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Abstract

In the current era between early prototypes and large scale quantum computers, techniques
to operate and mitigate potential errors during computation are still developing. In this
thesis, we look at examples where an initial model description appears unable to explain
experimentally observed behavior.

We see that two-level theory results cannot be applied to a real system where additional
energy levels play a significant role. Consequently, optimizing controls for this oversim-
plified system will not work in experiment. Given a suitable model, complex controls can
be derived and transferred to experiment, where they are further fine-tuned to account for
small inaccuracies.

With C3 – Control, Calibration and Characterization – we add a third step: We use a record
of measurement data to fine-tune the model to resemble the behavior of real experiments.
This improved model serves as a basis for another loop of deriving controls which perform
well on the experiment. Successively more detailed, matching models then enable the
implementation of more complex control schemes.

Finally, we look to a theoretical study of possible models. Here, we tune the controls and
model in tandem with the goal of achieving the best performance. Transferring sophisticated
control schemes into practice can be hindered by exorbitant calibration requirements. We
therefore limit our investigation to pulses with sparse descriptions and examine known
design regimes.
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Zusammenfassung

Während die Anwendung von Quantencomputern sich zwischen Grundlagenforschung und
Prototypen befindet, ist eine der großen Herausforderungen ihre präzise Steuerung, für die
eine gewissenhafte Charakterisierung notwendig ist. Wir befassen uns in dieser Arbeit mit
Beispielen, bei denen durch die Vernachlässigung höher angeregter Zustände die experi-
mentelle Beobachtung nicht quantitativ beschrieben und daher die Verwendung etablierter
optimal control-Methoden verhindert wird.

Mit C3 – Control, Calibration and Characterization – präsentieren wir eine Methode, die
systematisch Unterschiede zwischen Modellbeschreibung und Labordaten minimiert, und es
ermöglicht, durch sukzessiv detailliertere Modellierung komplexere Steuerungsmethoden
anzuwenden. Aufbauend auf bisherigen Methoden wie Ad-Hoc (adaptive hybrid optimal
control), die bereits die numerisch optimierten Steuerpulse im Feedback mit dem Experi-
ment anpasst, liefern diese Daten nun die Grundlage, das numerische Modell zu verfeinern
und eine konsistente Charakterisierung vorzunehmen.

Anschließend stellen wir die Frage, welchen Vorteil es bringt Modellparameter gemein-
sam mit den Parametern der Steuerpulse zu optimieren, um daraus Ableitungen für neue
Entwürfe zu treffen. Als theoretische, numerische Studie betrachten wir ein wechselwirk-
endes Zweiqubitsystem in gängigen Parameterregimen, dispersiv bis stark gekoppelt, und
optimieren Pulse mit durch wenige Parameter beschriebenen Ansätzen.
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1 Introduction – Quantum devices as
computers

The field of quantum computing is maturing. First fundamental discoveries have been made
in laboratory devices over 25 years ago [1]. As part of the quantum flagship of the European
Union [2] and German national programms, a lot of effort is made by research collaborations,
such as OpenSuperQ [3] and GeQCoS [4], to produce practical demonstrators and by
companies to present early products, that promise to exploit the laws of quantum mechanics,
mainly the concepts of superposition and entanglement, to solve computational problems
more effectively than a classical computer. These devices are called Noisy Intermediate-
Scale Quantum computers (NISQ) [5] – noisy, because they are affected by interference
from the environment, and intermediate-scale, because of the challenge in creating many
quantum bits that still retain their quantum character.

In this thesis, we will look at advancing the operation and design of NISQ devices by
applying the tools of optimal control. These present a clear formalism to investigate whether
certain goals are realizable, how to mitigate limitations in current implementations, and thus
bridge the gap between foundational experimental research and application driven device
development.

1.1 Logical gates on quantum devices

In the context of quantum computing, it is a useful perspective to look at the basics of
quantum physics as the theory that explains the device operation. As such, the register –
a collection of qubits – of a quantum computer (or any state in general) is governed by the
Schrödinger equation

𝑖ℏ𝜕𝑡 |Ψ⟩ = 𝐻 |Ψ⟩ (1.1)

with a time-dependent Hamiltonian 𝐻. If the unitary operator𝑈 is the formal solution, i.e.,

𝑈 = T exp
{
−𝑖/ℏ

∫
𝑑𝑡𝐻 (𝑡)

}
(1.2)

that maps an initial state |Ψ(0)⟩ to a final state |Ψ(𝑇)⟩ = 𝑈 |Ψ(0)⟩, then the computation
task to solve a problem can be defined as:

For an input |Ψ(0⟩, find 𝐻 (𝑡) with 0 ≤ 𝑡 ≤ 𝑇 such that the corresponding state |Ψ(𝑇)⟩ at
the final time 𝑇 encodes the solution to the problem.

1



1 Introduction – Quantum devices as computers

|0⟩ 𝑈1
𝑈3

|0⟩ 𝑈2
𝑈4

|0⟩

Figure 1.1: A representation of a quantum computation in the gate-based model as a circuit
diagram.

Here, "encodes" means there is a way to extract the answer from the state, although that
might not be trivial. This approach is more or less directly applied in adiabatic quantum
computing[6]. Here, the problem is formulated by designing a "problem" Hamiltonian 𝐻𝑃
where the ground state corresponds to the solution. Then, the Hamiltonian is tuned, starting
from an initial Hamiltonian 𝐻𝐼 with an easily preparable ground state to 𝐻𝑃. Following the
adiabatic theorem, the system will end up in the ground state of 𝐻𝑃, as desired.

The gate-based model more closely resembles the classical notion of a computation. From
a formal perspective, the time-evolution is decomposed into a sequence

𝑈 = 𝑈𝑁𝑈𝑁−1 . . . 𝑈2𝑈1 (1.3)

of "elementary" gates 𝑈𝑖 ∈ G, selected from a gate-set G of pre-defined operations. Here,
"elementary" means each𝑈𝑖 only acts on a subset of the full Hilbert space or that they span
the complete set of operators but are themselves simple, as in Fig. 1.1.

If we consider the state of a single qubit as |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, a two-level system with
suggestively named basis states |0⟩ and |1⟩ to correspond to a classical bit, the state of a full
register of bits is given by, e.g., |Ψ⟩ = |10001110101⟩.

From this representation, we can appreciate the advantage of quantum computing: The
register can be in a state like this that corresponds directly to a classical bit-string but also
in a superposition, for example |𝜓⟩ = ( |0⟩ + |1⟩)/

√
2. Such a state has no equivalent in

classical computing. Many quantum algorithms begin with creating a register of every
possible input string to then query a function only a single time, providing an exponential
scaling with the number of bits compared to classical computing.

The gate-set to act on this register typically consists of single- or two-qubit operations, i.e.,
each 𝑈𝑖 acts non-trivially on one or two subspaces, and as identity on the others. This is
because they mostly rely on interaction between physical qubits, but also designs to create
gates entangling more than two qubits are being pursued.

In the field, a number of specific two-qubit gates are named, e.g.

2



1.2 Entanglement

CNOT =

©­­­«
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®®¬, iSWAP =

©­­­«
1 0 0 0
0 0 −𝑖 0
0 −𝑖 0 0
0 0 0 1

ª®®®¬,
√

iSWAP =

©­­­­«
1 0 0 0
0 1√

2
− 𝑖√

2
0

0 − 𝑖√
2

1√
2

0
0 0 0 1

ª®®®®¬
, CZ =

©­­­«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

ª®®®¬ .
(1.4)

1.2 Entanglement

What makes this kind of computing unique is the implication of the quantum behavior of the
register on the complexity of a computation: Entanglement is one of the key ingredients for a
fundamental advantage over classical computation. This section reviews some mathematical
concepts to describe and categorize the entanglement of states and the operations that create
it [7].

1.2.1 Locality in two-qubit gates

To introduce some concepts, we consider a system of two identical spins 𝐻𝑄 = 𝜔
2𝜎

1
𝑧 + 𝜔2𝜎

2
𝑧

where we denote 𝜎1
𝑧 := 𝜎𝑧 ⊗ 1, etc. and the state of this system as a product state

|Ψ⟩ = |𝜓1⟩1 ⊗ |𝜓2⟩2.
Since both operators only act on one subspace, the Schrödinger equation for the two spins

𝑖𝜕𝑡

(
|𝜓1⟩1 ⊗ |𝜓2⟩2

)
=
𝜔

2
𝜎1
𝑧 |𝜓1⟩1 ⊗

𝜔

2
𝜎2
𝑧 |𝜓2⟩2 . (1.5)

can be solved completely independently.
When we add an interaction 𝐻𝐼 = ℏ𝑔𝜎𝑥 ⊗ 𝜎𝑥 = ℏ𝑔𝜎1

𝑥𝜎
2
𝑥 , we can create an entangled state,

e.g., one of {
|00⟩ + |11⟩
√

2
,
|00⟩ − |11⟩
√

2
,
|01⟩ + |10⟩
√

2
,
|01⟩ − |10⟩
√

2

}
(1.6)

where the state of one spin is completely determined by the measurement of other spin, and
we can no longer express it as a product.
To generalize, if we look at the Hamiltonian 𝐻 of a system and the time evolution 𝑈 it
generates, they are formally connected by the exponential map

exp : 𝐴 ↦→ 𝑒𝐴𝑡 (1.7)

with some real parameter 𝑡. The skew-hermitian operator 𝐴 is an element of an algebra and
the elements 𝑒𝐴𝑡 form a group.

3



1 Introduction – Quantum devices as computers

The mathematics that we use to describe quantum physics is Lie group theory. A central
idea is the Lie bracket, a binary operation 𝔤 × 𝔤→ 𝔤 on a vector space 𝔤 that

• is bilinear,

• satisfies that [𝑥, 𝑥] = 0,∀𝑥 ∈ 𝔤
• and the Jacobi identity [𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥, 𝑦]] = 0 ∀𝑥, 𝑦, 𝑧 ∈ 𝔤 .

A vector space 𝔤 over a field F together with a Lie bracket forms a Lie algebra.

If we consider a matrix𝑈 from the unitary group, named U(𝑛), we know that𝑈† = 𝑈−1 or
𝑒𝑡𝑋

†
= 𝑒−𝑡𝑋 , which means that the corresponding algebra 𝑢(𝑛) consists of skew-Hermitian

matrices 𝑋† = −𝑋 . Since 𝑈 is unitary, it has |det{𝑈}| =
��𝑒𝑖𝜑�� = 1. The subgroup with

det{𝑈} = 1, instead of a complex number with absolute value 1, is called the special unitary
group SU(𝑛) and its algebra is 𝑠𝑢(𝑛).
Limiting ourselves to the Hilbert space of a single two-state system |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, with
𝛼, 𝛽 ∈ C, we define the basis |0⟩ , |1⟩ as the eigenstates of the Pauli matrix 𝜎𝑧. Together,
the Pauli matrices form a representation of the algebra 𝑠𝑢(2) = span 𝑖2

{
𝜎𝑥 , 𝜎𝑦, 𝜎𝑧

}
As seen above, any single qubit unitary matrix is an element of SU(2) (or U(2) if we care
about the global phase) and can thus be generated by the Lie algebra 𝑠𝑢(2), which can be
completely described by the (skewed) Pauli matrices 𝑖𝜎𝑥 , 𝑖𝜎𝑦 and 𝑖𝜎𝑧.

Let us consider the Lie group of all two-qubit unitaries SU(4) and its subgroup SU(2) ⊗
SU(2), the Lie group of all simultaneous single qubit gates. To characterize the entanglement
power of a given element𝑈 of SU(4), we can employ a Cartan decomposition [8] to find a
suitable subalgebra of 𝑠𝑢(4).
The algebra corresponding to SU(2) ⊗ SU(2) is

𝔨 = 𝑠𝑢(2) ⊗ 𝑠𝑢(2) = span
𝑖

2
{
𝜎1
𝑥 , 𝜎

1
𝑦 , 𝜎

1
𝑧 , 𝜎

2
𝑥 , 𝜎

2
𝑦 , 𝜎

2
𝑧

}
(1.8)

We decompose an algebra 𝔤 into a subalgebra 𝔨 and its complement 𝔭 = 𝔨⊥ such that
𝔤 = 𝔭 ⊕ 𝔨. If 𝔭 and 𝔨 satisfy the commutation relations

[𝔨, 𝔨] ⊂ 𝔨, [𝔭, 𝔨] ⊂ 𝔭, [𝔭, 𝔭] ⊂ 𝔨 (1.9)

this is called a Cartan decomposition of 𝔤.

Let 𝔤 = 𝑠𝑢(4), then
𝔨 = span

𝑖

2
{
𝜎1
𝑥 , 𝜎

1
𝑦 , 𝜎

1
𝑧 , 𝜎

2
𝑥 , 𝜎

2
𝑦 , 𝜎

2
𝑧

}
(1.10)

𝔭 = span
𝑖

2

{
𝜎1
𝑥𝜎

2
𝑥 , 𝜎

1
𝑥𝜎

2
𝑦 , 𝜎

1
𝑥𝜎

2
𝑧 , 𝜎

1
𝑦𝜎

2
𝑥 , 𝜎

1
𝑦𝜎

2
𝑦 , 𝜎

1
𝑦𝜎

2
𝑧 , 𝜎

1
𝑧 𝜎

2
𝑥 , 𝜎

1
𝑧 𝜎

2
𝑦 , 𝜎

1
𝑧 𝜎

2
𝑧

}
(1.11)

is a Cartan decomposition of 𝔤.

This allows us to make the following statement: Given 𝐾 , with its algebra 𝔨, a compact
subgroup of 𝐺 and 𝔤 = 𝔭 ⊕ 𝔨 the Lie algebra of 𝐺. Let 𝔞 ⊂ 𝔭 be a Cartan subalgebra of
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1.2 Entanglement

the pair (𝔤, 𝔨), which means that 𝔭 =
⋃
𝑘∈𝔨
[𝑘, 𝔞]. Then, we can obtain the full Lie group from

𝐺 = 𝐾 exp(𝔞)𝐾 .

Taking the diagonal elements of 𝔭, we can write the Abelian subalgebra

𝔞 = span
𝑖

2

{
𝜎1
𝑥𝜎

2
𝑥 , 𝜎

1
𝑦𝜎

2
𝑦 , 𝜎

1
𝑧 𝜎

2
𝑧

}
(1.12)

which is a Cartan subalgebra of 𝔭, since [𝜎1
𝑖
, 𝜎1

𝑗
𝜎2
𝑗
] = 2𝑖𝜖𝑖 𝑗 𝑘𝜎1

𝑘
𝜎2
𝑗
∈ 𝔭.

Then, we can write any𝑈 ∈ SU(4) as

𝑈 = 𝑘1𝐴𝑘2 = 𝑘1 exp
{
𝑖

2
[
𝑐1𝜎

1
𝑥𝜎

2
𝑥 + 𝑐2𝜎

1
𝑦𝜎

2
𝑦 + 𝑐3𝜎

1
𝑧 𝜎

2
𝑧

]}
𝑘2 (1.13)

with 𝑘1, 𝑘2 ∈ SU(2) ⊗SU(2) and the Weyl coordinates 𝑐1, 𝑐2, 𝑐3 ∈ R. Thus, we can specify
an entangling gate with three real numbers, see also Table 1.1.

1.2.2 Entanglement of pure states

While the Weyl coordinates shown above define the entangling character of a gate, they are
not easy to compute for a given operator𝑈. We’ll look at finding a different set of numbers,
the Makhlin invariants [9], to contain the non-local properties.

Given a pure state |𝜓⟩ = ∑
𝑎𝑏

𝑐𝑎𝑏 |𝑎𝑏⟩, we define the entanglement Ent |𝜓⟩ := 𝑐00𝑐11 − 𝑐01𝑐10

or Ent |𝜓⟩ = det 𝜓̂, where

𝜓̂ =

(
𝑐00 𝑐01
𝑐10 𝑐11

)
(1.14)

We quickly verify with Ent( |00⟩+ |10⟩)/
√

2 = (1 ·0−0 ·1)/2 = 0 and Ent( |00⟩+ |11⟩)/
√

2 =

(1 · 1 − 0 · 0)/2 = 1/2 that CNOT creates entanglement.

Any state transformed by single qubit operations 𝑘1 ⊗ 𝑘2 ∈ SU(2) ⊗ SU(2) does not change
this measure, since det 𝜓̂′ = det

(
𝑘1𝜓̂𝑘

𝑇
2
)
= det 𝑘1 det 𝜓̂ det 𝑘𝑇2 = det 𝜓̂.

We define the transformation of a matrix from the product basis into the Bell basis as
𝑘 ↦→ 𝑄†𝑘𝑄 with

𝑄 =
1
√

2

©­­­«
1 0 0 𝑖

0 𝑖 1 0
0 𝑖 −1 0
1 0 0 −𝑖

ª®®®¬ (1.15)

It can be shown [8] that the algebra of local gates 𝔨 = 𝑠𝑢(2) ⊗ 𝑠𝑢(2) is isomorphic to
the special orthogonal algebra 𝑠𝑜(4), with the isomorphism 𝜙 : 𝔨 → 𝑠𝑜(4) given by
𝜙(𝑘) = 𝑄†𝑘𝑄.
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1 Introduction – Quantum devices as computers

Gate Makhlins Weyl /𝜋 Perfect entangler
local (1, 0, 3) (0, 0, 0) x

CNOT (0, 0, 1) (0.5, 0, 0) ✓
CZ (0, 0, 1) (0.5, 0, 0) ✓
CR (0, 0, 1) (0.5, 0, 0) ✓√

iSWAP (0.25, 0, 1) (0.25, 0.25, 0.25) ✓
iSWAP (0, 0, 1) (0.5, 0.5, 0.5) x

Table 1.1: Makhlin invariants and Weyl coordinates of common gates.

Transforming our subalgebra 𝔞 into the Bell basis

𝑄†
{
𝜎1
𝑥𝜎

2
𝑥 , 𝜎

1
𝑦𝜎

2
𝑦 , 𝜎

1
𝑧 𝜎

2
𝑧

}
𝑄 =

{
𝜎1
𝑧 ,−𝜎2

𝑧 , 𝜎
1
𝑧 𝜎

2
𝑧

}
(1.16)

makes

𝐹 = 𝑄† exp
{
𝑖

2
[
𝑐1𝜎

1
𝑥𝜎

2
𝑥 + 𝑐2𝜎

1
𝑦𝜎

2
𝑦 + 𝑐3𝜎

1
𝑧 𝜎

2
𝑧

]}
𝑄 (1.17)

diagonal with eigenvalues{
𝑒
𝑖
2 (𝑐1−𝑐2+𝑐3) , 𝑒

𝑖
2 (𝑐1+𝑐2−𝑐3) , 𝑒−

𝑖
2 (𝑐1+𝑐2+𝑐3) , 𝑒

𝑖
2 (−𝑐1+𝑐2+𝑐3)

}
. (1.18)

Now, we can transform the arbitrary unitary𝑈 to

𝑈𝐵 = 𝑄†𝑈𝑄 = 𝑄†𝑘1𝐴𝑘2𝑄 = 𝑄†𝑘1𝑄 𝐹 𝑄†𝑘2𝑄 = 𝑂1𝐹𝑂2 (1.19)

and compute
𝑚 = 𝑈𝑇𝐵𝑈𝐵 = 𝑂𝑇2 𝐹

2𝑂2 (1.20)

Since𝑂2 is orthogonal, the eigenvalues of 𝐹2 are unchanged and completely determined by
entangling operations.

The spectrum of 𝑚 = 𝑈𝑇
𝐵
𝑈𝐵 is given by its characteristic polynomial

|𝜆 − 𝑚 | = 𝜆4 + tr(𝑚)𝜆3 + 1
2

[
tr2(𝑚) − tr

(
𝑚2

)]
𝜆2 − tr(𝑚)∗𝜆 + 1 (1.21)

which is determined by the quantities tr(𝑚) and tr2(𝑚) − tr
(
𝑚2) .

From these, we define the Makhlin invariants of a unitary operation𝑈 ∈ U(4) with the Bell
basis 𝑄 and𝑈𝐵 = 𝑄†𝑈𝑄 as

𝐺1 = Re
tr
(
𝑈𝑇
𝐵
𝑈𝐵

)2

16 det(𝑈) , 𝐺2 = Im
tr
(
𝑈𝑇
𝐵
𝑈𝐵

)2

16 det(𝑈)

𝐺3 =
tr
(
𝑈𝑇
𝐵
𝑈𝐵

)2 − tr
(
(𝑈𝑇

𝐵
𝑈𝐵)2

)
4 det(𝑈)

(1.22)
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1.3 Hardware

In contrast to the Weyl coordinates, these invariants are now easy to compute for a given
unitary matrix. In summary, we now have the mathematical tool-set in hand to describe the
entanglement characteristics of a quantum operation that we want to exploit for computation.
Next, we turn to the physical systems that serve as the basis for a potential quantum computer.

1.3 Hardware

Several candidate platforms exist to implement a quantum computer. Any real-world device
has multiple degrees of freedom and complicated dynamics, so the principal task is to
prepare suitably isolated, well controlled subsystems to implement the qubits. The area with
the longest tradition in applying quantum optimal control is nuclear magnetic resonance
(NMR). Multiple practical applications exist, e.g., medical like magnetic resonance imaging
(MRI) resulting in available mature technologies. The qubits themselves are already spin
degrees of freedom, so ideal two-level systems. Additionally, time scales for the control
electronics are favorable and allow implementing complex pulse shapes to steer the qubits.
It makes sense then, that in this field also where complex optimal control techniques were
also applied early on [10].

The same advantage of well characterized spectra is present in ion traps [11], where each
qubit is guaranteed to be identical. Since they also share an atomic trap potential and
associated degrees of motion, entangling multiple qubits with each other is also easily
facilitated. However, the size of the traps also presents a natural limit to scaling up devices.
When the limit is reached, other methods need to be applied to extend the computational
space.

Recently, NV centers [12] have shown promising results by combing two time scales. Optical
transitions and microwave activated transitions can be combined to create an architecture
for quantum computing.

Many of the results driving big discoveries have been made with the use of superconducting
devices [13, 14]. These have the double-edged distinction of made by humans. As such,
these devices can be fabricated with specific goals in mind, with the price of having then
to characterize them carefully. Tuning up these devices for computation is not as straight
forward as e.g., using atomic transitions. The fabrication itself presents a number of
challenges, the qubit properties depend on the process. Further, impurities can introduce
unwanted, spurious resonances that couple to the computational degrees of freedom, even
intermittently, and disturb device operation.

