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Abstract

This thesis describes my formalizations of three proof calculi: SCL(FOL), ground
ordered resolution, and ground superposition. The main theorems formalized for
each calculus are soundness (i.e., every formula derived from valid formulas is valid)
and refutational completeness (i.e., if a formula is invalid, then the calculus can be
used to derive a refutation). For SCL(FOL), another main theorem is that derived
formulas are nonredundant (i.e., they are not “obvious” from the already known
formulas).

Ground ordered resolution only has this last property when a suitable strategy is
used. I re-proved and formalized a previously known result that a specific strategy
for SCL(FOL) can simulate a specific strategy for ground ordered resolution and vice
versa. This was carried out with a framework for simulation proofs that I developed.

Finally, I formalized three interpreters for dynamically typed bytecode languages.
The first one serves as a baseline, and the other two add speculative optimizations.
I proved that the first interpreter can simulate the second one and vice versa, and
also that the second interpreter can simulate the third one and vice versa. This
formalization was also done using my framework for simulation proofs.

All formalizations were carried out using the Isabelle/HOL proof assistant.
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Zusammenfassung

Diese Dissertation beschreibt meine Formalisierungen von drei Kalkülen: SCL(FOL),
Geordnete Grundresolution, und Grundsuperposition. Die formalisierten Haupttheo-
reme sind Korrektheit (d.h., jede durch den Kalkül von gültigen Formeln abgeleitete
Formel ist selbst gültig) und Widerspruchsvollständigkeit (d.h., aus einer unerfüll-
baren Formel kann der Kalkül einen Widerspruch ableiten). Für SCL(FOL) ist ein
weiteres Haupttheorem, dass jede abgeleitete Formel nicht redundant ist (d.h., sie
folgt nicht „trivialerweise“ aus bereits bekannten Formeln).

Geordnete Grundresolution genießt diese letzte Eigenschaft nur dann, wenn eine
geeignete Strategie Anwendung findet. Ich bewies das bereits bekannte Ergebnis
erneut und formalisierte, dass eine spezifische Strategie für SCL(FOL) eine spezifische
Strategie für Geordnete Grundresolution simulieren kann und umgekehrt. Dies wurde
mithilfe eines von mir entwickelten Frameworks für Simulationsbeweise durchgeführt.

Abschließend formalisierte ich drei Interpreter für dynamisch typisierte Bytecode-
sprachen. Der Erste dient als Vergleichsbasis und die Anderen fügen spekulative
Optimierungen hinzu. Ich bewies, dass der Erste den Zweiten simulieren kann und
umgekehrt sowie dass der Zweite den Dritten simulieren kann und umgekehrt. Dies
wurde ebenfalls mithilfe meines Frameworks für Simulationsbeweise durchgeführt.

Sämtliche Formalisierungen wurden mithilfe des Beweisassistenten Isabelle/HOL
durchgeführt.
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Chapter 1

Introduction

Logical reasoning is a process to convince oneself (or another person) of a mathe-
matical statement. The statement is broken down in premises (a.k.a. assumptions)
and conclusion. Starting with the premises, one repeatedly performs some “obvious”
inference steps until the conclusion is reached. Which inference steps are considered
“obvious” can greatly vary from one situation to the other and from one person to
the other. The sequence of inference steps from the premises to the conclusion is
then called a proof of the statement.

To check a proof, one needs only to consider each inference step in isolation and
ensure that it is a “correct” inference step; there is no need to consider the statement
as a whole. This process, when done correctly, can result in high confidence in the
truth of the statement as each step of the proof checking is straightforward.

Consider the following exemplary claim and the accompanying proof of a simple
statement about the sum of integers.

Claim. The sum of two even integers is even.

Proof. Let a and b be two integers. Assume that a and b are both even. Remember
that an integer n is even if there exists an integer kn such that n = 2× kn (i.e., if n
is divisible by two). Because a and b are both even, there must exist two integers ka
and kb such that a = 2× ka and b = 2× kb. The sum of a and b, written a+ b, is
equal to (2× ka) + (2× kb) by rewriting the above equalities, which is in turn equal
to 2× (ka + kb) by elementary arithmetic. This corresponds exactly to the definition
of an even integer, which means that the sum of a and b is even.

The premises of the statement are that there are two integers and that both are
even; the conclusion is that their sum is even. The level of details in the above proof
(i.e., the “obvious” inference steps) was chosen such that only elementary knowledge
of arithmetic (as usually thought in elementary school) is sufficient to check the proof.
For more complex statements, another level of details could be chosen (e.g., to keep
the proof at a manageable size).

Now consider the following exemplary claim and the accompanying putative proof
of a more complex statement about the colors of apples.

Claim. All apples are of the same color.

Proof. We shall use mathematical induction w.r.t. the number of apples. Let us
check the first inductive step—a set of one apple is a set of apples of the same color.
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We assume now that (for a given n) all apples in an n-element set of apples are of the
same color. Let us add a new apple to any n-element set. We have a (n+1)-element
set. Now let us take away an apple from the set, but not the one we have just added.
We get a n-element set of apples. From the inductive assumption, all apples in this
set are of the same color. Accordingly, the apple we have added is of the same color
as other ones. Now we can bring back the eliminated apple (which is obviously of
the same color as the rest) and we get a (n+ 1)-element set of apples of the same
color. By virtue of mathematical induction we have proved that all apples are of the
same color.

The above putative proof is much more complex; it requires knowledge of sets
and mathematical induction, leaves some details implicit (e.g., that the set of apples
is finite due to us being able to count their number), and requires to keep track of
multiple sets, apples, and colors at the same time. Checking this putative proof
requires so much attention and effort that many people, on first read, gloss over the
fact that one inference step is incorrect.

The statement does not hold and the claim is false: Figure 1.1 shows a coun-
terexample. The incorrect inference step is in the penultimate sentence, which states
that the eliminated apple “is obviously of the same color as the rest”. Behind this
“obviously” hides the following reasoning: the eliminated apple has the same color
as the other apples in the original n-element set (from the first application of the
induction hypothesis), which have the same color as the added apple (from the second
application of the induction hypothesis). By transitivity, the colors of the eliminated
apple and of the added apple should be the same. But this does not hold if the
original n-element set contains only one apple, as the set of other apples would be
empty.

Consider the counterexample from Fig. 1.1. The inductive step could either start
with the 1-element set consisting of the red apple and then add the green apple,
or start with the 1-element set consisting of the green apple and then add the red
apple. Without loss of generality, let us pick the former. We assume a 1-element
set consisting of a red apple; from the induction hypothesis, all apples in this set
are of the same color (i.e., red). We then add the green apple. We get a 2-element
set consisting of a red and a green apple. We then remove the red apple. We get a
1-element set consisting of a green apple; from the induction hypothesis, all elements
in this set are of the same color (i.e., green). Accordingly, the green apple is of the
same color as other ones (i.e., all apples in the empty set). We now bring back the
eliminated red apple, which has the same color as the other ones (i.e., all apples in
the empty set). The “obvious” inference step does not work and we get a 2-element
set of one green and one red apple, which are not of the same color.

This claim is presented under the name “Horses Paradox” by Łukowski in his
book Paradoxes [81, Section 2.5], where he considers the color of horses instead of
apples. The above incorrect proof is adapted from Łukowski’s book.

In summary, the first exemplary claim shows that proof checking consists of
repetitive small checks—and that these checks can be very simple—while the second
exemplary claim shows that proof checking can be nontrivial—and that human are
fallible. But when keeping an appropriate level of details, the checks can be kept
simple—so simple that they can be automated.
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Figure 1.1: A finite set of two apples of different colors.
Picture by Joanna Malinowska (CC0 1.0).

A proof assistant (a.k.a. an interactive theorem prover) is a piece of software that
takes a proof as input, checks every inference step, and outputs whether the proof
is correct or not. The input proof must use a syntax understandable by the proof
assistant and the level of details must be so that the simple automated checks suffice.
This level of details is however quite different to what people are used to produce
and consume. A certain time of learning and adaptation is usually required. But in
exchange for the extra time and effort, proof assistants provide the strongest possible
confidence in the correctness of one’s proofs.

One such proof assistant is Isabelle/HOL [85]. Isabelle is a generic proof assistant
that can be specialized to support different logical formalisms and Isabelle/HOL is
the specialization for classical higher-order logic. Isabelle supports an input language,
called Isar [123], that allows to write structured proofs that are readable for both
humans and machines. Isabelle also has excellent support for proof automation:
some tools are for general proof search (e.g., the simp tactic for equational rewriting
or Sledgehammer [89] for integrating external automated theorem provers) and other
tools are for specialized theories (e.g., the order tactic [108] for orderings or the
presburger tactic [33] for Presburger arithmetic).

The process of writing claims and proofs in such a way that a proof assistant
can understand and check them is called formalizing (a.k.a. formal verification,
or interactive theorem proving). When formalizing the first exemplary claim and
its proof in Isabelle/HOL, Isabelle confirms that it was able to check all proof
steps. When formalizing the second exemplary claim and its incorrect proof, Isabelle
complains that it is unable to verify the incorrect inference step. Isabelle even finds
and reports a counterexample equivalent to the one in Fig. 1.1.

In this thesis, I describe how I used Isabelle/HOL to formalize multiple results in
the fields of automated reasoning and virtual machines.

The field of automated reasoning studies automated theorem provers, or simply
provers. They are pieces of software that take a mathematical statement as input
and search for a proof; they either terminate with a proof of the statement (i.e., the
statement is true), or they terminate with a refutation of the statement (i.e., the
statement is false), or they never terminate. Two important properties of provers
are soundness (i.e., if the prover claims that statement is true, then it is really true,
and analogously if the prover claims it is false) and completeness (i.e., the prover
will eventually terminate with either a proof or a refutation). Completeness is a very

https://creativecommons.org/publicdomain/zero/1.0/
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strong property that quickly becomes unachievable when we consider expressive logics
and rich theories. A weaker but still useful property is refutational completeness (i.e.,
if the statement is false, then the prover will eventually terminate with a refutation).

In the field of programming languages, a virtual machine is a piece of software
used to execute a program without having to compile it to machine code ahead
of time. A virtual machine does not usually operate directly on the source code
of the program but rather on some intermediate representation called a bytecode
language: an instruction set specifically designed to be efficiently executed by the
virtual machine. Two important properties of a virtual machine are its correctness
(i.e., it executes the program according to the semantics of the bytecode language)
and its run-time performance (i.e., how efficient the execution of the program is).
To improve efficiency, a virtual machine usually optimizes the given program (i.e.,
rewrites it in a semantics-preserving way to improve the performance of its execution).

Both fields have rich metatheories that define models of the systems (i.e., of a
prover or of a virtual machine), precisely state the properties, and provide proofs of
the properties. But this is usually done on paper and we rely on fallible humans to
check the proofs. Because these proofs are often very complex, there is always a risk
that an error might be hiding behind some “obvious” proof step (as was the case in
the second exemplary claim above). Formalizing these properties in a proof assistant
gives us the strongest possible confidence in the metatheory on which provers and
virtual machines are based. At a high level, my main contributions are the following.

• I formalized multiple results in the metatheories of automated theorem proving
and virtual machines in Isabelle/HOL.

• I improved upon the paper proofs by replacing some vague notions or proof
steps by precise definitions and proofs—sometimes a vague sentence can turn
into hundreds of lines of proof.

• I discovered and fixed two bugs in the material I was formalizing.

The rest of this thesis is organized in three parts:
• Part I consists of Chapters 3 to 5; it presents my formalizations of the ground

superposition and first-order SCL(FOL) calculi.
• Part II consists of Chapters 6 and 7; it presents my formalizations of a framework

for simulation proofs and its application to a bisimulation between a strategy
of SCL(FOL) and a strategy of ground ordered resolution.

• Part III consists of Chapter 8; it presents my formalization of bisimulation
proofs between optimizing interpreters for bytecode languages.

A short description of these chapters and, in each chapter, of my main contributions
follows. Because these formalization projects are the result of joint work with
colleagues, this thesis is generally written using the first-person plural pronoun
(i.e., “we”). In contrast, the first person singular (i.e., “I”) emphasizes my personal
contributions.

Chapter 2: An Overview of Isabelle/HOL The Isabelle/HOL proof assistant
and its main features are briefly introduced. The syntax of Isabelle/HOL is also
covered as well as the similarities and differences to the notation used in this thesis.
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Chapter 3: Preliminaries on First-Order Logic We briefly present the most
important notions relating to first-order logic without equality: terms, term contexts,
atoms, literals, clauses, substitutions, models, entailment, and orderings. The
concepts are well-known and this presentation aims to inform the reader of the exact
definitions used (we often had to choose between alternative definitions) and to
introduce the notation for the different concepts.

My main contributions are
• an Isabelle/HOL formalization of a reusable theory of abstract substitution [41];

it is based on the concept of monoid actions and provides many useful definitions
and lemmas,

• an Isabelle/HOL formalization of reusable theories of minimal, strictly minimal,
maximal, strictly maximal, least, and greatest elements in sets, finite sets, and
finite multisets [42]; it is based on restricted orderings and provides predicates
for the different concepts and many useful lemmas, and

• numerous contributions to the Isabelle distribution (e.g., to the theories of
finite sets, multisets, and properties of binaries relations) and to preexisting
entries of the Archive of Formal Proofs (e.g., to the sessions First_Order_
Terms [107], Ordered_Resolution_Prover [99], and Saturation_Framework_
Extensions [21]).

Chapter 4: Ground Superposition Superposition is an efficient proof calculus
for reasoning about first-order logic with equality [4, 5] that is implemented in several
automatic theorem provers [10, 34, 36, 50, 70, 101, 102]. It works by saturating
the given set of clauses and is refutationally complete, meaning that if the set
is inconsistent, the saturation will contain a contradiction. We restructured the
completeness proof to cleanly separate the ground (i.e., variable-free) and nonground
aspects, and we formalized the result in Isabelle/HOL.

This chapter is based on a conference paper coauthored with Balazs Toth, Uwe
Waldmann, Jasmin Blanchette, and Sophie Tourret [48]. My main contribution is the
Isabelle/HOL formalization of ground superposition [47] presented in Section 4.4; it
includes proofs of soundness and refutational completeness. The Isabelle/HOL formal-
ization of the lifting of ground refutational completeness to nonground refutational
completeness [47] summarized in Section 4.5 is by Balazs Toth.

Chapter 5: SCL(FOL): Simple Clause Learning for First-Order Logic
SCL(FOL) is a relatively new proof calculus for reasoning about first-order logic
without equality [26, 28, 29, 52, 72] that lifts a conflict-driven clause learning
approach [12, 82] to first-order logic. We present an Isabelle/HOL formalization
of the calculus. The main results are formal proofs of soundness, nonredundancy
of learned clauses, termination, and refutational completeness. Compared with
the existing unformalized version, the formalized calculus is simpler and more
general, some results such as nonredundancy are stronger and some results such as
nonsubsumption are new. We found one bug in a previously published version of
the SCL Backtrack rule. Compared with related formalizations, we introduce a new
technique for showing termination based on nonredundant clause learning.

This chapter is based on a conference paper coauthored with Martin Bromberger
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and Christoph Weidenbach [25]. My main contributions are
• the Isabelle/HOL formalization [40] presented in Section 5.3,
• the simplification of the calculus,
• the discovery and fix of a bug in a previously published version of the SCL Back-

track rule that made it possible to learn a duplicate clause (which contradicted
the pen-and-paper theorem of nonredundant clause learning),

• the strengthening of the soundness and nonredundancy theorems,
• the monotonically decreasing measuring function used in the termination proof,
• the new proofs of nonsubsumption of learned clauses and the existence of a

bound for any unsatisfiable clause set, and
• the generalization of the nonredundancy, nonsubsumption, and termination

results to any strategy respecting some constraint.

Chapter 6: A Framework for Simulation Proofs We present a generic
framework for formalizing compiler transformations. Our framework leverages Is-
abelle/HOL’s locales [8]—a module system for generic formalizations—to abstract
over concrete languages and transformations. The framework thus enables us to
state common definitions for language semantics, program behaviours, forward and
backward simulations, and compilers. We provide generic operations, such as compiler
composition, and prove general theorems, resulting in reusable proof components.

This chapter is based on two workshop papers coauthored with Stefan Brun-
thaler [44, 45]. My main contribution is the Isabelle/HOL formalization [38] presented
in Section 6.3.

Chapter 7: Simulation between SCL(FOL) and Ground Ordered Resolution
The SCL(FOL) proof calculus is known to be able to simulate the derivation of
nonredundant clauses by the ground ordered resolution calculus [27]. We reuse the
existing strategy for ground ordered resolution and present a new, simpler strategy for
SCL(FOL). We prove a stronger bisimulation theorem between these two strategies
(i.e., they both simulate each other). Our proof is modular: it consists of ten
refinement steps focusing on different aspects of the two strategies. To reduce the
proof burden, we provide a lemma that lifts a simulation to a bisimulation. We
formalized this proof in Isabelle/HOL.

This chapter describes unpublished work coproduced with Martin Bromberger
and Christoph Weidenbach. My main contributions are

• the lifting lemma (joint work with Martin Bromberger) presented in Section 7.4
and its Isabelle/HOL formalization [38, Theory Lifting_Simulation_To_Bisimulation],

• the Isabelle/HOL formalization [43] presented in Sections 7.5 to 7.7,
• the design of the refinement steps (joint work with Martin Bromberger),
• the design of the new SCL(FOL) strategy (joint work with Martin Bromberger),

and
• the generalization of the nonredundancy, nonsubsumption, and termination

results for SCL(FOL) to projectable strategies.
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Chapter 8: Optimizing Virtual Machines The prevalence of dynamic languages
is not commensurate with the security guarantees provided by their execution
mechanisms. Consider the ubiquitous case of JavaScript: it runs everywhere and
its complex just-in-time compilers produce code that is fast and, unfortunately,
sometimes incorrect. We present an Isabelle/HOL formalization of an alternative
execution model—optimizing interpreters [31, 32, 51, 120, 126]—and mechanically
verify its correctness. Specifically, we formalize three simple bytecode languages. One
serves as baseline and the two others implement advanced speculative optimizations
similar to those used in just-in-time compilers. We prove semantics preservation
between the baseline language and the optimized ones. As a result, our formalization
provides a path towards unifying vital performance requirements with desirable
security guarantees.

This chapter is based on a conference paper coauthored with Stefan Brunthaler [46].
My main contributions are

• the Isabelle/HOL formalization [39] presented in Sections 8.3 to 8.6, and
• the identification of the source of a bug in the original CPython prototype.
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Chapter 2

An Overview of Isabelle/HOL

Isabelle is a generic proof assistant that can support several logics. It implements a
metalogic (a.k.a. a logical framework), called Isabelle/Pure (Section 2.1), in which
different object logics such as higher-order logic (Section 2.2) can be expressed. These
object logics can then be used to formalize project-specific theories. Some of Isabelle’s
strengths are its input language (Section 2.3), which allows to write human-readable
structured proofs, its strong support for proof automation (Section 2.4), and its
module system for hierarchies of theories (Section 2.5).

In this thesis, we will usually strive to stay close to Isabelle’s notation, but deviate
from it in a number of ways to improve readability and to stay closer to mathematical
conventions (Section 2.6).

2.1 Metalogic
Isabelle’s metalogic [86], called Isabelle/Pure, is an intuitionistic fragment of higher-
order logic (a.k.a. simple type theory) based on the typed λ-calculus [35].

The types consist of variables (e.g., ′a, ′b, ′c), fully applied n-ary type constructors
usually written in postfix notation (e.g., Isabelle/HOL has the nullary type bool ,
the unary type ′a set , and the binary type (bool , ′a) prod), and total unary functions
usually written using the right-associative infix ⇒ notation (e.g., ′a ⇒ ′b for the
function with domain ′a and codomain ′b); some types have a special notation (e.g.,
Isabelle/HOL has the special infix notation bool × ′a for the type (bool , ′a) prod). All
types are inhabited. All functions are strictly speaking unary, but we usually say that
a type without arrow is a nullary function and that a type is a (n+ 1)-ary function
if its codomain is an n-ary function (e.g., ′a is nullary, ′a⇒ ′b is unary, ′a⇒ ′b⇒ ′c
is binary, ′a⇒ ′b⇒ ′c⇒ ′d is ternary).

The terms consist of variables (e.g., x , y , z could be nullary variables, f , g , h
could be nonnullary variables), constants (e.g., True, zero could be nullary constants,
min, max could be nonnullary constants), function applications usually written in a
left-associative curry style (e.g., f x y to apply the function variable f to the variables
x and y , max zero z to apply the constant function max to the constant zero and the
variable z , min x (min y z ) to apply the constant function min to the variable x and
to the result of min y z ), and function expressions (e.g., λx . x for the identity unary
function, λx y . x for the binary function that evaluates to the first argument and
discards the second, λf g x . f x (g x ) for the ternary function that evaluates to the
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first argument applied to the third and to the result of applying the second argument
to the third); some terms have a special notation (e.g., in Isabelle/HOL, x ∪ y is a
special infix notation for Set.union x y). The notation t :: τ expresses that the term
t has type τ .

Metalogical formulas are terms of type prop (i.e., the type of propositions). The
metalogical operations are implication, denoted by =⇒ :: prop ⇒ prop ⇒ prop,
universal quantification, denoted by

∧
:: (′a⇒ prop)⇒ prop, and equality, denoted

by ≡ :: ′a⇒ ′a⇒ prop; all three operations have a special notation (e.g., the formula∧
x y z . x ≡ y =⇒ y ≡ z =⇒ x ≡ z expresses the transitivity of metalogical equality).

The symbols for metaoperations were chosen to differ from the symbols of object
logics such as classical higher-order logic (described in Section 2.2).

The metalogic supports features such as rank-1 parametric polymorphism and
Haskell-style type classes.

2.2 Object Logic

The Isabelle/HOL proof assistant is the instantiation of Isabelle for classical higher-
order logic. It first axiomatizes a type bool of Booleans. Object-level formulas are
terms of type bool . Isabelle/HOL then either axiomatizes or defines its own object-
level logical constants with special notations: truth (True :: bool), falsehood (False ::
bool), negation (¬ :: bool ⇒ bool), conjunction (∧ :: bool ⇒ bool ⇒ bool), disjunction
(∨ :: bool ⇒ bool ⇒ bool), implication (−→ :: bool ⇒ bool ⇒ bool), equivalence
(←→ :: bool ⇒ bool ⇒ bool), equality (= :: ′a⇒ ′a⇒ bool), universal quantification
(∀ :: (′a ⇒ bool) ⇒ bool), existential quantification (∃ :: (′a ⇒ bool) ⇒ bool),
definite description (The :: (′a ⇒ bool) ⇒ ′a), and indefinite description (Eps ::
(′a⇒ bool)⇒ ′a). Isabelle/HOL also axiomatizes some classical properties (e.g., the
law of excluded middle). It also offers many reusable theories built on top of the
basic axioms and definitions (e.g., for sets, lists, arithmetic).

The object logic is embedded in the metalogic through the constant Trueprop ::
bool ⇒ prop, which expresses that an object-level formula is a true metalogical
formula; it is usually left implicit and not displayed. The distinction between
metalogic and object logic is very important in day-to-day formalization: they are
treated differently syntactically and some features are only available in one or the
other (e.g., the notation hyp[of t ] to instantiates the outermost metalogical universal
quantifier in the formula hyp with the term t does not work with an object-level
universal quantifier). As a rule of thumb, metalogical universal quantification and
implication are usually preferred because they are better supported by the input
language.

2.3 Input Language

Isabelle’s input language, called Isar [123], allows to write definitions and structured
proofs that are readable for both humans and machines.

Consider the exemplary claim from Chapter 1 that the sum of even integers is
even. To formalize this claim, we would first need to define what even numbers are.
The following Isabelle/HOL code defines a predicate that identifies even numbers.
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definition even :: ‹int ⇒ bool› where
‹
∧
n. even n ≡ (∃kn . n = 2 ∗ kn)›

The command definition introduces a new constant named even of type int ⇒ bool
and binds the formula

∧
n. even n ≡ (∃kn . n = 2 ∗ kn) to the name even_def. We

can now use both to claim and prove the claim on the sum of even integers.

theorem even_plus_even_is_even:
fixes a :: int and b :: int
assumes ‹even a› and ‹even b›
shows ‹even (a + b)›

proof -
obtain ka :: int where ‹a = 2 ∗ ka›

using ‹even a› even_def by blast

obtain kb :: int where ‹b = 2 ∗ kb›
using ‹even b› even_def by auto

have ‹a + b = (2 ∗ ka) + (2 ∗ kb)›
by (simp add: ‹a = 2 ∗ ka› ‹b = 2 ∗ kb›)

also have ‹· · · = 2 ∗ (ka + kb)›
by presburger

finally show ‹even (a + b)›
by (metis even_def)

qed

The command theorem expects a name, a formula, and a proof; it checks that the
formula is syntactically correct and checks that the proof is a sequence of correct
inference steps. It then binds the formula to the name.

The formula is written using human-readable syntax: the keyword fixes identifies
universally quantified variables, the keyword assumes identifies the premises, and
the keyword shows identifies the conclusion. This is syntactic sugar for the formula∧

a b. even a =⇒ even b =⇒ even (a + b)

which gets bound to the name even_plus_even_is_even.
The proof (everything between proof and qed) is also written using a human-

readable syntax. The first step provides an integer ka such that the formula a = 2∗ka
is true from the proof of its existence; the proof of existence uses one of the two
premises and the definition of even integers and is done by one unique step of a
tactic called blast—a tactic corresponds to a an automated proof procedure. The
second step is analogous. The third step states and proves an intermediate property:
that a + b is equal to (2 ∗ ka) + (2 ∗ kb). The fourth step states and proves another
intermediate property: that the . . . , a shorthand for the right-hand side of the
equality in the previous property, (i.e., (2 ∗ ka) + (2 ∗ kb)) is equal to 2 ∗ (ka + kb). In
the last step, the keyword finally joins the two previous intermediate properties by
transitivity (i.e., a + b = (2 ∗ ka) + (2 ∗ kb) = 2 ∗ (ka + kb)), after which the keyword
show states the conclusion and is followed by a final proof step.
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When formalizing, we enjoy a lot of freedom in how we define, state, and prove
things. Each possibility has advantages and disadvantages. The previous proof was
optimized for readability but is relatively long. Had we wanted to minimize the size
of the proof, we could have replace the proof, qed, and everything in between by
the following one-line proof:

by (metis assms distrib_left even_def)

The proof consists of a single call to the tactic metis parametrized with a list of
lemmas: assms is a name to which Isabelle automatically binds the premises even a
and even b, distrib_left is a lemma that states that multiplication on the left of an
addition distributes, even_def is the definition of our even predicate for even integers.
This proof is much shorter but does not convey the reasoning behind the proof to
a human reader as well as the longer proof. So in my own formalizations, I use
shorter proofs for obvious theorems and lemmas, and long proofs when the details
are interesting.

2.4 Proof Automation
Isabelle/HOL provides strong proof automation. In the example of Section 2.3, every
proof step was done with a different tactic. They are (in order of appearance in the
above proof):

• blast is a classical tableau prover.
• auto combines classical reasoning with simplification.
• simp performs simplification (i.e., conditional and unconditional rewriting).
• presburger is a decision procedure for Presburger arithmetic [33].
• metis is an ordered paramodulation prover.

The following tactics are also noteworthy:
• linarith is for linear arithmetic.
• meson implements Loveland’s model elimination procedure.
• order is a decision procedure for orderings [108].
• smt uses external SMT solvers.

It is good to have a rough idea of the available tactics and what they can and
cannot do but, in practice, we don’t necessarily have to choose and write them down
ourselves.

For day-to-day formalization, Isabelle/HOL offers two push-button-automation
solutions: the try0 command and Sledgehammer.

The try0 command tries all of the above tactics and some more with a timeout
(usually one or two seconds) in parallel, reports the successful ones to the user, and
suggests to use the fastest one. When a formula seems easy, the first thing to do is
to use try0 to see if a tactic can solve it.

Sledgehammer is probably Isabelle/HOL’s most famous tool for proof automa-
tion [89]. It integrates external first- and higher-order automated theorem provers,
including CVC4 [9], E [101, 102, 117], SPASS [34], Vampire [16, 70], veriT [24],
Z3 [83], and Zipperposition [14, 36]. When invoked, Sledgehammer goes over the pos-
sibly tens of thousands of lemmas coming from the loaded theories and heuristically
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selects those that could be useful to prove the formula. It then translates the goal
and selected lemmas to the input formats of the external provers and invokes them
in parallel. When an external prover finds and outputs a proof, Sledgehammer then
tries to automatically construct a corresponding Isar proof. We can then click on the
Isar proof to insert it in the source code file of the theory we are developing, after
which we do not depend on the external prover. The short one-line proof calling the
tactic metis in Section 2.3 was found by Sledgehammer.

But even though try0 and Sledgehammer are very useful tools, they have some
limitations. First, they provide an all-or-nothing solution: either they find a proof,
in which case we are done, or they do not find a proof, in which case we are not
closer as before to find a proof. Second, the automatically generated proofs tend to
be very compact and hard to read; it is often worthwhile to manually rewrite the
proof to convey some information to human readers as to why the theorem hold.

2.5 Module System
Locales are a module system to manage hierarchies of parametric theories [8]. They
are based on the concept of proof contexts. A formula of the form∧

x1 x2 . . . xn . P1 =⇒ P2 =⇒ . . . =⇒ Pm =⇒ C

has universally quantified variables x1 , x2 , . . . , xn , premises P1, P2, . . . , Pm, and a
conclusion C. Taken together, the sets of universally quantified variables and premises
is called the proof context. Locales enable the user to define a named proof context
and reuse it by name multiple times, thus avoiding having to repeat its components
every time. The universally quantified variables are usually called locale parameters
and the premises are usually called locale assumptions.

Consider the following formalization of monoids.

locale monoid =
fixes f :: ‹′a⇒ ′a⇒ ′a› (infix "·") and e :: ′a
assumes

‹
∧
x y z . x · (y · z ) = (x · y) · z › and

‹
∧
x . e · x = x › and

‹
∧
x . x · e = x ›

context monoid begin
primrec pow :: ‹nat ⇒ ′a⇒ ′a› where

‹
∧
x . pow 0 x = e› |

‹
∧
n x . pow (Suc n) x = x · pow n x ›

lemma pow_add:
fixes m :: nat and n :: nat and x :: ′a
shows ‹pow (m + n) x = powm x · pow n x ›

proof
· · ·

qed
end
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The locale is named monoid and consists of a sequence of parameters, introduced
by the keyword fixes, and a sequence of assumptions, introduced by the keyword
assumes. The keyword infix specifies some special infix syntax for the parameter
f . When working in a locale context, introduced by the command context, new
definitions (e.g., the primitively recursive function pow) and theorems (e.g., the
lemma pow_add) can be derived from the locale parameters, the locale assumptions,
and previously derived terms and theorems.

Isabelle automatically defines a locale predicate monoid :: (′a⇒ ′a⇒ ′a)⇒ ′a⇒
bool that identify locale interpretations (i.e., parameters for which the assumptions
hold). We can see that locale contexts really are just syntactic sugar for proof
contexts by inspecting the lemma monoid.pow_add from outside the locale context.∧

f e m n x . monoid f e =⇒

monoid.pow f e (m + n) x = f (monoid.pow f e m x ) (monoid.pow f e n x )

A locale can be interpreted with the command interpretation by providing
values for the parameters and proving that the assumptions hold.

interpretation add_nat: monoid ‹(+) :: nat ⇒ nat ⇒ nat› ‹0 :: nat›
proof

show ‹
∧
x y z . x + (y + z ) = (x + y) + z ›

by …
next

show ‹
∧
x . 0 + x = x ›

by …
next

show ‹
∧
x . x + 0 = x ›

by …
qed

During interpretation, all definitions and theorems get specialized for the provided
arguments and made available in the namespace add_nat. For example, the lemma
monoid.pow_add gets specialized to add_nat.pow_add:∧

m n x . add_nat.pow (m + n) x = f (add_nat.powm x ) (add_nat.pow n x )

A new locale can also be defined by extending existing locales with more parame-
ters and assumptions.

locale monoid_homomorphisms =
mf : monoid f ef + mg: monoid g eg
for
f :: ‹′a⇒ ′a⇒ ′a› (infix "·") and ef :: ′a and
g :: ‹′b⇒ ′b⇒ ′b› (infix "�") and eg :: ′b +

fixes map :: ‹′a⇒ ′b›
assumes

‹
∧
x y . map (x · y) = (map x ) � (map y)› and

‹map ef = eg›
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The locale monoid_homomorphisms extends two instances of the locale monoid,
fixes a projection function map between their underlying types, and states two
assumptions on the interaction of map with the two monoid structures. The extended
locale contexts are named, so that their definitions and lemmas can be distinguished
(e.g., by writing mf .power_add and mg.power_add). The keyword for introduces the
parameters of the extended locales.

2.6 Notation in the Rest of This Thesis
In the rest of this thesis, we deviate from Isabelle’s notation in a number of ways:

• We omit the single guillemets everywhere (e.g., we write P x instead of ‹P x ›).
• We use the standard object-level syntax even for metalogical operations (i.e.,

we write ∀ instead of
∧

, −→ instead of =⇒, and = instead of ≡).
• We use standard names for numeric types (e.g, we write N instead of nat).
• We prefer Boolean equivalence to Boolean equality (e.g., we write x ←→ y

instead of (x :: bool) = y).
• We use the symbols for infix notations in lieu of the actual constant names

(e.g., we write fixes≺ :: ′a ⇒ ′a ⇒ bool instead of fixes less :: ′a ⇒ ′a ⇒
bool (infix "≺")).

• We use standard numeric notation for natural numbers (i.e., we write k instead
of Suck 0 and k + n instead of Suck n).

• We use a more standard syntax for set comprehension (e.g., we write {x |
∃y . R x y} instead of {x | y . R x y}).

• We use standard set syntax for finite sets and multisets (e.g., we write x ∈ X
instead of x ∈# X ).

• We sometimes use a different name or syntax for an existing constant (e.g., we
write set instead of set_mset and |xs| instead of length xs).

• We use † for the None constructor of the option type but have no explicit
syntax for the Some constructor (e.g., we write x instead of Some x ).

• We use ε for the Nil constructor of the list type, an infix comma for both the
Cons constructor and the append function, and let lists grow from left to right
(e.g., we write xs, x instead of Cons x xs and ys, xs instead of append xs ys).

• We have no explicit syntax for the singleton list (e.g., we write x instead of
Cons x Nil).

• We generally do not write the proofs but we occasionally write proof sketches.
We refer the interested reader to the Isabelle/HOL formalizations for the proofs.
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Part I

Correctness of Logical Calculi
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Chapter 3

Preliminaries on First-Order
Logic

This chapter is based on the preliminaries of two conference papers: one coauthored
with Martin Bromberger and Christoph Weidenbach [25], and the other coauthored
with Balazs Toth, Uwe Waldmann, Jasmin Blanchette, and Sophie Tourret [48].

In the following chapters, we will mostly consider a first-order logic without
equality. We briefly cover the most important notions relating to first-order terms
(Section 3.1), formulas and clauses (Section 3.2), substitutions (Section 3.3), semantics
(Section 3.4), and orderings (Section 3.5). We refer the interested reader to the
literature (e.g., Term Rewriting and All That by Baader and Nipkow [2]) for a more
in-depth presentation.

3.1 First-Order Terms

Given a set of variable symbols V and a set of function symbols Σ, a first-order term
is defined inductively as either a variable x ∈ V or a function application f(t1 , . . . , tn)
for a function symbol f ∈ Σ and a (possibly empty) list of terms t1 , . . . , tn where n is
called an arity. A term is ground, or closed, if it does not contain variables, otherwise
it is nonground.

A term context is a term with one designated position that is to be filled by
another term—in other words, a term with a hole. We use the syntax κ[t ] to represent
the term consisting of a subterm t in a context κ. We write � for the empty context.

In Isabelle/HOL, we represent terms with the type (′f, ′v) term and term contexts
with the type (′f, ′v) ctxt , where ′f is an abstract type of function symbols (i.e., the
set Σ) and ′v is an abstract type of variable symbols (i.e., the set V). Both types are
from the session First_Order_Terms of the Archive of Formal Proofs [107].

3.2 Formulas and Clauses

An atomic formula, or simply an atom, is a predicate symbol applied to a list of
term arguments. A first-order general formula φ or ψ is defined inductively as
either ⊥ (falsum), > (verum), an atomic formula, ¬φ (negation), φ∨ψ (disjunction),
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φ ∧ ψ (conjunction), φ −→ ψ (implication), φ←→ ψ (equivalence), ∀x . φ (universal
quantification), or ∃x . φ (existential quantification).

We do not consider general first-order formulas directly but a simpler form
instead. Firstly, we notice that logical connectives can be expressed in terms of others
(e.g., φ −→ ψ can be expressed as ¬φ ∨ ψ). It thus suffices to consider a subset of
connectives only and use this subset to define the other connectives: we chose to
consider the set {¬,∨,∧}. Secondly, we notice that existential quantification can
be eliminated through a process called Skolemization (e.g., ∀x . ∃y . P(x , y) can be
Skolemized to ∀x . P(x , sky(x )) where sky is a Skolem function). It thus suffices to
consider universal quantification only. In summary, we only need to consider falsum,
verum, atomic formulas, negation, disjunction, and universal quantification in our
simpler formula form.

A literal is either a positive atom A or a negative atom ¬A. For literals, we
write L or K. The atom of a literal may be extracted with the function atom. A
literal’s polarity identifies whether it is positive or negative. The complement of a
literal, denoted by the function comp, is itself a literal on the same atom but with
opposing polarity (i.e., ∀L. atom (compL) = atomL and ∀L. (compL is positive)←→
(L is negative)).

A finite multiset is a generalization of a finite set that allows elements to occur
multiple times. We say of an element with more than one occurrence that it has
duplicates. For a given multiset, the multiplicity of an element, denoted by the
function count, is the number of occurrences of the element. An element is a member
of a multiset, denoted by ∈, if it has a nonzero multiplicity (e.g., ∀x X . x ∈ X ←→
count X x 6= 0). The sum of two multisets, denoted synonymously by + or ∪, is a
multiset that adds the multiplicities of each element (i.e., ∀X Y x . count (X +Y) x =
count X x + count Y x ). The difference of two multisets, denoted by −, is a multiset
that subtracts the multiplicities of each element (i.e., ∀X Y x . count (X − Y) x =
max 0 (count X x − count Y x )).

A first-order clausal formula, or simply a clause, is a finite multiset of literals
that we interpret as the disjunction of its elements. All variables in a clause are
to be understood as implicitly universally quantified in that clause. For clauses we
write C, D, or E. We use the syntax L ∨ C and C ∨D synonymously with sums
{L}+ C and C +D respectively. We use the syntax ⊥ (falsum) synonymously with
the empty multiset {}.

The process of converting a general formula to a set of clausal formulas is called
clausification. We interpret this set of clauses as the conjunction of its elements.

In Isabelle/HOL, we represent literals with the type ′a literal and clauses with the
type ′a clause (which is an alias for the type ′a literal multiset), where ′a is an abstract
type of atoms. Both types are from the session Ordered_Resolution_Prover of the
Archive of Formal Proofs [99], which provides a reusable theory of clausal logic.

