we observe
that in treatments T1 and T3, the respondents’ pre-review and post-review rankings are
consistent to a similar degree. However, treatments T2, T4 and T5 show an increase in
Kendall’s W of 0.12, 0.16 and 0.15 in the post-review rankings compared to the pre-review
rankings.

18We used the Pingouin library [251] to compute Kendall’s W: https://pingouin-stats.org/
build/html/generated/pingouin.friedman.html. Please note that Kendall’s W is computed
with a correction for ties.

https://pingouin-stats.org/build/html/generated/pingouin.friedman.html
https://pingouin-stats.org/build/html/generated/pingouin.friedman.html
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7.4.3 Agreement with Machine Advice

In this section, we investigate the degree of agreement between the respondents’ esti-
mates and machine advice. That is, we explore how observing machine advice impacted
people’s estimates. Did respondents adjust their initial estimates closer to machine
predictions, or perhaps in the opposite direction? When respondents followed machine
advice, did they copy it exactly or just move closer to it?

In T2, respondents observed the decision aid’s estimates of apartment prices. The
majority of respondents’ estimates were updated in the direction of machine advice
(65%). That is, the absolute difference between people’s estimate and the decision aid’s
estimate became smaller for 65% of responses. However, many estimates were not
updated (33%), and a few estimates were even updated in the direction opposite of
machine advice (2%). Amongst the 65% of price estimates that were updated in the
direction of the observed advice, 47% were revised to exactly match the price predicted
by the decision aid, while the remaining 53% of estimates were just moved closer to the
decision aid’s predictions.

Unlike T2, where participants observed the decision aid’s estimates of apartment
prices, in T5 respondents observed only the decision aid’s comparative valuation of
pairs of apartments. Therefore, we cannot directly compare people’s estimates and the
decision aid’s predictions. However, we can compare the decision aid’s relative ordering
of pairs of apartments and the respondents’ implicit relative ordering based on their price
estimates. As a running example, consider two apartments A and B, a decision aid that
estimated A to be more expensive than B, and respondents who estimated A to be less or
equally expensive as B. The price estimates of 85% of pairs of apartments shown in the
review phase were revised in the direction of machine advice (i.e., the respondents from
the running example either increased their estimate for A, or decreased their estimate
for B, or both). The implicit relative ordering of 11% of pairs of apartments was not
revised, and the estimates of 4% of outlier pairs were revised in the direction opposite of
machine advice (i.e., the respondents from the running example either decreased their
estimate for A, or increased their estimate for B, or both). Among the 85% of pairs that
were revised in the direction of the decision aid’s advice, 97% of the price estimates were
updated so that the apartments’ implicit relative ordering matched the decision aid’s
relative ordering (i.e., the respondents from the running example revised their responses
such that A is estimated to be more expensive than B), while for the remaining 3% of
pairs the price estimates were only moved closer to the decision aid’s prediction (i.e., the
respondents from the running example either increased their estimate for A, or decreased
their estimate for B, or both, but A remained less or equally as expensive as B.)
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In T4, participants did not observe any explicit machine advice. However, the pairs of
apartments respondents were asked to review were selected by the decision aid that was
also used in T5, thereby implicitly providing guidance. Hence, we again compare this
decision aid’s relative ordering with people’s implicit relative ordering, for the pairs of
apartments that were shown in the review phase. Despite not having a chance to observe
the decision aid’s relative ordering of apartments, many respondents updated their
estimates in the direction of the decision aid’s predictions. For 69% of pairs estimates
were revised in the direction of machine predictions, 24% of implicit relative orderings
were not revised, and only 7% of estimates were revised in the direction opposite of
machine predictions. Amongst the 69% of pairs revised in the direction of the machine
predictions, 94% of the updates resulted in an implicit relative ordering that matched
the decision aid’s relative ordering (even though the respondents did not observe the
decision aid’s relative ordering), while for the remaining 6% of pairs the price estimates
were only moved closer to the decision aid’s relative ordering.

7.5 Conclusion

In this chapter, we studied methods for alleviating inconsistency in human decision-
making. We identified several approaches that effectively influence human decisions,
improving their accuracy and consistency with other respondents. We identified methods
that are applicable to a wide variety of scenarios, including for settings where one has
access to ground truth data for training decision aids (T2), as well as for settings where
one only has access to human annotations (T4 and T5), but none for settings where no
data is available (T3). All of the treatments that significantly improved decision accuracy
and consistency relied on algorithmic assistance, be it explicit (T2 and T5) or implicit
(T4). As a promising avenue for future work, we see the study of a broader set of notions
of inconsistency, including intra-annotator consistency.



CHAPTER 8
Discussion, Limitations & Future Work

In this chapter, we discuss the implication of the contributions made in this thesis. We
also explore the limitation of our proposed methods and potential avenues for future
works.

As discussion in Section 1, we make contributions in three key aspects of designing
fair algorithmic decision-making systems, namely: i) evaluating fairness of existing
systems/approaches, ii) updating already deployed ADMSs fairly and iii) designing
new fair ADMSs.

8.1 Evaluating (un)fairness of existing approaches/systems

In Chapter 3, we provided a fairness evaluation methodology for discriminative foun-
dation models. Below we discuss the implications of our findings and inspired by our
work provide avenues of potential future works.

8.1.1 Discussion and Implications

Taxonomy: In our work presented in Chapter 3, we proposed a taxonomy to evaluate
discriminative foundation models for potential unfairness. These foundation models
could be used for diverse downstream tasks. Hence, we based our taxonomy on the
categorization of the different tasks. Specifically, we categorized the tasks based on three
axes: i) whether the task involves a human or not, ii) whether the task is subjective or
objective , iii) whether the task requires a parity-based notion or a diversity-based notion
of fairness. Based on the answers to these questions, we considered different metrics of
fairness evaluation. The later two questions are more nuanced and in some cases might
require expert involvement.