7



1 Introduction – Quantum devices as computers

Figure 1.2: Reduced network for the Transmon device, coupled to a resonator. reproduced
from [16].

1.3.1 Circuit quantization

To arrive at a quantum mechanical description of superconducting circuits, we need to
perform a few steps known as circuit quantization [15]. Here, we’ll show this procedure
on the example to find the Hamiltonian of the Transmon, a specific superconducting device
that has been used in many demonstrations of quantum utility.

In Fig. 1.2 we show the diagram of the circuit. Starting with the resonator, modeled as
an electrical oscillator with capacity 𝐶𝑟 and inductance 𝐿𝑟 , we write Kirchhoff’s laws for
Voltage 𝑉 and current 𝐼 in the loop as

0 = 𝐼𝐿 + 𝐼𝐶 = −𝐶𝑟 ¥𝜙 +
1
𝐿𝑟
𝜙 . (1.23)

We interpret this differential equation as an Euler-Lagrange equation

0 = − d
d𝑡
𝜕L
𝜕 ¤𝜙
+ 𝜕L
𝜕𝜙

(1.24)

and infer the Lagrangian

L(𝜙, ¤𝜙) = − 1
2𝐿𝑟

𝜙2 + 𝐶𝑟
2
¤𝜙2 (1.25)

for the resonator, with the capacitance taking the role of a kinetic energy and the inductance
energy the role of a potential.

An earlier version of this introduction to the Transmon already appeared in my master’s thesis. It is
reproduced and condensed here for completeness.
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1.3 Hardware

The canonically conjugate variable for the flux 𝜙 is the electric charge

𝑄𝑟 =
𝜕L
𝜕 ¤𝜙

= 𝐶𝑟 ¤𝜙 . (1.26)

Performing a Legendre transformation to the conjugate charge and flux variables, we write

𝐻cavity = ¤𝜙𝑟𝑄𝑟 − L(𝜙𝑟 , ¤𝜙𝑟) =
𝑄2
𝑟

2𝐶𝑟
+ 𝜙2

𝑟

2𝐿𝑟
. (1.27)

which we can interpret as the quantum mechanical Hamiltonian by considering the flux and
charge as operators.

The variables 𝑄𝑟 and 𝜙𝑟 can be expressed using the bosonic ladder operators and the
characteristic impedance 𝑍 =

√︁
𝐿𝑟/𝐶𝑟

𝑎 = 𝑖

√︂
1

2𝑍
𝜙𝑟 +

√︂
𝑍

2
𝑄𝑟

𝑎† = −𝑖
√︂

1
2𝑍
𝜙𝑟 +

√︂
𝑍

2
𝑄𝑟

(1.28)

such that
𝑎†𝑎 =

1
2𝑍
𝜙2
𝑟 +

𝑍

2
𝑄2
𝑟 + 𝑖

1
2
[𝜙𝑟 , 𝑄𝑟] (1.29)

Flux and charge are conjugate variables, which means their commutator is 𝑖 and

𝐻cavity =
𝑄2
𝑟

2𝐶𝑟
+ 𝜙2

𝑟

2𝐿𝑟
= 𝜔𝑟

(
𝑎†𝑎 + 1

2

)
(1.30)

with the resonator frequency 𝜔𝑟 =

√︂
1

𝐿𝑟𝐶𝑟
is the Hamiltonian that describes the cavity

resonator as a harmonic oscillator with photon number 𝑎†𝑎.

The Hamiltonian of the full circuit shown above is obtained by a similar computation [16],
for now ignoring the cavity and just considering the flux 𝜙2 through the Josephson junction
(dark blue in Fig. 1.2) and outside flux 𝜙1 (light blue) from the bias voltage 𝑉 . In this loop
the conservation of currents reads

(𝐶𝐵 + 𝐶𝐽)︸      ︷︷      ︸
𝐶1

¥𝜙1 + 𝐼𝐽 sin 𝜙1 =
(
𝐶in + 𝐶𝑔

)︸      ︷︷      ︸
𝐶2

¥𝜙2. (1.31)

with the conservation of voltages the second flux ¤𝜙2 = −𝑉 − ¤𝜙1 can be eliminated, and the
Lagrangian is

L =
𝐶1
2
¤𝜙2
1 +

𝐶2
2

( ¤𝜙1 + ¤𝜙𝑉
)2 + 𝐼𝐽 cos 𝜙1, (1.32)
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which determines the charge variables to be

𝑄1 =
𝜕L
𝜕 ¤𝜙1

= 𝐶1 ¤𝜙1 + 𝐶2
( ¤𝜙1 + ¤𝜙𝑉

)
𝑄2 =

𝜕L
𝜕 ¤𝜙𝑉

= 𝐶2
( ¤𝜙1 + ¤𝜙𝑉

)
.

(1.33)

Inverting this relation and performing the Legendre transformation yields the Hamiltonian

𝐻 =
𝐶2(𝑄1 −𝑄2)2

2𝐶1𝐶2
+
𝐶1𝑄

2
2

2𝐶1𝐶2
− 𝐼𝐽 cos 𝜙1 (1.34)

With the charge and Josephson energies defined as

𝐸𝐶 =
𝑒2

2𝐶1
and 𝐸𝐽 =

𝐼𝐽

2𝑒
(1.35)

the Hamiltonian is written in an energy scale

𝐻 = 𝐸𝐶

(
𝑄2

1
𝑒2 −

𝑄2
2
𝑒2

)
+
𝑄2

2
2𝐶2
− 𝐸𝐽 cos 𝜙1 . (1.36)

Expressing the charges through number of cooper pairs 𝑄1 = 2𝑒𝑛 and 𝑄2 = 2𝑒𝑛𝑔

𝐻qubit = 4𝐸𝐶 (𝑛 − 𝑛𝑔)2 − 𝐸𝐽 cos 𝜙 (1.37)

with the bias 𝑛𝑔 =
𝐶𝑔𝑉𝑔

2𝑒
, produces the same result as is obtained for a Cooper Pair Box

[17].
The qubit is coupled to the resonator via the capacitor 𝐶𝑔, which means its current is added
to equation Eq. (1.31) and the same steps are performed to calculate charges. This modifies

𝑛𝑔 =
𝐶𝑔𝑉𝑔

2𝑒
+ 𝑄𝑟

2𝑒
(1.38)

as the resonator introduces another offset. The capacitive coupling takes the form

𝐻coupling =
𝛽

𝐶𝑟
𝑄1𝑄𝑟 = 𝛽(2𝑒𝑛)

√︂
2𝜔𝑟
𝐶𝑟

(
𝑎† + 𝑎

)
(1.39)

with 𝛽 = 𝐶𝑔/(𝐶1 + 𝐶2).

1.3.2 The Transmon

In analogy to the harmonic oscillator the operators for phase 𝜙 and number of cooper pairs
𝑛 can be written in terms of bosonic ladder operators

𝜙 =
1
√

2

(
8𝐸𝐶
𝐸𝐽

)1/4
(𝑏 + 𝑏†) and 𝑛 = −𝑖 1

√
2

(
𝐸𝐽

8𝐸𝐶

)1/4
(𝑏 − 𝑏†) (1.40)
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1.3 Hardware

where the coefficients have to be chosen to match physical units.
The Transmon operates in a regime of small charge energy compared to Josephson energy in
order to achieve low sensitivity to noise, while still retaining enough anharmonicity to allow
selectively addressing transitions. This is made possible by the fact that charge noise is
exponentially suppressed as 𝐸𝐽/𝐸𝐶 increases, while the anharmonicity scales with

√︁
𝐸𝐽/𝐸𝐶

[16].
This consideration allows for the cosine to be expanded to fourth order

cos 𝜙 = 1 − 1
2
𝜙2 + 1

24
𝜙4 +𝑂 (𝜙6) (1.41)

and simplifying the Hamiltonian while eliminating the bias 𝑛𝑔 with a transformation 𝑈 =

exp
{
−𝑖𝑛𝑔𝜙

}
to

𝐻qubit =

√︂
𝐸𝐶𝐸𝐽

2
[
(𝑏 + 𝑏†)2 − (𝑏 − 𝑏†)2

]
− 𝐸𝐽 −

𝐸𝐶

12
(𝑏 + 𝑏†)4

=
√︁

8𝐸𝐶𝐸𝐽
(
𝑏†𝑏 + 1

2

)
− 𝐸𝐽 −

𝐸𝐶

12
(𝑏 + 𝑏†)4

(1.42)

The expression for the coupling of the qubit to the cavity

𝐻coupling = 2𝛽𝑒
√︂

𝜔

2𝐶𝑟
𝑛(𝑎 + 𝑎†) (1.43)

can be simplified by noting that the operator 𝑛 only acts on neighboring levels. Then the
calculation of the matrix element��⟨𝑚 + 1| 𝑛 |𝑚⟩𝑞

�� = √︂
𝑚 + 1

2

(
𝐸𝐽

8𝐸𝐶

)1/4
(1.44)

simplifies the interaction term to

𝐻coupling =
∑︁
𝑚,𝑚′
|𝑚⟩⟨𝑚 |𝑞 2𝛽𝑒

√︂
𝜔

2𝐶𝑐
𝑛 |𝑚′⟩⟨𝑚′|𝑞 (𝑎 + 𝑎†)

=
∑︁
𝑚

𝑔𝑚

(
|𝑚 + 1⟩⟨𝑚 |𝑞 + |𝑚⟩⟨𝑚 + 1|𝑞

)
(𝑎 + 𝑎†)

(1.45)

with the coupling constant

𝑔𝑚 = 𝛽𝑒
√
𝑚

√︂
𝜔

2𝐶𝑐

(
𝐸𝐽

8𝐸𝐶

)1/4
= 𝑔
√
𝑚 ⇒ 𝑔2

𝑚 = 𝑚𝑔 (1.46)

Scaling of the coupling with the square root of the photon number can be absorbed in the
bosonic operator

𝑏† =
∑︁
𝑚

√
𝑚 + 1 |𝑚 + 1⟩⟨𝑚 |𝑞 (1.47)

and the coupling takes the familiar form

𝐻coupling = 𝑔(𝑏 + 𝑏†) (𝑎 + 𝑎†). (1.48)
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Controlling the Transmon system

The Transmon Hamiltonian can be more generally expressed in terms of a qubit frequency
𝜔𝑞 and the anharmonicity 𝛼𝑚,𝑚+1 between the 𝑚-th and the next level. These three parts
(dropping the 1

2 constant zero point energies)

𝐻cavity = 𝜔𝑟𝑎
†𝑎

𝐻qubit = 𝜔𝑞𝑏
†𝑏 − 𝛼12 | 𝑓 ⟩⟨ 𝑓 | − 𝛼23

��3𝑞〉〈3𝑞
�� − 𝛼34

��4𝑞〉〈4𝑞
�� ...

𝐻coupling = 𝑔(𝑏 + 𝑏†) (𝑎 + 𝑎†)
(1.49)

add up to the full system Hamiltonian

𝐻0 = 𝐻cavity + 𝐻qubit + 𝐻coupling . (1.50)

The cavity is driven classically by a control field Ω(𝑡) so that the full system is

𝐻 = 𝐻0 +Ω(𝑡)
(
𝑎 + 𝑎†

)
. (1.51)

The relatively small anharmonicity presents a challenge in the control of the Transmon.
Using the appropriate control function Ω(𝑡), we want to activate specific transitions to
implement e.g., a quantum gate or population transfer. A single excitation from the ground
|𝑔⟩ to the excited state |𝑒⟩ is driven by a resonant tone at the frequency 𝜔𝑞. Since we act
with a bosonic operator, we also need to consider the effect this drive has on the transition
from |𝑒⟩ to | 𝑓 ⟩ which is just one anharmonicity 𝛼𝑒 𝑓 detuned.

1.3.3 DRAG – Derivative removal by adiabatic gate

We will one solution to the problem from the previous section along the procedure shown
in [18]. Consider a 3-level-system that is controlled by a signal 𝑢(𝑡) = 𝑢𝑥 (𝑡) cos(𝜔𝑑𝑡) +
𝑢𝑦 (𝑡) sin(𝜔𝑑𝑡). The first two levels make up the computational subspace |𝑔⟩ , |𝑒⟩ with
transition frequency 𝜔𝑞 that we want to operate in and | 𝑓 ⟩ accounts for the leakage. It is
modeled by the Hamiltonian

𝐻/ℏ = 𝜔𝑞 |𝑒⟩⟨𝑒 | + (2𝜔𝑞 + Δ) | 𝑓 ⟩⟨ 𝑓 | + 𝑢(𝑡)𝜎̂𝑥𝑔,𝑒 + 𝜆𝑢(𝑡)𝜎̂𝑥𝑒, 𝑓 (1.52)

where the Pauli operators are 𝜎̂𝑥
𝑗 ,𝑘

= | 𝑗⟩⟨𝑘 | + |𝑘⟩⟨ 𝑗 | and 𝜆 describes the coupling of the drive
to the 1-2 transition. We expressed the frequency of the leakage state with the anharmonicity
Δ = 𝜔 𝑓 − 2𝜔𝑞.

This introduction also appears as a section in "An introduction into optimal control for quantum technolo-
gies", Lecture notes for the 51st IFF Spring School. It was mainly written by N. Wittler.
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1.4 Quantum optimal control

Let’s say we want to implement a simple Rabi pulse by choosing 𝑢𝑥 (𝑡) = Ω(𝑡) and 𝑢𝑦 (𝑡) = 0.
This gives rise to unwanted leakage out of the computational subspace with the term
𝜆Ω(𝑡)𝜎̂𝑥

𝑒, 𝑓
. The DRAG idea shows how we can counteract this leakage by choosing 𝑢𝑦 (𝑡)

appropriately.

We first express the Hamiltonian in the rotating frame with 𝑅 = exp(𝑖𝜔𝑑 |𝑒⟩⟨𝑒 | + 2𝑖𝜔𝑑 | 𝑓 ⟩⟨ 𝑓 |)
following the rule 𝐻𝑅 = 𝑅𝐻𝑅† + 𝑖ℏ ¤𝑅𝑅† which gives

𝐻𝑅/ℏ = 𝛿1 |𝑒⟩⟨𝑒 | + 𝛿2 | 𝑓 ⟩⟨ 𝑓 | +
∑︁
𝛼=𝑥,𝑦

𝑢𝛼

2
(𝑡)𝜎̂𝛼𝑔,𝑒 + 𝜆

𝑢𝛼

2
(𝑡)𝜎̂𝛼𝑒, 𝑓 ,

using the detunings 𝛿1 = 𝜔𝑞 − 𝜔𝑑 and 𝛿2 = Δ + 2𝛿1 between the drive and transition
frequencies.

Applying an adiabatic transformation𝑉 (𝑡) by calculating 𝐻𝑉 = 𝑉𝐻𝑉† + 𝑖ℏ ¤𝑉𝑉† allows us to
look at the system in a frame where the leakage and the 𝑦-component necessary to counteract
it are visible. We take

𝑉 (𝑡) = exp
[
−𝑖 𝑢𝑥 (𝑡)

2Δ
(𝜎̂𝑦𝑔,𝑒 + 𝜆𝜎̂𝑦𝑒, 𝑓 )

]
,

a transformation that depends on our intended signal 𝑢𝑥 , and apply it to first order in 𝑢𝑥/Δ
to find

𝐻𝑉/ℏ =

(
𝛿1 −

(𝜆2 − 4)𝑢2
𝑥

4Δ

)
|𝑒⟩⟨𝑒 | +

(
𝛿2 +

(𝜆2 + 2)𝑢2
𝑥

4Δ

)
| 𝑓 ⟩⟨ 𝑓 |

+ 𝑢𝑥
2
𝜎̂𝑥𝑔,𝑒 + 𝜆

𝑢2
𝑥

8Δ
𝜎̂𝑥𝑔, 𝑓 +

[
𝑢𝑦

2
+ ¤𝑢𝑥

2Δ

]
(𝜎̂𝑦𝑔,𝑒 + 𝜆𝜎̂𝑦𝑒, 𝑓 )

From this expression, we can see that our intended drive 𝑢𝑥/2𝜎̂𝑥𝑔,𝑒 is unchanged but if we
also choose 𝑢𝑦 = − ¤𝑢𝑥/Δ, we cancel the last term that is responsible for driving out of the
computational subspace ∝ 𝜆𝜎̂𝑦

𝑒, 𝑓
. The transformation also suggests detuning the drive by

𝛿1 = (𝜆2 − 4)𝑢2
𝑥/4Δ to avoid stark shifting of the 𝑔-𝑒 transition.

1.4 Quantum optimal control

As a field, quantum optimal control is a subset that contains the more mathematical,
theoretical apparatus of classical optimal control and approaches engineering with its most
practical applications. As outlined before, this is where it neatly meets the demands of the
NISQ era.

Formally, a (quantum) optimal control problem is the following:

• A dynamical system, i.e., a differential equation:

𝑖𝜕𝑡 |Ψ⟩ = 𝐻 |Ψ⟩ (1.53)

13



1 Introduction – Quantum devices as computers

• that is dependent on a control function 𝑢(𝑡), 𝐻 ≡ 𝐻 (𝑢(𝑡), 𝑡)
• and a cost functional 𝐽 ≡ 𝐽 [|Ψ⟩ , 𝑢, 𝑡]

The task is to find 𝑢(𝑡), such that 𝐽 is maximal. Then, 𝑢 is called the optimal control. In
designing the functional 𝐽, we express the desired target.

1.4.1 Single spin example

A simple example to bring these concepts to life is the state transfer problem of a single
spin. We write the Hamiltonian as

𝐻 =
𝜔

2
𝜎𝑧 + 𝐴 cos(𝜔𝑡)𝜎𝑥 (1.54)

where 𝜔 is the frequency of the qubit and 𝐴 is the control amplitude of an AC drive on
resonance with the qubit. We have taken the ansatz that 𝐴 = const. and let the system start
in the "0" eigenstate, |Ψ(0)⟩ = |0⟩. To move the system to the excited state at the time 𝑇 ,
we write the goal function as 𝐽 = |⟨1|Ψ(𝑇)⟩|2.

Moving to the rotating frame with the qubit frequency, we can solve the simple Hamiltonian

𝐻 =
𝐴

2
𝜎𝑥 (1.55)

in the rotating wave approximation. We can express the time-dependent state via a unitary
transformation |Ψ(𝑡)⟩ = 𝑈 (𝑡) |Ψ(0)⟩, and obtain a differential equation for𝑈

𝑖𝜕𝑡𝑈 (𝑡) = 𝐻𝑈 (𝑡) , (1.56)

which has the formal solution

𝑈 (𝑡) = exp(−𝑖𝐻𝑡) = exp
(
− 𝑖

2
𝐴𝜎𝑥𝑡

)
= 1 cos

(
𝐴

2
𝑡

)
− 𝑖𝜎𝑥 sin

(
𝐴

2
𝑡

)
(1.57)

since 𝐻 is not time-dependent. So, we see from

𝐽 = |⟨1|Ψ(𝑇)⟩|2 = |⟨1|𝑈 (𝑇) |0⟩|2 =

����sin
(
𝐴

2
𝑇

)����2 (1.58)

that for 𝐴𝑇 = 𝜋, 𝐽 is at a maximum. In fact, 𝐽 is maximal at 𝐴𝑡 = 𝑛𝜋 for 𝑛 ∈ N. This
ambiguity can be resolved practically by tailoring the functional to prefer shorter times. In
applied optimal control, particularly solutions found using numerics can often exhibit this
behavior. To avoid this, care must be taken in analyzing the dynamics of the solution and
adjusting the functional, if needed. It should also be pointed out, that by taking an ansatz
of 𝑢(𝑡) = 𝐴 cos(𝜔𝑡), we have limited the possible solutions. In the next section, we’ll look
at a useful theorem that allows us to tackle more complicated problems, but also show that
for the spin control problem, this particular choice is in fact optimal.
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1.4 Quantum optimal control

1.4.2 The Pontryagin Maximum Principle

Similar to canonical mechanics, where we define the action as a functional that produces
physical trajectories, the Pontryagin maximum principle [19] can be used for statements
about the optimality of controls.

From the formal definition in Eq. (1.53), different types of functional can be classified. In
addition to the functional we used in the previous sections, a final time cost 𝜙, we can define
a running cost at some time 𝑡 as 𝐿 (Ψ, 𝑢, 𝑡) so that a general functional has the form

𝐽 = 𝜙(Ψ(𝑇), 𝑇) +
∫ 𝑇

0
𝐿 (Ψ, 𝑢, 𝑡)d𝑡 . (1.59)

We also define a costate ⟨𝜒 | that represents a backward propagated state with

𝜕𝑡 ⟨𝜒 | = 𝑖 ⟨𝜒 | 𝐻 (1.60)

and with it, the so-called control Hamiltonian 1

ℎ(⟨𝜒 | , |Ψ⟩ , 𝑢) = Re ⟨𝜒 |𝐻 (𝑢) |Ψ⟩ − 𝐿 (Ψ, 𝑢) . (1.61)

Now the statement of the theorem is that 𝑢 is the optimal control, if it maximizes this
function ℎ for every |Ψ⟩ and ⟨𝜒 |.
By following this recipe, starting from a general Hamiltonian 𝐻 = 𝜔

2𝜎𝑧 + 𝑢𝑥 (𝑡)𝜎𝑥 + 𝑢𝑦 (𝑡)𝜎𝑦
and enforcing limited power, i.e., 𝐿 = 𝑢2

𝑥 (𝑡) + 𝑢2
𝑦 (𝑡) it can be shown that the control fields

are related by 𝜕𝑡𝑢𝑦 (𝑡) = 𝑘𝑢𝑥 (𝑡) with some constant 𝑘 . Thus, the optimal solutions are of
the form 𝑢𝑥,𝑦 (𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑) that we used as an ansatz in the simple example.