3.3 Substitutions

A substitution is a total unary function that lets us replace variables with terms.
The identity substitution, denoted by the constant idsubst, does not alter any variable.
The composition of two substitutions, denoted by the infix operator ~, is itself a
substitution that applies the two original substitutions in order from left to right. A
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substitution σ is idempotent if σ ~ σ = σ.

Remark 3.1. The set of substitutions forms a monoid w.r.t. ~ and idsubst:
• ∀σ1 σ2 σ3 . (σ1 ~ σ2 )~ σ3 = σ1 ~ (σ2 ~ σ3 )

• ∀σ. idsubst ~ σ = σ

• ∀σ. σ ~ idsubst = σ

A substitution σ can be applied to a syntactic entity X (e.g., a term or a clause)
by writing Xσ; the result is of the same type as X. Substitution application is
left-associative (i.e., ∀X σ1 σ2 . Xσ1σ2 = (Xσ1 )σ2 ).

Remark 3.2. The monoid of substitutions w.r.t. ~ and idsubst forms right monoid
actions on terms, atoms, literals, and clauses w.r.t. substitution application. We
show here the corresponding equations for clauses (the equations for terms, atoms,
and literals are analogous):

• ∀C σ1 σ2 . C (σ1 ~ σ2 ) = Cσ1σ2

• ∀C . C idsubst = C

The domain of a substitution, denoted by the function dom, is the set of all
variables altered when applying the substitution (i.e., ∀σ. dom σ = {x | xσ 6= x}).
The restriction of a substitution to a variable set, denoted by the infix operator �,
is itself a substitution that restricts the original substitution’s domain to the given
variable set (i.e., ∀σ X . (∀x ∈ X . x (σ�X ) = xσ) ∧ (∀x /∈ X . x (σ�X ) = x )).

A substitution ρ is a renaming substitution, or simply a renaming, if it is injective
and only maps variables to variables. Each renaming ρ has an inverse renaming ρ−1,
which is itself a substitution that cancels ρ out.

Remark 3.3. The submonoid of renaming substitutions w.r.t. ~ and idsubst forms a
right-group w.r.t. the inverse renaming operation:

• ∀ρ. ρ is a renaming −→ ρ~ ρ−1 = idsubst

A substitution γ is a grounding substitution, or simply a grounding for a syntactic
entity X if Xγ is ground.

A substitution υ is a unifier for a term set T if its application makes all elements
of the set equal (i.e., if ∀t1 ∈ T . ∀t2 ∈ T . t1υ = t2υ). A substitution µ is a
most general unifier (MGU) for a term set T if µ is a unifier for T and if any
other unifier is equal to µ composed with some appropriate substitution (i.e., if
∀υ. (υ is a unifier for T ) −→ ∃σ. µ ~ σ = υ). A substitution µ is an idempotent,
most general unifier (IMGU) for a term set T if µ is a unifier for T and if µ is a
left identity for any other unifier (i.e., if ∀υ. (υ is a unifier for T ) −→ µ ~ υ = υ).
Equivalently, µ is an IMGU for term set T if, and only if, µ is both idempotent and
a MGU for T .

When formalizing logical calculi, IMGUs are preferable because they allow
to apply a unifier to a term both directly and after applying an IMGU (i.e.,
∀T µ υ. (µ is an IMGU
for T ) −→ (υ is a unifier for T ) −→ (∀t ∈ T . tµυ = t(µ ~ υ) = tυ)). Nonidempo-
tent MGU do not have this property as the following counter-example shows.
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Example 3.4. Let f be a function symbol. Let w , x , y, and z be variable symbols.
Let a, b, and c be ground terms. Consider the (nonground) terms t1 = f(x , y , z )
and t2 = f(w , y , z ), the grounding substitution γ = {x 7→ a, y 7→ b, z 7→ c,w 7→ a}
that unifies t1 and t2, and the nonidempotent MGU µ = {x 7→ w , y 7→ z , z 7→ y}
for t1 and t2. Observe that t1γ = t2γ = f(a, b, c) 6= f(a, c, b) = t2µγ = t1µγ.

In published literature, authors often claim to be using an MGU when they
actually need an IMGU; the idempotency requirement is kept implicit because
standard algorithms for computing MGUs actually produce IMGUs.

The result of applying a substitution σ to a syntactic entity X (i.e., Xσ) is called
an instance of X. The instances of a syntactic entity X are the results of applying
all possible substitutions to X (i.e., {X ′ | ∃σ. Xσ = X ′}). The ground instances of a
syntactic entity X are the results of applying all possible grounding substitutions
to X. For clauses, this is denoted by the function gndcls (i.e., ∀C . gndcls C = {Cγ |
Cγ is ground}). We lift gndcls to clause sets, denoted by gndclss, by taking the union
of the ground instances of all the clauses in the set (i.e., ∀N . gndclss N = (

⋃
C ∈

N . gndcls C )). Note that gndcls and gndclss have no effect if the clauses are already
ground (i.e., ∀C . (C is ground) −→ gndcls C = {C} and ∀N . (N is ground) −→
gndclssN = N ) and that gndclss is idempotent (i.e., ∀N . gndclss (gndclssN ) = gndclssN ).

In Isabelle/HOL, we developed a reusable theory of abstract substitution; it is
available in the session Abstract_Substitution of the Archive of Formal Proofs [41].
The theory is based on the concept of monoid actions where both the object type
(e.g., terms, atoms, literals, or clauses) and the substitution type (e.g., a function
from variables to terms or a list of variable-term pairs) are kept abstract so future
formalizations can use the concrete types that best fit their need. Many of the above
definitions as well as useful lemmas are expressed entirely in terms of monoid actions
and automatically provided.

3.4 Semantics
We use a Herbrand interpretation to define the semantics of a formula. An Herbrand
interpretation is a set of ground atoms that are considered true. The truth value of
a ground literal w.r.t. an interpretation, denoted by the infix relation |=lit, depends
on the literals polarity: a positive literal is considered true if its atom is in the
interpretation and a negative atom is considered true if its atom is not in the
interpretation (i.e., ∀I L. I |=lit L ←→ (L is positive ←→ atom L ∈ I)). A ground
clause is considered true w.r.t. an interpretation, denoted by |=cls, if at least one of
its literals is true (i.e., ∀I C . I |=cls C ←→ (∃L ∈ C . I |=lit L)). A ground clause set
is considered true w.r.t. an interpretation, denoted by |=clss, if all its clauses are true
(i.e., ∀I N . I |=clss N ←→ (∀C ∈ N . I |=cls C )).

An interpretation I is called a model of a clause C or clause set N if I |=clss

(gndcls C) or I |=clss (gndclss N) respectively. A clause or a clause set is satisfiable if
it has a model; otherwise, it is unsatisfiable. A clause set logically implies, or entails,
another clause set, denoted by |=, if any model of the former is also a model of the
later (i.e., ∀N1 N2 . N1 |= N2 ←→ (∀I. I |=clss (gndclss N1 ) −→ I |=clss (gndclss N2 ))).

In Isabelle/HOL, most of these definitions are from the session Ordered_Resolution_
Prover of the Archive of Formal Proofs [99], which provides a reusable theory of
Herbrand interpretations.
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3.5 Orderings
A binary relation≺ is a (strict) partial ordering, or simply an ordering, if it is transitive
(i.e., ∀x y z . x ≺ y −→ y ≺ z −→ x ≺ z ) and asymmetric (i.e., ∀x y . x ≺ y −→ y 6≺ x ).
Note that a partial ordering is also irreflexive (i.e., ∀x . x 6≺ x ) because any transitive
relation is irreflexive if and only if it is asymmetric. An ordering ≺ is a (strict) total
ordering, a.k.a. a linear ordering, if it is total (i.e., ∀x y . x ≺ y ∨ x = y ∨ y ≺ x ). An
ordering ≺ is a (strict) well-founded ordering, if it is well-founded (i.e., there is no
infinite descending chain). Sometimes, a binary relation has a property only on a
subset of the universe of its elements. A binary relation ≺ is a (strict) ordering on a
set (or multiset) X if the corresponding properties (e.g., transitivity and asymmetry)
hold for all elements of X .

Example 3.5. The Knuth–Bendix ordering [69] is well-founded on all terms and
total on ground terms.

An ordering ≺atm on atoms can be lifted to an ordering ≺lit on literals by first
comparing the atoms w.r.t. ≺atm and, if the atoms are the same, specifying one
polarity as less than the other. We chose to consider positive literals to be less than
negative literals (e.g., ∀A. A ≺lit ¬A). An ordering ≺lit on literals can be lifted to
an ordering ≺cls on clauses by taking a multiset extension of ≺lit. There are several
equivalent alternatives for this extension (e.g., the Dershowitz–Manna extension [37]
or the Huet–Oppen extension [66]).

Example 3.6. Let ≺ be an ordering. The Huet–Oppen multiset extension ≺HO lifts
the ordering ≺ to an ordering on multisets.

∀X Y. X ≺HO Y ←→
X 6= Y ∧ (∀x . count Y x < count X x −→ (∃y . x≺y ∧ count X y < count Y y))

An element x is minimal in a finite multiset X w.r.t. a strict partial order-
ing ≺ on X if x is in X and no element of X is less than x (i.e., if x ∈ X ∧ (∀y ∈
X . y 6≺ x)). Analogously, an element x is maximal in a finite multiset X w.r.t. a
strict partial ordering ≺ on X if x is in X and no element of X is greater than x
(i.e., if x ∈ X ∧ (∀y ∈ X . x 6≺ y)).

An element x is strictly minimal in a finite multiset X w.r.t. a strict partial
ordering ≺ on X if x is in X and no other element of X is less than or equal to x (i.e.,
if x ∈ X ∧ (∀y ∈ X − {x}. y 6� x)). Analogously, an element x is strictly maximal in
a finite multiset X w.r.t. a strict partial ordering ≺ on X if x is in X and no other
element of X is greater than or equal to x (i.e., if x ∈ X ∧ (∀y ∈ X − {x}. x 6� y)).

An element x is the least in a finite multiset X w.r.t. a strict total ordering ≺
on X if x is in X and it is less than all other elements of X (i.e., if x ∈ X ∧ (∀y ∈
X −{x}. x ≺ y)). Analogously, an element x the greatest in a finite multiset X w.r.t.
a strict total ordering ≺ on X if x is in X and it is greater than all other elements of
X (i.e., if x ∈ X ∧ (∀y ∈ X . y ≺ x)).

In these six definitions, the relation ≺ only has to fulfill the ordering requirements
on the elements of X and is free to be defined in any other way for elements not in
X . We sometimes omit to specify the ordering when it is clear from the context.

The two notions of maximal and strictly maximal elements coincide except for
their handling of duplicates: A maximal element can have duplicates, whereas a
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strictly maximal element cannot. If the ordering is not total, a multiset can have
multiple maximal or strictly maximal elements. The same observations apply to the
notions of minimal and strictly minimal elements.

Example 3.7. Consider the multiset X = { , , , } containing an apple, an
orange, and two pears. Consider a partial fruit ordering ≺ where apples, oranges,
and pears are all mutually incomparable. The multiset X has three elements maximal
w.r.t. ≺:

• is maximal in X w.r.t. ≺ because ∈ X ∧ (∀y ∈ X . 6≺ y) holds.
• is maximal in X w.r.t. ≺ because ∈ X ∧ (∀y ∈ X . 6≺ y) holds.
• is maximal in X w.r.t. ≺ because ∈ X ∧ (∀y ∈ X . 6≺ y) holds.

However, the multiset X has only two elements strictly maximal w.r.t. ≺:
• is strictly maximal in X w.r.t. ≺ because ∈ X ∧ (∀y ∈ { , , }. 6� y)

holds.
• is strictly maximal in X w.r.t. ≺ because ∈ X ∧ (∀y ∈ { , , }. 6� y)

holds.
Note that is not strictly maximal in X w.r.t. ≺ because ∈ X∧(∀y ∈ { , , }. 6�
y) does not hold (because 6� does not hold).

The notion of greatest element is based on a total ordering and provides a strong
unicity guarantee (i.e., ∀R X x x ′. (x is the greatest element in X w.r.t. R) −→
(x ′ is the
greatest element in X w.r.t. R) −→ x = x ′). This is the reason why we refer to
“the” greatest element while we refer to “a” (strictly) maximal element. The same
observation applies to the notion of least element.

The notions of (strictly) minimal, (strictly) maximal, least, and greatest element
generalize to sets and finite sets. Because sets have no duplicates, the distinction
between strictly and nonstrictly minimal or maximal vanishes.

In Isabelle/HOL, we developed a reusable theory of minimal, maximal, least and
greatest elements in sets, finite sets, and finite multisets; it is available in the session
Min_Max_Least_Greatest of the Archive of Formal Proofs [42]. The theory keeps
the ordering assumptions to a minimum so that it can be used, e.g, with nontotal
orderings such as the Knuth–Bendix ordering. This new theory was necessary because
the Isabelle/HOL distribution, to the best of our knowledge, only contains a theory
of least and greatest elements w.r.t. a total ordering, which we cannot use when we
have only a partial ordering.
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Chapter 4

Ground Superposition

This chapter is based on a conference paper coauthored with Balazs Toth, Uwe
Waldmann, Jasmin Blanchette, and Sophie Tourret [48]. Section 4.4 describes my
formalization work. Section 4.5 summarizes Balazs Toth’s formalization work. To
avoid any potential conflict between this thesis and Balazs’ future thesis, I replaced
the content of Section 4.5 with a short summary of the main results. The interested
reader can refer to the paper for more details.

4.1 Introduction

Superposition is a highly successful proof calculus for reasoning about first-order
logic with equality designed by Bachmair and Ganzinger [4, 5]. It is implemented in
many automatic theorem provers, including Drodi, E [101, 102], iProver [50], SPASS
[34], Vampire [70], and Zipperposition [36]. In addition, higher-order variants of
the calculus are implemented in Duper, E [117], Leo-III [105], Vampire [16], and
Zipperposition [14], and an arithmetic-capable variant is implemented in Beagle [10].

Superposition provers work by refutation and saturation. They operate on a
clause set, which initially consists of the clausified input problem in which the
conjecture appears negated. Inferences are performed using clauses from this set as
premises; the conclusions of inferences are added to the set. The prover stops when
the empty clause ⊥, denoting falsehood, is derived or when no more inferences are
possible.

Consider the problem of proving f(b) ≈ f(a) from b ≈ a, where ≈ denotes equality.
After negating the conjecture, we obtain the clause set {b ≈ a, f(b) 6≈ f(a)}. The
superposition calculus includes an inference rule called superposition that uses the
first clause to rewrite the second clause to f(a) 6≈ f(a). This new clause is added to
the clause set. At this point, a unary inference rule called equality resolution uses
f(a) 6≈ f(a) to derive ⊥.

During the saturation, the prover can delete clauses considered redundant, and it
does not need to perform inferences considered redundant. For example, if the clause
set contains b ≈ a, then the clauses f(b) ≈ f(a) and b ≈ a ∨ b 6≈ c are redundant.
Deletion of redundant clauses helps reduce the clause explosion caused by saturation.

The inference rules of the superposition calculus are sound, meaning that the
conclusion of each rule is entailed by the premises. This is easy to prove. What is
much harder to show is that the calculus is refutationally complete: If a clause set is
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unsatisfiable and saturated (up to redundancy), then it contains ⊥. We care about
completeness because a complete calculus is likely to yield a higher success rate in
practice than an incomplete one. Moreover, the completeness proof serves as a guide
during the development of the calculus: Only inferences that are needed in the proof
must be performed.

When developing proof calculi for first-order logic and beyond, it often helps to
first develop a calculus that works on ground (i.e., variable-free) clauses. We can
then lift it systematically to the nonground level. This approach cleanly separates
concerns. It is common in the literature [13, 14, 15, 16, 17, 94] and is supported
by the saturation framework developed by Bachmair [3, Section 4] and extended by
Waldmann et al. [119], a collection of pen-and-paper results useful to establish the
refutational completeness of saturation calculi and provers.

For superposition, Bachmair and Ganzinger’s completeness proof [5] does not
separate the ground and nonground aspects. Waldmann et al. give some hints on
how to instantiate the framework to obtain a modular proof that separates these
aspects—see their Examples 3, 4, 28, 34, 46, and 54. Our main contributions are
twofold. First, we elaborated these hints into a 15-page proof text [118] (summarized
here in Section 4.3). Second, following this detailed blueprint, we formalized in
Isabelle/HOL [85] the refutational completeness of ground superposition (Section 4.4)
and lifted it to derive the refutational completeness of the nonground calculus
(Section 4.5). We also proved soundness.

The separation of concerns, apart from allowing different people to work indepen-
dently on different parts of the formalization, simplifies the completeness proof. On
the ground level, there is no need to rename variables apart or to perform unification.
On the nonground level, an inference overapproximates a set of ground inferences.
Intuitively, this means that every inference on ground clauses can be simulated by
inferences on corresponding nonground clauses. For superposition inferences, this
roughly means that if Dγ1 and Eγ2 are premises of a nonredundant ground inference
yielding C, where γ1, γ2 are substitutions, then there exists an inference with D and
E as premises and whose conclusion is a generalization of C.

A difficulty arises on the nonground level because the calculus is optimized to avoid
superposition into variables. For example, given the clause set {b ≈ a, f(x) 6≈ c},
a superposition inference unifying b with x would yield the conclusion f(a) 6≈ c,
but the calculus excludes this inference. Intuitively, since f(a) 6≈ c is an instance of
f(x) 6≈ c, we would expect the inference to be unnecessary, but this must be justified
in general.

The Isabelle formalization relies on the first-order terms and related notions from
the IsaFoR library [110]. It also uses the Isabelle version of the saturation framework
[113]. The formalization validates the pen-and-paper proof: We found only one
easy-to-repair mistake and one unnecessary assumption. The formalization can serve
as a reference for refutational completeness of superposition, an important result in
automated reasoning. It could also serve as the basis of a verified executable prover.

Ours is not the first formalization of superposition in a proof assistant, or even
in Isabelle/HOL. Our predecessor is Peltier, who formalized a generalization of
superposition and published his result in the Archive of Formal Proofs (AFP) [90].
However, his proof is monolithic, mixing ground and nonground aspects. By using
the saturation framework, we get a clearer proof structure and immediately obtain
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the completeness of an abstract prover based on superposition [119, Lemma 10] as
well as the completeness of various saturation procedures [119, Section 4].

Our Isabelle formalization is available in the Archive of Formal Proofs [47]. The
underlying pen-and-paper proof is available online [118]. Our work is part of the
IsaFoL (Isabelle Formalization of Logic) effort [18].

4.2 Background

We briefly introduce prerequisites, the superposition calculus, and the saturation
framework.

Prerequisites. We consider an untyped first-order logic with equality. Terms
and term contexts are defined in Section 3.1. An atom is an unordered pair of terms,
typically written as an equation t ≈ t′. Literals and clauses are defined in Section 3.2.
We write t 6≈ t′ as an abbreviation for the negative literal ¬(t ≈ t′). Substitutions are
defined in Section 3.3. The semantics of clauses is defined in Section 3.4. Orderings
are defined in Section 3.5. In the following, (strictly) maximal elements in a clause
are w.r.t. the literal ordering ≺lit unless we explicitly state otherwise.

We let s, t, and u range over terms, K and L range over literals, and C, D, and
E range over clauses.

The Superposition Calculus. Bachmair and Ganzinger’s superposition calcu-
lus [4, 5] belongs to a class of proof calculi for automatic provers known as saturation
calculi. A saturation prover takes a set of formulas, usually clauses, as input and
processes it by performing two operations: First, it derives new formulas from the
old ones and adds them to the set. Second, it deletes superfluous formulas from the
set. This process is repeated until the prover either finds ⊥ or reaches a state in
which it is not required to add further formulas.

Abstractly, the calculus can be defined by two components: a set of inferences
Cn · · · C1

C0

indicating that the formula C0 (the conclusion) must be added to the set whenever the
formulas Cn, . . . , C1 (the premises) are already present, and a redundancy criterion
that describes which inferences are unnecessary and which formulas may be deleted
from the set.

For the superposition calculus, the inferences are given by three schematic
inference rules. The first one is

D︷ ︸︸ ︷
t ≈ t′ ∨D′

E︷ ︸︸ ︷
κ[u] 1 u′ ∨ E′

superposition
(κ[t′ρ] 1 u′ ∨ E′ ∨D′ρ)µ︸ ︷︷ ︸

C

where the clauses D and E are the premises, C is the conclusion, ./ is either ≈ or
6≈, u is a nonvariable subterm occurring in a context κ in clause E, ρ is an arbitrary
but fixed renaming that is chosen so that Dρ and E are variable-disjoint, and µ is
an IMGU of tρ and u.
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The other two rules are
D︷ ︸︸ ︷

t 6≈ t′ ∨D′
equality resolution

D′µ︸︷︷︸
C

where µ is an IMGU of t and t′, and
D︷ ︸︸ ︷

u ≈ u′ ∨ t ≈ t′ ∨D′
equality factoring

(u′ 6≈ t′ ∨ u ≈ t′ ∨D′)µ︸ ︷︷ ︸
C

where µ is an IMGU of t and u.
To reduce the number of inferences that need to be computed during the saturation,

the inference rules above are equipped with ordering restrictions. Let ≺t be an
ordering on terms that is stable under grounding substitutions, and whose ground
restriction is well-founded, total, and compatible with contexts, and has the subterm
property. The term ordering ≺t is extended to a literal ordering and a clause ordering
in the following way: To every positive literal t ≈ t′, we assign the multiset {t, t′}, to
every negative literal t 6≈ t′, we assign the multiset {t, t, t′, t′}. The literal ordering
≺lit compares these multisets using the multiset extension of ≺t. The clause ordering
≺cls compares clauses by comparing their multisets of literals using the multiset
extension of ≺lit.

We impose the following ordering restrictions on the inferences above: (1) If L
is the first literal in a premise D or E, it must be maximal in that premise w.r.t. ≺lit

(after applying the substitution); (2) if additionally L is a positive equation in a
superposition inference, it must be strictly maximal; (3) except in equality resolution
inferences, the right-hand side of the equation or negated equation L may not be
larger than or equal to the left-hand side w.r.t. ≺t; and (4) in superposition inferences,
Dρµ may not be larger than or equal to Cµ w.r.t. ≺cls.

The impact of ordering restrictions is limited by the requirement that the ordering
has to be stable under grounding substitutions, that is, that t ≺t t

′ implies tγ ≺t t
′γ

for every grounding substitution γ. Stability under grounding substitutions entails
that terms such as f(x) and f(y) are necessarily incomparable. (If we had f(x) ≺t

f(y), we could conclude f(b) ≺t f(b), contradicting irreflexivity.) Consequently, in
the worst case, all literals in a clause can be maximal. For clauses with negative
literals, this effect can be remedied using a selection function that overrides the
ordering restrictions. This is a function that maps every clause to a submultiset of its
negative literals (usually a singleton set or the empty set). The ordering conditions
above are then modified so that if at least one literal in a clause is selected, then
the maximality conditions for literals are applied to the selected submultiset instead
of the original clause. This means that only inferences that involve literals that are
maximal among the selected literals need to be performed.

The local restrictions that are imposed on individual inferences are supplemented
by a global redundancy criterion for clauses and inferences. Bachmair and Ganzinger’s
standard redundancy criterion is defined as follows:1 A ground clause C is redundant

1Bachmair and Ganzinger changed their notation after their first publication on the superposition
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w.r.t. a set N of ground clauses if it is entailed by clauses in N that are smaller than
C w.r.t. ≺cls. A nonground clause C is redundant w.r.t. a set N of nonground clauses
if every ground instance of C is redundant w.r.t. the set of all ground instances of
clauses in N . A ground inference (i.e., an inference with ground premises and ground
conclusion) is redundant w.r.t. a set N of ground clauses if its conclusion is entailed
by clauses in N that are smaller than the maximal premise. A nonground inference
is redundant w.r.t. a set N of nonground clauses if every ground instance of the
inference is redundant w.r.t. the set of all ground instances of clauses in N .

Redundant clauses may be deleted from the clause set during a saturation;
redundant inferences need not be computed. In particular, inferences whose conclusion
is already contained in the clause set are always redundant.

The Saturation Framework. In their article in the Handbook of Automated
Reasoning [3], Bachmair gave a general account of components and properties of
saturation calculi such as inferences, redundancy criteria, fairness, refutational
completeness, and the connections between these. The framework by Waldmann
et al. [119] extended this to include a general treatment of lifting, subsumption, and
prover architectures. We summarize the main results needed for the present report.

Let F be a set of formulas, and |= be a consequence relation on F . An F -inference
is an inference with premises and conclusion in F . An F -inference system Inf is a
set of F -inferences. If N ⊆ F , we write Inf (N) for the set of all inferences in Inf
with premises in N .

Let Red I be a function from sets of formulas to sets of inferences; let Red F be a
function from sets of formulas to sets of formulas. The pair Red = 〈Red I;Red F〉 is a
redundancy criterion for Inf if it satisfies the following conditions:

1. if N |= {⊥}, then N − Red F(N) |= {⊥};
2. if N ⊆ N ′, then Red F(N) ⊆ Red F(N

′) and Red I(N) ⊆ Red I(N
′);

3. ifN ′ ⊆ Red F(N), then Red F(N) ⊆ Red F(N−N ′) and Red I(N) ⊆ Red I(N−N ′);
and

4. if the conclusion of an inference in Inf is in N , then the inference is in Red I(N).

Inferences in Red I(N) and formulas in Red F(N) are called redundant w.r.t. N .
A saturation prover for a calculus 〈Inf ;Red 〉 gets a set of formulas N0 ⊆ F

as input and generates a sequence N0, N1, . . . of sets of formulas by adding newly
computed formulas and by deleting unnecessary formulas. We require that in every
step the deleted formulas are redundant w.r.t. the remaining ones, that is, Ni+1−Ni ⊆
Red (Ni+1) for every i. We call the sequence N0, N1, . . . a derivation. The set N∞ =⋃

i

⋂
j≥iNj of persistent formulas is called the limit of the derivation. The derivation

is fair if every inference from persistent formulas eventually becomes redundant,
that is, if Inf (N∞) ⊆

⋃
iRed I(Ni). (Recall that an inference becomes redundant in

particular if its conclusion is added to the set of formulas.) The calculus 〈Inf ;Red 〉
is dynamically refutationally complete if for every set N0 with N0 |= {⊥} and every
fair derivation N0, N1, . . . , the formula ⊥ is eventually derived, that is, ⊥ ∈

⋃
iNi.

Proving the dynamic refutational completeness of the calculus 〈Inf ;Red 〉 directly
is usually difficult. Fortunately, dynamic refutational completeness can be shown

calculus. What is known as redundancy nowadays was called compositeness in their papers [4, 5].
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to be equivalent to another property, namely static refutational completeness: A
set N ⊆ F is saturated w.r.t. Inf and Red if Inf (N) ⊆ Red I(N). The calculus 〈Inf ;
Red 〉 is statically refutationally complete if for every saturated set N we have that
N |= ⊥ implies ⊥ ∈ N .

To prove the static (and thus dynamic) refutational completeness of a calculus, it
is usually convenient to start with a ground version of the calculus. The completeness
result for the nonground calculus can then be obtained from the completeness result
for the ground calculus by lifting, using a suitable grounding function that maps
nonground formulas to sets of ground formulas and nonground inferences to sets of
ground inferences. The framework also shows how to deal with redundancy criteria
that are defined as intersections of other redundancy criteria (a technique that
we will need to handle selection functions in the lifting process), how to integrate
subsumption into the redundancy criterion (so that, e.g., x ≈ a makes its instance
b ≈ a redundant), and how to obtain completeness results for implementations of
the calculus in various prover architectures.

The framework has been formalized in Isabelle/HOL and extended by Tourret
and Blanchette [21, 111, 113]. The present work builds on this formalization.

4.3 Proof Outline
Static refutational completeness can be stated as follows:

Theorem 4.1. For every set N that is saturated w.r.t. the superposition calculus, if
N entails ⊥, then ⊥ ∈ N .

Equivalently: For every saturated set N such that ⊥ /∈ N , there exists a model
of N . Bachmair and Ganzinger’s original proof [5, Section 4] uses a monolithic
approach. Our proof is more modular and proceeds in two clearly separated steps:

1. Given a ground clause set M saturated w.r.t. ground inferences, we construct
a model of M .

2. We show that if a clause set N is saturated w.r.t. nonground inferences, then
its grounding NG = {Cγ | C ∈ N ∧ Cγ is ground} is saturated w.r.t. ground
inferences. Hence, by step 1, there exists a model of NG, which is also a model
of N .

In step 1, we construct a confluent and terminating term rewriting system R∞
and use it to define an interpretation that equates all terms that share the same
normal form w.r.t. R∞, and no others. For example, if R∞ = {b → a}, then the
associated interpretation makes f(b) ≈ f(a) true and c ≈ a false. The system R∞
is built incrementally. We start with {} and traverse the clauses in M from the
smallest clause following the ordering ≺cls. For each clause C ∈M , if C is true in
the current interpretation, there is nothing to do. Otherwise, we extend the term
rewriting system with a rewrite rule that attempts to make C true without affecting
the truth of earlier, smaller clauses. While this process might fail in general, it will
always produce a model of M if M is saturated.

In step 2, we must show that saturation on the nonground level implies saturation
on the ground level. Via a result from the saturation framework, this amounts to
showing that there exist nonground inferences corresponding to all nonredundant
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ground inferences of the calculus. A subtlety is that the calculus avoids superposi-
tion inferences into variables. Thus there might exist ground inferences that are
not reflected on the nonground level. However, we can show that all such ground
inferences are redundant. Another concern is the selection function S. In general, we
cannot assume that S is stable under substitutions (i.e., ∀C σ. (SC )σ = S(Cσ)), but
without this assumption it is hard to relate the ground and nonground levels. The
solution is provided by the saturation framework, which allows us to simultaneously
lift all ground selection functions to the nonground level.

4.4 The Ground Proof
On the ground level, we reuse theories [80] from the IsaFoR project for ground terms,
of type ′f gterm, and ground term contexts, of type ′f gctxt ; the type variable ′f
represents function symbols. Isabelle types use a postfix, space-separated notation
(e.g., sets of Boolean have type bool set). Ground atoms have type ′f gatom, which is
a synonym for ′f gterm uprod , i.e., unordered pair of ground terms. Ground literals
have type ′f gatom literal . Ground clauses have type ′f gclause, which is a synonym
for ′f gatom literal multiset . Isabelle multisets are always finite.

We start the formalization by introducing a locale, or module, that fixes an
ordering on ground terms and specifies some assumptions on this ordering:

locale ground_ordering =
fixes (≺t) ::

′f gterm ⇒ ′f gterm ⇒ bool
assumes
transp (≺t) and asymp (≺t) and totalp (≺t) and wfp (≺t) and
∀κ :: ′f gctxt . ∀t1 t2 . t1 ≺t t2 −→ κ[t1 ] ≺t κ[t2 ] and
∀κ :: ′f gctxt . ∀t . κ 6= � −→ t ≺t κ[t ]

In Isabelle, a locale [8] consists of parameters (here, ≺t) that may depend on
type variables (here, ′f) paired with assumptions. Locales are a useful structuring
mechanism. They allow us to declare parameters and assumptions once and reuse
them in multiple related definitions and lemmas. When we later instantiate a
locale, we must supply concrete arguments for the types and parameters and then
discharge the proof obligations corresponding to the assumptions. This methodology
emphasizes the modular nature of the proof development. Section 2.5 has a more
complete introduction to locales.

The locale ground_ordering assumes that the binary relation ≺t is a well-founded
total ordering, is compatible with ground term contexts, and has the subterm
property.

Inside the locale context, we lift the term ordering and its properties to liter-
als (≺lit) and clauses (≺cls). We also configure the little-known order Isabelle proof
method [108], a decision procedure for the quantifier-free theory of partial and total
orderings, so that it can solve problems for our orderings.

Next, we define the notion of selection function:

locale select =
fixes sel :: ′a clause ⇒ ′a clause
assumes
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∀C . sel C ⊆ C and
∀C . ∀L ∈ sel C . is_neg L

The locale select fixes a function sel for clauses with any atom type ′a. In this section,
we instantiate ′a with ′f gatom; Section 4.5 will instantiate it with its own atom type.
Our assumptions on a selection function are that it always returns a submultiset of
the argument C and only returns negative literals.

We can now assemble the parameters and assumption for the ground calculus:

locale ground_superposition_calculus = ground_ordering (≺t) + select selG
for
(≺t) ::

′f gterm ⇒ ′f gterm ⇒ bool and
selG :: ′f gatom clause ⇒ ′f gatom clause +

assumes ∀R :: (′f gterm × ′f gterm) set . ground_critical_pair_theorem R

The locale ground_superposition_calculus extends both ground_ordering and select,
inheriting all their assumptions as well as the definitions and theorems from their
locale contexts. The parameters ≺t and selG are provided with type annotations
to control the instantiation of the type parameters (′f in ground_ordering and ′a in
select). We also assume that the critical pair theorem [2, Theorem 6.2.4] holds for
ground terms. As a sanity check, we proved this theorem in Isabelle by adapting a
similar, but license-incompatible, result from the IsaFoR project [110]. The IsaFoR
formalization is published under the GNU Lesser General Public License (LGPL),
which requires any derived work to be published under a compatible license. However,
we whish to submit our formalization to the AFP under the BSD license found at
https://www.isa-afp.org/LICENSE, which is not compatible. Assuming the theorem
in the locale allows us to use the theorem in this formalization without providing
the proof in the same AFP entry. We are in discussion with members of the IsaFoR
project to find a place to publish our proof (the derived work) under the LGPL.
Once the theorem is available in a license-compatible way, we will be able to alter
our formalization to use the proved theorem directly and drop the assumption.

We can now specify the ground version of the inference rules presented in Sec-
tion 4.2, using inductive predicates. Compared with their nonground counterparts,
the ground rules benefit from two simplifications. First, neither renamings nor unifiers
are needed because ground terms contain no variables. Second, terms and clauses
can be compared directly using ≺t and ≺cls instead of using a reversed negated form
since the orderings are total.

The ground superposition rule is as follows. The rule notation below defines
an inductive predicate ground_superpositionD E C with the rule’s premises D,E as
assumptions and the rule’s conclusion C as conclusion:

D︷ ︸︸ ︷
t ≈ t′ ∨D′

E︷ ︸︸ ︷
κ[t] 1 u ∨ E′

ground_superpositionD E C
κ[t′] 1 u ∨D′ ∨ E′︸ ︷︷ ︸

C

Side conditions:
1. 1 ∈ {≈, 6≈}

https://www.isa-afp.org/LICENSE
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2. D ≺cls E

3. t′ ≺t t

4. u ≺t κ[t]

5. if 1 =≈, then selG E = {} and κ[t] 1 u is strictly maximal in E

6. if 1 = 6≈, then selG E = {} and κ[t]1 u is maximal in E or κ[t]1 u is maximal
in selG E

7. selG D = {}
8. t ≈ t′ is strictly maximal in D

The ground equality resolution rule is as follows:

D︷ ︸︸ ︷
t 6≈ t ∨D′

ground_eq_resolutionD C
D′︸︷︷︸
C

Side conditions:
1. selG D = {} and t 6≈ t is maximal in D or t 6≈ t is maximal in selG D

The ground equality factoring rule is as follows:

D︷ ︸︸ ︷
t ≈ t′ ∨ t ≈ t′′ ∨D′

ground_eq_factoringD C
t′ 6≈ t′′ ∨ t ≈ t′′ ∨D′︸ ︷︷ ︸

C

Side conditions:
1. selG D = {}
2. t ≈ t′ is maximal in D

3. t′ ≺t t

Following the structure required by the saturation framework, we define an inference
system InfG and a consequence relation entailsG. For formulas, we use the type of
ground clauses ′f gclause, and for contradictions, we use the empty clause ⊥.

Definition 4.2. The constant InfG :: ′f gclause inference set represents all inferences
of the ground superposition calculus:

InfG = {〈[D ,E ];C 〉 | ground_superpositionD E C} ∪
{〈[D ];C 〉 | ground_eq_resolutionD C} ∪
{〈[D ];C 〉 | ground_eq_factoring D C}

The consequence relation from Section 3.4 considers an interpretation to be a
set of true atoms. Our ground atoms being unordered pairs of ground terms, our
interpretations should be sets of unordered pairs. However, because Isabelle makes
it easier to manipulate sets of ordered pairs, we use these as our interpretation and
define a small wrapper with the help of the function uprod :: ′a× ′a ⇒ ′a uprod to
bridge the gap.
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Definition 4.3. The predicates (||=cls) :: (
′f gterm × ′f gterm) set ⇒ ′f gclause ⇒ bool

and (||=clss) :: (′f gterm × ′f gterm) set ⇒ ′f gclause set ⇒ bool express that an
interpretation models a clause and a clause set, respectively:

∀I C . I ||=cls C ←→ {uprod r | r ∈ I} |=cls C

∀I N . I ||=clss N ←→ {uprod r | r ∈ I} |=clss N

We cannot use arbitrary sets of pairs as interpretations because the pairs should
represent term equality. This means that a valid interpretation must behave like
an equality relation. Specifically, we require a valid interpretation to be congruence
relations on term contexts. This means that they must fulfill two requirements. First,
a valid interpretation has to be an equivalence relation, i.e., reflexive, symmetric, and
transitive. Second, a valid interpretation has to be compatible with ground context
application. We encode these requirements in the entailsG predicate below.

Definition 4.4. The predicate compatible_with_gctxt :: (′f gterm × ′f gterm) set ⇒
bool expresses that all term pairs considered equals are compatible with ground context
application:

∀I. compatible_with_gctxt I ←→
(∀κ :: ′f gctxt . ∀t t ′. 〈t ; t ′〉 ∈ I −→ 〈κ[t ];κ[t ′]〉 ∈ I)

Definition 4.5. The predicate entailsG :: ′f gclause set ⇒ ′f gclause set ⇒ bool
expresses that a clause set entails another clause set, i.e., every valid interpretation
of former is also a valid interpretation of the later:

∀N1 N2 . entailsG N1 N2 ←→
(∀I :: (′f gterm × ′f gterm) set .

refl I −→ sym I −→ trans I −→ compatible_with_gctxt I −→
I ||=clss N1 −→ I ||=clss N2 )

Equipped with InfG and entailsG, we can start to use the saturation framework.
As a sanity check, we first instantiate the sound_inference_system locale to make sure
that the ground superposition calculus is sound and that our definitions correspond
to what the framework expects:

sublocale ground_superposition_calculus ⊆ sound_inference_system where
Inf = InfG and Bot = {⊥} and entails = entailsG

The sublocale notation means that definitions and theorems from ground_superposition_
calculus are sufficient to prove the assumptions of sound_inference_system w.r.t. the
given parameter instantiations. At this point, Isabelle requires us to actually prove
the assumptions. The soundness proof of the inference system amounts to proving
the soundness of each rule, i.e., that the conclusion of each rule is entailed by its
premises.