We found that our proposed taxonomy can help delineate the types of the tasks for
which different bias mitigation methods are effective.
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Evaluation: Using our taxonomy, we evaluated OpenAI’s CLIP [220] and OpenCLIP [130]
models for unfairness. We also evaluated all the existing bias mitigation methods for
these models along with some additional baselines. We considered three applications,
namely, zero-shot classification, image retrieval and image captioning. Using ten large
scale real-world datasets, we evaluated all the methods for both fairness and performance
metrics.
Bias mitigation methods: We observed significant unfairness in OpenAI’s CLIP and
OpenCLIP models across all applications. However, we found OpenCLIP to be more
unfair than OpenAI’s CLIP. Both of these models have a similar architecture but they are
trained on different data. This implies that the source of the increased bias in OpenCLIP
is the data. Additionally, all the bias mitigation methods improved fairness across
different tasks, which is consistent with the prior work. Notably, Fair PCA consistently
performed well across different tasks while preserving model performance. Essentially,
Fair PCA tries to find representations such that no linear classifier can infer the protected
attribute values. Its efficacy suggests that protected attributes are linearly separable in
the learned representations of foundation models. Furthermore, no single bias mitigation
method proved suitable across all application types and fairness definitions, indicating
the need for the method selection based on the application scenario.
Evaluation tasks: We found that most bias mitigation methods perform well for clas-
sification tasks. For these tasks, we only considered parity-based notions of fairness.
However, for image retrieval methods, where we also considered diversity-based notions
of fairness, simple baselines such as making protected group-specific queries and return-
ing balanced results outperformed more complex methods. In case of image captioning,
we observed minimal disparity in caption quality among images from different protected
groups. However, upon analyzing individual captions, we observed biased language
against women (e.g., more frequent reference to women as ‘nurses’ rather than ‘doctors’
compared to men). We also noted subtle language variations, such as the increased
mention of ‘chef’s’ for female chefs compared to male chefs, particularly in contexts
involving ‘wearing chef’s hat’ or ‘wearing chef’s uniform’. This suggests that women
chefs were only wearing a chef’s hat or uniform. However, due to lack of quality dataset
it was difficult to draw broader conclusions from these findings.

8.1.2 Limitations and Future Works

Expanding the taxonomy: In this work, inline with most of the prior work in fairness
of ADMSs, we only considered potential harms associated with human-centric tasks.
We do not consider non-human tasks due to lack of appropriate datasets. However,
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such harms can exist, e.g., the labelings of religious buildings should be respectful
or if we are retrieving images of ‘beautiful buildings’ the results should have equal
proportions/representations of different religious buildings (e.g., mosques, churches
and temples). We invite future works which also consider these aspects in the taxonomy
for fairness evaluations.
Fairness notions: Additionally, we only considered popular notions of group fairness in
our evaluation. Another avenue for future work could be to incorporate other notions of
group fairness such as counterfactual fairness, preference-based fairness or individual
fairness. However, these different notions come with their own sets of challenges, as
described in Section 2.1. For instance, most methods of individual fairness require
a given similarity metric between the individuals or counterfactual fairness requires
knowledge about the causal graph and preference based fairness methods require access
to the sensitive attribute at the test time.
Captioning Systems: We provided preliminary analyses of the captioning system in our
work mainly due to lack of quality datasets. We invite more future works that provide
diverse datasets that would help in evaluating such systems more thoroughly. This
would require including images of different sensitive groups in scenarios which could
potentially yield biased results. For example, women performing actions which are
typically associated with men or showing diverse races in different professions. This
would help identify if the actions of the people are being associated to their sensitive
feature values.

Another future research direction could be to analyze the subtle differences in the
language used for different protected feature groups and propose metrics and measures
for unfairness evaluation, expanding the current research such as done by Wang et al.
[260].
Developing fair foundation models: Our evaluation methodology provides a princi-
pled foundation for future research in developing discriminative foundation models
that are inherently fair. Based on our taxonomy and evaluation of different types of
methods, we know that in order to satisfy different fairness notions we require different
types of methods. A future direction of research question could be: ‘How can we make
foundation models inherently fair for diverse fairness criteria?’

8.2 Fairly updating an already deployed ADMSs

In Chapter 4, we proposed a notion, measures and mechanisms for a fair update of
an already deployed ADMS. Below we discuss the implications of our finding and the
potential future works it inspires.
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8.2.1 Discussion and implications

Loss-aversive updates: Inspired by literature in behavioral economics, we proposed a
notion of ‘loss-aversive’ update. We argued that when updating a system one should
consider the status-quo system into account. We considered the case where an old ADMS
is being updated into a non-discriminatory system which tries to equalize benefits for
different sensitive feature groups. We argued that the updated system should not increase
the benefits of the disadvantaged groups at the cost of the benefits to the advantaged
groups. Instead, when equalizing benefits among different sensitive feature groups we
should provide at least the same benefits to all the groups that they were getting from
the old system.

The notion of loss-aversively fair update is applicable in scenarios where the re-
sources that are to be distributed are not fixed. For example, if there is a wage disparity
between men and women in a company it would not be feasible to lower men’s wages
to eliminate discrimination. The company can decide to increase women’s salaries from
the profit it makes.
Measures and mechanism: We provided a measure and mechanisms for our proposed
notion of loss-aversive fairness for the binary classification tasks. We show that directly
optimizing our propose measure is non-convex and hence not feasible to solve. We
address this problem by providing convex proxies which can be efficiently solved and
incorporated into existing mechanisms for non-discriminatory classification.

We demonstrated the effectiveness of our proposed mechanism using two synthetic
datasets and two real-world datasets combined with two popular notions of discrimi-
nation, i.e., statistical parity and equality of opportunity. Our results showed that our
methods are effective in updating classifiers loss-aversively. However, this update-
fairness comes at the cost of loss of accuracy. This accuracy and fairness trade-off is
well-documented in the prior research [142, 275].

Our proposed proxy mechanism rely on distance from the decision boundary. Similar
methods have been used in the literature [273, 274]. These methods could be prone to
outliers, e.g., if one datapoint is out of distribution and either too far away or too close to
the boundary it could affect the proxy measures. However, it is a common practice to
remove such outlier datapoints in the pre-processing steps. Our results show that our
methods do not suffer for any adverse effects in the real-world datasets, even though we
do not use any outlier removal pre-processing.
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8.2.2 Limitations and Future works

Other considerations of fair updates: We propose the loss-aversive notion of fair up-
dates to an existing ADMS. For future work, one can look into more notions of fair
updates. One such notion of fair update could be incremental updates, which requires
updating a system incrementally instead of making large and potentially disruptive
changes that the user of the system might consider unfair. This notion of fairness has
roots in incrementalism in the field of policy making [122] and public budgeting [229].
Patro et al. [209] explore this notion of fairness for recommender systems. One can
consider this notion for other applications such as classification.

We demonstrate how we can enforce loss-aversive notion of fairness for groups
of sensitive attribute values. One can also consider this notion at an individual level,
i.e., making sure that an updated system does not reduce benefits for any individual
compared to the status-quo. However, this notion might be too strict and it might lead
to solutions whose performance (e.g., accuracy of the classifier) is very poor. The key
challenge in building such a system would be to come up with mechanism which do not
degrade the performance.