1.4.3 Gradient methods

When numerically optimizing functionals like Eq. (1.59), access to the gradient with respect
to controls enables the use of powerful, efficient algorithms, e.g., L-BFGS [20]. There are
several methods to obtain the gradient of a quantum time-evolution analytically, given some
assumptions on the functional. A particularly useful concept here is the Shirmer derivative,
also known by other names [21], that allows to compute the gradient of an exponential by a
simple trick:

Given a matrix 𝐴 ≡ 𝐴(𝑝, 𝑡) that is dependent on some parameter 𝑝 and the time 𝑡, the
gradient of its exponential 𝜕𝑝𝑒𝐴 can be found alongside the exponential of 𝐴 itself with

exp
[(
𝐴 𝜕𝑝𝐴

0 𝐴

)]
=

(
𝑒𝐴 𝜕𝑝𝑒

𝐴

0 𝑒𝐴

)
(1.62)

1For the sake of readability, we use theC-valued symbols of quantum mechanics. Some concepts shown here
are however only defined for real-valued functions and quantities. The complex symbols can be mapped
to a real field with extended dimension to more rigorously state these theorems. Details are e.g., in [19].
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1 Introduction – Quantum devices as computers

as opposed to approximating the gradient.

A method like GRAPE [10] exploits this relation in the setting of piece-wise constant
controls, discretizing the time in slices 0 ≤ 𝑡 𝑗 = 𝑗Δ𝑡 ≤ 𝑇 , such that the Hamiltonian is
constant during one slice:

𝐻 (𝑡 𝑗 ) = 𝐻0 + 𝑢 𝑗𝐻𝑐 (1.63)

Thus, we can expand the gradient of a state functional, writing 𝜕𝑗 := 𝜕𝑢 𝑗 for short:

𝜕𝑗 𝐽 = 𝜕𝑗 [ ⟨𝜓𝑇 |𝑈 |𝜓0⟩] = 𝜕𝑗
 ⟨𝜓𝑇 |

𝑁∏
𝑗=0
𝑈 𝑗 |𝜓0⟩

 (1.64)

Since only the 𝑗-th propagator depends on the control 𝑢 𝑗 , we collect |𝜓𝑘⟩ =
∏𝑘

𝑗=0𝑈𝑘 and
⟨𝜒𝑘 | analogously, with ⟨𝜒𝑁 | = ⟨𝜓𝑇 | and write

𝜕𝑗 𝐽 =
〈
𝜒 𝑗+1

��𝜕𝑗𝑈 𝑗

��𝜓 𝑗−1
〉
. (1.65)

For each 𝑡 𝑗 , the gradient 𝜕𝑗𝑈 𝑗 can be found with Eq. (1.62):

exp
[
−𝑖

(
𝐻 𝐻𝑐
0 𝐻

)
Δ𝑡

]
=

(
𝑈 𝜕𝑗𝑈

0 𝑈

)
(1.66)

Note that the second row here is just the solution for the incremental propagator 𝑈 at time
slice 𝑗 and the first can be obtained by taking the derivative of the Schrödinger equation
with respect to 𝑢 𝑗 .

In GOAT [22] this approach is extended to analytic controls, i.e., controls that are not piece-
wise constant. Since a single parameter changes the control field in more than a single time
slice, Eq. (1.65) is not applicable. Instead, we can write a coupled system of equations for
𝑈 and each derivative 𝜕𝑝𝑈 and solve this system

𝑖𝜕𝑡

(
𝜕𝑝𝑈

𝑈

)
=

(
𝐻 𝜕𝑝𝐻

0 𝐻

) (
𝜕𝑝𝑈

𝑈

)
(1.67)

to obtain a time evolution of the gradients. Finally, we express the derivative of the functional
to synthesize a gate 𝑉

𝐽 =

���� 1
dim𝑈

tr
(
𝑉†𝑈

)����2 (1.68)

in terms of 𝜕𝑝𝑈 as

𝜕𝑝𝐽 = −Re
(
𝐽∗

|𝐽 |
1

dim𝑈
tr
(
𝑉†𝜕𝑝𝑈

))
. (1.69)

1.4.4 Automatic differentiation

A powerful concept borrowed from the machine learning world is the idea of computing
derivatives numerically in a manner similar to how we first learn about the chain rule. As an
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1.4 Quantum optimal control

example, we borrow the introduction from [23] and look at the dependency of the resonance
of a tunable Transmon with respect to the flux. The frequency is given by

𝜔(Φ) =
(
𝜔0 − 𝛿

)√︄����cos
(
Φ

Φ0
𝜋

)���� + 𝛿 (1.70)

and we can compute the sensitivity to the flux, if we limit ourselves to the region where the
cosine is positive with

𝜕Φ𝜔 =

(
𝜔0 − 𝛿

)
𝜕Φ

√︄
cos

(
Φ

Φ0
𝜋

)
=

(
𝜔0 − 𝛿

) 𝜕Φ cos
(
Φ
Φ0
𝜋

)
√︂

cos
(
Φ
Φ0
𝜋

)
= −

(
𝜔0 − 𝛿

) sin
(
Φ
Φ0
𝜋

)
√︂

cos
(
Φ
Φ0
𝜋

) 𝜋

Φ0

(1.71)

To treat the same problem with automatic differentiation means introducing placeholder
variables for each individual operation, so

𝜔 = 𝑥1 =

(
𝜔0 − 𝛿

)
𝑥2 , 𝑥2 =

√
𝑥3 , 𝑥3 = cos

(
𝑥4
Φ0
𝜋

)
and 𝑥4 = Φ . (1.72)

Each variable depends on new variables with increasing index until the final variable
coincides with the desired derivative direction. To represent the example we carried out by
hand, we can write generally

𝜕𝜔

𝜕Φ
=
𝜕𝑥1
𝜕𝑥2

𝜕𝑥2
𝜕𝑥3

𝜕𝑥3
𝜕𝑥4

(1.73)

By parsing and storing intermediate variables in this way, we can fully automatic compute
the desired derivative, referring to a generic rule-set for elementary operations, such as
multiplication, root-taking, etc. Since this is not a computer algebra system but sits in
between numerics and CAS, this allows to take some derivatives otherwise not so easily
expressed. In the example above, the automatic version works even when we keep the abso-
lute. As the computation branches with the sign change in the cosine, so do the intermediate
representations, resulting in the correct numerical derivative manual intervention.
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1 Introduction – Quantum devices as computers

Figure 1.3: Demonstration of an automatic differentiation package. The function is piece-
wise defined, yet the derivative can be computed automatically.

The plot in Fig. 1.3 generated from the code

fig , ax = plt. subplots (1)
with tf. GradientTape () as t:

t.watch(xs)
ys = []
for x in xs:

if x < 2:
ys. append (tf.sin(x))

elif x > 5:
ys. append (tf.exp(tf.cos(x)))

else:
ys. append (tf.cos(x))

ax.plot(xs , ys , label=" function ")
ax.plot(xs , t. gradient (ys , xs), label=" autograd ")
plt. legend ()

to demonstrate the derivative of a mathematically problematic definition of a function.

1.5 Characterization and Benchmarking

Applying the concepts of optimal control to real-life experiments has two main problems:
The dynamics will not be described by closed-system, coherent time-evolution 𝑈 but the
open quantum system analogue, a quantum channel. Second, every figure of merit has to
be experimentally accessible. In principle, it is possible to reconstruct the full channel of a
gate operation but at the price of an excessive amount of measurements.

To generalize the idea of a time-evolution, we extend the state description to the density
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matrix 𝜌 = |𝜓⟩⟨𝜓 | and write the Liouville-von-Neumann equation

𝑖𝜕𝑡𝜌 = [𝐻, 𝜌] (1.74)

in place of the Schrödinger equation. In this description, we can separate𝐻 = 𝐻𝑆+𝐻𝐸+𝐻𝑆𝐸
into a system Hamiltonian 𝐻𝑆 (the dynamics we’re interested in) and an environment 𝐻𝐸
and their interaction 𝐻𝑆𝐸 . Then, applying some assumptions – markovianity and separating
time scales – to the interaction and tracing out the degrees of freedom, we can capture the
effects of the environment on the system in the Lindblad Master equation [24]

𝜕𝑡𝜌 = −𝑖[𝐻, 𝜌] +
∑︁
𝑗

𝐿 𝑗 𝜌𝐿
†
𝑗
− 1

2

{
𝐿 𝑗𝐿

†
𝑗
, 𝜌

}
= L[𝜌], (1.75)

with the Lindbladian L and a set of jump operators 𝐿 𝑗 . The result is a quantum channel
𝜌(𝑡) = Λ𝑡 [𝜌(0)].
A more general way to express the effect of a quantum operation on the state of the system
is with a linear map

𝜌 → Λ(𝜌)
tr{Λ(𝜌)} (1.76)

where
Λ(𝜌) =

∑︁
𝑖

𝐴𝑖𝜌𝐴𝑖 (1.77)

with the Kraus operators 𝐴𝑖 [25], that satisfy
∑
𝑖 𝐴
†
𝑖
𝐴𝑖 = 1. The choice of these 𝐴𝑖 is not

trivial. Practically, if a different, predetermined set of 𝑃𝑖 is used, the channel can be written
as

Λ(𝜌) =
∑︁
𝑙,𝑚

𝜒𝑙,𝑚𝑃𝑙𝜌𝑃𝑚 (1.78)

with the Chi matrix 𝜒𝑙,𝑚. Then, the entries of this matrix fully describe the quantum channel.
With this description, we can express the notion of a gate fidelity as used in the previous
section. If 𝑈 is some intended target gate operation, then the fidelity when comparing the
actually implemented channel Λ is

𝐹 =

(
tr

√︃√︁
Λ(𝜌)U(𝜌)

√︁
Λ(𝜌)

)2
(1.79)

the typical overlap of two density matrices. We now want to characterize the gate by
expressing the average fidelity [26]

𝐹̄ =

∫
𝐹 ( |𝜓⟩⟨𝜓 |)d𝜓 (1.80)

with can be compactly written with Eq. (1.78) as

𝐹̄ =
𝜒0,0𝑑 + 1
𝑑 + 1

, (1.81)

to express the fidelity of an operation on a 𝑑 × 𝑑 Hilbert space in general, instead of a lot of
detail. In experimental application, this means significantly fewer measurements are needed
to compute such a quantity.
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1.5.1 Randomized Benchmarking

Often in application, the main goal is to improve gate operations without necessarily fully
characterizing errors. The errors could be principally understood, but when parameters of
a device drift over time, recalibration is still needed. If the procedure is also simple in
operation, there is potential for automation.

Assume a single qubit of a quantum device has a set of gates G that we wish to characterize.
We can use this gate-set to construct the so-called Clifford gates [27], a set of mainly 90
degree rotations on the Bloch sphere. Mathematically, the Clifford gates form a group which
allows the following procedure:

Given a number 𝑛, randomly select 𝑛 gates from the Clifford group 𝐶1, 𝐶2, 𝐶3, ..., 𝐶𝑛 and
assemble them to a sequence

𝐶1𝐶2𝐶3 · .. · 𝐶𝑛𝐶𝑛−1 ≡ 1 (1.82)

where 𝐶𝑛+1 is chosen as the inverse of the previous sequence. By the group properties,
this inverse always exists. If the gates that make up this sequence would be perfect, a
measurement of

𝑝00(𝑛) = | ⟨0|𝐶1𝐶2𝐶3 · .. · 𝐶𝑛𝐶𝑛+1 |0⟩|2 (1.83)

would always return 1. Any imperfection in the qubit operation degrades this number
increasingly with the selected sequence length 𝑛, as the errors are amplified. Additionally,
this procedure has an effect called twirling [28] that maps any gate imperfections, including
coherent errors like over- or under-rotation, to a depolarizing channel, which means the
qubit approaches a fully mixed state with increasing sequence length.

To the resulting data, we can fit a curve of the form

𝑝00(𝑛) = 𝐴(1 − 𝜖)𝑛 + 𝐵 (1.84)

where, for a qubit with two levels, 𝐴 and 𝐵 should be 1/2 and 𝜖 is the error per Clifford
[29]. The constants 𝐴 and 𝐵 represent respectively the state preparation error and finite
temperature effects.

Even simpler and more elegantly, RB can be adapted to improve gate-set performance by
picking a fixed length 𝑛 and, in a feedback loop, tune-up gate parameters to maximize 𝑝00(𝑛)
in a procedure called ORBIT [30] (optimized randomized benchmarking for immediate
tune-up).

1.5.2 Quantum Process tomography

When more detail about a quantum gate operation are of interest, a collection of tomography
methods can be employed with increasing degree of effort in terms of number of measure-
ments and processing [31]. It amounts to designing a scheme to measure every entry of the
Chi matrix in Eq. (1.78). In case of a two qubit gate, we can choose the Pauli matrices as a
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|0⟩ 𝑋

Λ

𝑌

|0⟩ 𝑌 𝑋

Figure 1.4: An example circuit to perform one measurement required for Quantum Process
Tomography on a two qubit gate Λ.

basis, .i.e 𝑃𝑙 = 𝜎𝑎 ⊗ 𝜎𝑏 and run a circuit as shown in Fig. 1.4. To reconstruct the channel,
we thus need to prepare all permutations of 𝐼, 𝑋,𝑌 and 𝑍 (42 = 16) for each qubit before
and after applying the gate we want to characterize. Thus, we need to run 162 = 256 circuits
and we can visualize the resulting matrix as shown in Fig. 1.5.

1.5.3 Adaptation by Hybrid Optimal Control (Ad-HOC)

Transferring results from optimal control theory intro experimental practice is not an easy
task. Within the optimal control community, sometimes slightly different vocabulary is used.
Here, we’ll take open loop control to mean techniques based on theoretical or numerical
models, whereas closed loop involves communication with the experimental setup during
optimization. A typical sequence consists of taking the textbook model description of an
experimental system, plugging in the parameters gained from previous characterization and
deriving optimal controls on this basis. This approach has been applied very successfully in
NMR, e.g., [10] where models are well known and characterized to high precision. In other
settings, such as superconducting qubits as complex solid state systems, the accuracy of
model predictions is lower which makes the application of model bases control techniques
difficult.

When performing optimal control in closed loop, the individual parameters of pulses are
tuned mostly manually to maximize performance as indicated by some measurement result.
The effort scales up the complexity of the control used, as there are more and more knobs
to turn. In addition, if the model prediction is substantially different from the behavior of
the real thing, the measurement might show very little sensitivity to changes in the controls.

The Ad-HOC procedure, see Fig. 1.6, connects the two steps. After a system is initially
designed and fabricated, optimal control pulses are derived based on characterization mea-
surements, such as finding qubit resonances, coupling strengths, etc. These pulses perform
very well on the model, so even if there’s a quantitative difference between the real ex-
periment, the model-based solution has the right structure to work on this type of system.
Then, fine-tuning the pulses with feedback from the experiment allows us to reach the best
possible performance.
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1 Introduction – Quantum devices as computers

Figure 1.5: Visualization of the Chi matrix as a result of quantum process tomography
experiments. Reproduced from [32].
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1.5 Characterization and Benchmarking

Figure 1.6: Ad-HOC protocol for finding optimal control pulses for quantum devices. After
design and fabrication of the device, it is modeled based on measurable physical
parameters. Based on this model, a control pulse is designed using analytic
or numerical methods. This pulse is then tested on the physical system and
adjusted according to the achieved fidelity. Reproduced from [33].
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2 Characterizing two-photon
transitions in a strongly driven
Transmon

Any realistic application of quantum computing relies on having a qubit with a sufficiently
long coherence time to perform a desired operation, from simple logic gates to complex
quantum algorithms. Superconducting qubits [13] are usually embedded in or otherwise
coupled to microwave cavities or waveguides in an architecture called Circuit Quantum
Electrodynamics or cQED [34]. These resonators allow for the qubit to be controlled by
external microwave fields for state generation, read-out, or coupling to other systems.

In three-dimensional circuit QED, microwave resonators are omnipresent – they are the way
by which qubits are coupled to each other and to external controls. Cavity manufacturing has
been technically well-developed, and it is possible to produce highly accurate 3D resonators
with great coherence properties [35]. In such devices, a quantum state in the cavity can
have significantly longer coherence times, than states in the qubit. It would therefore be
convenient to use the cavity as a memory for the qubit: write and read operations swap the
state of qubit and cavity, to store the state coherently for a comparatively long time.

Consider a computational subspace consisting of the ground and excited state of the qubit
|𝑔⟩ , |𝑒⟩ and two states of the cavity |0⟩ , |1⟩. If we assume the cavity to be in the 0-state in
the beginning of the process, the write operation on the combined system can be written as

𝑈write |𝑒, 0⟩ = |𝑔, 1⟩
𝑈write |𝑔, 0⟩ = |𝑔, 0⟩

(2.1)

swapping the excitation between subsystems. The cavity state representing the logical 0
and 1 do not have to be the first two cavity Fock states. In fact, they don’t even have to be
Fock states. The only criterion is that the storage state of the cavity memory must be easily
distinguished from the ’empty’ state. However, in this work we will utilize the |0⟩ and |1⟩
Fock states, i.e., states of exactly 0 or 1 photon in the cavity.

This chapter represents an update on a section of my master’s thesis. The analytic derivations have been
redone so the result is more comparable to the literature. Numerical simulations have also been recoded
and a comparison to analytics has been added. The introduction is reproduced here for completeness of
the presentation and the text of the remaining sections rewritten. A publication is in preparation.
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2.1 Matching model with experiment

|𝑔, 0⟩

|𝑔, 1⟩
|𝑒, 0⟩

|𝑒, 1⟩

𝜔 bsb

𝜔q

𝜔q

Figure 2.1: The write operation for a quantum memory, as suggested by [36], shown in an
idealized computational subsystem of the participating states of the qubit |𝑔⟩
and |𝑒⟩ and the microwave cavity |0⟩ and |1⟩. The state of the qubit is transfered
by a 𝜋-pulse on the blue sideband, followed by another 𝜋-pulse on the qubit
transition.

The procedure to achieve this state transfer, suggested by [36], consists of driving a two-
photon 𝜋-pulse at the so-called blue sideband transferring population from |𝑔, 0⟩ to |𝑒, 1⟩
and then another 𝜋-pulse on the qubit from |𝑒, 1⟩ to |𝑔, 1⟩ as shown in Figure Fig. 2.1.

Assuming these operations could be implemented ideally, the procedure acting on an arbi-
trary qubit state 𝛼 |𝑔⟩ + 𝛽 |𝑒⟩ starting from an empty cavity, results in

|Ψ0⟩ = (𝛼 |𝑔⟩ + 𝛽 |𝑒⟩) ⊗ |0⟩
𝑈bsb |Ψ0⟩ = 𝛼 |𝑒, 1⟩ + 𝛽 |𝑒, 0⟩

𝑈q𝑈bsb |Ψ0⟩ = 𝛼 |𝑔, 1⟩ + 𝛽 |𝑔, 0⟩
= |𝑔⟩ ⊗ (𝛼 |1⟩ + 𝛽 |0⟩)

(2.2)

where the state is indeed stored in the cavity as 𝛼 |1⟩ + 𝛽 |0⟩. Since the memory is not en-
tangled with the qubit it can potentially be used for another operation, while the information
of the saved qubit state rests in the cavity until it is required. Storage time is limited by the
quality of the cavity, which can provide coherence times up to milliseconds [35].

2.1 Matching model with experiment

We take the parameters for the Transmon from [36] with the working transition frequency
𝜔𝑞/2𝜋=6.234 GHz and anharmonicity 𝛿/2𝜋=185 MHz that is coupled to the cavity mode
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2 Characterizing two-photon transitions in a strongly driven Transmon
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Figure 2.2: Rabi frequency and resonance for the blue sideband transition dependent on
drive power. Linear fits, in agreement with theoretical predictions, are used to
determine the dependency on drive power.

at 𝜔𝑟 = 8.708 GHz with the coupling strength 𝑔 = 239 MHz and write the Hamiltonian as

𝐻 (0) =𝜔𝑟𝑎
†𝑎 + 𝜔𝑞𝑏†𝑏 +

𝛿

2

(
𝑏†𝑏 − 1

)
𝑏†𝑏

+ 𝑔(𝑎† + 𝑎) (𝑏† + 𝑏) − 𝜀(𝑒−𝑖𝜔𝑑 𝑡𝑎† + 𝑒𝑖𝜔𝑑 𝑡𝑎) .
(2.3)

The system is controlled by a drive on the cavity at 𝜔𝑑 with the amplitude 𝜀. If we drive
the cavity detuned from its resonance at 𝜔𝑟 , we create a coherent state. By applying a
displacement transformation 𝐷 (𝛼) = exp

{
𝛼𝑎† − 𝛼∗𝑎

}
with the right choice of 𝛼(𝑡), we

can eliminate the drive on the cavity and find an effective expression for the drive on the
Transmon [37]. In this description, the cavity is occupied by a mean photon number

𝑛offset =
𝜀2

(𝜔𝑑 − 𝜔𝑟)2
(2.4)

and the Hamiltonian

𝐻 (1) =𝜔𝑟𝑎
†𝑎 + 𝜔𝑞𝑏†𝑏 +

𝛿

2

(
𝑏†𝑏 − 1

)
𝑏†𝑏

+ 𝑔(𝑎† + 𝑎) (𝑏† + 𝑏) −Ω𝑅 (𝑒−𝑖𝜔𝑑 𝑡𝑏† + 𝑒𝑖𝜔𝑑 𝑡𝑏) .
(2.5)

as a new drive term on the Transmon with Rabi frequency

Ω𝑅 = 𝑔
𝜀

𝜔𝑟 − 𝜔𝑑
. (2.6)
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2.1 Matching model with experiment

For numerics, there’s an advantage to simulate the system in this frame. If the cut-off is too
low, the cavity in Eq. (2.3) will not behave harmonically but instead like a 𝑑-level system,
where population can be reflected from the highest energy state. We expect to require a
high drive amplitude to activate the two-photon transition.

The effect of drive power on the blue sideband transition is shown in Fig. 2.2. The predicted
Rabi frequency for the sideband transition can be computed similarly, also from [37] as

ΩBSB = 𝑔
Ω2
𝑅

(𝜔𝑞 − 𝜔𝑑)2
= 𝑔3 𝜀2

(𝜔𝑟 − 𝜔𝑑)2(𝜔𝑞 − 𝜔𝑑)2
. (2.7)

It has a dependency on the square of the drive amplitude 𝜀, which suggests a linear behavior
with respect to power.

Estimating the actual drive amplitude that acts on the transition from the input power is not
trivial. The total applied power of the signal that is sent to the cavity by the microwave
generator is attenuated as well as shaped by different components of the experimental setup,
and is then distributed across the different modes of the cavity. Instead, we can measure the
Rabi frequency of a driven transition to gain insight into the effective power that arrives at
the qubit.