As the redundancy criterion, we reuse the standard redundancy criterion defined
in the Isabelle saturation framework [21]:
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sublocale ground_superposition_calculus ⊆
calculus_with_finitary_standard_redundancy where

Inf = InfG and Bot = {⊥} and entails = entailsG and less = (≺cls)
defines RedIG = RedI and RedFG = RedF

The locale calculus_with_finitary_standard_redundancy defines two functions that
we want to reuse: RedI :: ′fgclause set ⇒ ′fgclause inference set , identifying redundant
inferences, and RedF :: ′f gclause set ⇒ ′f gclause set , identifying redundant formulas.
We rename them to RedIG and RedFG, respectively.

To prove refutational completeness, we will exhibit a valid interpretation for a
given saturated clause set. We build this interpretation by defining a confluent and
terminating set of rewrite rules R∞, which we lift to an interpretation JR∞K↓ that
defines term equality. Each rewrite rule is a pair 〈t; t′〉, written t→ t′.

Definition 4.6. The function J·K :: (′fgterm× ′fgterm)set ⇒ (′fgterm× ′fgterm)set
expands a rewrite rule set to all term contexts:

∀R. JRK = {κ[t ]→ κ[t ′] | t → t ′ ∈ R}

Definition 4.7. The function ·↓ :: (′fgterm× ′fgterm) set ⇒ (′fgterm× ′fgterm) set
produces the set of all term pairs considered equal w.r.t. a set of rewrite rules:

∀R. R↓ = {t → t ′ | ∃t ′′. t → t ′′ ∈ R∗ ∧ t ′ → t ′′ ∈ R∗}

Two terms are considered equal if they are joinable, i.e., if they have a common
reduct.

Now that we can lift a set of rewrite rules to a model, we define two mutually
recursive functions that construct such a set for a given clause set.

Definition 4.8. Let N≺clsD = {C ∈ N | C ≺cls D} for any clause set N and
clause D. The mutually recursive functions epsilon :: ′f gclause set ⇒ ′f gclause ⇒
(′f gterm × ′f gterm) set and rewrite_sys :: ′f gclause set ⇒ (′f gterm × ′f gterm) set
generate a term rewriting system for a given clause set:

∀N C . epsilonN C = {t → t ′ | ∃C ′. C ∈ N ∧ selG C = {} ∧
C = (t ≈ t ′ ∨ C ′) ∧
t ≈ t ′ is strictly maximal in C ∧ t ′ ≺t t ∧
Jrewrite_sysN≺clsC K↓ 6||=cls C ∧
Jrewrite_sysN≺clsC ∪ {t → t ′}K↓ 6||=cls C

′ ∧
t is in normal form w.r.t. Jrewrite_sysN≺clsC K↓}

∀N . rewrite_sysN =
⋃

C∈N
epsilonN C

In Isabelle, we first defined epsilon as a recursive function where all occurrences of
rewrite_sys are replaced by their definition, i.e., recursive but not mutually recursive.
We then defined rewrite_sys as a nonrecursive function. Finally, we proved the first
equality shown in Definition 4.8 and used it in the rest of the formalization.

We reuse the definitions of joinability (·↓) and of normal form (i.e., irreducibility)
from an existing formalization of abstract rewriting systems [106].
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The model construction iterates over the clause set, starting from the smallest
clause following the ordering ≺cls, and collects a set of rewrite rules. At any point, we
can use J·K↓ to obtain the candidate model. At each iteration, epsilon returns a set
of rewrite rules that are added to the term rewriting system: Either the considered
clause is already true w.r.t. the candidate model, in which case epsilon returns the
empty set, or epsilon returns a single new rewrite rule that should make the clause
true. We call a clause productive if epsilon produces a new rewrite rule. Note that the
produced rule is unique (i.e., ∀N C . |epsilonN C | ≤ 1) because the strictly maximal
literal in a clause w.r.t. the total ordering ≺lit (on line two of epsilon’s definition) is
unique. This is the reason why we refer to “the” produced atom.

Example 4.9. Let f be a function symbol. Let a, b, c, d, and e be ground terms.
Assume ≺t is the lexicographic path ordering with the precedence a ≺ b ≺ c ≺ d ≺ e ≺
f. Consider the clause set N = {d ≈ c, b ≈ a∨e 6≈ c, b 6≈ b∨f(b) ≈ a, f(c) ≈ b, f(b) ≈
a ∨ f(c) 6≈ b, f(b) ≈ a ∨ f(d) 6≈ b} saturated w.r.t. the ground superposition calculus.
The underlined literals are maximal in their respective clause. The following table
shows the result of each iteration of the model construction:

Iteration Clause C rewrite_sysN≺clsC epsilonN C

1 d ≈ c {} {d→ c}
2 b ≈ a ∨ e 6≈ c {d→ c} {}
3 b 6≈ b ∨ f(b) ≈ a {d→ c} {f(b)→ a}
4 f(c) ≈ b {d→ c, f(b)→ a} {f(c)→ b}
5 f(b) ≈ a ∨ f(c) 6≈ b {d→ c, f(b)→ a, f(c)→ b} {}
6 f(b) ≈ a ∨ f(d) 6≈ b {d→ c, f(b)→ a, f(c)→ b} {}

At each iteration i+ 1, the term rewriting system consists of the union of the term
rewriting system of iteration i and the “epsilon” of iteration i. As expected, the
interpretation after iteration 6 is a model of N .

The conditions on rewrite rule production were chosen so that the resulting term
rewriting system is confluent. Specifically, we prove strong normalization and the
weak Church–Rosser property, which together imply the Church–Rosser property,
which is equivalent to confluence. We refer the interested reader to Term Rewriting
and All That, by Baader and Nipkow [2], for more details on the Church–Rosser
property.

Lemma 4.10. Let N be a ground clause set. The term rewriting system Jrewrite_sysN K
is strongly normalizing.

Lemma 4.11. Let N be a ground clause set. The term rewriting system Jrewrite_sysN K
has the weak Church–Rosser property.

This enables us to prove that the resulting model is a valid interpretation.

Lemma 4.12. Let N be a ground clause set. The term rewriting system Jrewrite_sysN K↓

can be interpreted as a equivalence relation (i.e., it is reflexive, symmetric, transitive)
that is compatible with ground contexts.

Now that we can build a valid interpretation for a clause set, it remains to show
that it satisfies all clauses from this set. We first need a pair of lemmas that express
monotonicity properties of the construction:
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Lemma 4.13. Let N be a ground clause set and C be a ground clause. Let t and t ′

be ground terms. If epsilonN C = {t → t ′}, then
1. Jrewrite_sysN K↓ ||=cls C ;
2. ∀D ∈ N . C ≺cls D −→ Jrewrite_sysN≺clsDK↓ ||=cls C ;
3. Jrewrite_sysN K↓ 6||=cls C − {t ≈ t ′}; and
4. ∀D ∈ N . C ≺cls D −→ Jrewrite_sysN≺clsDK↓ 6||=cls C − {t ≈ t ′}.

Lemma 4.14. Let N be a ground clause set and C ∈ N be a ground clause. If
Jrewrite_sysN≺clsC K↓ ||=cls C , then

1. Jrewrite_sysN K↓ ||=cls C and
2. ∀D ∈ N . C ≺cls D −→ Jrewrite_sysN≺clsDK↓ ||=cls C .

We can now prove that our model construction works for all clauses.

Lemma 4.15. Let N be a saturated ground clause set and C ∈ N be a ground
clause. If ⊥ /∈ N , then

1. epsilonN C = {} ←→ Jrewrite_sysN≺clsC K↓ ||=cls C and
2. ∀D ∈ N . C ≺cls D −→ Jrewrite_sysN≺clsDK↓ ||=cls C .

Proof Sketch. By well-founded induction w.r.t. ≺cls.

Lemma 4.16 (Ground Model Construction). Let N be a saturated ground clause
set and C ∈ N be a ground clause. If ⊥ /∈ N , then Jrewrite_sysN K↓ ||=cls C .

Proof Sketch. This follows from Lemmas 4.14 and 4.15 if epsilonN C = {} and from
Lemma 4.13 otherwise.

Theorem 4.17 (Ground Refutational Completeness). Let N be a saturated ground
clause set. If entailsG N {⊥}, then ⊥ ∈ N .

Proof Sketch. By contraposition, we assume ⊥ /∈ N and show ¬ entailsG N {⊥}. We
must show the existence of an interpretation I such that (1) I is reflexive, symmetric,
transitive, and compatible with ground contexts; (2) I ||= N ; and (3) I 6||=cls ⊥. We
choose I = Jrewrite_sysN K↓. Step 1 follows from Lemma 4.12. Step 2 follows from
Lemma 4.16. Step 3 follows from the definition of |=cls.

Finally, we can provide our main result for the ground calculus by instantiating
the locale statically_complete_calculus from the saturation framework:

sublocale ground_superposition_calculus ⊆ statically_complete_calculus where
Inf = InfG and Bot = {⊥} and entails = entailsG and less = (≺cls) and
RedI = RedIG and RedF = RedFG

We use Theorem 4.17 to discharge the proof obligation.
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4.5 The Nonground Proof
On the nonground level, we define a locale first_order_superposition_calculus for the
nonground calculus parametrized by an ordering on nonground terms, a selection
function for nonground clauses, and a family of tiebreakers used to implement
subsumption. In this locale, we define the three inference rules for superposition,
equality resolution, and equality factoring. These rules are significantly more complex
than their ground counterparts, as they require renamings and unifiers to handle
variables. They also need to cope with the fact that the nonground term ordering is
partial.

We specify under which conditions a ground selection function (a selection function
on ground clauses) is compatible with our selection function on nonground clauses.
We then use the lifting_intersection locale of the saturation framework to lift a family
of ground calculi indexed by compatible ground selection functions to the nonground
level. This provides us with a lifted entailment relation and a lifted redundancy
criterion.

We then prove that nonground inferences from a clause set overapproximate the
ground inferences from the ground instances of said clause set.

Using this, we instantiate the statically_complete_calculus and discharge the
proof obligations. We have verified the static refutational completeness of first-order
superposition and the saturation frameworks provides us with a proof of dynamic
refutational completeness.

To ensure that there are no inconsistencies in our locale assumptions, we instan-
tiate the locales with the Knuth–Bendix ordering, a trivial selection function, and a
trivial tiebreakers family.

4.6 Related Work
The saturation framework [119] has been used in the completeness proof of several
new variants of superposition:

• Boolean λ-superposition [14] for higher-order logic, as well as its predecessors
Boolean-free λ-superposition [15] and Boolean-free λ-free superposition [13]
that operate on fragments of higher-order logic.

• superposition with delayed unification [17] for first-order logic, which adds con-
straints to the conclusions of inferences instead of performing full unifications.

An extended abstract by Tourret [112] discusses how these use the framework. The
work described in the present chapter could serve as a foundation to formalize these
proofs.

The Isabelle/HOL formalization of the saturation framework was introduced
together with an instance of the resolution calculus and an abstract resolution prover
called RP by Tourret and Blanchette [113]. Other theorem proving techniques
formalized in Isabelle/HOL include an executable SAT solver by Blanchette et al. [19]
based on CDCL (conflict-driven clause learning) for propositional logic with state-of-
the-art optimizations, a sequent calculus by From, Blackburn, and Villadsen [54], a
tableau calculus by From, Schlichtkrull, and Villadsen [55], and another version of
resolution and RP by Schlichtkrull et al. [97] following Bachmair and Ganzinger’s
original, more ad hoc proof that was extended to an executable prover [98]. Most
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recently, the newly created SCL calculus [52], which follows a CDCL-like approach to
theorem proving in first-order logic, was also verified in Isabelle/HOL by Bromberger,
Desharnais, and Weidenbach [25] as it was being developed; this formalization work
is presented in Chapter 5. Also relevant here is Paulson’s formalization of Gödel’s
incompleteness theorems [87, 88].

Isabelle/HOL is possibly the most widely used system for formalizing automated
reasoning results, but other proof assistants are used as well. Early results include
Shankar’s proof of Gödel’s first incompleteness theorem in Nqthm [103], Persson’s
completeness proof for intuitionistic predicate logic in ALF [91], and Harrison’s
formalization of basic first-order model theory in HOL Light [62]. We refer to
Blanchette [18, Section 5] for a survey.

Finally, the work closest to ours, already mentioned in the introduction, is the
formalization of a variant of the superposition calculus in Isabelle/HOL by Peltier
[90]. Our initial intent was to integrate his calculus with the saturation framework,
but after months of fruitless attempts, we decided to start from scratch, which
resulted in the present work.

A first obstacle we encountered was related to Peltier’s redundancy criterion.
He relies on a notion that is sufficient to prove static refutational completeness
but cannot be lifted to dynamic completeness because his redundancy is defined in
terms of smaller or equal clauses rather than strictly smaller clauses. This makes it
unsuitable for use in the saturation framework, but we managed to replace it with a
suitable criterion without changing the calculus, allowing us to pursue our work in
this direction for a while.

What made us switch approach was an incompatibility requiring a major mod-
ification of Peltier’s formalization itself. Peltier works with closures, i.e., pairs 〈C;σ〉
consisting of a set of literals C and a substitution σ. This calculus is defined directly
on the nonground level, where static completeness is proved. For integration into the
saturation framework, we wanted a ground version of the calculus, which we obtained
by restricting the substitutions to groundings only and operating on clauses as sets
of ground literals Cσ. However, this made it impossible to overapproximate this
calculus with Peltier’s calculus on the nonground level, which is needed for the lifting
to be possible in the framework. The issue is that we do not want to match a literal
K in a ground clause to two literals L1, L2 in a nonground closure 〈L1 ∨ L2 ∨ C;
σ〉 such that L1σ = L2σ = K, because this breaks the lifting. Fixing this would
require working directly on closures also at the ground level, but for completeness,
such a calculus would need to allow superposition inferences also in the range of the
substitution. A new proof of ground refutational completeness would have had to
be provided for this new calculus. It seemed more convenient to formalize a calculus
operating on multisets of literals instead of closures, especially given that the Isabelle
multiset library was already well developed for use in theorem proving formalization.

Our formalization consists of approximately 12 000 nonblank lines2, 7000 of which
are for nonbackground theories. For comparison, Peltier’s formalization consists of
approximately 9000 nonblank lines, 7000 of which are for nonbackground theories. All
numbers are rounded to the nearest thousand. Interestingly, the two formalizations
have approximately the same size even though they are written in very different
styles. To our surprise, the additional modularity of our work did not lead to a

2Counted using grep -Ev '^[[:blank:]]*$'.
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shorter proof.

4.7 Conclusion
We restructured the refutational completeness proof of superposition using the
saturation framework. We first proved refutational completeness for the ground
calculus and lifted the proof to the full, nonground calculus. Next, we formalized this
pen-and-paper proof in Isabelle/HOL. The formalization can be seen as a case study
for the IsaFoR library and the saturation framework, as well as for basic Isabelle
tools such as locales, which facilitate modularity and proof reuse.

We see three main directions for future work. First, the proof could be extended
to support simply typed or rank-1-polymorphic first-order terms. Second, the
completeness proofs of variants of superposition, such as hierarchic superposition [6,
11], combinatory superposition [16], and λ-superposition [14], could be formalized
as well. Third, the formalization of superposition (or that of variants) could be
extended to obtain a verified executable prover.
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Chapter 5

SCL(FOL): Simple Clause
Learning for First-Order Logic

This chapter is based on a conference paper coauthored with Martin Bromberger
and Christoph Weidenbach [25]. Section 5.3 describes my formalization work.

5.1 Introduction

The SCL (“Clause Learning from Simple Models” or simply “Simple Clause Learning”)
family of calculi lifts a conflict-driven clause learning (CDCL) approach [12, 82] to first-
order logic: SCL(FOL) is for first-order logic without equality [29, 52], SCL(T) is for
first-order logic with theories [26], SCL(EQ) is for first-order logic with equality [72],
and HSCL is for exhaustive partial models exploration in first-order logic without
equality [28]. In its original formulation by Fiori and Weidenbach [52], SCL(FOL)
required exhaustive propagation and a precise strategy for the application of the rules
in order to learn nonredundant clauses. This was improved upon by Bromberger,
Fiori, and Weidenbach [26] in SCL(T), which dropped exhaustive propagation and
weakened the strategy (i.e., any run according to the strategy in [52] is also a run
according to the strategy in [26]). The version of SCL(FOL) presented later by
Bromberger, Schwarz, and Weidenbach [29] integrates those changes and additionally
refines the Backtrack rule.

We present an Isabelle/HOL formalization of the (nonexecutable) specification
of the SCL(FOL) calculus based on an early version of Bromberger et al.’s paper
and developed in parallel to the final version. The main results are soundness,
nonredundancy of learned clauses, termination, and refutational completeness. In
contrast to the goal of Bromberger et al. to guide toward an implementation, our
goal is to be as simple and general as possible. For that, we (i) simplified the calculus
(e.g., no more explicitly tracking of decision levels), (ii) generalized the calculus
(e.g., multiple acceptable positions in the Backtrack rule), (iii) strengthened existing
theorems (e.g., Theorem 5.11 on nonredundancy), and (iv) proved new theorems
(e.g., Corollary 5.12 on nonsubsumption).

This work is part of the IsaFoL (Isabelle Formalization of Logic) effort [18], which
aims at developing a library of results about logical calculi. The Isabelle theory files
are available in the Archive of Formal Proofs (AFP) [40] and amount to approximately
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10 000 nonblank lines of source text1. They build heavily upon several other entries
of the AFP: (i) First_Order_Terms [107] for first-order terms, term substitutions,
and MGU; (ii) Ordered_Resolution_Prover [97, 99, 100] for the clausal calculus,
clause substitutions, Herbrand interpretation, and compactness of first-order logic;
and (iii) Saturation_Framework_Extensions [21, 119] for entailment of the clausal
calculus. We contributed many lemmas and definitions back to both the Isabelle
distribution and the aforementioned AFP entries (e.g., over 50 to First_Order_
Terms). We made heavy use of the Isar language [123] to write structured proofs, the
Sledgehammer tool [89] for proof automation, and locales [8]—Isabelle’s parameterized
module system—to structure our development and reuse existing components from
the AFP entries.

The formalization follows the basic ideas of existing formalizations of the first-
order resolution calculus [97] and propositional CDCL calculi [19, 20]. Compared
with propositional logic, first-order logic adds a number of challenges: the extra term
level requires to consider variables, substitutions, groundings, and the concept of
factorization. To preserve completeness, propagation of ground literals must not be
exhaustive anymore, resulting in a level-wise exploration w.r.t. a bounding atom.
Inside this bound, the calculus always terminates. If one level does not suffice to
find a refutation, the bound can be increased and exploration can be continued. For
unsatisfiable formulas, we prove the existence of a bound sufficient to derive ⊥, which
guarantees that only finitely many levels need to be explored.

The chapter is organized as follows. Section 5.2 recaps the SCL(FOL) calculus
from Bromberger et al. as the basis of our formalization presented in Section 5.3.
We first present the Isabelle formalization of the abstract rules of the SCL(FOL)
calculus. Then we prove invariants preserved by the rules starting from the initial
state, Lemma 5.1. Subsequently, we prove soundness, Theorem 5.7, nonredundancy
of learned clauses, Theorem 5.11, termination with respect to a fixed bound, Theo-
rem 5.20, and finally refutational completeness with respect to an appropriate bound,
Theorem 5.22. We discuss important aspects of the formalization and proof ideas
here and refer the reader to the formalization for more details. We end with a short
conclusion of the obtained results.

5.2 The SCL(FOL) Calculus

We briefly repeat basic notions regarding the SCL(FOL) calculus presented by
Bromberger et al. We consider an untyped, first-order logic without equality. Terms,
clauses, and entailment are defined in Chapter 3.

The strict ordering ≺B is total on ground literals and is such that each literal
has finitely many lesser literals (i.e., ∀β. finite {L | L ≺B β}). An example of such
an ordering could be the Knuth–Bendix ordering [69] without zero-weight symbols.
Note that the lexicographic path ordering [2, Section 5.4.2] does not satisfy the last
condition of a ≺B ordering although it is well-founded and total on ground terms.

An annotated literal is the pairing of a literal with an annotation. We call it a
decision literal when the annotation is a natural number n indicating the literal’s
level (i.e., that it is the nth decision) and a propagation literal when the annotation

1Counted using grep -Ev '^[[:blank:]]*$'.
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is a closure of the clause the literal originated from. The literal of an annotated
literal K is denoted litK and the annotation is denoted annK. The level of a clause
is the maximum level of its literals. A trail is a finite sequence of annotated ground
literals; it grows from left to right. The empty trail is written ε and appending a
new annotated literal K to a trail Γ is written Γ,K. The concatenation of two trails
Γ1 and Γ2 is written Γ2,Γ1. A trail Γ can be converted to a set of annotated literals
with set Γ.

A literal L is true under trail Γ if L ∈ {lit K | K ∈ set Γ}. A literal L is false
under trail Γ if comp L ∈ {litK | K ∈ set Γ}. A literal L is defined in a trail Γ if L is
true or false under Γ; otherwise, it is undefined. A clause C is true under trail Γ if at
least one of its literals is true (i.e., if ∃L ∈ C. L is true under Γ). A clause C is false
under trail Γ if all its literal are false (i.e., if ∀L ∈ C. L is false under Γ). A clause C
is defined in a trail Γ if all its literals are defined (i.e., if ∀L ∈ C. L is defined in Γ);
otherwise, it is undefined.

The SCL(FOL) calculus is defined as a transition system operating on states 〈Γ;
N ;U ;β; k; C〉 where Γ is a trail, N is a finite set of initial clauses, U is a finite set of
learned clauses, β is a bounding atom restricting the considered ground literals, k is
a natural number counting the number of decision literals in Γ, and C is either † or a
clause closure 〈C; γ〉 such that Cγ is ground and false in Γ. The initial state is 〈ε;N ;
{};β; 0; †〉 for some initial clause set N and bound β.

The transition relation ⇒SCL is a mapping between states. The rules below
are from Bromberger et al.2 and serve as a reference for the Isabelle formalization
described in Section 5.3.

Propagate 〈Γ;N ;U ;β; k; †〉 ⇒SCL 〈Γ, Lγ〈(C0∨L)µ;γ〉;N ;U ;β; k; †〉
Side conditions:

1. (C ∨ L) ∈ N ∪ U
2. (C ∨ L)γ is ground
3. (C ∨ L)γ ≺B {β}
4. C = C0 ∨ C1

5. C1γ = Lγ ∨ · · · ∨ Lγ
6. C0γ does not contain Lγ

7. C0γ is false under Γ

8. Lγ is undefined in Γ

9. µ is the IMGU of the literals in C1 and L

Decide 〈Γ;N ;U ;β; k; †〉 ⇒SCL 〈Γ, Lγk+1;N ;U ;β; k + 1; †〉
Side conditions:

1. (C ∨ L) ∈ N ∪ U
2. Lγ is a ground literal
3. Lγ is undefined in Γ

4. Lγ ≺B β

Conflict 〈Γ;N ;U ;β; k; †〉 ⇒SCL 〈Γ;N ;U ;β; k; 〈C; γ〉〉
2The syntax and naming were slightly changed for uniformity with the rest of this thesis.
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Side conditions:
1. C ∈ N ∪ U
2. Cγ is ground
3. Cγ is false under Γ

These rules construct a (partial) model via the trail Γ for N ∪ U until a conflict
(i.e., a clause false under Γ) is found. The above rules always terminate, because
there are only finitely many ground literals L with L ≺B β. It might be necessary to
successively increase β for full refutational completeness.

Skip 〈Γ,K;N ;U ;β; k; 〈C; γ〉〉 ⇒SCL 〈Γ;N ;U ;β; k − i; 〈C; γ〉〉
Side conditions:

1. comp (litK) does not occur in Cγ

2. if K is a decision literal, then i = 1; otherwise, i = 0

Factorize 〈Γ;N ;U ;β; k; 〈C ∨ L ∨ L′; γ〉〉 ⇒SCL 〈Γ;N ;U ;β; k; 〈(C ∨ L)µ; γ〉〉
Side conditions:

1. Lγ = L′γ

2. µ is the IMGU of the literals L and L′

Note that this rule may be used multiple times if the conflicting clause contains
more than two duplicates of a given literal or if multiple distinct literals have
duplicates.

Resolve 〈Γ,KγD〈D∨K;γD〉;N ;U ;β; k; 〈C ∨ L; γC〉〉 ⇒SCL
〈Γ,KγD〈D∨K;γD〉;N ;U ;β; k; 〈(C ∨D)µ; γC ~ γD〉〉

Side conditions:
1. KγD = comp (LγC)

2. µ is the IMGU of the literals K and comp L

The clauses D ∨K and C ∨ L are assumed to have disjoint variables.

Backtrack 〈Γ0,K,Γ1, (comp (Lγ))k;N ;U ;β; k; 〈C ∨ L; γ〉〉 ⇒SCL
〈Γ0;N ;U ∪ {C ∨ L};β; j; †〉

Side conditions:
1. Cγ is of level i′ < k

2. Γ0,K is the minimal trail subsequence such that there is a grounding substitu-
tion γ′ with (C ∨ L)γ′ false under Γ0,K but not under Γ0

3. Γ0 is of level j

The clause C ∨ L added by the rule Backtrack to U is called a learned clause.
The empty clause ⊥ can only be generated by the rule Resolve or be already present
in N . Hence, as usual for CDCL-style calculi, the generation of ⊥, together with the
clauses in N ∪ U , represents a resolution refutation.

A sequence of SCL rule applications is called a reasonable run if the rule Decide
does not enable an immediate application of rule Conflict. A sequence of SCL rule
applications is called a regular run if it is a reasonable run and the rule Conflict has
precedence over all other rules.
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5.3 Formalization of the SCL(FOL) Calculus

The formalization introduces some new concepts absent from Section 5.2. A multiset
C can be converted to a set, i.e., without duplicates, with set C. The cardinality of
a multiset—the sum of the multiplicities of its elements—is denoted by |C|. The
multiset whose only element is x with multiplicity n is denoted by repeat n x; note
that ∀n x . count (repeat n x ) x = n and ∀n x . n > 0 −→ set (repeat n x ) = {x}. The
adaptation of a substitution σ to a renaming ρ is a function whose domain is the
renamed domain of σ and whose codomain is the same as σ; it is defined as the
function (λx . if x ∈ {yρ | y ∈ domσ}then(xρ−1)σelsex ). A substitution γ is a merged
grounding of a grounding γA for a variable set A and a grounding γB for variable
set B if (A∩B = {} −→ (∀x ∈ A. xγA is ground) −→ (∀x ∈ B. xγB is ground) −→
(∀x ∈ A. xγ = xγA)∧(∀x ∈ B. xγ = xγB)); an example of a function that fulfills this
specification is λx . if x ∈ A thenxγA elsexγB. The length of a trail Γ is denoted by |Γ|.
The nth right-most element of a trail Γ is denoted by Γ[n]; we use zero-based indexing
where the right-most element is the 0th element. The Herbrand interpretation of
a trail, denoted HI, contains the atoms of all positive literals in the trail (i.e.,
HI ε = {} and ∀Γ A. HI (Γ ,A) = {A} ∪ HI Γ and ∀Γ A. HI (Γ ,¬A) = HI Γ ).

The formalization also changes some existing concepts. No distinction is made
between atoms and terms, so first-order terms are used everywhere in place of atoms.
The level annotation of a decision literal is not required anymore and replaced by
a † marker, it is now written K† = 〈K; †〉 for some literal K. A propagation literal
is written (KγD)

〈K;D;γD〉 = 〈KγD; 〈D;K; γD〉〉 for some literal K, clause D, and
grounding γD. Note that the propagated literal is explicitly separated from its clause
in the closure annotation; this eases the formulation of the additional invariants 5
and 6 of Lemma 5.1., that the respective clause is always false under the respective
trail. For the trail Γ,K, the Isabelle formalization uses the constructor List.ConsK Γ
which actually grows from right to left. However, we keep the well-established
left-to-right convention in this chapter because it significantly eases the presentation.
A state is now a tuple 〈Γ;U ; C〉 where Γ is a trail, U is a finite set of learned clauses,
and C is an optional clause closure. The individual components can be selected with
trail 〈Γ;U ; C〉 = Γ, learned 〈Γ;U ; C〉 = U , and conflict 〈Γ;U ; C〉 = C. The initial state
is 〈ε; {}; †〉, i.e., empty trail, no learned clauses, and no conflicting closure. The finite
set of initial clauses N and the bounding atom β are no longer stored in the state
but are rather parameters of the transition relation; this was done to highlight the
fact that they are never modified by any rule. The natural number k counting the
number of decisions, used in Section 5.2 to determine an appropriate backtracking
point, turned out not to be necessary and was dropped entirely. We assume the
existence of a binary relation on atoms ≺B such that every atom has finitely many
lesser atoms (i.e., ∀β. {t | t ≺B β} is finite) but dropped the requirement for ≺B

to be a strict ordering total on ground terms. We also do not lift ≺B to literals
and clauses, but always use it at the atom level. We define the relation �B as the
reflexive closure of ≺B.

Remember from Chapter 3 that the function gndclss denotes the set of all ground
instances of a clause set. Its subset whose clauses are restricted to atoms less
than or equal to a bound β w.r.t. the strict ordering ≺B is defined such that
∀N . gnd�Bβ

clss N = {C ∈ gndclss N | ∀L ∈ C . atom L �B β}.
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The transition relation ⇒N, β
SCL is a binary predicate between states and is parame-

terized by the finite set N of initial clauses and the bounding atom β. It is defined
as the disjunction of the following rules. Following each rule, we highlight the main
differences from Section 5.2 not already covered.
Propagate 〈Γ ;U ; †〉 ⇒N , β

Propagate 〈Γ , (Lµγ)〈Lµ;C0µ;γ〉;U ; †〉
Side conditions:

1. (L ∨ C ) ∈ N ∪U

2. γ is a grounding for L ∨ C

3. ∀K ∈ (L ∨ C ). atom (Kγ) �B β

4. C0 = {K ∈ C | Kγ 6= Lγ}
5. C1 = {K ∈ C | Kγ = Lγ}
6. C0γ is false under Γ

7. Lγ is undefined in Γ

8. µ is an IMGU for {atomK | K ∈ (L ∨ C1 )}
Compared with Section 5.2, we express the splitting of C into C0 and C1 formally

as set operations and replace ≺B with �B. This replacement does not change the
main characteristics of the calculus but allowing the bound β to be in gnd�Bβ

clss N
eases the proof of Lemma 5.23, where the largest element of the (finite) unsatisfiable
core is directly used as new bound. There are also situations where the maximal
element of a signature is required to derive a contradiction: a strict bound requires
to artificially extend the signature while a nonstrict bound does not.
Decide 〈Γ ;U ; †〉 ⇒N , β

Decide 〈Γ , (Lγ)†;U ; †〉
Side conditions:

1. (L ∨ C ) ∈ N
2. γ is a grounding for L

3. Lγ is undefined in Γ

4. atom Lγ �B β

Compared with Section 5.2, we replace ≺B with �B and take the decision literal
from N instead of N ∪U . We proved that the ground instances of literals of U are a
subset of the ground instances of literals of N ; it is thus redundant to also consider
U here.
Conflict 〈Γ ;U ; †〉 ⇒N , β

Conflict 〈Γ ;U ; 〈C ; γ〉〉
Side conditions:

1. C ∈ N ∪U

2. γ is a grounding for C

3. Cγ is false under Γ

Skip 〈Γ ,K;U ; 〈C ; γ〉〉 ⇒N , β
Skip 〈Γ ;U ; 〈C ; γ〉〉

Side conditions:
1. comp (litK) /∈ Cγ

Factorize 〈Γ ;U ; 〈L′ ∨ L ∨ C ; γ〉〉 ⇒N , β
Factorize 〈Γ ;U ; 〈(L ∨ C )µ; γ〉〉

Side conditions:
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1. Lγ = L′γ

2. µ is the IMGU for {atom L, atom L′}

Resolve 〈Γ ;U ; 〈L ∨ C ; γC 〉〉 ⇒N , β
Resolve 〈Γ ;U ; 〈(CρC ∨DρD)µ; γ〉〉

Side conditions:
1. Γ = Γ ′, (KγD)

〈K ;D ;γD 〉

2. KγD = comp (LγC )

3. ρC and ρD are renamings such that the variables of (L∨C )ρC and (K ∨D)ρD
are disjoint

4. µ is the IMGU for {atom LρC , atomKρD}
5. γ′C and γ′D are adaptations of γC and γD to the renamings ρC and ρD respect-

ively
6. γ is a merged grounding of γ′C for the variables of (L ∨ C )ρC and γ′D for the

variables of (K ∨D)ρD

Note that the definition of IMGU and merged grounding imply the following
equalities: µ ~ γ = γ, LρCγ = LγC , CρCγ = CγC , KρDγ = KγD , and DρDγ =
DγD .

Compared with Section 5.2, we explicitly rename the merged clauses to avoid
variable-name clashes instead of assuming disjoint variables, and use an abstract spec-
ification for the merged grounding instead of forcing substitution composition. The
latter makes our rule more general by allowing more freedom to an implementation.

Backtrack 〈Γ ,Γ ′,K †;U ; 〈L ∨ C ; γ〉〉 ⇒N , β
Backtrack 〈Γ ; {L ∨ C} ∪U ; †〉

Side conditions:
1. K = comp (Lγ)

2. @γ′. (L ∨ C )γ′ is ground and false under Γ

Note that backtracking to an empty trail, i.e., with Γ = ε is always possible
because a nonempty clause cannot be false under ε. In practice, one wants to
backtrack as little as possible to reuse as much of the trail as possible.

Compared with Section 5.2, we allow backtracking to any nonconflicting trail
instead of specifying the position. This makes our rule more general by, again, allowing
more freedom to an implementation. The minimally backtracking strategy introduced
in Definition 5.4 brings back equivalence to the Backtrack rule of Section 5.2.

Isabelle Technicalities

We define the SCL rules in the scl_fol_calculus locale. It fixes an abstract binary
relation ≺B as a locale parameter and assumes that it bounds a finite number
of atoms. It also fixes an abstract function to generate variable renamings as a
locale parameter and assumes its correctness; this function is not required for the
specification of the calculus but is required in multiple proofs. We provided an
example instantiation of all locale assumptions to ensure that they can be fulfilled
and are not contradictory. Most of the following definitions and theorems are in the
context of this locale. Each SCL rule is defined separately as an inductive predicate.
Having separate definitions allows to refer to the rules individually in subsequent
definitions and theorems. Using inductive predicates, as opposed to plain definitions,
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is convenient because Isabelle automatically generates some useful introduction and
elimination lemmas, and configures structured Isar syntax for case analysis.

From the SCL rules, we can prove a number of invariants about states. Most of
them are intuitive while few are technicalities of the Isabelle formalization. We will
use the invariants as hypotheses for several of the main lemmas and theorems.

Lemma 5.1 (Invariants). Let 〈Γ ;U ; C〉 be a state w.r.t. ⇒N , β
SCL . The following

invariants hold for the initial state 〈ε; {}; †〉 and are each individually preserved by
the SCL rules.

1. All annotated literals in Γ are ground:
• ∀K ∈ {litK | K ∈ set Γ}. K is a ground literal

2. The atoms of all annotated literals in Γ are �B β:
• ∀K ∈ {litK | K ∈ set Γ}. atomK �B β

3. All annotated literals in Γ are undefined in their respective subtrail of Γ :
• ∀Γ ′ K Γ ′′. Γ = Γ ′,K,Γ ′′ −→ litK is undefined in Γ ′

4. All closures in Γ and C are ground:
• ∀K ∈ set Γ . ∀D K γ. K = (Kγ)〈K ;D ;γ〉 −→ Dγ is ground
• ∀C γ. C = 〈C ; γ〉 −→ Cγ is ground

5. All closures in Γ and C are false under their respective subtrail of Γ :
• invariant 4 holds
• ∀D K γ Γ ′ Γ ′′. Γ = Γ ′, (Kγ)〈K ;D ;γ〉,Γ ′′ −→ Dγ is false under Γ ′

• ∀C γ. C = 〈C ; γ〉 −→ Cγ is false under Γ

6. All propagated literals in Γ are ground instances of the literal in their closure
annotations:

• ∀K ∈ set Γ . ∀D K γ. annK = 〈D ;K ; γ〉 −→ litK = Kγ

7. The complements of all propagated literals in Γ are absent from their closure
annotation:

• ∀K ∈ set Γ . ∀D K γ. K = (Kγ)〈K ;D ;γ〉 −→ comp (Kγ) /∈ Dγ

8. All literals of the clauses in Γ ’s propagating clauses, U , and C have a corre-
sponding, more general literal in N :

• ∀D ∈ {D | (Kγ)〈K ;D ;γ〉 ∈ setΓ} ∪U ∪ (case C of † ⇒ {} | 〈C ; γ〉 ⇒ {C}).
∀K ∈ D . ∃D ′ ∈ N . ∃K ′ ∈ D ′. ∃σ. K ′σ = K

9. All annotated literals in Γ have a corresponding more general literal either in
N or in U :

• ∀K ∈ set Γ . ∃C ∈ N ∪U . ∃L ∈ C . ∃σ. Lσ = litK
10. All clauses in Γ , U , and C are entailed by N :

• ∀K ∈ set Γ . ∀D K γ. K = (Kγ)〈K ;D ;γ〉 −→ N |= {K ∨D}
• N |= U

• ∀C γ. C = 〈C ; γ〉 −→ N |= {C}

The SCL calculus is defined as a transition system where many decisions are
deferred to strategies. A strategy specifies a transition system whose transitions are a
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subset of those from an existing transition system. We say that a strategy S restricts
a transition system T (or symmetrically that T is restricted by S) if every valid
transition of S is also a valid transition of T (i.e., ∀x y . S x y −→ T x y). Note that
strategies can be chained to iteratively apply more restrictions.

We define the reasonable and regular strategies restricting the ⇒N, β
SCL relation to

prove the main results of this chapter.

Definition 5.2. Let N be a final set of initial clauses. Let β be a bound. The
reasonable strategy ⇒N , β

Rea-SCL restricts the SCL calculus by preventing decisions that
immediately lead to a conflict (such situations could be replaced by a propagation):

∀S S ′. S ⇒N , β
Rea-SCL S ′ ←→

S ⇒N , β
SCL S ′ ∧ (S ⇒N , β

Decide S ′ −→ (@S ′′. S ′ ⇒N , β
Conflict S ′′))

Definition 5.3. Let N be a final set of initial clauses. Let β be a bound. The regular
strategy ⇒N , β

Reg-SCL restricts the reasonable strategy by prioritizing the conflict rule to
any other:

∀S S ′. S ⇒N , β
Reg-SCL S ′ ←→

S ⇒N , β
Rea-SCL S ′ ∧ ((∃S ′′. S ⇒N , β

Conflict S ′′) −→ S ⇒N , β
Conflict S ′)

While not required for the coming nonredundancy and termination results, we
also define the minimally backtracking strategy to express the constraint on the
backtracking position found in Section 5.2.

Definition 5.4. Let N be a final set of initial clauses. Let β be a bound. The
minimally backtracking strategy ⇒N , β

Min-Bac-SCL restricts the regular strategy by requiring
that backtracking removes the shortest possible suffix of the trail:

∀S S ′. S ⇒N , β
Min-Bac-SCL S ′ ←→

S ⇒N , β
Reg-SCL S ′ ∧ (S ⇒N , β

Backtrack S ′ −→
trail S ′ is the longest prefix of trail S
not in conflict with the learned clause)

All three strategies build on one-another and ultimately restrict the SCL calculus.
We can express this formally as implications, of which the first can be used to show
that coming results (e.g., Corollaries 5.13 and 5.21) also hold for the minimally
backtracking strategy.