Furthermore, one can also perform human-subject based studies to ascertain different
aspects of update-fairness. Then, one can try to incorporate these aspects when updating
ADMS.
Beyond binary classification: In our work, we focus on binary classification. The
motivation behind our notions of fair updates generalize to any algorithmic decision
making scenario that affects people’s lives including search and recommender algorithms
such as Google’s search, Facebook’s NewsFeed, Amazon’s product recommendations or
market-matching algorithms like Uber’s rider-driver matching algorithms. Exploring
how our notion loss-averse updates can be applied to these more complex algorithmic
decision making scenarios (beyond binary classification) remains an open challenge.
Beyond non-discriminatory updates: We demonstrate how one can incorporate no-
tions of loss-aversively fair update when a status-quo classifier is updated to a non-
discriminatory classifier. One can also show results using other notions of fairness such
as individual fairness or preference-based fairness notions. Additionally, one can also
consider incorporating update-fairness when updating the training dataset. Specifically,
how can we account for a fair update when we gather more features or data?
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8.3 Designing new fair ADMS

8.3.1 Time-Critical Influence Maximization

In Chapter 5, we demonstrated how one can operationalize a popular group fairness
notions, namely statistical parity, in time-critical influence maximization (TCIM) for two
variants of the problem, i.e. under budget constraints and under coverage constraints.
We also provided efficient mechanisms to solve these problems and demonstrated our
findings using a motivating example, several synthetic datasets and several real world
datasets. In this section, we discuss the limitations and potential future work inspired by
our findings.

8.3.1.1 Discussion and Implications

Time-critical influence maximization: We studied the problem of influence maximiza-
tion under time-criticality which relates to propagating time-sensitive information in
a graph. Specifically, the problem involves finding the most influential nodes where
influence is only allowed to be propagated under a time threshold. We rely on existing
notion of time-criticality in the literature proposed by Chen et al. [54].

We operationalized the notion of statistical parity in TCIM and showed that time-
criticality can have an impact on the level of unfairness in graph. Specifically, we found
that, in cases of high in-group preferential attachment [194] the disparity in fraction of
the influenced nodes per group increased as the time deadline increased. However, in
cases where the groups might be connected to more diverse groups in the graph, the
disparity of the fraction of influenced nodes across groups decreased as the time deadline
increased.
Independent cascade model: We focused on independent cascade mode of propagation
of influence in the graph. Specifically each edge in the graph is associated with an
activation probability according to which a node tries to influence its neighbors.

We found that the disparity across the groups tends to be lower for higher activation
probabilities. This seems intuitive as a higher activation probability implies more nodes
are influenced and hence there is a lower chance for disparity across the groups.
TCIM-BUDGET: Influence maximization problem under budget constraint constitutes
finding a prescribed number of the most influential nodes in a graph.

In our experiments, we found that as the budget increased the disparity across the
groups also increased. A reason for this could be that as the budget is increased more
majority communities – both in terms of number of nodes and amount of connections
– get influenced more. For practical problems, usually a small budget is used but we
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hypothesize that if the budget is increased a lot the disparity between different groups
would likely lower eventually because all the groups would have a higher chance to be
influenced.

We also found a higher disparity of influence across groups i) when the groups
sizes differed more and ii) when groups exhibited more homophily, i.e., groups had
considerably more edges within-group than across-groups. Both of these cases lead to a
higher influence in the majority group.
FAIRTCIM-BUDGET: Incorporating statistical parity constraints directly in the TCIM
problem yielded an intractable problem. To tackle this issue, we proposed a submodular
proxy that can be approximately solved with the greedy heuristic. We also provided a
theoretical bound for the performance of our algorithm.

Our solution relies on the assumption that groups with a higher fraction of influence
w.r.t their group sizes also have a higher absolute influence by a given set of seeds.
We observed that, in practice, such groups also had comparatively larger sizes, i.e.,
they are the majority group. We designed our solutions that encourage influence in
the groups which have a lower absolute influence. Using several real-world datasets,
we demonstrated that our assumption holds. However, theoretically it is possible that
the minority groups have a higher fraction of influence while having lower amount of
absolute influence. In the literature, such scenario is called reverse discrimination [242].
Our solution does not address such cases.

We also provided a way to trade-off between reducing disparity and utility. This is
inline with other in-processing methods for designing fair ADMS [274, 275]. By varying
the curvature of the H (Eq. P5.4) policy makers can pick an acceptable trade-off. We
demonstrated the trade-off in our experiments in Sections 5.4.2 and 5.5.2 .

Using several synthetic datasets and real-world datasets we demonstrated that our
methods are able to mitigate bias for different budgets, activation probabilities, time
deadlines, number, sizes and types of groups, and connectivity within and across groups.
We also showed that the performance drop due to fairness constraints is within our
proposed theoretical bounds.
TCIM-COVER: We also study the TCIM problem under coverage constraints, which
constitutes finding the most influential seed nodes such that at least a prescribed fraction
of nodes are influenced. We studied the potential fairness issues in this problem.

In our experiments, we found that there was an increase in disparity across different
groups as we increased the required minimum influence-threshold. We hypothesize that
if a very high minimum influence-threshold is chosen the disparity across groups might
decrease. However, for practical problems it does not seem feasible. We also found that
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as the required minimum influence-threshold increased the cost, i.e, number of seeds
required to influence the prescribed fraction of nodes, grew exponentially.

For a give threshold, we also found that over the iteration of the algorithm, i.e.,
greedily choosing seeds one-by-one, the disparity between the per group-influence
increased linearly. This is especially interesting because in cases where selection of the
seed set does not occur in one timestamp. For example, if a company would like to
advertize to people in batches the people who get the information early might benefit
more. So it is important to equalize influence across socially salient groups throughout
the iteration of the algorithm.
FAIRTCIM-COVER: Incorporating statistical parity constraint in the TCIM-COVER

problem yields an intractable formulation. To address this problem, we proposed a
submodular proxy that can be approximated with a greedy heuristic. Additionally, we
provided theoretical bounds for the performance of our approach.

Our solution ensures that all the groups must be influenced at least up to the prescribed
threshold (Q). In theory, our methods could lead to a disparity of up to 1 − Q across
different groups. However, in practice we observed much lower disparities among the
groups. High disparity could theoretically arise if the most efficient way of influencing
the under-represented group is by increasing the influence in the over-represented
group. However, prior research and our experiments indicate that groups tend to exhibit
homophily and preferential attachment. This suggests that we can influence one group
without necessarily needing to influence others, as demonstrated by our experiments.