When verifying the model, this is exactly the relation which is required to translate a
theoretical drive amplitude into the power going into the experiment.

Also in Fig. 2.2, we see the AC Stark shift

𝜔̃𝑞 − 𝜔𝑞 =
1
2

Ω2
𝑅

(𝜔𝑞 − 𝜔𝑑)
(2.8)

of the transition frequency with increasing drive power. By combining the AC Stark shift
and the Rabi frequency, we can obtain a characteristic curve for the system.

We eliminate drive power and relate the AC stark shift of the sideband transition to the Rabi
frequency

𝛾Qubit :=
ΩBSB

(𝜔̃𝑞 − 𝜔𝑞)/2
=

4𝑔
𝜔𝑞 − 𝜔𝑑

. (2.9)

Two approximations are candidates for a discrepancy between model and experiment: The
derivation of the sideband matrix element hinges on commutator properties of the Pauli
operators describing the two-level of the qubit. Applying this result to a Transmon can
require a correction. Driving a sideband requires selectivity of the qubit states at high drive
power, such that the higher energy states of the Transmon will play a role, and treating the
Transmon as a two-level system is not justified.

The second approximation is the model for the cavity. Describing the system in a Polaron
frame obscures how strongly the cavity is actually driven.
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2 Characterizing two-photon transitions in a strongly driven Transmon

2.2 Effective Hamiltonian for a 𝑑-level Transmon

Here, we extend the treatment detailed in [37] to include more than two levels of the
Transmon, since the two-level approximation has not been sufficient to explain the behavior
in seen in experiment. The anharmonicity of the Transmon does not isolate the qubit
transition sufficiently from the rest of the spectrum, so leakage levels have to be considered
in the derivation. We include a third energy state of the Transmon and find expressions for
blue sideband Rabi frequency and Stark shift that show the effect of the presence of the
third level.

Taking into account the typically low anharmonicity of Transmon circuits, strong driving of
the system results in significant population of higher qubit levels. We thus extend the qubit
displacement to a more general form

𝑈 = exp

{∑︁
𝑚

𝛽∗𝑚𝜎
𝑚
+ − 𝛽𝑚𝜎𝑚−

}
= exp

{∑︁
𝑚

𝑇𝑚

}
. (2.10)

where all neighboring Transmon levels are rotated by an angle 𝛽𝑚 and we have shortened
𝜎𝑚+ := |𝑚 + 1⟩⟨𝑚 |.
We apply this transformation, starting from Eq. (2.5)

𝐻 (2) =𝑈†𝐻 (1)𝑈 − 𝑖𝑈† ¤𝑈 (2.11)

to compute a correction to the qubit subspace and provide more realistic estimates for
AC-Stark shift and qubit Rabi frequency.

For the first part, we employ the Baker-Campell-Hausdorf formula

𝑈†𝐻 (1)𝑈 ≃ 𝐻 (1) +
∑︁
𝑚

[
𝑇𝑚, 𝐻

(1)] + 1
2

∑︁
𝑚,𝑛

[
𝑇𝑚,

[
𝑇𝑛, 𝐻

(1)] ] (2.12)

where we keep terms up to ∝ 𝛽2
𝑚.

The rotation 𝛽𝑛 of the {|𝑛 + 1⟩ , |𝑛⟩} subspace is determined exactly as in [37]. The first order
produces analogous expressions, this time with the energy of the corresponding Transmon
transition[

𝜔𝑞𝑏
†𝑏 + 𝛿

2

(
𝑏†𝑏 − 1

)
𝑏†𝑏, 𝛽∗𝑛𝜎

𝑛
+ − 𝛽𝑛𝜎𝑛−

]
= (𝜔𝑞 + 𝑛𝛿) (𝛽∗𝑛𝜎𝑛+ + 𝛽𝑛𝜎𝑛−) (2.13)

Again the commutator with the number expressions produce an additional coupling that
will later cancel the direct drive. The drive commutator[

(𝑏† + 𝑏), 𝛽∗𝑛𝜎𝑛+ − 𝛽𝑛𝜎𝑛−
]
= 𝛽∗𝑛

[
𝑏, 𝜎𝑛+

]
− 𝛽𝑛

[
𝑏†, 𝜎𝑛−

]
=
√
𝑛(𝛽∗𝑛 + 𝛽𝑛)𝜎𝑛𝑧 (2.14)

similarly produces𝜎𝑛𝑧 := |𝑛⟩⟨𝑛|−|𝑛 + 1⟩⟨𝑛 + 1| splitting between neighboring levels, induced
by the drive.
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2.2 Effective Hamiltonian for a 𝑑-level Transmon

The inertial term, we also expand to second order

−𝑖𝑈† ¤𝑈 ≃
∑︁
𝑚

(
𝛽∗𝑚 ¤𝛽𝑚 − 𝛽𝑚 ¤𝛽∗𝑚

)
𝜎𝑚𝑧 − ¤𝛽∗𝑚𝜎𝑚+ + ¤𝛽𝑚𝜎𝑚− (2.15)

to obtain two contributions.
We compute the inertial term

𝑈† ¤𝑈 ≃
(
𝛽𝑚 ¤𝛽∗𝑚 − 𝛽∗𝑚 ¤𝛽𝑚

)
𝜎𝑚𝑧 + ¤𝑇𝑚 (2.16)

To determine 𝛽𝑚, we again collect the terms proportional to 𝜎𝑚+ and find
(𝜔𝑞 + 𝑚𝛿)𝛽𝑚 +Ω𝑅 exp{−𝑖𝜔𝑑𝑡} − 𝑖 ¤𝛽𝑚 = 0 (2.17)

which we can solve with

𝛽𝑚 =
Ω𝑅

𝜔𝑞 + 𝑚𝛿 − 𝜔𝑑
exp{−𝑖𝜔𝑑𝑡} (2.18)

So, the 𝛽𝑚 are periodic functions with the drive frequency 𝜔𝑑 .
We can now identify resonances by inspecting the corresponding operators: In a rotating
frame, each non-diagonal operator is dressed with a phase factor determined by the difference
in eigenenergies 𝐸𝑚, e.g.,

𝛽𝑚𝜎
𝑚
+ → 𝛽𝑚 exp{𝑖(𝐸𝑚+1 − 𝐸𝑚)𝑡}𝜎𝑚+ (2.19)

Hence, this transition is activated by the drive when 𝜔𝑑 = 𝐸𝑚+1 − 𝐸𝑚 is fulfilled.
We’ll now consider the terms from the second order commutator. Applying the displacement
to Eq. (2.13) gives a two-photon transition[

(𝜔𝑞 + 𝛿) (𝛽∗𝑛𝜎𝑛+ + 𝛽𝑛𝜎𝑛−), 𝛽∗𝑚𝜎𝑚+ − 𝛽𝑚𝜎𝑚−
]

= (𝜔𝑞 + 𝑛𝛿)
(
𝛽∗𝑛𝛽

∗
𝑚 |𝑛 + 2⟩⟨𝑛| − 𝛽𝑛𝛽𝑚 |𝑛⟩⟨𝑛 + 2|

) (2.20)

resonant on a double excitation in the Transmon that will be neglected here.
The second order term that produces a sideband element is

[
𝑇𝑛,

[
𝑇𝑚, 𝑏

† + 𝑏
] ]

from Eq. (2.14)[
(𝛽∗𝑛 + 𝛽𝑛)𝜎𝑛𝑧 , 𝛽∗𝑚𝜎𝑚+ − 𝛽𝑚𝜎𝑚−

]
= −

(
𝛽𝑚

(
𝛽𝑚+1 + 𝛽∗𝑚+1 − 𝛽𝑚 − 𝛽

∗
𝑚

)
𝜎𝑚− + h.c.

)
(2.21)

since∑︁
𝑛

(
𝛽∗𝑛 + 𝛽𝑛

)
𝛽∗𝑚

[
𝜎𝑛𝑧 , 𝜎

𝑚
+
]

=
∑︁
𝑛

(
𝛽∗𝑛 + 𝛽𝑛

)
𝛽∗𝑚 ( |𝑛⟩⟨𝑛| |𝑚 + 1⟩⟨𝑚 | − |𝑚 + 1⟩⟨𝑚 | |𝑛⟩⟨𝑛|)

−
(
𝛽∗𝑛 + 𝛽𝑛

)
𝛽∗𝑚 ( |𝑛 + 1⟩⟨𝑛 + 1| |𝑚 + 1⟩⟨𝑚 | + |𝑚 + 1⟩⟨𝑚 | |𝑛 + 1⟩⟨𝑛 + 1|)

=
(
𝛽∗𝑚+1 + 𝛽𝑚+1

)
𝛽∗𝑚 |𝑚 + 1⟩⟨𝑚 | −

(
𝛽∗𝑚 + 𝛽𝑚

)
𝛽∗𝑚 |𝑚 + 1⟩⟨𝑚 |

−
(
𝛽∗𝑚 + 𝛽𝑚

)
𝛽∗𝑚 |𝑚 + 1⟩⟨𝑚 | +

(
𝛽∗𝑚−1 + 𝛽𝑚−1

)
𝛽∗𝑚 |𝑚 + 1⟩⟨𝑚 |

= 𝛽∗𝑚 (𝛽∗𝑚+1 + 𝛽𝑚+1 − 2
(
𝛽∗𝑚 + 𝛽𝑚

)
+ 𝛽∗𝑚−1 + 𝛽𝑚−1)𝜎𝑚+

(2.22)
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2 Characterizing two-photon transitions in a strongly driven Transmon

and analogously for 𝜎𝑚− .

In summation, the second order Hamiltonian in the three level Transmon approximation is

𝐻 (2) = 𝐻0 +
∑︁
𝑚

Ω𝑚
BSB

(
𝑎† + 𝑎

) (
𝜎𝑚+ exp{−2𝑖𝜔𝑑𝑡} + 𝜎𝑚− exp{2𝑖𝜔𝑑𝑡}

)
(2.23)

with 𝐻0 = 𝜔𝑟𝑎
†𝑎 + 𝜔̃𝑞𝑏†𝑏 + 𝛿

2 (𝑏
†𝑏 − 1)𝑏†𝑏 + 𝑔̃(𝑎† + 𝑎) (𝑏† + 𝑏).

We can compute the two-photon Rabi frequency from Eq. (2.21), collecting Δ𝑚 := 𝜔𝑞 +
𝑚𝛿 − 𝜔𝑑

Ω𝑚
BSB = 𝑔

Ω2
𝑅

2Δ2
𝑚

(
2 − 1

1 + 𝛿/Δ𝑚
− 1

1 − 𝛿/Δ𝑚

)
(2.24)

If the anharmonicity is small compared to the drive detuning, we can use the approximation
on the right that is easy to compare to the qubit case in Eq. (2.8).

Here, we can appreciate the presence of higher levels in the Transmon Hamiltonian. The
neighboring transitions differ by the anharmonicity 𝛿 which determines their addressability.
It is also the factor that scales the Rabi frequency.

By plugging the solution for 𝛽𝑚 into the first term in Eq. (2.15)

−𝑖
(
𝛽∗𝑚 ¤𝛽𝑚 − 𝛽𝑚 ¤𝛽∗𝑚

)
𝜎𝑚𝑧 = 𝜔𝑑

Ω2
𝑅

Δ2
𝑚

𝜎𝑚𝑧 (2.25)

and writing out the summation, we can find the Stark shifted Transmon frequencies

𝜔̃𝑚𝑞 = 𝑚𝜔𝑞 +
𝛿

2
(𝑚 − 1)𝑚 + 𝜔𝑑

Ω2
𝑅

Δ2
𝑚

(
1 −

Δ2
𝑚

(Δ𝑚 + 𝛿)2

)
. (2.26)

In summation, the second order Hamiltonian for two-photon transitions is 𝐻 (2) = 𝐻0 +𝐻 (2)𝑑

𝐻
(2)
𝑑

=
∑︁
𝑚

Ω𝑚
BSB

(
𝑎† + 𝑎

) (
𝜎𝑚+ exp{−2𝑖𝜔𝑑𝑡} + 𝜎𝑚− exp{2𝑖𝜔𝑑𝑡}

)
(2.27)

with 𝐻0 = 𝜔𝑟𝑎
†𝑎 +∑

𝑚
𝜔̃𝑚𝑞 |𝑚⟩⟨𝑚 | + 𝑔̃(𝑎† + 𝑎) (𝑏† + 𝑏).

Since the Transmon is weakly anharmonic, we can simplify these expressions by expanding
them in 𝛿/Δ𝑚. This is a commonly used correction term when applying two-level results to
Transmon devices. We can also appreciate that when 𝛿 approaches the working transition
frequencies, we recover the two-level expressions.

2.3 Floquet theory for the 3D-Transmon

We can try to support the perturbative results presented in the previous section with a
numerical approach. In the control of quantum systems, usually a carrier signal with an
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2.3 Floquet theory for the 3D-Transmon

envelope that is shaped by an arbitrary waveform generator to achieve a desired pulse for
a given operation. This envelope has a significantly lower bandwidth (around 500 MHz)
than the local oscillator providing the drive tone (between 5 and 10 GHz). In this case, the
envelope can be seen as quasi-constant during one oscillation of the carrier, and we can
apply the Floquet method [38].
Applying the theory to the previous section the cavity drive takes the role of a perturbation

𝑉 (0) (𝑡) = 𝜀 cos(𝜔𝑑𝑡)
(
𝑎† + 𝑎

)
(2.28)

that we can write as
𝑉 (𝑡) = Ω𝑅 cos(𝜔𝑑𝑡)

(
𝑏† + 𝑏

)
(2.29)

acting on the qubit. The benefit of this frame lies in expressing the indirect drive through
the coupling with the cavity as an effective drive on the qubit. Also, as mentioned before,
this provides a numerical advantage, since accurate simulations require a smaller Hilbert
space.
The Floquet Hamiltonian

H𝐹 = H (𝑛−𝑚) + 𝑛𝜔𝑑𝛿𝑛,𝑚 . (2.30)
consists of two types of blocks: For 𝑛 = 0 the integral averages out the drive,

H (0) = 1
𝑇

∫ 𝑇

0
d𝑡𝐻 (𝑡)

= 𝐻0 + 𝜀(𝑎† + 𝑎)
1
𝑇

∫ 𝑇

0
d𝑡 cos(𝜔𝑑𝑡) = 𝐻0

(2.31)

and the diagonal blocks of H𝐹 = 𝐻0 + 𝑛𝜔𝑑 are the unperturbed system Hamiltonian offset
by the quasi-energy of the drive.
For 𝑛 − 𝑚 = ±1 only the drive will remain as a constant coupling

H (±1) =
1
𝑇

∫ 𝑇

0
d𝑡𝐻 (𝑡)

=
1
𝑇
Ω𝑅 (𝑏† + 𝑏)

∫ 𝑇

0
d𝑡 cos(𝜔𝑑𝑡) exp (±i𝜔𝑑𝑡)

=
Ω𝑅

2
(𝑏† + 𝑏) =: V

(2.32)

as in a frame rotating with the drive frequency.
In total, the block structure of the Floquet Hamiltonian is

HF =

©­­­­­­­«

. . . V
V 𝐻0 − 𝜔𝑑 V

V 𝐻0 V
V 𝐻0 + 𝜔𝑑 V

V . . .

ª®®®®®®®¬
. (2.33)
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Figure 2.3: Eigenenergies calculated by the Floquet method for variable drive frequency
with the detuning measured from half the bare blue sideband frequency. Label-
ing of the |𝑒1⟩ and |𝑔0⟩ states is chosen for left of the transition, where |𝑔0⟩ has
a slope of ∼ 2𝜔𝑑 .

32
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Figure 2.4: Comparison between the analytic results and Floquet simulation. With respect
to the AC Stark shift, both systems behave the same, suggesting an effective
separation of the targeted transitions. The extracted Rabi frequency however
agrees with the theory prediction.

The two-photon sidebands, for example, connect blocks that differ by 2𝜔𝑑 in energy.

We simulate the Floquet Hamiltonian for a given drive strength, sweeping the drive fre-
quency around the bare blue sideband transition at 𝜔BSB/2 = (𝜔𝑞 +𝜔𝑟)/2 and compute the
eigenvalues and eigenbasis. To characterize the transition, we identify those states with a
significant overlap to those that interest us, namely |𝑒1⟩ and |𝑔0⟩. From the avoided crossing
in Fig. 2.3, we can estimate both the resonance position and the effective Rabi frequency.
Since the drive acts as a static coupling between the Floquet blocks, the strength of the
interaction is given by the distance at the avoided crossing.

Now we compare the approximate sideband Rabi frequency from simulated avoided cross-
ings like Fig. 2.3 with experimental data, to estimate of the relation between drive amplitude
𝜀 used in the model and power of the microwave source generating the carrier signal. In
Fig. 2.4, we compare the two-level "Qubit" results with the correction "Transmon" from the
previous section. Interestingly, the prediction for the Rabi frequency aligns well with the
perturbative theory while the dynamic AC Stark shift behaves the same in both cases.

Using control theory, e.g. DRAG (see Section 1.3.3), it should be possible to drive the
Transmon in such a way that it behaves like a two-level system, so either expression might
be applicable.

When finally comparing to the experimental data in Fig. 2.5, we find a good agreement if
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Figure 2.5: Comparing analytic expressions to the experimental data. Orange is the line for
qubit expressions. If we add the Transmon correction 𝛿/Δ𝑚 to the AC Stark
shift, it agrees with the experimental (green, dashed). However, this requires
an unphysically high drive amplitude 𝜀 ≫ 1 GHz to reach reported gate times
under 100 ns. In this case, assumptions made during the derivation of Eq. (2.7)
are not justified.
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2.4 Conclusion

we apply the Transmon correction only to the Stark shift expression and use the Qubit Rabi
frequency, contrary to the Floquet numerics.

2.4 Conclusion

In this chapter, we have highlighted a common problem in applied optimal control. Some
systems, particularly human-made ones, are described with approximate models that serve
well in qualitatively understanding their behavior.

Obtaining quantitatively matching expressions from theory for these kinds of systems has
been a challenge for a while. Recently there are promising approaches [39] to deal with this
kind of characterization problem.

Resolving the discrepancy between Floquet simulation, analytic results and experimental
data is subject of future work. One clue is the estimated drive strength required in the
simulation which is way into the strong driving regime. This is somewhat expected, looking
at Eq. (2.7), both detunings are over 1 GHz and the coupling strength goes with the third
power. So obtaining a Rabi frequency of around 100 ns results in a quite high amplitude
𝜀. Since the analytic results are based on series expansions that require the ratio of 𝜀 and
these detunings to be small , we don’t expect them to be fully trustworthy, but only work as
a guideline.

In order to apply sophisticated optimal control, the Ad-HOC (see Section 1.5.3) method
requires somewhat comparable performance in model and experiment. We have also seen
in this case, that the system characterization needs to be consistent. The different efforts
using analytics and numerical Floquet analysis do not agree here. Consequently, a more
systematic approach is desirable.
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3 Integrated tool-set for control,
calibration, and characterization of
quantum devices applied to
superconducting qubits

System characterization is often a manual, laborious task. Reliably teasing out the properties
of a physical system is a fundamental task in understanding and describing its behavior. In
application, this is less a matter of groundbreaking, novel technique but rather a means to
an end: The construction of a working device. Efforts to scale-up quantum computation
have reached a point where the principal limiting factor is not the number of qubits, but the
entangling gate infidelity. However, the highly detailed system characterization required
to understand the underlying error sources is an arduous process and impractical with
increasing chip size. Open-loop optimal control techniques allow for the improvement
of gates but are limited by the models they are based on. To rectify the situation, we
provide an integrated open-source tool-set for Control, Calibration and Characterization
(C3), capable of open-loop pulse optimization, model-free calibration, model fitting and
refinement. We present a methodology to combine these tools to find a quantitatively
accurate system model, high-fidelity gates and an approximate error budget, all based on a
high-performance, feature-rich simulator. We illustrate our methods using simulated fixed-
frequency superconducting qubits for which we learn model parameters with less than 1%
error and derive a coherence limited cross-resonance (CR) gate that achieves 99.6% fidelity
without need for calibration.

This chapter has been published as "Nicolas Wittler, Federico Roy, Kevin Pack, Max Werninghaus, Anurag
Saha Roy, Daniel J. Egger, Stefan Filipp, Frank K. Wilhelm, and Shai Machnes, Integrated Tool Set for
Control, Calibration, and Characterization of Quantum Devices Applied to Superconducting Qubits Phys.
Rev. Applied 15, 034080" by the American Physical Society under the terms of the Creative Commons
Attribution 4.0 International license. https://doi.org/10.1103/PhysRevApplied.15.034080
Unless stated otherwise, text and software were written in close collaboration by F. Roy and N. Wittler.
Section 3.4.3 and Section 3.5 were authored by S. Machnes. The publication contains an appendix on
gradient-free optimization methods that was written by K. Pack.
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3.1 The problem

3.1 The problem

Scaling up quantum processing units (QPUs) is a monumental task, that requires the com-
munity to make progress on multiple fronts, most importantly improving gate fidelities
and increasing the number of qubits. Over the past few years, significant emphasis has
been placed on creating larger devices, yielding great success [14]. However, the number
of qubits has outstripped the limits that fidelity places on their utility: In [40], a record
quantum volume [41] of 64 was demonstrated, loosely translating to the device being able
to perform log2 (64)2 = 36 entangling gates before fidelity drops below 2/3, a relatively
small number of gates for an array of six qubits; In [42] the circuit fidelity was 0.1% thus
requiring 30 million repetitions to achieve the desired statistics. One could even argue that
the two-qubit gate fidelities demonstrated in isolation in 2014 [43] (0.994) are comparable
with those in 2019’s [42] (0.9938), even though the latter are for simultaneous gates in a
large 2D qubit array.

The relatively slow progress in improving gate fidelities can be traced back to an incomplete
understanding of the sources of error. Indeed, characterization and calibration of QPUs to
the desired accuracy is impractical and cumbersome, and operating on devices of increasing
qubit number requires entangling gates to be fine-tuned for each individual pair to account
for slightly varying properties. The resulting lack of detailed models makes it harder to
identify where efforts must be focused to achieve higher fidelity gates [44, 45].