Lemma 5.5. The minimally backtracking strategy restricts the regular strategy, which
restricts the reasonable strategy, which restricts the SCL calculus:

• ∀N β S S ′. S ⇒N , β
Min-Bac-SCL S ′ −→ S ⇒N , β

Reg-SCL S ′

• ∀N β S S ′. S ⇒N , β
Reg-SCL S ′ −→ S ⇒N , β

Rea-SCL S ′

• ∀N β S S ′. S ⇒N , β
Rea-SCL S ′ −→ S ⇒N , β

SCL S ′

The bounding atom β restricts the calculus to only consider the finitely many
ground atoms less than or equal to β w.r.t. ≺B; this will play an important role in
the termination proof. When SCL terminates, it either derived a contradiction, or it
found a model for the bounded ground instances of the initial clauses. Because β is
usually chosen heuristically, the model might be unsatisfactory for the considered use
case and one may want to continue execution with a bigger bound. This is allowed if
the new bound properly extends the previous bound β w.r.t. �B.
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Theorem 5.6 (Monotonicity w.r.t. Bound). Let β and β′ be bounds. If the
ground atoms bound by β are a subset of the ground atoms bound by β′ (i.e.,
∀A. A is ground −→ A �B β −→ A �B β′), then the SCL, reasonable SCL, regular
SCL, and minimally backtracking SCL transitions w.r.t. β are also transitions w.r.t.
β′:

• ∀N S S ′. S ⇒N , β
SCL S ′ −→ S ⇒N , β′

SCL S ′

• ∀N S S ′. S ⇒N , β
Rea-SCL S ′ −→ S ⇒N , β′

Rea-SCL S ′

• ∀N S S ′. S ⇒N , β
Reg-SCL S ′ −→ S ⇒N , β′

Reg-SCL S ′

• ∀N S S ′. S ⇒N , β
Min-Bac-SCL S ′ −→ S ⇒N , β′

Min-Bac-SCL S ′

Theorem 5.6 implies that all properties w.r.t. a bound β also hold w.r.t. a
compatible bound β′. Its hypothesis is fulfilled if �B is transitive on ground atoms, β
and β′ are ground atoms, and β �B β′. The bounding atom could even be increased
at any point in an SCL run, not just when the calculus terminated.

The different rules and strategies considered so far express a single step of
computation for the SCL calculus; they offer a good level of granularity to both
understand and mechanize the details of the calculus. But several results of the
following sections ought to express properties of the calculus as a whole. We express
such results in terms of a run from the initial state. A run is the reflexive, transitive
closure of a rule or strategy (e.g., S (⇒N,β

SCL )
∗ S′ is an SCL run from the state S to

the state S′).

5.3.1 Soundness

The soundness of the individual SCL rules is shown by invariant 10. We now consider
the soundness of terminating runs of the SCL calculus as a whole.

Theorem 5.7 (Correct Termination). Let S = 〈Γ ;U ; C〉 be a state w.r.t. ⇒N , β
SCL . If

invariants 2, 3, 5, 6 and 10 hold for S , and if S is a stuck state with some restrictions,
formally if all of the following hold

• @S ′. S ⇒N , β
Propagate S ′,

• @S ′. S ⇒N , β
Decide S ′ ∧ (@S ′′. S ′ ⇒N , β

Conflict S ′′),
• @S ′. S ⇒N , β

Conflict S ′,
• @S ′. S ⇒N , β

Skip S ′,
• @S ′. S ⇒N , β

Resolve S ′,
• @S ′. S ⇒N , β

Backtrack S ′ and the backtracking is minimal,
then either the conflicting clause clause is ⊥ and the set of ground instances of
the initial clauses is unsatisfiable (i.e., (∃γ. C = 〈⊥; γ〉) ∧ (@I. I |=clss (gndclss N ))),
or there is no conflicting clause and the set of ground instances of the initial
clauses with atoms less than or equal to the bound is satisfiable by the trail (i.e.,
C = † ∧ HI Γ |=clss (gnd

�Bβ
clss N )).

Note that no hypothesis restricts the usage of the Factorize rule because it is an
optional step of conflict resolution that has no impact on satisfiability.

Theorem 5.7 holds for a family of strategies, in contrast to Theorem 5 from
Bromberger et al., which was only shown for what is here called the minimally
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backtracking strategy. This family of strategies contains any strategy that preserves
the required invariants and is restricted by the minimally backtracking strategy.
From Lemma 5.5 we know that these two requirements are fulfilled by the SCL
relation but also by the reasonable, regular, and minimally backtracking strategies.
This leads to a more intuitive corollary based on runs.

Corollary 5.8. If an SCL, a reasonable SCL, a regular SCL, or a minimally
backtracking SCL run starting from the initial state 〈ε; {}; †〉 terminates in a state
S = 〈Γ ;U ; C〉 w.r.t. ⇒N , β

SCL , formally if any of the following holds
• 〈ε; {}; †〉 (⇒N ,β

SCL )
∗ S ∧ (@S ′. S ⇒N , β

SCL S ′),
• 〈ε; {}; †〉 (⇒N ,β

Rea-SCL)
∗ S ∧ (@S ′. S ⇒N , β

Rea-SCL S ′),
• 〈ε; {}; †〉 (⇒N ,β

Reg-SCL)
∗ S ∧ (@S ′. S ⇒N , β

Reg-SCL S ′), or
• 〈ε; {}; †〉 (⇒N ,β

Min-Bac-SCL)
∗ S ∧ (@S ′. S ⇒N , β

Min-Bac-SCL S ′),
then the conclusion of Theorem 5.7 holds.

Note that each strategy is used with positive polarity in the “run” hypothesis and
negative polarity in the “no-more-step” hypothesis. For this reason, it is impossible
to provide a corollary with a single requirement to restrict or be restricted by any
known strategy.

5.3.2 Nonredundancy of Learned Clauses

Traditional saturation-based calculi for first-order logic (e.g., resolution and super-
position) can learn redundant clauses and thus their implementations require costly
checks for nonredundancy. SCL(FOL) learns only nonredundant clauses. Thus, an
implementation would not need to check for (forward) nonredundancy. We first repeat
the definition of standard redundancy as used in the saturation framework [119].

Definition 5.9 (Redundant Clause). Let N be a finite clause set. Let C be a clause.
Let ≺ be a strict ordering on clauses. We say that D is redundant w.r.t. N and
≺ if all its ground instances are entailed by the lesser ground instances of N (i.e.,
∀D ′ ∈ gndcls D . {C ′ ∈ gndclss N | C ′≺D ′} |= {D ′}).

We first prove nonredundancy of learned clauses w.r.t. a trail-induced dynamic
ordering and then lift this result to nonredundancy w.r.t. a static ordering.

Definition 5.10 (Trail-Induced Atom Ordering). Let Γ be a trail of annotated literal.
Γ induces a well-founded, strict partial ordering ≺Γ , total on all atoms in Γ ’s literals.
Consider the case when Γ has the form Ln

annn , . . . ,L2
ann2 ,L1

ann1 ,L0
ann0 , we have

the following ordering.

atom Ln ≺Γ · · · ≺Γ atom L2 ≺Γ atom L1 ≺Γ atom L0

In other words, “older” elements on the left are smaller than “newer” elements on
the right. We specify ≺Γ formally with the following equivalence:

∀t1 t2 . t1 ≺Γ t2 ←→
(∃i < |Γ |. ∃j < i . t1 = atom (lit (Γ [i ])) ∧ t2 = atom (lit (Γ [j ])))
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Compared with Bromberger et al., the trail-induced ordering is defined on atoms
instead of literals and we prove nonredundancy for any lifting to literals.

Theorem 5.11 (Dynamic Nonredundancy of Learned Clauses). Let N be a finite
clause set. Let β be a bound. Following conflict resolution in a regular run, formally
if the following conditions hold,

• 〈ε; {}; †〉 (⇒N ,β
Reg-SCL)

∗ 〈Γ ;U ; †〉,
• 〈Γ ;U ; †〉 ⇒N , β

Conflict S1 ,
• S1 (⇒N ,β

Skip,Factorize,Resolve)
+ Sn , and

• Sn ⇒N , β
Backtrack S1+n ,

then neither is the learned clause generalized by any known clause (i.e., @D ∈
N ∪ U . ∃σ. Dσ = conflict Sn), nor is it redundant w.r.t. N ∪ U and the ordering
we get by first lifting the trail-induced ordering ≺Γ from atoms to literals and then
taking its multiset extension.

Dynamic nonredundancy with respect to the trail-induced ordering does not by
itself release an implementation from performing backward nonredundancy checks, but
it is a strong guarantee on the quality of learned clauses. For backward redundancy
checks, an ordering needs to be used that encompasses all dynamic trail-induced
orders. An ordering based on a strict multiset relation has this property. So for
backward redundancy we can, e.g., delete subsumed clauses.

Corollary 5.12 (Static Nonsubsumption of Learned Clauses). Let N be a finite
clause set. Let β be a bound. If a regular run starting from the initial state 〈ε; {}; †〉
learns a clause C , formally if the following conditions hold,

• 〈ε; {}; †〉 (⇒N ,β
Reg-SCL)

∗ 〈Γ ;U ; 〈C ; γ〉〉 and
• 〈Γ ;U ; 〈C ; γ〉〉 ⇒N , β

Backtrack S ,
then C is not subsumed by any initial or learned clause (i.e., @D ∈ N ∪U . ∃σ. Dσ ⊆
C ).

All nonredundancy results can be generalized to an arbitrary strategy restricting
the regular strategy. We only show one example here and refer the reader to the
formalization for the others.

Corollary 5.13. Let N be a finite clause set. Let β be a bound. Let R be the
transition relation of some strategy. Following conflict resolution in the run of a
strategy restricting regular SCL, formally if the following conditions hold,

• 〈ε; {}; †〉 (⇒N ,β
Strategy)

∗ 〈Γ ;U ; †〉,
• 〈Γ ;U ; †〉 ⇒N , β

Conflict S1 ,
• S1 (⇒N ,β

Skip,Factorize,Resolve)
+ Sn ,

• Sn ⇒N , β
Backtrack S1+n , and

• ∀S S ′. R S S ′ −→ S ⇒N , β
Reg-SCL S ′,

then neither is the learned clause generalized by any initial or learned clause (i.e.,
@D ∈ N ∪U . ∃σ. Dσ = conflictSn), nor is it redundant w.r.t. N ∪U and the ordering
we get by first lifting the trail-induced ordering ≺Γ from atoms to literals and then
taking its multiset extension.
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During the development of this formalization, we discovered that the original
Backtrack rule found in [26] allows to learn a duplicate of the last learned clause,
which violates the stated nonredundancy of learned clauses. The original Backtrack
rule ensures that the conflict closure is not false under the new trail, but the learned
clause could still be in conflict w.r.t. another grounding. Following this conflict, the
Backtrack rules would be immediately applicable and would learn the same clause
again. This could only happen a finite number of times as backtracking reduces the
length of the (finite) trail.

Example 5.14. Let P, Q, R, and S be predicate symbols. Let v , w , x , y, and z be
variable symbols. Let a and b be ground terms. Consider the clause set N = {P(x ),
Q(y),¬Q(z )∨R(z ),¬R(w)∨S(w),¬P(v)∨¬S(v)} and a big enough β. The following
SCL run was valid with the original Backtrack rule. Note that the notation for the
trail was shortened to save space.

〈ε; {}; †〉

(⇒N ,β
Decide)

∗ 〈P(a),Q(a),P(b),Q(b); {}; †〉

(⇒N ,β
Propagate)

∗ 〈P(a),Q(a),P(b),Q(b),R(b)〈R(z);¬Q(z);z 7→b〉,S(b)〈S(w);¬R(w);w 7→b〉; {}; †〉

⇒N , β
Conflict 〈P(a),Q(a),P(b),Q(b),R(b)〈R(z);¬Q(z);z 7→b〉,S(b)〈S(w);¬R(w);w 7→b〉; {}; 〈¬P(v)∨¬S(v); v 7→b〉〉

⇒N , β
Resolve+Skip 〈P(a),Q(a),P(b),Q(b),R(b)

〈R(z);¬Q(z);z 7→b〉; {}; 〈¬P(v) ∨ ¬R(v); v 7→b〉〉

⇒N , β
Resolve+Skip 〈P(a),Q(a),P(b),Q(b); {}; 〈¬P(v) ∨ ¬Q(v); v 7→ b〉〉

⇒N , β
Backtrack 〈P(a),Q(a),P(b); {¬P(v) ∨ ¬Q(v)}; †〉

⇒N , β
Conflict+Skip〈P(a),Q(a); {¬P(v) ∨ ¬Q(v)}; 〈¬P(v) ∨ ¬Q(v); v 7→a〉〉

⇒N , β
Backtrack 〈P(a); {¬P(v) ∨ ¬Q(v)}; †〉

This counterexample was only discovered when we failed to prove Theorem 5.11
in Isabelle. Note that this formalization is based on an early version of Bromberger
et al.’s paper and was developed in parallel to the final version, which originally
inherited the Backtrack rule from [52].

The solution, which was promptly integrated into this formalization and Brom-
berger et al., is for the Backtrack rule to find a position without conflict w.r.t. the
learned clause. Note that the original Backtrack rule reaches such a state after
having learned the same clause finitely often, which has no effect on the set of learned
clauses because sets ignore duplicates. Thus, the original Backtrack rule did not
invalidate the other properties of the SCL calculus. This discovery is strong evidence
of the usefulness of mechanized formalization for both published work and ongoing
research: the Isabelle formalization lead to the discovery of a previously unknown
bug and it guided the development of the refinement.

5.3.3 Termination

A calculus expressed as a state machine terminates if the transition relation starting
from the initial state is well-founded following the arrow direction. We prove well-
foundedness of regular SCL in three steps:

1. We first prove well-foundedness of SCL without backtracking, denoted ⇒N, β
SCL-no-Back

.
2. We then prove that a regular run can only learn finitely many clauses.
3. From these two results we finally prove well-foundedness of regular SCL.
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Step 1 is novel to the formalization. Prior work by Bromberger et al. focuses
exclusively on the Backtrack rule (step 2) to prove termination of regular SCL
(step 3). Also novel to the formalization are decreasing measuring functions for
steps 1 and 2.

Definition 5.15. The function M3 provides a measure that decreases at each step
of SCL without backtracking. It maps a bounding atom and a state to a 4-tuple. The
tuple elements are (1) a Boolean identifying whether the state is conflict-free, (2) a
(finite) set overapproximating the literals that could be added to the trail, (3) a (finite)
list overapproximating the numbers of resolution steps that could be performed at
each position in the trail, and (4) the (finite) cardinality of the conflicting clause.

∀β Γ .M1 β Γ = {L | atom L �B β} − {litK | K ∈ set Γ}

∀C .M2 ε C = ε

∀Γ K C .M2 (Γ ,K
†) C =M2 Γ C , 0

∀Γ K D γ C .M2 (Γ , (Kγ)
〈K ;D ;γ〉) C = (let n = count C (comp (Kγ)) in

M2 Γ C ∨ repeat n (Dγ),n)

∀β Γ U .M3 β 〈Γ ;U ; †〉 = 〈True;M1 β Γ ; ε; 0〉
∀β Γ U C γ.M3 β 〈Γ ;U ; 〈C ; γ〉〉 = 〈False; {};M2 Γ C; |C|〉

Using M3, we can prove termination of SCL without backtracking (step 1).

Theorem 5.16 (Termination of SCL without Backtracking). Let N be a finite clause
set. Let β be a bound. SCL without backtracking is well-founded on all states reachable
by a run starting from the initial state (i.e., on {S | 〈ε; {}; †〉 (⇒N ,β

SCL-no-Back)
∗ S}).

Remark 5.17. The well-founded predicate wfpR, found in the Isabelle distribution,
expresses that a binary relation R is well-founded on all inputs. However, SCL
without backtracking does not terminate on all inputs but only on those that satisfy
some specific invariants enforced by the run starting from the initial state.

One possible solution would have been to restrict the relation to only those
arguments that fulfill the invariants. But instead, we defined a new predicate
wfp_on X R that expresses well-foundedness of R only w.r.t. a set X of elements.
The two methods are equivalent, but the restricted predicate has the advantage of
more clearly distinguishing the two concepts of relation and input values. It also
follows the convention used by many other predicates in the Isabelle distribution.

We integrated our new predicate wfp_on into the Isabelle distribution and redefined
wfp in terms of it.

We now turn to proving termination of regular SCL with backtracking by first
defining an appropriate measuring function.

Definition 5.18. The function M4 provides a measure that decreases at each step
of the rule Backtrack. It maps a bounding atom and a state to a finite set of clauses
without duplicated literals. It computes an overapproximation of the set of clauses
that could potentially be learned modulo duplicate literals.

∀β S .M4 β S = 2{L|atom L�Bβ} − {set C | C ∈ gndclss (learned S )}
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We then prove that M4 decreases every time we learn a new clause (step 2).

Lemma 5.19. Let N be a finite clause set. Let β be a bound. Following conflict
resolution in a regular run, formally if the following conditions hold,

• 〈ε; {}; †〉 (⇒N ,β
Reg-SCL)

∗ 〈Γ ;U ; †〉,
• 〈Γ ;U ; †〉 ⇒N , β

Conflict S1 ,
• S1 (⇒N ,β

Skip,Factorize,Resolve)
+ Sn , and

• Sn ⇒N , β
Backtrack S1+n ,

then
1. the ground instance of the learned clause is distinct from all ground instances of

initial and learned clauses modulo duplicate literals (i.e., ∃C γ. conflictSn = 〈C ;
γ〉 ∧ set (Cγ) /∈ {setD | D ∈ gndclss (N ∪U )}), and

2. the set of clauses that could potentially be learned modulo duplicate literals
strictly diminishes (i.e., M4 β S1+n ⊂M4 β Sn).

Lemma 5.19 is novel to the formalization. Together with Theorem 5.16 it allows
us to prove termination of regular SCL with backtracking (step 3).

Theorem 5.20 (Termination of Regular SCL). Let N be a finite clause set. Let β
be a bound. Regular SCL is well-founded on all states reachable by a run starting
from the initial state (i.e., on {S | 〈ε; {}; †〉 (⇒N ,β

Reg-SCL)
∗ S}).

All termination results can be generalized to an arbitrary strategy restricting
the regular strategy. We only show one example here and refer the reader to the
formalization for the others.

Corollary 5.21. Let N be a finite clause set. Let β be a bound. Let R be the
transition relation of some strategy. If R restricts regular SCL (i.e., ∀S S ′. RS S ′ −→
S ⇒N , β

Reg-SCL S ′), then it is well-founded on all states reachable by a run starting from
the initial state (i.e., on {S | R 〈ε; {}; †〉 S}).

All theorems until now were first expressed and proven using invariants and
then the versions expressed using runs were derived. However, Theorem 5.20 posed
an interesting problem because its proof requires the backtracking step to have
knowledge of the trail when a conflict last occurred. But this information is lost in
the SCL state due to the Skip rule shrinking the trail. We did define an invariant
that expresses the historical form of the trail and its properties derived from the
regular strategy, but it is complex and the added value compared with working
directly on a regular run is questionable. We refer the interested reader to the lemma
termination_regular_scl_invars of the Isabelle/HOL formalization for more details.

Together, soundness and termination allow us to prove refutational completeness
of the regular SCL calculus w.r.t. a fixed bound.

Theorem 5.22 (Completeness w.r.t. Bound). Let N be a finite clause set. Let β be
a bound. If the ground instances of the initial clauses with atoms less than or equal to
β are unsatisfiable (i.e., @I. I |=clss (gnd

�Bβ
clss N )), then all regular SCL runs starting

from the initial state terminate and derive the conflicting clause ⊥. In other words,
1. there is no infinite regular run starting from the initial state, and
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2. ∀S . 〈ε; {}; †〉 (⇒N ,β
Reg-SCL)

∗ S −→ (@S ′. S ⇒N , β
Reg-SCL S ′) −→ (∃γ. conflict S = 〈⊥;

γ〉).

Theorem 5.22 is only defined w.r.t. a bound, but fortunately we can prove that
there must always exist an appropriate bound.

Lemma 5.23. Let N be a finite clause set. If the relation ≺B is a well-founded,
strict ordering, total on ground atoms and the ground instances of the initial clauses
are unsatisfiable (i.e., @I. I |=clss (gndclss N )), then there exists a bound such that
the ground instances of the initial clauses with atoms less than or equal to the bound
are unsatisfiable (i.e., ∃β. @I. I |=clss (gnd

�Bβ
clss N )).

Note that while Lemma 5.23 proves the existence of an appropriate bound,
it provides no constructive way of finding one. What one can do is follow along
Theorem 5.6 and iteratively increase a heuristically chosen bound until an appropriate
one is found; if the set of initial clauses is unsatisfiable, this will terminate.

Remark 5.24. Lemma 5.23’s hypothesis that ≺B is a well-founded, total, strict
ordering cannot be expressed as a theorem-local hypothesis. The reason is that the
compactness theorem for clausal first-order logic requires terms to be an instance of
the wellorder type class, which is not the case in the scl_fol_calculus locale, where
the assumptions on the ≺B relation are kept minimal. Because Isabelle does not
allow to instantiate a type class with a concrete type inside a locale or theorem, we
define a new locale that extends scl_fol_calculus and adds a type class requirement
on the first-order term constants. This enables the type-class system to automatically
instantiate the wellorder type class for terms using the previously registered Knuth–
Bendix ordering. We then instantiate the ≺B relation of scl_fol_calculus with the
Knuth–Bendix ordering. This type class and locale gymnastic could be avoided if the
formalization of the compactness theorem was refactored to offer a predicate-based
version alongside the existing type-class-based version.

5.4 Conclusion
We generalized and formalized the SCL(FOL) calculus in Isabelle/HOL. The main
results are formal proofs of soundness, nonredundancy of learned clauses, termi-
nation, and refutational completeness. Because the formalization was performed
simultaneously to Bromberger et al.’s pen-and-paper work [29], they could benefit
from each other. A mechanized formalization must consider low-level details, but
it is also the opportunity to identify the most important aspects of the theory and
abstract over details needed in the context of an actual implementation. For example,
we abstracted from the level of a state to define the Backtracking rule and replaced
it with an abstract specification of the result. In contrast, a level was used in all
pen-and-paper presentations of the calculus to have a constructive way of going back
to the maximal trail where the learned clause propagates. The abstraction supports
investigation of several Backtrack rule versions and to base the soundness result on a
version with a minimal requirement (i.e., the learned clause is no longer false with
respect to the trail).

The formalization did uncover a small bug in the calculus, but also showed that
its effect was very localized and naturally lead to a solution. Another benefit of the
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formalization is how much it supports refactoring and exploratory experimentation.
When making a change to a definition or a conjecture, Isabelle immediately and
exhaustively points to the parts that need to be adapted. Very often, proofs can
automatically be adapted using proof automation tools such as Sledgehammer. This
was invaluable to quickly try out ideas or change subtle parts of the calculus. One
such example is in the Resolve rule, where the formalization first used substitution
composition as found in the original calculus and latter replaced it by an abstract
specification of merged grounding. This idea came from a private discussion sketching
an eventual C implementation where it became clear that substitution composition
would be a costly operation. We then introduced the abstract specification of merged
grounding and fixed the formalization by following the mistakes reported by Isabelle.
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Part II

Simulations between Calculi
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Chapter 6

A Framework for Simulation
Proofs

This chapter is based on two workshop papers coauthored with Stefan Brunthaler
[44, 45]. The two papers describe my formalization work.

6.1 Introduction

The mechanically verified formalization of software components has been the subject
of much research in the last decades. Especially influential were the CompCert [74]
and CakeML [71] projects, which produced realistic compilers from (a large subset
of) two real-world programming languages (C99 and Standard ML) to real hardware
platforms. These compilers showed both that mechanized verification is feasible and
that it has a measurable effect on the dependability of the compiler [127].

We can now observe a shift in perspective, where the idea of mechanically verified
software components is becoming a concrete and desirable goal. Formalization
projects are increasing in number, but also in size, complexity, and lifetime. There is
an analogy to be made with the emergence, in the second half of the 20th century, of
software engineering to the point that the term proof engineering starts to be used.
New and interesting questions now emerge. How to avoid repetition in definitions
and proofs? Which concepts can be generalized and reused? How to separate
a formalization in independent components, so that multiple people can work in
parallel? What should be the interface between such components? How can tooling
make proof engineers more productive? What is a good balance between proof
readability and the time required to (mechanically) verify it? etc.

In the case of compiler verification, we have a very well-understood domain, with
well-known terminology, that builds on decades of research and empirical experience.
But as is the case for a lot of small software prototypes, small-scale formalizations
constantly redefined similar abstractions and concepts. This is something we wanted
to avoid when we started the formalization in Isabelle/HOL [85] of three small
stack-based interpreters for bytecode languages implementing different run-time
optimizations. Inspired by the concept of modularization in software engineering,
we separated the general concepts from the language-dependent parts. We learned
about, and made use of, Isabelle’s locales to devise a small generic framework for the
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verification of program transformations. Our framework is available in the Archive
of Formal Proofs [38].

6.2 Background
The operational semantics of a programming language can be defined as a transition
system representing the execution of a program written in this language. A language
L = 〈S, I, F,→〉 is defined by a set S of program states, a set I ⊆ S of initial states,
a set F ⊆ S of final states, and a transition relation → ⊆ S × S. The execution of a
program is modelled as a sequence of states s1 → s2 → ... with s1 ∈ I. An execution
is called terminating if there exists a state sn such that s1 → s2 → ... → sn and
@sn+1 . sn → sn+1 , and nonterminating otherwise. A terminating execution is said
to be successful if sn ∈ F and to go wrong otherwise. These execution behaviours
are usually called the program’s behaviour and written s ⇓ b.

The compiler from a language L1 to L2 is a partial function C : S1 ⇀ S2, which
maps a program s ∈ I1 to C(s) ∈ I2.

Two programs s and c are said to be equivalent if they exhibit the same behaviour,
i.e., ∀b. s ⇓ b ←→ c ⇓ b. This can be established using a bisimulation [96]: the
conjunction of a backward and a forward simulation. Consider a binary relation ≈,
between program states, expressing that two states are to be considered equivalent
for a given use case. This relation is called a lockstep simulation whenever

∀s s ′ c. s ≈ c ∧ s → s ′ −→ (∃c′. s ′ ≈ c′ ∧ c → c′)

holds. A backward simulation, thus, shows that every behaviour of the compiled
program is also a behaviour of the source program, i.e., the compilation is correct
(sound). A forward simulation shows that every behaviour of the source program
can be achieved by the compiled program (i.e., the compilation is complete).

6.3 The Design of the Framework
The framework has three main components: some abstract definitions of languages
and compilers using locales, a generic definition of program behaviour, and some
composition operations over simulations and compilers. Locales are Isabelle’s mod-
ule system to define hierarchies of parametric theories [8]; they are described in
Section 2.5.

6.3.1 Locales

The definition of programming languages is separated into two parts: an abstract
semantics and a concrete program representation.

locale semantics =
fixes step :: ′s⇒ ′s⇒ bool and final :: ′s⇒ bool
assumes ∀s. final s −→ (@s ′. step s s ′)

locale language = semantics step final
for step :: ′s⇒ ′s⇒ bool and final :: ′s⇒ bool +
fixes load :: ′p⇒ ′s⇒ bool
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The semantics locale represents the semantics as an abstract machine. It is
expressed by a transition system on states (type variable ′s) with a transition relation
step—often written as an infix short arrow—and a predicate final identifying final
states. The semantics locale assumes that final states cannot have any more transition.

The language locale represents the concrete program representation (type variable
′p), which can be associated to a program state by the relation load ; it is meant to
represent initialization (e.g., of a list of arguments given at the command line to
the program) and nondeterminism (e.g., by initializing a pseudo-random number
generator) when loading a program. The set of initial states of the transition system
is implicitly defined by the set of program states on which the relation load is defined
(i.e., {s | ∃p. load p s}).

The similarity of two given semantics is expressed formally through simulations.

locale forward_simulation =
L1: semantics step1 final1 + L2: semantics step2 final2
for
step1 :: ′s1 ⇒ ′s1 ⇒ bool and final1 :: ′s1 ⇒ bool and
step2 :: ′s2 ⇒ ′s2 ⇒ bool and final2 :: ′s2 ⇒ bool

fixes
match :: ′i⇒ ′s1 ⇒ ′s2 ⇒ bool and
(≺) :: ′i⇒ ′i⇒ bool

assumes
wfp (≺) and
∀i s1 s2 . match i s1 s2 −→ final1 s1 −→ final2 s2 and
∀i s1 s ′1 s2 . match i s1 s2 −→ step1 s1 s ′1 −→

(∃i ′ s ′2 . step2+ s2 s ′2 ∧match i ′ s ′1 s ′2 ) ∨ (∃i ′. match i ′ s ′1 s2 ∧ i ′≺i)

A forward simulation is defined between two semantics L1 and L2. It is parametrized
by a predicate match, which expresses that two states from L1 (type ′s1) and L2
(type ′s2) are considered equivalent w.r.t. some annotation (type ′i), and a relation
< on annotations. The annotation on the predicate match is a measurement used to
avoid stuttering (i.e., one transition system progresses while the other does not).

The assumptions of a forward simulation are that ≺ is a well-founded relation,
that a final state of L1 corresponds to a final state of L2, and that a step of L1 either
represents a nonempty sequence of steps of L2—the step2

+ relation is the transitive
closure of step2—or results in an equivalent state. Stuttering is ruled out by the
requirement that the measurement of the match predicate decreases w.r.t. ≺.

locale backward_simulation =
L1: semantics step1 final1 + L2: semantics step2 final2
for
step1 :: ′s1 ⇒ ′s1 ⇒ bool and final1 :: ′s1 ⇒ bool and
step2 :: ′s2 ⇒ ′s2 ⇒ bool and final2 :: ′s2 ⇒ bool

fixes
match :: ′i⇒ ′s1 ⇒ ′s2 ⇒ bool and
(<) :: ′i⇒ ′i⇒ bool

assumes
wfp (<) and
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∀i s1 s2 . match i s1 s2 −→ final2 s2 −→ final1 s1 and
∀i s1 s2 s ′2 . match i s1 s2 −→ step2 s2 s ′2 −→

(∃i ′ s ′1 . step1+ s1 s ′1 ∧match i ′ s ′1 s ′2 ) ∨ (∃i ′. match i ′ s1 s ′2 ∧ i ′<i)

A backward simulation is defined similarly to a forward simulation except that
the occurrences of step1 and step2 as well as final1 and final2 are swapped in the
assumptions. For the rest of this chapter, we will focus on results shown from
the perspective of a backward simulation; many results hold dually for forward
simulations.

locale bisimulation =
forward_simulation step1 final1 step2 final2 match (≺) +
backward_simulation step1 final1 step2 final2 match (<) +
for
step1 :: ′s1 ⇒ ′s1 ⇒ bool and final1 :: ′s1 ⇒ bool and
step2 :: ′s2 ⇒ ′s2 ⇒ bool and final2 :: ′s2 ⇒ bool and
match :: ′i⇒ ′s1 ⇒ ′s2 ⇒ bool and
(<) :: ′i⇒ ′i⇒ bool and
(≺) :: ′i⇒ ′i⇒ bool

A bisimulation is composed of both a forward and backward simulation w.r.t. the
same matching relation. Note that the well-founded relation ≺, used in the forward
relation, and the well-founded relation <, used in the backward simulation, must
work on the same annotations of the matching relation.

locale compiler =
L1: language step1 final1 load1 + L2: language step2 final2 load2 +
backward_simulation step1 final1 step2 final2 match (<)
for
step1 :: ′s1 ⇒ ′s1 ⇒ bool and final1 :: ′s1 ⇒ bool and
load1 :: ′p1 ⇒ ′s1 ⇒ bool and
step2 :: ′s2 ⇒ ′s2 ⇒ bool and final2 :: ′s2 ⇒ bool and
load2 :: ′p2 ⇒ ′s2 ⇒ bool and
match :: ′i⇒ ′s1 ⇒ ′s2 ⇒ bool and
(<) :: ′i⇒ ′i⇒ bool +

fixes compile :: ′p1 ⇒ ′p2 option
assumes
∀p1 p2 s2 . compile p1 = p2 −→ load2 p2 s2 −→

(∃s1 i . load1 p1 s1 ∧match i s1 s2 )

The compiler locale relates two languages, L1 and L2, by a backward simulation and
provides a (deterministic) partial function compile that maps a concrete program of
L1 to a concrete program of L2. The only assumption is that a successful compilation
results in a program which, when loaded, is equivalent to the loaded initial program.

6.3.2 Behaviours

We define a generic datatype to encode three broad execution behaviours: suc-
cessful termination (constructor Terminates), nonterminating execution (constructor
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Diverges), and erroneous termination (constructor Goes_wrong).

datatype ′s behaviour = Terminates ′s | Diverges | Goes_wrong ′s

Successfully and erroneously terminating behaviours are annotated with the last
state of the execution to compare the result of two executions with the rel_behaviour ::
(′s⇒ ′s⇒ bool)⇒ ′s behaviour ⇒ ′s behaviour ⇒ bool relation.

∀R s1 s2 . R s1 s2 −→ rel_behaviour R (Terminate s1 ) (Terminate s2 )

∀R s1 s2 . rel_behaviour R Diverges Diverges

∀R s1 s2 . R s1 s2 −→ rel_behaviour R (Goes_wrong s1 ) (Goes_wrong s2 )

The exact meaning of the three behaviours is defined in the semantics locale,
where a binary relation (↓) :: ′s ⇒ ′s behaviour ⇒ bool is defined to assign an
execution behaviour to a program state. Note that step∗ is the reflexive transitive
closure of step and that step∞ is its infinitely transitive closure.

∀s s ′. step∗ s s ′ −→ (@s ′′. step s ′ s ′′) −→ final s ′ −→ s ↓ (Termination s ′)

∀s. step∞ s −→ s ↓ Diverges
∀s s ′. step∗ s s ′ −→ (@s ′′. step s ′ s ′′) −→ ¬final s ′ −→ s ↓ (Goes_wrong s ′)

We lift the relation ↓ on program states to a relation (⇓) :: ′p⇒ ′sbehaviour ⇒ bool
on concrete program representations.

∀p b. p ⇓ b ←→ (∃s. load p s ∧ s ↓ b)

In general, the transition relation step in the semantics locale does not have to be
deterministic; but if it is, then the behaviour of a program state is also deterministic.

Lemma 6.1. If step is right-unique (i.e., ∀s s ′ s ′′. step s s ′ −→ step s s ′′ −→ s ′ = s ′′),
then ↓ is right-unique (i.e., ∀p b b′. p ↓ b −→ p ↓ b′ −→ b = b′).

If the relation load in the language locale is also deterministic, then the behaviour
of a concrete program representation is also deterministic.

Lemma 6.2. If step and load are both right-unique, then ⇓ is right-unique.

The main correctness theorem for backward simulations states that, for any two
matching programs, any not wrong behaviour of the later is also a behaviour of the
former. In other words, if the compiled program does not crash, then its behaviour,
whether it terminates or not, is a also a valid behaviour of the source program.

Theorem 6.3. Let s1 and s2 be program states of L1 and L2 respectively. If
s1 matches s2 (i.e., ∃i . match i s1 s2 ), s2 has behaviour b2 (i.e., s2 ↓ b2 ), and
b2 is not a wrong behaviour, then s1 has a behaviour that matches with b2 (i.e.,
∃b1 i ′. s1 ↓ b1 ∧ rel_behaviour (match i ′) b1 b2 ).

Because this theorem is proven in the context of the backward_simulation locale
and, thus, only depends on its parameters and assumptions, it is independent of the
concrete programming language and needs to be proven only once. It automatically
holds for all interpretations of the locale.

As a corollary, the preservation of behaviour can be lifted to the compilation of a
concrete program representation.
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Corollary 6.4. Let p1 and p2 be concrete program representations of L1 and L2
respectively. If p1 compiles to p2 (i.e., compile p1 = p2 ), p2 has behaviour b2 (i.e.,
s2 ⇓ b2 ), and b2 is not a wrong behaviour, then p1 has a behaviour that matches
with b2 (i.e., ∃b1 i ′. p1 ⇓ b1 ∧ rel_behaviour (match i ′) b1 b2 ).

6.3.3 Generic Composition of Simulations and Compilers

We define the generic composition of matching functions, (�) :: (′i ⇒ ′a ⇒ ′b ⇒
bool) ⇒ (′j ⇒ ′b ⇒ ′c ⇒ bool) ⇒ ′i × ′j ⇒ ′a ⇒ ′c ⇒ bool , and orderings, lexprod ::
(′i ⇒ ′i ⇒ bool) ⇒ (′j ⇒ ′j ⇒ bool) ⇒ ′i × ′j ⇒ ′i × ′j ⇒ bool , such that the
composition of two backward simulations is itself a backward simulation.

Lemma 6.5. Let S1 = 〈step1 ;final1 〉, S2 = 〈step2 ;final2 〉, and S3 = 〈step3 ;final3 〉
be semantics. Let ∼ and ≈ be matching relations. Let ≺ and < be relations used to
limit stuttering. If

• there is a backward simulation between S1 and S2 w.r.t. ∼ and ≺:
backward_simulation step1 final1 step2 final2 (∼) (≺)

• there is a backward simulation between S2 and S3 w.r.t. ≈ and <:
backward_simulation step2 final2 step3 final3 (≈) (<)

then there is a backward simulation between S1 and S3 w.r.t. (∼) � (≈) and
lexprod (≺) (<):
backward_simulation step1 final1 step3 final3 ((∼) � (≈)) (lexprod (≺) (<)).

We define the generic } :: (′b ⇒ ′c option) ⇒ (′a ⇒ ′b option) ⇒ ′a ⇒ ′c option
composition operator on compilers, which corresponds to the monadic bind of the
option type found in a compiler’s codomain.

∀C1 C2 p. (C2 } C1 ) p = Option.bind (C1 p) C2

Its correctness can then be generically proven for any two interpretations of the
compiler locale.

Theorem 6.6. Let L1 = 〈step1 ;final1 ; load1 〉, L2 = 〈step2 ;final2 ; load2 〉, and
L3 = 〈step3 ;final3 ; load3 〉 be languages. Let C1 and C2 be compilation functions.
Let ∼ and ≈ be matching relations. Let ≺ and < be relations used to limit stuttering.
If

• C1 is a compiler from L1 to L2 w.r.t. ∼ and ≺:
compiler step1 final1 load1 step2 final2 load2 (∼) (≺)C1

• C2 is a compiler from L2 to L3 w.r.t. ≈ and <:
compiler step2 final2 load2 step3 final3 load3 (≈) (<)C2

then C2 } C1 is a compiler from L1 to L3 w.r.t. (∼) � (≈) and lexprod (≺) (<):
compiler step1 final1 load1 step3 final3 load3 ((∼) � (≈)) (lexprod (≺) (<))(C2 } C1 ).