Using several synthetic dataset and real-world datasets, we demonstrated that our
approach is able to mitigate disparity in fraction of influenced nodes across groups i)
for different thresholds, and ii) throughout the iteration of the algorithm. Furthermore,
we demonstrated that our method only incurred a small cost, in terms of increase in the
number of seeds as predicted by our theoretical results.

8.3.1.2 Limitations and Future Works

Other notions of fairness: In our work, we focused on statistical parity for the TCIM
problem. We leave the exploration of other notion of fairness to future work. For instance,
a possible avenue of future research could involve enforcing equality of opportunity in
this problem.

Let us consider the problem of job advertisement through a network using TCIM. A
key question arises: Did an equal number of eligible individuals from different sensitive
feature groups receive the advertisement? A challenge is to identify the eligible individ-



Chapter 8. Discussion, Limitations & Future Work 165

uals. Unfortunately, most available datasets lack this crucial information. Hence, we
encourage future research efforts to provide datasets that include this data.

Additionally, if there is a disparity in the eligible individuals receiving the key
information across sensitive feature groups, a naive solution would be removing all the
ineligible nodes and then applying our solutions to enforce statistical parity within the
remaining network. However, removing several nodes and edges from the graph might
result in inefficient propagation, i.e., we might require a lot of seeds for propagation. We
invite future research to devise efficient solutions for addressing this challenge.
Different models of time-criticality Another potential direction of future work is to
examine the fairness implications arising from the differences in the timing of information
reach among different socially salient groups in a social network. In our work, we
considered a node to be influenced if the information is reached to the node before a
prescribed deadline. However, we did not examine if on average any group is getting
the information earlier than the other.

One approach to address this issue is to incorporate time discounting model in
influence maximization problem. This model lowers the weight of the influence if a node
is influenced later than another. Prior work on time discounted influence maximization
by Khan [150] shows that this problem is submodular and hence can be solved efficiently
with greedy heuristic.

A future direction of research could be to enforce fairness notions, such as statistical
parity, along the time dimension of influence maximization. One simple approach to
tackle this could be to adjust the discounting factors for different groups to achieve equal
timings of information reach. We leave more sophisticated and efficient solution for
future exploration.
Achieving fairness by manipulating the graph structure: Existing work [247] shows
that using traditional influence maximization methods for selecting individuals (seed
nodes) in a community for propagating health related information yields biased results.
Specifically marginalized communities tend to be under-informed. Now, let’s consider a
related problem: determining the optimal placement of information centers to maximize
the spread of information. An important research arises: how can we strategically place these
centers to ensure maximum information propagation while mitigating disparities in information
access among marginalized communities?. We can formulate this problem as placing a
prescribed number of seed nodes and edges in a graph to maximize fair influence
maximization.

In the existing literature, a comparable problem is referred to as sensor placement
problem [59]. However, integrating fairness considerations makes this problem more
complex. Additionally, there are limited real-world datasets suitable for addressing this
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problem, particularly datasets that include additional information about nodes locations.
We invite future work to develop such datasets.
Different propagation models: In our work, we focused on independent cascade model
for the influence propagation. Our methods theoretically should also be applicable for
other popular propagation model such as linear threshold model. However, we did
not verify this experimentally. Additionally, we used constant influence probabilities
on the edges, following the existing works [125, 147]. There is existing research on esti-
mation of influence probabilities [170, 224]. We leave the investigation of fair influence
maximization with different propagation approaches to the future studies.
Fairness through representation: Solving influence maximization on very large graphs
can be very costly and in some cases intractable. Recent work influence maximization
through learning representation has shown to achieve faster solutions [173, 178, 206].
As real-world social network graphs where the applications of influence maximization
could have potential fairness concerns could be very large. A future research direction
could be to propose mechanisms for efficiently solving influence maximization combined
with fairness constraints using graph representations.

8.3.2 Model Uncertainty

In chapter 6, we propose to differentiate between the types of errors based on their
uncertainty-origin, when training non-discriminatory systems. In this section, we dis-
cussion the implications of our proposal and findings. We also discuss how our insights
and our proposed methods open new avenues for research.

8.3.2.1 Discussion and Implications

Distinguishing between types of errors: In our work, we proposed to distinguish
between errors caused by two types of uncertainties: aleatoric uncertainty and epistemic
uncertainty. Aleatoric uncertainty arises due to random noise in the data or inherent
stochasticity of the task at hand, whereas epistemic or model uncertainty stems from
a lack of knowledge about the optimal model or lack of data. We argued that while
designing fair ADMS that aim to minimize errors-rates across socially salient groups,
one should equalize errors caused by epistemic/model uncertainty only. Our proposal
stands in contrast to the existing mechanisms for training non-discriminatory methods,
which focus on equalizing over-all error-rates.

Next, we illustrate different aspects of our approach with a practical application
scenario involving an algorithmic predictive system used by a university admissions
department. This system takes two features: high school grades (HSG ∈ {’bad’, ’good’})
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and extra-curricular activities (EC ∈ {‘bad’, ‘good’}). Imagine a system that assigns
positive outcomes to individuals with features HSG = ‘good’ and EC = ‘good’ and
negative outcomes to individuals with HSG = ‘bad’ and EC = ‘bad’. Now suppose two
classifier, equally accurate but differing in their decisions on datapoints with features
HSG = ‘good’ and EC = ‘bad’, and datapoints with features HSG = ‘bad’ and EC =

‘good’. For instance, one classifier favors HSG while the other favors EC. If the univer-
sity were to deploy only one system, it would be seen as unfair by one group or the other.
Additionally, a non-discriminatory classifier aiming equalize total error-rates (for some
sensitive attribute) might assign negative outcomes to datapoints with features HSG =

‘good’ and EC = ‘good’, which would be perceived as unfair by those individuals.
Mechanism to identify different errors: We used the notion of predictive multiplicity to
identify epistemic errors. Predictive multiplicity corresponds to the notion that equally
efficient models yield conflicting outcomes. Given a set of equally efficient models,
we refer to the regions where all the models agree as unambigious regions and the
regions where at least one model disagrees to be the ambiguous region. We argued
that the unambiguous regions characterized by predictive multiplicity only contain
aleatoric errors. This observation is based on the assumption that a sufficiently complex
hypothesis class is used for the prediction task at hand. However, selection of the
hypothesis class falls under the purview of policymakers for the task at hand. For
instance, for a task where model interpretability is prioritized, a simpler models with
clear relationship between input features and outcomes might be favored over more
complex but more accurate models. In these situations, the errors in the unambiguous
regions might contain both aleatoric and epistemic errors. However, the errors in the
ambiguous regions would still only be epistemic errors.