Given that “all models are wrong, but some are useful” [46], we describe a Good Model as
follows:

A Good Model is one that predicts the
behavior of the system, for the

operations we wish to perform, to
accuracies we care about.

For a QPU, a Good Model has to have predictive power for the range of feasible gate-
generating pulses and for long sequences of such gates, to a fidelity accuracy of the order
of 10−5. To the authors’ knowledge, no such Good Model for a superconducting QPU has
ever been published.

Since models serve as the basis to derive high-fidelity gates in open-loop optimal control
[47–54], any inaccuracies of the model will inevitably degrade the experimental accuracy of
the resulting gates. This problem is only partially ameliorated by the first-order insensitivity
of optimized pulses to model inaccuracies [55, 56]. Methodologies such as the adaptive
hybrid optimal control (Ad-HOC) protocol [57] – which combines a model-based open-loop
optimization with a closed-loop experimental calibration [51, 58] – address this issue but
leave one in an unsatisfactory position as the need for calibration proves the inadequacy of
the model: the root causes of the remaining infidelities are unexplained.

Conversely, if a Good Model is known, gates generated by open-loop optimal control will,
by definition, work on the experiment, not requiring further closed-loop calibration. This
enables the use of complex pulses that would otherwise require time-consuming calibration.
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Such a Good Model would also provide an error budget through a process of exploratory
interrogation – evaluating the potential performance of the system where certain limitations
have been removed, i.e. asking “what if ...?”. Therefore, extracting a Good Model efficiently
and in a highly automated manner is key to improving fidelities and a crucial step of QPU
scale-up.

In this work we present C3, our proposed approach to control, calibrate and characterize
QPUs. This chapter is structured as follows: We present the conceptual steps of C3 in
Sec. 3.2 and illustrate the methodology by example in Sec. 3.3, showing how these steps
are implemented. Sec. 3.4 includes a detailed description of the modeling, optimization
procedures, the data comparison function and relevant prior work. We conclude in 3.7 with
a discussion of the effort’s current status and long-term directions.

3.2 C3 – Control, Calibration, and Characterization

Current methodology relies on tailored routines to extract individual parameters of the sys-
tem’s model (characterization) or fine-tune specific parameters of pulses used (calibration)
[59, 60]. This approach becomes cumbersome and impractical as the number of model and
pulse parameters increases. With C3 we propose a different paradigm: Optimizing a figure
of merit that is sensitive to the set of parameters we care about. This eliminates the need
to design per-parameter measurements, and thus provides a more general approach. C3 at
its core is composed of three separate optimizations, respectively implementing the tasks of
control, calibration, and characterization:

C1 Given a model, find the pulse shapes that maximize fidelity with a target operation.
Pulse shapes may be constrained by an ansatz or allow direct arbitrary waveform
generator (AWG) parameterization.

C2 Given pulse shapes, calibrate their parameters, if possible simultaneously, to maximize
a figure of merit measured by the actual experiment, thus improving beyond the limits
of a deficient model.

C3 Given control pulses and their experimental measurement outcome, optimize model
parameters to best reproduce the results. Enhance the model if needed.

The tasks of open-loop optimal control, C1, and calibration, C2, are fairly established in
the community [47–51, 51–54, 57, 58]. To characterize the system and provide us with a
Good Model, we introduce C3, a tool to optimize model parameters by comparing model
prediction to experimental data. We refer to this task as model learning. For this purpose,
one requires an experimental data-set containing information about the implemented pulses
and the corresponding measurement outcomes. To test the model accuracy, we reproduce
the data-set, applying the same pulses to a simulation of the experiment, and compare the
resulting outcomes: This provides a model match score to optimize. Initially, a candidate
model is formulated based on previous information or intuition. If the model is suitable
to explain the experiment, the optimization will converge to a near perfect match, thus
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3.2 C3 – Control, Calibration, and Characterization

C1: Open loop

Dataset 
Experiments, Results

C2: CalibrationC3: Model learning

Gate set Models

Simulation

Experiment

Figure 3.1: Diagram of the C3 tool-set in an integrated characterization loop. C1 is a tool
for obtaining optimal pulses by finding the control parameters 𝛼 that minimize a
goal function 𝑓1(𝛼) in simulation. The gate-set G includes all the operation that
one wishes to perform on the experiment, including the information of the ideal
logical operations and the optimal pulse parameters 𝛼 that implement them.
C2 is a model-free experimental calibration procedure that optimizes pulse
shapes with a gradient-free search to minimize an infidelity function 𝑓2(𝛼) by
varying all parameters at once. A data-set is a collection of experiment/result
pairs, including information about the pulses parameters used 𝛼, the sequences
𝑆𝑘 performed and the final outcomes measured, 𝑚𝑘 . C3 is a tool for model
learning that determines the model parameters 𝛽 that best explain the data-set.
It minimizes a goal function 𝑓3(𝛽 |D) obtained by recreating experiments 𝑆𝑘 (𝛼)
in simulation and comparing the results to the ones in the experiment. In C3

different parameterized models can be provided to represent various elements
of the experiment to find the one that best describes it. After the learning, the
resulting model can be the basis for another characterization loop, refining both
model and controls.
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providing numeric values for the model parameters. Instead, if the match is poor, the user
supplies a new model, that is either an extension or modification of the previous candidate,
and the optimization is repeated. Depending on user choice, learned values are carried over
to the parameters of the new model or discarded.

As heterogeneous experimental data is the foundation for model learning, we suggest using
the three tasks of C3 in sequence, as shown in Fig. 3.1. However, their application is by no
means limited to this use case and one may choose to view them as stand-alone routines.
The same tools used to realize C1, C2 and C3 can also be used to further interrogate the
system to obtain a sensitivity analysis of the optimized model in light of the experimental
data and a breakdown of possible error sources.

We note that the intertwining of control and characterization has been raised in the more
general context of control theory [61–64]. In quantum technology, there are some works
which combine two of the three tasks: Ad-HOC [57] calls for optimal control followed by
calibration; a combination of model-based gradient calculations and experimental calibra-
tions is proposed by [65, 66], but the data gathered is not used to improve the system model;
in [67] pulses are designed specifically for the purpose of reconstructing the noise spectrum.

3.3 Synthetic Application Example

The following synthetic example illustrates how C3 is used to obtain a Good Model in a
realistic setting. We simulate a two-qubit QPU device using an underlying model, labeled
the “real” model, which includes control discretization effects, electronics transfer functions,
Markovian noise, and state preparation and measurement (SPAM) errors.

In this example, the simulated device is treated as a black-box, which we interrogate withC3.
We derive (C1) and calibrate (C2) optimal control pulses and use the resulting data to extract
a Good Model (C3) by comparing the black-box to three candidates: We systematically
enrich the model until it reproduces the behavior of the device observed in C2. The
recovered model is then used to design a two-qubit gate that performs well on the black-box
without the need for tune-up.

3.3.1 The black-box device (“real” model)

The “real” model is composed of two coupled three-level Duffing oscillators, labeled by 𝐴
and 𝐵, each directly driven by an external field 𝑐𝑖 (𝑡). Initialization, dynamics and readout
are performed in the dressed basis by solving the master equation in Lindblad form [68, 69].

¤𝜌 = −𝑖[𝐻, 𝜌] +
∑︁
𝑖=𝐴,𝐵
𝑗=𝜙,𝜅

𝐿𝑖, 𝑗 𝜌𝐿
†
𝑖, 𝑗
− 1

2

{
𝐿𝑖, 𝑗𝐿

†
𝑖, 𝑗
, 𝜌

}
(3.1)
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with

𝐻/ℏ =
∑︁
𝑖=𝐴,𝐵

[
𝜔𝑖𝑏

†
𝑖
𝑏𝑖 −

𝛿𝑖

2

(
𝑏
†
𝑖
𝑏𝑖 − 1

)
𝑏
†
𝑖
𝑏𝑖

]
+

+𝑔(𝑏𝐴 + 𝑏†𝐴) (𝑏𝐵 + 𝑏
†
𝐵
) +

∑︁
𝑖=𝐴,𝐵

𝑐𝑖 (𝑡)
(
𝑏𝑖 + 𝑏†𝑖

)
,

(3.2)

where 𝜔𝑖 is the frequency of qubit 𝑖, 𝛿𝑖 is the anharmonicity, 𝑏𝑖 (𝑏†
𝑖
) is the lowering (raising)

operator, and 𝑔 is the coupling strength. Open-system effects are expressed by the dephasing
and relaxation Lindblad operators 𝐿𝑖,𝜙 =

√︃
2
𝑇2∗
𝑖

𝑏𝑖𝑏
†
𝑖

and 𝐿𝑖,𝜅 =
√︃

1
𝑇1
𝑖

𝑏𝑖 with decay rates 1/𝑇1
𝑖

and 1/𝑇2∗
𝑖

.
Given the input drive signals 𝜀𝑖 (𝑡), we calculate the effective control fields 𝑐𝑖 (𝑡) = 𝜑[𝜀𝑖 (𝑡)],
where the transfer function 𝜑 [70] accounts for discretization introduced by the AWG,
bandwidth limitations of hardware, and for a constant scaling 𝜑0, which translates input
voltages to field amplitudes. We implement state preparation errors due to a non-zero initial
temperature 𝑇 by starting each experiment from the thermal state

𝜌init =
1
𝑍

[
|0⟩⟨0| + exp

{
− 𝐸1
𝑘𝐵𝑇

}
|1⟩⟨1|

+ exp
{
− 𝐸2
𝑘𝐵𝑇

}
|2⟩⟨2|

] (3.3)

where 𝑍 =
∑2
𝑘=0 exp{−𝐸𝑘/𝑘𝐵𝑇} is the partition function with energies𝐸0,1,2 = 0, ℏ𝜔𝑞, ℏ(2𝜔𝑞+

𝛿), and 𝑘𝐵 is the Boltzmann constant. readout misclassification is included, measuring state
|𝑛⟩ as state |𝑚⟩ with probability 𝑝𝑛→𝑚. For example the probability of measuring a state
𝜌𝜓 = |𝜓⟩⟨𝜓 | as |0⟩⟨0| is

Π0(𝜌𝜓) = 𝑝0→0 ⟨0|𝜌𝜓 |0⟩ + 𝑝1→0 ⟨1|𝜌𝜓 |1⟩
+ 𝑝2→0 ⟨2|𝜌𝜓 |2⟩ .

(3.4)

Similarly to experiment, populations are estimated by averaging the results of multiple
projective measurements, simulated as a multinomial draw from the distribution with prob-
abilities {Π𝑛}, thus introducing noise stemming from a finite number of measurement
repetitions (commonly known as ‘shot noise’). The values of the “real” model parameters
are summarized in Tab. 3.1.

3.3.2 Open-loop Optimal Control, C1

We assume that at the start of theC3 procedure the parameters of the system are only known
to a rough precision, with its qubit frequencies and anharmonicities chosen to be within a
few MHz of their “true” values. In the simple model, the qubits are uncoupled three-level
Duffing oscillators, evolution follows closed systems dynamics, and state preparation and
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3.3 Synthetic Application Example

Figure 3.2: C2 calibration on the device for single-qubit gates of qubit 𝐵. The initial point is
suggested by C1 before (after) learning of the model. The light blue diamonds
(light red circles) represent the values of the ORBIT goal function, Eq. (3.9),
for varying pulse parameters 𝛼 as chosen by the search algorithm. The larger
blue diamonds (larger red circles) highlight the best of 25 points generated and
sampled at each iteration. In experimental practice, this batching helps reduce
the overhead of loading pulses in AWG programming [71]. Both calibrations
achieve the same final fidelity, however the optimal gates derived from the
learned model provide a better initial guess. Assuming no SPAM errors the
ORBIT value can be translated into an error per gate, indicated on the right
axis. This is only meant to provide a rough estimate of the performance of the
gate, noting that an ORBIT value of 0.5 represents maximum error per gate, i.e.
completely depolarizing channels.
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Figure 3.3: Progress of the C3 optimization on a hierarchy of models: Simple model (green,
dashed), intermediate model (blue, dot-dashed) and full model (red, solid), as
described in the text. The Model match goal function 𝑓LL(𝛽) is defined in Eq.
(3.11). The crosses show the switch-over from CMA-ES to L-BFGS. The CMA-
ES algorithm evaluates a batch of points for each iteration (8, 9 and 12 for the
simple, intermediate and full model respectively), only the best of each batch is
shown. The L-BFGS algorithm takes on average approximately 1.2 evaluations
per iteration, for all three models. The function 𝑓LL is rescaled to express
the match in terms of standard deviations of the binomial distribution that the
experimental results are drawn from. The simple model is a close dispersive
approximation of the intermediate model, demonstrated by their similar final
match score. By including all relevant device properties the full model reaches
an almost perfect match score.
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measurement are assumed perfect. The Hamiltonian is

𝐻/ℏ =
∑︁
𝑖=𝐴,𝐵

𝜔𝑖𝑏
†
𝑖
𝑏𝑖 −

𝛿𝑖

2

(
𝑏
†
𝑖
𝑏𝑖 − 1

)
𝑏
†
𝑖
𝑏𝑖

+ 𝑐𝑖 (𝑡)
(
𝑏𝑖 + 𝑏†𝑖

)
.

(3.5)

Assuming this model, we design pulses for single-qubit gates using C1. To mitigate leakage,
we choose a pulse ansatz with a Gaussian shape and a correction given by the derivative
removal by adiabatic gate (DRAG) method [53],

𝜀(𝑡) = 𝐴ΩGauss(𝑡) cos
(
(𝜔𝑑 + 𝜔off)𝑡 + 𝜙𝑥𝑦

)
− 𝜂
𝛿
𝐴 ¤ΩGauss(𝑡) sin

(
(𝜔𝑑 + 𝜔off)𝑡 + 𝜙𝑥𝑦

)
.

(3.6)

Here, ΩGauss is a Gaussian envelope, ¤ΩGauss(𝑡) is its time derivative, 𝐴 is the amplitude of
the drive, 𝜔off is a frequency offset and the DRAG parameter 𝜂 can be adjusted to reduce
leakage into the second excited state [53, 72]. The rotation axis can be freely chosen in the
𝑥-𝑦 plane by changing the phase of the drive signal 𝜔𝑑𝑡 → 𝜔𝑑𝑡 + 𝜙𝑥𝑦, implementing the
unitary rotations 𝑅(𝜙𝑥𝑦, 𝜃) = exp

{
−𝑖(cos 𝜙𝑥𝑦𝜎𝑥 + sin 𝜙𝑥𝑦𝜎𝑦)𝜃

}
. By setting 𝜙𝑥𝑦 = 𝑛 𝜋2 with

𝑛 = 0, 1, 2, 3 and changing 𝛼 = (𝐴, 𝜂, 𝜔off) we aim to realize the single qubit gate-set

G =
{
𝑋𝜋/2, 𝑌𝜋/2, 𝑋−𝜋/2, 𝑌−𝜋/2

}
, (3.7)

for each qubit separately, eight gates in total, where 𝑋𝜋/2 = {𝑅(0, 𝜋/2)} and so on. With C1
we use a gradient-descent method to find the parameters 𝛼 that minimize the mean average
gate infidelity

𝑓1(𝛼) = 1 − 1
|G|

∑︁
𝑈∈G

𝑓av(𝑈) = 1 − 1
|G|

∑︁
𝑈∈G

𝜒0,0𝑑 + 1
𝑑 + 1

, (3.8)

where, 𝜒0,0 is the (0, 0)-th element of the Chi matrix representation of the gate error
𝑈† ◦ 𝑈̃ (𝛼) between the ideal gate 𝑈 and the implemented gate 𝑈̃ (𝛼) [73]. We optimize
Gaussian pulses with a gate length of 𝑡𝑔 = 7 ns, for both qubits, using the gradient-
based L-BFGS algorithm [74]. The obtained optimal pulses yield a mean infidelity of
𝑓1(𝛼) = 6.6 × 10−4 and 𝑓1(𝛼) = 4.9 × 10−4 on the simple model for qubit 𝐴 and qubit
𝐵 respectively, realistic values for fast gates using this simple parametrization. Next, we
compare the performance of these pulses on the black-box device, where the gates instead
yield a mean infidelity of 2.4×10−3 for qubit 𝐴 and 1.5×10−3 for qubit 𝐵. In fact, performing
an experimentally realistic randomized benchmarking (RB) [75–78] measurement on the
device yields an error per gate of 2.3× 10−3 and 1.3× 10−3 comparable with the theoretical
average infidelity. The degradation of performance from optimal control simulation (≈ 10−4)
to experiment (≈ 10−3) shows a clear mismatch between the device and the simple model.
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3.3 Synthetic Application Example

Figure 3.5: We compare the sensitivity of the hierarchy of models with respect to their Qubit
frequency 𝜔𝐴, field conversion factor 𝜑0 and the anharmonicities 𝛿𝐴 and 𝛿𝐵.
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Figure 3.6: The sensitivity coupling strength 𝑔 and relaxation and dephasing times 𝑇1 and
𝑇∗2 based on different characterization methods.

48



3.3 Synthetic Application Example

3.3.3 Calibration, C2

The next step is to calibrate the pulses derived by C1 and improve their performance on
the device. We use C2 and employ a closed-loop, model-free, gradient-free optimization
algorithm on an experimentally accessible figure of merit 𝑓2. Since the goal is to evaluate
a gate-set, we choose 𝑓2 to be the ORBIT [58] (single-length RB) function

𝑓2(𝛼) = 𝑓ORBIT(𝛼) =
1
𝑁

𝑁∑︁
𝑘=1
[1 − 𝑚𝑘 (𝛼)], (3.9)

averaging over 𝑁 sequences. The survival probability, 𝑚𝑘 = Π0

(
𝑆𝑘 (𝛼)𝜌init𝑆

†
𝑘
(𝛼)

)
, is the

probability to measure the state |0⟩ (see Eq. 3.4) after applying random sequences

𝑆𝑘 (𝛼) :=

{
𝐿−1∏
𝑗

𝐶𝑘, 𝑗

}
𝐶inv (3.10)

composed of 𝐿 Clifford gates [58], to the initial thermal state 𝜌init. The 𝐶𝑘, 𝑗 are the random
gates sampled from the Clifford group 𝐶 (for a single qubit |𝐶 | = 24), and 𝐶inv is chosen so
that 𝑆𝑘 ≡ I in the ideal case. We use the atomic operations G from Eq. (3.7) to construct
the set of Clifford gates, e.g. 𝐶6 = 𝑋−𝜋/2 ◦𝑌−𝜋/2 ◦𝑋𝜋/2, and from them construct 𝑁 = 25 RB
sequences of length 𝐿 = 100. The survival probabilities 𝑚𝑘 are estimated by performing
𝑠 = 1000 projective measurements and averaging.

To minimize 𝑓2, we employ the CMA-ES [79] algorithm, a gradient-free search that samples
the loss function in batches, and is fairly robust to local minima and noise [80]. See [71]
for an experimental demonstration. The optimal pulse parameters from C1 are used as the
starting point of the optimization, and the parametrization is kept as in Eq. (3.6). We
perform the calibration for each qubit independently, with similar results. See Fig. 3.2 for
the ORBIT calibration data of qubit 𝐵. The initial point suggested by C1 has an ORBIT
infidelity of 0.50 and is improved by the optimization to 0.12. To account for SPAM errors,
we perform a full RB measurement and estimate the infidelity of the gates before and after
as 1.3 × 10−3 and 3.4 × 10−4 respectively. Qubit 𝐴 shows a similar improvement of RB
estimated error from 2.3 × 10−3 to 7.5 × 10−4.

For the purpose of learning we define the data-set D :=
{
𝑆𝑘 (𝛼 𝑗 ) → 𝑚 𝑗 ,𝑘

}
, the collection

of the experiments conducted during the C2 calibration, consisting of pulse parameters 𝛼 𝑗
and gate sequences 𝑆𝑘 (𝛼 𝑗 ), and the corresponding measurement outcomes 𝑚 𝑗 ,𝑘 .

3.3.4 Characterization, C3

In C3, we use the data-set D obtained during ORBIT calibration to improve the model of
the system. For each measurement result 𝑚 𝑗 ,𝑘 we compute the equivalent simulation result
𝑚̃ 𝑗 ,𝑘 (𝛽) by calculating the dynamics of the sequence 𝑆𝑘 (𝛼 𝑗 ) given a set of model parameter
values 𝛽 = (𝜔𝑖, 𝛿𝑖, ...). Since simulating the whole data-set is computationally costly, for
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Figure 3.7: C3 learning of the two-qubit model parameters. Blue, left (red, right) triangles
indicate qubit 𝐴 (𝐵) parameters, respectively, while shared properties are shown
with green upwards triangles. The true values of the “real” model are indicated
as dashed lines. Learning begins using just ORBIT data (left white section) that
fixes qubit frequencies, anharmonicities, coupling and line transfer function to
their true values. Then tomography data from a two qubit experiment is added
(right gray section), which allows better identification the chip temperature 𝑇
and the misclassification constants 𝑝0→1, and 𝑝1→0.
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the purpose of model learning we make a selection of eight pulse parameter sets 𝑗 per qubit
from the full data-set. Each parameter set includes 𝑘 = 1, .., 25 sequences, meaning that we
learn from a total of 𝑁 = 400 measurement results, relabeled as 𝑚𝑛. We then construct a
goal function

𝑓3(𝛽) = 𝑓LL(D|𝛽) =
1

2𝑁

𝑁∑︁
𝑛=1

[(
𝑚𝑛 − 𝑚̃𝑛
𝜎̃𝑛

)2
− 1

]
(3.11)

that captures how well the model prediction 𝑚̃𝑛, with standard deviation 𝜎̃𝑛, agrees with the
recorded values 𝑚𝑛. Because of the finite number of measurements, the averaged 𝑚𝑛 are
noisy estimates of the population, with a mean 𝜇𝑛 and standard deviation 𝜎𝑛. Thus, they
cannot be matched perfectly even when all model parameters are exact. However, we can
determine the expectation value of the goal function 𝑓LL in the scenario where all 𝑚̃𝑛 are
exactly a given number of standard deviations away from the underlying true value 𝜇𝑛. A
detailed mathematical discussion is presented in Sec. 3.4.3. To provide a more intuitive
measure, we express the match 𝑓LL in terms of the number of standard deviations that would
result in the same score.