6.4 Discussion

Using locales as a modularization tool for our generic framework turned out to be
elegant at times and frustrating in other cases.
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6.4.1 Strengths of the Approach

Parameters, assumptions, and derived elements are clearly separated. The
syntax used to define a locale enables the user to clearly state the parameters and
assumptions that are abstracted over. Derived elements such as function definitions
and lemmas are clearly separated by being defined later in a locale context. The fact
that these extensions can be done at any point following the locale’s definition gives
a lot of flexibility when structuring the formalization.

It is possible to abstract over multiple types. Locales enable parameters
to depend on multiple type variables. This makes them more general than type
classes, with which they have otherwise a lot in common. While traditional type
classes permit to abstract over operations on a given abstract type, locales permit to
abstract over both operations on concrete types and multiple abstract types. In fact,
type classes in Isabelle/HOL are just syntactic sugar for locales with a single type
variable.

It is possible to have multiple interpretations for a given set of type.
Because a locale interpretation introduces a new namespace when specializing the
derived elements, multiple instantiations are possible for a given set of types. A
classical example for such a situation is a partial ordering over the integers. Using
traditional type classes, one has to decide a canonical ordering that will be associated
with the integer type. To use an alternate ordering, one has to define a bijection to
an alternative type which instantiate the type class accordingly. As many distinct
types and bijections are required as distinct instantiations are wished.

6.4.2 Weaknesses of the Approach

Parametric types and type aliases cannot be defined in locales. This
limitation requires the user to generalize data types to abstract over any type
variable fixed in the locale definition and define them outside of the locale. This
generalization is trivial, because a fixed type variable in a locale is akin to a type
variable in a data type definition. The burden shows up when referring to the
generic type in a type annotation, where it must be explicitly instantiated. Because
parametric type aliases are also not supported, the instantiation has to be repeated
over and over. As the number of type variables increases, type annotations become
more complex, longer to write, and harder to read.

When extending existing locales, type annotations on fixed variables are
required to name type variables. These variables appear in the for section and
their types are inferred from their usage in instantiating the extended locales to be
extended. Type inference even succeeds in cases some type variables must be unified
between multiple locale instantiations, as is the case in the compiler locale. The user
must nevertheless provide some type annotations in order to name the type variables
that will be referred later. In practice, most of them are requires in type annotations.
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Proving lemmas involving locale predicates has considerable syntactic
overhead. Consider Theorem 6.6, where the two hypotheses and the conclu-
sion are locale predicates of the compiler locale. The proof involves accessing the
language instance predicates accessible with expressions, such as assms(1)[THEN
compiler.axioms(1)]. The problem with this syntax is twofold: (i) it depends on the
order in which the axioms were stated, and (ii) it does not scale well when the user
needs to extract multiple axioms from multiple assumptions. The first problem could
be solved by automatically adding lemmas using the name of the extension (e.g.,
compiler.L1 could be a synonym of compiler.axioms(1) to refer to the first language
instance predicate of the compiler’s definition). The second could be alleviated if
unnamed contexts supported locales extension.

References to a locale’s fixed variables and derived definitions are syn-
tactically different. When extending locales, as is the case in the backward_
simulation locale, derived definitions of the two languages are accessible with uniform
names in some namespaces, such as L1.behaves and L2.behaves. Fixed parameters,
by contrast, are only accessible using their given name, e.g., step1 and step2 . Even
though explicitly naming locale parameters may be omitted in simple cases, it is
required as soon as two locales fix parameters with the same name. While writing
locales for software abstractions, as opposed to mathematical structures, we observed
that fixed parameters must be named in all but the most trivial cases.

The lack of a uniform syntax to access derived definitions and parameters also
has an undesired impact on refactoring. If one of the locale parameters gets replaced
by an equivalent derived definition, not only do all interpretations of the locale have
to be adapted, but all definitions and theorems derived in a locale identified by a
prefixed name must also be adapted (e.g., everything depending on L1 or L2 in the
backward_simulation locale). Although this would not necessarily be a problem in the
absence of name clashes, a uniform naming scheme allowing the systematical use of
the interpretation’s prefix would benefit both the locale’s design and implementation.

The syntax overhead of locale extension increases with the number of
fixed parameters or types. This can already be observed in the definition of
the compiler locale where the for section specifies the signature of eight parameters
coming from the extended locales; only one new parameter in introduced in the fixes
section. The current syntax seems to serve two purposes: (i) provide unique names
for fixed parameters, and (ii) state which abstract types are shared in parameters’
types. To satisfy the first purpose, one could name the locale instances and use
the uniform naming scheme mentioned above, thereby increasing their utility and
applicability. To satisfy the second purpose, the locale mechanism should offer an
alternative syntax that allows for a more succinct way to express type dependencies
between different locale extensions.

6.5 Conclusion
We presented a generic framework for formalizing compilers in Isabelle/HOL. It is
based on locales to abstract over the concrete languages and program transformations,
provides general definitions for program behaviours and compiler compositions, and
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generically proves preservation of behaviour. This generality makes it usable for
in other use cases manipulating transition systems; we present such use case in
Chapter 7 where we prove the equivalence of two logical calculi.

This framework emerged as a side product of our formalization of three stack-based
languages that implement different optimizations; this formalization is presented
in Chapter 8. It helped us to emphasis the commonalities between the different
theories and to reduce some duplication. Possible future work includes extending
the semantics to support traces, exploring how to extract executable programs from
such formalizations, and exploring how to simplify or automate repetitive operations
such as the composition of multiple compilers.

We also reported on our experience using locales as an abstraction mechanism and
highlighted how locales could be improved to better serve such software formalization.
On the one hand, the additional modularity and abstraction afforded by locales
to structure proof developments is an enormous benefit. On the other hand, the
syntactic overhead makes them cumbersome to use for concepts built from lots of
parameters; it also makes refactoring a tedious tasks, as every usage of the locale’s
content could potentially need to be adapted.
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Chapter 7

Simulation between SCL(FOL)
and Ground Ordered Resolution

This chapter describes unpublished work coproduced with Martin Bromberger and
Christoph Weidenbach. The refinement proof was designed on paper by me with
help from Martin Bromberger. The Isabelle/HOL formalization was made by me in
parallel to the proof design.

7.1 Introduction
The SCL (“Clause Learning from Simple Models” or simply “Simple Clause Learning”)
family of calculi lifts a conflict-driven clause learning (CDCL) approach [12, 82] to
first-order logic [26, 28, 29, 52, 72]. SCL(FOL), a member of this family, is a calculus
for first-order logic without equality that works by refutation and model construction.
It operates on a clause set, which initially consists of the clausified input problem
in which the conjecture appears negated. It iteratively and heuristically builds a
ground (i.e., variable-free) candidate model for the clause set. Being heuristically
built, the candidate model might at some point conflict with one of the clauses.
Then, SCL(FOL) infers a new nonground clause from the candidate model and the
conflicting clause, adds this new clause to the set of known clauses, and backtracks
to a smaller, conflict-free candidate model. The calculus stops either when the empty
clause ⊥, denoting falsehood, is derived or when the candidate model makes the
ground instances of the clauses true that are less than a fixed bound. SCL(FOL) was
proven to be both sound and refutationally complete, meaning that it will eventually
derive ⊥ for any unsatisfiable clause set, and its learned clauses were proven to always
be nonredundant. The proofs were carried out first on paper [52] and later in the
Isabelle/HOL proof assistant [25].

Being a relatively new calculus, SCL(FOL) is often compared with resolution,
which is likely the most well-known refutationally complete calculus for first-order
logic without equality. Resolution works by refutation and saturation of a clause set
of the clausified input problem. Inferences are performed using clauses from this
set as premises; the conclusions of inferences are added to the set. The calculus
stops either when the empty clause ⊥ is derived or when no more inferences are
possible. Ordered resolution is a refinement of resolution where a term ordering is
used to significantly reduce the number of possible inferences while still preserving
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refutational completeness; it is sometimes also called superposition without equality.
Ground ordered resolution is a version of the calculus restricted to work only with
ground (i.e., variable-free) clauses.

Bromberger, Jain, and Weidenbach recently showed that SCL(FOL) can simulate
the derivation of nonredundant clauses by ground ordered resolution [27]. This
not only brought new insights on the relationship between the calculi, but also
showed that SCL(FOL)’s flexible model construction can be tuned to build the
exact same model as the one built in ordered resolution’s proof of refutational
completeness. Proving this simulation was an ambitious endeavor because the two
calculi work quite differently. The main difference is that ordered resolution can
apply its inference rules relatively freely, learning many redundant clauses along
the way, while SCL(FOL)’s inferences are strictly guided by conflict resolution and
can only lead to learning nonredundant clauses. To bridge this gap, Bromberger
et al. first specified a deterministic strategy SUP-MO for ordered resolution that only
learns nonredundant clauses. The strategy uses the model construction operation
found in ordered resolution’s proof of refutational completeness because it is relatively
simple and well-known in the automated reasoning community. They then specified
a corresponding deterministic strategy SCL-SUP for SCL(FOL) and showed that
SCL-SUP simulates SUP-MO.

Consider the example from Bromberger et al. of proving that the formulas P(a)∨
P(a) and P(a) −→ Q(b) entail the formula Q(b). After clausification and negation of
the conjecture, we obtain the clause set N = {P(a)∨P(a),¬P(a)∨Q(b),¬Q(b)}. We
assume the symbol precedence a ≺ b ≺ P ≺ Q that we lift to terms, atoms, literals,
and clauses.

The strategy SUP-MO for ordered resolution first constructs the candidate model
{}, meaning that no atom is considered true, and finds the least clause false w.r.t. the
model: P(a)∨P(a); it then uses the factorization rule to infer the clause P(a). At this
point, the clause set becomes N ∪ {P(a)}. SUP-MO then constructs a new candidate
model {P(a),Q(b)}, meaning that only the atoms P(a) and Q(b) are considered true,
and finds the least clause false w.r.t. the model: ¬Q(b); it then uses the resolution
rule on ¬P(a) ∨ Q(b) and ¬Q(b) to infer the clause ¬P(a). At this point, the clause
set becomes N ∪{P(a),¬P(a)}. SUP-MO finally constructs the new candidate model
{P(a)} and finds the least clause false w.r.t. the model: ¬P(a); it then uses the
resolution rule on P(a) and ¬P(a) to infer the empty clause ⊥. This concludes the
run of the strategy SUP-MO. It was able to derive ⊥ from the clausified problem N ,
which means that the formulas P(a) ∨ P(a) and P(a) −→ Q(b) do entail the formula
Q(b).

The strategy SCL-SUP for SCL(FOL) aims to perform the same inferences in
the same order as SUP-MO. Because SCL(FOL) can only factorize clauses in the
context of resolution inferences, it does not learn the clauses that SUP-MO inferred
through factorization, but it still keeps track of them to act as if they had been
learned. SCL-SUP first iteratively builds the candidate model [P(a),Q(b)], keeping
track that the clause P(a) can be inferred by P(a) ∨ P(a), and then detects a conflict
with the clause ¬Q(b); it performs conflict resolution, learns the clause ¬P(a), and
backtracks to the empty candidate model ε. At this point, the clause set becomes
N ∪ {¬P(a)}. SCL-SUP then builds the candidate model [P(a)] and then detects a
conflict with the clause ¬P(a); it performs conflict resolution, infers the empty clause
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⊥, and backtracks to the empty candidate model ε.
In summary, SCL-SUP closely follows SUP-MO. It takes note of all clauses

inferred through factorization by SUP-MO and learns all clauses inferred through
resolution by SUP-MO. This note taking and clause learning is performed in the
exact same order as the inferences in SUP-MO. The candidate model explicitly built
by SCL-SUP also corresponds to the model construction implicitly performed by
SUP-MO.

Bromberger et al.’s contribution was significant but, due to the space constraints
of a 16-page paper, the published proof is monolithic and hard to comprehend. They
also proved a simulation in only one direction even though it should be possible to
also prove the other direction.

In this chapter, we revisit the simulation between the ground ordered resolution
and SCL(FOL) calculi. We reuse the existing strategy for ground ordered resolu-
tion but provide a new strategy for SCL(FOL) and a new simulation proof. Our
contributions are as follows.

1. We specified a new, simpler strategy for SCL(FOL) that simulates ground
ordered resolution learning nonredundant clauses. The strategy is expressed as
a simple transition relation closely following SCL(FOL)’s transition relation.

2. We provided a stronger bisimulation proof between SUP-MO and our new
strategy. Our proof is modular: it consists of ten refinement steps focusing on
different aspects of the two strategies.

3. We provided a reusable lifting lemma that can lift a simulation between any
well-behaved transition systems to a bisimulation.

4. We formalized all the above in Isabelle/HOL.

Our Isabelle formalization consists of approximately 26 000 nonblank lines1 and
is available in the Archive of Formal Proofs [43]. Our work is part of the IsaFoL
(Isabelle Formalization of Logic) effort [18].

7.2 Preliminaries

Before proving simulations between SCL(FOL) and ground ordered resolution, we first
need a formalization of the semantics of SCL(FOL), which we presented in Chapter 5,
a formalization of the semantics of ground ordered resolution (Section 7.2.1), and a
formal definition of simulation (Section 7.2.2).

7.2.1 Ground Ordered Resolution

For this project, we need a formalization of ground ordered resolution and it turns
out that the superposition calculus presented in Chapter 4 is an extension of ordered
resolution and that Section 4.4 formalizes ground superposition.

We used the crude but very effective method of manually extracting a formalization
of ground ordered resolution out of our existing formalization of ground superposition.
We basically copied the Isabelle theory file, removed everything related to equality,

1Counted using grep -Ev '^[[:blank:]]*$'.
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repaired the broken proofs, and renamed all occurrences of the word superposition
by ordered resolution.

This new formalization defines the inference rules, the standard redundancy
criterion, and the canonical model construction operation. It also proves soundness
and refutational completeness of the calculus.

For the sake of brevity, we will only present the definitions of the inference rules
and model construction, and refer the interested reader to the Isabelle formalization
for more details.

Ground ordered resolution only has two inference rules: resolution and factoring.
The ground resolution rule is as follows. The rule notation below defines an inductive
predicate ground_resolutionDE C with the rule’s premises D and E as assumptions
and the inferred clause C as conclusion:

D︷ ︸︸ ︷
A ∨D′

E︷ ︸︸ ︷
¬A ∨ E′

ground_resolutionD E C
D′ ∨ E′︸ ︷︷ ︸

C

Side conditions:
1. D ≺cls E

2. either selG E = {} and ¬A is maximal in E or ¬A ∈ selG E

3. selG D = {}
4. the positive literal A is strictly maximal in D

The ground factoring rule is as follows.
D︷ ︸︸ ︷

A ∨A ∨D′
ground_factoringD C

A ∨D′︸ ︷︷ ︸
C

Side conditions:
1. selG D = {}
2. the positive literal A is maximal in D

The inference rules are more general than we need as they support a selection
function selG. We actually do not need a selection function in this chapter, but kept
it in the formalization of the calculus because we preferred the added generality.
For the rest of this chapter, we set the selection function such that it never selects
anything (i.e., ∀C . selG C = {}).

We note that both inference rules are deterministic. This will play an important
role in Section 7.5 where we will specify a deterministic strategy.

Lemma 7.1. The inference rules ground_resolution and ground_factoring are deter-
ministic w.r.t. their premises:

∀D E C C ′. ground_resolutionD E C −→ ground_resolutionD E C ′ −→ C = C ′

∀D C C ′. ground_factoring D C −→ ground_factoring D C ′ −→ C = C ′

The proof of refutational completeness of ground ordered resolution is based on
building a model of a saturated clause set. The model takes the form of an Herbrand
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interpretation, i.e., a set of atoms that are considered true. We define two mutually
recursive functions that construct such an atom set for a given clause set.

Definition 7.2 (Model Construction for Ground Resolution). Let N≺clsD = {C ∈
N | C ≺cls D} for any clause set N and clause D . The mutually recursive functions
epsilon :: ′f gclause set ⇒ ′f gclause ⇒ ′f gterm set and interp :: ′f gclause set ⇒
′f gterm set generate an Herbrand interpretation for a given clause set:

∀N C . epsilonN C = {A | C ∈ N ∧ selG C = {} ∧
A is strictly maximal in C ∧
interp (N≺clsC ) 6|=cls C}

∀N . interpN =
⋃

C∈N
epsilonN C

The model construction iterates over the clause set, starting from the least clause
following the ordering ≺cls, and collects a set of atoms considered true. At each
iteration, epsilon returns a set of atoms that are added to the interpretation: either
the considered clause is already true w.r.t. the interpretation, in which case epsilon
returns the empty set, or epsilon returns a single atom that makes the clause true.
We say that a clause C is productive w.r.t. N if epsilon N C 6= {}. Note that the
produced atom is unique, i.e., ∀N C . |epsilonN C | ≤ 1, because the strictly maximal
element in a clause is unique w.r.t. the total ordering ≺cls.

7.2.2 Simulations between Transition Systems

The simulation framework described in Chapter 6 was initially developed to prove
the correctness of bytecode optimizations described in Chapter 8. It was however
developed with generality in mind, hoping that it could be reused in other projects
involving simulation proofs. This formalization of simulation between ordered res-
olution and SCL(FOL) was the perfect opportunity to apply the framework in a
different context.

The framework turned out to be general enough to be reused without any
modification for our use case of formalizing the simulations between different logical
calculi. For the sake of self-completeness, we will repeat here the main definitions
needed in this chapter and refer the reader to Chapter 6 for more details on the
framework and the results it provides.

Definition 7.3 (Transition System). A transition system 〈R;F〉 is composed of a
transition relation R :: ′a⇒ ′a⇒ bool between states of type ′a and a predicate F ::
′a⇒ bool identifying final states. A final, or accepting, state is a state that can be
interpreted as a valid result of the computation expressed by the transition system.

A transition system corresponds to an interpretation of the locale semantics of
Section 6.3.

Some states of a transition system might be impossible to leave once reached: we
say of such a state that it is stuck. A state is not “bad” because it is stuck; it only
means that it cannot perform any transition to another state.

Definition 7.4 (Stuck State). Let R :: ′a ⇒ ′a ⇒ bool be a transition relation.
Let x :: ′a be a state. We say that x is stuck if there is no possible transition starting
from it: @x ′. R x x ′.
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There is a subtle distinction between final states, which represent a valid result
of a computation, and stuck states, which represent the end of a computation. A
state that is neither final nor stuck represents some intermediate state in an ongoing
computation. A state that is final and not stuck represents a valid result in an
ongoing computation. A state that is final and stuck represents a valid result of a
completed computation. A state that is not final and stuck represents some kind of
error state; the computation was completed without any valid result.

Example 7.5. The type char stream represents an infinite stream of characters, a.k.a.
an infinite word. The functions shd :: char stream ⇒ char and stl :: char stream ⇒
char stream return respectively the head (i.e., the first element) and the tail (i.e., all
but the first element) of a stream.

Let A, B and C be the only distinct elements of type flag. A state 〈f ;w〉 consists of a
flag f and an infinite word w . Let R :: flag×char stream ⇒ flag×char stream ⇒ bool
be a transition relation. Let F :: flag × char stream ⇒ bool be a predicate identifying
final states. The transition system 〈R;F〉 reads characters from an infinite word one
at a time and accepts any sequence of repeating “ab”.

The transition relation is specified as follows.

R 〈A;w〉 〈B; stl w〉
Side conditions: 1. shd w = “a”

R 〈A;w〉 〈C;w〉
Side conditions: 1. shd w 6= “a”

R 〈B;w〉 〈A; stl w〉
Side conditions: 1. shd w = “b”

R 〈B;w〉 〈C;w〉
Side conditions: 1. shd w 6= “b”

The predicate identifying final states is specified as follows.

∀s. F s ←→ (∃w . s = 〈A;w〉)

The flag A identifies states that expect an “a” character to start a new “ab”
sequence; let us call these A-states. The flag B identifies states that expect a “b”
character to end an “ab” sequence; let us call these B-states. The flag C identifies
erroneous states that do not not expect any more character; let us call these C-states.
The two first rules of R specify that an A-state transitions to a B-state upon reading
an “a” and to a C-state otherwise. The two last rules of R specify that a B-state
transitions to an A-state upon reading an “b” and to a C-state otherwise. The A-states
are final, or accepting, and can be interpreted as a successful read of a sequence
of repeating “ab” characters. The C-states are stuck, because there is no possible
transition starting from them, and can be interpreted as erroneous states.

To analyze an infinite word w , we would start a run of the transition system from
the initial state 〈A;w〉.

A visual representation of this transition system follows.
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A-statesstart B-states

C-states

a

b

Sometimes, two transition systems are expressed differently but represent the
same computation. This relationship can be expressed formally by a simulation.
Intuitively, we say that a transition system 〈Rb ;Fb〉 simulates another transition
system 〈Ra ;Fa〉 if 〈Rb ;Fb〉 is able to do everything that 〈Ra ;Fa〉 can do.

Definition 7.6 (Forward Simulation and Backward Simulation, Bisimulation).
Let Ra :: ′a ⇒ ′a ⇒ bool and Rb :: ′b ⇒ ′b ⇒ bool be two transition relations.
Let ∼ :: ′i ⇒ ′a ⇒ ′b ⇒ bool be an annotated matching relation between states of
types ′a and ′b with an annotation of type ′i. Let < :: ′i⇒ ′i⇒ bool be a well-founded
relation on annotations. We say that Rb simulates Ra w.r.t. ∼ and < if, following a
step of Ra , Rb either progresses or stutters finitely often:

∀i a b. a
i∼ b −→ Ra a a ′ −→ (∃b′ i ′. R+

b b b′ ∧ a ′ i ′∼ b′) ∨ (∃i ′. a ′ i ′∼ b ∧ i ′<i)

Let ≺ :: ′i ⇒ ′i ⇒ bool and < :: ′i ⇒ ′i ⇒ bool be two well-founded relations on
annotations. We say that there is a backward simulation between Ra and Rb if Rb

simulates Ra w.r.t. ∼ and ≺. We say that there is a forward simulation between Ra

and Rb if Ra simulates Rb w.r.t. (λi y x . x
i∼ y) and <. The λ-abstraction swaps

the order of the arguments so that values of type ′a are on the left of ∼ and values of
type ′b are on the right. We say that there is a bisimulation between Ra and Rb w.r.t.
∼, ≺, and < if there is both a forward simulation w.r.t. ∼ and ≺ and a backward
simulation w.r.t. ∼ and <. Note that the matching relation must be the same but
that the well-founded relations may be different.

We might omit to explicitly specify the matching relation or the well-founded
relations if they are either clear from the context or not relevant to the discussion.

A forward simulation, backward simulation, and bisimulation corresponds re-
spectively to an interpretation of the locale forward_simulation, backward_simulation,
and bisimulation of Section 6.3.

7.3 Proof Outline
Figure 7.1 presents the calculi we formalized and the simulations we proved. At
the very top, ORD-RES is a calculus that nondeterministically applies the inference
rules of ground ordered resolution described in Section 7.2.1 until a contradiction is
derived or the clause set is saturated. At the very bottom, SCL(FOL) corresponds
to regular SCL as described in Section 5.3.

There are multiple challenges to proving the equivalence of ORD-RES and
SCL(FOL):
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ORD-RES
Ground ordered resolution

ORD-RES-1
Model-driven strategy

ORD-RES-2
Exhaustive factorization

ORD-RES-3
Exhaustive resolution

ORD-RES-4
Implicit factorization

ORD-RES-5
Explicit model construction

ORD-RES-6
Efficient backjump

ORD-RES-7
Clause-based trail construction

ORD-RES-8
Atom-based trail construction

ORD-RES-9
Factorization during propagation

ORD-RES-10
Decision over propagation

ORD-RES-11
Multistep conflict resolution

SCL(FOL)
Regular strategy

Figure 7.1: The calculi and proven simulations. An arrow from a calculus A to a
calculus B means that A simulates B (i.e., if B makes a transition, then A

eventually also makes some corresponding transitions); thus, a down-facing arrow
corresponds to a backward simulation and an up-facing arrow corresponds to a

forward simulation. A bisimulation consists of both an up- and a down-facing arrow.
A solid arrow was proven manually by case analysis. A dotted arrow was proven

semi-automatically using either Lemma 7.7 or composition of simulations.



7.3. PROOF OUTLINE 79

1. both calculi are nondeterministic
2. ORD-RES can learn redundant clauses whereas SCL(FOL) was specifically

designed to only learn nonredundant clauses
3. ORD-RES is not explicitly tied to a model construction whereas SCL(FOL)

explicitly and iteratively builds a partial model
4. ORD-RES assumes a fixed ordering on atoms whereas SCL(FOL) uses a

dynamic ordering based on the constructed partial model
5. ORD-RES performs a single resolution or factorization steps per inferred clause

whereas SCL(FOL) typically performs multiple resolution and factoring steps
per inferred clause.

Bromberger et al. were the first to face and solve these challenges in their work,
but their solution is difficult to formalize. Therefore, we developed an alternative
solution optimized for formalization.

Following Bromberger et al., our solution to challenges 1 and 2 is to define
the ORD-RES-1 calculus, which uses the model construction found in the proof of
refutational completeness of ground ordered resolution, described in Section 7.2.1, to
guide the inference steps. This calculus ORD-RES-1 corresponds exactly to their
strategy SUP-MO. The first theorem we prove shows that ORD-RES-1 is a strategy
for ORD-RES; a strategy takes the form of a transition systems whose transitions
are a subset of those from the base calculus.

For challenges 3, 4, and 5, Bromberger et al. specified a single strategy SCL-SUP.
In contrast, our solution is to perform ten smaller and more manageable refinement
steps that culminate in the ORD-RES-11 calculus. This calculus ORD-RES-11,
although it is defined very differently from SCL-SUP, performs the same inferences
in the same order.

The ten refinement steps share a common structure. For each refinement step
i, starting from the already defined calculus ORD-RES-i, we define a new calculus
ORD-RES-(i+ 1) with small changes (e.g., to the data structures) or by merging or
splitting steps. We define an appropriate matching relation between states of the
two calculi. We prove basic properties of the calculi and also either a forward or a
backward simulation. We then use these to discharge the assumptions of a lifting
lemma to get a proof of bisimulation between ORD-RES-i and ORD-RES-(i+ 1).
This results in a chain of small bisimulations.

We then prove our second theorem, which states that there exists a bisimulation
between ORD-RES-1 and ORD-RES-11, by composing the small bisimulations of
the refinement steps. This means that the two calculi are equivalent and will both
either find the same model, derive the same contradiction, or never terminate.

Finally, we prove our third theorem, which states that ORD-RES-11 is a strategy
for regular SCL(FOL). Here, we generalize the concept of strategy to allow projecting
the enriched states of ORD-RES-11 to states of SCL(FOL). We generalize the
nonsubsumption and termination theorems for SCL(FOL) [25] to this new concept
of projectable strategy. By instantiating these theorems, we show that ORD-RES-11
only learns nonsubsuming clauses and always terminates. This also hold for ORD-
RES-1 by bisimulation. Other results such as nonredundancy of learned clauses could
also be instantiated in a similar way.
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7.4 Lifting a Simulation to a Bisimulation

Section 7.6 presents a total of 11 bisimulations, which would naïvely require 22
simulation proofs (11 forward and 11 backward): an ambitious endeavor in both size
and complexity. This is especially true when we have to stick to the same matching
relation for both directions, as this restricts the ways we can specify matching states.
It is however possible to substantially lessen this burden.

A folklore lemma states that it is possible to reverse a simulation between two
deterministic transition systems. For example, assuming we have a forward simulation
between deterministic transition systems Q and R w.r.t. the matching relation ∼,
the folklore lemma states that there exists a matching relation ≈ and a backward
simulation between Q and R w.r.t. ≈. We would end up with a forward simulation
w.r.t. ∼ and a backward simulation w.r.t. ≈. This is, however, not enough to prove
a bisimulation, which requires both the forward and backward simulation to be w.r.t.
the same matching relation. To solve this problem, we need to extend the folklore
lemma.

We prove a new lemma that states the existence of a new matching relation
w.r.t. which the simulation is lifted to a bisimulation under some assumptions on
the transition relation. This new matching relation works by counting the steps of
both transition systems between matching states and is defined specifically to allow
proving both a reversed simulation, as in the folklore lemma, but also a simulation
in the same direction as the input. This result should not surprise any expert, but
we nevertheless could not find it explicitly stated, let alone rigorously proven, in the
literature.

This lifting lemma not only allows us to do only half of the work, it also allows
us to chose the direction to prove: it gives us a bisimulation whether we provide
a forward or a backward simulation. This is especially useful because one of the
directions is usually much easier to prove than the other, but which one it is varies
depending on the exact two transition systems considered.

Lemma 7.7 (Lifting a Simulation to a Bisimulation). Let Ra :: ′a ⇒ ′a ⇒ bool
and Rb :: ′b⇒ ′b⇒ bool be transition relations. Let ∼ :: ′i⇒ ′a⇒ ′b⇒ bool be an
annotated matching relation between states of types ′a and ′b with an annotation of
type ′i. Let < :: ′i⇒ ′i⇒ bool be a well-founded relation on annotations. If

• Ra is right-unique (i.e., functional):
∀x y z . Ra x y −→ Ra x z −→ y = z

• Rb is right-unique:
∀x y z . Rb x y −→ Rb x z −→ y = z

• matching states w.r.t. ∼ agree on whether they are stuck or not:
∀i a b. a

i∼ b −→ (a is stuck ←→ b is stuck)
• Rb simulates Ra w.r.t. ∼ and <

then there exists a matching relation ≈ :: N×N⇒ ′a⇒ ′b⇒ bool and a well-founded
relation � :: N× N⇒ N× N⇒ bool such that the following holds:

• states matching w.r.t. ∼ also match w.r.t. ≈:
∀i a b. a

i∼ b −→ (∃j . a
j
≈ b)

• states matching w.r.t. ≈ either are both stuck and matching w.r.t. ∼ or can
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both progress to states matching w.r.t. ∼:
∀j a b. a

j
≈ b −→

(a is stuck ∧ b is stuck ∧ (∃i . a i∼ b)) ∨
(∃a ′ b′. R+

a a a ′ ∧R+
b b b′ ∧ (∃i . a ′ i∼ b′))

• there is a bisimulation between Ra and Rb w.r.t. ≈ and �

The third hypothesis of Lemma 7.7, i.e., that matching states agree on stuck
states, is cumbersome to discharge in practice. The proof usually consists of proving
both direction of the iff separately; each direction requires a long and complex case
analysis of the possible transition rules of the transitions systems.

To avoid this difficulty, we introduce the concepts of safe states and well-behaved
transition systems. We then use these new concepts to more easily discharge the
hypothesis that matching states agree on stuck states.

Definition 7.8 (Safe State). Let 〈R;F〉 be a transition system with R :: ′a⇒ ′a⇒
bool and F :: ′a⇒ bool . Let x :: ′a be a state. We say that x is safe if all stuck states
reachable from it are final: ∀y . R∗ x y −→ (y is stuck) −→ F y.

Definition 7.9 (Wellbehaved Transition System). Let 〈R;F〉 be a transition system
with R :: ′a ⇒ ′a ⇒ bool and F :: ′a ⇒ bool . Let S :: ′a ⇒ bool be a predicate
identifying safe states. We say that 〈R;F〉 is well-behaved w.r.t. S if it fulfills the
following conditions:

• R is right-unique:
∀x y z . R x y −→ R x z −→ y = z

• final states are stuck:
∀x . F x −→ (x is stuck)

• states fulfilling S are safe:
∀x . S x −→ (x is safe)

If all states are safe, we omit the predicate S and simply say that 〈R;F〉 is well-
behaved.

Definition 7.9 was chosen so that final states of well-behaved transition systems
coincide with stuck states.

Lemma 7.10. Let 〈R;F〉 be a transition system with R :: ′a ⇒ ′a ⇒ bool and
F :: ′a ⇒ bool . Let S :: ′a ⇒ bool be a predicate identifying safe states. If 〈R;F〉
is well-behaved w.r.t. S, then its final states under S are exactly the stuck states:
∀x . S x −→ (F x ←→ x is stuck).

We can use Lemma 7.10 to lift agreement on final states to agreement on stuck
states.

Lemma 7.11. Let 〈Ra ;Fa〉 be a transition system with Ra :: ′a ⇒ ′a ⇒ bool and
Fa :: ′a ⇒ bool . Let 〈Rb ;Fb〉 be a transition system with Rb :: ′b ⇒ ′b ⇒ bool and
Fb :: ′b ⇒ bool . Let ∼ :: ′i ⇒ ′a ⇒ ′b ⇒ bool be an annotated matching relation
between states of types ′a and ′b with an annotation of type ′i. If

• 〈Ra ;Fa〉 is well-behaved w.r.t. λa. ∃i b. a i∼ b

• 〈Rb ;Fb〉 is well-behaved w.r.t. λb. ∃i a. a i∼ b
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• matching states w.r.t. ∼ agree on whether they are final or not:
∀i a b. a

i∼ b −→ (Fa a ←→ Fb b)

then matching states w.r.t. ∼ agree on whether they are stuck or not:
∀i a b. a

i∼ b −→ (a is stuck ←→ b is stuck).

Combining Lemmas 7.7 and 7.11, we only need to show that two transitions
systems are well-behaved and agree on final states to lift a simulation to a bisimulation.
This is advantageous because it is usually easier to prove that two transition systems
agree on final states than to prove that they agree on stuck states.

7.5 A Strategy for Ground Ordered Resolution
ORD-RES is a standard ground resolution calculus that nondeterministically
applies the inference rules presented in Section 7.2.1. The calculus is defined as a
transition system 〈⇒ORD-RES; finalORD-RES〉 on states of type ′fstateord-res =

′fgclause
fset ; the finite set contains both initial and learned clauses. We first present the
definition of final states because this notion is used in the definition of the transition
relation.

Definition 7.12 (ORD-RES Final States). A state is considered final by finalORD-RES ::

′f stateord-res ⇒ bool if either it contains the empty clause or model construction
succeeds (i.e., the constructed model makes all clauses true):

∀N . finalORD-RES N ←→ (⊥ ∈ N ∨ (∀C ∈ N . interpN�clsC |= C ))

Definition 7.13 (ORD-RES Transition Relation). The transition relation⇒ORD-RES::

′f stateord-res ⇒ ′f stateord-res ⇒ bool is specified as follows.

Factoring N ⇒ORD-RES (N ∪ {C ′})
Side conditions:

1. ¬finalORD-RES N

2. C ∈ N

3. C ′ is inferred by factorization of C

Resolution N ⇒ORD-RES (N ∪ {E})
Side conditions:

1. ¬finalORD-RES N

2. C ∈ N

3. D ∈ N

4. E is inferred by resolution of C and D

The transition relation ⇒ORD-RES consists of two rules: the first rule learns a new
clause by factorization of a nondeterministically chosen clause and the second rule
learns a new clause by resolution of two nondeterministically chosen clauses.

The termination condition of⇒ORD-RES (Condition 1 of both rules) is nonstandard;
ordered resolution usually terminates when all possible inferences are redundant. We
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deviate from the standard termination condition because the simulation framework
(Chapter 6) requires the considered calculi to agree on final states and because
SCL(FOL) (Chapter 5), which we ultimately want to relate to ORD-RES through
simulation, terminates as soon as it derives a contradiction or finds a partial model
that makes all clauses true. So we defined finalORD-RES to closely resemble the
corresponding predicate of SCL(FOL) and use a nonstandard termination condition
in ⇒ORD-RES. This change is justified by the following observations.

• Once the empty clause is derived, any following inference would be redundant.
• Once model construction succeeds, it keeps succeeding even if more inferences

are performed.

ORD-RES-1 is a deterministic calculus that uses the model construction found
in the proof of refutational completeness to guide the order of the inference rules.
The calculus is defined as a transition system 〈⇒ORD-RES-1; finalORD-RES-1〉 on states
of type ′f stateord-res-1 = ′f stateord-res ; the type of states is the exact same as in
ORD-RES.

Definition 7.14 (Least False Clause). Let N :: ′fgclause fset be a finite set of ground
clauses. Let C :: ′f gclause be a ground clause. We say that C is the least false clause
in N if it is the least clause not made true by the model construction:

C is the least clause in {D ∈ N | interpN�clsD 6|= D}

Note that the empty clause ⊥ is always the least false clause in any set it is a
member of, because ⊥ is always false, i.e., ∀I. I 6|= ⊥, and ⊥ is the least of all clause,
i.e., ∀C . ⊥ �cls C .

Definition 7.15 (ORD-RES-1 Transition Relation). The transition relation⇒ORD-RES-1::

′f stateord-res-1 ⇒ ′f stateord-res-1 ⇒ bool is specified as follows.

Factoring N ⇒ORD-RES-1 (N ∪ {D ′})
Side conditions:

1. D is the least false clause in N

2. L is a maximal literal in D

3. L is a positive literal
4. D ′ is inferred by factorization of D

Resolution N ⇒ORD-RES-1 (N ∪ {D ′})
Side conditions:

1. D is the least false clause in N

2. L is a maximal literal in D

3. L is a negative literal
4. C ∈ N

5. C produces the atom of L w.r.t. N
6. D ′ is inferred by resolution of C and D
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The transition relation ⇒ORD-RES-1 consists again of two rules for factorization
and resolution, but the side conditions differ substantially from those found in
⇒ORD-RES. Condition 1 of ⇒ORD-RES-1 imply conditions 1 and 2 of ⇒ORD-RES but
also deterministically specify the clause to use. Conditions 2 and 3 of ⇒ORD-RES-1
deterministically specify whether to use the factorization or resolution rule. Condition
5 of the resolution rule deterministically specifies the second clause to resolve with.

Definition 7.16 (ORD-RES-1 Final States). A state is considered final by
finalORD-RES-1 ::

′f stateord-res-1 ⇒ bool if it is considered final by finalORD-RES:

∀N . finalORD-RES-1 N ←→ finalORD-RES N

Now that ORD-RES-1 is fully specified, we proceed to prove that it is well-
behaved.

Lemma 7.17. The transition system 〈⇒ORD-RES-1; finalORD-RES-1〉 is well-behaved.

Proof Sketch. By definition of well-behaved transition systems, we must prove the
following:

• ⇒ORD-RES-1 is right-unique:
∀x y z . x ⇒ORD-RES-1 y −→ x ⇒ORD-RES-1 z −→ y = z

• final states are stuck:
∀x . finalORD-RES-1 x −→ (x is stuck)

• all states are safe:
∀x . (x is safe)

We then prove our first theorem stating that ORD-RES-1 is a strategy for
ORD-RES (i.e., transitions in ORD-RES-1 are a subset of transitions in ORD-RES).

Theorem 7.18 (ORD-RES-1 Strategy for ORD-RES). Let N and N ′ be finite sets
of ground clauses. If N ⇒ORD-RES-1 N ′, then N ⇒ORD-RES N ′.

Note that ORD-RES-1 is not only a strategy of ORD-RES, but that it is also
refutationally complete. This is justified by the following observations.

• The transition rules reuse the factoring and resolution inferences from Sec-
tion 7.2.1, which we proved refutationally complete.

• The termination condition does not impact refutational completeness.
• Our choice of the clauses on which to apply the inferences is guided by the

model construction from Section 7.2.1, which is used in the proof of refutational
completeness of ordered resolution; this means that ORD-RES-1 performs
exactly the required inferences for refutational completeness.