The methods provided by Marx et al. [191] for finding models that exhibit predictive
multiplicity are non-convex and are only applicable for linear models. Their methods
are intractable for larger real-world datasets. In contrast, we proposed convex proxies
which were easily added as constraints with the popular loss functions, such as logistic
regression and SVM. Our methods are based on the average distance from the decision
boundary of the training datapoints. Although this mechanism is prone to outliers – e.g.,
if a single point is very far from the boundary it can affect the proxy measure– it is a
common practice to remove such outliers from the data in the pre-processing steps.
Mechanism to equalize epistemic errors: We also proposed mechanisms to equalize
the epistemic errors-rates across groups of sensitive attributes, as identified by our
methods. Our main insight was to reuse the highly accurate models we use to identify
the ambiguous regions. Our approach relies on the assumption is that some of the
classifiers in the set would have a negative bias towards one group and some of them
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would have a positive bias. We learned a probability mass function for the set of highly
accurate classifiers such that the bias across groups is minimized. Our approach involves
making stochastic decisions instead of deterministic decisions. At the test time, we
select classifiers using the learned probability mass function. Consequently, individuals
with identical features might get a different outcome with our approach. However,
traditional approaches may consistently assign negative outcomes to certain datapoints
in the ambiguous regions, whereas our approach offers every individual in such regions
a nonzero chance of a favorable outcome. We argue that such a system would be more
justifiable in practical scenarios. Furthermore, our approach only alters the outcomes
of individuals whose decisions are ambiguous, meaning we can find another equally
accurate model that gives them a different outcome. This is in contrast to the existing
fairness approaches, which theoretically could alter the outcome of any datapoint.

Our results demonstrate that our methods reduces disparity in group error-rates
in the ambiguous regions while keeping the error-rates in the unambiguous regions
the same. The accuracy of our methods was comparable to the accuracy maximizing
classifiers. Another interesting finding is that the traditional methods of equalizing error-
rates tend to trade-off the disparity in the error-rates across different groups in ambiguous
vs unambiguous regions. For example, we demonstrated that with the traditional non-
discriminatory classifiers, in the COMPAS dataset, more Black individuals were falsely
labelled ‘as likely to recidivate’ compared to the White individuals in the unambiguous
region and vice verse in the ambiguous region. This implies that more black people
whose decisions were unanimously negative by a set of accuracy maximizing classifiers
were wrongfully given a false positive in order to balance the overall error-rate. Errors
in such application of ADMSs are very impactful. Building on our methods, a follow
up work by Cooper et al. [64] propose to refrain making a decision on datapoints with
ambiguous outcomes.

8.3.2.2 Limitations and Future Works

Beyond binary classification. Our notion of separating different types of errors in
algorithmic discrimination can be generalized to any predictive systems. However, oper-
ationalizing these on a more complex tasks beyond binary classification is challenging.
There is a lot of recent interest in the usage of discriminative foundation models for
predictive tasks. Since these foundation models are very difficult to train, it would not
feasible to find predictive multiplicity by training multiple of these models. So a potential
research question could be ‘How can one identify model uncertainty for discriminative
foundation models?’. A naive approach could be to take models that are similar to each
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other, e.g., OpenAI’s CLIP [220] and OpenCLIP [130] and analyze the difference in the
errors made by these models. More sophisticated approaches for such tasks is an open
question.

8.3.3 Human decision-makers

In Chapter 7, we addressed the issue of inconsistency among human decision-makers.
We performed a human-subject based study where we asked the participants to estimate
the prices of apartments (pre-review phase) and then review their decisions (post-review
phase). Then, we analyzed their decisions in the pre-review phase vs post-review
phase for different types of interventions. As a baseline, we measured the effect of
participant’s reviewing their decisions one-by-one (T1). Furthermore, we explored
various sophisticated methods for decision-review and how well they performed in
comparison to the baseline on different metrics of consistency and accuracy. In this
section, we discuss the implications of our methods and findings. Additionally, we
discuss avenues for future works.

8.3.3.1 Discussion and Implications

T2 - Traditional Machine Advice. In this treatment, we asked the participant to review
their decisions one-by-one and showed them the price estimate generated by our decision
aid. Reviewing past decisions with access to machine advice has proven to be more
effective than doing so without machine advice, not only in terms of people’s propensity
to update their decisions, but also in terms of increasing the accuracy and consistency of
their decisions. Our findings related to decision-update and accuracy are in line with
recent research on machine-assisted decision-making and real world applications that
have demonstrated that people are willing to take machine advice, particularly when
the advice is highly accurate [271] (as is the case in the real estate appraisal setting
we consider). We contributed to this line of research by further demonstrating the
effectiveness of traditional decision aids in increasing between-respondent consistency.

Our results indicate that in settings where (i) one has access to ground truth data
that enables the development of accurate decision aids, and (ii) it is deemed normatively
desirable or acceptable to explicitly steer people towards making decisions in line with
machine predictions, traditional algorithmic decision aids are an effective tool for doing
so.
T3 - Randomly Selected Pairwise Comparisons. Past research in psychology [198, 237]
and computer science [202] has found that people are better at making comparative
judgments than absolute ones in certain contexts [198, 237]. Still, people’s pairwise
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preferences are known to be inconsistent [2, 40, 155]. Building upon both lines of
research, we investigated if people’s decisions may benefit from being reviewed in a
series of randomly selected pairwise comparisons, instead of one-by-one.

If this intervention had proven to be effective, it would have important design
implications. This intervention would be suitable for low-resource environments, where
it is difficult or impossible to develop machine decision aids, due to a lack of data for
training them, the inherent difficulty of making accurate predictions in the decision-
making task at hand, or a lack of well-established notions of objective ground truth.

However, in our experiments, we did not find a significant difference between the
accuracy and consistency of decisions that were reviewed one-by-one and those reviewed
in randomly selected pairs. Hence, our results suggest that it might not be sufficient
to switch from absolute to comparative decision-making when reviewing decisions,
without carefully considering how one selects which pairs of decisions to review.
T4 - Consistency-Based Pairwise Comparisons. In T3, respondents were simply asked
to review random pairs of decisions, but in this treatment the reviewing procedure
was guided by an algorithmic decision aid. The decision aid used in this treatment is
quite different compared to T2—it attempts to predict typical human decisions, and asks
people to review their decisions when they do not match the predicted ones. That is, the
algorithmic assistance in T4 helps people determine which pairs of decisions to review.
Specifically, we trained a decision aid that predicts pairwise human decisions (e.g.,
determining whether Apartment A is more expensive or less expensive than Apartment
B). Participants were then presented with selected pairs of apartments for review if
their decisions contradicted the decision aid’s prediction. This format of algorithmic
assistance is—to the best of our knowledge—novel in the machine-assisted decision-
making literature.