To minimize 𝑓3(𝛽), we use a combination of two algorithms: Gradient-free (CMA-ES)
to avoid local minima and gradient-based (L-BFGS) to converge quickly once the right
minimum has been identified. Fig. 3.3 shows the convergence of the C3 optimization for
different models. The simple model is not able to reproduce the device’s results, as the
optimization ends at approximately 8 standard deviations away. This demonstrates that the
experiment on the device includes behavior not captured by the simple model. Spectator
effects might be significant even when performing only single qubit experiments, making
the completely uncoupled model insufficient. Another source of this inconsistency might
be SPAM errors not accounted for in the model, that might play a large role in actual
measurement results. The parameter values resulting from this C3 process and all following
ones are shown in Table 3.1.

Going forward an informed decision has to be made about how to enhance the model. Since
the true values of the parameters are not known in an experimental setting, we require a tool
to determine the precision to which they are learned. We estimate the sensitivity to changes
of model parameters around the optimal values 𝛽′ by performing one-dimensional scans
and observing the degradation in model match score, 𝑓LL(D|𝛽′ + 𝛿𝛽). Fig. 3.4(a) shows
that sweeping the value of frequency of qubit 𝐵 produces a highly irregular landscape of
the match score 𝑓LL.

The simple model is then extended by adding the static coupling 𝑔 of unknown exact value,
resulting in the intermediate model. When repeating C3, we initialize model parameters
from the initial, rough values. We do not carry over the learned parameters from the simple
model to the intermediate model because, by introducing a coupling, we expect slightly
shifted frequencies compared to the bare frequencies of the uncoupled qubits. Nonetheless,
convergence of the match score shows no improvement from the simple model, still only
reaching within approximately 8 standard deviations from experiment results (Fig. 3.3) and
resulting in a similar sensitivity landscape in Fig. 3.4(a). This suggests that the simple
model is a close dispersive approximation of the intermediate model. Indeed, we observe a
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dispersive shift [81] of 593 KHz, consistent with the expected 𝑔2/(𝜔𝐵 − 𝜔𝐴) ≃ 666 KHz,
given the coupling of 𝑔 ≃ 20 MHz and the frequency difference 𝜔𝐵 − 𝜔𝐴 ≃ 600 MHz.

Finally, model complexity is increased by adding three relevant features: Markovian noise
simulated by Lindblad master equation, initialization errors due to finite operating temper-
ature and measurement errors in the form of misclassification. The system model is now
of the same structure as the “real” model of the device. Starting from the best intermediate
model parameters, the C3 procedure converges satisfactorily, approaching the 0 standard
deviations mark (Fig. 3.3)

In Fig. 3.7(a) we show the value of each parameter of the full model during optimization,
as we introduce different learning data (in the next sections), and compare with their true
value (dashed lines). By learning the model parameters with the ORBIT data (white left
section of each plot) the model frequencies 𝜔𝐴/𝐵, anharmonicities 𝛿𝐴/𝐵, coupling 𝑔 and
line transfer function 𝜑0 converge to their true value. The temperature and misclassification
parameters are not recovered, and we believe this is due to an extra degree of freedom that is
not resolved by the experiments we have performed, as the effects of misclassification, Eq.
(3.4), and initial thermal distribution, Eq. (3.3), are similar and can be partially exchanged.
Dephasing and relaxation times (not shown) are also not recovered. Indeed, in Fig. 3.4(c)
we show that the sensitivity of the data to dephasing time 𝑇∗2 of qubit 𝐵 is minimal. RB
sequences perform an effective random dynamical decoupling [82], providing a possible
explanation to this result.

3.3.5 Validation of the learned model

After model matching on a subset of the data in the C3 step, we now evaluate the predictive
power of the learned models by computing the score on the rest of the data set (this is
also known as a validation set in machine learning). This verifies that the selected subset
captures all relevant behavior and alleviates the danger of overfitting.

Figures 3.8(a) to 3.8(c) depict the correlation between calibration data points 𝑚 𝑗 ,𝑘 and their
model-based reconstructions 𝑚̃ 𝑗 ,𝑘 . We evaluate the goal function 𝑓LL(𝛽) over the validation
set for the Simple, Intermediate and Full models and obtain values of 36.5 (≈ 8.4𝜎), 42.0
(≈ 9.2𝜎) and 0.028 (≈ 0.2𝜎) respectively. The conclusion is that, even though some
parameters were not recovered by C3, the learned full model is indeed a Good Model, as it
reproduces the behavior of the system on all previously recorded data points to satisfying
accuracy. This does not prevent additional measurement data to expose new behavior in the
system: The notion of the Good Model is always tied to the underlying data-set.

Furthermore, we now repeat the C1 procedure on the Good Model (yielding average gate
infidelities of 6.3 × 10−4 and 1.1 × 10−3 for qubit 𝐴 and 𝐵 respectively) and show that the
resulting pulses give a near optimal performance on the actual device and allow for faster
C2 convergence, as seen in Fig. 3.2. One would expect the pulses derived from the Good
Model to be exactly optimal on the actual device. Even though it is not the case here, this is
not because of an inaccurate model, but rather because of a disparity between the figures of
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merit used in C1 (average infidelity) and C2 (single-qubit ORBIT). Average fidelity captures
effects of the whole system, including, in this case, an effective ZZ-coupling between the
two qubits caused by a slight repulsion of the |02⟩ and |11⟩ states, that are 300 MHz apart.
Minimizing a single-qubit ORBIT infidelity does not adjust for this effect, as we can verify
by evaluating both RB (which captures only one qubit at a time) and average infidelity before
and after calibration. Indeed, the average infidelity of qubit 𝐵 is 1.2 × 10−3 (compatible
with the performance of 1.1 × 10−3 on the Good Model) but the error per gate is estimated
by RB as 4.1 × 10−4. After the calibration the RB estimate is improved to 2.9 × 10−4 but
the average infidelity is worsened to 1.9× 10−3. Performing simultaneous RB could resolve
this issue.

3.3.6 Entangling gate

We further investigate the Good Model which was determined using only single-qubit
calibration data by deriving a two-qubit cross-resonance (CR) gate [83, 84] with C1. Both
qubits are driven simultaneously at 𝜔𝐵, the resonant frequency of qubit 𝐵, to accumulate
a phase ±𝜋/2 conditioned on the state of qubit 𝐴 [59]. Both drives are parameterized by
flattop Gaussians. The resulting CR pulse has a gate infidelity of 𝑓av = 3.8 × 10−3. When
evaluated on the “real” model the gate has an infidelity of 𝑓av = 4.3 × 10−3, again showing
that the learned model predicts device behavior to high accuracy. Notably, the model
learned using only single-qubit data was sufficient to accurately predict the performance of
the two-qubit gate on the device. We suspect this to be caused by exchange interactions due
to coupling and finite temperature: Even when performing only single-qubit gates, the finite
temperature causes a partial excitation of higher states, which are then exchanged with the
other qubit via the coupling and thus visible in the ORBIT data.

The performance of the gate on the device is verified with Quantum Process Tomography
(QPT): We apply the CR gate preceded and followed by single-qubit gates to prepare and
measure in the basis states, e.g. 𝑆 =

(
𝑋𝜋/2 ⊗ 𝑌𝜋/2

)
◦ CR ◦

(
𝑋−𝜋/2 ⊗ 𝑌𝜋/2

)
[85], and again

collect these measurements into our data-set. We believe that the entangling gate lifts
the degree of freedom between misclassification and initial thermal distribution discussed
before, hence we now perform another C3 optimization, using the QPT data (256 sequences)
and one ORBIT parameter per qubit (2 × 25 sequences) as the learning data. Parameter
convergence is shown in the gray areas of Fig. 3.7(a), where temperature and confusion
matrix values are adjusted closer to the true values.

Fig. 3.4(b) substantiates the claim that the entangling gate data allows for a more precise
learning of the chip temperature, exhibiting a narrower valley at the true value. However,
we are still not able to learn the 𝑇1 and 𝑇∗2 parameters, since the sequences in QPT are too
short to be sensitive.
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3.3.7 Relaxation and dephasing

To demonstrate how a specialized measurement is formulated within C3 we determine the
values of 𝑇1 and 𝑇∗2 , using simple established sequences that are known to be sensitive to
these parameters. The decay lifetime 𝑇1 is determined by preparing the excited state of the
qubit, followed by increasing wait times and then measuring the ground state population.
We write the sequence as

𝑆
(𝑛)
𝑇1 = 𝑋𝜋/2 ◦ 𝑋𝜋/2 ◦ I𝑛 (3.12)

where 𝑋𝜋/2 is our previously optimized 𝜋/2 gate andI𝑛 signifies 𝑛 repetitions of the identity
gate I. Similarly

𝑆
(𝑛)
𝑇2∗ = 𝑋𝜋/2 ◦ I

𝑛/2 ◦ 𝑋𝜋/2 ◦ 𝑋𝜋/2 ◦ I𝑛/2 ◦ 𝑋−𝜋/2 (3.13)

defines a Ramsey echo sequence, used to measure the dephasing time 𝑇∗2 . We take 51
logarithmically spaced values of 𝑛 between 100 and 10000 to capture the full decay curves.

Using this data-set we perform another C3 optimization, freezing all model parameters
learned until now and varying only the values of 𝑇1 and 𝑇∗2 . By doing so we manage to
determine their values to within 1𝜇s of the true values (Fig. 3.9). This procedure is the
C3 equivalent of a common exponential decay fit to the data. However, with C3 one does
not require prior knowledge on the expected structure of the experimental results, i.e. an
exponential decay. Hence, when matching the data C3 also accounts for SPAM errors
without the need to adjust the fitting function.

Fig. 3.4(c) shows the sensitivity of 𝑓LL to the value of 𝑇∗2 of qubit 𝐵. The new data shows a
clear improvement in the accuracy of the value obtained and the minimum is better defined.
For increased sensitivity one would require more decay data to learn from.

3.3.8 Sources of error

The Good Model allows us to break down which of the model properties are preventing
higher gate fidelities. To this end, we investigate the Good Model for components limiting
the performance of the CR gate by idealizing aspects of the model.

We investigate whether the Gaussian ansatz is limiting gate fidelities by further refining the
optimal pulses using a piece-wise constant optimization with one pixel per AWG sample
(as is done in [71]). Average infidelity improves only marginally from 𝑓 DRAG

av = 3.8 × 10−3

to 𝑓 PWC
av = 3.6 × 10−3, suggesting other factors are limiting fidelities.

To find out if performance is limited by decoherence effects, we re-optimize the CR gate
while disabling Lindbladian dynamics. By open-loop optimization in this idealized coherent
setting the error is decreased from 3.8 × 10−3 to 1.3 × 10−5. Thus, the 100 ns CR gate
considered here is coherence limited, as is the case in most experimental implementations
[59, 86], making improvements in gate time essential [87].
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Figure 3.9: C3 learning of the relaxation (𝑇1) and dephasing (𝑇∗2 ) parameters. Blue, left
(red, right) triangles indicate qubit 𝐴 (𝐵) parameters, respectively. The true
values of the “real” model are indicated as dashed lines. Background sections
represent different learning datasets: just ORBIT data (left white section), a mix
of ORBIT and QPT data (center gray section), decay and Ramsey data (right
white section). The decay times are correctly identified only when specific data,
sensitive to the decoherence effects, is used for learning, at which point they
quickly converge to the real value.
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3.4 C3 in-depth

Following is a detailed description of theC3 tool-set, its modeling capabilities and a general
formulation of the optimization problems discussed in the previous section.

3.4.1 Experiment modeling

To combine control and characterization,C3 provides a detailed simulation that endeavors to
encompass all relevant practical considerations of the experiment such as signal processing,
SPAM errors, control transfer functions and Markovian noise. The simulator is used as
the basis of the open-loop optimal control optimization (C1) and the model parameter op-
timization (C3). In both cases it is desirable to use gradient-based optimization algorithms
[49, 88]. However, it is extremely cumbersome to manually derive the full analytical gradi-
ents of the quantum dynamics, especially when it includes the properties described above.
Instead, C3 uses a numerics framework [89] which allows for automatic differentiation [90],
making the tool-set more flexible and easily extendable. A similar approach is also used by
[67, 91] for control and characterization.

Signal processing

The simulation allows for the specification of control signals 𝜀(𝑡) as either analytical
functions or as direct, piecewise constant AWG parameterization. Analytic parametrizations
are sampled at the resolution of the waveform generator producing the envelope signal
𝜀𝑖 = 𝜀(𝑡𝑖), representing voltages being applied to the control line, where the {𝑡𝑖} are the
AWG sample times. The resulting signal will exhibit a rise time 𝜏, due to the finite bandwidth
of the control electronics. We model this by applying a convolution

𝜀(𝑡) =
𝑡 𝑓∫

𝑡0

interp({𝜀𝑖})(𝑡)𝐺
{
𝑡 𝑓 − 𝑡

}
d𝑡 (3.14)

with

𝐺 (𝑡) = 1
𝑁

exp
{
− (𝑡 − 𝜏/2)

2

8𝜏2

}
, (3.15)

modeling a Gaussian filter, and

interp({𝜀𝑖})(𝑡) = {𝜀𝑖 | 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1} (3.16)

interpolating the sampled signal to higher resolution for simulation. An I/Q-Mixer combines
this envelope with a local oscillator signal of frequency 𝜔lo to

𝑢(𝑡) = 𝐼 (𝑡) cos(𝜔lo𝑡) −𝑄(𝑡) sin(𝜔lo𝑡) (3.17)
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where the in-phase and quadrature components

𝐼 (𝑡) = 𝜀(𝑡) cos
(
𝜙𝑥𝑦 − 𝜔off𝑡

)
𝑄(𝑡) = 𝜀(𝑡) sin

(
𝜙𝑥𝑦 − 𝜔off𝑡

) (3.18)

are assigned by a control parameter 𝜙𝑥𝑦, and modulated to introduce a frequency offset 𝜔off
on the drive. As noted in [92], in practice there will be additional errors during the mixing,
which are not currently modeled. In transmitting this signal to the experiment, various
distortions can occur, modeled by a response function 𝜑, which also converts the field from
line voltage to an amplitude 𝑐(𝑡) = 𝜑[𝑢(𝑡)].

Time evolution

The system Hamiltonian is
𝐻 (𝑡) = 𝐻0 +

∑︁
𝑘

𝑐𝑘 (𝑡)𝐻𝑘 , (3.19)

with a drift 𝐻0 and optional control Hamiltonians 𝐻𝑘 . The dynamics of the system are
described by the time-ordered propagator

𝑈 (𝑡) = T exp
−

i
ℏ

𝑡∫
𝑡0

𝐻 (𝑡′)d𝑡′
 , (3.20)

given by solving the time-dependent Schrödinger equation, and approximated numerically
by𝑈 (𝑡) ≃∏0

𝑖=𝑁 𝑈𝑖. Here,𝑈𝑖 = exp
{
− i

ℏ
𝐻 (𝑡𝑖)Δ𝑡

}
, and the total time is divided into 𝑁 slices

of length Δ𝑡 that are fine enough so that the Hamiltonian can be considered constant in the
interval.
In application, we will rarely perform a single gate or pulse in isolation. Experiments such
as randomized benchmarking or the various flavors of tomography involve long pulse se-
quences, that are inefficient to simulate as a whole. Instead, theC3 simulator computes each
propagator𝐺 of a defined gate-set G individually and compiles these matrix representations
into sequences. This avoids the need to solve the equations of motions multiple times for
the same exact pulses. As the propagators are calculated in the dressed laboratory frame
(as opposed to the single-particle rotating frame), consecutive gates need to be adjusted to
realign with the rotating frame of the drive signal, by applying a 𝑍 rotation with an angle of
(𝜔lo + 𝜔off)𝑡𝑔 [92].
To include open-system effects, we apply the equivalent procedure to obtain the process
matrix

E(𝑡) = T exp


𝑡∫
𝑡0

L(𝑡′)d𝑡′
 (3.21)

by solving the master equation in Lindblad form,

¤𝜌 = L(𝜌) = −𝑖[𝐻, 𝜌] +
∑︁
𝑗

𝐿 𝑗 𝜌𝐿
†
𝑗
− 1

2

{
𝐿 𝑗𝐿

†
𝑗
, 𝜌

}
, (3.22)
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𝜀𝑘 (𝑡)

𝑢𝑘 (𝑡)

AWG sampling

𝑐𝑘 (𝑡)

functiontransfer

𝜌(𝑡)time evolution

{𝑝𝑖}

readout

{𝑝𝑖}

confusion

Figure 3.10: The process of simulating experimental procedure for signal processing and
readout. The 𝑘-th control function is specified by some function 𝜀𝑘 (𝑡) and
specifies the line voltage 𝑢𝑘 (𝑡) by an arbitrary waveform generator (AWG) with
limited bandwidth. Electrical properties of the setup, such as impedances, are
expressed as a line transfer function 𝜑, resulting in a control field 𝑐𝑘 (𝑡) =
𝜑[𝑢𝑘 (𝑡)], as in Eq. (3.19). After solving the equation of motion for the
system, readout and misclassification are modeled by applying rescaling and
transformations to the simulated populations 𝑝𝑖 = |𝜌𝑖𝑖 |2, according to Eq.
(3.24).

where 𝐻 is the Hamiltonian from Eq. (3.19), the 𝐿 𝑗s are Lindblad operators, and L is the
generator in superoperator form [24]. The evolution of a state is obtained by applying the
propagator as 𝜌 𝑓 = 𝑈 (𝑡𝑔)𝜌𝑖𝑈†(𝑡𝑔) for coherent evolution or 𝜌 𝑓 = E(𝑡𝑔) [𝜌𝑖] for incoherent
evolution.

Initialization and readout

Given the temperature 𝑇 of the device, the system is initialized in a mixed state

𝜌init =
∑︁
𝑘

1
𝑍
|𝜙𝑘⟩⟨𝜙𝑘 | exp{−𝐸𝑘/𝑘𝐵𝑇} (3.23)

where {|𝜙𝑘⟩} is the eigenbasis of𝐻0 and the normalization is given by the canonical partition
function 𝑍 =

∑
𝑘 exp{−𝐸𝑘/𝑘𝐵𝑇}.

We simulate readout by post-processing the final state 𝜌 𝑓 : From the density matrix, rep-
resented in the dressed basis, we obtain a vector of populations ®𝑝 = (𝑝𝑘 ) by taking the
absolute square of the diagonal. This is consistent with a slow (or weak) readout scheme
in experiment. Measurement and classification errors are modeled with a misclassification
(confusion) matrix (𝑝𝑖→ 𝑗 )𝑖 𝑗 [93] such that the measured populations are

𝑝 𝑗 =
∑︁
𝑖

𝑝𝑖→ 𝑗 𝑝𝑖 . (3.24)

To simulate an experimental measurement with an average of 𝑙 repetitions, we draw from a
multinomial distribution of 𝑙 trails and with probabilities 𝑝 𝑗 .
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3.4.2 Optimizations

For open and closed-loop optimal control as well as model learning, performing optimization
processes is required.

Open-loop Model-based Control: C1

In the typical setting of open-loop optimal control [47, 48], given a model of a system,
we search for the optimal control pulses to drive the system to a desired state or generate
a certain gate. Pulses are parameterized by an analytic ansatz (e.g. Gaussian pulse with
DRAG correction [53] to remove Fourier components coupling to leakage levels), or by
direct AWG samples. Constraints may be imposed to conform with experimental feasibility,
such as power and bandwidth limitations. The goal function to be minimized is selected
depending on the specified optimal control task, e.g. state infidelity for state transfer
problems, or unitary trace infidelity for quantum gates [48, 73]. We suggest the use of
average gate infidelity as the goal function, as it is experimentally accessible by performing
RB or QPT, allowing comparison of performance in simulation and experiment.

Formally, the controls are parameterized as a vector of real numbers 𝛼. Given a goal
function 𝑓1(𝛼), we search for min𝛼 𝑓1(𝛼). Optimal control methods such as GRAPE [50],
Krotov [52, 94–96], and GOAT [49] have been devised to determine the gradient 𝜕𝛼 𝑓1(𝛼)
in order to facilitate convergence. These methods require a specific formulation of the
problem and the analytical calculation of the gradient any additional elements in the model,
whereas in C3, automatic differentiation allows to systematically account for any model
feature, including, for example, line response functions or SPAM error.

The disadvantage of gradient-based algorithms is their propensity to get trapped in local
minima. The severity of the problem is reduced by using a hierarchy of progressively more
complex control ansätze. If this is insufficient, a short preliminary gradient-free search to
find the convergence basin most often resolves the problem.

Closed-loop Model-free Calibration: C2

In calibration, a given pulse is optimized to improve a figure of merit 𝑓2(𝛼), computed from
experimental measurement results. In addition to gradient-free optimization algorithms,
there are methods to approximate the gradients (e.g. [97]), however, such approaches are
generally less efficient than gradient-free algorithms [49, 98] as they require a high number
of evaluations [99]. If the initial point of the optimization is given by C1, this implements the
already established Ad-HOC [57] method. During calibration, sets of control parameters
𝛼 𝑗 are sent to the experimental setup, alongside instructions of how to evaluate the current
controls. For evaluating gate-sets, we suggest the ORBIT figure of merit, as it naturally
performs a twirling of all sources of error, providing a single number to optimize. However,
protocols tailored to specific needs can also be used, e.g. to obtain a desired conditional
phase [44]. C2 then optimizes the control parameters 𝛼 𝑗 to minimize a figure of merit.
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While specialized measurements provide a straightforward way to fine-tune controls related
to specific device properties, they do not generally account for interdependency. For
more complex setups with many parameters, such calibrations cannot be done without
extraordinary effort [100]. In contrast, C3 employs modern gradient-free optimization
algorithms, such as CMA-ES, capable of optimizing dozens of parameters simultaneously,
automating the task.