7.6 Refinement Steps

Our first refinement step will bring us closer to SCL(FOL) by performing multiple
factorization steps at once.
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ORD-RES-2 performs exhaustive factorization in a single step. The calculus
is defined as a transition system 〈⇒ORD-RES-2; finalORD-RES-2〉 on states of type
′fstateord-res-2 = ′fgclause fset× ′fgclause fset× ′fgclause fset . A state of ORD-RES-2
is a tuple 〈N ;Ur ;Uf 〉 consisting of a finite set N of initial clauses, a finite set Ur of
clauses inferred by resolution, and a finite set Uf of clauses inferred by factorization.

Before defining the transition relation and predicate on final states, we define a
function to perform exhaustive factorization.

Definition 7.19 (Exhaustive Factorization). Let C :: ′f gclause be a ground clause.
The function efac :: ′f gclause ⇒ ′f gclause performs exhaustive factorization of its
argument C through repeated application of the factorization rule:

efac C = (THEC ′. ord_res.ground_factoring∗ C C ′ ∧
(@C ′′. ord_res.ground_factoring C ′ C ′′))

The Isabelle/HOL syntax THE x . P x corresponds to the definite description
operator and returns the one and only value x for which the predicate P holds.

In Definition 7.19, the first conjunct ensures that there is at least one value—by
reflexivity if ord_res.ground_factoring is not applicable—and the second conjunct
ensures that there is at most one value—by determinism of ord_res.ground_factoring
there is only one transitive run and only the very last element of this run is selected.

Definition 7.20 (ORD-RES-2 Transition Relation). The transition relation⇒ORD-RES-2::

′f stateord-res-2 ⇒ ′f stateord-res-2 ⇒ bool is specified as follows.

Factoring 〈N ;Ur ;Uf 〉 ⇒ORD-RES-2 〈N ;Ur ;Uf ∪ {efacD}〉
Side conditions:

1. D is the least false clause in N ∪Ur ∪Uf

2. L is a maximal literal in D

3. L is a positive literal

Resolution 〈N ;Ur ;Uf 〉 ⇒ORD-RES-2 〈N ;Ur ∪ {D ′};Uf 〉
Side conditions:

1. D is the least false clause in N ∪Ur ∪Uf

2. L is a maximal literal in D

3. L is a negative literal
4. C ∈ N ∪Ur ∪Uf

5. C produces the atom of L w.r.t. N ∪Ur ∪Uf

6. D ′ is inferred by resolution of C and D

Remark 7.21. The first side condition of the factorization rule searches for the
least false clause in N ∪Ur ∪Uf but it would sufficient to only search in the clauses
N ∪ Ur . The finite set Uf contains exhaustively factorized clauses, which implies
that they all have a strictly maximal positive literal. From this and Definition 7.2
follows that these clauses will always be either already true, or made true by epsilon.
This means that the clauses in Uf will never be false and, thus, never selected as the



86 CHAPTER 7. SIMULATION BETWEEN SCL(FOL) AND RESOLUTION

least false clause. We nonetheless chose to use N ∪Ur ∪Uf in the factorization rule
because it allows us to reuse the predicate from ORD-RES-1 corresponding to this
side condition instead of defining a new one. This choice is also more consistent with
the side condition of the resolution rule: we can more easily see that the two first
side conditions of both the factorization and resolution rules are the same.

Definition 7.22 (ORD-RES-2 Final States). A state is considered final by finalORD-RES-2 ::

′fstateord-res-2 ⇒ bool if the union of its clause sets is considered final by finalORD-RES:

∀N Ur Uf . finalORD-RES-2 〈N ;Ur ;Uf 〉 ←→ finalORD-RES (N ∪Ur ∪Uf )

We again start by showing that ORD-RES-2 is well-behaved.

Lemma 7.23. The transition system 〈⇒ORD-RES-2; finalORD-RES-2〉 is well-behaved.

Proof Sketch. By definition of well-behaved transition systems, we must prove the
following:

• ⇒ORD-RES-2 is right-unique:
∀x y z . x ⇒ORD-RES-2 y −→ x ⇒ORD-RES-2 z −→ y = z

• final states are stuck:
∀x . finalORD-RES-2 x −→ (x is stuck)

• all states are safe:
∀x . (x is safe)

To show any kind of simulation between ORD-RES-1 and ORD-RES-2, we need
to identify states from both calculi that we consider equivalent. We do this with the
following matching relation.

Definition 7.24 (Matching Relation between ORD-RES-1 and ORD-RES-2). Let M
be a state of ORD-RES-1 and 〈N ;Ur ;Uf 〉 be a state of ORD-RES-2. Let i :: ′fgclause
be a measurement used to limit stuttering (i.e., one transition system progresses
while the other does not). The matching relation ∼:: ′f gclause ⇒ ′f stateord-res-1 ⇒
′f stateord-res-2 ⇒ bool considers M equivalent to 〈N ;Ur ;Uf 〉 w.r.t. i if M is equal
to N ∪Ur ∪Uf plus all partially factorized clauses up to the least false clause:

M
i∼ 〈N ;Ur ;Uf 〉 ←→

i = (the least false clause in M if there is one or ⊥ otherwise) ∧
(∃U . M = N ∪Ur ∪Uf ∪U ∧

(∀C ∈ U . C 6= efac C ∧
(∃C0 ∈ N ∪Ur ∪Uf . ord_res.ground_factoring+ C0 C ∧
(efac C ∈ Uf ∨ C0 is the least false clause in N ∪Ur ∪Uf ))))

The measurement i is used in the proof of forward simulation when ORD-RES-1
performs a factorization step, but the inferred clause is still not exhaustively factorized.
The partly factorized clause becomes ORD-RES-1’s new least false clause and another
factorization will be performed. During all this time, ORD-RES-2 “waits” and does
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not progress. Only when ORD-RES-1 performs the ultimate factorization step does
ORD-RES-2 performs an exhaustive factorization in one step. Definition 7.6 requires
us to provide a measurement and a well-founded relation to ensure the finiteness
of this “waiting time”. Because factorization produces a strict submultiset, i.e., the
original clause minus one literal, we can directly use the clause getting factorized as
a measurement and ⊂ as well-founded relation. An alternative would have been to
use a natural number, i.e., the number of occurrences of the maximal positive literal
in the clause, and < as well-founded relation.

Definition 7.24 specifies on line 3 the existence of a finite set U of partially factor-
ized clauses saved in ORD-RES-1’s state (i.e., in M ) but not in ORD-RES-2’s state
(i.e., in N ∪Ur ∪Uf ). Every clause C ∈ U can be further factorized because applying
efac on line 4 has an effect (i.e., C 6= efac C ). Line 5 further specifies that every
clause C ∈ U can be inferred by repetitive factorization—ord_res.ground_factoring+

is the transitive closure of the factorization rule—of a clause C0 saved in ORD-RES-
2’s state (i.e., in N ∪ Ur ∪ Uf ). From these two conditions, we know that C is a
partially factorized clause. Finally, line 6 distinguishes between two possibilities:
either the clause is some intermediate step of an exhaustively factorized clause known
to ORD-RES-2 (i.e., efac C ∈ Uf ), or it is some intermediate step of an ongoing
factorization chain of ORD-RES-1 (i.e., C0 is the least false clause in N ∪Ur ∪Uf ).
In this last case, ORD-RES-2 is currently “waiting” for ORD-RES-1 and will soon
perform the exhaustive factorization of C0 .

The lifting lemma from Section 7.4 allows us to lift a simulation to a bisimulation
if we can show that the two transitions systems are well-behaved and agree on final
states. Lemmas 7.17 and 7.23 already proved that ORD-RES-1 and ORD-RES-2 are
well-behaved. We still need to prove that they agree on final states.

Lemma 7.25 (Agreement of ORD-RES-1 and ORD-RES-2 on Final States). Match-
ing states w.r.t. ∼ agree on whether they are final or not.

We now only need to prove a simulation: either a forward or a backward one. In
a forward simulation, we need to use the measurement to prove that ORD-RES-2
only stutters finitely often. In a backward simulation, we need to prove that one
exhaustive factorization step in ORD-RES-2 corresponds to a nonempty chain of
factorization steps in ORD-RES-1: this requires to prove at each step of the chain
that the inferred clause is the new least false clause. We chose the forward direction
because it a priori felt more intuitive.

Lemma 7.26 (Simulation between ORD-RES-1 and ORD-RES-2). There exists a
forward simulation between ORD-RES-1 and ORD-RES-2 w.r.t. ∼ and ⊂.

We can now use the lifting lemma to get a bisimulation.

Lemma 7.27 (Bisimulation between ORD-RES-1 and ORD-RES-2). There exists a
bisimulation between ORD-RES-1 and ORD-RES-2.

Proof Sketch. By Lemmas 7.7, 7.11, 7.17, 7.23, 7.25 and 7.26.

All remaining refinement steps follow the same pattern: (1) we define a new
calculus as a transition system that changes some aspect of the previous calculus;
(2) we prove that this new calculus is well-behaved, sometimes conditionally w.r.t.



88 CHAPTER 7. SIMULATION BETWEEN SCL(FOL) AND RESOLUTION

a safety predicate; (3) we define a matching relation; (4) we prove that the new
calculus agrees with the previous one on final states; (5) we prove either a forward
or a backward simulation; (6) we lift the simulation to a bisimulation. To save space
and avoid repetitive and complex definitions, we will only sketch the noteworthy
elements of the remaining refinement steps. We refer the interested reader to the
Isabelle/HOL formalization for the details.

The exact choice of which changes to do and in which order was highly subjective:
we always considered the remaining differences to SCL(FOL) and chose some change
that would bring us closer.

The next refinement step is similar and performs multiple resolution steps at
once.

ORD-RES-3 performs exhaustive resolution in a single step. Neither the state
nor the predicate on final states change. We define a function eres analogue to efac
and use it in the resolution rule of the transition relation ⇒ORD-RES-3 to perform all
resolution steps at once.

The matching relation between ORD-RES-2 and ORD-RES-3 is analogue to the
one between ORD-RES-1 and ORD-RES-2. The main difference is that we do not
need a measurement to avoid stuttering.

We prove a backward simulation between ORD-RES-2 and ORD-RES-3.

Remark 7.28 (Stuttering Measurement vs Intermediate Steps). ORD-RES-2 and
ORD-RES-3 are very similar as they both replace a sequence of steps by one big step.
This gave us an opportunity to try both a forward and a backward simulation and
compare the proof size and complexity. On paper, the two directions felt somewhat
comparable, but actually formalizing the proofs in Isabelle/HOL revealed differences.
Our proof of backward simulation is bigger than our proof of forward simulation and
it felt much harder to get the details right, details which we glossed over on paper.
Our conclusion is that measuring stuttering, when possible, can be substantially easier
than proving a chain of intermediate steps.

For the next refinement, we address the fact that factorization is handled in two
quite different ways in SCL(FOL): propagating clauses are implicitly and exhaustively
factorized w.r.t. the propagated literal and conflicting clauses can be factorized w.r.t.
any literal. In the model-guided strategy of ORD-RES-1, factorization is only
performed w.r.t. the positive maximal literals of false clauses. In other words, these
false clauses are factorized w.r.t. their positive maximal literal after which the inferred
clauses become productive. This rules out SCL(FOL)’s factorization of conflicting
clauses, because conflict resolution always involves the resolution rule. This means
that factorization must be done implicitly during literal propagation. The next
refinement brings us closer to that.

ORD-RES-4 performs implicit factorization by saving the clauses that ought to
be implicitly factorized. A state of ORD-RES-4 is a tuple 〈N ;Ur ;F〉 consisting of a
finite set N of initial clauses, a finite set Ur of clauses learned by resolution, and a
finite set F ⊆ N ∪Ur of clauses that ought to be implicitly factorized.

We define the following function to perform implicit factorization.
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Definition 7.29 (Implicit Exhaustive Factorization). Let F :: ′f gclause fset be a
set of ground clauses. Let C :: ′f gclause be a ground clause. The function iefac ::
′f gclause fset ⇒ ′f gclause ⇒ ′f gclause performs exhaustive factorization of its
argument C through efac if C is in F :

iefac F C = (if C ∈ F then efac C else C )

The transition relation ⇒ORD-RES-4 and predicate finalORD-RES-4 on final states
are similar to ⇒ORD-RES-3 and finalORD-RES-3 except for the following changes.

• Every time the set of known clauses is used, the relevant clauses are implicitly
factorized, i.e., ORD-RES-4 uses {iefac F C | C ∈ N ∪Ur} everywhere ORD-
RES-3 uses N ∪Ur ∪Uf .

• The transition rule handling factorization extends the finite set F with the
clause to be factorized, i.e., it remembers to implicitly factorize the clause
instead of explicitly learning the factorized clause.

The matching relation between ORD-RES-3 and ORD-RES-4 requires that the
invariant F ⊆ N ∪Ur holds for ORD-RES-4 and that the finite set Uf in ORD-RES-3
contains exactly the clauses implicitly factorized in ORD-RES-4.

We prove a forward simulation between ORD-RES-3 and ORD-RES-4.
For the next refinement, we start to address the fact that SCL(FOL) explicitly

and iteratively builds a partial model while our calculi so far relied on implicitly
constructing a model at each application of a transition rule.

ORD-RES-5 explicitly builds a partial model that closely matches the implicit
model construction by iterating over clauses. A state of ORD-RES-5 is a tuple 〈N ;
Ur ;F ;M; C〉 consisting of a finite set N of initial clauses, a finite set Ur of clauses
learned by resolution, a finite set F ⊆ N ∪Ur of clauses that ought to be implicitly
factorized, a partial model M expressed as a partial function from atoms to clauses,
and an optional clause C that identifies the next clause to be considered.

The initial state is 〈N ; {}; {}; ε; C〉 where C is either the least clause in N , if there
is one, or † otherwise.

The domain of the partial function M consists of all atoms considered true in
the partial model built by model construction up to but excluding the clause in C.
The codomain ofM uniquely identifies the clauses that made each of the atoms true.
At all time, if C = D for some clause D , then domM corresponds exactly to the
result of model construction up to but excluding D (i.e., domM = interp {iefacF C |
C ∈ N ∪Ur}≺clsD) and all clauses less than D are true w.r.t. the partial model (i.e.,
∀C ∈ {iefac F C | C ∈ N ∪ Ur}. C ≺cls D −→ domM |= C ). If C = †, model
construction is completed and all clauses are true w.r.t. the partial model.

The transition relation ⇒ORD-RES-5 starts from the initial state and reimplements
the model construction as explicit rules of the calculus. Each rule works on the next
clause to be considered, i.e., C = D for some clause D . If D is true w.r.t. the partial
model, then it is skipped and the least clause greater than D is saved in the state to
be considered next time. If D is false w.r.t. the partial model but produces the atom
A, then the partial model is expanded by defining the case A 7→ D in the function
M; the least clause greater than D is then saved in the state to be considered next
time. If D is false w.r.t. the partial model and does not produce any atom, then
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either the factorization or the resolution rule applies; whichever it was, the partial
model is then reset to zero and the next clause to be considered reset to the least of
the known clauses. The model construction then restarts from the beginning.

The predicate finalORD-RES-5 on final states considers a state final either if C = †,
i.e., model construction is completed and all clauses are true, or if C = ⊥, i.e., the
empty clause was derived.

The matching relation between ORD-RES-4 and ORD-RES-5 requires that
invariants of ORD-RES-5 are fulfilled and that the states are the same except for
the explicit partial model which exists in ORD-RES-5 but not in ORD-RES-4. To
ensure that the explicit model in ORD-RES-5 corresponds to the implicit model in
ORD-RES-4, the matching relation also requires that the next clause to be considered
by ORD-RES-5 is the least false clause in ORD-RES-4.

We prove a forward simulation between ORD-RES-4 and ORD-RES-5. The
way we chose to define the matching relation means that, for every step made by
ORD-RES-4, we have to perform the same factorization or resolution step and then
construct the full sequence of ORD-RES-5 steps that builds in advance the exact
same partial model, up to a least false clause, that ORD-RES-4 will compute in its
the next step.

The next refinement step adds an optimization that saves us from rebuilding
similar partial models again and again. When ORD-RES-5 performs a factorization
or resolution step, it discards its partial model and restarts from the least known
clause. This is a simple and sound strategy, but an inefficient one: the next partial
model that will get built is usually very similar to the previous one. Because the
model construction works by iterating over clauses in order, a better strategy is to
find out the clause at which the next partial model differs from the old one and reset
the partial model to that common subset. We call this operation a backjump.

ORD-RES-6 performs a backjump when learning a new clause. Neither the state
nor the predicate on final states change.

The transition relation ⇒ORD-RES-6 is similar to ⇒ORD-RES-5 except for the follow-
ing changes.

• The rule handling factorization keeps the partial model and sets the next clause
to be considered to the exhaustively factorized clause.

• The rule handling resolution is split into three rules that handle the cases when
the result of resolution is ⊥, a nonempty clause with a positive maximal literal,
or a nonempty clause with a negative maximal literal. Each case varies in the
partial model that can be kept or the next clause to be considered.

The matching relation between ORD-RES-5 and ORD-RES-6 requires that
invariants are fulfilled and that the states are the same.

We prove a backward simulation between ORD-RES-5 and ORD-RES-6. For
every step made by ORD-RES-6, we have to perform the same step in ORD-RES-5
and then construct the full sequence of ORD-RES-5 steps that builds the exact same
partial model and reaches the same next-to-be-considered clause as ORD-RES-6.

At this point, we have an explicit and efficient model construction, but its
representation as a partial function is very different from the trail of annotated literals
used by SCL(FOL). In the next refinement step, we change the data representation
of the partial model to more closely align to SCL(FOL).
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ORD-RES-7 explicitly builds a partial model as a trail of literals by iterating
over clauses. A state of ORD-RES-7 is a tuple 〈N ;Ur ;F ;Γ ; C〉 consisting of a finite
set N of initial clauses, a finite set Ur of clauses learned by resolution, a finite set
F ⊆ N ∪ Ur of clauses that ought to be implicitly factorized, a partial model Γ
expressed as a sequence of annotated literals, i.e., a trail in SCL(FOL) parlance, and
an optional clause C that identifies the next clause to be considered.

The trail contains literals to explicitly identify whether each atom should be
considered true (using a positive literal) or false (using a negative literal). All atoms
that were implicitly false in ORD-RES-6 due to not being in the partial model are
made explicitly false in ORD-RES-7 by storing them as negative literals in the trail.
The annotated literals in the trail are actually pairs of a literal and an optional clause
(the annotation). If present, the annotation saves the clause that produced the atom
of the literal. Because produced atoms are always considered true, the annotated
literals will always be positive.

The transition relation ⇒ORD-RES-7 is similar to ⇒ORD-RES-6 except for the follow-
ing changes.

• ORD-RES-7 uses predicates from SCL(FOL) for true or false clauses w.r.t. a
trail everywhere ORD-RES-6 uses predicates from ORD-RES for true or false
clauses w.r.t. a set of positive atoms.

• ORD-RES-7 uses trail extension or trail restriction everywhere ORD-RES-6
uses function extension or function restriction on its model.

• The rules that expand the model or skip a clause are changed to also add
negative literals to the trail.

• All rules ensure that, before they apply, all atoms less than the currently
considered clause’s greatest atom are defined in the trail.

One difficulty arises when the currently considered clause is already true w.r.t. the
trail but the truth value of the atom of its greatest literal is still undefined. At this
point, it is unknown whether this atom should be added as a positive or a negative
literal to the model. It could be either, depending on the following clauses. One
simple but incomplete solution is to skip this clause and let the case be handled later
when more information is available. But this simple solution breaks when there is no
next clause, because it would end the run of the calculus with an incomplete trail
missing one atom, breaking one of the key invariants of the calculus. Our complete
solution is to add checks and dedicated rules to recognize these corner cases; when
there is no next clause, we decide that the atom is negative.

In total,⇒ORD-RES-7 has ten rules: six for model construction, one for factorization,
and three for resolution. We specified 15 invariants and needed approximately 4000
lines to prove that they are preserved by ⇒ORD-RES-7.

The matching relation between ORD-RES-6 and ORD-RES-7 requires that the
invariants of both calculi hold, that the states only differ in their model representation,
and that the two model representations are equivalent. The matching relation defines
the finite set of atoms undefined in the trail of ORD-RES-7 as a decreasing measure
that limits stuttering.

We prove a backward simulation between ORD-RES-6 and ORD-RES-7. For
every step made by ORD-RES-7, we have to either perform the corresponding step in
ORD-RES-6 or prove that the final set of atoms undefined in the trail of ORD-RES-7
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strictly decreases.
At this point, we have an explicit and efficient model construction that closely

resembles the one in SCL(FOL), but it is based on iterating over clauses while
SCL(FOL) iterates over atoms. In the next refinement step, we change iteration
pattern.

ORD-RES-8 explicitly builds a partial model as a trail of literals by iterating
over atoms. A state of ORD-RES-8 is a tuple 〈N ;Ur ;F ;Γ 〉 consisting of a finite
set N of initial clauses, a finite set Ur of clauses learned by resolution, a finite set
F ⊆ N ∪Ur of clauses that ought to be implicitly factorized, and a partial model Γ
expressed as a trail.

The transition relation ⇒ORD-RES-8 is substantially simpler than ⇒ORD-RES-7: it
consists of two rules for model construction, one rule for factorization, and one rule
for resolution. The model-construction rules start by finding the least atom undefined
in the trail. If a clause can propagate this atom, then the trail gets expanded with a
positive literal annotated with the propagating clause. If no clause can propagate
this atom, but a clause can be factorized w.r.t. this atom, then the factorization
rule is used. Otherwise, the trail gets expanded with a negative literal. All three
previous rules are conditional on no clause being false w.r.t. the trail. If there is
such a false clause, then the resolution rule is applied. All special rules present in
⇒ORD-RES-7 to handle corner cases disappear because there is no need to handle a
next-to-be-considered clause anymore.

The predicate finalORD-RES-8 on final states considers a state final either if all
atoms are defined and there is no false clause, or if ⊥ is in the known clauses.

The matching relation between ORD-RES-7 and ORD-RES-8 requires that the
invariants of both calculi hold and that the states are the same except for ORD-
RES-7’s next-to-be-considered clause, which must be the least clause nonskipped by
ORD-RES-7. The definition of least nonskipped clause is very technical and was
chosen exactly to fit the simulation proof.

We prove a backward simulation between ORD-RES-7 and ORD-RES-8. For
every step made by ORD-RES-8, we have to perform a corresponding step in ORD-
RES-7 and then construct a sequence of ORD-RES-7 steps that jump over all clauses
that are skipped because they neither lead to an expansion of the model, nor to a
factorization rule, nor to a resolution rule.

The next refinement steps aims to remove the need for a distinct rule to handle
factorization, because SCL(FOL) does not have such a rule and instead performs
factorization implicitly when propagating.

ORD-RES-9 takes note of the necessary implicit factorizations during propagation.
Neither the state nor the predicate on final states change.

The transition relation ⇒ORD-RES-9 is similar to ⇒ORD-RES-8 except for the follow-
ing changes.

• There is no rule for factorization.
• When possible, the rule propagating a positive literal to the trail performs

exhaustive factorization of the annotated clause and register the clause to be
implicitly factorized in the future.
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The matching relation between ORD-RES-8 and ORD-RES-9 requires that the
states are the same.

We prove a backward simulation between ORD-RES-8 and ORD-RES-9. For
every step made by ORD-RES-9, we have to perform the corresponding step in
ORD-RES-8 and if ORD-RES-9 performs some factorization when propagating, we
have to construct beforehand the equivalent sequence of ORD-RES-8 steps.

The next refinement step aims to minimize the number of propagations, replacing
most of them by decisions of positive literal. This is desirable because these prop-
agations could force SCL(FOL) to perform unwanted resolution steps between an
annotated clause and a conflicting clause.

ORD-RES-10 favors decisions and propagates if, and only if, a conflict is imminent.
Neither the state nor the predicate on final states change.

The transition relation ⇒ORD-RES-10 is similar to ⇒ORD-RES-9 except for the
following changes.

• The propagation rule is only applied if it will immediately produce a conflict.
• A new rule decides a positive literal for cases when propagation could have

been used but for the new conflict-producing condition.
The matching relation between ORD-RES-9 and ORD-RES-10 requires that the

invariants of both calculi hold, that the states are the same except for the trails,
where some propagated literals in ORD-RES-9 may be replaced by decided positive
literals in ORD-RES-10.

We prove a backward simulation between ORD-RES-9 and ORD-RES-10. For
every step made by ORD-RES-10, we have to perform corresponding step in ORD-
RES-9. The decisions of positive literals in ORD-RES-10 correspond to a propagation
in ORD-RES-9.

The next and last refinement step aims to split the exhaustive resolution step
into multiple rules akin to conflict resolution in SCL(FOL). We will describe this last
calculus in more details than the calculi of the intermediate steps. In Section 7.7, we
will then show that this last calculus is a strategy of regular SCL(FOL).

ORD-RES-11 splits the exhaustive resolution step into multiple steps to detect
a conflict, perform one resolution step at a time, skip literals from the trail, and
backtrack. A state of ORD-RES-11 is a tuple 〈N ;Ur ;F ;Γ ; C〉 consisting of a finite
set N of initial clauses, a finite set Ur of clauses learned by resolution, a finite set
F ⊆ N ∪ Ur of clauses that ought to be implicitly factorized, a partial model Γ
expressed as a trail, and an optional conflicting clause C.

Before defining the transition relation and predicate on final states, we first
introduce a few intermediate definitions to hide complex and repetitive formulas.

Definition 7.30 (False Clause w.r.t. ORD-RES-11). Let 〈N ;Ur ;F ;Γ ; C〉 be an
ORD-RES-11 state. Let C be a ground clause. We say that C is a false clause w.r.t.
〈N ;Ur ;F ;Γ ; C〉 if it is a clause from N ∪Ur that is false w.r.t. the trail Γ :

C ∈ {iefac F C | C ∈ N ∪Ur} ∧ (C is false under Γ )

Definition 7.31 (Propagating Clause w.r.t. ORD-RES-11). Let 〈N ;Ur ;F ;Γ ; C〉 be
an ORD-RES-11 state. Let C be a ground clause. Let L be a ground literal. We
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say that C is a propagating clause for L w.r.t. 〈N ;Ur ;F ;Γ ; C〉 if C is a clause from
N ∪Ur that can propagate L w.r.t. the trail Γ :

C ∈ {iefac F C | C ∈ N ∪Ur} ∧ (L is undefined in Γ )∧
(L is a maximal literal in C ) ∧ (the clause {K ∈ C | K 6= L} is false under Γ )

Definition 7.32 (Least Undefined Atom w.r.t. ORD-RES-11). The unary functions
atomsclss :: ′a clause fset ⇒ ′a fset and atomstrail :: (

′a literal × ′b) list ⇒ ′a fset return
the finite set of all atoms (of any type ′a) occurring respectively in a clause set and
in a trail of annotated (with any type ′b) literals.

Let 〈N ;Ur ;F ;Γ ; C〉 be an ORD-RES-11 state. Let A be a ground atom. We say
that A is the least undefined atom w.r.t. 〈N ;Ur ;F ;Γ ; C〉 if it is the least atom from
N ∪Ur not in the trail Γ :

A is the least atom in {A2 ∈ atomsclss (N ∪Ur ) | ∀A1 ∈ atomstrail Γ . A1 ≺t A2}

We can now proceed to define the ORD-RES-11 calculus.

Definition 7.33 (ORD-RES-11 Transition Relation). The transition relation⇒ORD-RES-11::

′f stateORD-RES -11 ⇒ ′f stateORD-RES -11 ⇒ bool is specified as follows.

DecideNeg 〈N ;Ur ;F ;Γ ; †〉 ⇒ORD-RES-11 〈N ;Ur ;F ;Γ ′; †〉
Side conditions:

1. there is no false clause w.r.t. 〈N ;Ur ;F ;Γ ; †〉
2. A is the least undefined atom w.r.t. 〈N ;Ur ;F ;Γ ; †〉
3. there is no propagating clause for the positive literal A w.r.t. 〈N ;Ur ;F ;Γ ; †〉
4. Γ ′ = Γ , 〈¬A; †〉

DecidePos 〈N ;Ur ;F ;Γ ; †〉 ⇒ORD-RES-11 〈N ;Ur ;F ′;Γ ′; †〉
Side conditions:

1. there is no false clause w.r.t. 〈N ;Ur ;F ;Γ ; †〉
2. A is the least undefined atom w.r.t. 〈N ;Ur ;F ;Γ ; †〉
3. C is the least propagating clause for the positive literal A w.r.t. 〈N ;Ur ;F ;Γ ; †〉
4. F ′ = F ∪ (if (A is the greatest literal in C ) then {} else {C})
5. there is no false clause w.r.t. 〈N ;Ur ;F ′;Γ , 〈A; †〉; †〉
6. Γ ′ = Γ , 〈A; †〉

Propagate 〈N ;Ur ;F ;Γ ; †〉 ⇒ORD-RES-11 〈N ;Ur ;F ′;Γ ′; †〉
Side conditions:

1. there is no false clause w.r.t. 〈N ;Ur ;F ;Γ ; †〉
2. A is the least undefined atom w.r.t. 〈N ;Ur ;F ;Γ ; †〉
3. C is the least propagating clause for the positive literal A w.r.t. 〈N ;Ur ;F ;Γ ; †〉
4. F ′ = F ∪ (if (A is the greatest literal in C ) then {} else {C})
5. there is a false clause w.r.t. 〈N ;Ur ;F ′;Γ , 〈A; †〉; †〉
6. Γ ′ = Γ , 〈A; efac C 〉
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Conflict 〈N ;Ur ;F ;Γ ; †〉 ⇒ORD-RES-11 〈N ;Ur ;F ;Γ ;D〉
Side conditions:

1. D is the least false clause w.r.t. 〈N ;Ur ;F ;Γ ; †〉

Skip 〈N ;Ur ;F ;Γ , 〈L;_〉;D〉 ⇒ORD-RES-11 〈N ;Ur ;F ;Γ ;D〉
Side conditions:

1. comp L /∈ D

Resolve 〈N ;Ur ;F ;Γ , 〈L;C 〉;D〉 ⇒ORD-RES-11 〈N ;Ur ;F ;Γ , 〈L;C 〉;D ′〉
Side conditions:

1. comp L ∈ D

2. D ′ = (C − {L}) ∪ (D − {comp L})

Backtrack 〈N ;Ur ;F ;Γ , 〈L; †〉;D〉 ⇒ORD-RES-11 〈N ;Ur ∪ {D};F ;Γ ; †〉
Side conditions:

1. comp L ∈ D

Definition 7.34 (ORD-RES-11 Final States). A state is considered final by finalORD-RES-11 ::

′f stateORD-RES -11 ⇒ bool either if there is no undefined atom and no false clause
w.r.t. the state, or if the trail is empty and the conflicting clause is ⊥:

∀N Ur F Γ C. finalORD-RES-11 〈N ;Ur ;F ;Γ ; C〉 ←→
(C = † ∧ (there is no false clause w.r.t. 〈N ;Ur ;F ;Γ ; C〉) ∧
(there is no undefined atom w.r.t. 〈N ;Ur ;F ;Γ ; C〉)) ∨

(C = ⊥ ∧ Γ = ε)

The matching relation between ORD-RES-10 and ORD-RES-11 requires that the
invariants of both calculi hold and that the states are almost the same. The only
allowed difference in the states are that ⊥, if present, is in the set of learned clause
in ORD-RES-10 and the conflicting clause in ORD-RES-11.

We prove a forward simulation between ORD-RES-10 and ORD-RES-11. For
every step made by ORD-RES-10, we have to perform a corresponding step in
ORD-RES-11. In the case of an exhaustive resolution step in ORD-RES-10, we build
a sequence of conflict step, resolution steps, trail skipping steps, and backtracking
step in ORD-RES-11.

This concludes our sequence of refinements and we prove our second theorem
that composes all bisimulations between ORD-RES-1 and ORD-RES-11.

Theorem 7.35 (Bisimulation between ORD-RES-1 and ORD-RES-11). There exists
a bisimulation between ORD-RES-1 and ORD-RES-11.

Proof Sketch. By composition of the bisimulation between ORD-RES-1 and ORD-
RES-2, the bisimulation between ORD-RES-2 and ORD-RES-3, etc.

We have now proven that the calculi ORD-RES-1 and ORD-RES-11 behave the
same (i.e., they both either find the same model), derive a contradiction, or never
terminate. In Section 7.7, we will improve this result by proving that ORD-RES-11
always terminates, which in turns implies that ORD-RES-1 also always terminates.
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7.7 A Strategy for SCL(FOL)

SCL(FOL) corresponds to regular SCL as described in Section 5.3.
The last theorem we prove states that ORD-RES-11 is a strategy of SCL(FOL).

For this, we cannot simply show that every transition of the first is a transition of
the other, as we did in Theorem 7.18, because they operate on different states. The
differences are

1. the tuple members are in a different order;
2. ORD-RES-11 stores the initial clauses in its state while SCL(FOL) takes it as

a parameter to its transition relation;
3. the annotations in ORD-RES-11’s trail differs from those in SCL(FOL)’s trail;
4. ORD-RES-11 operates on ground terms while SCL(FOL) operates on first-order

terms; and
5. ORD-RES-11 stores a finite set of clauses (to implicitly factorize) that is

completely absent from SCL(FOL)’s state.
We could have avoided the differences (1), (2), and (3) if some refinements steps would
have been specified differently in Section 7.6—in fact, the Isabelle/HOL formalization
splits the calculi in two layers such that difference (2) is not a problem at all—but
that would have been at the cost of added complexity in specifications and proofs.
We could have avoided difference (4) by adding a supplementary refinement step
that changes the term representation, but this would not have solved difference
(5). The set of clauses to be implicitly factorized is necessary to be equivalent to
ORD-RES-1 and does not exists in SCL(FOL). There is no way to reconcile these
two facts when considering our current conception of what a strategy is: a subset of
possible transitions is simply not expressive enough.

Our solution is to generalize the concept of strategy to something we call a
projectable strategy. For this, we introduce the following two generalizations:

1. A strategy may work on a different set of states as long as there exists a
projection from the strategy’s states to those of the restricted system.

2. We only consider transitions from the strategy reachable from some initial
state.

Generalization (1) is self-explanatory and solves the problem we have with difference
(5) seen previously. Generalization (2) was made to allow a strategy to enforce some
invariants. In our concrete case, one example of such an invariant is that the set of
clauses to be implicitly factorized is a subset of the initial and learned clauses.

Definition 7.36 (Projectable Strategy). Let Ra :: ′a ⇒ ′a ⇒ bool and Rb ::
′b ⇒ ′b ⇒ bool be two transition relations. Let inita :: ′a and initb :: ′b be initial
states of Ra and Rb respectively. We say that Ra is a projectable strategy of Rb if
there exists a projection function P :: ′a⇒ ′b such that the following conditions are
fulfilled.

1. P inita = initb

2. ∀x y . Ra
∗ inita x −→ Ra x y −→ Rb (P x ) (P y)

Using this new concept of projectable strategy, we can now prove our third and
last theorem.
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Theorem 7.37 (ORD-RES-11 Strategy for SCL(FOL)). Let N be a finite set of
ground clauses. Let β be a ground atom. Let S and S ′ be ORD-RES-11 states.
There exists projection functions projtrm , projclss , and projstate such that the following
statements hold.

1. the projection of ORD-RES-11’s initial state is SCL(FOL)’s initial state:
projstate 〈N ; {}; {}; ε; †〉 = 〈ε; {}; †〉

2. if
• β is greater than or equal to all atoms in N :
∀A ∈ atomsclss N . A �t β

• S is reachable from the initial state:
〈N ; {}; {}; ε; †〉 ⇒∗

ORD-RES-11 S

• there is a transition from S to S ′:
S ⇒ORD-RES-11 S ′

then there is a corresponding regular SCL(FOL) transition:
(projstate S ) ⇒projclss N , projtrm β

Reg-SCL (projstate S
′)

Instead of assuming that β is greater than or equal to all atoms in N , we could
have fixed it to be the greatest atom of N . We preferred the slightly more general
formulation because it more closely follows SCL(FOL), which does not restrict β to
be an atom of N .

After having proven Theorem 7.37, we went back to the formalization of SCL(FOL)
[40] and generalized the main nonredundancy and termination results to our new
concept of projectable strategy. We then instantiated these generalized results and
obtained the following corollaries for free.

Corollary 7.38 (ORD-RES-11 Nonsubsumption). Let N be a finite set of ground
clauses. If a run of the ORD-RES-11 calculus starting from 〈N ; {}; {}; ε; †〉 learns a
clause, then this clause is not subsumed by any of the initial or learned clauses.

Corollary 7.39 (ORD-RES-11 Termination). Let N be a finite set of ground clauses.
Any run of the ORD-RES-11 calculus starting from 〈N ; {}; {}; ε; †〉 terminates.

Corollaries 7.38 and 7.39 also hold for ORD-RES-1 thanks to the bisimulation
proven in Theorem 7.35.

7.8 Conclusion

We proved in Isabelle/HOL that SCL(FOL) can simulate ground ordered resolution
and the other way around. We first formalized the ground ordered resolution calculus
by adapting an existing formalization of ground superposition. We then reused
the model-based strategy for ordered resolution specified by Bromberger et al. and
performed ten refinement steps, proving a bisimulation between the steps. To ease
these refinement steps, we proved a lifting lemma to get a bisimulation from a
simulation. We then showed that the ultimate calculus of the last refinement step
is a strategy of regular SCL(FOL). In summary, we have one strategy for ordered
resolution, one strategy for regular SCL(FOL), and a bisimulation proof that the
two strategies are equivalent.
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The refinement steps we ended up with are not the only possible. They are the
result of us trying to balance conflicting goals: we wanted to minimize the differences
between each steps, which minimizes the complexity of the matching relations and the
simulation proofs, but we also wanted to minimize the number of steps because each
step adds some overhead (e.g., proving that the transition system is well-behaved).

The Isabelle/HOL formalization was invaluable because it forced us to consider
corner cases (e.g., as described for ORD-RES-7) and allowed us to notice small
mistakes in the initial specification of some of the calculi. The tooling for proof
automation, such as sledgehammer and order, helped us tremendously by allowing us
quickly discharge simpler subgoals and focus on the big picture.
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Part III

Simulations between Virtual
Machines
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Chapter 8

Optimizing Virtual Machines

This chapter is based on a conference paper coauthored with Stefan Brunthaler [46].
It describes my formalization work.

8.1 Introduction

Every day, every person with a computer or smartphone executes, knowingly or
not, an enormous amount of JavaScript. Confident that the machinery executing
JavaScript works correctly, we use it day in and day out. A closer look at the
correctness of JavaScript virtual machines shows that this confidence is unwarranted.
Through abuse of implementation errors, attackers hijack victim devices through
arbitrary code execution. In 2020, Google Project Zero raised public awareness for
this danger in a three-part series of blog articles on so-called “JITSploitation” [58,
59, 60].

This should not come as a surprise, particularly as prior research by Yang et al. has
already looked at the prevalence of implementation errors in compilers [127]. Their
comparison of the LLVM, GCC, and CompCert compilers provides strong evidence
of the effectiveness of formalization and verification to reduce implementation errors.

To establish confidence in the JavaScript computing machinery, one could replicate
the CompCert [74] effort for a JavaScript virtual machine. Prior research by Myreen
has shown that this approach is nontrivial [84]. Just-in-time compilers rely on
self-modification and speculative optimizations to speed up programs. Both of these
optimization techniques are at odds with the CompCert approach.