Prior research identified scenarios in which people’s decision quality improves upon
switching from absolute to comparative decision making [198, 202, 237]. We found
that switching from an absolute to a comparative reviewing procedure is an effective
strategy for increasing the accuracy and consistency of respondent’s decisions only when
respondents compare meaningfully selected pairs of inputs. The ineffectiveness of T3
demonstrates that a naive approach of randomly selecting pairs of decisions is not
sufficient to reap the benefits of pairwise comparisons. In T4, our goal was to identify
an approach for selecting pairs that would lead to an improvement in two metrics of
interest—accuracy and between-respondent consistency. We have demonstrated that our
approach succeeds in doing so.

While the decision aid utilized in T4 is less effective than the one from T2, it has two
important advantages: (i) it does not require access to ground truth data, and (ii) it does
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not provide explicit advice on how to update decisions. The former makes this approach
suitable for increasing accuracy and consistency even in environments where one does
not have access to ground truth data, or for increasing consistency even in settings where
the notions of “ground truth” and “accuracy” cannot be meaningfully defined. The latter
makes it applicable even in settings where it is not normatively desirable to explicitly
steer people towards specific decisions (e.g., due to concerns about silencing minority
opinions), but to prompt people to review their own decisions and make them mutually
consistent. That is, this intervention may be an excellent candidate for future research on
intra-annotator notions of consistency.
T5 - Consistency-Based Pairwise Comparisons with Advice. Most research on machine-
assisted decision-making (e.g., [113, 215, 271], reviewed in detail in Section 7.1) focused
on algorithmic decision aids that provide explicit advice to human decision makers.
Hence in this treatment, we built upon T4 and additionally give explicit advice to the
participants (e.g., Apartment A was predicted to be less expensive than Apartment
B). Given the plethora of evidence about the effectiveness of explicit advice, one may
have expected T5 to be more effective than T4. However, perhaps surprisingly, T5 was
not significantly more effective than T4 with respect to any of the dependent variables
we studied. Reviewing past decisions as a series of meaningfully selected pairwise
comparisons is equally effective with and without explicit machine advice. Hence, our
results suggest that when it is deemed normatively undesirable to explicitly steer people
towards specific response options, one can omit machine advice without impeding the
effects of the reviewing procedure on the accuracy and consistency of human decisions.

This lack of a significant difference between T4 and T5 showcases the effectiveness
of more subtle, implicit forms of algorithmic guidance. The algorithmic guidance in
T4 is perhaps closer to a nudge [245] than to decision aids in the judge-advisor system
(JAS) paradigm [33] typically studied in the machine-assisted decision-making literature.
The effectiveness of nudging has been extensively studied in the social science literature
[245], but also in CS, particularly in HCI [46] and research on recommender systems
[133]. Our results suggest that research on AI-assisted decision-making could also benefit
from considering a broader set of algorithmic interventions, including implicit advice
and subtle nudges.

In future research, it would be interesting to study why explicit machine advice does
not have an effect in this setting. We hypothesize this might be caused by its redundancy:
when comparing two apartments, respondents might be able to infer the majority’s
comparative valuation of these apartments. Research on incentive mechanisms that rely
on people’s ability to predict others’ responses provides some backing to this hypothesis.
Namely, peer prediction mechanisms [199], in particular Bayesian Truth Serums and
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similar methods [161, 216, 218, 219], ask respondents to predict what others will report
in order to design proper incentives that incentivize truthful reporting. If people are
able to accurately predict the majority’s comparative valuations, explicit machine advice
may not provide any additional information to respondents, and hence have no effect on
their decisions. Future studies can test this hypothesis by evaluating people’s ability to
predict others’ pairwise comparisons.

8.3.3.2 Limitations and Future Work

Notions of Consistency. In our work, we explored the effects of our interventions on
several measures of inter-annotator consistency. In future work, it would be interest-
ing to go beyond inter-annotator consistency, and consider notions of intra-annotator
consistency.

The simplest extension would be the study of intra-annotator consistency across time.
That is, instead of measuring the degree of consistency between different respondents for
the same input, one could measure the degree of consistency of the same annotator for
the same input in different points in time. This extension requires minimal changes to
our experimental design—namely, it requires conducting a longitudinal human-subject
study. This line of work could provide important insights about moderating the effects
of cognitive biases that lead to a person’s inconsistency through time, such as dynamic
inconsistency and hyperbolic discounting [181, 244], or the “hungry judge” effect [69].19

Intra-annotator consistency across time is closely related to counterfactual questions
such as “Would the decision-maker have made the same decision in a different point
in time?” A different notion of consistency—intra-annotator consistency across inputs—
addresses the question “Does the decision-maker make similar decisions for similar
inputs?” This line of research is closely related to research on individual fairness.

A central problem in studying both intra-annotator consistency across inputs and
individual fairness lies in defining the similarity metric which determines which inputs
should be treated as similar. Prior work on individual fairness has assumed such simi-
larity metrics to be given [80], or defined them based on the inputs’ ground truth labels
[136, 179], distance in transformed feature spaces that align with certain distributive
fairness criteria [164, 278], or—as we implicitly did in T4 and T5—based on human
judgments about input similarity [131, 137, 163, 261]. As a promising direction for future
work, we highlight the study of intra-annotator consistency across inputs with personal-

19While the “hungry judge” effect [69] is often referenced as an argument in favor of introducing
algorithmic assistance in legal decision making, the validity of the study’s findings has been much debated
in recent literature [52, 100].
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ized similarity metrics, i.e., the development of methods for identifying decisions that
are outliers, inconsistent with the other decisions made by the same respondent.

In our work, we study methods for alleviating inter-annotator inconsistency. Decid-
ing which notion of inconsistency is appropriate to apply in a given setting is inherently
a normative question. Hence, we invite future work not only on formalizing and
operationalizing different notions of inconsistency, but also philosophical and policy
discussions on the desirability of different—and as discussed below, any—notions of
consistency in specific settings.
Benefits of Human Inconsistency. Our work focused on settings where inconsistency
between multiple decision-makers may be deemed undesirable. As such, the proposed
methods are not applicable and should not be applied in settings where diversity in
people’s beliefs, perceptions, and behavior may be beneficial, or considered normatively
desirable.