Model Learning: C3

Extracting the model from a data-set D can be thought of formally as analogous to the C1
optimization task, where one varies the model parameters instead of the control parameters.
For each measurement outcome 𝑚𝑘 in the data-set,

D = {𝑆𝑘 ↦→ 𝑚𝑘 } 𝑗 , (3.25)

the corresponding gate or pulse sequences 𝑆𝑘 (𝛼 𝑗 ) with control parameters 𝛼 𝑗 are used to
simulate the model’s prediction 𝑚̃ 𝑗 ,𝑘 = 𝑚̃

(
𝑆𝑘 (𝛼 𝑗 ), 𝛽

)
. The model learning goal function

𝑓3(D|𝛽) = 𝑓3({𝑚̃𝑘 (𝛽)}, {𝑚𝑘 }) (3.26)

quantifies the match between the data-set and the simulation of a system with parameters 𝛽.
In this work, we use a rescaled log-likelihood

𝑓LL(D|𝛽) =
1

2𝐾

𝐾∑︁
𝑘=1

((
𝑚𝑘 − 𝑚̃𝑘

𝜎̃𝑘

)2
− 1

)
, (3.27)

where the 𝜎̃𝑘 is the standard deviation of a binomial distribution with mean 𝑚̃𝑘 , resulting
in a variation of the Mahalanobis distance [101]. This function is strictly correct under
the Gaussian assumption and a two-level readout. See Sec. 3.4.3 for the extension for a
multiple outcome readout. The measurement process on any physical device is noisy, i.e.
each 𝑚𝑘 is an estimate of a true underlying 𝜇𝑘 . Therefore, a realistic data-set D cannot be
matched exactly by a deterministic simulation. The function 𝑓LL is designed such that, for
𝑛 data points, its expectation value is 0 when the model predicts the means 𝜇𝑘 correctly,
and 1

2𝑛
2 if the distance is 𝜇𝑘 − 𝑚̃𝑘 = 𝑛𝜎𝑘 for all 𝑘s, according to Eq. (3.33). This provides

a more intuitive measure of model match than the abstract value of 𝑓LL, i.e. it allows us to
make a statement like “the model differs from the experiment by approximately 𝑛 standard
deviations”.

Due to the complexity of the physical systems, a potentially high number of interdependent
parameters and complex features of the landscape, it is difficult for the optimization to
converge to the global optimum. Therefore, we take the tried-and-tested experimental
approach of starting with a simple model and iteratively refining it. We modify the model
and repeat the C3 fit, optionally retaining the optimized parameters which are shared by
the previous and new model. Alternatively, we collect additional data and repeat the
optimization on the same model. We emphasize that at each of these steps the physicists’
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insights are required to evaluate the optimization’s results, extend or discard models and
decide whether collecting additional data is required. Furthermore, employing a gradient-
based algorithm can, depending on the initial point, result in a local minimum. The
optimizations presented here were successful when starting with a gradient-free CMA-ES
search, known to be robust against local minima, switching over to the faster converging
gradient-based L-BFGS method when a promising parameter region is identified. However,
further research is required to find the best optimization strategy.

Outside the countless parameter-specific measurements, there are many approaches that
aim to automate or generalize the task of characterization, such as: Bayesian learning
(with Hamiltonian description [102–111], and more general-purpose [112–118]) , system-
identification [119–124], compressed-sensing [109, 125, 126], neural network [127–129],
and others [130].

In contrast, we note that in C3 a model takes explicit values for all its parameters, and
is not represented as a high-dimensional distribution over model parameter space. This
choice is driven by classical computation-load considerations: Because the C3 model is
highly detailed, and, as consequence, associated simulations are non-trivial, we believe a
full Bayesian approach to any ofC3 optimizations is not computationally viable at this time.

3.4.3 C3 Model Fitting Goal Function

When performing a series of experiments, 𝑘 ∈ [1, . . . , 𝐾], on a quantum device, each exper-
iment 𝑘 is repeated a number of times and the normalized occurrences of the measurement
outcomes are store in a result vector 𝑚𝑘 . These are collected in {𝑚𝑘 }𝑘=1,...,𝐾 , or {𝑚𝑘 } for
shorthand. Given a model and its parameters 𝛽, we aim to quantify how likely it is that
it underlies the observed data with a function 𝑓3({𝑚𝑘 }|𝛽). Hence, we need to determine
the distance between the experimental result, 𝑚𝑘 , and the model prediction, 𝑚̃𝑘 (𝛽). We
define 𝑝𝑘 (𝑚𝑘 |𝛽) be the model-predicted probability distribution function (PDF) for the
result of experiment 𝑘 . As the 𝑚𝑘 are sampled from the readout distribution, we do not
expect 𝑚𝑘 = 𝑚̃𝑘 (𝛽). Rather, we aim to define the function 𝑓 such that its expectation value,
E[ 𝑓 ({𝑚𝑘 } , 𝛽)], is zero if the underlying distributions from which the {𝑚𝑘 } are drawn are
the same as the model-predicted PDFs.

The Gaussian Assumption

To simplify calculation of E[ 𝑓 ({𝑚𝑘 } , 𝛽)], we can make some assumptions regarding the
underlying distributions. The natural 𝑝𝑘 (𝑚𝑘 |𝛽) PDF is multinomial, determined by the
dimension of the qubit Hilbert space 𝑑𝑘 (or binomial if dealing with a single qubit with no
leakage levels). Under the assumption that for a large number of shots all possible readouts
values are likely to appear, then by the central limit theorem (De Moivre–Laplace theorem),
we can approximate 𝑝𝑘 with a multivariate normal distribution. Although, the multinomial
distribution has a non-diagonal covariance matrix, one can diagonalize the distribution and
decompose it as a product of one-dimensional Gaussian distributions. Thus, we write the
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PDF as a sum of
∑
𝑘 (𝑑𝑘 −1) such distributions, redefine 𝐾 to equal the previous

∑
𝑘 (𝑑𝑘 −1)

and the {𝑚𝑘 } to be their means.

The model match distribution

We shall use {𝜇̃𝑘 (𝛽)} and {𝜎̃𝑘 (𝛽)} to denote the mean and standard deviation of the model-
predicted PDFs (after Gaussian assumption and multinomial diagonalization), and {𝜇𝑘 } and
{𝜎𝑘 } to denote the commensurate experimental values. We note that {𝜇𝑘 } and {𝜎𝑘 } are
unknown and unmeasured, and {𝑚𝑘 } only provides an estimate of the mean. The simulation
values {𝑚̃𝑘 } on the other hand are deterministic and thus represent an exact estimate of the
mean, hence {𝑚̃𝑘 ≡ 𝜇̃𝑘 }.
The model-predicted PDF is given by the product of normalized Gaussian distributions, and
gives the likelihood of the {𝑚𝑘 } given the model parameters 𝛽 as

𝑝 ({𝑚𝑘 } |𝛽) =
∏
𝑘

𝑝 (𝑚𝑘 |𝛽) , where (3.28)

𝑝 (𝑚𝑘 |𝛽) =
1

√
2𝜋𝜎̃𝑘

exp

(
−1

2

(
𝑚𝑘 − 𝜇̃𝑘
𝜎̃𝑘

)2
)

(3.29)

are the individual Gaussian distributions. We then construct the goal function as the average
log-likelihood, rescaled to give the desired expectation value,

𝑓LL ({𝑚𝑘 } |𝛽) = − log
 𝐾

√︄
𝑝 ({𝑚𝑘 } |𝛽)

∏
𝑘

√
2𝜋𝜎̃𝑘

√
𝑒


=

1
𝐾

∑︁
𝑘

1
2

((
𝑚𝑘 − 𝜇̃𝑘
𝜎̃𝑘

)2
− 1

)
.

(3.30)

Here the 𝐾
√· gives the average of the log-likehoods, the

√
2𝜋𝜎̃𝑘 removes the normalization

of the Gaussians, such that they take value 1 when 𝑚𝑘 − 𝜇̃𝑘 = 0, and the log-likelihood is
zero, and the

√
𝑒 removes the residual part of the expectation caused by the noise in the

{𝑚𝑘 }.
Then, in the general case, when the Gaussians determined by the model are not the same as
the Gaussians in the experimental data:

E [ 𝑓LL ({𝑚𝑘 } |𝛽)] =
1

2𝐾

∑︁
𝑘

((
𝜇𝑘 − 𝜇̃𝑘
𝜎̃𝑘

)2
+

(
𝜎̃𝑘

𝜎𝑘

)2
− 1

)
, (3.31)

Var [ 𝑓LL ({𝑚𝑘 } |𝛽)] =
1
𝐾2

∑︁
𝑘

(
𝜎𝑘

𝜎̃𝑘

)2
((
𝜇𝑘 − 𝜇̃𝑘
𝜎̃𝑘

)2
+ 1

2

(
𝜎𝑘

𝜎̃𝑘

)2
)
. (3.32)
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In the limit that both distributions have the same standard deviation 𝜎 = 𝜎̃

E
[
𝑓 𝜎←𝜎̃LL ({𝑚𝑘 } |𝛽)

]
=

1
2𝐾

∑︁
𝑘

(
𝜇𝑘 − 𝜇̃𝑘
𝜎̃𝑘

)2
(3.33)

Var
[
𝑓 𝜎←𝜎̃LL ({𝑚𝑘 } |𝛽)

]
=

1
2𝐾
+ 1
𝐾2

∑︁
𝑘

(
𝜇𝑘 − 𝜇̃𝑘
𝜎̃𝑘

)2
. (3.34)

Equation (3.33) then represents the square of the Mahalanobis distance (standardized Eu-
clidean distance), giving an intuitive way to scale the 𝑓L𝐿 function to understand the model
match score. Indeed, when the model is exact and 𝜇𝑘 = 𝜇̃𝑘 we get E

[
𝑓 exact
LL ({𝑚𝑘 } |𝛽)

]
= 0.

We note, however, that the function can take values below 0 as the variance for the exact
case is Var

[
𝑓 exact
LL ({𝑚𝑘 } |𝛽)

]
= 1

2𝐾 . Such values indicate the standard deviation expected
by the model, 𝜎̃𝑘 is larger than the standard deviation observed experimentally, 𝜎𝑘 .

3.4.4 Model analysis

Both during and after the learning process, it is beneficial to interrogate the model to
estimate its properties and their impact on the system behavior. As part of the C3 tool-set
we perform sensitivity analysis for system parameters: Sweeping a single parameter, e.g.
qubit frequency, across the range of interest, while keeping other parameters at their current
best value, evaluating the model match score at each point, as seen in the example (Fig.
3.4(a)). The result is a 1-D cut through the optimization landscape that may exhibit a
well-defined minimum, multiple extrema indicating a difficult optimization, or even appear
flat in the case when a parameter does not affect the behavior of the current experiment.
This landscape depends on both the selected model and data it is compared to. Depending
on the ruggedness of the sensitivity, one might choose to utilize a gradient-based algorithm
from the start or to first perform a gradient-free exploratory search to avoid local minima.
In the case of a flat sensitivity, there are two courses of action: If the parameter is of
little interest for successive experiments, it may be removed or set to a convenient value
within the flat range; otherwise, one needs to design an experiment producing additional
data that is sensitive to the parameter. The physicists’ knowledge of common experimental
practices (e.g. Rabi, Ramsey, Hahn echo sequences) and intuition guides the decision for
the experiment design. When suspecting correlations between parameters, cuts in single
dimensions are not enough and higher dimensional sweeps are necessary. After a successful
learning process, the sensitivity analysis gives an estimate of the precision to which each
parameter has been determined.

Furthermore, the simulation allows insight into the behavior of the system. Using well
established methods such as time-resolved state and process tomography, it is possible to
identify coherent errors, such as leakage out of the computational subspace, over-rotations,
and the effects of noise. A Good Model also provides the basis for an error budget, as it
contains the same limitations as the experiment it accurately predicts. The model can be
used for extrapolation by idealizing certain aspects suspected as causes of infidelity (e.g. 𝑇1
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setting to infinity), and re-deriving control pulses using a C1 optimization. The respective
gain in fidelity gives an estimate of the error that this aspect is responsible for, suggesting
areas of improvement for future devices.

3.5 Survey of parameter specific characterization

The task of characterization of quantum devices in general has received extensive attention.
It would be presumptuous of us to even attempt a complete survey, therefore, we shall limit
ourselves to a very limited look at a subset of model-specific methods we have subjectively
found informative to our own work.
The standard approach at addressing the lack of a Good Model, as defined above, is
to perform a long list of model-specific characterization experiments, each designed to
measure a different parameter of the model: measure parameters of the readout resonator
using frequency sweeps; qubit frequency measurements and relaxation time 𝑇1 require
Rabi experiments [131] (and with some extra effort the higher levels can be extracted);
Ramsey [132] and Hahn echo measurements [133] provide dephasing data (under the
Markovian assumption, which is known to be an over-simplification [134, 135]); measuring
the control line response functions [136–139, 139, 140], the noise spectra [67, 135, 141, 142],
continuous drifts in system parameters [143–146], and discontinuous jumps in parameters
such as 𝑇1 [147, 148]; state Preparation and Measurement Errors (SPAM) can be extracted
from Randomized Benchmarking (RB; e.g. [75]) or dedicated procedures, such as [149];
qubit cross-talk can be measured by the method described in [150, 151] and many more.
Model specific methods also exist for learning spin chain, lattice Hamiltonians and other
multi-particle systems with a predefined network topology under limited access [152–156].

3.6 Open-source implementation

C3 is implemented as an open source project available at https://q-optimize.org under
the Apache 2.0 license. The software is written in Python to interface conveniently with
common experiment controllers, and has already been used in tandem with PycQED [157],
Labber [158] and LabView [159]. The interface can occur at various levels of abstraction,
from sharing control parameters to sampled waveform values. A modular design allows
for Hamiltonian or Lindbladian descriptions of common physical systems (fixed and flux-
tunable qubits, resonators, different types of coupling), specification of a list of devices
to model the signal chain of the experiment (local oscillator, AWG, mixers, distortions
and attenuations), different types of readout processing, and various fidelity functions. All
components can be edited by the user or taken from reference libraries, accommodating to
different needs. Configurations and data are stored as JSON files, and the full capabilities
are accessible as command-line scripts, allowing for easy automation.
Numeric calculations are performed using TensorFlow [89]: The simulation of the dynamics
and the pre and post processing are formulated as a network, with well-defined inputs (e.g.
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control and model parameters) and outputs (goal function values), connected by many nodes,
each performing a relatively simple operation (e.g. matrix exponentiation). TensorFlow
enables the numerical computation of the Jacobian of a calculation – the gradient of each
of the network outputs with respect to the network inputs (this capability is the evolution
of what is known as back-propagation learning process in neural networks [160]). This
process of automatic differentiation facilitates the modular structure, as any new component
inherits this property, removing the need to analytically derive its gradient. Furthermore, the
TensorFlow simulator is scalable, allowing deployment on a variety of high-performance
computing hardware.

We note prior efforts simulating quantum circuits which allow for automatic differentiation,
e.g. [91, 161], as well as large-scale simulations of quantum circuits, e.g. [162–164].

Each component of the control stack and model needs to conform to a general boilerplate
that specifies what parameters it contains and how they are used. In this modular design,
each class represents a component of the experiment that takes an input applies some
parameter-dependent function to it and returns a result. For example, an envelope function
for pulses would have this structure:
import tensorflow as tf
...
def my_envelope_fuction (t, parameters ):

amplitude = parameters ["amp"]
p2 = parameters ["p2"]

...
return tf. some_math_function (amplitude , p2 , t)

The only requirement to this code is that mathematical functions have to be taken from the
TensorFlow package to allow for automatic differentiation. As an example of a control stack
element, the finite rise time of an AWG is implemented with the following code:
class Response ( Device ):
def __init__ (... , rise_time , ...):

...
self. params [’rise_time ’] = rise_time

def process (self , iq_signal ):
...
t = self. params [’rise_time ’]
sigma = t / 4
...
# Convolution with a Gaussian
...

return signal

A signal processing chain is represented by putting the output of one control stack element
into the next. In calculating figures of merit, the user can choose from a library of functions
or supply their own. For example, the infidelity of a state transfer process from |𝜓0⟩ to
|𝜓ideal⟩, implemented by the simulated propagator𝑈 as follows:
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def state_transfer_infid (U, psi_ideal , psi_0):
psi_actual = tf. matmul (U, psi_0)
overlap = tf_abs (
tf. matmul (

tf. linalg . adjoint ( psi_ideal ),
psi_actual
)

)
infid = 1 - overlap

return infid

At the time of writing, this release was the proof of concept for the software commer-
cialization effort QRUISE [165], where is further developed in to a professional software
package.

3.7 Discussion

In conclusion, we have describedC3, an integrated methodology to improve quantum device
performance that combines characterization, calibration and control. We have detailed its
approach and implementation, demonstrating, on a synthetic QPU device, the individual
methods and how they are synthesized into a more integrated concept. Analyzing single-
qubit calibration data we successfully extracted an accurate model of the device, including
realistic experimental considerations: line transfer functions, limitations of control elec-
tronics, readout error and finite operating temperature. From this model we were able to
derive a working high-fidelity two-qubit gate, without requiring any further calibration.

This approach represents a holistic theoretical take on the experimental workflow of a com-
plex quantum computing experiment, that takes into account interactions between different
tasks of an experimental lab. C3 provides a path to achieve, starting from an incomplete
understanding of the system, both high-fidelity pulses and an accurate model. It integrates
the tasks of open-loop control (that would require an already accurate model) and of cali-
bration (that would require an experiment-specific fine-tuning procedure). Most notably, it
provides the tools to reflect on the experiment outcome and gate performance, improving
the model description of the system and providing insight into its behavior. C3 is not a
“black-box” experiment controller that replaces physicists or engineers – rather, it reduces
tedious tasks allowing for interaction with the quantum device on a more structural level.
Instead of simply producing high-fidelity operations, C3 provides meaningful output in the
form of a Good Model of the system, and other insights such as an error budget and a
sensitivity analysis. In this sense, C3 is not to be confused with any single optimal control
or benchmarking technique, as it includes results from decades of research in these fields
aimed at making controls that allow to actually reach high fidelities efficiently [47, 88],
unifying them into one framework.
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In the current NISQ era, there is demand for functional quantum devices to solve relevant
computational problems, which motivates a utilitarian perspective on device design: The
goal is to create a device that is able to run a given algorithm with state-of-the-art perfor-
mance. In this work, we use optimal control tools to derive the gate set required by a toy
algorithm and, in tandem, explore the model space of superconducting quantum computer
design, from dispersively coupled to stronger interacting qubits, to maximize gate fidelity.
We employ perfect entangler theory to provide flexibility in the search for a two-qubit gate
on a given platform and to compare designs with different entangling mechanisms, e.g.,
CPHASE and

√
iSWAP. To ensure the applicability of our investigation, we limit ourselves to

"simple" (i.e., sparse parametrization) pulses and quantify, where results differ from using
the full complexity of piecewise constant controls.

4.1 Introduction

When designing control layouts for superconducting quantum computing devices, different
approaches are being pursued. Some designs, e.g., from IBM, are trying to achieve as
much as is possible with fixed-frequency qubits with microwave controls, avoiding the
extra noise introduced by flux lines. This has the challenge of no control over operating
sweet spots and couplings after fabrication. Adding flux lines incurs the cost of increased
decoherence to be able to move the working points of qubits around at will. Following this
design, adding additional tunable junctions to the chip to act as couplers between data qubit
junctions increases the footprint of the chip, but promises to provide controlled interactions.
In addition, this isolates the data qubits from flux noise [13].

Creating devices that are well suited for a given task, as opposed to more general, funda-
mental research, is desirable for the practical work on quantum algorithms. To this end,
tools are created to explore and fine-tune quantum device designs in an integrated manner
[166–169].

This chapter has been submitted as "Nicolas Wittler, Shai Machnes and Frank K. Wilhelm, Co-designing
Transmon devices for control with simple pulses. The text was written entirely by N. Wittler.
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Figure 4.1: Interpreting Lie group decomposition as circuit decomposition. (a) Typical
cell of a quantum computing circuit. (b) Decomposition with arbitrary entan-
gling gate, given by the Weyl coordinates and modified local gates 𝐾̃𝑖 𝑗 . Note
that in a full algorithm circuit, layers of single qubit gates can be compressed.

It is our goal to systematically analyze designs for quantum computing devices that are
fabricated for the purpose of executing quantum circuits or algorithms. We will present
our procedure with the examples of two common design layouts: fixed qubits with fixed
interaction (FQ), fixed qubits with a tunable coupler (TC). In this work, we’ll consider
the quantized Hamiltonian parameters – Transmon resonance frequencies, anharmonicities,
coupling strengths – as the search space. Other efforts look to directly designing circuit
quantities like charging and junction energies [168, 170] to produce devices with given
properties, e.g. certain types of many qubit interactions terms.
Recent demonstrations have shown that even in restrictive control settings, almost all known
gates are reachable [171]. This already presents a number of permutations of control
schemes and platforms that need to be evaluated. Providing a level playing field is a non-
trivial task, especially when trying to distill everything into a general procedure. Targeting
a generalized perfect entangler can result in better outcomes than the "textbook" two-qubit
gate [172–174]. When building a device for a certain application, there’s an advantage in
considering the requirements this poses to the gate-set [175, 176].
This is more relevant when we add the model parameters to the search. In [177], the authors
coin the term "straddling" regime – the border between dispersive and strongly coupled
– and show that this regime is optimal when employing full optimal control theory. We
will employ these methods to investigate the advantage of a tunable coupler setup over
fixed-frequency qubits, while limiting the control capabilities to simple pulses with few
parameters. We’ll see what the effect of limiting the pulse complexity has on the resulting
model regime.
In Section 4.2, we reproduce some of the theory for creating entanglement. We present a
general method to search for models that both facilitate entangling and local gates. As an
initial application, we apply the method in Section 4.3 to a two-qubit chip with and without
an extra qubit to act as a tunable coupler.

4.2 Method

For a functional quantum device, the fundamental tasks are: (1) Define and optimize local
gates, (2) Define and optimize entangling gates, (3) Find optimal system parameters to
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achieve both types of gates to high fidelity.

This presents a priori some conflicting interests: Entangling gates naturally profit from
strong coupling, as opposed to local gates, which benefit from isolating subsystems. If the
target is to run quantum circuits with high accuracy, we’ll need to find a compromise. Here,
we will present a procedure to achieve this, based on optimal control techniques.

The mechanism to generate entanglement for two-qubit gates generally depends on the
platform, so choosing a perfect entangler as the optimization target is desirable to not limit
possible solutions to a specific gate. For each setup, there exists a procedure to derive
entangling gates; the cross-resonance (CR) gate for FQ and CPHASE or

√
iSWAP for FQ and

TQ, with AC or DC controls [178–180].

4.2.1 Perfect entangler theory

A known approach is to consider an operator 𝑈 ∈ 𝑆𝑈 (4) (the computational subspace,
ignoring leakage levels for now) and characterize its non-local properties by computing the
Makhlin invariants 𝑔1, 𝑔2 and 𝑔3 [9].