An alternative strategy to overcome these obstacles would be to sidestep just-in-
time compilation and focus on interpreters instead. The expected advantages are
ease of implementation, no self-modification, and no dynamic generation of machine-
native code. Together, these advantages would also simplify the formalization and
verification process.

But what kind of impact would such a strategy have on performance? Con-
ventional wisdom states that interpreters are slow, and that performance requires
just-in-time compilation. Prior research in interpreter optimization, however, reports
remarkable and important speedups [31, 32, 51, 120, 126].

In this chapter, we build on prior results in interpreter optimization to formal-
ize two speculative optimizations: inline caching and unboxing. Our formalization
focuses on optimizing a stack-based interpreter for a small bytecode language support-
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ing operand-stack manipulation, dynamic memory manipulation, arbitrary built-in
operations, conditional jump, and (possibly recursive) function calls. The features
were selected to be representative of the virtual machines of many other popular
languages such as Lua, Perl, Python, and Ruby. The techniques used in the for-
malization could serve as a basis for the construction of efficient and correct virtual
machine interpreters for such languages.

While such verifiably correct interpreters would not match the peak performance
of their highly optimized just-in-time compiled counterparts, they should offer
acceptable performance for a wide variety of tasks and computational needs. We
believe, therefore, that using these efficient and verifiably correct interpreters would
be preferable in safety-critical, high-assurance contexts. In addition, these interpreters
could form the backbone of a secure, trusted infrastructure that we can rely upon
when new just-in-time compiler bugs are exploited in the wild.

Summing up, this chapter makes the following contributions:
• We present a formalization of Dyn: a stack-based interpreter for a small

dynamically typed bytecode language.
• We present a formalization of Inca: a self-optimizing extension of Dyn that

uses advanced type feedback via inline caching.
• We present a formalization of Ubx: a self-optimizing extension of Inca that

allows the manipulation of data in machine-native representation.
• Our formalization abstracts over several details (e.g., the built-in operations)

and can be instantiated for several concrete languages.
• We prove both speculative optimizations to be sound through a bisimulation

between Dyn and Inca and a bisimulation between Inca and Ubx.
• We show exemplary optimizing compilation passes, prove their soundness, and

discuss their completeness.
Our formalization was developed using the Isabelle/HOL proof assistant. It

consists of approximately 6500 nonblank lines1 and is publicly available in the Archive
of Formal Proofs [39]. As a sanity check, all locales defined in this formalization were
instantiated with suitable examples to ensure that the assumptions are consistent.

Since completion of the project as described in this chapter, the formalization was
expanded to support functions with multiple return values, function-local variables,
and conditional jumps to labels instead of numeric positions. It was also expanded
with a completeness proof of the compilation between Inca and Ubx w.r.t. some
well-formedness criteria. The interested reader can refer to the formalization for
more details.

8.2 Background

We briefly introduce virtual machines, the overhead of dynamic typing, and the
overhead of boxed data objects.

Virtual Machines In the context of programming languages, a virtual machine
is a piece of software used to execute a program without having to compile it to

1Counted using grep -Ev '^[[:blank:]]*$'.
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machine code ahead of time. Virtual machines can thus abstract over the concrete
hardware machines (e.g., RISC-V, ARM64, or AMD64) and offer a “write once,
run anywhere” promise; though a more accurate description would be “write once,
run anywhere a corresponding virtual machine is available”. Examples of virtual
machines include the CPython engine, the Java Virtual Machine, the Lua Virtual
Machine, and the V8 engine (typically used for JavaScript or for WebAssembly). A
virtual machine does not usually operate directly on the source code of the program
(or an abstract syntax tree thereof) but rather on some intermediate representation
called a bytecode language.

A bytecode language is an instruction set specifically designed to be efficiently
executed by a virtual machine. Examples include the Java bytecode, the Python
bytecode, and WebAssembly. A program written in a programming language must
be first compiled to the appropriate bytecode language; this can be done either
ahead of time (e.g., as done with Java programs), or as a preprocessing step of the
virtual machine (e.g., as done by CPython). Because a bytecode language is usually
higher-level than instruction sets for hardware machine, this compilation step can
usually be done efficiently.

Overhead of Dynamic Typing Consider the following (slightly modified) imple-
mentation of the add operation in JavaScriptCore, the JavaScript implementation of
the open-source WebKit browser engine used in Apple’s Safari web browser.

1 JSValue jsAdd(JSGlobalObject* global, JSValue v1, JSValue v2) {
2 // Two numbers is the most common case
3 if (v1.isNumber() && v2.isNumber()) {
4 return jsNumber(v1.asNumber() + v2.asNumber());
5 }
6
7 // A string and a nonobject is also quite common
8 if (v1.isString() && !v2.isObject()) {
9 if (v2.isString()) {

10 return jsString(global, asString(v1), asString(v2));
11 }
12 String s2 = v2.toWTFString(global);
13 return jsString(global, asString(v1), s2);
14 }
15
16 // All other cases are pretty uncommon
17 return jsAddSlowCase(global, v1, v2);
18 }

The dynamically-typed add operation resolves concrete type assignments accord-
ing to the expected frequency. First, JavaScriptCore delegates to C++’s addition
operator when both operands, v1 and v2, are numeric (lines 3–5). Second, JavaScript-
Core performs string concatenation, including coercion of the second operand, when
the first operand is a string (lines 8–14). Third, JavaScriptCore delegates imple-
mentation to jsAddSlowCase in all other cases (line 17), which is deemed “pretty
uncommon” in the actual and original source code comment on line 16.

The cases differ in the number of type checks and branching operations. In the
following, we assume that if-statements branch only when the condition is false.
When both operands have a numeric type, two type checks are performed and no
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branching is required. When the first operand is a string, there are five type checks
(i.e., two checks for numbers, two checks for strings, and one check for nonobject)
and one to two branches (i.e., one branch after the failed check for two numbers plus
a second branch if the second argument is not a string and needs to be coerced). In
all other cases, the operation execution requires four type checks (i.e., two checks for
numbers, one check for string, and one check for object) and two branches (i.e., one
branch after the failed check for two numbers plus a second branch after the failed
check for a string and a nonobject) before delegating to the function jsAddSlowCase,
which requires some more type checks and branches to determine less likely type
assignments.

This implementation of the add operator incurs a performance penalty when type
assignment expectations are not met. Consider a frequently executed, tight loop
with a single string concatenation:

1 result = "This is a string";
2 for (i = 0; i < 100000; i += 1) {
3 result += i;
4 }

In this example, each iteration of the loop incurs five type checks, two branches,
and a type coercion for the add operation to concatenate a string and a number.
These type checks and branches are redundant because, for each loop iteration, the
variable result always refers to a string and the variable i always refers to a number.
If the case for string concatenation was ranked first in the implementation of jsAdd,
then only three type checks, one branch, and one type coercion would be required.
The downside would be that adding two numbers would suffer from two more type
checks and one branch.

The effect of suboptimal static type-encoding in operation implementations of
dynamic languages, as illustrated by the example above, has been known for decades.
In 1982, Baden analyzed Smalltalk code and discovered what he termed a “dynamic
locality of type usage.” [7] In their landmark paper from 1984, Deutsch and Schiffman
described what was to become one, if not the most, important optimization techniques
to address this problem: inline caching [49]. In its original form, inline caching means
that the virtual machine directly overwrites the target address of a call instruction
in memory. So instead of calling the default routine that checks the types of all
parameters (e.g., the type-generic jsAdd function) one would overwrite the address of
the call instruction to type-dependent function, prefixed with so-called guards (i.e.,
type checks to ensure that the expected types were passed). As a result, a subsequent
execution of the same instruction will “short-circuit” the type checks of the original
routine and merely guard against expected types.

Overhead of Boxed Data Objects Boxed objects wrap primitive data types, such
as numbers or characters. One one hand, primitive data usually can be manipulated
using efficient machine-native operations and data representations. They require,
however, dedicated type-dependent operations (e.g., multiplying two integers requires
a different machine-native operation from the one to multiply two floating point
numbers). On the other hand, boxed objects can be easily stored in the heap, and
all other operations can refer to them in a uniform way using references or addresses.
Boxed objects, furthermore, simplify the implementation of custom object and type
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systems.
“Boxing” primitive data involves replacing the data item with a reference to

an object representing the primitive data item. The resulting boxed object can,
therefore, not be directly manipulated: assume that two 32-bit integers are in boxed
object representation, then a simple machine-native integer addition would add
their addresses instead of their numeric values. To manipulate boxed objects, their
wrapped primitive data need to be “unboxed” first.

Boxing and unboxing requires a surplus of computation: to access the wrapped
data, the computer must resolve the data references in the boxed objects. Additional
operations, most often related to automatic memory management, must be taken
into consideration as well. In Python, e.g., each push operation that puts data onto
the operand stack needs to adjust the object’s reference count. Machine-native data,
on the other hand, need not be reference counted, as they exist on their own in
binary representation and need no automatic memory management.

With unboxing, data locality is improved, as the indirection via the boxed object
wrapper is eliminated. Automatic memory management operations are reduced,
as these operations are only required to manage boxed objects. Overall memory
consumption can be reduced, because fewer objects are required. Automatic memory
management techniques can be adjusted to take this into account. This effect is
most pronounced on immediate memory management techniques such as reference
counting.

8.3 Overview of the Formalization

Our formalization has three parts, each concerned with a separate bytecode language.
Dyn (Section 8.4) a stack-based interpreter for a small dynamically typed bytecode

language; it provides a baseline for optimizations.
The features supported by Dyn are intentionally kept minimal, but include

the most representative features found in existing virtual machine interpreters for
dynamic languages: operand stack manipulation, dynamic memory manipulation,
built-in operations, conditional jumps, and (possibly recursive) function calls.

Inca (Section 8.5) extends Dyn with a speculative optimization known as inline
caching. This type-based optimization is embedded directly in the semantics and
thus performed automatically at run time. If the encountered types of an inlined
operation match our speculation, the optimization is said to be a hit. Otherwise, the
optimization is said to be a miss and must be rolled back. To ensure the soundness
of this speculative optimization, we define a relation between unoptimized Dyn
and optimized Inca programs, and prove that it is a bisimilarity, meaning that the
compiled program has the same behaviour as the unoptimized one and vice versa.
In addition, we provide a simple compilation scheme and prove its soundness and
completeness.

Ubx (Section 8.6) extends Inca with operations to manipulate unboxed, machine-
native data. This optimization is also type-based but proceeds in two stages. First,
an optimization pass rewrites the program ahead of time by substituting some type-
generic instructions with type-specific alternatives that directly manipulate unboxed
data. Second, the semantics is extended to perform the minimum number of checks
at run time to ensure that the type-specific, optimized instructions rewritten in the
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first stage operate on the expected types and roll the optimization back if needed.
Again, the soundness of this optimization is based on a bisimilarity relation, this
time between unoptimized Inca programs and optimized Ubx programs. We also
provide an exemplary compilation scheme based on a simple static analysis, and
prove its soundness. We finish by discussing the incompleteness of this compilation
scheme and some possible way forward.

We strove to keep the languages highly general by abstracting over a variety
of implementation considerations. The most important abstraction is concerned
with built-in operations. Instead of fixing a small set of these operations (such as
arithmetic and Boolean operations) and optimizing them, we instead define an algebra
of operations. For any operation of the algebra’s carrier set, we can (i) determine
the operation’s arity,2 and (ii) evaluate the operation on the given arguments. The
semantics of all three languages, therefore, need only to ensure that operations
receive the correct number of arguments, and manipulate their results accordingly.
By construction, this technique ensures that our formalization supports all operations,
and we can mostly avoid arguing “without loss of generality.”

8.4 Dyn: Interpreter for Dynamically Typed Languages

The Dyn interpreter corresponds to a simple, stack-based bytecode interpreter to
execute a dynamically typed programming language.

8.4.1 Syntax and Semantics

Identifiers The identifiers for variables and functions are members of the abstract
types ′var and ′fun, respectively.

Values The manipulated values belong to the abstract type ′dyn and are specified
in the locale dynval. Locales are Isabelle’s module system to define hierarchies of
parametric theories [8]; they are described in Section 2.5.

locale dynval =
fixes
is_true :: ′dyn ⇒ bool and
is_false :: ′dyn ⇒ bool

assumes
∀x . ¬(is_true x ∧ is_false x )

In the locale dynval, ′dyn is a fixed abstract type, is_true and is_false are locale
parameters, and the last line states the locale assumption. The predicates is_true
and is_false identify values that should be considered “true” and “false” respectively
by Dyn’s semantics (e.g., many programming languages consider the number zero to
be “false” and nonzero numbers to be “true”). The assumption ensures that a value
cannot be considered both “true” and “false”. Note that a value could be neither
“true” nor “false”.

2All operations always return exactly one result. An operation with an arity of zero is equivalent
to a constant.
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Operations The built-in operations are represented by the type ′op of the locale
nary_operations.

locale nary_operations =
fixes
eval :: ′op ⇒ ′dyn list ⇒ ′dyn and
arity :: ′op ⇒ N

The function arity expresses the arity of an operation and the function eval
evaluates an operation on an argument list. The length of the argument list must
correspond to the arity of the operation; this is enforced by the semantics of our
three interpreters.

Environments The locale env represents the generic notion of an environment as
a partial mapping from keys to values.

locale env =
fixes
empty :: ′env and
add :: ′env ⇒ ′key ⇒ ′val ⇒ ′env and
get :: ′env ⇒ ′key ⇒ ′val option and
list :: ′env ⇒ (′key × ′val) list

assumes
∀k . get empty k = † and
∀e k v . get (add e k v) k = v and
∀e k1 k2 v . k1 6= k2 −→ get (add e k1 v) k2 = get e k2 and
∀e. get e = map_of (list e) and
∀e. distinct (map fst (list e))

The environment is represented by the abstract type ′env . The empty environment
is represented by the constant empty . The function add extends an environment by
associating a key with a value; this overrides any previous association of this key.
The function get queries the value associated with a key; the result is † if no value
was associated with this key. The function list maps an environment to a model
represented as a list of key-value pairs; the idea is that ′env should behave like its
model. The three first assumptions express the semantics of the empty and add
in terms of get : there is no value associated to any key in the empty environment,
adding a key-value association makes it available for retrieval, and adding a key-value
association only affects one key. The penultimate assumption expresses the semantics
of get in terms of list : applying get to an environment must be equivalent to applying
map_of to the environment’s model as a list of key-value pairs. The Isabelle/HOL
function map_of :: (′a× ′b) list ⇒ ′a ⇒ ′b option traverses a list of key-value pairs
and searches for the first value associated with a key. The ultimate assumption states
that the model as list of key-value pairs must contain only distinct keys; this makes
it easier to work with the map_of function.

In the following, we will use two instantiations of the env locale. One instantiation
will store function definitions and instantiate the type ′env with ′fenv , the type ′key
with ′fun, and the type ′val with fundef ; we will add the subscript fun to the names
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instr ::= Push ′dyn | Pop | stack manipulation
Load ′var | Store ′var | memory manipulation
Op ′op | operations on data
CJump N | conditional jump
Call ′fun function call

fundef = instr list × N function definition
prog = ′fenv × ′henv × ′fun program definition

Figure 8.1: The static representation of Dyn. The type ′fenv is an environment that
maps function symbols (type ′fun) to function definitions (type fundef ).

frame = ′fun × N× ′dyn list stack frame
state = ′fenv × ′henv × frame list program state

Figure 8.2: The dynamic representation of Dyn. The type ′fenv is an environment
that maps function symbols (type ′fun) to function definitions (type fundef ).

of the locale parameters (e.g., the function getfun of this instantiation corresponds to
the function get of the locale). The other instantiation will model dynamic memory
and instantiate the type ′env with ′henv , the type ′key with ′var × ′dyn and the type
′val with ′dyn; we will add the subscript mem to the names of the locale parameters
(e.g., the function getmem of this instantiation corresponds to the function get of the
locale).

Static representation Figure 8.1 shows the static representation of the Dyn
language. Instructions belong to one of the following categories: manipulation of the
operand stack, manipulation of the dynamic memory, built-in operations, conditional
jump, and function call. A function definition contains a list of instructions and
the function’s arity; the former can be extracted with the function body :: fundef ⇒
instr list and the latter can be extracted with the function arityfun :: fundef ⇒ N.
A program contains an initial environment to store function definitions, an initial
environment that models the dynamic memory, and the identifier of the function
with which to start execution; this initial function must have an arity of zero.

Dynamic states Figure 8.2 shows the dynamic representation of the Dyn language.
A stack frame contains the identifier of the function it refers to, a program counter
relative to the beginning of the function, and an operand stack represented as a
list of dynamic values. A dynamic program state contains an environment to store
function definitions, an environment to model the dynamic memory, and a nonempty
call stack represented as a list of stack frames.
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Loading and initial states The binary relation loadDyn associates the static
representation of a program to an initial dynamic state. More precisely, the relation
initializes the program state, obtains the initializing function from the program, and
transfers control to this function.

∀F f fd H . getfun F f = fd −→ arityfun fd = 0 −→ loadDyn 〈F ;H ; f 〉 〈F ;H ; 〈f ; 0; ε〉〉

Final states The predicate finalDyn identifies final states as the ones having a call
stack with a single stack frame, where the program counter points beyond the last
instruction.

∀F H Φ. finalDyn 〈F ;H ;Φ〉 ←→
(∃f pc Σ fd . Φ = 〈f ; pc;Σ 〉 ∧ getfun F f = fd ∧ pc = |body fd |)

Operational semantics The operational semantics is defined by the small-step
transition relation →Dyn between program states. The semantics of most instruc-
tions corresponds to the well-known, standard behaviour. The dynamic memory is
partitioned by variable names, which are statically encoded in the load and store
instructions, and each partition may contain any number of dynamic values, which
are indexed by a dynamic value taken from the operand stack.

We first present the rules for stack manipulation:

Push 〈F ;H ;Φ, 〈f ; pc;Σ 〉〉 →Dyn 〈F ;H ;Φ, 〈f ; 1 + pc;Σ , d〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = Push d

Pop 〈F ;H ;Φ, 〈f ; pc;Σ , d〉〉 →Dyn 〈F ;H ;Φ, 〈f ; 1 + pc;Σ 〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = Pop

We now present the rules for memory manipulation:

Load 〈F ;H ;Φ, 〈f ; pc;Σ , d1 〉〉 →Dyn 〈F ;H ;Φ, 〈f ; 1 + pc;Σ , d2 〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = Load x

4. getmem H 〈x ; d1 〉 = d2

Store 〈F ;H ;Φ, 〈f ; pc;Σ , d2 , d1 〉〉 →Dyn 〈F ;H ′;Φ, 〈f ; 1 + pc;Σ 〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
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3. (body fd)[pc] = Store x

4. H ′ = addmem H 〈x ; d1 〉 d2
We now present the rules for operations on data:

Op 〈F ;H ;Φ, 〈f ; pc;Σ 〉〉 →Dyn 〈F ;H ;Φ, 〈f ; 1 + pc;Σ ′〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = Op op

4. arity op ≤ |Σ |
5. Σ ′ = (drop (arity op) Σ ), (eval op (take (arity op) Σ ))

The rule Op assumes with the side condition 4 that there are enough arguments
on the operand stack before evaluating the operation. This assumption ensures that
the list take (arity op) Σ is of length arity op, which is the arity of the operand op.

We now present the rules for conditional jump:

CJump-True 〈F ;H ;Φ, 〈f ; pc;Σ , d〉〉 →Dyn 〈F ;H ;Φ, 〈f ;n;Σ 〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = CJump n

4. is_true d

CJump-False 〈F ;H ;Φ, 〈f ; pc;Σ , d〉〉 →Dyn 〈F ;H ;Φ, 〈f ; 1 + pc;Σ 〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = CJump n

4. is_false d

The rule CJump-True transfers the control flow to a position relative to the
beginning of the function. Note that execution gets stuck if a jump condition
represents neither true nor false.

The rule CJump-False only increments the program counter so that execution
will continue at the next instruction.

We now present the rules for function call:

Fun-Call 〈F ;H ;Φ, 〈f ; pcf ;Σf 〉〉 →Dyn 〈F ;H ;Φ, 〈f ; pcf ;Σf 〉, 〈g ; 0;Σg〉〉
Side conditions:

1. getfun F f = fd

2. pcf < |body fd |
3. (body fd)[pcf ] = Call g

4. getfun F g = gd

5. arityfun gd ≤ |Σf |
6. Σg = take (arityfun gd) Σf
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Fun-End 〈F ;H ;Φ, 〈f ; pcf ;Σf 〉, 〈g ; pcg ;Σg〉〉 →Dyn 〈F ;H ;Φ, 〈f ; 1 + pcf ;Σ
′
f 〉〉

Side conditions:

1. getfun F g = gd

2. pcg = |body gd |
3. |Σg | = 1

4. arityfun gd ≤ |Σf |
5. Σ ′

f = (drop (arityfun gd) Σf ),Σg

The rule Fun-Call assumes with the side condition 5 that there are enough
operands on the operand stack to call the function g . A new stack frame is created
and the arguments copied to the operand stack of the new frame. Note that a
function may call itself recursively.

The rule Fun-End proceeds in two steps. First, the remaining value on the called
function’s operand stack is interpreted as its result and its stack frame is discarded.
Second, the arguments on top of the calling function’s operand stack are replaced by
the called function’s result and the program counter is incremented.

Example 8.1. Let main :: ′fun be a function identifier. Let instrs :: instr list be
a list of Dyn instructions. Let fahrenheit :: ′var and celsius :: ′var be two variable
identifiers. Let sub :: ′op, mul :: ′op, and div :: ′op be operations identifiers. Let F ::
′fenv be an environment of function definitions. Let H :: ′henv be an environment of
dynamic memory (a.k.a. a heap). Consider instrs to be equal to the following list of
instructions:

Push 0
Load fahrenheit
Push 32
Op sub
Push 5
Opmul
Push 9
Op div
Push 0
Store celsius

Consider F = {main 7→ 〈instrs; 0〉}. Consider H = {〈fahrenheit ; 0〉 7→ 65.0}.
The Dyn program 〈F ;H ;main〉 is meant to convert a temperature of 65 degrees
Fahrenheit to the corresponding temperature in Celsius (i.e., it computes celsius =
(fahrenheit − 32)× 5/9). It can be loaded to the dynamic state 〈F ;H ; 〈main; 0; ε〉〉.



112 CHAPTER 8. OPTIMIZING VIRTUAL MACHINES

instr ::= · · · | instructions from Dyn
OpInl ′opinl inlined operations on data

fundef = instr list × N function definition
prog = ′fenv × ′henv × ′fun program definition

Figure 8.3: The static representation of Inca. The type ′fenv is an environment that
maps function symbols (type ′fun) to function definitions (type fundef ).

Its execution goes as follows:

〈F ;H ; 〈main; 0; ε〉〉
→Dyn 〈F ;H ; 〈main; 1; 0〉〉
→Dyn 〈F ;H ; 〈main; 2; 65.0〉〉
→Dyn 〈F ;H ; 〈main; 3; 65.0, 32〉〉
→Dyn 〈F ;H ; 〈main; 4; 33.0〉〉
→Dyn 〈F ;H ; 〈main; 5; 33.0, 5〉〉
→Dyn 〈F ;H ; 〈main; 6; 165.0〉〉
→Dyn 〈F ;H ; 〈main; 7; 165.0, 9〉〉
→Dyn 〈F ;H ; 〈main; 8; 18.33〉〉
→Dyn 〈F ;H ; 〈main; 9; 18.33, 0〉〉
→Dyn 〈F ; {〈fahrenheit ; 0〉 7→ 65.0, 〈celsius; 0〉 7→ 18.33}; 〈main; 10; ε〉〉

8.5 Inca: Inline Caching
The Inca interpreter extends Dyn with support for a single bytecode instruction for
inline caching of operations.

8.5.1 Syntax and Semantics

The static representation of Inca is a proper superset of Dyn’s syntax; the only
addition is an instruction to inlined operations (Figure 8.3). The dynamic program
representation does not change.

Inlined operations The built-in inlined operations are members of the type ′opinl
of the locale nary_operations_inl.

locale nary_operations_inl = nary_operations +
fixes
evalinl ::

′opinl ⇒ ′dyn list ⇒ ′dyn and
inl :: ′op ⇒ ′dyn list ⇒ ′opinl option and
deinl :: ′opinl ⇒ ′op and
perfinl ::

′opinl ⇒ ′dyn list ⇒ bool
assumes
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Figure 8.4: The relationship between elements of type ′op (on the left) and elements
of type ′opinl (on the right). Solid arrows represent calls to inl and dotted arrows

represent calls to deinl .

∀op xs opinl . inl op xs = opinl −→ deinl opinl = op and
∀op xs opinl . inl op xs = opinl −→ perfinl opinl xs and
∀xs opinl . |xs| = arity (deinl opinl ) −→ evalinl opinl xs = eval (deinl opinl ) xs

An operation of type ′op may be mapped to any number (including none) of
inlined operations of type ′opinl with the function inl , which gives the most specific
inlined operation for concrete operand types. This mapping can be inverted with the
function deinl . Figure 8.4 illustrates the relationship between operations of type ′op
and operations of type ′opinl .

The predicate perfinl informs us on whether evaluating an inlined operation on
a operand list will be performant. It is related to the function inl by the second
assumption, which states that the result of inlining an operation for an operand list
must be performant. Why have the predicate perfinl and not always use the function
inl to always have the optimal inlined operation? Because repeated calls to inl might
be too costly. A typical implementation might start with a case analysis of the
operation followed by a linear search for the most efficient inlined operation. This may
be time consuming if the cardinality of ′op or ′opinl is high. We thus want to avoid
calling inl if possible. The predicate perfinl has a simpler responsibility: to identify
whether an inlined operation is performant enough. A typical implementation might
start with a case analysis of the operation followed by a simple comparison of the
operand types with the expected type—no need for a costly search as in the function
inl . So when we already have an inlined operation and just want to ensure that it is
still a good fit, we can use the efficient predicate perfinl instead of the costly function
inl .

Finally, evalinl can be used to evaluate inlined operations on an operand list. Its
result must be the same as evaluating eval on the corresponding deinlined operation
when called with the correct number of operands. The semantics of Inca ensures
that this is the case.

We define a helper function to express the arity of an inlined operation.

Definition 8.2. The function arityinl ::
′opinl ⇒ N expresses the arity of an inlined

operation.
∀opinl . arityinl opinl = arity (deinl opinl )

Semantics Inca’s dynamic representation, its loading relation loadInca, and its set
of final states (identified by the predicate finalInca) are all the same as their Dyn
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counterparts. The transition relation →Inca is very similar to →Dyn except for the
rule to evaluate an operation (i.e., rule Op) which differs from Dyn and for three
new rules (i.e., Op-Inl, Op-Inl-Hit, Op-Inl-Miss) absent from Dyn.

We only present the rules for operations on data:

Op 〈F ;H ;Φ, 〈f ; pc;Σ 〉〉 →Inca 〈F ;H ;Φ, 〈f ; 1 + pc;Σ ′〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = Op op

4. arity op ≤ |Σ |
5. inl op (take (arity op) Σ ) = †
6. Σ ′ = (drop (arity op) Σ ), (eval op (take (arity op) Σ ))

Op-Inl 〈F ;H ;Φ, 〈f ; pc;Σ 〉〉 →Inca 〈F ′;H ;Φ, 〈f ; 1 + pc;Σ ′〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = Op op

4. arity op ≤ |Σ |
5. inl op (take (arity op) Σ ) = opinl

6. Σ ′ = (drop (arity op) Σ ), (evalinl opinl (take (arity op) Σ ))

7. F ′ = addfun F f (rewrite fd pc (OpInl opinl ))

When executing an operation (i.e., instruction Op), inl is used to check if an
inlined operation exists for the supplied arguments. If no inlined operation exists
(rule Op), then the operation is evaluated with Op as was the case in Dyn. If an
inlined operation exists (rule Op-Inl), then two things take place. First, we evaluate
the operation with evalinl . Second, we cache the search for an optimized inline
operation by replacing the Op instruction with an optimized OpInl instruction in the
function definition. As a result, any subsequent execution then “short-circuits” the
check for an inlined operation.

Op-Inl-Hit 〈F ;H ;Φ, 〈f ; pc;Σ 〉〉 →Inca 〈F ;H ;Φ, 〈f ; 1 + pc;Σ ′〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = OpInl opinl

4. arityinl opinl ≤ |Σ |
5. perfinl opinl (take (arityinl opinl ) Σ )

6. Σ ′ = (drop (arityinl opinl ) Σ ), (evalinl opinl (take (arityinl opinl ) Σ ))

Op-Inl-Miss 〈F ;H ;Φ, 〈f ; pc;Σ 〉〉 →Inca 〈F ′;H ;Φ, 〈f ; 1 + pc;Σ ′〉〉
Side conditions:

1. getfun F f = fd
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2. pc < |body fd |
3. (body fd)[pc] = OpInl opinl

4. arityinl opinl ≤ |Σ |
5. ¬perfinl opinl (take (arityinl opinl ) Σ )

6. Σ ′ = (drop (arityinl opinl ) Σ ), (evalinl opinl (take (arityinl opinl ) Σ ))

7. F ′ = addfun F f (rewrite fd pc (Op (deinl opinl )))

When executing an inlined operation (i.e., instruction OpInl), the efficient pred-
icate perfinl is used to test whether or not it is still appropriate for the supplied
arguments—it was presumably appropriate when it was originally inlined but the
operands could have been of different types. If this is the case, then execution
continues as expected using an optimized function (rule Op-Inl-Hit). Otherwise,
we undo the optimization by replacing the optimized instruction with the generic,
unoptimized instruction in the function definition (rule Op-Inl-Miss); here we could
use either the evaluation function eval or evalinl , because they are semantically
equivalent and it is unknown which one would be more efficient.

8.5.2 Bisimulation between Dyn and Inca

When two programs of Dyn and Inca simulate each other, they only differ in the
function definitions stored in their respective function environments. The dynamic
memories, the call stacks, and the domains of the function environments are identical.
Given two corresponding function definitions from Dyn and Inca, they may only
differ by the potential use of inline operations.

We define the matching relation ∼, which inspects all corresponding instructions
of function definitions and checks with the function deinl that an inlined operation
maps to its corresponding regular operation.

We first prove a forward simulation between Dyn and Inca.

Lemma 8.3 (Forward Simulation). Let s1 and s ′1 be dynamic states of Dyn. Let s2
be a dynamic state of Inca. If s1 →Dyn s ′1 and s1 ∼ s2 , then there exists a dynamic
state s ′2 such that s2 →Inca s ′2 and s ′1 ∼ s ′2 .

Lemma 8.4 (Forward Matching Final States). Let s1 and s2 be dynamic states of
Dyn and Inca respectively. If s1 ∼ s2 and finalDyn s1 , then finalInca s2 .

We then prove a backward simulation between Dyn and Inca.

Lemma 8.5 (Backward Simulation). Let s1 be a dynamic state of Dyn. Let s2
and s ′2 be dynamic states of Inca. If s2 →Inca s ′2 and s1 ∼ s2 , then there exists a
dynamic state s ′1 such that s1 →Dyn s ′1 and s ′1 ∼ s ′2 .

Lemma 8.6 (Backward Matching Final States). Let s1 and s2 be dynamic states of
Dyn and Inca respectively. If s1 ∼ s2 and finalInca s2 , then finalDyn s1 .

Finally, we prove a bisimulation between Dyn and Inca.

Theorem 8.7 (Bisimulation). There is a bisimulation between Dyn and Inca w.r.t.
∼.

Proof Sketch. By Lemmas 8.3 to 8.6.
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Theorem 8.7 corresponds to an interpretation of the locale bisimulation from
Chapter 6.

8.5.3 Compilation from Dyn to Inca

We define the function compile that compiles a static program representation of Dyn
to a static program representation of Inca; it maps all Dyn-instructions found in the
function definitions to their equivalent Inca-instructions.

We prove that compiled programs simulate their uncompiled counterparts.

Lemma 8.8 (Compiled Matching States). Let p1 and p2 be static program rep-
resentations of Dyn and Inca respectively. Let s1 be a dynamic state of Dyn. If
compilep1 = p2 and loadDyn p1 s1 , then there exists a state s2 such that loadInca p2 s2
and s1 ∼ s2 .

Theorem 8.9 (Compilation Function). The function compile is a compiler from
Dyn to Inca, which guarantees that the Inca program simulates the Dyn program.

Proof Sketch. By Lemmas 8.5, 8.6 and 8.8.

Theorem 8.9 corresponds to an interpretation of the locale compiler from Chapter 6.
The simulation framework gives us a proof that the successful execution of a compiled
Inca program has a behaviour equivalent to a behaviour of the original Dyn program.
Remember from Chapter 6 that the infix relation ⇓ pairs a program to its run-time
behaviour and that the ternary predicate rel_behaviour relates two behaviours w.r.t.
a matching relation on dynamic states.

Corollary 8.10 (Soundness of Compilation). Let p1 and p2 be static program
representations of Dyn and Inca respectively. If p1 compiles to p2 (i.e., compilep1 =
p2 ), and p2 has behaviour b2 (i.e., p2 ⇓ b2 ), and b2 is not a wrong behaviour, then
p1 has a behaviour that matches with b2 (i.e., ∃b1 . p1 ⇓ b1 ∧ rel_behaviour (∼)b1 b2 ).

Furthermore, we prove that compilation is complete for all loadable Dyn programs.

Theorem 8.11 (Completeness of Compilation). Let p1 be a static program repre-
sentation of Dyn and s1 a dynamic state of Dyn. If p1 can be loaded into s1 (i.e.,
loadDyn p1 s1 ), then p1 can be compiled to an Inca-program that can be loaded to an
Inca-state matching s1 (i.e., ∃p2 s2 . compile p1 = p2 ∧ loadInca p2 s2 ∧ s1 ∼ s2 ).

8.6 Ubx: Operations on Unboxed Data
The Ubx interpreter extends Inca with the concept of manipulating unboxed data
representations.

8.6.1 Syntax and Semantics

The syntax of Ubx is a proper superset of Inca’s syntax (Figure 8.6). The static
representation of Ubx is a proper superset of Inca’s syntax (Figure 8.5); the only
additions are instructions to manipulate unboxed values. The dynamic program
representation has an operand stack of unboxed values (Figure 8.6).
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type ::= U1 | U2 unboxed types
instr ::= · · · | instructions from Inca

PushUbx1
′ubx1 | stack manipulation

PushUbx2
′ubx2 | of unboxed data

LoadUbx type ′var | memory manipulation
StoreUbx type ′var | of unboxed data
OpUbx ′opubx unboxed operations

fundef = instr list × N function definition
prog = ′fenv × ′henv × ′fun program definition

Figure 8.5: The static representation of Ubx. The type ′fenv is an environment that
maps function symbols (type ′fun) to function definitions (type fundef ).

ubx ::= Dyn ′dyn | boxed dynamic value
Ubx1

′ubx1 | unboxed value 1
Ubx2

′ubx2 | unboxed value 2
frame = ′fun × N× ubx list stack frame
state = ′fenv × ′henv × frame list program state

Figure 8.6: The dynamic representation of Ubx. The type ′fenv is an environment
that maps function symbols (type ′fun) to function definitions (type fundef ).
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Values The values manipulated through the operand stack may either be boxed or
unboxed. In principle, any fixed number of unboxed types may be supported but,
due to Isabelle/HOL not supporting abstractions over arbitrary numbers of types,
we consider without loss of generality two unboxed types ′ubx1 and ′ubx2 (e.g., they
could represent the 64-bit integers and 64-bit floating point numbers native to the
hardware).

Because the operand stack may only contain values of a uniform type, we define
the tagged union type ubx with three constructors: Dyn represents a boxed value
while both Ubx1 and Ubx2 represent unboxed values. We extract a value stored in a
value of type ubx by casting it to the desired type. Casting (i) checks that the ubx
value is tagged with the expected constructor for the given type, and (ii) returns the
unboxed value.

Definition 8.12. The function castDyn::ubx ⇒ ′dyn option extracts the dynamic
value out of its argument of type ubx ; it fails and evaluates to † if its argument does
not contain a dynamic value.

∀d . castDyn (Dyn d) = d

castDyn Ubx1 = †
castDyn Ubx2 = †

The functions castubx1 ::ubx ⇒ ′ubx1 option and castubx2 ::ubx ⇒ ′ubx2 option are
analogous.

Our formalization proves that casts are always successful and a real implementa-
tion of this optimization could thus omit these checks.

The boxing and unboxing operations are abstracted over in the locale unboxedval.

locale unboxedval = dynval +
fixes
box1 :: ′ubx1 ⇒ ′dyn and
unbox1 :: ′dyn ⇒ ′ubx1 option and
box2 :: ′ubx2 ⇒ ′dyn and
unbox2 :: ′dyn ⇒ ′ubx2 option

assumes
∀d u1 . unbox1 d = u1 −→ box1 u1 = d and
∀d u2 . unbox2 d = u2 −→ box2 u2 = d

The function box1 converts a machine-native value of type ′ubx1 to a dynamic
value of type ′dyn. The function unbox1 undoes boxing by converting a dynamic value
of type ′dyn to a machine-native value of type ′ubx1 ; this might fail by evaluating
to † if the provided dynamic value is not of the expected type. The functions box2
and unbox2 are analogous but operate on machine-native values of type ′ubx2 . The
locale assumptions express that unboxing a dynamic value can be reverted and the
resulting dynamic value is the same as the original.

We define a few functions to uniformly manipulate values of type ubx without
having to separately consider cases for ′ubx1 and ′ubx2 . We first define the type
type which has one constant per unboxed type: The constant U1 is associated with
the type ′ubx1 and the constant U2 is associated with the type ′ubx2 . The coming
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definitions use the function map_option :: (′a⇒ ′b)⇒ ′a option ⇒ ′b option from the
Isabelle/HOL distribution, which applies a provided function to an optional value.

Definition 8.13. The function cast_box :: type ⇒ ubx ⇒ ′dyn option casts an
unboxed value to the requested type and then boxes the result to a dynamic value.

∀u. cast_box U1 u = map_option box1 (castubx1 u)

∀u. cast_box U2 u = map_option box2 (castubx2 u)

Definition 8.14. The function unbox :: type ⇒ ′dyn ⇒ ubx option unboxes a dynamic
value to the requested type and then stores the result in an element of type ubx .

∀d . unbox U1 d = map_option Ubx1 (unbox1 d)

∀d . unbox U2 d = map_option Ubx2 (unbox2 d)

Definition 8.15. The function norm :: ubx ⇒ ′dyn boxes an unboxed value to a
dynamic value.

∀d . norm (Dyn d) = d

∀u1 . norm (Ubx1 u1 ) = box1 u1

∀u2 . norm (Ubx2 u2 ) = box2 u2

Instructions One new instruction per unboxed type pushes an unboxed constant
onto the operand stack. Two generic instructions allow loading unboxed values
from memory and storing them in memory respectively. Finally, one instruction
manipulates unboxed, machine-native data. The number of new instructions to
support n unboxed types is thus n+ 3.