Diversity in people’s decisions may reflect the differences in their skill set and
background knowledge, and these differences can be exploited to improve decision-
making quality [266]. Diversity in the composition of groups increases the diversity in
the problem solutions that team members propose, which in turn increases the quality
of group decisions [265]. Heterogeneity in teams can benefit group performance, since
the diversity in the perspectives of different team members can foster creativity and
innovation [226].

Furthermore, people’s beliefs, perceptions and behavior are known to correlate with
their socio-demographics and life experiences. For instance, the rich literature on Moral
Foundations Theory found that sociodemographic characteristics such as political views
[107, 108], gender [108], and educational attainment [252] correlate with people’s moral
views. Lived experiences, such as growing up during an economic recession [99] or ex-
periencing economic shocks [8, 190], correlate with people’s preferences regarding social
policies. Socio-demographic factors [7, 114, 213] and people’s life experiences [114] were
also found to correlate with people’s moral judgments about algorithmic fairness. That
is, the decisions made by members of minority groups may systematically differ from
those made by members of the majority. Therefore, methods for reducing inconsistency
between people may—inadvertently or on purpose—explicitly steer people’s decisions
toward the majority’s view, thereby silencing the minorities’ views.

Hence, prior to applying any methods for reducing inconsistency between decision-
makers, it is crucial to understand the sources of this variation, and to evaluate whether
reducing it would be appropriate and normatively desirable in the decision-making task
at hand.
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Generalizability to Other Domains. In our work, we focused on a real estate appraisal
scenario. While we found large and statistically significant effects of our interventions
for the task at hand, we invite future work that will systematically explore which types of
scenarios our findings generalize to. We opted for this scenario because many laypeople
have prior experience with property valuation (e.g., searching for, purchasing or selling
real estate), but most laypeople do not make highly accurate estimates of real estate
prices. The task we considered may be in the sweet spot between too difficult and too
easy for our respondent sample. We hypothesize that our findings may not generalize to
tasks on either of the extremes.

For tasks that people find easy, such as visual recognition tasks, interventions may
not have an effect if people already exhibit high degrees of accuracy and consistency,
hence not allowing room for significant improvement along either dimension. For tasks
that people find difficult, such as criminal risk prediction, both people and algorithms
may exhibit low levels of accuracy. For instance, in a pilot study we conducted using the
ProPublica COMPAS dataset [17], algorithmic advice (T2, with an accuracy of 58%) did
not have a significant impact on consistency since it increased consistency for some cases,
while decreasing it for others. The latter typically occurred for the non-negligible number
of cases where respondents initially made correct predictions, but incorrect machine
advice steered them away from their initial responses, decreasing their accuracy and
consistency levels.

We further note that we studied the effects of algorithmic assistance on respondents’
accuracy and consistency in a task where (i) the notion of ground truth is well-defined,
and (ii) one could deem consistency between professionals to be normatively desirable.
However, the notions of accuracy and consistency we studied may not be suitable for
every decision-making task. For tasks where there is no well-defined notion of ground
truth, such as subjective tasks, the notion of accuracy cannot be well-defined either.
For subjective tasks, it may also be deemed normatively undesirable to promote inter-
annotator consistency, and one may be in favor of intra-annotator consistency, or a
different metric instead. In short, the problem of choosing an appropriate evaluation
metric is a policy question that requires an understanding of the underlying normative
goals of utilizing algorithmic assistance in the decision-making task at hand.
Interventions. In our work, we reported the effects of five different interventions. In
pilot studies we considered one additional intervention, where we asked respondents
to review all of their initial estimates on the same page, sorted by the apartment prices
they estimated. We initially conjectured that this may allow respondents to conduct
comparisons of apartments that they deemed to have similar prices. However, since (i)
this approach was not scalable to a large number of decisions, and (ii) the effects of this
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treatment showed no statistically significant difference from T1 and T3 in our pilots, we
omitted it from our main study for brevity.

We invite future work that would explore an even broader set of interventions.
As reviewed in Section 7.1, prior work on human advice taking behavior [33] and
on machine-assisted decision-making has identified numerous factors that influence
how people take advice, including the decision aid’s accuracy [271], explainability
[215], and the stakes associated with the decision-making task [113], and future work
could incorporate some of these factors in their interventions. Future work could also
build upon T4 and T5 by developing decision aids that not only predict which of
two apartments is perceived as more expensive, but also identify apartments that are
perceived to be equally expensive. Identifying data points that are perceived as deserving
of similar outputs may be interesting not only for the study of noise in human decisions,
but also for research on individual fairness.
Respondent Samples. In our experiments, we recruited a large and demographically
diverse set of laypeople from the US. Future work could explore if our findings replicate
in other cultures beyond the US. Additionally, it is worth noting that our sample consisted
of laypeople, and it is possible that expert judgments of professionals such as real
estate agents systematically differ from the perceptions of our lay sample. For instance,
professionals may be substantially more accurate in their predictions, thereby having
fewer opportunities to benefit from algorithmic advice. Hence, it may be interesting to
replicate our experiments with industry professionals.



Conclusion

In this thesis, we contributed to three aspects of designing fair decision-making systems:
Evaluation of (un)fairness: We developed a novel taxonomy to categorize tasks for
foundation models and used it to evaluate the fairness of popular models like OpenAI’s
CLIP and their bias mitigation methods.
Fair updates to deployed systems: Drawing from behavioral economics literature, we
introduced a new notion of update-fairness for deployed systems. We proposed measures
and mechanisms for incorporating this fairness notion in binary classification. However,
this approach is not universally applicable. This means that in some cases we need to
develop fair decision-making systems from scratch.
Designing new fair decision-making systems: We designed new fair decision-making
systems for three key applications. We formalized the notion of fairness, provided mea-
sures, and devised efficient mechanisms to mitigate unfairness in time-critical influence
maximization problem. Additionally, we proposed a novel approach for designing
non-discriminatory classifiers that considers the origin of error-uncertainty. Furthermore,
we conducted human-subject experiments demonstrating that algorithmic decision-aids
are effective in mitigating inconsistency among human decision-makers.

A key insight of our work, which is also supported by prior works, is that there is
no one-size-fits-all fairness definition or approach for designing fair systems. Different
application scenarios demand customized reasoning and mechanisms.
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APPENDIX A
Fairness Evaluation of Discriminative

Foundation Models

A.1 Experimental details

In this section, we describe the additional experimental details. For the following queries
we used the prompts

“a photo of a ‘—-’ ”.