We represent general gate𝑈 in the Bell basis as𝑈𝐵 = 𝑄𝑇𝑈𝑄, where

𝑄 =
1
√

2

©­­­«
1 0 0 𝑖

0 𝑖 1 0
0 𝑖 −1 0
1 0 0 −𝑖

ª®®®¬. (4.1)

In this basis, non-local gates are diagonal and local gates are orthogonal matrices.

The Makhlin invariants are then defined as

𝑔1 = Re
Tr

(
𝑈𝑇
𝐵
𝑈𝐵

)2

16 det(𝑈)

𝑔2 = Im
Tr

(
𝑈𝑇
𝐵
𝑈𝐵

)2

16 det(𝑈)

𝑔3 =
Tr

(
𝑈𝑇
𝐵
𝑈𝐵

)2 − Tr
(
(𝑈𝑇

𝐵
𝑈𝐵)2

)
4 det(𝑈) .

(4.2)

These invariants characterize equivalence classes, e.g., CNOT, CPHASE and CR share the same
invariants, meaning they can be transformed into each other with local gates.

We can generalize further by combining the invariants ®𝑔 = (𝑔1, 𝑔2, 𝑔3) into a single func-
tional,

𝑑 ( ®𝑔) = 𝑔3

√︃
𝑔2

1 + 𝑔
2
2 − 𝑔1 , (4.3)

which vanishes for the invariants on the surface of the volume of perfect entanglers. Inside
the volume, the value has to be set to 0 manually [181].

70



4.2 Method

This functional is straightforward to compute for a given unitary and represents a general
measure for entangling performance. Some care must be taken tough, depending on which
side of the volume the current 𝑈̄ lies. We are interested in comparing the performance of
single and two qubit operations during optimization and thus would prefer an equivalent
fidelity of the form

��Tr
{
𝑉†𝑈̄

}
/dim𝑉

��2, where𝑉 is the target gate and 𝑈̄ the time evolution of
the controlled system. One method is to use the perfect entangler functional for optimization
and then evaluate the final performance based on fidelity. Since we aim to find suitable
model parameters for both single qubit and entangling gates at the same time, we propose
a direct numerical approach, the "tugboat" strategy.

4.2.2 Tugboat optimization for perfect entanglers

We write a general ideal target gate using the Cartan decomposition 𝑉 = 𝐾1𝐴𝐾2 with

𝐴 = exp
{
𝑖

2
(𝑐1𝜎𝑥𝜎𝑥 + 𝑐2𝜎𝑦𝜎𝑦 + 𝑐3𝜎𝑧𝜎𝑧)

}
(4.4)

where 𝐾1,2 ∈ 𝑆𝑈 (2) ⊗ 𝑆𝑈 (2). It can be shown, e.g., in [182] that the subalgebra
{𝜎𝑥𝜎𝑥 , 𝜎𝑦𝜎𝑦, 𝜎𝑧𝜎𝑧} is sufficient to generate all of 𝑆𝑈 (4) when combined with local ro-
tations 𝐾1,2. As an example, 𝜎𝑥𝜎𝑦 can be created from 𝜎𝑥𝜎𝑥 by a single qubit 1𝜎𝑧.

If we now confine the Weyl coordinates 𝑐𝑖 to the volume of perfect entanglers (shaded blue
in Fig. 4.2), we have a recipe to explicitly construct an arbitrary entangling gate. To this
end, we propose the coordinate transformation

𝑐1 =
𝑏1 + 𝑏2

2

𝑐2 =
𝑏1 − 𝑏2

2
𝑐3 = 𝑏3(𝜋/4 − |𝑐2 − 𝜋/4|))

(4.5)

to conveniently express the boundary conditions for the perfect entangler volume [172] as

𝜋/4 ≤ 𝑏1 ≤ 𝜋/2
0 ≤ 𝑏2 ≤ 𝜋/4
0 ≤ 𝑏3 ≤ 𝜋.

(4.6)

We will now consider a target gate, the "tugboat", 𝑉 ( ®𝛾, ®𝑏), where ®𝑏 = (𝑏𝑖) are the trans-
formed Weyl coordinates, confined to the volume of perfect entanglers, and local rotations
®𝛾 = (𝛾 ( 𝑗)

𝑖
) with 𝑗 = 1, 2 enumerating the qubits and 𝑖 = 𝑥, 𝑦, 𝑧 the rotation axis.

We assign an explicit fidelity error to a quantum gate 𝑈̄ as

𝜖II(𝑈̄) = min
®𝑏,®𝛾

{
1 −

���Tr
{
𝑉†(®𝑏, ®𝛾)𝑈̄

}
/dim𝑉

���2} (4.7)
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Figure 4.2: Weyl chamber of named gates to illustrate the optimization procedure. The
labeled points indicate equivalence classes with respect to local rotations. The
system dynamics 𝑈̄ (projected into the computational space) are steered by the
control and model parameters, while the target gate 𝑉 is varied over the shaded
volume, bounded by Eq. (4.6). This enables us to use
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Figure 4.3: Control fields and time-evolution of computational state populations of the
two fixed Transmon device. Both control fields are on resonance with the bare
frequency of the second Transmon and the amplitude of the drive is increased
by (𝜔2 − 𝜔1)/𝑔. Their 𝐼 and 𝑄 envelopes are shown on the top left. The
panels on the right show the time evolution of populations, initialized in the four
computational basis states. We observe a Rabi oscillation for Transmon 2 (right
index, the target), when Transmon 1 (left index, the control) is in the 0 state.
When the control Transmon is in the 1 state, only a partial population transfer
occurs at a higher general Rabi frequency, realizing a general cross-resonance
effect. To verify the entangling property, we plot the Makhlin invariants and the
value of the perfect entangler (PE) functional from Eq. (4.3).

where 𝑈̄ is the time evolution of the system, projected into the computational subspace. It
is not resource intensive to compute a unitary matrix 𝑉 in this representation, compared to
the system time evolution 𝑈̄ which requires several orders more computational power. We
can thus easily find the closest perfect entangler representation to the implemented gate 𝑈̄
by varying ®𝑏 and ®𝛾 at each optimization step. This way we assign a regular fidelity measure
to 𝑈̄ while retaining the generality of the perfect entangler goal. An added benefit of this
procedure it that we also explicitly extract the Weyl coordinates and local rotations of the
entangling gate that allow us to identify the equivalence class.
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4.2.3 Optimal co-design

In this formalism, we can now also explore the model parameter space by including it in the
optimization. Assume the model is described by a Hamiltonian 𝐻 ( ®𝛼, ®𝛽), with ®𝛽 being the
vector of model parameters and ®𝛼 the controls. The system dynamics are then given by

𝑈 ( ®𝛼, ®𝛽) = T exp
{
− 𝑖
ℏ

∫
𝑑𝑡𝐻 ( ®𝛼, ®𝛽)

}
(4.8)

so formally the goal function depends on 𝜖II ≡ 𝜖II( ®𝛼, ®𝛽, ®𝑏, ®𝛾).

Textbook representations of two-qubit gates, e.g. CNOT = |0⟩⟨0| 1 + |1⟩⟨1| 𝜎𝑥 , are implicitly
written in the interaction picture according to the Hamiltonian in the measurement basis,
denoted as 𝐻̃. We’ll consider the readout basis to be the eigenbasis of the undriven system.

We obtain the simulation result 𝑈̄ = T exp
(
−𝑖

∫
𝐻𝑑𝑡

)
in the product basis, since we will

tune system parameters. Depending on the parameter regime, writing the transformation
that diagonalizes 𝐻 is not straightforward enough to facilitate computing the gradient of the
goal function with respect to model properties.

To evaluate the optimization results, we can simulate 𝐻̃ = 𝑆†𝐻𝑆, the diagonal (if applicable,
dressed) Hamiltonian. We then write the goal unitary as 𝐺 = 𝑆𝐺̃𝑆† and, finally, the goal
function as

𝜀 = 1 −
���� 1
dim𝐺

Tr
{
𝐺†𝑈̄

}����2 (4.9)

We can use as the transformation 𝑆 ≡ 𝑆(𝛽) the closed, exact form in the computational
subspace, depending on 𝜔1, 𝜔2 and 𝑔.

𝑆 =

©­­­«
cos(𝑏) 0 0 sin(𝑏)

0 cos(𝑎) sin(𝑎) 0
0 sin(𝑎) cos(𝑎) 0

− sin(𝑏) 0 0 cos(𝑏)

ª®®®¬ (4.10)

with 𝑎 = arctan
(

𝑔

𝜔2−𝜔1

)
rotating the exchange interaction and 𝑏 = arctan

(
𝑔

𝜔2+𝜔1

)
rotating

the double excitations. Since we performed the RWA on the interaction terms, here 𝑏 = 0.

As the fidelity of consecutive operations is given by their product, the error for single qubit
gates (𝜖I) followed by an entangling gate (with error 𝜖II) is

𝜖 = 1 − (1 − 𝜖I) (1 − 𝜖II) = 𝜖I + 𝜖II − 𝜖I𝜖II (4.11)

where we’ll neglect the product 𝜖I𝜖II as its contribution vanishes for small errors below 1%
and use 𝜖 = 𝜖I + 𝜖II as our goal function.
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4.3 Application

We present the co-design procedure to explore designs for superconducting qubits. The
model space consists of two Transmons with frequencies 𝜔1,2, anharmonicities 𝛼1,2 and
static interaction 𝑔12 collected in a five-dimensional vector ®𝛽 = (𝜔1, 𝜔2, 𝛼1, 𝛼2, 𝑔). From
the formal perspective, optimizing both model and controls at the same time constitutes
a form of over-parametrization. For example, changes in drive tone and qubit frequency
have the same effect on the goal function. Thus, we opt for simple controls, as opposed to
a more general piecewise constant parametrization with hundreds of samples, so that the
dimensions of ®𝛼 and ®𝛽 are in the same order of magnitude.

We will first run through the process for the two-qubit chip with fixed interaction strength,
and then add a third qubit to act as a tunable coupler. To characterize the model by a single
number, we take the reduced coupling 𝜒 = 𝑔12/(𝜔2 − 𝜔1) and use the "straddling" regime
𝜒 = 0.1 as a divider between the dispersive (𝜒 < 0.1) and strong coupling (𝜒 > 0.1). When
there is a tunable coupler, we use the effective interaction strength, where the coupler is
adiabatically eliminated to have a comparable quantity [183].

4.3.1 Local vs. entangling gates

For universal quantum computing, we need to derive a set of local, single-qubit gates and an
entangling gate. As a first application, we consider a device made up of two fixed-frequency
Transmons with a static coupling. With all driving and coupling resonators eliminated, the
Hamiltonian is 𝐻 =

∑
𝑗=0,1,2,𝑔 𝐻 𝑗 with

𝐻0 =
∑︁
𝑖

𝜔𝑖𝑎
†
𝑖
𝑎𝑖 +

𝛿𝑖

2

(
𝑎
†
𝑖
𝑎𝑖 − 1

)
𝑎
†
𝑖
𝑎𝑖

𝐻𝑔 = 𝑔

(
𝑎
†
1𝑎2 + 𝑎†1𝑎2

)
𝐻𝑖 = 𝑢𝑖 ( ®𝛼, 𝑡)

(
𝑎
†
𝑖
+ 𝑎𝑖

)
,

(4.12)

where we are just considering the exchange interaction.

The control field on qubit 𝑖 is 𝑢( ®𝛼, 𝑡) = 𝐴
[
𝐼𝑖 (𝑡) cos

(
𝜔𝑑
𝑖
𝑡 + 𝜙𝑖

)
+𝑄𝑖 (𝑡) sin

(
𝜔𝑑
𝑖
𝑡 + 𝜙𝑖

) ]
with a

slow-varying, envelope 𝐼𝑖. As a basis function, we choose a flattop Gaussian shape

𝐼𝑖 (𝑡) = erf
(
−
(𝑡 − 𝑡up)
𝜎

)
− erf

(
(𝑡 − 𝑡down)

𝜎

)
(4.13)

with amplitude 𝐴𝑖 and ramps at 𝑡up and 𝑡down with a fixed width 𝜎 = 5 ns. We also add an
out-of-phase DRAG [18] correction as 𝑄𝑖 = 𝜆𝑖𝜕𝑡 𝐼𝑖.

First, we optimize both controls ®𝛼 = (𝐴𝑖, 𝜔𝑖, 𝜙𝑖, 𝑡𝑖up, 𝑡
𝑖
down, 𝜆𝑖) and model parameters ®𝛽 =

(𝜔𝑖, 𝛿𝑖, 𝑔) to find single qubit gates. We characterize the system by its reduced coupling
strength 𝑔/(𝜔2 − 𝜔1). To find the entangling gate, we employ the procedure described in
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Section 4.2.2. In Fig. 4.3 we show some example dynamics. We initialize the target gate 𝑉
centered in the volume of perfect entanglers at ®𝑐/𝜋 = (1/2, 1/4, 0.05) and the local rotations
®𝛾 close to zero. After a set number of evaluations (here we found 4 to be a good value for
convergence) in the gradient descent search, we update the target unitary coordinates ®𝑐 and
®𝛾 and refresh the L-BFGS memory, if needed.
We want to include the effect of additional leakage in order to obtain realistic control
solutions. For each subsystem, we simulate three Transmon levels labeled |0⟩, |1⟩ and |2⟩.
To ensure that system dynamics stay within the embedded computational subspace, we write
a running cost

𝐿 =
∑︁
𝑘

∑︁
𝜆∈Λ
|⟨𝜆 |𝜓(𝑡𝑘 )⟩|2 (4.14)

and add it to the goal function. The population in the leakage levels Λ = {|0, 2⟩ , |1, 2⟩ ,
|2, 0⟩ , |2, 1⟩} is evaluated at evenly spaced times 𝑡𝑖 during propagation.
In Fig. 4.4, we show the infidelities 𝜖 during optimization. Starting in a dispersive setting
where 𝑔/(𝜔2 −𝜔1) < 0.1, we observe that optimizing for single qubit gates trends towards
isolated subsystems. When we target a perfect entangler, we observe convergence to a
higher dispersivity, but still within the weak coupling regime. A combination of both
goal functions, representing a single cell (Fig. 4.1) of some quantum computing algorithm,
results in a compromise between the two edge cases, both in terms of dispersivity and
reached fidelity. We also observe that the optimization trajectory in the "algorithm" target
seems to be a superposition of the two layers. In this regime, the single qubit gates can be
implemented to high fidelity, so the entangling and "algorithm" errors are close.
When initializing the system in the "straddling" regime, i.e., 𝑔/(𝜔2 − 𝜔1) = 0.1 we find
that we can recover the same convergence to single qubit gates. After a short exploration,
the entangling gates return to the same effective coupling value and perform slightly better
than in the dispersive initialization. The optimization for both however seems to get stuck
realizing a compromise. This regime has been shown to be optimal in the presence of
arbitrary control, but here, the chosen simple parametrization might be not expressive
enough to realize this potential.

4.3.2 Flux-tunable coupler

As seen in the previous section, choosing a fixed frequency, fixed coupling design limits
fidelities of algorithms, since the optimal parameter regimes for single and two qubit
operations are different. The introduction of tunable elements presents a solution, by
allowing different working points for both tasks. In principle, there are two designs:
Adding a flux line to one of the qubits to tune its resonance frequency or add a tunable
coupler, another non-data qubit with a tunable frequency. However, the added flux lines
also provide a new avenue for noise to degrade coherence time of the qubits. To compare to
the fixed frequency setup in the previous section, we choose to investigate a tunable coupler
architecture and assume that the added noise channel on the coupler qubit is reasonably
isolated from the "data" qubits.
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Figure 4.4: Model space of a fixed frequency, two-qubit chip. We optimize the parameters
of two Transmons, their frequencies, anharmonicities and coupling, to imple-
ment local and non-local gates. Initializing the search around the straddling
regime (dashed line), 𝜔2 −𝜔1 = 500 MHz 2𝜋 and for different values of 𝑔 = 50
MHz 2𝜋, we observe that local gates trend towards the same convergence. Only
trajectories that converge below an error of 0.1 are shown.

The flux-dependent frequency of a tunable element, is written as

𝜔𝑖 (Φ) =
(
𝜔0
𝑖 − 𝛿𝑖

)√︄����cos
(
Φ

Φ0
𝜋

)���� + 𝛿𝑖 (4.15)

following the supplements of [184], where𝜔0
𝑖

is the sweet spot frequency andΦ the external
flux. For simplicity, in this work we will directly consider the frequency offset 𝜔𝑐

𝑖
(𝑡) as the

control parameter, such that 𝜔𝑖 = 𝜔0
𝑖
+ 𝜔𝑐

𝑖
(𝑡).

As a characteristic quantity, we look at the effective interaction strength

𝐽 =
𝑔1𝑔2

2

(
1

𝜔1 − 𝜔0
TC
+ 1
𝜔2 − 𝜔0

TC

)
(4.16)

induced between the two qubits [183]. Here, 𝑔1 and 𝑔2 being the coupling strength between
qubit 1 and 2 and the coupler, respectively.

We put the idle point of the coupler 𝜔0
TC above the two qubits in Eq. (4.16), around the same

difference in frequency
𝜔0

TC − 𝜔2 = 𝜔2 − 𝜔1 . (4.17)

If, in addition, there’s a static coupling 𝑔12 between the two qubits, the total effective
interaction is

𝐽′ = 𝑔12 +
𝑔1𝑔2

2

(
1

𝜔1 − 𝜔0
TC
+ 1
𝜔2 − 𝜔0

TC

)
(4.18)
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Figure 4.5: Adding a tunable coupler to the model. When we initialize the system in a
sweet spot, where, according to Eq. Eq. (4.16) the interaction between the qubits
vanishes, good single-qubit gates can be reached. Entangling gates are trending
towards effective couplings similar to the straddling regime. Optimizations
starting in stronger coupling regimes has either stalled, or recovered to regions
of weak coupling. Only trajectories that converge below an error of 0.1 are
shown.

For 𝑔1 and 𝑔2, we pick similar values to the coupling constant in the previous example, and
we select the residual interaction 𝑔12 to initialize the optimization in different 𝐽′ regimes.
To entangle the qubits, we modulate 𝜔𝑐 with an AC tone close to their difference frequency
[183], shaped by the same flattop envelopes as before. Again, we can implement single and
entangling gates to good fidelities. Single qubit gates can reach good fidelities here, even
exploring the region around the sweet spot and returning. Once the interaction strength is
high enough, we can also entangle the qubits with a higher fidelity than the case without
the tunable coupler. For the "algorithm" optimization, the same competition between local
and non-local operations results in a stagnation at sub-par fidelity. The trajectory of the
combined case is again alternating between the individual trajectories, see Fig. 4.5.

In both cases, we see that the approaching the strong coupling regime presents problems in
realizing single-qubit gates, at least with the simple pulse shapes we explored here.

4.4 Summary and Outlook

We have shown a general procedure to investigate model design space for an application
like superconducting qubits, where the properties of human-made devices can be targeted
in fabrication. Instead of a full optimal control approach, we investigate if previous results
about preferable regimes hold for simple pulse shapes. Compared to previous work, we
choose a direct search in the Weyl space to find the closest perfect entangler to the gate
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our test system can produce. This way, we avoid some mathematical difficulties, since the
expression of the functional Eq. (4.3) is only defined outside the volume. Inside the volume,
the value is 1 by definition. The direct use of Eq. (4.7) does not require these conditional
expressions.

The application to the two-qubit model, optionally adding a tunable coupler, shows reliably
that good single qubit gates can be reached when the effective interaction is turned almost
off. This is as expected but also holds, when initializing a search some distance away from
this regime. By the same reasoning, targeting entangling gates trends towards a similar
point – the previously identified "straddling" regime from different initial values. There,
we notice the necessity to restart optimizations, in the case of early termination. The use of
simple pulses seems to limit the exploration of parameter space and prevents a good regime
for the operation of both local and non-local quantum gates. To make a more systematic
claim, a wider range of cases – control schemes and device designs – needs to be tested. For
example, several schemes exist to mitigate the effect of spurious 𝑍𝑍 interactions to allow
single qubit control on more strongly interacting systems [185, 186].

Even limited to the superconducting platform, several design paradigms to create quantum
computing devices exist. The Transmon, with its specific 𝐸𝐶/𝐸𝐽 ratio, is only one possible
design. It is the qubit design most demonstrations of applied quantum computing use. There
are other promising paradigms, such as the Fluxonium, which combines insensitivity to
external noise with a large anharmonicity [187]. So, a different search space can be explored
with the method presented here by directly optimizing Josephson junctions, capacitances
and inductances.
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5 Conclusion

A lot of the tasks to set up a quantum computer are still based on manual procedures.
Characterization and calibration are often thought of separately and performed in strict
sequence. Advances in optimal control often are only adopted slowly in experimental, every
day operation for similar reasons. In this thesis, we have looked at how to systematize some
of these aspects from a theoretical perspective and produced software tools to implement
general procedures in practice.

We proposed the C3 approach to bridge the gap between theory and practice by operating
both in the same software environment. Seemingly simple issues, such as making sure that
the same pulse shape definitions are used in both scenarios, are taken care of. Conversely,
limitations of the real-world hardware are fed back into theoretical models to more accurately
reproduce experimental data. Within this approach, we have seen that a systematically
characterized model is can be sufficient to derive complex controls that perform well, even
before calibration. In cases where it does not, that data is particularly useful to fill in missing
gaps in the theoretical description.

Finally, we invert the problem: We ask, given a choice of physical system, what is the
optimal basis to run a quantum algorithm? We presented some initial findings on a su-
perconducting two-qubit device. Taking previous results, that show an optimal parameter
regime for complex pulses, we investigate the same statement when simpler pulses with
fewer parameters are used. Such pulses are already used in labs demonstrating quantum
utility. We saw that this limitation can reduce the explorable model space and suggest a
deeper investigation into the complexity of pulses vs. model parameter regimes.

In summary, we have shown the utility in applying advanced theoretical and software based
methods to bridge the gap between demonstrators and early practical applications. The
barrier of entangling gate fidelities needs to be crossed to advance quantum computing as a
whole and enable error correction. This can be accomplished by the continued improvement
of how we operate these devices and gain deeper understanding of their physics.
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