Operations on unboxed data The built-in operations on unboxed data are
members of the type ′opubx of the locale nary_operations_ubx.

locale nary_operations_ubx = nary_operations_inl + unboxedval +
fixes
evalubx :: ′opubx ⇒ ubx list ⇒ ubx option and
ubx :: ′opinl ⇒ type option list ⇒ ′opubx option and
deubx :: ′opubx ⇒ ′opinl and
typeofubx :: ′opubx ⇒ type option list × type option

assumes
∀opinl types opubx . ubx opinl types = opubx −→ deubx opubx = opinl and
∀opubx xs y . evalubx opubx xs = y −→

evalinl (deubx opubx ) (map norm xs) = norm y and
∀opubx xs y . evalubx opubx xs = y −→

inl (deinl (deubx opubx )) (map norm xs) = deubx opubx and
∀opubx . arityinl (deubx opubx ) = |fst (typeofubx opubx )| and
∀opinl types opubx . ubx opinl types = opubx −→

fst (typeofubx opubx ) = types and
∀opubx xs τ . typeofubx opubx = 〈map typeof xs; τ〉 −→

(∃y . evalubx opubx xs = y ∧ typeof y = τ) and
∀opubx xs y . evalubx opubx xs = y −→

typeofubx opubx = 〈map typeof xs; typeof y〉
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The function evalubx evaluates an unboxed operation (of type ′opubx ) on unboxed
arguments (of type ubx ) using some efficient machine-native instructions. In contrast
to eval and evalinl which always succeed to calculate a result when given the correct
number of arguments, evalubx may fail and evaluate to † when applied to unboxed
values of the wrong type.

The function ubx maps an inlined operation (of type ′opinl) on dynamic values to
an unboxed operation (of type ′opubx ) on unboxed values. Instead of relying on the
dynamic typing information extracted from the arguments at run time, ubx relies on
type information available at compilation time. For each argument, the provided
type information takes the form of an optional unboxed type: Ubx1 means that an
argument of type ′ubx1 is expected, Ubx2 means that an argument of type ′ubx2 is
expected, and † means that an argument of type ′dyn is expected. The function
deubx inverses the mapping of ubx and converts and unboxed operation back to an
inlined operation.

The function typeofubx evaluates to the type of a given unboxed operation: the
result is a pair where the first element is the domain and the second element is the
codomain.

We define a helper function to express the arity of an unboxed operation.

Definition 8.16. The function arityubx :: ′opubx ⇒ N expresses the arity of an
unboxed operation.

∀opubx . arityubx opubx = arityinl (deubx opubx )

Semantics The transition relation→Ubx is similar to→Inca except that the operand
stack contains values of type ubx and that it has supplementary rules to handle
unboxed data. We show all rules here.

We first present the rules for stack manipulation:

Push 〈F ;H ;Φ, 〈f ; pc;Σ 〉〉 →Ubx 〈F ;H ;Φ, 〈f ; 1 + pc;Σ ,Dyn d〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = Push d

Push-Ubx1 〈F ;H ;Φ, 〈f ; pc;Σ 〉〉 →Ubx 〈F ;H ;Φ, 〈f ; 1 + pc;Σ ,Ubx1 u〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = PushUbx1 u

Push-Ubx2 〈F ;H ;Φ, 〈f ; pc;Σ 〉〉 →Ubx 〈F ;H ;Φ, 〈f ; 1 + pc;Σ ,Ubx2 u〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = PushUbx2 u
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Pop 〈F ;H ;Φ, 〈f ; pc;Σ , u〉〉 →Ubx 〈F ;H ;Φ, 〈f ; 1 + pc;Σ 〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = Pop

The rule Push wraps a dynamic value and pushes the result onto the stack. The
rules Push-Ubx1 and Push-Ubx2 both wrap an unboxed value and push the result
onto the stack. The rule Pop does not need any change; it is independent of the
operand type.

We now present the rules for memory manipulation:

Load 〈F ;H ;Φ, 〈f ; pc;Σ , u〉〉 →Ubx 〈F ;H ;Φ, 〈f ; 1 + pc;Σ ,Dyn d2 〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = Load x

4. castDyn u = d1

5. getmem H 〈x ; d1 〉 = d2

Load-Ubx-Hit 〈F ;H ;Φ, 〈f ; pc;Σ , u1 〉〉 →Ubx 〈F ;H ;Φ, 〈f ; 1 + pc;Σ , u2 〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = LoadUbx τ x

4. castDyn u1 = d1

5. getmem H 〈x ; d1 〉 = d2

6. unbox τ u2 = u2

Load-Ubx-Miss 〈F ;H ;Φ, 〈f ; pc;Σ , u1 〉〉 →Ubx 〈F ′;H ;Φ′〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = LoadUbx τ x

4. castDyn u1 = d1

5. getmem H 〈x ; d1 〉 = d2

6. unbox τ u2 = †
7. F ′ = addmem F f (generalize fd)

8. Φ′ = box_stack f (Φ, 〈f ; 1 + pc;Σ ,Dyn d2 〉)

Store 〈F ;H ;Φ, 〈f ; pc;Σ , u2 , u1 〉〉 →Ubx 〈F ;H ′;Φ, 〈f ; 1 + pc;Σ 〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
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3. (body fd)[pc] = Store x

4. castDyn u1 = d1

5. castDyn u2 = d2

6. H ′ = addmem H 〈x ; d1 〉d2

Store-Ubx 〈F ;H ;Φ, 〈f ; pc;Σ , u2 , u1 〉〉 →Ubx 〈F ;H ′;Φ, 〈f ; 1 + pc;Σ 〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = StoreUbx τ x

4. castDyn u1 = d1

5. cast_box τ u2 = d2

6. H ′ = addmem H 〈x ; d1 〉d2
The rules for loading values from the dynamic memory distinguish three cases:

• a dynamic value is loaded and pushed directly on the operand stack;
• a dynamic value is loaded, successfully unboxed, and pushed on the operand

stack; and
• a dynamic value is loaded, the unboxing fails, and the function is generalized

to cancel the Ubx optimization.
All three rules first pop a value from the operand stack, and then cast it to a dynamic
value, which is then used to index the dynamic memory.

In rule Load-Ubx-Miss, the unboxing fails because the dynamic value loaded from
memory has a different type than what was expected when optimizing the program.
Subsequent instructions expecting data in their machine-native representation can-
not execute sensibly and must be generalized to cope with dynamic values. This
generalization process applies to both the function definition and the call stack.

First, the function generalize generalizes the function definition by mapping all
Ubx instructions to their Inca counterparts (e.g., it maps PushUbx1 to Push). For
OpInl instructions, the function deubx identifies the corresponding ′opinl operation.

Second, we need to update the operand stack to ensure that all elements use
the boxed representation. If a tagged union contains an operand in unboxed data
representation, these operands would not be accepted by the newly generalized
instructions. To address this, we use the type information stored in the tagged union
to box the object and replace the element with another tagged union (constructor
Dyn) representing this newly boxed object. The operand stack of the current stack
frame must be boxed, but so do the operand stacks of all other active stack frames
of the same function. Because each stack frame only stores the identifier of the
function, and each execution step retrieves the instruction from the function definition,
all active function invocations will start to use the generalized instructions. The
function box_stack does this by recursively traversing the call stack and generalizing
the operand stack of all stack frames for function f ; all other stack frames are left
untouched.

The rules for storing values in memory all cast the operand on the top of the
stack to the expected type and box it before storing it in memory. No rules are
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needed to handle the case that an unboxed type does not match its expected type.
The bisimulation relation proves that such a situation can never occur.

We now present the rules for operations on data:

Op 〈F ;H ;Φ, 〈f ; pc;Σ 〉〉 →Ubx 〈F ;H ;Φ, 〈f ; 1 + pc;Σ ′〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = Op op

4. arity op ≤ |Σ |
5. traverse castDyn(take (arity op) Σ ) = ds

6. inl op ds = †
7. Σ ′ = (drop (arity op) Σ ), (Dyn (eval op ds))

Op-Inl 〈F ;H ;Φ, 〈f ; pc;Σ 〉〉 →Ubx 〈F ′;H ;Φ, 〈f ; 1 + pc;Σ ′〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = Op op

4. arity op ≤ |Σ |
5. traverse castDyn(take (arity op) Σ ) = ds

6. inl op ds = opinl

7. Σ ′ = (drop (arity op) Σ ), (Dyn (evalinl opinl ds))

8. F ′ = addfun F f (rewrite fd pc (OpInl opinl ))

Op-Inl-Hit 〈F ;H ;Φ, 〈f ; pc;Σ 〉〉 →Ubx 〈F ;H ;Φ, 〈f ; 1 + pc;Σ ′〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = OpInl opinl

4. arityinl opinl ≤ |Σ |
5. traverse castDyn(take (arityinl opinl ) Σ ) = ds

6. perfinl opinl ds

7. Σ ′ = (drop (arityinl opinl ) Σ ), (Dyn (evalinl opinl ds))

Op-Inl-Miss 〈F ;H ;Φ, 〈f ; pc;Σ 〉〉 →Ubx 〈F ′;H ;Φ, 〈f ; 1 + pc;Σ ′〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = OpInl opinl

4. arityinl opinl ≤ |Σ |
5. traverse castDyn(take (arityinl opinl ) Σ ) = ds
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6. ¬perfinl opinl ds
7. Σ ′ = (drop (arityinl opinl ) Σ ), (Dyn (evalinl opinl ds))

8. F ′ = addfun F f (rewrite fd pc (Op (deinl opinl )))

Op-Ubx 〈F ;H ;Φ, 〈f ; pc;Σ 〉〉 →Ubx 〈F ;H ;Φ, 〈f ; 1 + pc;Σ ′〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = OpUbx opubx

4. arityubx opubx ≤ |Σ |
5. evalubx opubx (take (arityubx opubx ) Σ ) = u

6. Σ ′ = (drop (arityubx opubx ) Σ ), u

The rules for evaluating regular and inlined operations require minimal adaptation:
they must first cast their operands to dynamic values before evaluation. Again, no
rule is required to handle an invalid cast, as our proof shows that such situations
can never occur.

The new rule Op-Ubx does not need to perform any cast as it operates directly
on unboxed data.

We now present the rules for conditional jump:

CJump-True 〈F ;H ;Φ, 〈f ; pc;Σ , u〉〉 →Ubx 〈F ;H ;Φ, 〈f ;n;Σ 〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = CJump n

4. castDyn u = d

5. is_true d

CJump-False 〈F ;H ;Φ, 〈f ; pc;Σ , u〉〉 →Ubx 〈F ;H ;Φ, 〈f ; 1 + pc;Σ 〉〉
Side conditions:

1. getfun F f = fd

2. pc < |body fd |
3. (body fd)[pc] = CJump n

4. castDyn u = d

5. is_false d

The rules CJump-True and CJump-False require minimal adaptation; they now
cast their operand to a dynamic Boolean value.

We now present the rules for function call:

Fun-Call 〈F ;H ;Φ, 〈f ; pcf ;Σf 〉〉 →Ubx 〈F ;H ;Φ, 〈f ; pcf ;Σf 〉, 〈g ; 0;Σg〉〉
Side conditions:

1. getfun F f = fd

2. pcf < |body fd |
3. (body fd)[pcf ] = Call g
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4. getfun F g = gd

5. arityfun gd ≤ |Σf |
6. ∀u ∈ set (take (arityfun gd) Σf ). typeof u = †
7. Σg = take (arityfun gd) Σf

Fun-End 〈F ;H ;Φ, 〈f ; pcf ;Σf 〉, 〈g ; pcg ;Σg〉〉 →Ubx 〈F ;H ;Φ, 〈f ; 1 + pcf ;Σ
′
f 〉〉

Side conditions:
1. getfun F g = gd

2. pcg = |body gd |
3. |Σg | = 1

4. ∀u ∈ set Σg . typeof u = †
5. arityfun gd ≤ |Σf |
6. Σ ′

f = (drop (arityfun gd) Σf ),Σg

The rules Fun-Call and Fun-End require minimal adaptation; they now check
that the function arguments or function return value are of the dynamic type before
calling or ending the function.

8.6.2 Bisimulation between Inca and Ubx

The validity of a sequence of Ubx instructions can be statically verified by an abstract
interpretation that calculates a form of strongest postcondition (i.e., the arity and
types of values on the operand stack following the execution of the sequence). This
means that, if a function is given the right number of boxed arguments, then it
will successfully execute and return a value of the computed types. The strongest
postcondition of an instruction takes a stack of types as input and calculates the
stack of types resulting from executing that instruction.

Two corresponding program states from Inca and Ubx simulate each other
(expressed by the ≈ binary relation) if they have the same dynamic memory, if
both their function environments and call stacks are similar, and if an abstract
interpretation of all function definitions succeeds.

Two function environments are similar if they have the same domain and if, given
a function definition in Ubx and in Inca, the Ubx function definition generalizes to
the Inca function definition.

Call stacks are similar if
• they have the same height,
• two corresponding stack frames refer to the same function, have the same

program counters, and Ubx’s operand stack may be boxed to Inca’s,
• the abstract interpretation of the function up to the current program counter

matches with the operand types in the stack, and
• the current instruction of all nontopmost stack frames must be a call instruction

to the function of the stack frame immediately above.
We first prove a forward simulation between Inca and Ubx.
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Lemma 8.17 (Forward Simulation). Let s1 and s ′1 be dynamic states of Inca. Let s2
be a dynamic state of Ubx. If s1 ≈ s2 and s1 →Inca s ′1 , then there exists a dynamic
state s ′2 such that s2 →Ubx s ′2 and s ′1 ≈ s ′2 .

Lemma 8.18 (Forward Matching Final States). Let s1 and s2 be dynamic states of
Inca and Ubx respectively. If s1 ≈ s2 and finalInca s1 , then finalUbx s2 .

We then prove a backward simulation between Inca and Ubx.

Lemma 8.19 (Backward Simulation). Let s1 be a dynamic state of Inca. Let s2
and s ′2 be dynamic states of Ubx. If s1 ≈ s2 and s2 →Ubx s ′2 , then there exists a
dynamic state s ′1 such that s1 →Inca s ′1 and s ′1 ≈ s ′2 .

Lemma 8.20 (Backward Matching Final States). Let s1 and s2 be dynamic states
of Inca and Dyn respectively. If s1 ≈ s2 and finalUbx s2 , then finalInca s1 .

Finally, we prove a bisimulation between Dyn and Inca.

Theorem 8.21 (Bisimulation). There is a bisimulation between Inca and Ubx
w.r.t. ≈.

Proof Sketch. By Lemmas 8.17 to 8.20.

Theorem 8.21 corresponds to an interpretation of the locale bisimulation from
Chapter 6.

8.6.3 Compilation from Inca to Ubx

We present a simple exemplary compilation function composed on three steps:
1. Lift the program from Inca to Ubx.
2. Optimize the program by using as many Ubx instructions as possible.
3. Ensure that the result is valid with respect to the abstract interpretation.
The optimization pass is based on an oracle—an abstract function of type

′fun ⇒ N ⇒ type option—which, given the position of a Load instruction in a
function, evaluates to the expected unboxed type of the loaded value. A variant of
the abstract interpretation used for the simulation relation optimizes instructions in
a linear pass based on the following type information.

1. All function parameters have boxed dynamic types.
2. The type produced by Push is provided by inspecting the constant.
3. The type produced by Load is provided by the oracle, or assumed to be a boxed

dynamic type if the oracle evaluates to †.
4. The type consumed by Store is obtained from the abstract interpretation.
5. The types consumed and produced by Op, OpInl, and Call are always boxed

dynamic and their number depends on the arity of the operation or function.
6. The types consumed and produced by OpUbx is obtained from typeofubx .
This information provided by the oracle could either be given directly by the

programmer or be the result of automatic run-time instrumentation. In the second
case, the virtual machine would first execute code in Inca mode and gather some
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statistics on encountered types, a stage usually referred to as profiling. When some
heuristics indicate that a point of “dynamic locality of type usage” [7] is reached,
the program would then be compiled to Ubx, and the control flow diverted to Ubx’s
execution engine.

The accuracy of the oracle’s predictions may increase or decrease run-time
performance, but may never alter the semantics of the executed program. If a value
loaded from memory does not match the oracle’s prediction, rule Load-Ubx-Miss
generalizes the function back to cope with boxed values before resuming the execution.

We proved that compiled, optimized programs simulate their uncompiled coun-
terparts.

Lemma 8.22 (Compiled Matching States). Let p1 and p2 be static program rep-
resentations of Inca and Ubx respectively. Let s1 be a dynamic state of Inca. If
compilep1 = p2 and loadInca p1 s1 , then there exists a state s2 such that loadUbx p2 s2
and s1 ≈ s2 .

Theorem 8.23 (Compilation Function). The function compile is a compiler from
Inca to Ubx, which guarantees that the Ubx program simulates the Inca program.

Proof Sketch. By Lemmas 8.19, 8.20 and 8.22.

Theorem 8.23 corresponds to an interpretation of the locale compiler from Chap-
ter 6. The simulation framework gives us a proof that the successful execution of
a compiled Ubx program has a behaviour equivalent to a behaviour of the original
Inca program.

Corollary 8.24 (Soundness of Compilation). Let p1 and p2 be static program
representations of Inca and Ubx respectively. If p1 compiles to p2 (i.e., compile p1 =
p2 ), and p2 has behaviour b2 (i.e., p2 ⇓ b2 ), and b2 is not a wrong behaviour, then p1
has a behaviour that matches with b2 (i.e., ∃b1 . p1 ⇓ b1 ∧ rel_behaviour () ≈ b1 b2 ).

Compilation from Inca to Ubx is incomplete, in the sense of Theorem 8.11, for
two reasons.

First, the abstract interpretation and optimization passes are too simplistic to han-
dle wrong type predictions from the oracle; this could be addressed by implementing
and verifying more sophisticated passes.

Second, the hypothesis of Theorem 8.11 is too weak because loading a program
does not guarantee that it can be successfully executed; the compilation pass, however,
is dependent on a conservative abstract interpretation that assumes a successful
execution. To address this issue and prove completeness, we would need to either
strengthen the hypothesis (e.g., with a typing judgment that guarantees a valid
execution) or totalize the semantics of the languages to guarantee that all programs
have a valid execution (e.g., by adding exception handling to the semantics).

8.7 Practical Perspective

Benefits of Formalization The full-fledged CPython prototype successfully passed
all relevant unit tests and ran major Python applications, benchmarks, and frame-
works. Although tests covered several ten thousands lines of Python programs and
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C code for libraries, some “Heisenbugs” occurred every now and then. Through the
presented formalization, we were able to discern a new requirement that addressed
the bug.

The new requirement—obvious in hindsight, but nonobvious before—is due to
the deoptimization of Ubx optimized code. When deoptimizing a certain function
f, a prior, yet incomplete call to function f may still be active on stack. Assume
the prior stack frame of f was type-specialized to a specific type T and that the
operand stack of the interpreter stack frame contained unboxed data of type T . If
we deoptimize the newer stack frame of the present function invocation of f, then all
unboxed data will be boxed again and stored in memory. Now, assume that during
a following call of function f, it will be optimized again, but to a different type T ′.
The program continues, until it eventually continues to operate on the prior stack
frame belonging to function f. The interpreter operand stack may now hold unboxed
data of type T , but the optimized instructions will assume the data to be of type T ′.
Potential errors following from this situation are: (i) deoptimization may fail when
the types T and T ′ differ; (ii) execution of machine-native operations may fail, when
the data representation differs; (iii) (un-)boxing of data may fail, when we try to
access machine-native data incorrectly.

The underlying problem is that there is only one optimized interpreter code
image stored for each interpreted function. A Ubx function is, therefore, not able to
infer potential changes to its code. A variety of techniques address this issue (e.g.,
deoptimizing all invocations of the optimized code or keeping a version counter of
the code image and check, that these are identical).

8.8 Related Work

To the best of our knowledge, there exists no prior work that is directly related to
the formalization and verification of the speculative optimizations presented here.
We therefore group the related work into the three most directly related groups of
related work: (i) formalization and verification of translators, (ii) formalization and
verification of dynamic languages, and (iii) just-in-time compiler optimizations.

8.8.1 Formalization and Verification of Translators

We combine the related work on compilers, just-in-time compilers, and interpreters
and subsume all of them under the label “translators.” From a historical perspective,
the correctness of translators has been an active research area since at least the 1980s.
The topic of compiler correctness has, for instance, been examined in the European
FP2 research program ProCoS [63]. The findings of ProCoS subsequently lead to
a larger German research project called Verifix, which examined several aspects of
compiler correctness [56, 57]. In the 2000s, a group of researchers in France pioneered
the field by mechanizing correctness of an industrial-strength C compiler [22, 74,
93, 114, 115, 116]. In the 2010s, a mechanized formalization and verification of ML
followed [71].

In 2006, Klein and Nipkow formalized Jinja, a unified model of a Java-like source
language, virtual machine, and compiler [67, 68]. Lochbihler later added support for
interleaved execution of threads with JinjaThreads [75, 76, 77, 78, 79]. In 2018, Watt



8.8. RELATED WORK 129

mechanized the WebAssembly specification [121, 122].
In a similar vein, the verification of compile-time optimizations has received con-

siderable attention from the research community. VellVM, e.g., focused on verifying
optimizations on the LLVM bytecode intermediate representation [128]. Tatlock and
Lerner simplify the verification of optimizations in verified compilers by using SMT
solvers to aid with the construction of verified translation validators [109]. Prior
research also focused on the formalization verification of intermediate representations,
such as Java bytecode, without optimizations [73, 104].

In 2010, Myreen presents his work on the formalization and verification of just-in-
time compilers [84], documenting some of the difficulties posed by self-modifying code.
This paper is most directly related prior work, but addresses a different direction,
namely, the formalization of just-in-time compilers. Our work, however, sidesteps the
intricate difficulties of just-in-time compilers by focusing on optimizing interpreters
instead. In 2017, Flückiger et al. investigated the correctness of speculative optimiza-
tions with dynamic deoptimization [53]. Since our virtual machine interpreters can
be thought of as intermediate representations, the Inca language confirms the finding
by Flückiger et al., namely that reasoning about complex system interactions is a lot
easier by embedding the proper information in it. Moreover, Ubx goes further than
Flückiger et al. by covering different data representations.

8.8.2 Formalization and Verification of Dynamic Languages

The formalization of dynamic languages in general, and JavaScript in particular,
has been the subject of substantial prior work. In 2010, λJS presented the first
executable, formal semantics of JavaScript [61]. By rewriting JavaScript surface
syntax into equivalent Scheme code, JavaScript programs could be executed, with
correctness and security guarantees depending on the underlying Scheme system. In
2013, λπ applied a similar technique to provide a formal semantics for Python [92].
A comprehensive formalization and verification effort of JavaScript is the Coq-based
project JSCert [23]. JSCert generates a verified JavaScript interpreter from its
formalization.

While a formal semantics is an indispensable prerequisite for a correct and verified
virtual machine, it addresses the desirable performance aspect insufficiently. To
attain performance, a formalization of speculative optimizations is required, which is
the key contribution of our chapter.

8.8.3 Just-in-Time Compilers and Interpreters

Aycock gives a good overview of the history of just-in-time compilers up until the
early 2000s [1]. Particularly relevant prior work is the original work by Deutsch and
Schiffman, which introduced the seminal idea of inline caching [49]. Originally, their
work on Smalltalk 80 systems considered so-called monomorphic inline caches, i.e.,
inline caches that hold at most one address. Hölzle, Chambers and Ungar subsequently
extended these with so-called polymorphic inline caches, i.e., a combination of an
inline cache and a stub to cache multiple target addresses, which is particularly
relevant in highly polymorphic call sites [64, 65].

In 1996, Roemer et al. studied the performance of interpreters and found no
specific evidence to identify hints [95]. In 2003, Ertl and Gregg investigated the
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performance of interpreters again and found evidence of the importance of branch
predictors [51]. In 2009, Brunthaler analyzed the varying performance potential
of interpreter optimizations and found that the interpreter abstraction level is the
primary performance determinant for selecting interpreter optimizations [30]. In 2010,
Brunthaler investigated the use of inline caching in a purely interpretative fashion,
in contrast to its use in just-in-time compilers, and found speedups by a factor of
up to 2 [31, 32]. In 2012, Würthinger et al. generalized Brunthaler’s bytecode inter-
preter optimizations to abstract-syntax tree interpreters [126], which subsequently
became the cornerstone for the development of the Truffle/Graal virtual machine
implementation efforts [124, 125]. In 2014, Wang, Wu, and Padua demonstrated the
potential of combining advanced optimizations in the R programming language and
reported speedups of up to 3.5 [120].

All prior work in this area reports important speedups, either through dynamic
code generation in a classic just-in-time compiler setting, or by way of optimizing
interpreters. The exclusive focus of prior work is on improving performance, or some-
times also reducing memory footprint. The aspect of formalization and verification,
in particular to establish correctness, is notably absent.

8.9 Conclusion
We presented a formalization of virtual machine interpreters for dynamically typed
programming languages. Our formalization define an interpreter supporting the most
representative features found and used by many virtual machine interpreters for
mainstream languages. We then methodically extend the virtual machine interpreter’s
instruction set and semantics to accommodate increasingly specialized and optimized
instruction derivatives. These incrementally specialized derivatives eliminate much
of the overhead frequently found in high abstraction-level virtual machines, such as
those used by Python or JavaScript.

The optimized instruction derivatives, in particular, first eliminate the overhead
of dynamic typing by inline caching a prior recorded type at its place. This recorded
type information is subsequently used to expand the local knowledge of type usage
in a specific region of the program (e.g., a loop or a basic block). Once a suitable
region of known types is determined, we can rewrite the whole sequence to eliminate
the overhead of using boxed objects by using machine-native data representation
instead.

Our formalization enables the proof of both soundness and completeness for
speculative optimizations. Given a formal semantics of a dynamic language, and a
suitable intermediate representation, our formalization provides a systematic way
to (i) integrate speculative optimizations, and (ii) establish the correctness of the
resulting system. We believe that our formalization provides a foundation for the
verification of industrial-strength implementations. These implementations will
benefit from our formalization’s ability to pinpoint subtle errors and nonobvious
requirements.
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Chapter 9

Conclusion

This thesis described the formalizations of multiple results in the fields of auto-
mated reasoning and virtual machines. All formalizations were carried on in the
Isabelle/HOL proof assistant. The results were separated in three parts.

Part I: Correctness of Logical Calculi The first presented formalization was of
the ground superposition calculus. The main theorems formalized are soundness (i.e.,
every clause derived from valid clauses is valid) and static refutational completeness
(i.e., if a saturated clause set is unsatisfiable, then it contains the empty clause).
The proof of refutational completeness involves constructing a model for a satisfiable
clause set and proving that this model construction will succeed if the clause set is
saturated.

The second presented formalization was of the SCL(FOL) calculus. Compared
with the pen-and-paper version, the formalized calculus is simpler and more general.
The main theorems formalized are soundness (i.e., when the calculus stops, it either
found a model or derived a contradiction), nonredundancy of learned clauses (i.e.,
learned clauses are not entailed by smaller known clauses), and termination (i.e., a
run of the calculus will always terminate). The proof of termination involves a novel
monotonically decreasing measuring function. Some formalized theorems are also
stronger than their pen-and-paper versions. The formalization also led to finding
and fixing one bug in a previously published version of the Backtrack rule.

Part II: Simulations between Calculi We first presented our framework for
simulation proofs. It was originally developed to prove the correctness of compilation
functions, but it turned out to be also useful for simulation proofs between logical
calculi.

We then presented our formalization of a proof that SCL(FOL) can simulate
nonredundant clause learning by ground ordered resolution. For this, we first
formalized the ground ordered resolution calculus by adapting our formalization
of ground superposition. The simulation proof itself involves defining appropriate
strategies for both calculi. This result is not new, but we devised an alternative proof
optimized for formalization, significantly simplified the strategy for SCL(FOL), and
proved that the simulation also holds the other way around. Our new proof involves
ten refinement steps. To simplify the formalization of these steps, we proved a lemma
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Chapter Entry Nonblank lines

3 Abstract_Substitution 613
3 Min_Max_Least_Greatest 1 119
4 Superposition_Calculus 11 213

Ground theories: 2964 nonblank lines
Nonground theories: 6723 nonblank lines
Other theories: 1526 nonblank lines

5 Simple_Clause_Learning 9 138
6 VeriComp 1 670
7 SCL_Simulates_Ground_Resolution 25 251
8 Interpreter_Optimizations 6 542

55 546

Figure 9.1: Size of the discussed entries of the Archive of Formal Proofs version
2024-11-04.

that lifts a simulation to a bisimulation (i.e., a simulation in both directions) under
some conditions.

Part III: Simulations between Virtual Machines We presented our formal-
ization of three stack-based interpreter for dynamically typed bytecode languages.
The first interpreter serves as a baseline and has features representative of real-world
virtual machines. The second interpreter adds a speculative optimization known as
inline caching that rewrites the program under execution at run time to use more
efficient operations. The third interpreter adds another speculative optimization that
allows to manipulate machine-native data and rewrite the program under execution
if the optimization would not work. The main theorems formalized are that the first
interpreter can simulate the second one and vice versa, and also that the second
interpreter can simulate the third one and vice versa. Other formalized theorems
include some completeness results of compilation from the first to the second inter-
preter and from the second to the third. This formalization was the initial use case
for which the framework for simulation proofs was developed. The formalization also
led us to discover the source of one bug in the original CPython prototype of the
speculative optimizations.

These formalizations were carried out over several years and amount to over
55 000 nonblank lines1 (Fig. 9.1). I wrote all of them except for the entry Super-
position_Calculus that is joint work with Balazs Toth. A conservative estimate
would put my contribution at over 47 000 nonblank lines plus some more in the Is-
abelle/HOL distribution or other entries of the Archive of Formal Proofs. I produced
many reusable definitions and lemmas as byproduct and made them available to the
whole Isabelle community.

These formalizations highlight the benefits of formalizing pen-and-paper proofs.
Some formalizations led to the discovery of errors in previous proofs or software

1Counted using grep -Ev '^[[:blank:]]*$'.



133

prototypes. Some formalizations revealed missing assumptions; other revealed that
some assumptions were unnecessary. Some formalizations lead to simplifications and
generalizations; others lead to new interesting proofs of the same results. But the
biggest benefit is probably that a formalization forces us to provide clear definitions,
assumptions, and write detailed proofs. Pen-and-paper proofs have a tendency to
contain vaguenesses that are adequate to convey an intuition to the reader, but
inadequate for precise understanding. A significant portion of the formalization
time is thus spent trying to understand what the pen-and-paper proofs meant and
to rediscover the proof. For that reason, I am convinced that the best time to
formalize a theory is when developing it for the first time. Another advantage is that
a paper backed by a formalization can chose to omit some or all proofs and use the
gained space to more clearly present and explain the concepts and lemmas. A reader
interested in the proofs can then refer directly to the formalization.



134 CHAPTER 9. CONCLUSION



135

Appendix A

Where to Find the Formalized
Theorems?

This chapter presents where each lemma, theorem, and corollary presented in this
thesis can be found in the different Isabelle/HOL formalizations. The references to
the entries of the Archive of Formal Proofs may also contain the specific version to
look at.

The formalization described in Chapter 4 is available in the entry Superposition_
Calculus [47] of the Archive of Formal Proofs version 2024-11-04.

Theorem 4.1 is for presentation purpose and has no correspondence in the formal-
ization.

Lemma 4.10 corresponds to
lemma termination_Union_rewrite_sys of
theory Ground_Superposition_Completeness.

Lemma 4.11 corresponds to
lemma WCR_Union_rewrite_sys of
theory Ground_Superposition_Completeness.

Lemma 4.12 is not explicitly stated but inlined directly in the proof of
lemma statically_complete of
theory Ground_Superposition_Completeness.

Lemma 4.13 corresponds to
lemma true_cls_if_productive_epsilon and
lemma false_cls_if_productive_epsilon of
theory Ground_Superposition_Completeness.

Lemma 4.14 corresponds to
lemma lift_entailment_to_Union of
theory Ground_Superposition_Completeness.

Lemma 4.15 corresponds to
lemma model_preconstruction of
theory Ground_Superposition_Completeness.

Lemma 4.16 corresponds to
lemma model_construction of
theory Ground_Superposition_Completeness.
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Theorem 4.17 corresponds to
lemma statically_complete of
theory Ground_Superposition_Completeness.

The formalization described in Chapter 5 is available in the entry Simple_Clause_Learning
[40] of the Archive of Formal Proofs version 2024-11-04.

Lemma 5.1 corresponds to
lemma scl_state_invariants of
theory Invariants.

Lemma 5.5 corresponds to
lemma strategy_restrictions of
theory SCL_FOL.

Theorem 5.6 corresponds to
lemma monotonicity_wrt_bound of
theory SCL_FOL.

Theorem 5.7 corresponds to
lemma correct_termination of
theory Correct_Termination.

Corollary 5.8 corresponds to
lemma correct_termination_strategies of
theory Correct_Termination.

Theorem 5.11 corresponds to
lemma dynamic_non_redundancy_regular_scl of
theory Non_Redundancy.

Corollary 5.12 corresponds to
lemma static_non_subsumption_regular_scl of
theory Non_Redundancy.

Corollary 5.13 corresponds to
lemma dynamic_non_redundancy_strategy of
theory Non_Redundancy.

Theorem 5.16 corresponds to
lemma termination_scl_without_back of
theory Termination.

Lemma 5.19 corresponds to
lemma M_back_after_regular_backtrack of
theory Termination.

Theorem 5.20 corresponds to
lemma termination_regular_scl of
theory Termination.

Corollary 5.21 corresponds to
lemma termination_strategy of
theory Termination.

Theorem 5.22 corresponds to
lemma completeness_wrt_bound of
theory Completeness.
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Lemma 5.23 corresponds to
lemma ex_bound_if_unsat of
theory Completeness.

The formalization described in Chapter 6 is available in the entry VeriComp [38]
of the Archive of Formal Proofs version 2024-11-04.

Lemma 6.1 corresponds to
lemma right_unique_state_behaves of
theory Semantics.

Lemma 6.2 corresponds to
lemma right_unique_prog_behaves of
theory Language.

Theorem 6.3 corresponds to
lemma simulation_behaviour of
theory Simulation.

Corollary 6.4 corresponds to
lemma behaviour_preservation of
theory Compiler.

Lemma 6.5 corresponds to
lemma backward_simulation_composition of
theory Simulation.

Theorem 6.6 corresponds to
lemma compiler_composition of
theory Simulation.

The formalization described in Chapter 7 is mostly available in the entries
VeriComp [38] and SCL_Simulates_Ground_Resolution [43] of the Archive of Formal
Proofs version 2024-11-04. Lemmas 7.10 and 7.11 are exceptions: They were added
directly to the development version of the Archive of Formal Proofs (changeset
3fd35e3227256ed3) and should be available in the next public release. These lemmas
are for presentation only and not used in the formalization of the calculi or refinement
steps.

Lemma 7.1 corresponds to
lemma unique_ground_resolution and
lemma unique_ground_factoring of
theory Background [43].

Lemma 7.7 corresponds to
lemma lift_strong_simulation_to_bisimulation of
theory Lifting_Simulation_To_Bisimulation [38].

Lemma 7.10 corresponds to
lemma final_iff_stuck_if_invar of
theory Lifting_Simulation_To_Bisimulation [38].

Lemma 7.11 corresponds to
lemma wellbehaved_transition_systems_agree_on_final_iff_agree_on_stuck of
theory Lifting_Simulation_To_Bisimulation [38].

Lemma 7.17 is not explicitly stated but corresponds to
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lemma right_unique_ord_res_1 and
lemma ord_res_1_safe and
sublocale declaration ord_res_1_semantics of
theory ORD_RES_1 [43].

Theorem 7.18 corresponds to
sublocale declaration backward_simulation_with_measuring_function of
theory Simulation_SCLFOL_ORDRES [43].

Lemma 7.23 is not explicitly stated but corresponds to
lemma right_unique_ord_res_2_step and
lemma ord_res_2_step_safe and
sublocale declaration ord_res_2_semantics of
theory ORD_RES_2 [43].

Lemma 7.25 corresponds to
lemma ord_res_1_final_iff_ord_res_2_final of
theory Simulation_SCLFOL_ORDRES [43].

Lemma 7.26 corresponds to
lemma forward_simulation of
theory Simulation_SCLFOL_ORDRES [43].

Lemma 7.27 corresponds to
lemma bisimulation_ord_res_1_ord_res_2 of
theory Simulation_SCLFOL_ORDRES [43].

Theorem 7.35 corresponds to
lemma forward_simulation_ord_res_1_ord_res_11 and
lemma backward_simulation_ord_res_1_ord_res_11 of
theory Simulation_SCLFOL_ORDRES [43].

Theorem 7.37 corresponds to
lemma ord_res_11_is_strategy_for_regular_scl of
theory Simulation_SCLFOL_ORDRES [43].

Corollary 7.38 corresponds to
lemma ord_res_11_non_subsumption of
theory Simulation_SCLFOL_ORDRES [43].

Corollary 7.39 corresponds to
lemma ord_res_11_termination of
theory Simulation_SCLFOL_ORDRES [43].

The formalization described in Chapter 8 is available in the entries VeriComp
[38] and Interpreter_Optimizations [39] of the Archive of Formal Proofs version
2021-02-23. Later versions of the Archive of Formal Proofs contain a refactored and
extended version of the formalization.

Lemma 8.3 corresponds to
lemma forward_lockstep_simulation of
theory Std_to_Inca_simulation [39].

Lemma 8.4 corresponds to
lemma match_final_forward of
theory Std_to_Inca_simulation [39].
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Lemma 8.5 corresponds to
lemma backward_lockstep_simulation of
theory Std_to_Inca_simulation [39].

Lemma 8.6 corresponds to
lemma match_final_backward of
theory Std_to_Inca_simulation [39].

Theorem 8.7 corresponds to
sublocale declaration std_inca_bisimulation of
theory Std_to_Inca_simulation [39].

Lemma 8.8 corresponds to
lemma compile_load of
theory Std_to_Inca_compiler [39].

Theorem 8.9 corresponds to
sublocale declaration std_to_inca_compiler of
theory Std_to_Inca_compiler [39].

Corollary 8.10 is not explicitly stated but corresponds to the instantiation of
lemma behaviour_preservation of
theory Compiler [38].

Theorem 8.11 corresponds to
lemma compile_load_forward of
theory Std_to_Inca_compiler [39].

Lemma 8.17 corresponds to
lemma forward_lockstep_simulation of
theory Inca_to_Ubx_simulation [39].

Lemma 8.18 corresponds to
lemma match_final_forward of
theory Inca_to_Ubx_simulation [39].

Lemma 8.19 corresponds to
lemma backward_lockstep_simulation of
theory Inca_to_Ubx_simulation [39].

Lemma 8.20 corresponds to
lemma match_final_backward of
theory Inca_to_Ubx_simulation [39].

Theorem 8.21 corresponds to
sublocale declaration inca_ubx_bisimulation of
theory Inca_to_Ubx_simulation [39].

Lemma 8.22 corresponds to
lemma compile_load of
theory Inca_to_Ubx_compiler [39].

Theorem 8.23 corresponds to
sublocale declaration std_to_inca_compiler of
theory Inca_to_Ubx_compiler [39].

Corollary 8.24 is not explicitly stated but corresponds to the instantiation of
lemma behaviour_preservation of
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theory Compiler [38].
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