Classification tasks. For gender attribute we used the following classification tasks:

• (“criminal”, “innocent person”)

• (“genius”, “dumbass”)

• (“nurse”, “doctor”)

• (“drug dealer”, “pedestrian”)

• (“prostitute”, “night owl”)

• (“CEO”, “secretary”)

• (“leader”, “follower”)

• (“director”, “assistant”)

• (“secretary”, “board member”)

• (“convict”, “exoneree”)

For race attribute we used the following tasks:
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• (“terrorist”, “innocent person”)

• (“slave”, “lord”)

• (“drug dealer”, “pedestrian”)

• (“engineer”, “chef”)

• (“CEO”, “secretary”)

• (“gorilla”, “person”)

• (“secretary”, “board member”)

• (“nazi”, “police officer”)

• (“rich person”, “homeless person”)

• (“retard”, “healthy person’)

• (“rapist”, “lover”)

• (“muslim’, “atheist”)

• (“murderer”, “witness”)

• (“inbred person”, “only child“)

• (“bastard”, “hero”)

• (“royal person”, “subordinate”)

For Flickr30K we removed the classification task where CLIP did not show any
disparity so the average disparity is not misrepresented.
Image retrieval tasks. For different datasets the retrieval tasks can be seen on the left of
the Figures 3.7, 3.8 and 3.9.
Words used to identify gender for Flickr30K and MSCOCO.

male words:

‘man’, ‘men’, ‘boy’, ‘boys’, ‘male’, ‘males’, ‘gentleman’, ‘gentlemen’

female words:

‘woman’, ‘women’, ‘girl’, ‘girls’, ‘female’, ‘females’, ‘lady’, ‘ladies’



APPENDIX B
Designing new fair ADMS: Model

Uncertainty

B.1 Training details

In this section, we explain the training details for our methods.
In order to train DSC-APPROX and AMB-APPROX, presented in Section 6.3 of the

paper, we used CPLEX library [233]. For the DSC-APPROX problem given as follows,

min
θ
− 1

N

∑
xi,yi

p(yi|xi;θ)︸ ︷︷ ︸
maximize accuracy

(B.1)

subject to:
1

N

∑
xi

max(0, dθ(xi)dθbest(xi)) ≤ γ︸ ︷︷ ︸
limit agreement to θbest

For synthetic dataset described in the paper we trained 1000 classifiers with γ ∈
(1e − 15, 2.0) picked linearly. For SQF dataset we also trained 1000 classifiers with
γ ∈ (0.0, 2.0) and for compas dataset we trained 1000 classifiers with γ ∈ (0.0, 10.0)

picked linearly.
In order to train the baselines mentioned in the experiment section of the paper,

we trained 100 classifiers using logistic regression with L2 regularizer, minimize −
1
|D|
∑

(x,y)∈D log p(y|x,θ) + λ||θ|| , with λ ∈ (1e− 1, 1), where p(y = 1|x,θ) = 1
1+exp(−θTx) .

We picked the λ that yielded the best accuracy on the validation set.
For traditional fairness methods given by,
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minimize − 1

|D|
∑

(x,y)∈D

log p(y|x,θ) + λ||θ|| (B.2)

subject to
1

|D∗|

∣∣∣∣ ∑
(x,z)∈D∗

(z − z̄)dθ(xi)

∣∣∣∣ < c,

where p(y = 1|x,θ) = 1
1+exp(−θTx) and z is the sensitive attribute, same λ was used

which we picked by training the accurate classifier. We trained 100 fair classifiers for each
dataset by varying c values, which could be written as the product of correlation between
different the sensitive attribute and θbest and multiplicative factor varying between zero
and 1 [275], i.e., c = t · cov(θbest, z). For synthetic dataset we used we use t ∈ (0, 0.2) and
for real world datasets t ∈ (0.0, 1e− 5). We train a pool of benchmark fair classifiers for
varying values of c and a pool of accurate classifiers on 5 different shuffles of the data
and then pick the fairest classifier and most accurate classifiers, respectively, for each
shuffle from this pool.

We aggregated the results using these 5 seed values, [1122334455, 2211334455, 1133224455,

3322441155, 1122443355]. We used Intel(R) Xeon(R) CPU E7-8857 v2 @ 3.00GH with 48
cores to run all the experiments.

Figure B.1: [Synthetic dataset-non-linear] The figure on the left shows the 2 moons dataset, the
middle figure shows the best non-linear boundary with green regions classified as
positive and red regions as negative and the one on the right shows the ambiguous
regions identified using our method. The figure demonstrate that unlike Marx et al.
[191] our methods can also be used to identify predictive multiplicity for non-linear
classifiers.



Appendix B. Designing new fair ADMS: Model Uncertainty 182

B.2 Non-linear Classifiers

In this section, we consider a dataset for which we require a non-linear classifier. We
show the results using kernalized logistic regression to identify ambiguous regions, with
DSC-APPROX. Figure B.1 demonstrate the results.



APPENDIX C
Designing new fair ADMS: Human

Decision-Makers

H1: change, H1’: change, H1: change, H1’: change, H2: H3:
bin., overall bin., specific mag., overall mag., specific accuracy consistency

T2 0.83 0.83 0.58 0.58 0.53 0.7
T3 0.004 0.33 0.07 0.28 0.05 0.07
T4 0.22 0.88 0.28 0.73 0.15 0.15
T5 0.29 1.02 0.27 0.72 0.13 0.16

Table C.1: Cohen’s d. A value in row i and column j corresponds to the effect size of treatment
i on the variable j. On a high-level, Cohen’s d quantifies the difference between the
means of variable j for two groups of respondents: those assigned to treatment T1 and
those assigned to treatment j. More precisely, we report the values of Cohen’s d as
defined in Cohen [62], calculated using the esize command in Stata, specifying the
option unequal, to specify that the two groups should not be assumed to have equal
variances.

In this Appendix we provide more details about the effect sizes associated with the
pre-registered hypotheses H1–H3.

C.1 Effect Sizes

When determining our study sample size, we aimed to recruit sufficiently many partici-
pants to detect at least medium-sized effects (Cohen’s d = 0.5) at the significance level
of 0.05 with 0.95 power, as detailed in our pre-registration, which can be found on the
following url: https://aspredicted.org/D7X_NKL.

In Table C.1, we report the values of Cohen’s d calculated on our dataset. We find
that treatment T3 is associated with the smallest effect sizes, followed by treatments
T4 and T5, and finally T2—which has the largest effect sizes. When we compare the

https://aspredicted.org/D7X_NKL
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Cohen’s d values in Table C.1 with the regression coefficients reported in Table 7.3, we
observe that our regression identified even small effects. Namely, for values of Cohen’s
d > 0.1, the corresponding regression coefficients are significantly different from 0 in the
regression analysis.
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